WO2011074031A1 - 無線信号処理装置及び無線装置 - Google Patents

無線信号処理装置及び無線装置 Download PDF

Info

Publication number
WO2011074031A1
WO2011074031A1 PCT/JP2009/006905 JP2009006905W WO2011074031A1 WO 2011074031 A1 WO2011074031 A1 WO 2011074031A1 JP 2009006905 W JP2009006905 W JP 2009006905W WO 2011074031 A1 WO2011074031 A1 WO 2011074031A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transfer function
antenna
calibration
wireless device
Prior art date
Application number
PCT/JP2009/006905
Other languages
English (en)
French (fr)
Inventor
青木亜秀
田邉康彦
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/006905 priority Critical patent/WO2011074031A1/ja
Priority to JP2011545846A priority patent/JP5367843B2/ja
Publication of WO2011074031A1 publication Critical patent/WO2011074031A1/ja
Priority to US13/495,733 priority patent/US9300382B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase

Definitions

  • the present invention relates to wireless communication.
  • a plurality of wireless devices that are physically separated from each other cooperate to form a single radio wave (beam) having directivity (hereinafter referred to as cooperative communication), thereby being positioned at the cell edge.
  • cooperative communication a single radio wave having directivity
  • the reception power of the wireless device can be improved, and interference with other wireless devices can be reduced.
  • One of the problems of the present invention is to calibrate transmission systems and reception systems of a plurality of wireless devices when performing cooperative communication of the plurality of wireless devices.
  • a radio signal processing device uses a first radio device having a first antenna and a second antenna, and a second radio device having a third antenna and a fourth antenna.
  • a first self-calibration unit that calibrates the transmission / reception system of the first antenna and the transmission / reception system of the second antenna, and the third antenna.
  • the second self-calibration unit After performing calibration by the second self-calibration unit that calibrates the transmission / reception system and the transmission / reception system of the fourth antenna, the first self-calibration unit, and the second self-calibration unit Further, a phase for performing calibration on the transmission / reception system of the first antenna and the transmission / reception system of the third antenna. Characterized in that and a calibration unit.
  • wireless system which concerns on 1st Embodiment The flowchart figure which shows operation
  • FIG. 1 is a diagram showing a radio system according to the first embodiment of the present invention.
  • the wireless system according to the first embodiment includes a wireless device 100, a wireless device 200, and a wireless signal processing device 300, and is installed at locations physically separated from each other.
  • the number of wireless devices connected to the wireless signal processing device 300 is not limited to two, and more wireless devices may be connected.
  • the wireless signal processing device 300 can communicate with other user terminals (for example, cellular phones) existing in a wide range by connecting to many wireless devices.
  • the wireless signal processing device 300 performs cooperative communication using the wireless devices 100 and 200 that are physically separated.
  • the radio signal processing device 300 performs calibration of the radio devices 100 and 200.
  • the wireless devices 100 and 200 perform wireless signal transmission / reception processing (frequency conversion processing, AD / DA conversion processing, and the like).
  • the wireless signal processing device 300 and the wireless device 100 are connected by a wired communication network (for example, an optical fiber).
  • the wireless signal processing device 300 and the wireless device 200 are also connected by a wired communication network.
  • This wireless system may be a cellular system.
  • the radio signal processing device 300 may be a Base Band Unit (BBU).
  • the radio apparatuses 100 and 200 may be a remote radio unit (RRU).
  • the wireless device 100 includes an antenna 1, an antenna 2, transmission systems 101 and 102, and reception systems 103 and 104.
  • the transmission system 101 and the reception system 103 perform wireless signal transmission processing and reception processing via the antenna 1.
  • the transmission system 102 and the reception system 104 perform wireless signal transmission processing and reception processing via the antenna 2.
  • the radio apparatus 200 includes an antenna 3, an antenna 4, a transmission system 201, a transmission system 202, a reception system 203, and a reception system 204.
  • the transmission system 201 and the reception system 203 perform transmission processing and reception processing of radio signals via the antenna 3.
  • the transmission system 202 and the reception system 204 perform transmission processing and reception processing of radio signals via the antenna 4.
  • the transmission systems 101, 102, 201, and 202 include a digital / analog conversion unit (not shown) and an up converter (not shown).
  • the reception systems 103, 104, 203, and 204 include an analog / digital conversion unit (not shown) and a down converter (not shown).
  • the transmission systems 101, 102, 201, and 202 and the reception systems 103, 104, 203, and 204 may include a noise removal filter (not shown).
  • the signal processing unit 300 includes self-calibration units 110 and 210, beam forming units 111 and 211, and a relative calibration unit 301.
  • the self-calibration unit 110 calibrates the transmission / reception system of the antennas 1 and 2 of the wireless device 100.
  • the self-calibration unit 210 calibrates the transmission / reception system of the antennas 3 and 4 of the wireless device 200.
  • the relative calibration unit 301 performs calibration between the transmission / reception system of the antenna 1 (or 2) of the wireless device 100 and the transmission / reception system of the antenna 3 (or 4) of the wireless device 200.
  • the beam forming unit 111 performs weighted synthesis of signals received by the wireless device 100.
  • the beam forming unit 111 forms a radio wave (beam) transmitted from the radio apparatus 100 and having directivity in the direction of the user terminal.
  • the beam forming unit 111 includes a transmission weight multiplication unit 112, a reception weight multiplication unit 113, a reception weight calculation unit 114, and a transmission weight calculation unit 115.
  • the reception weight calculation unit 114 calculates a weight (hereinafter referred to as reception weight) for weighting and combining when the radio apparatus 100 receives radio signals from the antennas 1 and 2.
  • the reception weight may be calculated by the reception weight calculation unit 114 so that the reception characteristics of the radio signal (received signal strength after synthesis, SNR, and SINR) are almost maximized. A weight that maximizes the reception characteristic may be selected.
  • Reception weight multiplier 113 multiplies the reception weight calculated by reception weight calculator 114 and the signal received by radio apparatus 100.
  • the transmission weight calculation unit 115 calculates a weight (hereinafter referred to as a transmission weight) for beam forming when the radio apparatus 100 transmits a radio signal.
  • the transmission weight may be calculated by multiplying the reception weight from the user terminal that directs the direction of directivity by the self-calibration result, and the self-calibration result and the reception weight from the user terminal that directs the direction of directivity and It may be calculated by multiplying the relative calibration result.
  • the transmission weight multiplication unit 112 multiplies the transmission weight calculated by the transmission weight calculation unit 115 and the signal transmitted by the antennas 1 and 2 of the radio apparatus 100.
  • the beam forming unit 211 performs weighted synthesis of signals received by the wireless device 200.
  • the beam forming unit 211 forms a radio wave (beam) transmitted from the radio apparatus 200 and having directivity in the direction of the user terminal.
  • a transmission weight multiplication unit 212, a reception weight multiplication unit 213, a reception weight calculation unit 214, and a transmission weight calculation unit 215 are provided.
  • the reception weight calculation unit 214 calculates a reception weight for the wireless device 200.
  • Reception weight multiplication section 213 multiplies the reception weight calculated by reception weight calculation section 214 and the signal received by antennas 3 and 4 of radio apparatus 200.
  • Transmission weight calculator 215 calculates a transmission weight for radio apparatus 200.
  • the transmission weight multiplication unit 212 multiplies the transmission weight calculated by the transmission weight calculation unit 215 and the signal transmitted by the antennas 3 and 4 of the radio apparatus 200.
  • FIG. 2 is a flowchart illustrating the wireless system calibration method according to the first embodiment.
  • the calibration may be any process as long as the directivity upon transmission and the directivity upon reception are substantially the same.
  • the calibration may be to align the ratio of the transmission function of the transmission system and the transfer function of the reception system for a plurality of transmission / reception systems.
  • the wireless system performs calibration (hereinafter referred to as self-calibration) of transmission / reception systems in the wireless devices 100 and 200 (step S101).
  • the wireless system directs the directivities at the time of transmission / reception between the wireless devices 100 and 200 (beam formation) (step S102).
  • step S103 calibration of the transmission / reception system between the wireless devices 100 and 200 (hereinafter referred to as relative calibration) is performed (step S103).
  • the reception level of the calibration signal which is a known signal transmitted / received between the radio apparatuses 100 and 200
  • the data is transmitted / received between the radio apparatuses 100 and 200.
  • Relative calibration may be performed without directing the directivity of each other.
  • FIG. 3 is a diagram illustrating the self-calibration unit 110.
  • the self-calibration unit 210 is the same.
  • the self-calibration unit 110 includes a calibration signal generation unit 110A, a transfer function estimation unit 110B, and a calibration coefficient calculation unit 110C.
  • the calibration signal generation unit 110A generates a calibration signal that is a known signal for self-calibration of the wireless device 100.
  • the calibration signal is input to one of the two transmission systems 101 and 102 via the transmission weight multiplication unit 112.
  • the transmission system 101 transmits a calibration signal via the antenna 1.
  • the transmission weight multiplication unit 112 does not perform weight multiplication on the calibration signal during self-calibration.
  • the transmission weight multiplication unit 112 may pass through the calibration signal or may multiply the calibration signal by the weight [1, 1].
