WO2011068158A1 - 画像表示装置、パネルおよびパネルの製造方法 - Google Patents

画像表示装置、パネルおよびパネルの製造方法 Download PDF

Info

Publication number
WO2011068158A1
WO2011068158A1 PCT/JP2010/071572 JP2010071572W WO2011068158A1 WO 2011068158 A1 WO2011068158 A1 WO 2011068158A1 JP 2010071572 W JP2010071572 W JP 2010071572W WO 2011068158 A1 WO2011068158 A1 WO 2011068158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
panel
electrode
image display
display device
Prior art date
Application number
PCT/JP2010/071572
Other languages
English (en)
French (fr)
Inventor
秀謙 尾方
勇毅 小林
山田 誠
岡本 健
悦昌 藤田
近藤 克己
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/512,861 priority Critical patent/US9024936B2/en
Priority to CN201080054689.6A priority patent/CN102640200B/zh
Priority to JP2011544286A priority patent/JP5254469B2/ja
Publication of WO2011068158A1 publication Critical patent/WO2011068158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an image display device, a panel, and a method for manufacturing the panel. More specifically, a large-screen organic EL display is realized by connecting a plurality of panels each having an organic electroluminescence (EL) element in a display unit.
  • the present invention relates to an image display device.
  • a flat panel display As a flat panel display, a non-self-luminous liquid crystal display (LCD), a self-luminous plasma display (PDP), an inorganic electroluminescence (inorganic EL) display, an organic electroluminescence (organic EL) display, etc. are known. However, among these flat panel displays, the progress of the organic EL display is particularly remarkable.
  • LCD liquid crystal display
  • PDP self-luminous plasma display
  • organic EL inorganic electroluminescence
  • organic EL organic electroluminescence
  • a technique for displaying a moving image by simple matrix driving or a technique for displaying a moving image by active matrix driving of an organic EL element using a thin film transistor (TFT) is known.
  • full color is achieved by creating various colors typified by white by juxtaposing pixels emitting red, green and blue as one unit.
  • the deflection of the mask at the center becomes a problem.
  • the problem of bending also causes the above color mixture.
  • a portion where the organic layer is not formed is formed, causing defects due to leakage of the upper and lower electrodes.
  • the problem of an increase in the size of the mask leads to an increase in the cost of the display.
  • the cost problem is regarded as the biggest problem in the organic EL display.
  • Patent Document 1 proposes a method of eliminating the joint by further sealing four panels from the back at the sacrifice of the aperture ratio. Further, Non-Patent Document 1 proposes a method of eliminating a joint by superimposing two panels so that the sealing portions overlap and bonding a transmission plate having an adjusted refractive index to one substrate. .
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-111059 (published on April 8, 2004)”
  • Patent Document 1 a single display is formed by combining four panels by making the maximum use of sides to which no FPC is connected.
  • two panels are combined to form a single display.
  • these documents do not show the driving method to the unit arranged in the middle, which is the biggest problem when manufacturing a display by combining units when 5 or more sheets are combined. Only up to 4 panels can be combined. Therefore, when trying to realize a large display, the individual panels to be combined must be enlarged, and as a result, the above-mentioned problems relating to the production have not yet been completely solved. .
  • the present invention has been made in view of the above-mentioned problems, and its purpose is that there is no limit to the number of panels to be combined (connected), and the problem of the joints can be solved.
  • an image display device in which a plurality of panels are connected and an image display device that can be reduced in size by reducing the size of individual panels to be combined to a desired area and can be reduced in cost are provided in the image display device.
  • a method for manufacturing the panel is provided in view of the above-mentioned problems, and its purpose is that there is no limit to the number of panels to be combined (connected), and the problem of the joints can be solved.
  • a further object of the present invention is to avoid an increase in the cost of the drive circuit that may be caused by using a plurality of panels.
  • the present inventors have studied the various problems described above, and as a result of diligent efforts paying attention to the structure of the base material of the light-emitting panel device, the structure of the pixels, and the arrangement of the drive circuit, the above problems are solved.
  • the present inventors have arrived at the present invention.
  • the image display apparatus solves the above-described problem, A rectangular shape having a plurality of pixels each having a first electrode and a second electrode on a flat surface of a base material and having a plurality of light emitting elements that emit light by supplying current or applying voltage.
  • An image display device including a plurality of panels on which light emitting units are formed, The flat surface is warped adjacent to one end of the pair of long sides constituting the rectangular light emitting portion, which is an end of the flat surface of the substrate.
  • the base material is provided with an adjacent surface that is curved or bent in the direction, A first terminal group led out from the first electrode of the rectangular light emitting unit is formed on the adjacent surface, A second terminal group led out from the second electrode of each light emitting element is formed on one side of a pair of short sides constituting the rectangular light emitting portion on the flat surface,
  • the light emitting part of the first panel and the light emitting part of the second panel are arranged in the same direction, and The end portions of the flat surfaces of the base materials are connected and connected so that the longitudinal directions of the rectangular light emitting portions of the first panel and the second panel are parallel to each other.
  • An image display unit in which a plurality of the pixels are arranged in a matrix is formed by a combination of the light emitting units of the plurality of panels.
  • a plurality of the light emitting elements included in each of the plurality of pixels are arranged along the column direction of the matrix in the pixel,
  • a data signal is output to the light emitting element connected to the terminal group drawn out in the column direction of the matrix among the first terminal group and the second terminal group and set in a selected state by the scanning signal.
  • a data driving circuit for outputting a scanning signal for setting the light emitting element in a selected state, connected to the terminal group drawn in the row direction of the matrix among the first terminal group and the second terminal group;
  • a data signal is output to the light emitting element connected to the terminal group drawn out in the column direction of the matrix among the first terminal
  • the terminal extended from one electrode of the light emitting element (for example, organic electroluminescent element) in the pixel of the pixel arranged along the long side direction (longitudinal direction) of the said rectangular light emission part is provided.
  • the driving circuit can be connected to the terminal on the adjacent surface by drawing out to the adjacent surface.
  • the light emitting unit of the first panel and the second panel It is possible to connect (connect) the panels by arranging the light emitting portions without gaps. Because, at this time, the adjacent surface (of the first panel) where the drive circuit is arranged is in the vicinity of the joint (boundary of the connecting portion) between the light emitting part of the first panel and the light emitting part of the second panel. This is because it exists in the form of warping and protruding from the back side of the substrate.
  • the terminal of the other electrode is drawn out to one side of the short sides of the rectangular light emitting part on the flat surface of the base material, and can be connected to another drive circuit. According to this, since the terminals extending from the second electrode of the light emitting portion of the panel are arranged on the flat surface of each panel, the wiring length from the second electrode to the terminal can be realized short.
  • the organic electroluminescence element is current-driven, and thus requires a current for light emission. Therefore, the current supply wiring is connected to the second electrode as the wiring.
  • the conventional display (display device) with a long current supply wiring has a problem of an increase in power consumption due to a voltage drop and heat generation due to a resistance component in the current supply wiring caused by passing a current.
  • the shortening of the current supply wiring according to the present invention is very effective.
  • the above problem becomes a more serious problem.
  • the present invention it is possible to solve the problem caused by passing a current through the current supply wiring, and it is possible to greatly reduce heat generation by significantly reducing power consumption.
  • a large light-emitting panel device with lower power consumption and less heat generation can be manufactured. If this light-emitting panel device is mounted on an image display device, a large image display device with excellent display quality can be manufactured. Is possible.
  • the adjacent surface does not exist in a state where it is visually recognized at the joint between the panels, and the first panel and the second panel are as follows:
  • the rectangular light emitting portions can be connected by connecting the end portions of the flat surfaces of the base materials so that the longitudinal directions of the rectangular light emitting portions are parallel to each other. Therefore, if it connects by this system, it can connect without a restriction
  • the panels since the panels are connected without limitation to the number of panels, the panels can be made compact by reducing the size of the individual panels to be combined to a desired area. Can be realized.
  • the panel manufacturing apparatus can be made larger by using a smaller manufacturing apparatus, the manufacturing cost can be reduced. Therefore, if the image display device according to the present invention is mounted, it is possible to provide a large-sized organic EL display and an organic EL display device which are reduced in cost.
  • the present invention since the present invention connects another panel on the long side of a light emitting unit of a certain panel as described above, it has the same width (in the light emitting unit of each panel) rather than connecting on the short side of the light emitting unit.
  • a large image display device can be manufactured with a smaller number of sheets. Specifically, when a 65-inch high-definition television is assumed, the size of horizontal (long side in the final form) ⁇ vertical (short side in the final form) is 1400 mm ⁇ 800 mm.
  • the panel is formed in the final form in the image display device of the present invention described later.
  • the size of the panel is 1400 mm ⁇ 100 mm, and the final form can be completed by connecting eight panels.
  • the panel has a size of 800 mm ⁇ 100 mm, and 14 panels are required to complete the final form.
  • a large light-emitting panel device can be realized with a small number of connecting portions, and a large-sized image display device can be manufactured by applying this light-emitting panel device to an image display device.
  • the image display device Since the image display device according to the present invention is configured by combining a plurality of panels, the adjacent surface included in the image display device increases as the number of panels increases. As a result, the required number of drive circuits connected to the terminals on the adjacent surface also increases, and the cost increases. Therefore, a configuration in which the required number of drive circuits is small is more desirable. In particular, since the data driving circuit is more expensive than the scanning driving circuit, it is desirable to reduce the number of data driving circuits.
  • pixels are arranged in a matrix in the image display unit, and a plurality of light emitting elements in the pixels are arranged side by side in the row direction of the matrix. At this time, a plurality of data signal lines or signal electrodes (the number of light emitting elements included in the pixel) are required for one pixel.
  • a plurality of light emitting elements in a pixel are arranged in the column direction of the matrix. Therefore, only one data signal line or signal electrode is required for one pixel. Therefore, the number of corresponding data driving circuits is smaller than that of the conventional display panel, and cost reduction can be realized.
  • the image display device has a first electrode and a second electrode on a flat surface of a base material and emits light by current supply or voltage application in order to solve the above problems.
  • An image display device including a plurality of panels formed with a rectangular light emitting unit including a plurality of pixels configured by arranging a plurality of light emitting elements, The flat surface is warped adjacent to one end of the pair of long sides constituting the rectangular light emitting portion, which is an end of the flat surface of the substrate.
  • the base material is provided with an adjacent surface that is curved or bent in the direction, A first terminal group led out from the first electrode of the rectangular light emitting unit is formed on the adjacent surface, A second terminal group led out from the second electrode of each light emitting element is formed on one side of a pair of short sides constituting the rectangular light emitting portion on the flat surface,
  • the light emitting part of the first panel and the light emitting part of the second panel are arranged in the same direction, and
  • the end portions of the flat surfaces of the base materials are connected to each other so that the longitudinal directions of the rectangular light emitting portions of the first panel and the second panel are parallel to each other.
  • An image display unit in which a plurality of the pixels are arranged in a matrix is formed by a combination of the light emitting units of the plurality of panels.
  • the longitudinal direction is parallel to the row direction of the matrix;
  • a plurality of the light emitting elements included in each of the plurality of pixels are arranged along the row direction or the column direction of the matrix in the pixel,
  • a scanning drive circuit that is connected to the first terminal group and outputs a scanning signal for setting the light emitting element in a selected state;
  • a configuration may further include a data driving circuit that is connected to the second terminal group and outputs a data signal to the light emitting element set in a selected state by the scanning signal.
  • the present invention includes a panel itself that is a constituent member of the above-described image display device.
  • the present invention includes A panel in which a rectangular light emitting part is formed by arranging a plurality of light emitting elements that have a first electrode and a second electrode and emit light by supplying current or applying voltage on a flat surface of a substrate. , The flat surface is warped adjacent to one end of the pair of long sides constituting the rectangular light emitting portion, which is an end of the flat surface of the substrate.
  • the base material is provided with an adjacent surface that is curved or bent in the direction, A terminal group led out from the first electrode of the rectangular light emitting part is formed on the adjacent surface, A plurality of the light-emitting elements included in each of the plurality of pixels are arranged in a line along a direction parallel to a pair of short sides constituting the rectangular light-emitting portion. A panel is also included.
  • the present invention also includes a method for manufacturing the panel provided in the image display device.
  • a manufacturing method of the panel A substrate preparation step of preparing the substrate having the flat surface and the adjacent surface; Organic electroluminescence, which is a light-emitting element that has a first electrode and a second electrode on the flat surface of the base material prepared by the base material preparation step and emits light when a voltage is applied.
  • a light emitting element forming step of forming an element Including In the light emitting element forming step, An electrode forming step for forming the first electrode or the second electrode on the flat surface of the substrate; Organic layer formation for forming an organic layer provided between the first electrode and the second electrode in the organic electroluminescence element on the electrode formed by the electrode forming step by using an in-line deposition method Process,
  • the present invention also includes a production method characterized in that
  • the said organic layer is formed using an in-line type
  • the deposition source source
  • the shadow mask and the substrate are arranged in this order from the bottom. Due to the increase in size of the substrate and the increase in size of the mask, the conventional method has been to apply tension to the mask and attach it to a rigid frame to reduce the bending of the mask. Color misregistration, color mixing, non-light emitting pixels (non-light emitting lines), an increase in power consumption due to leakage, and the like are the biggest problems.
  • the length of one side can be made significantly shorter than the final form.
  • the mask width can be made extremely short and the mask deflection can be eliminated. Is possible.
  • the image display device is as described above.
  • a rectangular shape having a plurality of pixels each having a first electrode and a second electrode on a flat surface of a base material and having a plurality of light emitting elements that emit light by supplying current or applying voltage.
  • An image display device including a plurality of panels on which light emitting units are formed, The flat surface is warped adjacent to one end of the pair of long sides constituting the rectangular light emitting portion, which is an end of the flat surface of the substrate.
  • the base material is provided with an adjacent surface that is curved or bent in the direction, A terminal group led out from the first electrode of the rectangular light emitting part is formed on the adjacent surface, A second terminal group led out from the second electrode of each light emitting element is formed on one side of a pair of short sides constituting the rectangular light emitting portion on the flat surface,
  • the light emitting part of the first panel and the light emitting part of the second panel are arranged in the same direction, and
  • the end portions of the flat surfaces of the base materials are connected to each other so that the longitudinal directions of the rectangular light emitting portions of the first panel and the second panel are parallel to each other.
  • An image display unit in which a plurality of the pixels are arranged in a matrix is formed by a combination of the light emitting units of the plurality of panels.
  • a plurality of the light emitting elements included in each of the plurality of pixels are arranged along the column direction of the matrix in the pixel,
  • a scanning drive circuit that outputs a scanning signal for setting the light emitting element in a selected state, connected to a terminal group drawn in the row direction of the matrix among the first terminal group and the second terminal group;
  • a data signal is output to the light emitting element connected to the terminal group drawn out in the column direction of the matrix among the first terminal group and the second terminal group and set in a selected state by the scanning signal.
  • a data driving circuit is output to the light emitting element connected to the terminal group drawn out in the column direction of the matrix among the first terminal group and the second terminal group and set in a selected state by the scanning signal.
  • a plurality of pixels configured by arranging a plurality of light emitting elements that have a first electrode and a second electrode and emit light by supplying a current or applying a voltage on a flat surface of a substrate are provided.
  • An image display device including a plurality of panels each having a rectangular light emitting unit, The flat surface is warped adjacent to one end of the pair of long sides constituting the rectangular light emitting portion, which is an end of the flat surface of the substrate.