  • the receiving system 104 receives the calibration signal transmitted from the antenna 1 via the antenna 2.
  • the calibration signal transmitted from the antenna 1 and received by the reception system 103 may be discarded by the reception weight multiplication unit 113 or may be discarded by the transfer function estimation unit 110B.
  • the calibration signal received by the reception system 104 is input to the transfer function estimation unit 110B via the reception weight multiplication unit 113.
  • the reception weight multiplication unit 113 does not perform weight multiplication on the calibration signal during self-calibration.
  • the reception weight multiplication unit 113 may pass through the calibration signal or may multiply the calibration signal by the weight [1, 1].
  • the transfer function estimation unit 110B divides or multiplies the calibration signal that has passed through the transmission system 101 and the reception system 104 by the calibration signal generated by the calibration signal generation unit 110A, thereby transmitting the transmission system 101. transfer function r 12 until receiving system 104 from can be estimated (Equation 1).
  • T 1 is a transfer function of the transmission system 101
  • ⁇ 12 is a transfer function of a space (radio section) from the antenna 1 to the antenna 2
  • R 2 is a transfer function of the reception system 103.
  • the transmission function r 21 from the transmission system 102 to the reception system 103 can be estimated by transmitting the calibration signal from the transmission system 102 and receiving it by the reception system 103 (Equation 2).
  • T 2 is a transfer function of the transmission system 102
  • ⁇ 21 is a transfer function of the space (radio section) from the antenna 2 to the antenna 1
  • R 1 is a transfer function of the reception system 104.
  • the calibration coefficient calculation unit 110C includes a transfer function r 12 (estimated value) from the transmission system 101 of the antenna 1 to the reception system 104 of the antenna 2, and a transfer function from the transmission system 102 of the antenna 2 to the reception system 103 of the antenna 2.
  • a calibration coefficient K 100 is calculated using r 21 (estimated value) (Equation 3).
  • the transfer function ⁇ 12 is a space transfer function from the antenna 1 to the antenna 2
  • ⁇ 21 is a space transfer function from the antenna 2 to the antenna 1.
  • the ratio of the transfer functions of the transmission system 101 and the reception system 103 of the antenna 1 before self-calibration is T 1 / R 1 .
  • the ratio of the transfer functions of the transmission system 102 and the reception system 104 of the antenna 2 before self-calibration is T 2 / R 2 .
  • ⁇ 100 is the ratio of the transfer functions of the transmission system 101 and the reception system 103 of the antenna 1 and is the ratio of the transfer functions of the transmission system 102 and the reception system 104 of the antenna 2 after self-calibration.
  • Calibration coefficient K 100 (self-calibration result) is sent from calibration coefficient calculation unit 110C to transmission weight calculation unit 115, and self-calibration of radio apparatus 100 is completed. After self-calibration, the transmission weight calculation section 115, by multiplying the reception weight, and a calibration factor K 100 for multiplying a radio signal to be transmitted via the antenna 2, and generates a transmission weight.
  • the directivity at the time of reception and the directivity at the time of transmission in the wireless device 100 become equal.
  • the reception weight for forming the directivity at the time of reception by the reception system is used as the transmission weight for forming the directivity at the time of transmission by the transmission system, the directivity at the time of reception and the transmission at the time of transmission are obtained.
  • Directivity can be made equal.
  • all the above variables are complex numbers and have amplitude and phase.
  • the period from the transmission system 101 transmitting the calibration signal to the reception system 104 receiving the calibration signal (synchronization timing) is from the transmission system 102 transmitting the calibration signal.
  • the period until the reception system 103 receives a calibration signal is the same. By doing so, it is possible to prevent the occurrence of a phase shift of the transfer function.
  • the self-calibration unit 210 performs self-calibration of the wireless device 200 as described above.
  • the wireless device 200 includes two transmission / reception systems of the antenna 3 and the antenna 4.
  • the self-calibration unit 210 performs self-calibration so that the ratio of the transfer functions of the transmission system 201 and the reception system 203 of the antenna 3 and the ratio of the transfer functions of the transmission system 202 and the reception system 204 of the antenna 4 are the same.
  • Transmission weight multiplication unit 212 multiplies the calibration factor K 200 into a radio signal to be transmitted via the antenna 4.
  • ⁇ 200 is the ratio of the transfer functions of the transmission system 201 and the reception system 203 of the antenna 3, and is the ratio of the transfer functions of the transmission system 202 and the reception system 204 of the antenna 4 after self-calibration.
  • ⁇ 100 and ⁇ 200 may be different.
  • ⁇ 100 and ⁇ 200 are aligned.
  • FIG. 4 is a diagram illustrating a procedure for directing the directivities during transmission / reception between the radio apparatuses 100 and 200 (beam formation).
  • reference signals known signals
  • transmission weight calculation sections 112 and 212 and reception weight calculation sections 113 and 213 direct directivity at the time of transmission and reception.
  • a transmission weight and a reception weight for matching are calculated. The procedure will be described below.
  • the transmission weight multiplier 112 multiplies a reference signal, which is a known signal for forming a beam, by a transmission weight.
  • Transmission systems 101 and 102 of radio apparatus 100 transmit a reference signal multiplied by a transmission weight (step S201).
  • the transmission weight by which the transmission weight multiplication unit 112 multiplies the reference signal is a predetermined initial value.
  • the initial value is [1, 0] for using only the transmission system 101, for example.
  • the reception systems 203 and 204 of the wireless device 200 receive the reference signal transmitted from the transmission system 101 of the wireless device 100.
  • the reference signals received by the reception systems 203 and 204 are input to the reception weight multiplication unit 213.
  • the reception weight calculation unit 214 generates reception weights using the reference signals received by the reception systems 203 and 204 (step S202).
  • Many methods are known for generating reception weights, and any method may be used. In the following, as an example, a method of obtaining with the Minimum Mean Square Error (MMSE) standard using a reference signal transmitted from the wireless device 100 will be described.
  • MMSE Minimum Mean Square Error
  • the received signal x at the receiving systems 203,204 x [x 1 x 2 ] T, a reference signal and d r T. x1, x2, and dr are all vertical vectors. () T indicates transposition.
  • the reception weight calculation unit 214 generates reception weights according to the MMSE standard as follows (Equation 5).
  • E () indicates the ensemble average. However, an average value using a finite number of samples is used for calculating the ensemble average.
  • the wireless device 200 can direct the directivity at the time of reception toward the wireless device 100 by using the reception weight (Equation 5) in accordance with the MMSE standard or the like.
  • the transmission weight calculation unit 212 generates a transmission weight of a reference signal to be transmitted from the wireless device 200 to the wireless device 100 (step S203).
  • the transmission weight calculation unit 212 multiplies the reception weight generated using the reference signal received by the wireless device 200 by the self-calibration correction coefficient K 200 of the wireless device 200, thereby transmitting the transmission weight w tx (1 ), W tx (2) is generated (Formula 6).
  • w rx (1) indicates a reception weight of the reception system 203
  • w rx (2) indicates a reception weight of the reception system 204
  • w tx (1) indicates a transmission weight of the transmission system 201
  • w tx (2) indicates a transmission weight of the transmission system 202.
  • the transmission weight multiplication unit 212 multiplies the reference signal transmitted from the radio apparatus 200 to the radio apparatus 100 and the transmission weight w tx generated by the transmission weight calculation unit 212.
  • the transmission systems 201 and 202 of the wireless device 200 transmit the reference signal multiplied by the transmission weight w tx via the antennas 3 and 4 (step S204).
  • the wireless device 200 corrects the reception weight w rx with the self-calibration result K 200 to obtain the transmission weight w tx , thereby directing the directivity at the time of transmission toward the wireless device 100. Can do.
  • step S205 ⁇ S207 similarly to the above, the transmission weight calculating unit 112, a reception weight generated by the reception weight calculation unit 114, and correcting the transmission weight by using the self-calibration result K 100
  • the directivity at the time of transmission can be directed to the direction of the wireless device 200.
  • the wireless device 100 further transmits a reference signal to the wireless device 200. Since these processes (steps S205 to S207) are performed in the same manner as steps S202 to S204, description thereof will be omitted.
  • steps S201 to S206 are repeated, the directivities at the time of transmission / reception between the radio apparatuses 100 and 200 can be more accurately directed to each other.
  • the transmission weight of the wireless device 100 is w tx, 100
  • the reception weight is w rx, 100
  • the transmission weight of the wireless device 200 is w tx, 200
  • the reception weight is w rx, 200 .
  • FIG. 5 is a diagram illustrating a computer simulation result of directivity at the time of transmission of the wireless device 100.
  • a thick solid line indicates the directivity (ideal characteristic) at the time of transmission of the wireless device 100 when the propagation path information between the wireless device 100 and the wireless device 200 can be accurately acquired.
  • each weight is a singular vector of a propagation path matrix composed of propagation paths between the antennas 1 to 4.
  • the thin dotted line indicates the directivity during transmission of the wireless device 100 when Steps S201 to S206 are completed once.
  • the dotted line with a medium thickness indicates the directivity at the time of transmission of the wireless device 100 when Steps S201 to S206 are completed twice.