  • the base material is provided with an adjacent surface that is curved or bent in the direction, A first terminal group led out from the first electrode of the rectangular light emitting unit is formed on the adjacent surface, A second terminal group led out from the second electrode of each light emitting element is formed on one side of a pair of short sides constituting the rectangular light emitting portion on the flat surface,
  • the light emitting part of the first panel and the light emitting part of the second panel are arranged in the same direction, and
  • the end portions of the flat surfaces of the base materials are connected to each other so that the longitudinal directions of the rectangular light emitting portions of the first panel and the second panel are parallel to each other.
  • An image display unit in which a plurality of the pixels are arranged in a matrix is formed by a combination of the light emitting units of the plurality of panels.
  • the longitudinal direction is parallel to the row direction of the matrix;
  • a plurality of the light emitting elements included in each of the plurality of pixels are arranged along the row direction or the column direction of the matrix in the pixel,
  • a scanning drive circuit that is connected to the first terminal group and outputs a scanning signal for setting the light emitting element in a selected state;
  • a data driving circuit connected to the second terminal group and outputting a data signal to the light emitting element set in a selected state by the scanning signal.
  • FIG. 2 is a diagram illustrating a voltage-driven digital gray scale driving circuit that can be cited as an example of a driving system of the image display apparatus of the present embodiment illustrated in FIG.
  • (A) is the perspective view which showed the structure of the image display apparatus for a comparison, and a pixel, (b) is the figure which showed the outline of the circuit structure in (a).
  • (A) is the perspective view which showed the structure of the image display apparatus and pixel concerning one Embodiment of this invention, (b) is the figure which showed the outline of the circuit structure in (a), (c). It is the figure which showed the outline of another circuit structure in (a).
  • It is a figure explaining another connection form of the panel which comprises the image display apparatus shown in FIG. (A) is the perspective view which showed the structure of the image display apparatus for a comparison, and a pixel, (b) is the figure which showed the outline of the circuit structure in (a).
  • (A) is the perspective view which showed the structure of the image display apparatus which concerns on another embodiment of this invention, and a pixel
  • (b) is the figure which showed the outline of the circuit structure in (a).
  • (A) to (d) are diagrams for explaining connection of panels constituting the image display device shown in FIG.
  • (a) is a front view of one panel, and (b) is an upper surface of the panel. It is a figure, (c) is a front view (figure seen from the display part side) of the image display apparatus which connects a panel, (d) is a side view of the image display apparatus shown to (c). It is a figure explaining another connection form of the panel which comprises the image display apparatus shown in FIG. It is a figure explaining another connection form of the panel which comprises the image display apparatus shown in FIG. It is the perspective view which showed another form of the panel which comprises the image display apparatus shown in FIG. It is sectional drawing which showed the structure of the panel of the Example. (A) is a diagram showing the configuration of a dot-sequential drive circuit, and (b) is a diagram showing the configuration of a line-sequential drive circuit.
  • the image display device in the present embodiment can be used as a display device having a function of displaying an image (video) such as a television receiver.
  • the present invention has a characteristic configuration in a panel including a rectangular display unit having a plurality of organic electroluminescence (EL) elements among the configurations of an image display device exemplified as an embodiment.
  • EL organic electroluminescence
  • FIG. 1 is a perspective view showing a part of the configuration of the image display device in the present embodiment.
  • the image display device includes an image display 10 and an external drive circuit (not shown).
  • the image display body 10 is configured by connecting a plurality of panels 11 (three sheets in FIG. 1) having a display unit 13 having a rectangular shape shown in FIG.
  • the external drive circuit is electrically connected to each panel 11 in order to drive each panel 11.
  • the external drive circuit is provided to drive the display unit 13 provided on each panel 11 of the image display body 10, and includes a scan electrode circuit, a data signal electrode circuit, and a power supply circuit.
  • FIGS. 3 and 4 are enlarged views of a part of the pixel configuration of the display unit 13 together with the image display body 10.
  • 3 illustrates a case where the image display device is a display device that performs simple matrix driving
  • FIG. 4 illustrates a case where the image display device is a display device that performs active matrix driving.
  • the display unit 13 of the image display body 10 includes a plurality of pixels 50 arranged in a matrix. Each pixel 50 includes red (R), green (G), and blue (B) subpixels 51R, 51G, and 51B.
  • the sub-pixels are arranged in the pixel 50 side by side in the column direction of the matrix. That is, in these image display bodies 10, the subpixels are arranged side by side in the short side direction of each panel 11 in the pixel 50. As will be described later, it is possible to adopt a configuration in which the sub-pixels are arranged in the long side direction of each panel in the pixel 50.
  • the drive can be driven collectively by an external drive circuit by electrically connecting the respective panels 11.
  • the present invention is not particularly limited to these, and the driving method described above may be used, or the panel 11 may be driven by being electrically connected to an external driving circuit independently.
  • the sub-pixels 51R, 51G, and 51B are arranged side by side in the short side direction of each panel 11 (column direction of the matrix arrangement of the pixels 50), and the image display device is driven in a simple matrix.
  • the image display device can be driven as follows.
  • the terminals (first terminal group) of the H scan 14 provided on the long side of the display unit 13 of each panel 11 having a rectangular shape are directly and electrically connected (specifically, each H scan 14 After connecting the FPC to the terminal and electrically connecting each FPC directly), the H scan 14 side is connected to the power supply circuit via a scan electrode circuit provided outside the conventional.
  • the V scan 15 side where the short side terminal group (second terminal group) of the display unit 13 of each panel 11 having a rectangular shape is arranged via a data signal electrode circuit provided outside the conventional circuit is a power supply circuit. Connect to. As described above, the image display apparatus can be driven.
  • each panel 11 is independently connected to a scan electrode circuit (scan drive circuit) and a power supply circuit provided outside the conventional circuit
  • the V scan 15 side is a data signal provided outside the conventional technique.
  • the image display apparatus of the present embodiment may have a configuration in which the display unit 13 is driven in an active matrix as shown in FIG.
  • the panel 11 is provided with a switching circuit such as a TFT in the pixel.
  • the switching circuit is electrically connected to an external drive circuit (gate driver, source driver, power supply circuit) in order to drive each rectangular organic EL. For example, as shown in FIG.
  • driving is performed by a voltage-driven digital gradation method, and two TFTs of a switching TFT (active matrix driving element) 2 and a driving TFT (active matrix driving element) 3 are provided for each pixel.
  • the driving TFT 3 and the first electrode provided on the display unit 13 are electrically connected via a contact hole formed in the planarization layer.
  • a capacitor for setting the gate potential of the driving TFT 3 to a constant potential is disposed in one pixel so as to be connected to the gate portion of the driving TFT 3.
  • a flattening layer is formed on the TFT.
  • the present invention is not particularly limited to these, and the voltage-driven digital gray scale method described above or the current-driven analog gray scale method may be used.
  • the number of TFTs is not particularly limited, and the display unit 13 may be driven by the two TFTs described above, and for the purpose of preventing variations in TFT characteristics (mobility and threshold voltage).
  • You may drive the display part 13 using the conventional 2 or more TFT which incorporated the compensation circuit in a pixel.
  • the terminal of the H scan 14 provided on the long side of each panel 11 is directly and electrically connected.
  • the source driver data drive circuit
  • the V scan 15 side is connected to a conventional gate driver (scan driving circuit) provided outside.
  • the image display apparatus can be driven.
  • the H scan 14 side is connected to a conventional gate driver provided outside
  • the V scan 15 side is connected to a conventional source driver provided outside.
  • conversion means for storing the image signal for at least one screen in the memory and extracting and outputting the image signal so that the image is displayed in order from the left of the column of pixels arranged in matrix.
  • the source driver and the gate driver may be built in the panel by being manufactured by the same process as the TFT forming process constituting the pixel.
  • the H scan side of each panel 11 is connected to a source driver provided outside the conventional device independently, and the V scan side is connected to a gate driver provided outside the conventional device to drive. It becomes possible.
  • the source driver and the gate driver may be built in the panel by being manufactured by a process similar to the TFT forming process for forming the pixel.
  • the display unit as the image display body 10 formed by connecting the display units 13 of the respective panels 11 is longer in the horizontal direction than in the vertical direction, that is, so-called horizontally long.
  • the present invention is not limited to this. Further, for example, by using the image display body 10 having a horizontally long display portion rotated by 90 degrees, a display device having a so-called vertically long display portion that is longer in the vertical direction than the horizontal direction can be obtained.
  • the panel 11 includes a substrate 12, a display unit 13, an H scan 14, and a V scan 15. Each configuration will be described below.
  • the substrate 12 is provided with a display unit 13, an H scan 14, and a V scan 15 on one side.
  • the display unit 13 has a rectangular shape, and the formation region 12a of the display unit 13 in the substrate 12 is configured as a flat surface 12a ′ having the same rectangular shape as the rectangular display unit 13.
  • the substrate 12 further has a region 12b (hereinafter referred to as an adjacent region 12b) adjacent to the flat surface along the long side on one long side of the rectangular display unit 13, and the present invention. Then, this adjacent region is characterized.
  • the adjacent region 12b has an adjacent surface 12b ′ that is flush with the formation region 12a (flat surface 12a ′) of the display unit 13 in the substrate 12, and the long side of the flat surface extends. Is configured to have a predetermined width in the vertical direction.
  • the display portion 13 is not formed on the adjacent surface 12b ′. What is characteristic is that the adjacent surface 12b 'is not flat, but is curved in a direction to warp the display portion 13 formation surface of the substrate 12, as shown in FIG.
  • the present invention is not limited to these materials, the above-mentioned plastic substrate or metal substrate is preferably used because the curved adjacent region can be formed without stress. Further, a substrate in which a plastic substrate is coated with an inorganic material and a substrate in which a metal substrate is coated with an inorganic insulating material are more preferable. Thereby, it becomes possible to eliminate the deterioration of the display unit 13 due to the permeation of moisture, which is the biggest problem when the plastic substrate is used as the substrate 12 of the panel 11.
  • leakage (short) due to protrusions on the metal substrate which is the biggest problem when a metal substrate is used as an organic EL substrate (the film thickness of the organic EL is as thin as about 100 to 200 nm, so the pixel portion due to the protrusions) It is known that leakage (short-circuiting) occurs in the current at (.).
  • the substrate 12 if a transparent or translucent substrate is used as the substrate 12, light from the display unit 13 can be extracted from the back side of the substrate 12 (the back side in the drawing in FIG. 1).
  • region 12b may be manufactured originally by processing and bending a flat board
  • the processing may be performed before the display unit 13 is formed.
  • the processing is performed on a flat substrate, and the adjacent region 12b is formed after the display unit 13 is formed. You may give the process which bends the part which becomes.
  • the substrate 12 is configured such that the region 12a on which the display unit 13 is formed and the adjacent region 12b are formed as one substrate, but the present invention is not limited to this.
  • a structure for example, a flat plate
  • a structure for example, a U-shaped curved plate
  • One substrate 12 may be used. At this time, these structures may be made of the same material, or may be made of different materials.
  • the image display apparatus of this embodiment can drive the display unit 13 in an active matrix.
  • the substrate 12 is a glass substrate, more preferably a metal substrate, a plastic substrate, and even more preferably a metal substrate or a substrate coated with an insulating material on a plastic substrate.
  • a plurality of scanning signal lines 56, data signal lines 54, and an active matrix substrate in which switching TFTs 2 are arranged at intersections of the scanning signal lines 56 and the data signal lines 54 are used.
  • a material for the substrate 12 that does not melt at a temperature of 500 ° C. or less and does not cause distortion.
  • a general metal substrate has a coefficient of thermal expansion different from that of glass, it is difficult to form a TFT on the metal substrate with a conventional production apparatus.
  • a metal substrate that is an iron-nickel alloy having a linear expansion coefficient of 1 ⁇ 10 ⁇ 5 / ° C. or less and matching the linear expansion coefficient with glass a conventional production apparatus can be formed on the metal substrate. It can be formed at low cost.
  • a plastic substrate since the heat-resistant temperature is very low, it is possible to transfer and form the TFT on the plastic substrate by forming the TFT on the glass substrate and then transferring the TFT to the plastic substrate. is there.
  • the plurality of scanning signal lines 56, the data signal lines 54, and the switching TFTs 2 arranged at the intersections of the scanning signal lines 56 and the data signal lines 54 are described as components of the substrate 12.
  • the present invention is not limited to this, and these may be used as components of the display unit 13 to be described later.
  • the active matrix substrate is provided with an interlayer insulating film and a planarizing film.
  • the TFT the interlayer insulating film
  • the planarizing film will be described in detail.
  • the TFT is formed in advance on the substrate 12 before the display portion 13 is formed, and functions as a switching device and a driving device.
  • a known TFT can be mentioned.
  • a metal-insulator-metal (MIM) diode may be used instead of the TFT.
  • the TFT used in the present invention can be formed using a known material, structure and formation method.
  • amorphous silicon amorphous silicon
  • polycrystalline silicon polysilicon
  • microcrystalline silicon inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide-
  • oxide semiconductor material such as zinc oxide
  • organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene
  • Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • the method for forming the active layer constituting the TFT (1) a method of ion doping impurities into amorphous silicon formed by plasma induced chemical vapor deposition (PECVD), and (2) a silane (SiH 4 ) gas is used.
  • PECVD plasma induced chemical vapor deposition
  • SiH 4 silane
  • amorphous silicon by low pressure chemical vapor deposition (LPCVD), crystallizing amorphous silicon by solid phase epitaxy to obtain polysilicon, and then ion doping by ion implantation, (3) Si 2 H Amorphous silicon is formed by LPCVD using 6 gases or PECVD using SiH 4 gas, annealed by a laser such as an excimer laser, and the amorphous silicon is crystallized to obtain polysilicon, followed by ion doping (Low temperature process), (4) LPCVD or PE The polysilicon layer is formed by VD method, a gate insulating film formed by thermal oxidation at 1000 ° C.
  • LPCVD low pressure chemical vapor deposition
  • a method of performing ion doping high temperature Process
  • a method of forming an organic semiconductor material by an inkjet method a method of obtaining a single crystal film of the organic semiconductor material.
  • the gate insulating film of the TFT used in the present invention can be formed using a known material. Examples thereof include SiO 2 formed by PECVD, LPCVD, etc., or SiO 2 obtained by thermally oxidizing a polysilicon film. Further, the signal electrode line, the scanning electrode line, the common electrode line, the first drive electrode and the second drive electrode of the TFT used in the present invention can be formed using a known material, for example, tantalum (Ta). , Aluminum (Al), copper (Cu), and the like.
  • the TFT of the organic EL panel according to the present invention can be formed with the above-described configuration, but is not limited to these materials, structures, and formation methods.
  • Interlayer insulating film The interlayer insulating film can be formed using a known material. For example, silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO, or, Ta 2 O 5) inorganic material such as, or, and the like organic materials such as an acrylic resin, a resist material. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can also pattern by the photolithographic method etc. as needed.
  • a known material silicon oxide (SiO 2 ), silicon nitride (SiN or Si 2 N 4 ), tantalum oxide (TaO, or, Ta 2 O 5) inorganic material such as, or, and the like organic materials such as an acrylic resin, a resist material. Examples of the formation method include dry processes such as chemical vapor deposition (CVD) and vacuum deposition, and wet processes such as spin coating. Moreover, it can
  • the above insulating film and a light-shielding insulating film can be used in combination.
  • the light-shielding interlayer insulating film include those obtained by dispersing pigments or dyes such as phthalocyanine and quinaclone in polymer resins such as polyimide, color resists, black matrix materials, and inorganic insulating materials such as Ni x Zn y Fe 2 O 4. Can be mentioned. However, the present invention is not limited to these materials and forming methods.
  • a planarization film When a TFT or the like is formed on the substrate, irregularities are formed on the surface thereof, and the irregularities of the display unit 13 (for example, defective pixel electrodes, organic layer provided on the display unit 13) are formed by the irregularities. There is a risk of occurrence of defects, disconnection of the counter electrode, short circuit between the pixel electrode and the counter electrode, reduction in breakdown voltage, and the like. In order to prevent these defects, a planarizing film can be provided on the interlayer insulating film.
  • the planarizing film can be formed using a known material, and examples thereof include inorganic materials such as silicon oxide, silicon nitride, and tantalum oxide, and organic materials such as polyimide, acrylic resin, and resist material.
  • examples of the method for forming the planarizing film include a dry process such as a CVD method and a vacuum deposition method, and a wet process such as a spin coating method, but the present invention is not limited to these materials and forming methods.
  • planarizing film may have a single layer structure or a multilayer structure.
  • FIGS. 1 and 2 A specific configuration of the display unit 13 shown in FIGS. 1 and 2 will be described with reference to FIGS. 4 and 6 to 11.
  • 6, 7, 9, and 10 are schematic diagrams illustrating the relationship between the arrangement of sub-pixels of each pixel and each drive driver (gate driver, source driver, power supply circuit).
  • FIG. 6 is a cross-sectional view showing a configuration of a portion 13.
  • the display unit 13 includes a first electrode 20, an organic layer 30 having an organic light emitting layer made of at least an organic light emitting material, and a second electrode 21 on the flat surface 12 a ′ of the substrate 12. And a plurality of organic EL elements (light emitting elements) stacked in this order, and has a rectangular shape.
  • an adjacent region 12 b (adjacent surface 12 b ′) adjacent to the flat surface 12 a ′ is provided along the long side.
  • the end of the other long side of the display unit 13 is aligned with the end of the flat surface 12a ′, that is, the end of the flat surface 12a ′ opposite to the adjacent side of the adjacent surface 12b ′. .
  • the display unit 13 can obtain a full color by juxtaposing organic EL elements having red, green, and blue organic light emitting layers.
  • organic EL elements having red, green, and blue organic light emitting layers.
  • an organic EL element in which yellow, blue organic light-emitting layers or red, green, and blue organic light-emitting layers are stacked can be used.
  • the image display device according to the present invention can be either a simple matrix drive type or an active matrix drive type. Here, an active matrix drive type image display device will be described. .
  • the display unit 13 has a plurality of pixels 50 arranged in a matrix.
  • Each pixel 50 includes a plurality of sub-pixels, here, a sub-pixel 51R that displays red, a sub-pixel 51G that displays green, and a sub-pixel 51B that displays blue.
  • a sub-pixel 51R that displays red
  • a sub-pixel 51G that displays green
  • a sub-pixel 51B that displays blue.
  • an organic EL element having red, green, and blue organic light-emitting layers is formed.
  • the display unit 13 is formed so that the arrangement direction of the subpixels in the pixel and the arrangement direction of the scanning signal lines and the data signal lines are the same as those in the conventional image display device, and a plurality of panels are arranged in the vertical direction ( It is a figure which shows the image display apparatus for a comparison connected in the column direction of the matrix.
  • the sub-pixels 51R, 51G, and 51B are arranged in the matrix 50 in the row direction of the matrix.
  • the scanning signal lines 56 extend in a direction parallel to the row direction of the matrix
  • the data signal lines 54 and the power supply lines (power supply lines) 55 extend in a direction parallel to the column direction of the matrix.
  • Each data signal line 54 is electrically connected to the source driver 58 in the H scan 14, and each scanning signal line 56 is electrically connected to the gate driver 57 in the V scan 15. In such a configuration, each pixel 50 requires three data signal lines 54 (for each subpixel).
  • the data signal line 54 of each panel 11 is connected to the source driver in the H scan 14 of each panel 11. Therefore, the number of source drivers necessary for driving the image display device is n times as many as that of a conventional image display device in which the display unit is not divided when the number of panels 11 is n.
  • the display unit 13 is formed so that the arrangement direction of the sub-pixels in the pixel and the arrangement direction of the scanning signal lines and the data signal lines are different from those of the conventional image display device, and a plurality of panels are arranged in the vertical direction.
  • FIGS. 7A to 7C the sub-pixels 51R, 51G, and 51B are arranged in the column direction of the matrix in the pixel 50. That is, when the image display body 10 is configured by connecting the panels 11 in the vertical direction, the sub-pixels are arranged side by side in the short side direction of the panel 11 in the pixel.
  • the scanning signal lines 56 extend in a direction parallel to the row direction of the matrix, and the data signal lines 54 and the power supply lines 55 extend in a direction parallel to the column direction of the matrix (FIG. 7B).
  • the data signal line 54 extends in a direction parallel to the row direction of the matrix, and the scanning signal line 56 and the power supply line 55 extend in a direction parallel to the column direction of the matrix ((c) in FIG. 7).
  • each data signal line 54 is electrically connected to the source driver 58 in the H scan 14, and each scanning signal line 56 is gated in the V scan 15.
  • the driver 57 is electrically connected.
  • the number of data signal lines 54 required for each pixel 50 is one (one subpixel).
  • the number of source drivers necessary for driving the image display device is smaller than that of the image display body 10 having the comparison configuration shown in FIG. One third of that is enough. That is, the number of necessary source drivers can be reduced. Therefore, an increase in the number of source drivers caused by using a plurality of panels can be suppressed, so that an increase in cost can be suppressed.
  • the required number of gate drivers is increased as compared with the configuration shown in FIG.
  • the cost of the gate driver is lower than that of the source driver, even if the number of gate drivers is increased, the number of source drivers is reduced, so that cost reduction can be realized.
  • each data signal line 54 is electrically connected to the source driver 58 in the terminal group of the V scan 15, and each scanning signal line 56 is The terminal group of the H scan 14 is electrically connected to the gate driver 57.
  • each pixel 50 requires three data signal lines 54 (for each subpixel).
  • the data signal line 54 of each panel 11 is connected to the source driver in the V scan 15 of each panel 11. Therefore, the number of source drivers necessary for driving the image display device is the same as that of a conventional image display device in which the display unit is not divided even if the image display body 10 is configured by a plurality of panels 11.
  • the image display device has the number of vertical and horizontal pixels of HDTV (1920 pixels ⁇ 1080 pixels), that is, when the ratio of horizontal to vertical is 16: 9, the image display device is driven.
  • the required source driver is 9 / 16n as compared with the image display apparatus having the configuration shown in FIG. 6 (n is the number of panels). That is, the number of necessary source drivers can be reduced. Since an increase in the number of source drivers caused by using a plurality of panels 11 can be suppressed, an increase in cost can be suppressed.
  • the long panels 11 in the horizontal direction are connected in the vertical direction, but the present invention is not limited to this, and the long panels 11 ′ in the vertical direction are connected in the horizontal direction.
  • the panel 11 ′ unlike the panel 11, a terminal group of the V scan 15 is arranged on the long side of the display unit 13 of each panel 11 ′, and the H scan is arranged on the short side of the display unit 13 of each panel 11 ′. Fourteen terminal groups are arranged.
  • the description in the panel 11 can be used about other structures.
  • FIG. 8 it is also possible to drive by connecting the H scan 14 side to a conventional source driver provided outside and connecting the V scan 15 side to a conventional gate driver provided outside. It is.
  • the driving can also be performed by connecting the H-scan 14 side to a gate driver provided outside the conventional device and connecting the V-scan 15 side to a source driver provided outside the conventional device.
  • the display unit 13 is formed so that the arrangement direction of the sub-pixels in the pixel and the arrangement direction of the scanning signal lines and the data signal lines are the same as those in the conventional image display device, and the panel 11 that is long in the vertical direction is formed.
  • FIGS. 9A and 9B the sub-pixels 51R, 51G, and 51B are arranged in the row direction of the matrix in the pixel 50.
  • the scanning signal lines 56 extend in a direction parallel to the row direction of the matrix
  • the data signal lines 54 and the power supply lines 55 extend in a direction parallel to the column direction of the matrix.
  • Each data signal line 54 is electrically connected to the source driver 58 in the H scan 14, and each scanning signal line 56 is electrically connected to the gate driver 57 in the V scan 15. In such a configuration, each pixel 50 requires three data signal lines 54 (for each subpixel).
  • the data signal line 54 of each panel 11 ′ is connected to the source driver in the H scan 14 of each panel 11 ′. For this reason, the number of source drivers necessary for driving the image display device is the same as that of a conventional image display device in which the display unit is not divided even if the image display body 10 is constituted by a plurality of panels 11 ′.
  • the display unit 13 is formed so that the arrangement direction of the sub-pixels in the pixel and the arrangement direction of the scanning signal lines and the data signal lines are different from those of the conventional image display device, and a plurality of panels are arranged in the horizontal direction. It is a figure which shows the image display apparatus combined with these. Specifically, as shown in FIGS. 10A and 10B, the subpixels 51 ⁇ / b> R, 51 ⁇ / b> G, and 51 ⁇ / b> B are arranged in the column direction of the matrix in the pixel 50.
  • the sub-pixels are arranged side by side along the long side direction of the panel 11 ′ in the pixel.
  • the scanning signal lines 56 extend in a direction parallel to the row direction of the matrix
  • the data signal lines 54 and the power supply lines 55 extend in a direction parallel to the column direction of the matrix. ing.
  • each data signal line 54 is electrically connected to a source driver 58 in a terminal group (second terminal group) of the H scan 14, and each scanning signal line 56 is The terminal group (first terminal group) of the V scan 15 is electrically connected to the gate driver 57.
  • the number of data signal lines 54 required for each pixel 50 is one (one subpixel).
  • the number of source drivers necessary for driving the image display device is 1/3 of that of the image display body 10 having the comparison configuration shown in FIG. Just do it. That is, the number of necessary source drivers can be reduced. Accordingly, an increase in the number of source drivers caused by using a plurality of panels can be suppressed, so that an increase in cost can be suppressed.
  • Organic layer 30 shown in FIG. 11 may be a single organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the following 1) to 9) A configuration as shown in FIG. 1) Organic light emitting layer 2) Hole transport layer / organic light emitting layer 3) Organic light emitting layer / electron transport layer 4) Hole transport layer / organic light emitting layer / electron transport layer 5) Hole injection layer / hole transport layer / Organic light emitting layer / electron transport layer 6) Hole injection layer / hole transport layer / organic light emission layer / electron transport layer / electron injection layer 7) Hole injection layer / hole transport layer / organic light emission layer / hole prevention layer / Electron transport layer 8) Hole injection layer / hole transport layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer 9) Hole injection layer / hole transport layer / electron prevention layer / organic light emission Layer / Hole Prevention Layer / Electron Transport Layer / Electron In
  • the configuration of the above 8) is adopted, and the hole injection layer 31, the hole transport layer 32, the organic light emitting layer 33, and the hole prevention are directed from the first electrode 20 to the second electrode 21.
  • the layer 34, the electron transport layer 35, and the electron injection layer 36 are laminated in this order.
  • the organic light emitting layer 33 may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material or Additives (donor, acceptor, etc.) may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and luminous lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
  • the organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are shown below, but the present invention is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material with high emission efficiency.
  • low-molecular organic light-emitting material examples include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 5-methyl-2- [2- [4- ( Oxadiazole compounds such as 5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole, 3- (4-biphenylyl) -4-phenyl-5-t-butylphenyl-1,2,4- Triazole derivatives such as triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, and fluorenone derivatives Fluorescent organic materials, and azomethine zinc complexes and (8-hydroxy Quinolinato) aluminum complex (Alq
  • polymer light emitting material examples include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N-triethylammonium) ethoxy]. -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt3 +), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene] (MEH— PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), and poly [2,5-bis- (hexyloxy) -1,4- Polyphenylene vinylene derivatives such as phenylene- (1-cyanovinylene)] (CN-PPV), and poly such as poly (9,9-dioctylfluorene) (PDAF) It includes the pyro
  • a known dopant material for organic EL can be used as a luminescent dopant arbitrarily contained in the organic light emitting layer 33.
  • dopant materials include fluorescent materials such as styryl derivatives, perylene, iridium complexes, coumarin derivatives, lumogen F red, dicyanomethylenepyran, phenoxazone, and porphyrin derivatives, and bis [(4,6-difluoro Phenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), and tris (2-phenylpyridyl) iridium (III) (Ir (ppy) 3 ), tris (1-phenylisoquinoline) iridium (III) And phosphorescent organic metal complexes such as (Ir (piq) 3 ).
  • a host material when using a dopant a known host material for organic EL can be used.
  • host materials include the above-described low-molecular light-emitting materials, polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, and 9,9-di (4-dicarbazole-benzyl) fluorene (CPF). ) And the like.
  • the charge injection transport layer is a charge injection layer (hole injection layer 31, electron injection) for the purpose of more efficiently injecting charge (holes, electrons) from the electrode and transporting (injection) to the organic light emitting layer.
  • Layer 36 and charge transport layer (hole transport layer 32, electron transport layer 35).
  • the charge injecting and transporting layer may be composed only of the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (conjugation). Wear resin) or a structure dispersed in an inorganic material.
  • charge injection / transport material known charge transport materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these materials are given below, but the present invention is not limited to these materials.
  • hole injection / hole transport materials include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD) and N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD)
  • Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds and styrylamine compounds, and polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfone Nate (PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylidene Examples thereof include poly
  • the highest occupied molecular orbital (HOMO) is better than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having a higher hole mobility than the hole injection transport material used for the hole injection layer.
  • the hole injection / transport material is preferably doped with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, inorganic materials such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene) and DDQ (dicyclodicyanobenzoquinone).
  • inorganic materials such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 )
  • TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane) TCNQF 4 (tetrafluorotetracyanoquinodimethane)
  • TCNE tetracyanoethylene
  • HCNB hexacyanobutad
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, and DDQ are more preferable because they can increase the carrier concentration more effectively.
  • Examples of electron injection materials and electron transport materials include inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, and benzodifurans. Low molecular materials such as derivatives; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer 36 has an energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection / transport material used for the electron transport layer 35. It is preferable to use a high material, and as the material used for the electron transport layer 35, a material having higher electron mobility than the electron injection transport material used for the electron injection layer 36 is preferably used.
  • LUMO lowest unoccupied molecular orbital
  • the electron injection / transport material it is preferable to dope the electron injection / transport material with a donor.
  • a donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu and In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -N
  • the organic layer 30 including the hole injection layer 31, the hole transport layer 32, the organic light emitting layer 33, the hole prevention layer 34, the electron transport layer 35, and the electron injection layer 36 dissolves the above materials in a solvent.
  • a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a spray coating method and the like, or an inkjet method, a relief printing method, an intaglio printing method, a screen It can be formed by a known wet process such as a printing method and a printing method such as a micro gravure coating method.
  • known dry processes such as resistance heating vapor deposition using the above materials, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, organic vapor deposition (OVPD), etc., or laser It can be formed by a transfer method or the like.
  • the additive for adjusting the physical properties of coating liquid such as a leveling agent and a viscosity modifier, may be included in the coating liquid for organic layer formation.
  • the organic layer 30 is further formed by an in-line method using a resistance heating vapor deposition method which is one of the dry processes.
  • FIG. 12 is a diagram for explaining a method for forming the organic layer 30 using an inline-type resistance heating vapor deposition apparatus.
  • a coating liquid is applied to the substrate 12 on which the first electrode 20 is formed from a vapor deposition source 40 that stores the organic layer forming coating liquid.