  • a thick dotted line indicates the directivity at the time of transmission of the wireless device 100 when Steps S201 to S206 are completed five times. The more the processes in steps S201 to S206 are repeated, the closer the directivity at the time of transmission of the wireless device 100 is to the ideal characteristic. In this computer simulation example, almost complete directivity can be formed by repeating “twice”. However, it may be repeated many times depending on the environment of the wireless section and the required calibration accuracy.
  • the method of forming directivity between the wireless devices 100 and 200 is not limited to this.
  • the positions and angles of the wireless devices 100 and 200 can be acquired by GPS or the like, directivity can be formed based on the position information and angle information.
  • radio apparatus 100 transmits a calibration signal using transmission weight w tx, 100 .
  • Radio apparatus 200 receives a calibration signal using reception weights w rx, 200 .
  • the signal processing unit 300 calculates (estimates) a transfer function from the wireless device 100 to the wireless device 200 using the calibration signal transmitted from the wireless device 100 to the wireless device 200.
  • a calibration signal generation method, a transmission method, and a transfer function calculation method are substantially the same as the self-calibration process, and thus description thereof is omitted.
  • radio apparatus 200 transmits a calibration signal using transmission weights w tx, 200 .
  • Radio apparatus 100 receives a calibration signal using reception weights w rx, 100 .
  • the signal processing unit 300 calculates (estimates) a transfer function from the wireless device 200 to the wireless device 100 using the calibration signal transmitted from the wireless device 200 to the wireless device 100.
  • the relative calibration unit 301 calculates a relative calibration coefficient using the transfer function from the wireless device 100 to the wireless device 200 and the transfer function from the wireless device 200 to the wireless device 100.
  • Equation 7 the internal transfer function when the radio apparatus 100 transmits a calibration signal using the transmission weight w tx, 100 is expressed by Equation 7.
  • w tx, 100 (1) and w tx, 100 (2) are the first and second elements of w tx, 100 , respectively.
  • w rx, 100 (1) and w rx, 100 (2) are the first and second elements of w rx, 100 , respectively.
  • the weight including the transfer function inside the reception system of the wireless device 100 is newly defined
  • FIG. 6 is a diagram illustrating a transfer function of a space (wireless section) from the wireless device 100 to the wireless device 200.
  • Transfer coefficient in the wireless section from the antenna 1 of the wireless device 100 to the antenna 3 of the radio apparatus 200 is h 13.
  • Transfer coefficient from the antenna 1 of the wireless device 100 to the antenna 4 of the wireless device 200 is h 14.
  • Transfer coefficient from the antenna 2 of the radio device 100 to the antenna 3 of the radio apparatus 200 is h 23.
  • Transfer coefficient from the antenna 2 of the radio device 100 to the antenna 4 of the wireless device 200 is h 22.
  • the transfer matrix from the wireless devices 100 to 200 is expressed by Equation 15.
  • FIG. 7 is a diagram illustrating a transfer function of a space (wireless section) from the wireless device 200 to the wireless device 100.
  • the transfer coefficient from the antenna 3 of the wireless device 200 to the antenna 1 of the wireless device 100 is It is h 31.
  • Transfer coefficient from the antenna 3 of the radio device 200 to the antenna 2 of the radio apparatus 100 is h 32.
  • Transfer coefficient from the antenna 4 of the wireless device 200 to the antenna 1 radio apparatus 100 is h 41.
  • Transfer coefficient from the antenna 4 of the wireless device 200 to the antenna 2 of the radio apparatus 100 is h 42.
  • the transfer matrix from the wireless devices 200 to 100 is expressed by Equation 16.
  • Equation 17 uses the transfer function obtained from the calibration signal. () T indicates transposition. In Equation 17, the noise component is not described for simplicity.
  • the weight including the transfer function inside the transmission system of radio apparatus 100 is the radio section. It becomes close to a vector (right singular vector) that matches the propagation path, and close to a weight (left singular vector) including a transfer function inside the reception system of the wireless device 200. Therefore, the reception level of Expression 17 is high and the noise resistance is excellent.
  • Equation 18 the transfer function r 100,200 from the wireless device 200 to the wireless device 100 is expressed by Equation 18.
  • the relative calibration unit 301 obtains the relative calibration coefficient C using the estimation results of r 100,200 and r 200,100 .
  • the relative calibration coefficient C (relative calibration result) is sent from the relative calibration unit 301 to the transmission weight calculation unit 115, and the device calibration of the wireless devices 100 and 200 is completed.
  • both r 100,200 and r 200,100 are required for the calculation of Equation 17.
  • the radio apparatus 100 and the radio apparatus 200 are connected via a signal processing unit 300 via a communication network. Therefore, the calculation of the relative calibration coefficient may be performed not by the relative calibration unit 301 but by any one of the wireless devices.
  • the wireless device not connected to the signal processing unit 300 via the communication network uses the transfer function estimation result as the signal processing unit.
  • the transfer function may be fed back (notified) to a wireless device connected to the wireless network 300 via a communication network.
  • the feedback method may be a method of feeding back data obtained by quantizing the transfer function, or may be a method of feeding back the transfer function coefficient as it is as a transmission signal.
  • the relative calibration coefficient C can be calculated by performing the relative calibration (third step) after the self-calibration (first step).
  • reception weights for receiving reception signals by the antennas 1 to 4 of the radio apparatuses 100 and 200 are generated.
  • transmission weight calculation section 115 multiplies the reception weight by the self-calibration coefficient and the relative calibration coefficient to generate the transmission weight of radio apparatus 100.
  • the transmission weight calculation unit 215 multiplies the reception weight by only the self-calibration coefficient to generate the transmission weight of the radio apparatus 200. In this way, by using the transmission weights generated by the transmission weight calculation units 115 and 215, the transmission signals are transmitted from the antennas 1 to 4 of the wireless devices 100 and 200, so that the wireless devices 100 and 200 (antenna 1 to It is possible to align the reception directivity and the transmission directivity integrated with 4).
  • the plurality of wireless devices 100 and 200 that are separated from each other cooperate.
  • the transmission directivity of the generated radio wave can be directed toward the user terminal with high accuracy.
  • the reception performance of the user terminal can be greatly improved. Since the interference during transmission can be greatly reduced by improving the calibration accuracy, the capacity of the entire radio system can be increased.
  • the accuracy of the relative calibration can be improved by performing the beam forming process (second step) after the self-calibration (first step) and before the relative calibration (third step).
  • the reception directivity and transmission directivity integrated with the radio apparatuses 100 and 200 (antennas 1 to 4) can be matched more accurately.
  • grounding is performed at a distance between wireless devices in order to avoid interference or to reduce equipment costs. For this reason, the reception levels of the calibration signals are low and buried in noise.
  • the estimation accuracy of the transfer function used for calculating the relative calibration coefficient is poor and the calibration accuracy is deteriorated.
  • a period (synchronization timing) from when the wireless device 100 transmits a calibration signal to when the wireless device 200 receives the calibration signal is The period from when the wireless device 200 transmits the calibration signal to when the wireless device 100 receives the calibration signal (strictly, the transfer function of Equation 17 is estimated) is the same. By doing so, it is possible to prevent the occurrence of a phase shift of the transfer function.
  • the wireless system may be a cellular system or the like, and may have the role of a base station.
  • the transmission slot is a period for the base station to transmit a radio signal to each user terminal (for example, a mobile phone).
  • the reception slot is a period for each user terminal to transmit a radio signal to the base station.
  • the transmission / reception of the calibration signal in the self-calibration may be performed in a transmission slot, or may be performed in a reception slot in which signal transmission by each user terminal is suppressed. By doing in this way, it can avoid that the reception signal from a user terminal mixes in the reception result of a calibration signal.
  • FIG. 8 is a diagram illustrating a relationship between self-calibration (first step) in the wireless system according to the first embodiment and four wireless slots in one frame.
  • the transmission of the calibration signal from the antenna 1 to the antenna 2 and the transmission of the calibration signal from the antenna 2 to the antenna 1 can be performed in one transmission slot (transmission slot 1). it can.
  • the transmission of the calibration signal from the antenna 1 to the antenna 2 and the transmission of the calibration signal from the antenna 2 to the antenna 1 are performed in adjacent transmission slots (transmission slots 1 and 2). be able to.
  • FIG. 9 is a diagram illustrating a relationship between beam forming processing, relative calibration (second and third steps) in the wireless system according to the first embodiment, and four wireless slots in one frame.
  • Reference signals that are alternately transmitted to perform beam forming may be performed in one transmission slot (transmission slot 1) as in case 1 of FIG. 9, or adjacent transmission slots (transmissions) as in case 2 of FIG. It may be performed in slots 1 and 2) or may be performed in a transmission slot of another frame (not shown).
  • the transmission of the calibration signal from the wireless device 100 to the wireless device 200 and the transmission of the calibration signal from the wireless device 200 to the wireless device 100 are one transmission slot. (Transmission slot 1).
  • the transmission of the calibration signal from the wireless device 100 to the wireless device 200 and the transmission of the calibration signal from the wireless device 200 to the wireless device 100 are adjacent transmission slots. (Transmission slots 1 and 2).
  • Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified.
  • the expanded and modified embodiments are also included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