  • a shadow mask 41 is arranged between the substrate 12 and the vapor deposition source 40 so that the coating liquid is applied only in a desired region, and masks the unfavorable region when applied. Apply the coating solution.
  • a substrate holder moves the substrate 12 in the direction indicated by the arrow A in FIG. By this movement, the organic layer 30 having the same size as the first electrode 20 and the rectangle is formed on the first electrode 20 having the rectangle formed on the flat surface 12 a ′ of the substrate 12.
  • the substrate 12 (substrate holder) is moved, but the present invention is not limited to this, and the substrate 12 does not move, and the evaporation source 40 and the shadow mask 41 are on the substrate 12. May be moved.
  • the film thickness of the organic layer 30 is usually about 1 to 1000 nm, preferably 10 to 200 nm.
  • the film thickness is less than 10 nm, it is difficult to obtain physical properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required. In addition, pixel defects due to foreign matters such as dust may occur.
  • the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic layer 30, leading to an increase in power consumption.
  • the first electrode 20 and the second electrode 21 shown in FIG. 11 function as a pair as an anode or a cathode of the organic EL element. That is, when the first electrode 20 is an anode, the second electrode 21 is a cathode, and when the first electrode 20 is a cathode, the second electrode 21 is an anode.
  • specific compounds and formation methods will be exemplified, but the present invention is not limited to these materials and formation methods.
  • an electrode material for forming the first electrode 20 and the second electrode 21 a known electrode material can be used.
  • the anode from the viewpoint of more efficiently injecting holes into the organic light emitting layer 33, such as gold (Au), platinum (Pt), nickel (Ni), etc. having a work function of 4.5 eV or more.
  • Metals and oxides (ITO) composed of indium (In) and tin (Sn), oxides (SnO 2 ) of tin (Sn) and oxides (IZO) of indium (In) and zinc (Zn) ) And the like can be used as the transparent electrode material.
  • Metals such as barium (Ba) and aluminum (Al), and alloys such as Mg: Ag alloy and Li: Al alloy containing these metals.
  • the first electrode 20 and the second electrode 21 can be formed by a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, or a resistance heating vapor deposition method using the above materials. It is not limited to the forming method. Further, if necessary, the formed electrode can be patterned by a photolithographic method or a laser peeling method, and a patterned electrode can be directly formed by combining with a shadow mask.
  • the film thickness is preferably 50 nm or more. When the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the second electrode 21 is a transparent electrode or a semitransparent electrode. It is preferable.
  • the first electrode 20 is preferably a transparent electrode or a semitransparent electrode.
  • the film thickness of the transparent electrode is preferably 50 to 500 nm, more preferably 100 to 300 nm.
  • the film thickness is less than 50 nm, the wiring resistance is increased, which may increase the drive voltage.
  • the film thickness exceeds 500 nm, the light transmittance is lowered, and therefore the luminance may be lowered.
  • the microcavity (interference) effect is used for the purpose of improving color purity, luminous efficiency, etc.
  • light emitted from the organic light emitting layer is taken out from the first electrode 20 side (second electrode 21)
  • a translucent electrode As the translucent electrode material, it is possible to use a metal translucent electrode alone or a combination of a metal translucent electrode and a transparent electrode material. As the translucent electrode material, silver is preferable from the viewpoint of reflectance and transmittance.
  • the film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness is less than 5 nm, the light is not sufficiently reflected, and the interference effect cannot be obtained sufficiently. On the other hand, when the film thickness exceeds 30 nm, the light transmittance is drastically reduced, so that the luminance and efficiency may be lowered.
  • the electrode material used in this case include black electrodes such as tantalum and carbon, reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys and aluminum-silicon alloys, and transparent electrodes.
  • black electrodes such as tantalum and carbon
  • reflective metal electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys and aluminum-silicon alloys
  • transparent electrodes such as aluminum, silver, gold, aluminum-lithium alloys, aluminum-neodymium alloys and aluminum-silicon alloys.
  • the electrode etc. which combined the said reflective metal electrode (reflective electrode) are mentioned.
  • Edge Cover An edge cover can be provided at the edge portion of the first electrode 20 for the purpose of preventing leakage between the first electrode 20 and the second electrode 21.
  • FIG. 13 is a cross-sectional view showing a cross-sectional configuration in a state where an edge cover is provided
  • FIG. 14 is a cross-sectional view showing a cross-sectional configuration in a state where no edge cover is provided as a comparative configuration with respect to FIG. FIG.
  • the edge cover 28 is provided at the edge portion of the first electrode 20.
  • the organic layer 30 becomes thin and leaks between the first electrode 20 and the second electrode 21. The edge cover 28 can effectively prevent this leakage.
  • the edge cover can be formed by using a known method such as an EB vapor deposition method, a sputtering method, an ion plating method, and a resistance heating vapor deposition method using an insulating material. Also, the edge cover can be patterned by a known dry and wet photolithography method. However, the present invention is not limited to these forming methods.
  • the insulating material a known material can be used and is not particularly limited in the present invention, but it is necessary to transmit light.
  • SiO, SiON, SiN, SiOC, SiC, HfSiON, ZrO, HfO, LaO etc. are mentioned.
  • the film thickness of the edge cover is preferably 100 to 2000 nm.
  • the thickness is 100 nm or less, the insulating property is not sufficient, and leakage occurs between the first electrode and the second electrode, resulting in an increase in power consumption and non-light emission.
  • the thickness is 2000 nm or more, the film forming process takes time, and the productivity is deteriorated and the second electrode 21 is disconnected at the edge cover.
  • sealing substrate On the second electrode 21 on the outermost surface, for the purpose of further sealing, sealing substrate such as glass and plastic, or sealing through an inorganic film or a resin film A membrane can be provided (not shown).
  • the sealing substrate and the sealing film can be formed by a known sealing material and sealing method. Specifically, a method of sealing an inert gas such as nitrogen gas and argon gas with glass or metal can be used. Furthermore, it is preferable to mix a hygroscopic agent such as barium oxide in the enclosed inert gas because deterioration of the organic EL due to moisture can be more effectively reduced. Furthermore, a sealing film can be formed by applying or bonding a resin on the second electrode 21 by using a spin coating method, an ODF, or a laminating method.
  • the sealing film can also be formed by coating using ODF or a laminate method, or by bonding. This sealing film can prevent oxygen and moisture from being mixed into the element from the outside, and the life of the organic EL element is improved. Further, the present invention is not limited to these members and forming methods. Further, when the light from the organic layer 30 is taken out from the second electrode side, that is, the light from the organic layer 30 is taken from the front side of the panel 11 (front side in FIG. 1), both the sealing film and the sealing substrate are light. It is necessary to use a permeable material.
  • sealing substrate is not necessarily required, and sealing may be performed only with an inorganic film and a resin film.
  • a polarizing plate can be provided in the extraction side of the light from an organic light emitting layer (organic layer 30).
  • the polarizing plate a combination of a linear polarizing plate and a ⁇ / 4 plate can be used.
  • a polarizing plate it is possible to prevent external light reflection from various wirings and electrodes and external light reflection on the surface of the substrate or the sealing substrate, and to improve the contrast of the image display device. Can do.
  • the H scan 14 shown in FIGS. 1 and 2 is a horizontal scan.
  • the H scan 14 is formed on the adjacent surface 12 b ′ of the substrate 12 of each panel 11, and extends along one long side of the rectangular display unit 13 to be the same as or substantially the same as the length of the long side. ing.
  • the H scan 14 has a terminal group on the long side of the display unit 13 of each panel 11 connected in a horizontal direction.
  • the V scan 15 shown in FIGS. 1 and 2 is a vertical scan.
  • the V scan 15 is formed on the flat surface 12 a ′ of the substrate 12 of each panel 11, and extends along one short side of the rectangular display unit 13 to be the same as or substantially the same as the length of the short side. ing.
  • a terminal group on the short side of the display unit 13 of each panel 11 is connected in a vertical direction.
  • the image display device according to the present invention is driven mainly by dot-sequential driving or line-sequential driving, as in a normal liquid crystal display (liquid crystal display device).
  • 20A and 20B are diagrams showing the configuration of the source driver in each driving method.
  • dot sequential driving for example, serially input analog video signals are sequentially sampled over a horizontal scanning period, and a signal voltage is applied to the corresponding data signal line 54.
  • the dot sequential driving circuit includes a shift register 61.
  • line-sequential driving for example, serially parallel-converts a digital video signal input, latches, and then digital-analog converts and applies a signal voltage to the corresponding data signal line 54 at a time. is there.
  • the line sequential drive circuit includes a sampling latch 62 and a digital-analog converter (DAC) 63 in addition to the shift register 61.
  • DAC digital-analog converter
  • line-sequential driving is widely used as a source driver at present because the writing time to each display pixel can be set uniformly longer.
  • the gate driver is configured to include only the shift register. Therefore, the price of the gate driver is less than half the price than the source driver of line sequential driving. Therefore, reducing the number of source drivers rather than reducing the number of gate drivers increases the cost reduction effect.
  • the data writing time in each panel 11 becomes sufficiently long.
  • the writing time is n times that of the prior art. Therefore, a sufficient writing time can be secured even if the source driver is driven by dot sequential driving. Therefore, in this case, a dot-sequential drive driver, which is less expensive than a line-sequential drive driver, can be used as the source driver, thereby further reducing the cost.
  • a dot-sequential drive driver can be formed on the TFT substrate, thereby further reducing the cost. Is possible.
  • the image display body 10 shown in FIG. 1 is formed by connecting a desired number of panels 11 (three in FIG. 1) having the above-described configuration.
  • the panel 11 is provided with an alignment portion for alignment for the purpose of preventing pixel displacement when the panels 11 are connected to each other.
  • FIG. 15A to 15D are diagrams for explaining the connection of the panels 11.
  • the panel 11 has an alignment portion 16 formed on the surface of the substrate 12.
  • the formation position of the alignment unit 16 is provided in a flat surface 12a ′ which is a formation region 12a of the display unit 13 and at a position away from the formation position of the display unit 13 and the V scan 15.
  • a flat surface 12a ′ which is a formation region 12a of the display unit 13 and at a position away from the formation position of the display unit 13 and the V scan 15.
  • one display unit 13 is sandwiched between the flat surface 12a 'and the adjacent surface 12b' on the left and right sides, and the display unit 13 is on the opposite side of the adjacent surface 12b '.
  • One piece is provided on each of the left and right sides.
  • these alignment portions 16 is not limited to the flat surface 12a ′, and may be formed on the back surface of the panel 11 (substrate 12), that is, on the back surface of the flat surface 12a ′.
  • the alignment portion 16 provided at the boundary between the flat surface 12a ′ and the adjacent surface 12b ′ has a convex structure
  • the other alignment portion 16 is the adjacent surface 12b on the back side of the panel 11 (substrate 12).
  • the concave structure is provided at the end opposite to the adjacent side, the panels 11 are inserted into the concave structure with the above convex structure to obtain an accuracy as shown in FIG. It can be connected well.
  • this concave structure is a structure that is notched downward on the paper surface, such as an alignment portion 16 provided at the end opposite to the adjacent side of the adjacent surface 12b ′ shown in FIG. Also good.
  • the alignment unit 16 is not limited to that described above, and a marker or the like may be drawn and used, or may be performed using components prepared separately from the panel 11. .
  • FIGS. 15C and 15D there is a method of connecting the panels 11 at their long sides.
  • the connection can be performed using an adhesive or the like.
  • the present invention is not limited to this.
  • an adhesive or the like is used. It is possible to connect the panels with high accuracy.
  • connecting through flexible equipment (plastic, metal, etc.) and allowing it to be bent freely is convenient for carrying in / out / installing in another place after it has been installed once.
  • the connected panel 11 has the adjacent surface 12 b ′ of the adjacent region 12 b of each substrate 12, the substrate 12 of another panel 11 (panel 11 adjacent by connection).
  • the adjacent region 12b protrudes from the back surface in such a manner as to face the back surface of the head. That is, when the connected panels 11 are viewed from above, as shown in FIG. 15B, the adjacent surface 12b ′ faces upward, and the structure protrudes to the back side of the substrate 12.
  • the optical adjustment substrates 17a and 17b for filling the step are provided.
  • the display unit 13 of the second panel 11 from the top is positioned on the back side with respect to the display unit 13 of the uppermost panel 11. Therefore, the step formed between the two is eliminated by disposing an optical adjustment substrate 17a having the same thickness as the step on the surface of the display unit 13 of the second panel 11. Further, in FIG. 15D, the display unit 13 of the second panel 11 from the top is positioned on the back side with respect to the display unit 13 of the uppermost panel 11. Therefore, the step formed between the two is eliminated by disposing an optical adjustment substrate 17a having the same thickness as the step on the surface of the display unit 13 of the second panel 11. Further, in FIG.
  • the display unit 13 of the third panel 11 from the top is located further on the back side than the display unit 13 of the second panel 11 from the top. Therefore, a larger step is generated between the display unit 13 of the top panel 11 and the display unit 13 of the third panel 11 from the top than in the display unit 13 of the second panel 11 from the top. Therefore, in this embodiment, as shown in FIG. 15D, the optical adjustment substrate 17a formed on the surface of the display unit 13 of the second panel 11 is thicker and has the same thickness as a large step. The step is filled by disposing the optical adjustment substrate 17b. By providing the optical adjustment substrates 17a and 17b as described above, a flat display surface can be realized on the image display body 10.
  • connection form is not limited to the form shown in FIGS. 15C and 15D.
  • a method of filling the panel 11 in the alignment frame 18 may be used.
  • the frame 18 is configured according to the thickness of the image display body 10. By embedding the panel 11 in the frame 18, it is possible to increase the strength of the image display body obtained by combining the plurality of panels 11. This is very advantageous as a product.
  • the substrate 12 itself of the panel 11 is preferably made of a flexible substrate material.
  • region 12b can be curved at any time, carrying becomes very easy.
  • the substrate 12 is configured from the flexible base material and the panels 11 are connected to each other, for example, as shown in a portion surrounded by a broken line in FIG.
  • the end of the flat surface 12a ′ opposite to the adjacent side of the adjacent surface 12b ′, the end of the back side of the panel 11 (substrate 12) and the adjacent surface 12b ′ of another panel 11 are bonded together It is also possible to connect.
  • the present invention is not particularly limited to these.
  • an image display device having the configuration shown in FIG. 7B, that is, a plurality of subpixels 51 R, 51 G, and 51 B arranged in the short side direction of the panel 11 in each pixel 50.
  • the image display apparatus having the image display body 10 in which the panel 11 is connected in the vertical direction and the terminal drawn from each light emitting element is connected to the source driver 58 on the long side of the panel 11,
  • the scanning signal line 56 is selected, only one color of RGB is written. Therefore, in order to write one pixel (for three RGB sub-pixels) in the conventional scanning time, the scanning speed is three times higher. Therefore, the source driver must also be driven at a triple speed.
  • the image display 10 is divided into a plurality of panels 11 in a direction parallel to the scanning signal lines 56, and the terminals of the H scan 14 on the adjacent surface of each panel 11 are connected to another source driver for each panel.
  • the image display body 10 is composed of n panels 11, a time for inputting a signal for one screen of the image display device is given to the 1 / n region of the entire image display unit. Thereby, the driving speed of the source driver can be reduced to 1 / n.
  • the terminal group extending from the electrode of the organic electroluminescence element arranged in the long side direction (longitudinal direction) of the rectangular display unit 13 is drawn to the adjacent surface 12b ′.
  • the driving circuit can be connected to the terminal group on the adjacent surface 12b ′.
  • the display unit 13 of one panel 11 and the display unit 13 of the other panel 11 are arranged with no gap therebetween. Can be connected (linked). This is because, at this time, the adjacent surface 12b ′ of one panel 11 on which the drive circuit is arranged is near the joint (boundary of the connecting portion) between the display unit 13 of one panel 11 and the display unit 13 of the other panel 11. This is because it exists in the form of warping and protruding toward the back side of the substrate 12.
  • the observer observing the display unit 13 does not see the adjacent surface 12b ′ from, for example, the joint between the panel 11 and the panel 11.
  • the observer can visually recognize a highly accurate image displayed on one large display surface in which the display units 13 of the panels 11 are connected without a gap.
  • each panel 11 since the adjacent surface 12b ′ of each panel 11 is connected to the back side of the panel 11, the panels can be connected without limitation on the number of panels. Therefore, a desired large screen display surface can be formed.
  • the individual panels 11 to be combined can be downsized to a desired area, so that a compact size can be realized and a panel that can be reduced in cost can be realized.
  • the rectangular display unit 13 is formed, when an organic EL element is provided, mask processing at the time of separate coating by a mask vapor deposition method using a conventional shadow mask is easy.
  • the mask alignment accuracy can be easily realized with high accuracy, and further, the displacement due to the deflection of the mask is not a problem.
  • the display screen can be enlarged, and thus the manufacturing cost can be reduced. Therefore, if the light-emitting panel device according to the present invention is mounted, a low-cost large-sized organic EL image display device can be provided.
  • each panel 11 is manufactured with the length of the short side in the display unit 13
  • a large organic EL image display device can be manufactured with a smaller number of sheets.
  • the size of horizontal (long side in the final form) ⁇ vertical (short side in the final form) is 1400 mm ⁇ 800 mm.
  • the panel 11 is When connecting along the short side direction in the final form, the panel 11 has a size of 1400 mm ⁇ 100 mm, and the final form can be completed by connecting eight panels. In contrast, when connecting along the long side direction in the final form, the panel has a size of 800 mm ⁇ 100 mm, and 14 panels are required to complete the final form. As a result, a large light-emitting panel device can be realized with a small number of connecting portions.
  • the image display apparatus in which the panel 11 having the display unit 13 is connected has been described.
  • the present invention is not limited to this, and the display unit 13 does not display an image. Even if it is configured as a light-emitting unit that only controls light emission / non-light emission, and is connected to a panel having the light-emitting unit (an organic EL lighting device when an organic EL element is provided in the light-emitting unit) it can. That is, the present invention is a device comprising a panel having a rectangular light emitting portion formed by providing a plurality of light emitting elements that control light emission by supplying current or applying voltage, and connecting a plurality of such panels. Any apparatus for any application falls under the present invention.
  • the long side Driving is possible by connecting the terminal group on the side and the terminal on the short side to the external power supply circuit. Further, driving is possible by directly connecting the long side and short side of each panel to an external power supply circuit.
  • an organic EL element is used as the display unit 13, but the present invention is not limited to this, and has a first electrode and a second electrode to supply current or apply voltage. If it is a light emitting element which radiate
  • the adjacent surface 12b ′ of the substrate 12 has a curved structure, but the present invention is not limited to this.
  • FIG. 18 is a partial perspective view showing another form of the adjacent surface 12b ′. As shown in FIG. 18, the adjacent surface 12 b ′ may be bent.
  • Example 1 Image display device
  • a plastic substrate with a thickness of 0.2 mm and an area of 500 ⁇ 220 mm 2 coated with silicon oxide having a thickness of 200 nm was used as the substrate 12 (FIG. 2).
  • ITO indium-tin oxide
  • the first electrode 20 (FIG. 11) patterned into a stripe having a length of 250 mm and a width of 1 mm by patterning only in a region of 492 ⁇ 220 mm 2 out of one surface of 500 ⁇ 220 mm 2 by photolithography. Formed.
  • the edge cover the edge portion of the first electrode 20 by laminating a SiO 2 as the thickness 200nm by sputtering, only the edge portion of the first electrode 20 SiO 2 is to cover by photolithography Patterned.
  • the first electrode 20 is formed to be covered with SiO 2 by 10 ⁇ m from each end of the four sides of the elongated first electrode 20.
  • the display unit 13 formed on the 500 ⁇ 220 mm 2 substrate 12 was designed to be 492 ⁇ 200 mm 2 .
  • a sealing area having a width of 2 mm is provided on the top, bottom, left and right of the display unit 13, and a terminal having a width of 2 mm is further taken out of the sealing area on one short side of the rectangular display unit 13.
  • a region (arrangement region of the V scan 15 in FIG. 2) was provided.
  • a terminal extraction portion (adjacent surface) having a width of 2 mm was provided as a region to be bent (adjacent region).
  • the substrate 12 on which the first electrode 20 has been formed is fixed to the substrate holder in the inline-type resistance heating vapor deposition apparatus shown in FIG. 12, and 1 ⁇ 10 ⁇ 4 Pa or less.
  • the vacuum was reduced to
  • a method of forming RGB light-emitting pixels using a separate coating method by a mask vapor deposition method using a shadow mask 41 is employed.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • a red organic light emitting layer (thickness: 30 nm) is formed on a desired red light emitting pixel on the hole transport layer 32 by a mask coating method using a shadow mask 41.
  • This red organic light-emitting layer comprises 3-phenyl-4 (1′-naphthyl) -5-phenyl-1,2,4-triazole (TAZ) (host material) and bis (2- (2′-benzo [4 , 5- ⁇ ] thienyl) pyridinato-N, C3 ′) iridium (acetylacetonate) (btp 2 Ir (acac)) (red phosphorescent dopant) with a respective deposition rate of 1.4 ⁇ / sec and 0 It was made by co-evaporation at 15 ⁇ / sec.
  • a green organic light emitting layer (thickness: 30 nm) is formed on a desired green light emitting pixel on the hole transport layer 32 by a mask coating method using the shadow mask 41.
  • This green organic light-emitting layer comprises TAZ (host material) and tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ) (green phosphorescent dopant) with a deposition rate of 1.5 ⁇ / Second, and 0.2 liter / second, it was produced by co-evaporation.
  • a blue organic light emitting layer (thickness: 30 nm) is formed on a desired blue light emitting pixel on the hole transport layer 32 by a mask coating method using the shadow mask 41.
  • This green organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light-emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole having a thickness of 10 nm is formed using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • an electron transport layer 35 having a thickness of 30 nm was formed on the hole blocking layer 34 using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer 36 having a thickness of 1 nm was formed on the electron transport layer 35 using lithium fluoride (LiF).
  • the second electrode 21 (FIG. 11) was formed.
  • the substrate 12 (the first electrode 20 and the organic layer 30 had been formed) was fixed in a metal vapor deposition chamber.
  • a shadow mask for forming the second electrode (the opening is vacant so that the second electrode can be formed in a 1 mm wide stripe shape having a longitudinal direction in a direction orthogonal to the longitudinal direction of the stripe of the first electrode 20.
  • the mask and the substrate 12 fixed to the metal deposition chamber were aligned.
  • aluminum was formed in a desired pattern on the surface of the electron injection layer 36 by vacuum deposition. Thereby, the second electrode 21 having a thickness of 200 nm was formed.
  • an inorganic protective layer made of SiO 2 having a thickness of 1 ⁇ m was formed by patterning from the end of the display unit 13 to the sealing area of 2 mm in the vertical and horizontal directions by a sputtering method. Furthermore, a 2 ⁇ m-thick parylene film was formed thereon by vapor deposition polymerization. The SiO 2 and formed of parylene was repeated five times to form a multilayer film composed of five layers, which was used as a sealing film. Thus, the panel 11 shown in FIG. 2 was completed.
  • the manufactured panel 11 is aligned using a marker as the alignment unit 16 provided outside the display unit 13 on the short side, as shown in FIGS. 15 (c) and 15 (d). Three panels 11 were connected so that the long sides of the panel 11 lined up and down.
  • the adjacent region 12b provided on the long side was bent at the stage before connecting the panels.
  • Example 2 Lighting device
  • a simple matrix driving organic EL lighting device in which RGB sub-pixels are arranged side by side in the short side direction of the panel was manufactured by the following procedure.
  • a plastic substrate with a thickness of 0.2 mm and an area of 500 ⁇ 220 mm 2 coated with silicon oxide having a thickness of 200 nm was used as the substrate 12 (FIG. 2).
  • a transparent electrode (anode) having a film thickness of 300 nm as the first electrode 20 is formed by depositing indium-tin oxide (ITO) on the one surface of the plastic substrate 12 by sputtering so that the surface resistance is 10 ⁇ / ⁇ . Formed.
  • ITO indium-tin oxide
  • the edge cover the edge portion of the first electrode 20 by laminating a SiO 2 as the thickness 200nm by sputtering, only the edge portion of the first electrode 20 SiO 2 is to cover by photolithography Patterned.
  • the first electrode 20 is covered with SiO 2 by 10 ⁇ m from each end of the four sides.
  • the display unit 13 formed on the 500 ⁇ 220 mm 2 substrate 12 was designed to be 492 ⁇ 200 mm 2 .
  • a sealing area having a width of 2 mm is provided on the top, bottom, left and right of the display unit 13, and a terminal having a width of 2 mm is further taken out of the sealing area on one short side of the rectangular display unit 13.
  • An area (arrangement area of the V scanner 15 in FIG. 2) was provided.
  • a terminal extraction portion (adjacent surface) having a width of 2 mm was provided as a region to be bent (adjacent region).
  • the substrate 12 on which the first electrode 20 has been formed is fixed to the substrate holder in the inline-type resistance heating vapor deposition apparatus shown in FIG. 12, and 1 ⁇ 10 ⁇ 4 Pa or less.
  • the vacuum was reduced to
  • a method of forming RGB light-emitting pixels using a separate coating method by a mask vapor deposition method using a shadow mask 41 is employed.
  • a hole injection layer 31 (FIG. 11) having a thickness of 100 nm and a hole transport layer 32 (FIG. 11) having a thickness of 40 nm were formed by the same method as in Example 1.
  • a red organic light emitting layer (thickness: 20 nm) is formed on a desired red light emitting pixel on the hole transport layer 32 by a mask coating method using a shadow mask 41.
  • the material used for the red organic light-emitting layer, the deposition rate, and the like are the same as those for the red organic light-emitting layer shown in Example 1.
  • a green organic light emitting layer (thickness: 20 nm) was formed by the same method as in Example 1, and then a blue organic light emitting layer (thickness: 20 nm) was formed by the same method as in Example 1.
  • the hole blocking layer 34 (FIG. 4) (thickness: 10 nm), the electron transport layer 35 (thickness: 30 nm), and the electron injection layer 36 (thickness: 1 nm) are formed by the same method as in Example 1. To do.
  • the second electrode 21 (FIG. 11) was formed.
  • the substrate 12 (the first electrode 20 and the organic layer 30 had been formed) was fixed in a metal vapor deposition chamber.
  • a shadow mask for forming the second electrode (a mask having an opening so that the second electrode 21 can be formed so as to cover the entire first electrode 20 by 2 mm), and a substrate fixed to the metal deposition chamber 12 were aligned.
  • aluminum was formed in a desired pattern on the surface of the electron injection layer 36 by vacuum deposition. Thereby, the second electrode 21 having a thickness of 200 nm was formed.
  • Example 1 an inorganic protective layer made of SiO 2 having a thickness of 1 ⁇ m was patterned by sputtering from the edge of the display unit 13 to the sealing area of 2 mm in the vertical and horizontal directions using a shadow mask. . Furthermore, a 2 ⁇ m-thick parylene film was formed thereon by vapor deposition polymerization. The SiO 2 and formed of parylene was repeated five times to form a multilayer film composed of five layers, which was used as a sealing film. Thus, the panel 11 shown in FIG. 2 was completed.
  • the manufactured panel 11 is aligned using a marker as the alignment unit 16 provided outside the display unit 13 on the short side, as shown in FIGS. 15 (c) and 15 (d). Three panels 11 were connected so that the long sides of the panel 11 lined up and down.
  • the adjacent region 12b provided on the long side was bent at the stage before connecting the panels.
  • the three display units 13 are combined and have a light emission area of 492 ⁇ 600 mm 2
  • the device organic EL lighting device
  • Example 3 Active drive type organic EL image display device
  • an active matrix substrate in which RGB subpixels are arranged in the short-side direction of the panel was manufactured by the following procedure.
  • An invar material substrate having a thickness of 0.1 mm and an area of 750 ⁇ 220 mm 2 coated with silicon oxide having a thickness of 10 ⁇ m was used as the substrate 12 (FIG. 2).
  • An amorphous silicon semiconductor film is formed on a glass substrate using PECVD. Subsequently, a polycrystalline silicon semiconductor film is formed by performing a crystallization process. Next, the polycrystalline silicon semiconductor film is patterned into a plurality of islands using a photolithography method. Subsequently, a gate insulating film and a gate electrode layer were formed in this order on the patterned polycrystalline silicon semiconductor layer, and patterning was performed using a photolithography method.
  • the patterned polycrystalline silicon semiconductor film was doped with an impurity element such as phosphorus to form source and drain regions, and a TFT element was produced. Thereafter, a planarizing film was formed.
  • a silicon nitride film formed by PECVD and an acrylic resin layer are formed in this order by a spin coater. First, after forming a silicon nitride film, the silicon nitride film and the gate insulating film were etched together to form a contact hole leading to the source and / or drain region, and then a source wiring was formed.
  • the capacitor for setting the gate potential of the TFT to a constant potential is formed by interposing an insulating film such as an interlayer insulating film between the drain of the switching TFT and the source of the driving TFT.
  • the driving TFT On the active matrix substrate, the driving TFT, the first electrode of the red light emitting organic EL element, the first electrode of the green light emitting organic EL element, and the first electrode of the blue light emitting organic EL element are passed through the planarization layer. Contact holes are provided for electrical connection.
  • a first electrode (anode) of each pixel was formed by sputtering for electrical connection in a contact hole provided through a planarization layer connected to a TFT for driving each light emitting pixel.
  • the first electrode 20 (FIG. 11) was formed by stacking 150 nm thick Al (aluminum) and 20 nm thick IZO (indium oxide-zinc oxide).
  • the first electrode was patterned into a shape corresponding to each pixel by a conventional photolithography method.
  • the area of the first electrode was 300 ⁇ m ⁇ 100 ⁇ m.
  • the display part 13 (FIG. 11) formed in a 750 * 220 mm ⁇ 2 > board
  • substrate was 742 * 200 mm ⁇ 2 >, and provided the sealing area of 2 mm width provided in the upper and lower sides, right and left of the display part.
  • a terminal extraction region (arrangement region of the V scan 15 in FIG. 2) having a width of 2 mm was further provided outside the sealing area.
  • a terminal extraction portion (adjacent surface) having a width of 2 mm was provided as a region to be bent (adjacent region).
  • SiO 2 is laminated by a thickness of 200 nm by a sputtering method, and only the edge portion of the first electrode 20 is made of SiO 2 by a conventional photolithography method. Patterned to cover.
  • the first electrode 20 is covered with SiO 2 by 10 ⁇ m from each end of the four sides.
  • the active substrate is cleaned.
  • the cleaning of the active substrate for example, using acetone or IPA, ultrasonic cleaning is performed for 10 minutes, and then UV-ozone cleaning is performed for 30 minutes.
  • this substrate was fixed to a substrate holder in the in-line type resistance heating vapor deposition apparatus shown in FIG. 12, and the pressure was reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less.
  • a method of forming RGB light-emitting pixels using a separate coating method by a mask vapor deposition method using a shadow mask 41 is employed.