 第1無線装置と第2無線装置と通信網によって接続された無線信号処理装置である。まず、第1無線装置が有する第1アンテナの送受信系統と第2アンテナの送受信系統とに対して自己キャリブレーションを行う。次に、第2無線装置が有する第3アンテナの送受信系統と第4アンテナの送受信系統とに対して自己キャリブレーションを行う。そのあとに、第1無線装置と第2無線装置とに対して相対キャリブレーションを行う。

Description

無線信号処理装置及び無線装置
 本発明は、無線通信に関する。
 複数のアンテナ(アダプティブアレイ)を用いた通信を行う際に、受信系統ごとにウェイトと乗算して重み付け合成することによって、干渉を低減する技術がある。送信周波数と受信周波数が同一である場合、受信ウェイトを送信に用いる事で、他の無線装置への与干渉を低減する技術がある。このような無線通信システムでは、一般に、伝搬路(空間)の伝達関数は送信時と受信時で可逆と考えられる。しかし、無線装置内の送信系統と受信系統とは別の回路であり伝達関数が相違し、可逆とは考えにくい。そのため、受信ウェイトを送信に用いたとしても、受信時の指向性と送信時の指向性とが異なってしまうという問題があった。この問題を解決するため、送信系統と受信系統の間のキャリブレーションによって、受信時の指向性と送信時の指向性を揃える技術が開示されている(例えば、特許文献1)。
 セルラーシステム等では、物理的に離れて存在する複数の無線装置が、協力して、指向性を有する1つの電波(ビーム)を形成する(以下、協力通信と呼ぶ)ことによって、セルエッジに位置する無線装置の受信電力を向上させ、他の無線装置への与干渉を低減することが可能になる。しかし、複数の無線装置の協力通信を行う際に、複数の無線装置の送信系統、受信系統をいかにキャリブレーションするかについては、開示されていない。
特表2002-530998号公報
 この発明の課題の1つは、複数の無線装置の協力通信を行う際に、複数の無線装置の送信系統、受信系統をキャリブレーションすることである。
 上記鑑みて、本発明の一実施の形態に係る無線信号処理装置は、第1アンテナおよび第2アンテナを有する第1無線装置と、第3アンテナおよび第4アンテナを有する第2無線装置とを用いて協力通信を行うための無線信号処理装置であって、前記第1アンテナの送受信系統と前記第2アンテナの送受信系統とに対してキャリブレーションを行う第1自己キャリブレーション部と、前記第3アンテナの送受信系統と前記第4アンテナの送受信系統とに対してキャリブレーションを行う第2自己キャリブレーション部と、前記第1自己キャリブレーション部と前記第2自己キャリブレーション部とでキャリブレーションを行ったあとに、前記第1アンテナの送受信系統と前記第3アンテナの送受信系統とに対してキャリブレーションを行う相対キャリブレーション部とを備える事を特徴とする。
 本発明によれば、複数の無線装置の協力通信を行う際に、複数の無線装置の送信系統、受信系統をキャリブレーションすることが可能となる。
第1の実施形態に係る無線システムを示す図。 第1の実施形態に係る無線システムの動作を示すフローチャート図。 第1の実施形態に係る自己キャリブレーション部を示す図。 第1の実施形態に係るビーム形成の手順を示すフローチャート図。 指向性の形成結果の計算機シミュレーション結果を示す図。 第1の実施形態に係る無線システムの伝搬路の伝達係数を示す図。 第1の実施形態に係る無線システムの伝搬路の伝達係数を示す図。 第1の実施形態に係る無線システムのスロットを示す図。 第1の実施形態に係る無線システムのスロットを示す図。
 以下、本発明の実施形態について説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る無線システムを示す図である。第1の実施形態に係る無線システムは、無線装置100と、無線装置200と、無線信号処理装置300とを備え、互いに物理的に離れた場所に設置される。無線信号処理装置300に接続される無線装置の数は2個に限られず、より多くの無線装置が接続されても良い。無線信号処理装置300は、多くの無線装置と接続することで、広範囲に存在する他のユーザ端末(例えば、携帯電話等)と通信を行うことができる。
 無線信号処理装置300は、物理的に離れて存在する無線装置100、200を用いて協力通信を行う。無線信号処理装置300は、無線装置100、200のキャリブレーションを行う。無線装置100、200は、無線信号の送受信処理(周波数変換処理、及びAD/DA変換処理など)を行う。
 無線信号処理装置300と無線装置100とは、有線の通信網(例えば、光ファイバー)で接続される。無線信号処理装置300と無線装置200とも、有線の通信網で接続される。この無線システムはセルラーシステムであっても良い。無線信号処理装置300はBase Band Unit(BBU)であっても良い。無線装置100、200はRemote Radio Unit(RRU)あっても良い。
 無線装置100は、アンテナ1と、アンテナ2と、送信系統101、102と、受信系統103、104とを備える。送信系統101と受信系統103は、アンテナ1を介した無線信号の送信処理と受信処理を行う。送信系統102と受信系統104は、アンテナ2を介した無線信号の送信処理と受信処理を行う。
 無線装置200は、アンテナ3と、アンテナ4と、送信系統201と、送信系統202と、受信系統203と、受信系統204とを備える。送信系統201と受信系統203は、アンテナ3を介した無線信号の送信処理と受信処理を行う。送信系統202と受信系統204は、アンテナ4を介した無線信号の送信処理と受信処理を行う。
 送信系統101、102、201、202は、デジタルアナログ変換部(図示せず)と、アップコンバータ(図示せず)を備える。受信系統103、104、203、204は、アナログデジタル変換部(図示せず)と、ダウンコンバータ(図示せず)を備える。送信系統101、102、201、202、受信系統103、104、203、204は、ノイズ除去用のフィルタ(図示せず)を備えても良い。
 信号処理部300は、自己キャリブレーション部110、210と、ビーム形成部111、211と、相対キャリブレーション部301とを備える。自己キャリブレーション部110は、無線装置100のアンテナ1、2の送受信系統のキャリブレーションを行う。自己キャリブレーション部210は、無線装置200のアンテナ3、4の送受信系統のキャリブレーションを行う。相対キャリブレーション部301は、無線装置100のアンテナ1(または2)の送受信系統と、無線装置200のアンテナ3(または4)の送受信系統とのキャリブレーションを行う。
 ビーム形成部111は、無線装置100で受信した信号の重み付け合成を行う。ビーム形成部111は、無線装置100から送信する電波であって、ユーザ端末の方向へ指向性を有する電波(ビーム)を形成する。ビーム形成部111は、送信ウェイト乗算部112と、受信ウェイト乗算部113と、受信ウェイト計算部114と、送信ウェイト計算部115とを備える。受信ウェイト計算部114は、無線装置100がアンテナ1、2から無線信号を受信する際に重み付け合成するためのウェイト(以下、受信ウェイト)を計算する。受信ウェイトは、受信ウェイト計算部114によって、無線信号の受信特性(合成後の受信信号強度やSNR、SINR)がほぼ最大となるように計算されても良く、複数のウェイトののうち無線信号の受信特性が最大となるウェイトが選択されても良い。受信ウェイト乗算部113は、受信ウェイト計算部114で計算された受信ウェイトと、無線装置100で受信した信号とを乗算する。送信ウェイト計算部115は、無線装置100が無線信号を送信する際にビーム形成するためのウェイト(以下、送信ウェイト)を計算する。送信ウェイトは、指向性の方向を向けるユーザ端末からの受信ウェイトに自己キャリブレーション結果を乗算することで計算されても良く、指向性の方向を向けるユーザ端末からの受信ウェイトに自己キャリブレーション結果及び相対キャリブレーション結果を乗算することで計算されても良い。送信ウェイト乗算部112は、送信ウェイト計算部115で計算された送信ウェイトと、無線装置100のアンテナ1、2で送信する信号とを乗算する。
 ビーム形成部211は、無線装置200で受信した信号の重み付け合成を行う。ビーム形成部211は、無線装置200から送信する電波であって、ユーザ端末の方向へ指向性を有する電波(ビーム)を形成する。送信ウェイト乗算部212と、受信ウェイト乗算部213と、受信ウェイト計算部214と、送信ウェイト計算部215とを備える。受信ウェイト計算部214は、無線装置200用の受信ウェイトを計算する。受信ウェイト乗算部213は、受信ウェイト計算部214で計算された受信ウェイトと、無線装置200のアンテナ3,4で受信した信号とを乗算する。送信ウェイト計算部215は、無線装置200用の送信ウェイトを計算する。送信ウェイト乗算部212は、送信ウェイト計算部215で計算された送信ウェイトと、無線装置200のアンテナ3、4で送信する信号とを乗算する。
 図2は、第1の実施形態に係る無線システムのキャリブレーション方法を示すフローチャート図である。キャリブレーションとは、送信時の指向性と受信時の指向性をほぼ同一にする処理であればどのようなものであってもよい。例えば、キャリブレーションとは、複数の送受信系統に対して、送信系統の伝達関数と受信系統の伝達関数との比をそろえることであってもよい。第1ステップで、無線システムは、各無線装置100、200内の送受信系統のキャリブレーション(以下、自己キャリブレーションと呼ぶ)を行う(ステップS101)。第2ステップで、無線システムは、無線装置100、200間で送受信時の指向性を互いに向け合う(ビーム形成)(ステップS102)。第3ステップで、無線装置100、200間の送受信系統のキャリブレーション(以下、相対キャリブレーションと呼ぶ)を行う(ステップS103)。なお、自己キャリブレーション(第1ステップ)が終了した後、無線装置100、200間で送受信される既知信号であるキャリブレーション信号の受信レベルが高い場合には、無線装置100、200間で送受信時の指向性を互いに向け合うことなく、相対キャリブレーション(第3ステップ)を行っても良い。(第1ステップ:自己キャリブレーション)
 図3は、自己キャリブレーション部110を示す図である。なお、自己キャリブレーション部210も同様である。自己キャリブレーション部110は、キャリブレーション信号生成部110Aと、伝達関数推定部110Bと、キャリブレーション係数計算部110Cとを備える。
 まず、キャリブレーション信号生成部110Aは、無線装置100の自己キャリブレーションのための既知信号であるキャリブレーション信号を生成する。キャリブレーション信号は、送信ウェイト乗算部112を経由して、2つの送信系統101、102のうち一方の送信系統101へ入力される。送信系統101は、キャリブレーション信号を、アンテナ1を介して送信する。送信ウェイト乗算部112は、自己キャリブレーション時には、キャリブレーション信号に対して、ウェイトの乗算は行わない。送信ウェイト乗算部112は、キャリブレーション信号をスルーしても良く、キャリブレーション信号にウェイト[1,1]を乗算しても良い。
 次に、受信系統104は、アンテナ1から送信されたキャリブレーション信号を、アンテナ2を介して受信する。なお、アンテナ1から送信されたキャリブレーション信号であって受信系統103でも受信された信号は、受信ウェイト乗算部113によって捨てられても良く、伝達関数推定部110Bによって捨てられても良い。受信系統104で受信されたキャリブレーション信号は、受信ウェイト乗算部113を経由して伝達関数推定部110Bへ入力される。受信ウェイト乗算部113は、自己キャリブレーション時には、キャリブレーション信号に対して、ウェイトの乗算は行わない。受信ウェイト乗算部113は、キャリブレーション信号をスルーしても良く、キャリブレーション信号にウェイト[1,1]を乗算しても良い。
 次に、伝達関数推定部110Bは、送信系統101と受信系統104とを経由したキャリブレーション信号を、キャリブレーション信号生成部110Aで生成したキャリブレーション信号で除算または乗算を行う事で、送信系統101から受信系統104までの伝達関数r12が推定できる(数1)。