  • a hole injection layer 31 (FIG. 11) having a thickness of 50 nm was formed in the light emitting pixel portion, a thickness of 150 nm in the green light emitting pixel portion, and a thickness of 100 nm in the blue light emitting pixel portion.
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as a hole transport material.
  • the organic light emitting layer 33 of the red organic light emitting layer (thickness: 30 nm), the green organic light emitting layer (thickness: 30 nm), and the blue organic light emitting layer (thickness: 30 nm). Formed.
  • the hole blocking layer 34 (thickness: 10 nm) and the electron transport layer 35 (thickness: 30 nm) were formed by the same method as in Example 1 above.
  • the second electrode 21 (FIG. 11) was formed.
  • the substrate was fixed to a metal deposition chamber.
  • a shadow mask for forming the second electrode (a mask having an opening so that the second electrode can be formed in the entire light emitting region and a region 1 mm larger in the vertical and horizontal directions of the cathode contact area previously formed on the substrate)
  • the substrate was aligned, and a magnesium-silver alloy (ratio 1: 9) with a film thickness of 19 nm was formed on the surface of the electron transport layer 35 by vacuum deposition. Thereby, the translucent second electrode 21 (FIG. 11) is formed.
  • a protective layer 29 made of 100 nm SiON was patterned on the semitransparent second electrode 21 by ion plating using a shadow mask.
  • the film forming conditions are as follows.
  • a sealing substrate in which a thermosetting resin for adhesion is previously applied on a polyimide film is bonded to an active substrate on which an organic EL element is formed, and heated on a hot plate at 80 ° C. for 1 hour.
  • the resin was cured with
  • the bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL element due to water.
  • a polarizing plate was bonded to the substrate in the light extraction direction to complete the panel 11 of this example.
  • FIG. 13 shows a cross-sectional view of the panel 11 of this example.
  • 22 is a gate metal
  • 23 is a gate insulating film
  • 24 is a wiring
  • 25 is a TFT electrode
  • 26 is a planarizing film
  • 27 is a through hole
  • 37 is a thermosetting resin
  • 38 is a sealing substrate
  • 39 is the above-mentioned A polarizing plate is shown.
  • the rectangular active drive type organic EL produced as described above was connected to three pieces using the alignment frame 18 (FIG. 16) so that the long sides are aligned vertically.
  • the adjacent region 12b provided on the long side was bent at the stage before connecting the panels.
  • the terminal formed on the short side is connected to the power supply circuit via the source driver, and the terminal formed on the long side is connected to the external power supply via the gate driver, thereby 742 ⁇ 600 mm 2 .
  • An active drive organic EL display (image display device) having a display surface was completed.
  • the longitudinal direction is parallel to the row direction
  • the plurality of light emitting elements included in each of the plurality of pixels are arranged in the pixel in a direction parallel to a pair of short sides constituting the rectangular light emitting unit
  • the second terminal group is connected to the scanning drive circuit;
  • the first terminal group may be connected to the data driving circuit.
  • the arrangement direction of the light emitting elements in the pixel and the connection direction of the scanning drive circuit and the data drive circuit are combined so that a plurality of panels are arranged vertically while maintaining the state of the conventional image display device.
  • the number of scanning drive circuits can be reduced to 1/3.
  • the longitudinal direction is parallel to the column direction
  • the plurality of light emitting elements included in each of the plurality of pixels are arranged in the pixel in a direction parallel to a pair of long sides constituting the rectangular light emitting unit,
  • the first terminal group is connected to the scanning drive circuit;
  • the second terminal group may be connected to the data driving circuit.
  • the arrangement direction of the light emitting elements in the pixel and the connection direction of the scanning drive circuit and the data drive circuit are combined so that a plurality of panels are arranged in the horizontal direction while maintaining the state of the conventional image display device.
  • the number of scanning drive circuits can be reduced to 1/3.
  • the first panel and the second panel are: The side of the first panel adjacent to the adjacent surface of the flat surface of the substrate and the side of the second panel adjacent to the adjacent surface of the flat surface of the substrate of the second panel It can be connected by connecting the above end on the opposite side.
  • the image display device includes:
  • Each of the light emitting elements is an organic electroluminescence element configured to have an organic layer including an organic light emitting layer between the first electrode and the second electrode,
  • the terminal group led out from the first electrode of each organic electroluminescence element can be arranged along the long side on the adjacent surface.
  • the image display device includes: The end of the flat surface opposite to the side adjacent to the adjacent surface preferably overlaps with the end along the other long side of the rectangular light emitting unit.
  • the image display apparatus according to the present invention preferably has no sealing area on the adjacent surface.
  • the adjacent surface can be bent or bent without stress.
  • the adhesion between the substrate portion where the organic EL is formed and the sealing substrate is insufficient, and in particular, the adhesion between the organic layer and the electrode (usually the cathode) is poor in the organic EL portion. Therefore, when the organic EL part is bent, peeling becomes a problem. In particular, even in the organic EL part, peeling of the organic layer and the electrode becomes a problem.
  • the image display device includes: It is preferable that the base material is provided with an alignment part that can be used for alignment when connecting the base materials of the panels.
  • the organic electroluminescence element that is, pixel
  • a display image is defective.
  • the size of each sub-pixel is 210 ⁇ m ⁇ 70 ⁇ m. If a 70 ⁇ m shift occurs, the sub-pixel shifts at the connecting portion, and the joint can be visually recognized.
  • the alignment unit is provided, such a shift can be avoided and a good image display can be realized even in the display device.
  • the alignment portion if the alignment portion is provided in the connection portion, the alignment portion will be visually recognized as a joint when connected, so the alignment portion should be provided in a region different from the connection portion. Is preferred.
  • the base material can be a plate member.
  • the said base material may be a flexible base material.
  • the base material is preferably made of metal or plastic.
  • the adjacent surface can be produced by bending or bending without stress.
  • the panel is configured using a glass substrate having a thickness of about 0.7 mm, it cannot be bent. Therefore, even if it is bent as in the present invention, it is necessary to produce a flexible plastic or the like only at the bent portion of the glass, which causes an increase in cost and the connection between the panels. It also causes a defect in the part. Therefore, the base material itself can be bent by using the metal and plastic of the present invention as the base material.
  • the panel substrate itself can be bent or bent, it is possible to realize a low-cost light-emitting panel device, and to contribute to the cost reduction of the image display device and the lighting device provided with the same. Can do.
  • the base material may be an iron-nickel alloy having a linear expansion coefficient of 1 ⁇ 10 ⁇ 5 / ° C. or less.
  • the image display device includes: It is preferable that the image display unit includes an active matrix driving element that drives the light emitting element, and performs active matrix driving.
  • the active matrix driving organic EL display and organic EL display device can take longer light emission time per frame than the simple matrix driving organic EL display and organic EL display device, the light emission luminance per frame is lowered. It is possible.
  • the display case of a (high-definition resolution 1920 ⁇ 1080) to obtain the luminance of 100 cd / m 2, a simple matrix drive, 108,000cd / m 2 ( 100cd / m 2 ⁇ 1080) of the required instantaneous luminance
  • the organic EL since the organic EL has a lower luminous efficiency as the luminance increases, it can be driven in a region where high luminous efficiency can be used, and power consumption can be greatly reduced.
  • the image display device includes:
  • the first electrode and the second electrode may be linear electrodes extending orthogonally to each other and parallel to the flat surface, and may be configured to perform simple matrix driving.
  • the image display device includes:
  • the light emitting element provided in the image display unit is an organic electroluminescent element configured to have an organic layer including an organic light emitting layer between a first electrode and a second electrode, A power supply wiring for supplying power to the image display unit is connected to the second electrode; It is preferable that the terminals of the power supply wiring are arranged on one side of a pair of short sides constituting the rectangular light emitting unit which is the image display unit on the flat surface of the base material.
  • the organic electroluminescence element is current-driven, current is required for light emission.
  • a conventional display (display device) having a long current supply wiring it is known that the increase in power consumption and heat generation due to a voltage drop due to a resistance component in the current supply wiring caused by flowing a current are problems. . Therefore, according to the configuration of the present invention, since the terminals of the current supply wiring connected to the second electrode of the light emitting unit of the panel are arranged on the flat surface of each panel, the length of the current supply wiring is shortened. Can be realized. This is very significant in solving the previous problem.
  • the present invention has high industrial applicability because it can be optimally used as an image display device and can also be used as a lighting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 所望の枚数のパネルを組み合わせて大型の発光面を実現した画像表示装置と、該画像表示装置に具備されるパネルと、該パネルの製造方法を提供するために、本発明に係るパネル(11)は、長方形の表示部(13)が設けられた平坦面(12a´)と、平坦面(12a´)の長辺側の端部に設けられた湾曲した隣接面(12b´)とから構成された基板(12)を有しており、隣接面(12b´)には、表示部(13)の長辺側から引き出された端子群が配列している。パネル(11)同士は、各々の長方形の表示部(13)の長手方向が平行になるように、各々の基板(12)の平坦面(12a´)の端部同士を連結させて繋がっており、隣接面(12b´)は基板(12)背面側に位置する。画像表示部には画素(50)がマトリクス状に配列しており、サブピクセルは各画素(50)内において、マトリクスの列方向に並んで配置されている。

Description

画像表示装置、パネルおよびパネルの製造方法
 本発明は、画像表示装置、パネルおよびパネルの製造方法であって、より詳細には、有機エレクトロルミネッセンス(EL)素子を表示部に有したパネルを複数繋げて大画面の有機ELディスプレイを実現した画像表示装置に関する。
 近年、高度情報化に伴い、フラットパネルディスプレイのニーズが高まっている。フラットパネルディスプレイとしては、非自発光型の液晶ディスプレイ(LCD)、自発光型のプラズマディスプレイ(PDP)、無機エレクトロルミネセンス(無機EL)ディスプレイ、有機エレクトロルミネセンス(有機EL)ディスプレイ等が知られているが、これらのフラットパネルディスプレイの中でも、有機ELディスプレイの進歩は特に著しい。
 有機ELディスプレイにおいては、単純マトリクス駆動により動画表示を行う技術、または、薄膜トランジスタ(TFT)を用いて、有機EL素子のアクティブマトリクス駆動により動画表示を行う技術が知られている。
 また、従来のディスプレイでは、赤色、緑色、青色を発光する画素を1つの単位として、並置することで、白色を代表とする様々な色を作り出すことでフルカラー化を行っている。
 これを実現化するためには、有機ELの場合、一般的にシャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることで、赤色、緑色、青色の画素を形成する方法を用いている。しかし、この方法では、マスクの加工精度、マスクのアライメント精度、マスクの大型化が大きな課題となっている。特に、テレビに代表される大型ディスプレイの分野では、基板サイズが、G6からG8、G10と大型化が進んでおり、従来の方法であると、基板サイズと同等以上のマスクを必要とするため大型基板に対応したマスクの作製および加工が必要となる。ところが、マスクは、非常に薄い金属(一般的な膜厚:50~100nm)が必要とされるため、大型化することが非常に困難である。また、大型基板に対応したマスクの作製および加工が問題となる。マスクの加工精度とマスクのアライメント精度の問題は、発光層の混じりによる混色に繋がる。またこの問題を防止するため、通常、画素間に設ける絶縁層の幅を広く取る必要があり、画素の面積が決まっている場合、発光部の面積が少なくなる、すなわち、画素の開口率の低下に繋がり、輝度の低下、消費電力の上昇、寿命の低下に繋がる。また、従来の製造方法では、蒸着ソースが、基板より下側に配置され、有機材料を下から上に向けて蒸着することで有機層を成膜するため、基板の大型化(マスクの大型化)に伴い、中央部でのマスクの撓みが問題となる。撓みの問題は、上記の混色の原因ともなる。また、極端な場合には、有機層が形成されない部分ができてしまい、上下の電極のリークによる欠陥を引き起こす。加えて、従来の方法では、マスクが、特定の回数で劣化によって使用不可能となるため、マスクの大型化の問題は、ディスプレイのコストアップに繋がってしまう。特にコスト問題は、有機ELディスプレイでの最大の問題とされている。
 そこで、有機ELディスプレイを複数繋ぎ合わせて大型のディスプレイとする方法が提案されているが、パネルを複数枚繋ぎ合わせた場合、繋ぎ目が視認されてしまい、ディスプレイの表示品位を低下させてしまうという問題がある。この問題に対する解決方法として、特許文献1では、開口率を犠牲にして、4枚のパネルをさらにその裏から封止することで、繋ぎ目を解消する方法を提案している。また、非特許文献1では、2枚のパネルを封止部が重なるように重ね合わせ、片側の基板に屈折率を調整した透過プレートを貼り合わせることによって繋ぎ目を解消する方法を提案している。
日本国公開特許公報「特開2004-111059号公報(2004年4月8日公開)」
The 15th International Display Workshops(開催期間:2008年12月3日~5日)
 しかし、ディスプレイでは、4辺のうちの少なくとも直交する2辺から、表示部を駆動するための端子を取り出す必要がある。通常は、これらの辺にFPC(Flexible printed circuit)を圧着して駆動回路側と接続をする必要があるため、この辺を組み合わせて繋ぎ目の無いディスプレイとすることが不可能である。このため、特許文献1では、FPCを接続しない辺を最大限利用して4枚のパネルを組み合わせて1枚のディスプレイとしている。また、非特許文献1では、2枚のパネルを組み合わせて1枚のディスプレイとしている。しかし、これらの文献では、5枚以上組み合わせた時、ユニットを組み合わせてディスプレイを製造する場合の最大の問題である真中に配置されるユニットへの駆動の方法が示されておらず、実際には最大で4枚までのパネルしか組み合わせられない。そのため、大型のディスプレイを実現しようとする場合には、必然的に組み合わせる個々のパネルを大型化しなければならず、結局のところ、作製に関する上述した問題は未だ完全には解決されていない状況にある。
 また、LCDでもPDPでも、大型化に伴い、一般家庭への搬送、設置場所への搬入、設置場所が問題となるが、従来の有機ELディスプレイでも同様の問題が生じる。この問題は、より大型のディスプレイが一般家庭に導入される場合により顕著な問題となる。
 また、近年では、エコロジーの観点から、発光効率が非常に高い有機ELは、照明の分野でも注目されている。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、組み合わせる(繋ぐ)パネル数に制限がなく、且つ、その繋ぎ目の問題も解消でき、また、大型のパネル作製においても、組み合わせる個々のパネルを所望の面積まで小型化を可能とすることによりコンパクト化を実現し、低コスト化が可能な、複数のパネルを繋げてなる画像表示装置と、画像表示装置に具備されるパネルと、該パネルの製造方法を提供することにある。
 本発明のさらなる目的は、複数のパネルを用いることにより生じ得る駆動回路のコスト増加を回避することである。
 本発明者らは、上述した種々の問題について検討したところ、発光パネル装置の基材の構造と、画素の構造と、駆動回路の配置とに着目し、鋭意努力した結果、上記課題を解決することができることに想到し、本発明に到達したものである。
 すなわち、本発明に係る画像表示装置は、上記の課題を解決するために、
 基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
 上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
 上記隣接面には、上記長方形の発光部の上記第一電極から引き出された第一端子群が形成されており、
 上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
 第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
 複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの列方向に沿って並んで配置されており、
 上記第一端子群および上記第二端子群のうち上記マトリクスの行方向に引き出された端子群に接続された、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
 上記第一端子群および上記第二端子群のうち上記マトリクスの列方向に引き出された端子群に接続された、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えていることを特徴としている。
 上記の構成によれば、上記長方形の発光部の長辺方向(長手方向)に沿って配列している画素の画素内の発光素子(例えば、有機エレクトロルミネッセンス素子)の一方の電極から延びる端子を、上記隣接面に引き出して、該隣接面において該端子に駆動回路を連結することができる。
 このように駆動回路を配置する構成が実現されたことにより、上記第1のパネルと、上記第2のパネルとを繋いだ場合に、上記第1のパネルの発光部と、第2のパネルの発光部とを隙間なく並べてパネル同士を繋げる(連結する)ことができる。なぜなら、このとき、駆動回路を配置した(第1のパネルの)隣接面は、上記第1のパネルの発光部と、第2のパネルの発光部との繋ぎ目(連結部の境界)近傍の基材の背面側に反れて突き出たかたちで存在することになるからである。
 なお、他方の電極の端子は、基材の平坦面における、上記長方形の発光部の短辺のうちの一方の側に引き出され、別の駆動回路に連結することができる。これによれば、各パネルの平坦面に、そのパネルの発光部の第二電極から延びる端子を配列させることから、第二電極から端子までの間の配線長を短く実現することができる。発光素子として有機エレクトロルミネッセンス素子を用いた場合、有機エレクトロルミネッセンス素子は電流駆動であるため、その発光には電流を必要とする。そのため、第二電極には電流供給配線を上記配線として連結させることになる。ここで、電流供給配線が長い従来のディスプレイ(表示装置)では、電流を流すことによる電流供給配線での抵抗成分による、電圧降下による消費電力の上昇、発熱が問題であることが知られており、この問題の解決に、本発明による電流供給配線の短縮化は、非常に効果的である。特に、大型の高精細ディスプレイ(表示装置)では、画素数の増加、ディスプレイ(表示装置)の表示領域の増加に伴う画素面積の増加により、より大電流を電流供給配線で供給する必要が要求され、上記の問題はより深刻な問題となる。これにより本発明では、電流供給配線に電流を流すことに起因する問題を解消することが可能となり、消費電力を大幅に低減することが、発熱を大幅に低減することが可能となる。
 この結果、より低消費電力、発熱の少ない大型の発光パネル装置を作製することができ、この発光パネル装置を画像表示装置に搭載すれば、表示品位の優れた大型の画像表示装置を作製することが可能となる。
 また、上記のような本発明の構成によれば、隣接面がパネル同士の繋ぎ目に視認される状態で存在することはなく、上記第1のパネルと、上記第2の上記パネルとは、各々の上記長方形の発光部の長手方向が平行になるように、且つ、各々の上記基材の上記平坦面の上記端部同士を連結させて、連結することができる。よって、この方式で連結していけば、パネル数に制限なく連結させることができ、各パネルの発光部を隙間なく繋げて1つの大きな発光部を実現することができる。
 また、言い換えれば、本発明の構成によればパネル数に制限なくパネルを連結させるので、組み合わせる個々のパネルを所望の面積まで小型化することによりコンパクト化を実現し、低コスト化が可能なパネルを実現することができる。
 また、本発明の構成によれば、長方形の発光部を形成しているため、上記発光素子として有機エレクトロルミネッセンス(EL)素子を備える場合にも、従来のシャドーマスクを用いたマスク蒸着法による塗り分けの際のマスク加工が容易であり、且つ、マスクのアライメント精度も容易に高精度を実現でき、更には、マスクの撓みによるズレも問題にならない。
 また、パネルの製造装置もより小型の製造装置を用いて、画像表示装置の大型化が可能となるため製造コストの低減が可能となる。そのため、本発明に係る画像表示装置を搭載すれば、低コスト化の大型有機ELディスプレイおよび有機EL表示装置を提供することが可能となる。
 また、本発明は、上記のように、或るパネルの発光部の長辺側において別のパネルを繋げることから、発光部の短辺側において繋げるよりも、同じ幅(各パネルの発光部における短辺の長さ)で各パネルを作製した場合、より少ない枚数で大型の画像表示装置を作製することができる。具体的には、65型のハイビジョンテレビを想定した場合、横(最終形態での長辺)×縦(最終形態での短辺)の大きさが1400mm×800mmとなる。100mmの幅のパネルでそれぞれ最終形態での短辺方向に沿って組み合わせる場合および最終形態での長辺方向に沿って組み合わせる場合を考察すると、後述する本発明の画像表示装置においてパネルを最終形態での短辺方向に沿って繋げる場合は、パネルは、大きさが1400mm×100mmとなり、8枚繋げることで最終形態を完成することができる。これに比べ、最終形態での長辺方向に沿って繋げる場合は、パネルは、大きさが800mm×100mmとなり、最終形態を完成するために14枚のパネルが必要となる。
 この結果、少ない連結部で大型の発光パネル装置を実現することができ、この発光パネル装置を画像表示装置に適用することによって大型の画像表示装置を作製することが可能となる。
 なお、本発明に係る画像表示装置は複数のパネルを組み合わせて構成されているため、パネルの枚数が増加すると画像表示装置に含まれる隣接面が増加する。これにより隣接面上の端子に接続される駆動回路の必要数も増加し、コストが増加してしまう。そのため、駆動回路の必要数が少ない構成がより望ましい。とりわけ、データ駆動回路は走査駆動回路よりもコストが高いため、データ駆動回路の数を削減することが望ましい。
 従来の画像表示装置の構成では、画像表示部において画素がマトリクス状に配列しており、画素内の複数の発光素子はマトリクスの行方向に並んで配置されている。このとき、一つの画素に対して複数本(画素内に含まれる発光素子の数)のデータ信号線あるいは信号電極が必要となる。一方、本発明に係る画像表示装置では、画素内の複数の発光素子がマトリクスの列方向に並んでいる。このため、一つの画素に対して必要となるデータ信号線あるいは信号電極の数が1本で済むことになる。したがって、対応するデータ駆動回路の数も従来の表示パネルよりも少なくなり、低コスト化を実現できる。
 また、本発明に係る画像表示装置は、上記の課題を解決するために、基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
 上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
 上記隣接面には、上記長方形の発光部の上記第一電極から引き出された第一端子群が形成されており、
 上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
 第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
 複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
 上記長手方向が、上記マトリクスの行方向と平行であり、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの行方向または列方向に沿って並んで配置されており、
 上記第一端子群に接続されている、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
 上記第二端子群に接続されている、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えている構成でもあり得る。
 上記構成であっても、上述の画像表示装置と同様の効果を得ることができる。
 また、本発明には、上述した画像表示装置の構成部材であるパネル自体も含まれる。
 すなわち、本発明には、
 基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して長方形の発光部を形成したパネルであって、
 上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
 上記隣接面には、上記長方形の発光部の上記第一電極から引き出された端子群が形成されており、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の短辺と平行な方向に沿って並んで配置されていることを特徴とするパネルも含まれる。
 また、本発明には、上記画像表示装置に設けられた上記パネルの製造方法も含まれる。
 すなわち、上記パネルの製造方法であって、
 上記平坦面および上記隣接面を有した上記基材を準備する基材準備工程と、
 上記基材準備工程により準備された上記基材の上記平坦面の上に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子である有機エレクトロルミネッセンス素子を形成する発光素子形成工程と、
を含み、
 上記発光素子形成工程には、
 上記基材の上記平坦面の上に、上記第一電極もしくは上記第二電極を形成する電極形成工程と、
 上記電極形成工程によって形成された電極の上に、上記有機エレクトロルミネッセンス素子において上記第一電極と上記第二電極との間に設けられる有機層を、インライン型蒸着方法を用いて形成する有機層形成工程と、
が含まれることを特徴とする製造方法も本発明に含まれる。
 上記の構成によれば、インライン型蒸着方法を用いて、上記有機層を形成することから、高生産性のインライン型蒸着装置のメリットを最大限生かして、シャドーマスクを用いたマスク蒸着による塗り分けを行うことが可能となる。
 具体的には、有機ELのシャドーマスクを用いた塗り分け方式では、一般的に、下から、蒸着源(ソース)、シャドーマスク、基板の順となる。基板の大型化に伴う、マスクの大型化により、従来からマスクにテンションをかけて剛直なフレームに貼り、マスクの撓みをより低減する方法を採用してはいるがが、マスクの撓みに起因する色ずれ、混色、非発光画素(非発光ライン)、リークによる消費電力の上昇等が生じ、最大の問題とされる。これに対して、本発明の方法を用いて、1辺の長さを最終形態より格段に短くすることが可能となる。インライン型蒸着装置を用いて、パネルの長辺方向に基材を搬送し、成膜を行っていく方式で製造すると、マスク幅を極端に短くすることが可能となり、マスクの撓みを解消することが可能となる。
 この結果、マスクの撓みに起因する色ずれ、混色、非発光画素(非発光ライン)、リークによる消費電力の上昇等の問題を解消することが可能となり、低コスト化、低消費電力化が可能なパネルを効率良く生産することが可能である。よって、このパネルを用いた上記発光パネル装置を低コストで低消費電力で実現することができ、同様に、発光パネル装置を具備した本発明の画像表示装置および照明装置にも、これらの効果を得ることができる。
 本発明に係る画像表示装置は、以上のように、
 基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
 上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
 上記隣接面には、上記長方形の発光部の上記第一電極から引き出された端子群が形成されており、
 上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
 第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
 複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの列方向に沿って並んで配置されており、
 上記第一端子群および上記第二端子群のうち上記マトリクスの行方向に引き出された端子群に接続された、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
 上記第一端子群および上記第二端子群のうち上記マトリクスの列方向に引き出された端子群に接続された、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えていることを特徴としている。
 あるいは、基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
 上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
 上記隣接面には、上記長方形の発光部の上記第一電極から引き出された第一端子群が形成されており、
 上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
 第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
 複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
 上記長手方向が、上記マトリクスの行方向と平行であり、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの行方向または列方向に沿って並んで配置されており、