Figure JPOXMLDOC01-appb-M000001
 ここで、Tは送信系統101の伝達関数、ν12はアンテナ1からアンテナ2までの空間(無線区間)の伝達関数、Rは受信系統103の伝達関数である。
 同様に、キャリブレーション信号を、送信系統102から送信し、受信系統103で受信することで、送信系統102から受信系統103までの伝達関数r21が推定できる(数2)。
Figure JPOXMLDOC01-appb-M000002
 ここでTは送信系統102の伝達関数、ν21はアンテナ2からアンテナ1までの空間(無線区間)の伝達関数、Rは受信系統104の伝達関数である。
 キャリブレーション係数計算部110Cは、アンテナ1の送信系統101からアンテナ2の受信系統104までの伝達関数r12(推定値)と、アンテナ2の送信系統102からアンテナ2の受信系統103までの伝達関数r21(推定値)とを用いて、キャリブレーション係数K100を計算する(数3)。
Figure JPOXMLDOC01-appb-M000003
 ここで、伝達関数、ν12はアンテナ1からアンテナ2までの空間の伝達関数であり、ν21はアンテナ2からアンテナ1までの空間の伝達関数であるため、両者は等しいと見なした。
 自己キャリブレーション前のアンテナ1の送信系統101と受信系統103の伝達関数の比はT/Rである。自己キャリブレーション前のアンテナ2の送信系統102と受信系統104の伝達関数の比はT/Rである。
 アンテナ1の送受信系統を基準とし、アンテナ2の送信時にキャリブレーション係数K100を乗算すれば、以下の通り、アンテナ1の送信系統101と受信系統103の伝達関数の比と、アンテナ2の送信系統102と受信系統104の伝達関数の比を同一にすることができる(数4)。
Figure JPOXMLDOC01-appb-M000004
 ここで、α100は、アンテナ1の送信系統101と受信系統103の伝達関数の比であって、自己キャリブレーション後のアンテナ2の送信系統102と受信系統104の伝達関数の比である。
 キャリブレーション係数K100(自己キャリブレーション結果)は、キャリブレーション係数計算部110Cから送信ウェイト計算部115へ送られ、無線装置100の自己キャリブレーションは完了する。自己キャリブレーション後、送信ウェイト計算部115は、受信ウェイトと、アンテナ2を介して送信する無線信号に乗算するためのキャリブレーション係数K100とを乗算することによって、送信ウェイトを生成する。
 このようにすることで、無線装置100における受信時の指向性と送信時の指向性とが等しくなる。無線装置100では、受信系統による受信時の指向性を形成するための受信ウェイトを、送信系統による送信時の指向性を形成するための送信ウェイトとして用いると、受信時の指向性と送信時の指向性を等しくすることができる。ここで、上記の全変数は複素数であり、振幅および位相を有する。
 自己キャリブレーションを行う際、送信系統101がキャリブレーション信号を送信してから受信系統104がキャリブレーション信号を受信するまでの期間(同期タイミング)は、送信系統102がキャリブレーション信号を送信してから受信系統103がキャリブレーション信号を受信するまでの期間と同一とする。このようにすることで、伝達関数の位相ずれの発生を防止できる。
 自己キャリブレーション部210は、上述と同様に、無線装置200の自己キャリブレーションを行う。無線装置200は、アンテナ3とアンテナ4の2つの送受信系統を備える。自己キャリブレーション部210は、自己キャリブレーションを行い、アンテナ3の送信系統201と受信系統203の伝達関数の比と、アンテナ4の送信系統202と受信系統204の伝達関数の比を同一にする。送信ウェイト乗算部212は、アンテナ4を介して送信する無線信号にキャリブレーション係数K200を乗算する。α200は、アンテナ3の送信系統201と受信系統203の伝達関数の比であって、自己キャリブレーション後のアンテナ4の送信系統202と受信系統204の伝達関数の比である。
 自己キャリブレーションが完了した時点(図2のステップS101完了時)では、α100とα200とは異なっていてもよい。相対キャリブレーション(図2のステップS103)で、α100とα200とをそろえる。
(第2ステップ:指向性の形成)
 図4は、無線装置100、200間で送受信時の指向性を互いに向け合う(ビーム形成)手順を示す図である。無線装置100と無線装置200とが交互に送信しあう参照信号(既知信号)を用いて、送信ウェイト計算部112、212と受信ウェイト計算部113、213とが、送受信時の指向性を互いに向け合うための送信ウェイト、受信ウェイトを計算する。以下に、その手順を説明する。
 まず、送信ウェイト乗算部112は、ビームを形成するための既知信号である参照信号に送信ウェイトを乗算する。無線装置100の送信系統101、102は、送信ウェイトが乗算された参照信号を送信する(ステップS201)。送信ウェイト乗算部112が参照信号に乗算する送信ウェイトは、予め定められた初期値とする。初期値は、例えば、送信系統101のみを用いるための[1、0]とする。
 次に、無線装置200の受信系統203、204は、無線装置100の送信系統101から送信された参照信号を受信する。受信系統203、204で受信された参照信号は、受信ウェイト乗算部213へ入力される。受信ウェイト計算部214は、受信系統203、204で受信した参照信号を用いて受信ウェイトを生成する(ステップS202)。受信ウェイトの生成方法は、多数の方法が知られており、どのような方法であっても良い。以下では例として、無線装置100から送信される参照信号を用いたMinimum Mean Square Error (MMSE)規範で求める方法を説明する。
 受信系統203、204での受信信号xをx=[x x、参照信号をd とする。x1、x2、drはいずれも縦ベクトルである。( )は転置を示す。Rxx=E(xx)、qxr=E(xd )とする。受信ウェイト計算部214は、MMSE規範での受信ウェイトを下記の通り生成する(数5)。
Figure JPOXMLDOC01-appb-M000005
 E( )はアンサンブル平均を示す。ただし、アンサンブル平均の算出には、有限個のサンプルを使った平均値を用いられる。無線装置200は、MMSE規範等に従った受信ウェイト(数5)を用いることで、受信時の指向性を無線装置100の方向に向ける事ができる。
 次に、送信ウェイト計算部212は、無線装置200から無線装置100へ送信する参照信号の送信ウェイトを生成する(ステップS203)。送信ウェイト計算部212は、無線装置200で受信した参照信号を用いて生成された受信ウェイトと、無線装置200の自己キャリブレーションの補正係数K200とを乗算することによって、送信ウェイトwtx(1)、wtx(2)を生成する(数6)。
Figure JPOXMLDOC01-appb-M000006
 無線装置100から無線装置200へ送信された参照信号に関して、wrx(1)は受信系統203の受信ウェイト、wrx(2)は受信系統204の受信ウェイトを示す。無線装置200から無線装置100へ送信する参照信号に関して、wtx(1)は送信系統201の送信ウェイト、wtx(2)は送信系統202の送信ウェイトを示す。
 次に、送信ウェイト乗算部212は、無線装置200から無線装置100へ送信する参照信号と、送信ウェイト計算部212によって生成された送信ウェイトwtxとを乗算する。
無線装置200の送信系統201、202は、送信ウェイトwtxが乗算された参照信号を、アンテナ3、4を介して送信する(ステップS204)。
 このようにすることで、無線装置200は、受信ウェイトwrxを自己キャリブレーション結果K200によって補正して送信ウェイトwtxとすることで、無線装置100の方向に送信時の指向性を向ける事ができる。
 この後、ステップS205~S207では、上記と同様に、送信ウェイト計算部112は、受信ウェイト計算部114によって生成された受信ウェイトを、自己キャリブレーション結果K100を用いて補正して送信ウェイトとすることで、無線装置200の方向に送信時の指向性を向ける事ができる。そして、無線装置100は、無線装置200へ参照信号をさらに送信する。これら処理(ステップS205~S207)はステップS202~S204と同様に行われるため、説明を省略する。さらに、ステップS201~ステップS206を繰り返すほど、無線装置100、200間で送受信時の指向性を精度良く互いに向け合うことができる。
 ここでは、ステップS201~ステップS206が1回行われた後、次に相対キャリブレーションがなされる例で説明をする。ステップS206が終了した時点での無線装置100の送信ウェイトをwtx,100、受信ウェイトをwrx,100とし、無線装置200の送信ウェイトをwtx,200、受信ウェイトをwrx,200とする。
 図5は、無線装置100の送信時の指向性の計算機シミュレーション結果を示す図である。太実線は、無線装置100と無線装置200の間の伝搬路情報が、正確に取得できた場合の無線装置100の送信時の指向性(理想特性)である。このとき、各ウェイトはアンテナ1~4の間の伝搬路で構成される伝搬路行列の特異ベクトルである。
 細い点線は、ステップS201~S206を1回完了したときの無線装置100の送信時の指向性を示す。中ぐらいの太さの点線は、ステップS201~S206を2回完了したときの無線装置100の送信時の指向性を示す。太い点線は、ステップS201~S206を5回完了したときの無線装置100の送信時の指向性を示す。ステップS201~S206の処理を多く繰り返すほど、無線装置100の送信時の指向性は、理想特性へ近づく。この計算機シミュレーションの例では「2回」程度の繰り返しでほぼ完全な指向性形成ができている。ただし、無線区間の環境や必要なキャリブレーションの精度に応じて、多数回繰り返してもよい。
 なお、上記では、無線装置100と200の間で参照信号を互いに送信しながら指向性を形成する例を説明した。しかし、無線装置100と200の間で指向性を形成する手法はこれに限らない。例えば、無線装置100と200の互いに位置や角度がGPS等で取得できれば、位置情報、角度情報を元に指向性を形成することができる。
(第3ステップ:相対キャリブレーション)
 相対キャリブレーションの手順の概略は以下の通りである。まず、無線装置100は、送信ウェイトwtx,100を用いてキャリブレーション信号を送信する。無線装置200は、受信ウェイトwrx,200を用いてキャリブレーション信号を受信する。信号処理部300は、無線装置100から無線装置200へ送信されたキャリブレーション信号を用いて、無線装置100から無線装置200への伝達関数を計算(推定)する。なお、キャリブレーション信号の生成方法、送信方法、及び伝達関数の計算方法については、自己キャリブレーション処理とほぼ同様であるため説明を省略する。
 次に、無線装置200は、送信ウェイトwtx,200を用いてキャリブレーション信号を送信する。無線装置100は、受信ウェイトwrx,100を用いてキャリブレーション信号を受信する。信号処理部300は、無線装置200から無線装置100へ送信されたキャリブレーション信号を用いて、無線装置200から無線装置100への伝達関数を計算(推定)する。
 そして、相対キャリブレーション部301は、無線装置100から無線装置200への伝達関数と、無線装置200から無線装置100への伝達関数とを用いて、相対キャリブレーション係数を計算する。
 以下では、相対キャリブレーション部301による処理の原理について説明する。空間(無線区間)を除いた無線装置100、200内の伝達関数を考える。まず、無線装置100がキャリブレーション信号を送信ウェイトwtx,100を用いて送信するときの内部伝達関数は、数7となる。
Figure JPOXMLDOC01-appb-M000007
となる。同様に、無線装置100がキャリブレーション信号を受信ウェイトwrx、100で受信するときの内部伝達関数は、数8となる。
Figure JPOXMLDOC01-appb-M000008
 wtx,100(1)及びwtx,100(2)は、それぞれ、wtx,100の第1要素および第二要素である。wrx,100(1)及びwrx,100(2)は、それぞれ、wrx,100の第1要素および第二要素である。
 数6より、無線装置100では、
Figure JPOXMLDOC01-appb-M000009
の関係があるから、数7は、
Figure JPOXMLDOC01-appb-M000010
となる。数10の2行目の展開は、数4の関係を用いた。
 数10における無線装置100の送信系統内部の伝達関数も含めたウェイトを、新たに定義して、
Figure JPOXMLDOC01-appb-M000011
とおき、無線装置100の受信系統内部の伝達関数も含めたウェイトを、新たに定義して、
Figure JPOXMLDOC01-appb-M000012
とおけば
Figure JPOXMLDOC01-appb-M000013
の関係がある。
 また無線装置200でも同様に、無線装置200の送受信系統内部の伝達関数も含めたウェイトを、新たに定義すれば、
Figure JPOXMLDOC01-appb-M000014
の関係がある。
 図6は、無線装置100から無線装置200への空間(無線区間)の伝達関数を示す図である。無線装置100のアンテナ1から無線装置200のアンテナ3までの無線区間の伝達係数はh13である。無線装置100のアンテナ1から無線装置200のアンテナ4までの伝達係数はh14である。無線装置100のアンテナ2から無線装置200のアンテナ3までの伝達係数はh23である。無線装置100のアンテナ2から無線装置200のアンテナ4までの伝達係数はh22である。無線装置100から200までの伝達行列は数15となる。
Figure JPOXMLDOC01-appb-M000015
 図7は、無線装置200から無線装置100への空間(無線区間)の伝達関数を示す図である。無線装置200のアンテナ3から無線装置100のアンテナ1までの伝達係数は、
31である。無線装置200のアンテナ3から無線装置100のアンテナ2までの伝達係数はh32である。無線装置200のアンテナ4から無線装置100のアンテナ1までの伝達係数はh41である。無線装置200のアンテナ4から無線装置100のアンテナ2までの伝達係数はh42である。無線装置200から100までの伝達行列は数16となる。
Figure JPOXMLDOC01-appb-M000016
 数15、16の行列は、無線区間のみの伝搬路の伝達行列であるので、H100,200=H 200,100の関係がある。上記より、無線装置100から無線装置200の伝達関数r100,200は、数17となる。
Figure JPOXMLDOC01-appb-M000017
と計算できる。簡単のため、数17では、キャリブレーション信号によって求められた伝達関数を用いて記載した。( )は転置を示す。数17では、簡単のために、雑音成分は記載していない。
 無線装置100、200間の伝搬環境が劣悪である場合に、ビーム形成処理(第2ステップ)を行わずに、相対キャリブレーション(第3ステップ)を行う場合、相対キャリブレーション時に互いへの指向性が形成できない。このような場合、数17においては、例えば、アンテナ1からのみ送信をしアンテナ3のみで受信をするケース(伝達関数がr100,200=h13程度)となりえ、雑音によって相対キャリブレーションが正しく実施されない。
 ビーム形成処理(第2ステップ)を行ってから、相対キャリブレーション(第3ステップ)を行う場合、図5に示すとおり、無線装置100の送信系統内部の伝達関数も含めたウェイトは、無線区間の伝搬路にマッチしたベクトル(右特異ベクトル)に近くなり、無線装置200の受信系統内部の伝達関数も含めたウェイト(左特異ベクトル)に近くになる。そのため、数17の受信レベルは高くなり、耐雑音性に優れる。
 同様に、無線装置200から無線装置100への伝達関数r100,200は、数18となる。
Figure JPOXMLDOC01-appb-M000018
となる。数18の転置は
Figure JPOXMLDOC01-appb-M000019
となる。なお、数19の4行目から5行目の式の変換では、無線区間の伝搬路は送受で等しいとするH100,200=H 200,100の関係を用いた。数19より、r100,200とr200,100との推定結果を用いれば、α100とα200との比Cを計算することができる。相対キャリブレーション部301は、r100,200とr200,100との推定結果を用いて、相対キャリブレーション係数Cを求める。相対キャリブレーション係数C(相対キャリブレーション結果)は、相対キャリブレーション部301から送信ウェイト計算部115へ送られ、無線装置100、200の装置キャリブレーションは完了する。
 上記の通り、数17の計算には、r100,200とr200,100の両方が必要である。無線装置100と無線装置200とは、信号処理部300を介して通信網で接続される。そのため、相対キャリブレーション係数の計算は、相対キャリブレーション部301ではなく、いずれか一方の無線装置が行っても良い。
 なお、無線装置100と無線装置200との一方が、信号処理部300と通信網で接続されない場合、信号処理部300と通信網で接続されない無線装置は、伝達関数の推定結果を、信号処理部300と通信網で接続される無線装置へ、伝達関数をフィードバック(通知)してもよい。フィードバック方法は、伝達関数を量子化したデータをフィードバックする方法であっても良く、伝達関数の係数を送信信号としてそのままフィードバックする方法であっても良い。
 以上の通り、自己キャリブレーション(第1ステップ)の後、相対キャリブレーション(第3ステップ)を行うことで相対キャリブレーション係数Cを計算できる。
 まず、無線装置100、200のアンテナ1~4で受信信号を受信するための受信ウェイトを生成したものとする。そして、送信ウェイト計算部115は、その受信ウェイトに自己キャリブレーション係数と相対キャリブレーション係数とを乗算して、無線装置100の送信ウェイトを生成する。送信ウェイト計算部215は、その受信ウェイトに自己キャリブレーション係数のみを乗算して、無線装置200の送信ウェイトを生成する。このようにして、送信ウェイト計算部115、215によって生成された送信ウェイトを用いて、無線装置100、200のアンテナ1~4で送信信号を送信することで、無線装置100、200(アンテナ1~4)を一体とした受信指向性と送信指向性とをそろえる事ができる。
 離れて存在する複数の無線装置100、200のキャリブレーションを、まず自己キャリブレーション、次に相対キャリブレーションと2段階で実施することで、離れて存在する複数の無線装置100、200が協力して生成する電波の送信指向性を精度良くユーザ端末の方向に向ける事ができる。ユーザ端末の受信性能を大幅に改善する事ができる。キャリブレーション精度の改善により送信時の与干渉を大きく低減できるため、無線システム全体としての容量を増大することができる。
 さらに、自己キャリブレーション(第1ステップ)の後、相対キャリブレーション(第3ステップ)の前に、ビーム形成処理(第2ステップ)を行うことで、相対キャリブレーションの精度を向上できる。この場合、無線装置100、200(アンテナ1~4)を一体とした受信指向性と送信指向性とを、より正確に一致させることができる。セルラーシステムでは、干渉を避けるためあるいは設備費の抑制のために無線装置間の距離を離して接地される。このため、お互いのキャリブレーション信号の受信レベルは低く雑音に埋もれてしまう。相対キャリブレーション係数を計算するために用いる伝達関数の推定精度が悪く、キャリブレーション精度が悪化すると言う問題があった。しかし伝搬路にマッチした指向性を形成したあとに相対キャリブレーションを実施することで、離れて存在する複数の無線装置100、200でも精度良く相対キャリブレーションを計算でき、キャリブレーション精度を大きく改善できる。
 相対キャリブレーションを行う際、無線装置100がキャリブレーション信号を送信してから無線装置200がキャリブレーション信号を受信(厳密には、数17の伝達関数を推定)するまでの期間(同期タイミング)は、無線装置200がキャリブレーション信号を送信してから無線装置100がキャリブレーション信号を受信(厳密には、数17の伝達関数を推定)するまでの期間と同一とする。このようにすることで、伝達関数の位相ずれの発生を防止できる。
(無線スロットの割り当て)
 無線システムは、セルラーシステム等で、基地局の役割を有するものであっても良い。送信スロットは、基地局が無線信号を各ユーザ端末(例えば、携帯電話)へ送信するための期間である。受信スロットは、各ユーザ端末が無線信号を基地局へ送信するための期間である。
 自己キャリブレーションにおけるキャリブレーション信号の送受信は、送信スロットで行っても良く、各ユーザ端末による信号送信を抑制させた受信スロットで行っても良い。このようにすることで、キャリブレーション信号の受信結果に、ユーザ端末からの受信信号が混入することを避けることができる。
 送信系統101から受信系統104までの伝達関数の測定(数1)を行うためのキャリブレーション信号を送信してから、送信系統102から受信系統103までの伝達関数の測定(数2)を行うためのキャリブレーション信号を送信するまでの期間は、できるだけ短くする。
 図8は、第1の実施形態に係る無線システムにおける自己キャリブレーション(第1ステップ)と、1つのフレーム内の4つの無線スロットとの関係を示す図である。図8のケース1の通り、アンテナ1からアンテナ2へのキャリブレーション信号の送信と、アンテナ2からアンテナ1へのキャリブレーション信号の送信とは、1つの送信スロット(送信スロット1)で行うことができる。図8のケース2の通り、アンテナ1からアンテナ2へのキャリブレーション信号の送信と、アンテナ2からアンテナ1へのキャリブレーション信号の送信とは、隣接する送信スロット(送信スロット1、2)で行うことができる。このようにすることで、数1と数2に係る無線区間の伝達関数を等しいとする仮定を正しいものと扱うことができ、自己キャリブレーションの精度を向上できる。
 図9は、第1の実施形態に係る無線システムにおけるビーム形成処理、相対キャリブレーション(第2、3ステップ)と、1つのフレーム内の4つの無線スロットとの関係を示す図である。ビーム形成を行うために交互に送信しあう参照信号は、図9のケース1の通り1つの送信スロット(送信スロット1)で行っても良く、図9のケース2の通り隣接する送信スロット(送信スロット1、2)で行っても良く、別フレームの送信スロットで行っても良い(図示せず)。
 ビーム形成を行うための参照信号の送信間隔は、自己キャリブレーション、相対キャリブレーションと比較して長くても、性能劣化は生じにくい。伝搬路の影響を相殺する必要がないためである。たとえ無線装置100から無線装置200へ参照信号を送信する際の送信ウェイトがずれてしまっても、無線装置200による受信ウェイトの生成時に、ずれをある程度吸収することができるためである。
 相対キャリブレーションでは、図9のケース1の通り、無線装置100から無線装置200へのキャリブレーション信号の送信と、無線装置200から無線装置100へのキャリブレーション信号の送信とは、1つの送信スロット(送信スロット1)で行うことができる。相対キャリブレーションでは、図9のケース2の通り、無線装置100から無線装置200へのキャリブレーション信号の送信と、無線装置200から無線装置100へのキャリブレーション信号の送信とは、隣接する送信スロット(送信スロット1、2)で行うことができる。このようにすることで、無線区間の伝達関数を等しいとする仮定を正しくものと扱うことができ、相対キャリブレーションの精度を向上できる。
(その他の実施形態)
 本発明の実施形態は上記の実施形態に限られず拡張、変更可能であり、拡張、変更した実施形態も本発明の技術的範囲に含まれる。
100、200:無線装置、300:信号処理装置
101、102、201、202:送信系統
103、104、203、204:受信系統
110、210:自己キャリブレーション部、111、211:ビーム形成部
112、212:送信ウェイト乗算部、113、213:受信ウェイト乗算部
114、214:受信ウェイト計算部、115、215:送信ウェイト計算部
110A:キャリブレーション信号生成部、110B:伝達関数推定部、110C:キャリブレーション係数計算部
301:相対キャリブレーション部

Claims (6)

  1.  第1アンテナおよび第2アンテナを有する第1無線装置と、第3アンテナおよび第4アンテナを有する第2無線装置とを用いて協力通信を行うための無線信号処理装置であって、
     前記第1アンテナの第1受信系統の伝達関数と前記第1アンテナの第1送信系統の伝達関数との比と、前記第2アンテナの第2受信系統の伝達関数と前記第2アンテナの第2送信系統の伝達関数との比とをそろえるための第1キャリブレーション係数を計算する第1計算部と、
     前記第3アンテナの第3受信系統の伝達関数と前記第3アンテナの第3送信系統の伝達関数との比と、前記第4アンテナの第4受信系統の伝達関数と前記第4アンテナの第4送信系統の伝達関数との比とをそろえるための第2キャリブレーション係数を計算する第2計算部と、
     前記第1キャリブレーション係数を用いて定められる第1送信ウェイトを用いて前記第1無線装置から送信された第1キャリブレーション信号が、前記第2無線装置によって第1受信ウェイトで受信されることによって得られる信号を用いて、前記第1無線装置から前記第2無線装置への第1伝達関数を推定する第1推定部と、
     前記第2キャリブレーション係数を用いて定められる第2送信ウェイトを用いて前記第2無線装置から送信された第2キャリブレーション信号が、前記第1無線装置によって第2受信ウェイトで受信されることによって得られる信号を用いて、前記第2無線装置から前記第1無線装置への第2伝達関数を推定する第2推定部と、
     前記第1伝達関数と前記第2伝達関数とを用いて、前記第1受信系統の伝達関数と前記第1送信系統の伝達関数の比と、前記第2受信系統の伝達関数と前記第2送信系統の伝達関数の比と、前記第3受信系統の伝達関数と前記第3送信系統の伝達関数の比と、前記第4受信系統の伝達関数と前記第4送信系統の伝達関数の比とをそろえるための第3キャリブレーション係数を計算する第3計算部と、を備える事を特徴とする無線信号処理装置。
  2.  第1参照信号が前記第1無線装置から前記第2無線装置へn+1(nは1以上の整数)回送信され、第2参照信号が前記第2無線装置から前記第1無線装置へn回送信される場合に、
     n回目の第1参照信号を受信するための受信ウェイトは、前記第2無線装置によって、第1参照信号がn回目に受信されるときに生成され、
     n回目の第2参照信号を送信するための送信ウェイトは、前記第2無線装置によって、n回目の第1参照信号を受信するときに生成された受信ウェイトと、前記第2キャリブレーション係数との積を用いて生成され、
     n回目の第2参照信号を受信するための受信ウェイトは、前記第1無線装置によって、第2参照信号がn回目に受信されるときに生成され、
     n+1回目の第1参照信号を送信するための第1送信ウェイトは、前記第1無線装置によって、n回目の第2参照信号を受信するときに生成された第1受信ウェイトと、前記第1キャリブレーション係数との積を用いて生成されることを特徴とする請求項1に記載の無線信号処理装置。
  3.  前記第1キャリブレーション係数は、前記第1計算機によって、前記第1送信系統から前記第2受信系統へ送信される第3キャリブレーション信号を用いて推定された第3伝達関数と、前記第2送信系統から前記第1受信系統へ送信される第4キャリブレーション信号を用いて推定された第4伝達関数とを用いて計算されたものであって、
     前記第2キャリブレーション係数は、前記第2計算機によって、前記第3送信系統から前記第4受信系統へ送信される第5キャリブレーション信号を用いて推定された第5伝達関数と、前記第4送信系統から前記第3受信系統へ送信される第6キャリブレーション信号を用いて推定された第6伝達関数とを用いて計算されたものであることを特徴とする請求項1に記載の無線信号処理装置。
  4.  前記第1無線装置と前記第2無線装置と前記無線信号処理装置とによるシステムが無線信号を送信するための送信スロットと、前記システムが無線信号を受信するための受信スロットとのうち送信スロットで、前記第1キャリブレーション信号及び前記第2キャリブレーション信号が、前記第1無線装置と前記第2無線装置との間で送受信されることを特徴とする請求項1に記載の無線信号処理装置。
  5.  第1アンテナおよび第2アンテナを有する第1無線装置と、第3アンテナおよび第4アンテナを有する第2無線装置とを用いて協力通信を行うための無線信号処理装置であって、
     前記第1アンテナの送受信系統と前記第2アンテナの送受信系統とに対してキャリブレーションを行う第1自己キャリブレーション部と、
     前記第3アンテナの送受信系統と前記第4アンテナの送受信系統とに対してキャリブレーションを行う第2自己キャリブレーション部と、
     前記第1自己キャリブレーション部と前記第2自己キャリブレーション部とでキャリブレーションを行ったあとに、前記第1アンテナの送受信系統と前記第3アンテナの送受信系統とに対してキャリブレーションを行う相対キャリブレーション部とを備える事を特徴とする無線信号処理装置。
  6.  第1アンテナおよび第2アンテナを有する無線装置であり、第3アンテナおよび第4アンテナを有する第2無線装置と協力通信を行う無線装置であって、
     前記第1アンテナの第1受信系統の伝達関数と前記第1アンテナの第1送信系統の伝達関数との比と、前記第2アンテナの第2受信系統の伝達関数と前記第2アンテナの第2送信系統の伝達関数との比とをそろえるための第1キャリブレーション係数を用いて定められる第1送信ウェイトが乗算された第1キャリブレーション信号を、前記第2無線装置へ、送信する無線送信部と、
     前記第3アンテナの第3受信系統の伝達関数と前記第3アンテナの第3送信系統の伝達関数との比と、前記第4アンテナの第4受信系統の伝達関数と前記第4アンテナの第4送信系統の伝達関数との比とをそろえるための第2キャリブレーション係数を用いて定められた第2送信ウェイトが乗算された第2キャリブレーション信号を、前記第2無線装置から、受信する無線受信部と、
     前記第1キャリブレーション信号が第1受信ウェイトで受信されることによって得られる信号を用いて推定された前記第1無線装置から前記第2無線装置への第1伝達関数と、前記第2キャリブレーション信号が第2受信ウェイトで受信されることによって得られる信号を用いて推定された前記第2無線装置から前記第1無線装置への第2伝達関数とを用いて計算される係数であって、前記第1受信系統の伝達関数と前記第1送信系統の伝達関数の比と、前記第2受信系統の伝達関数と前記第2送信系統の伝達関数の比と、前記第3受信系統の伝達関数と前記第3送信系統の伝達関数の比と、前記第4受信系統の伝達関数と前記第4送信系統の伝達関数の比とをそろえるための第3キャリブレーション係数が乗算された信号を受信する受信部とを備え、
     前記無線送信部は、前記受信部で受信した信号を、送信することを特徴とする無線装置。
PCT/JP2009/006905 2009-12-16 2009-12-16 無線信号処理装置及び無線装置 WO2011074031A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/006905 WO2011074031A1 (ja) 2009-12-16 2009-12-16 無線信号処理装置及び無線装置
JP2011545846A JP5367843B2 (ja) 2009-12-16 2009-12-16 無線信号処理装置及び無線装置
US13/495,733 US9300382B2 (en) 2009-12-16 2012-06-13 Wireless signal processor and wireless apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006905 WO2011074031A1 (ja) 2009-12-16 2009-12-16 無線信号処理装置及び無線装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/495,733 Continuation US9300382B2 (en) 2009-12-16 2012-06-13 Wireless signal processor and wireless apparatus

Publications (1)

Publication Number Publication Date
WO2011074031A1 true WO2011074031A1 (ja) 2011-06-23

Family

ID=44166837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006905 WO2011074031A1 (ja) 2009-12-16 2009-12-16 無線信号処理装置及び無線装置

Country Status (3)

Country Link
US (1) US9300382B2 (ja)
JP (1) JP5367843B2 (ja)
WO (1) WO2011074031A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置
WO2014039098A1 (en) * 2012-09-04 2014-03-13 Ntt Docomo, Inc. Method and apparatus for internal relative transceiver calibration
CN103841591A (zh) * 2012-11-26 2014-06-04 上海贝尔股份有限公司 一种在bbu池***中用于实现基带数据处理的方法与设备
JP2015532056A (ja) * 2012-09-17 2015-11-05 ▲ホア▼▲ウェイ▼技術有限公司 送受信チャネル応答を補正するための方法、装置、及びシステム、並びにbbu
JP2016518093A (ja) * 2013-05-15 2016-06-20 華為技術有限公司Huawei Technologies Co.,Ltd. 信号調整方法及び装置並びにセル
EP3193466A1 (en) * 2012-09-29 2017-07-19 Huawei Technologies Co., Ltd. Method and apparatus for joint channel correction among multiple radio remote units
JP2017175207A (ja) * 2016-03-18 2017-09-28 富士通株式会社 基地局、無線通信システムおよび無線通信システムのキャリブレーション方法
CN110832949A (zh) * 2017-07-28 2020-02-21 华为技术有限公司 数据降维方法、装置及***、计算机设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841605B (zh) * 2012-11-26 2018-03-23 上海诺基亚贝尔股份有限公司 一种实现多个bbu设备间基带信号协同处理的方法与设备
WO2014094206A1 (zh) * 2012-12-17 2014-06-26 华为技术有限公司 通道校正补偿方法、基带处理单元及***
CN104244296B (zh) * 2013-06-13 2018-02-06 华为技术有限公司 多rru间通道校正方法及装置
WO2014204868A1 (en) * 2013-06-20 2014-12-24 Ntt Docomo, Inc. Method and apparatus for relative transceiver calibration for wireless communication systems
CN106330350B (zh) * 2015-06-30 2019-06-14 华为技术有限公司 多远程射频单元联合通道校正的方法和相关装置
CN111130582B (zh) * 2018-11-01 2022-02-25 华为技术有限公司 一种相干联合发射jt中计算发射权值的方法及相应装置
CN111510229B (zh) * 2019-01-30 2022-12-27 华为技术有限公司 射频通道的校正方法和装置及天线和基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163622A (ja) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp アダプティブアレーアンテナ装置
JP2004159200A (ja) * 2002-11-07 2004-06-03 Sony Ericsson Mobilecommunications Japan Inc 無線受信装置
JP2006279902A (ja) * 2005-03-30 2006-10-12 Kyocera Corp 通信装置及びキャリブレーションテーブル生成方法
JP2006279668A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd キャリブレーション装置
JP2009206735A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037898A (en) 1997-10-10 2000-03-14 Arraycomm, Inc. Method and apparatus for calibrating radio frequency base stations using antenna arrays
EP1133836B1 (en) 1998-11-24 2013-11-13 Intel Corporation Method and apparatus for calibrating a wireless communications station having an antenna array
US7392015B1 (en) * 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
KR101052341B1 (ko) * 2005-12-08 2011-07-27 한국전자통신연구원 다중 안테나를 갖는 스마트 안테나 시스템의 기지국 신호감시 장치
CN101682432B (zh) * 2007-05-29 2013-03-06 三菱电机株式会社 校准方法、通信***、频率控制方法以及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163622A (ja) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp アダプティブアレーアンテナ装置
JP2004159200A (ja) * 2002-11-07 2004-06-03 Sony Ericsson Mobilecommunications Japan Inc 無線受信装置
JP2006279902A (ja) * 2005-03-30 2006-10-12 Kyocera Corp 通信装置及びキャリブレーションテーブル生成方法
JP2006279668A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd キャリブレーション装置
JP2009206735A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227683A (zh) * 2012-01-30 2013-07-31 鼎桥通信技术有限公司 一种对rru故障进行联合检测的方法及装置
JP2017147761A (ja) * 2012-09-04 2017-08-24 株式会社Nttドコモ 内部相対的送受信機キャリブレーションのための方法および装置
WO2014039098A1 (en) * 2012-09-04 2014-03-13 Ntt Docomo, Inc. Method and apparatus for internal relative transceiver calibration
US10003388B2 (en) 2012-09-04 2018-06-19 Ntt Docomo, Inc. Method and apparatus for internal relative transceiver calibration
JP2015532056A (ja) * 2012-09-17 2015-11-05 ▲ホア▼▲ウェイ▼技術有限公司 送受信チャネル応答を補正するための方法、装置、及びシステム、並びにbbu
US9516664B2 (en) 2012-09-17 2016-12-06 Huawei Technologies Co., Ltd. Method, apparatus, and system for correcting receiving and sending channel response, and BBU
EP3193466A1 (en) * 2012-09-29 2017-07-19 Huawei Technologies Co., Ltd. Method and apparatus for joint channel correction among multiple radio remote units
CN103841591A (zh) * 2012-11-26 2014-06-04 上海贝尔股份有限公司 一种在bbu池***中用于实现基带数据处理的方法与设备
JP2016518093A (ja) * 2013-05-15 2016-06-20 華為技術有限公司Huawei Technologies Co.,Ltd. 信号調整方法及び装置並びにセル
JP2017175207A (ja) * 2016-03-18 2017-09-28 富士通株式会社 基地局、無線通信システムおよび無線通信システムのキャリブレーション方法
CN110832949A (zh) * 2017-07-28 2020-02-21 华为技术有限公司 数据降维方法、装置及***、计算机设备及存储介质
CN110832949B (zh) * 2017-07-28 2021-08-20 华为技术有限公司 数据降维方法、装置及***、计算机设备及存储介质
US11234294B2 (en) 2017-07-28 2022-01-25 Huawei Technologies Co., Ltd. Data dimension reduction method, apparatus, and system, computer device, and storage medium

Also Published As

Publication number Publication date
JPWO2011074031A1 (ja) 2013-04-25
JP5367843B2 (ja) 2013-12-11
US9300382B2 (en) 2016-03-29
US20120252366A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5367843B2 (ja) 無線信号処理装置及び無線装置
KR100656979B1 (ko) 스마트 안테나 어레이 시스템의 실시간 교정 방법
US10734722B2 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
JP4402294B2 (ja) アンテナ・アレイを備えた通信端末を較正するための空間的なシグネチャを決定するための方法および装置
KR101019521B1 (ko) 어레이 안테나 전송링크의 조정장치 및 방법
JP4086574B2 (ja) パスサーチ回路、無線受信装置及び無線送信装置
US7072693B2 (en) Wireless communications structures and methods utilizing frequency domain spatial processing
US6738020B1 (en) Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
US7342912B1 (en) Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
TW200531345A (en) Beamforming method and device for broadband antenna
JP4524147B2 (ja) 通信装置、キャリブレーション方法及びプログラム
KR20100084771A (ko) 무선통신 시스템에서 2개의 경로를 갖는 라디오 유닛들을 이용한 4-빔포밍 장치 및 방법
JP3932456B2 (ja) 移動通信システムの受信信号補正装置及びその方法
WO2016183957A1 (zh) 一种天线通道的降阶方法及装置
US20030114194A1 (en) Base station device
US8588828B2 (en) Mobile communication system, base station and interference cancellation method
US7031679B2 (en) Estimating power on spatial channels
WO2000060698A1 (fr) Radioemetteur et procede de reglage de la directivite d&#39;emission
JP4578725B2 (ja) 通信装置およびその送信アレーアンテナ校正方法
US8554149B2 (en) Directivity control system, control device, cooperative station device, reception station device, and method of controlling directivity
US8532685B2 (en) Mobile communication system, base station and interference removal method
JP4673869B2 (ja) 送受信装置及びその通信方法
JP4489460B2 (ja) 適応アレーアンテナシステム及び適応アレーアンテナ制御方法、無線装置
JP4368257B2 (ja) 通信装置、キャリブレーション検証方法及びプログラム
JP4584346B2 (ja) 送信装置及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545846

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852229

Country of ref document: EP

Kind code of ref document: A1