 上記第一端子群に接続されている、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
 上記第二端子群に接続されている、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えていることを特徴としている。
 これにより、組み合わせる(繋ぐ)パネル数に制限がなく、且つ、その繋ぎ目の問題も解消でき、また、大型のパネル作製においても、組み合わせる個々のパネルを所望の面積まで小型が可能とすることによりコンパクト化を実現することができる。さらに複数のパネルを用いることにより生じる駆動回路数の増加によるコストの増加を抑えることができる。
本発明の一実施形態に係る画像表示装置の構成を示した斜視図である。 図1に示した画像表示装置を構成するパネルの斜視図である。 本発明の一実施形態に係る画像表示装置の画素の構成を一部拡大して示した斜視図である。 本発明の一実施形態に係る画像表示装置の別の画素の構成を一部拡大して示した斜視図である。 図1に示した本実施形態の画像表示装置の駆動方式の一例として挙げられる電圧駆動デジタル階調方式の駆動回路を示した図である。 (a)は比較用の画像表示装置および画素の構成を示した斜視図であり、(b)は(a)における回路構成の概略を示した図である。 (a)は本発明の一実施形態に係る画像表示装置および画素の構成を示した斜視図であり、(b)は(a)における回路構成の概略を示した図であり、(c)は(a)における別の回路構成の概略を示した図である。 図1に示した画像表示装置を構成するパネルの別の連結形態を説明する図である。 (a)は比較用の画像表示装置および画素の構成を示した斜視図であり、(b)は(a)における回路構成の概略を示した図である。 (a)は本発明の別の実施形態に係る画像表示装置および画素の構成を示した斜視図であり、(b)は(a)における回路構成の概略を示した図である。 図1に示した画像表示装置を構成するパネルに形成された表示部の構成を示した断面図である。 図1に示した画像表示装置を構成するパネルに形成方法を説明する図である。 図1に示した画像表示装置を構成するパネルに形成された表示部の構成を示した断面図である。 比較構成であり、エッジカバーを配設していない構成の断面図である。 (a)~(d)は、図1に示した画像表示装置を構成するパネルの連結を説明する図であり、(a)は1つのパネルの正面図であり、(b)はパネルの上面図であり、(c)はパネルを連結させてなる画像表示装置の正面図(表示部側からみた図)であり、(d)は(c)に示した画像表示装置の側面図である。 図1に示した画像表示装置を構成するパネルの別の連結形態を説明する図である。 図1に示した画像表示装置を構成するパネルの別の連結形態を説明する図である。 図1に示した画像表示装置を構成するパネルの別の形態を示した斜視図である。 実施例のパネルの構成を示した断面図である。 (a)は点順次駆動の回路の構成を示した図であり、(b)は線順次駆動の回路の構成を示した図である。
 本発明に係る一実施形態について、図1から図20を参照して以下に説明する。本実施形態における画像表示装置は、テレビ受像機などの画像(映像)を表示する機能を備えた表示装置として使用することができる。
 本発明は、一実施形態として例示する画像表示装置の構成のうち、有機エレクトロルミネッセンス(EL)素子を複数有して長方形をなした表示部を備えたパネルに特徴的構成を有する。以下では、パネルの詳細な構成およびパネルの製造方法を中心に、本実施形態の画像表示装置の構成を説明する。
 〔1〕画像表示装置の構成
 図1は、本実施の形態における画像表示装置の構成の一部を示した斜視図である。画像表示装置は、図1に示すように、画像表示体10と、図示しない外部駆動回路とを備えている。
 上記画像表示体10は、詳細は後述するが、図2に示す長方形を有した表示部13を備えたパネル11を複数枚(図1では3枚)を繋げて構成されたものである。上記外部駆動回路は、それぞれのパネル11を駆動するために各パネル11に電気的に接続されている。
 上記外部駆動回路は、画像表示体10の各パネル11に設けられた表示部13を駆動するために設けられており、走査電極回路、データ信号電極回路、および電源回路を有している。
 図3および図4は、画像表示体10とともに、表示部13の一部の画素構成を拡大して示している図である。図3は画像表示装置が単純マトリクス駆動を行う表示装置である場合、図4は画像表示装置がアクティブマトリクス駆動を行う表示装置である場合を図示している。図3および図4に示すように、画像表示体10の表示部13には、マトリクス状に配置されている複数の画素50が含まれている。各画素50は、赤色(R)、緑色(G)および青色(B)の各サブピクセル51R、51Gおよび51Bによって構成されている。
 図3および図4に示す画像表示体10では、各サブピクセルはその画素50内において、マトリクスの列方向に並んで配置されている。すなわち、これらの画像表示体10では、各サブピクセルはその画素50内において、各パネル11の短辺方向に並んで配置されている。なお、後述するように、各サブピクセルが画素50内において各パネルの長辺方向に並んで配置されている構成をとることも可能である。
 ここで、駆動は、それぞれのパネル11を電気的に接続して、外部駆動回路により一括して駆動することができる。しかし、本発明は特にこれらに限定されるものではなく、上述した駆動方式でもよく、または、パネル11をそれぞれ独立に外部駆動回路に電気的に接続して駆動を行ってもよい。例えば、図3に示すように、各サブピクセル51R、51Gおよび51Bが各パネル11の短辺方向(画素50のマトリクス配置の列方向)に並んで配置されており、単純マトリクス駆動する画像表示装置を、各パネル11を繋げて作製する場合には、次のようにして画像表示装置の駆動が可能となる。すなわち、長方形を有した各パネル11の表示部13の長辺側に設けられたHスキャン14の端子(第一端子群)を、直接電気的に接続(具体的には、各Hスキャン14の端子にFPCを接続して各FPCを直接電気的に接続する方法)を行った後、Hスキャン14側を従来の外部に設けられた走査電極回路を介して電源回路に接続する。一方、長方形を有した各パネル11の表示部13の短辺側の端子群(第二端子群)が配列したVスキャン15側を従来の外部に設けられたデータ信号電極回路を介して電源回路に接続する。以上により、画像表示装置の駆動を行うことが可能となる。
 また、各パネル11のHスキャン14側を従来の外部に設けられた走査電極回路(走査駆動回路)および電源回路にそれぞれ独立に接続し、Vスキャン15側を従来の外部に設けられたデータ信号電極回路(データ駆動回路)を介して電源回路に接続することで、駆動を行うことも可能となる。
 また、本実施形態の画像表示装置は、図4に示すように、表示部13をアクティブマトリクス駆動する構成を有していてもよい。各サブピクセル51R、51Gおよび51Bが各パネル11の短辺方向(画素50のマトリクス状配置の列方向)に並んで配置されており、画像表示装置がアクティブマトリクス駆動型である場合には、後述するように、パネル11には、TFT等のスイッチング回路が画素内に配設されている。またスイッチング回路は、それぞれの長方形有機ELを駆動するために外部駆動回路(ゲートドライバ、ソースドライバ、電源回路)に電気的に接続されている。例えば、図5に示すように、電圧駆動デジタル階調方式により駆動が行われ、画素毎にスイッチング用TFT(アクティブマトリクス駆動素子)2および駆動用TFT(アクティブマトリクス駆動素子)3の2つのTFTが配置され、駆動用TFT3と表示部13に設けられた第一電極とが平坦化層に形成されるコンタクトホールを介して電気的に接続されている。また、一画素中には駆動用TFT3のゲート電位を定電位にするためのコンデンサーが、駆動用TFT3のゲート部分に接続されるように配置されている。TFT上には、平坦化層が形成されて構成されている。しかし、本発明では、特にこれらに限定されるものではなく、上述した電圧駆動デジタル階調方式でもよく、また、電流駆動アナログ階調方式でもよい。また、TFTの数も、特に限定されるものではなく、上述した2つのTFTにより、表示部13を駆動してもよいし、TFTの特性(移動度、閾値電圧)バラツキを防止する目的で、画素内に補償回路を内蔵した従来の2個以上のTFTを用いた表示部13を駆動してもよい。例えば、画像表示装置をアクティブマトリクス駆動する場合、および、各パネル11を繋げて画像表示装置を作製する場合、各パネル11の長辺側に設けられたHスキャン14の端子を、直接、電気的に接続(具体的には、各Hスキャン14の端子にFPCを接続して各FPCを、直接、電気的に接続する方法)を行った後、Hスキャン14側を従来の外部に設けられたソースドライバ(データ駆動回路)に接続する。一方、Vスキャン15側を従来の外部に設けられたゲートドライバ(走査駆動回路)に接続する。以上により、画像表示装置の駆動を行うことが可能となる。
 但し、後述する図7の(c)に示すように、Hスキャン14側を従来の外部に設けられたゲートドライバに接続し、Vスキャン15側を従来の外部に設けられたソースドライバに接続することでも、駆動を行うことが可能である。この場合、少なくとも1画面分の画像信号をメモリに格納し、マトリクス配置された画素の縦列の左から順に画像を表示させるように画像信号を取りだして出力する変換手段をさらに備えていることが好ましい。
 また、上記ソースドライバおよびゲートドライバを、画素を構成するTFT形成プロセスと同様のプロセスで作製することでパネル内部に内蔵してもよい。また、各パネル11のHスキャン側を従来の外部に設けられたソースドライバにそれぞれ独立に接続し、Vスキャン側を従来の外部に設けられたゲートドライバに接続することで、駆動を行うことも可能となる。また、上記ソースドライバおよびゲートドライバを、画素を構成するTFT形成プロセスと同様のプロセスで作製することでパネル内部に内蔵してもよい。
 なお、本実施形態では、主として、各パネル11の表示部13が繋がって形成される画像表示体10としての表示部が上下方向よりも水平方向に長い、いわゆる横長の場合について説明しているが、これに限定されるものではない。また例えば、横長の表示部を有する画像表示体10を90度回転させて用いることにより、水平方向よりも上下方向に長い、いわゆる縦長の表示部を有する表示装置とすることも可能である。
 次に、パネル11の構成について図2に基づいて説明する。
 〔2〕パネルの構成
 パネル11は、図2に示すように、基板12と、表示部13と、Hスキャン14と、Vスキャン15とを備えている。各構成について、以下に説明する。
 [基板]
 基板12には、図2に示すように、その片面に、表示部13と、Hスキャン14と、Vスキャン15とが設けられている。
 後述するように表示部13は長方形を有しており、基板12における表示部13の形成領域12aは、長方形の表示部13と同じく長方形を有した平坦面12a´として構成されている。
 ここで、基板12には、更に、長方形の表示部13の一方の長辺側において、該長辺に沿って平坦面と隣接した領域12b(以下、隣接領域12bと称する)があり、本発明では、この隣接領域に特徴がある。
 具体的には、この隣接領域12bは、基板12における表示部13の形成領域12a(平坦面12a´)と面一である隣接面12b´を有し、平坦面の長辺が延びている方向とは垂直方向に所定の幅を有して構成されている。この隣接面12b´には、表示部13は形成されていない。そして、特徴的なのは、この隣接面12b´は、平坦ではなく、図2に示すように、基板12の表示部13形成面を反らす方向に湾曲している点にある。
 基板12としては、例えば、ガラス、石英等からなる無機材料基板、ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスティック基板、アルミナ等からなるセラミックス基板等の絶縁性基板、又は、アルミニウム(Al)、鉄(Fe)等からなる金属基板、または、上記基板上に酸化シリコン(SiO)、有機絶縁材料等からなる絶縁物を表面にコーティングした基板、Al等からなる金属基板の表面を陽極酸化等の方法で絶縁化処理を施した基板等が挙げられる。本発明はこれらの材料に限定されるものではないが、湾曲した上記隣接領域をストレス無く形成することが可能となるため、上述したプラスティック基板もしくは金属基板を用いることが好ましい。また、プラスティック基板に無機材料をコートした基板、および金属基板に無機絶縁材料をコートした基板が更に好ましい。これにより、プラスティック基板をパネル11の基板12として用いた場合の最大の問題となる水分の透過による表示部13の劣化を解消することが可能となる。また、金属基板を有機ELの基板として用いた場合の最大の問題となる金属基板の突起によるリーク(ショート)(有機ELの膜厚は、100~200nm程度と非常に薄いため、突起による画素部での電流にリーク(ショート)が、顕著に起こることが知られている。)を解消することが可能となる。
 また、基板12として、透明または半透明の基板を用いれば、表示部13からの光を基板12の背面側(図1における紙面奥側)から取り出すことができる。
 また、湾曲している隣接領域12b(隣接面12b´)の作製方法は、もとは平らな基板を加工して曲げることによって作製してもよいし、成型によって図2の基板12を作製してもよい。加工して曲げる方法を用いる場合、該加工は、表示部13が形成される前の段階でもよく、表示部13が形成される時点では平らな基板の状態で、表示部13形成後に隣接領域12bとなる部分を曲げる加工を施してもよい。
 なお、本実施形態では、基板12は、表示部13が形成されている領域12aと、隣接領域12bとが1つの基板として構成されているが、本発明はこれに限定されるものではない。例えば、表示部13が形成されている領域12aを有した構造体(例えば、平板)と、隣接領域12bを有した構造体(例えば、U字型に湾曲した板)とを貼り合わせるなどして1つの基板12とするものであってもよい。このとき、これら構造体同士は同じ材料から構成されていてもよく、互いに異なる材料からなるものであってもよい。
 [基板の別例;アクティブマトリクス基板]
 上述のように、本実施形態の画像表示装置は、表示部13をアクティブマトリクス駆動することができる。アクティブマトリクス駆動するためには、基板12として、ガラス基板上、より好ましくは、金属基板上、プラスティック基板上、更に好ましくは、金属基板、もしくは、プラスティック基板上に絶縁材料をコートした基板上に、複数の走査信号線56、データ信号線54、および、走査信号線56とデータ信号線54との交差部にスイッチング用TFT2が配置されたアクティブマトリクス基板を用いる。
 TFTを形成する場合には、基板12は、500℃以下の温度で融解せず、歪みも生じない材料のものを用いることが好ましい。また、一般的な金属基板は、ガラスと熱膨張率が異なるため、従来の生産装置で金属基板上にTFTを形成することが困難である。しかしながら、線膨張係数が1×10-5/℃以下の鉄-ニッケル系合金である金属基板を用いて、線膨張係数をガラスに合わせ込むことで、金属基板上にTFTを従来の生産装置を用いて安価に形成することが可能となる。また、プラスティック基板の場合には、耐熱温度が非常に低いため、ガラス基板上にTFTを形成した後、プラスティック基板にTFTを転写することで、プラスティック基板上にTFTを転写形成することが可能である。
 なお、上記では、複数の走査信号線56、データ信号線54、および、走査信号線56とデータ信号線54との交差部に配されたスイッチング用TFT2を、基板12の構成要素として説明しているが、本発明はこれに限定されるものではなく、これらを、後述する表示部13の構成要素としてもよい。
 また、アクティブマトリクス基板には、TFTのほかにも、層間絶縁膜および平坦化膜が設けられる。
 ここで、TFT、層間絶縁膜、および、平坦化膜について詳述する。
 ・ TFT
 TFTは、表示部13を形成する前に、予め基板12上に形成され、スイッチング用および駆動用として機能する。本発明で用いられるTFTとしては、公知のTFTが挙げられる。また、本発明では、TFTの代わりに金属-絶縁体-金属(MIM)ダイオードを用いることもできる。
 本発明において用いられるTFTは、公知の材料、構造および形成方法を用いて形成することができる。TFTの活性層の材料としては、例えば、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。また、TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。
 TFTを構成する活性層の形成方法としては、(1)プラズマ誘起化学気相成長(PECVD)法により成膜したアモルファスシリコンに不純物をイオンドーピングする方法、(2)シラン(SiH)ガスを用いた減圧化学気相成長(LPCVD)法によりアモルファスシリコンを形成し、固相成長法によりアモルファスシリコンを結晶化してポリシリコンを得た後、イオン打ち込み法によりイオンドーピングする方法、(3)Siガスを用いたLPCVD法又はSiHガスを用いたPECVD法によりアモルファスシリコンを形成し、エキシマレーザー等のレーザーによりアニールし、アモルファスシリコンを結晶化してポリシリコンを得た後、イオンドーピングを行う方法(低温プロセス)、(4)LPCVD法又はPECVD法によりポリシリコン層を形成し、1000℃以上で熱酸化することによりゲート絶縁膜を形成し、その上に、nポリシリコンのゲート電極を形成し、その後、イオンドーピングを行う方法(高温プロセス)、(5)有機半導体材料をインクジェット法等により形成する方法、(6)有機半導体材料の単結晶膜を得る方法等が挙げられる。
 本発明で用いられるTFTのゲート絶縁膜は、公知の材料を用いて形成することができる。例えば、PECVD法、LPCVD法等により形成されたSiO又はポリシリコン膜を熱酸化して得られるSiO等が挙げられる。また、本発明で用いられるTFTの信号電極線、走査電極線、共通電極線、第1駆動電極および第2駆動電極は、公知の材料を用いて形成することができ、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。本発明に係る有機ELパネルのTFTは、上記のような構成で形成することができるが、これらの材料、構造および形成方法に限定されるものではない。
 ・ 層間絶縁膜
 上記層間絶縁膜としては、公知の材料を用いて形成することができ、例えば、酸化シリコン(SiO)、窒化シリコン(SiN、又は、Si)、酸化タンタル(TaO、又は、Ta)等の無機材料、又は、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。また、その形成方法としては、化学気相成長(CVD)法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられる。また、必要に応じてフォトリソグラフィー法等によりパターニングすることもできる。
 また、表示部13からの発光をパネル11の前方(図1の紙面手前側)から取り出す場合には、外光が基板上に形成されたTFTに入射して、TFT特性に変化が生じることを防ぐ目的で、遮光性を兼ね備えた遮光性絶縁膜を用いることが好ましい。
 また、上記の絶縁膜と遮光性絶縁膜を組み合わせて用いることもできる。遮光性層間絶縁膜としては、フタロシアニン、キナクロドン等の顔料又は染料をポリイミド等の高分子樹脂に分散したもの、カラーレジスト、ブラックマトリクス材料、NiZnFe等の無機絶縁材料等が挙げられる。しかしながら、本発明はこれらの材料および形成方法に限定されるものではない。
 ・ 平坦化膜
 基板上にTFT等を形成した場合には、その表面に凸凹が形成され、この凸凹によって表示部13の欠陥(例えば、画素電極の欠損、表示部13に設けられた有機層の欠損、対向電極の断線、画素電極と対向電極の短絡、耐圧の低下等)等が発生するおそれがある。これらの欠陥を防止するために、層間絶縁膜上に平坦化膜を設けることができる。
 平坦化膜としては、公知の材料を用いて形成することができ、例えば、酸化シリコン、窒化シリコン、酸化タンタル等の無機材料、ポリイミド、アクリル樹脂、レジスト材料等の有機材料等が挙げられる。平坦化膜の形成方法としては、CVD法、真空蒸着法等のドライプロセス、スピンコート法等のウエットプロセスが挙げられるが、本発明はこれらの材料および形成方法に限定されるものではない。
 また、平坦化膜は、単層構造でも多層構造でもよい。
 [表示部]
 図1および図2に示す表示部13の具体的構成について、図4、図6~11に基づいて説明する。図6、図7、図9および図10は、各画素のサブピクセルの配置と各駆動ドライバ(ゲートドライバ、ソースドライバ、電源回路)との関係を示した模式図であり、図11は、表示部13の構成を示した断面図である。
 図11に示すように、表示部13は、上記した基板12の平坦面12a´上に、第一電極20と、少なくとも有機発光材料からなる有機発光層を有する有機層30と、第二電極21とがこの順に積層された有機EL素子(発光素子)を複数有して構成されており、長方形を有している。長方形の表示部13の一方の長辺側には、平坦面12a´に隣接した隣接領域12b(隣接面12b´)が、該長辺に沿って設けられている。また、表示部13の他方の長辺側の端部は、平坦面12a´の端部、すなわち、平坦面12a´における隣接面12b´隣接側とは反対側の端部と位置が揃っている。このように端部を揃えることで、パネル11同士を連結した際に、図4に示すように、表示部13同士を面一に連結することができる。
 表示部13は、赤色、緑色、青色の有機発光層を有する有機EL素子を並置することで、フルカラーを得ることができる。また、白色発光を得るためには、黄色、青色の有機発光層を、もしくは、赤色、緑色、青色の有機発光層を積層した有機EL素子を用いることができる。
 なお、図11には示していないが、第一電極20、有機層30、および第二電極21のほかにも、第一電極20のエッジ部分のリークを防止する絶縁性のエッジカバーと、また、有機層30をウエットプロセスで作製する場合に塗布される機能性材料溶液を保持するための絶縁性の隔壁層とを、第一電極20の上にこの順番で形成した後に、有機層30と、第二電極21とが積層されていてもよい。
・ 画素構成
 上述のように、本発明に係る画像表示装置は、単純マトリクス駆動型およびアクティブマトリクス駆動型のいずれの駆動型も可能であるが、ここではアクティブマトリクス駆動型の画像表示装置について説明する。
 図4に示すように、表示部13には、複数の画素50がマトリクス状に配列している。各画素50は、複数のサブピクセル、ここでは赤色を表示するサブピクセル51R、緑色を表示するサブピクセル51G、青色を表示するサブピクセル51Bを含んで構成されている。赤色、緑色および青色の各サブピクセル51R、51Gおよび51Bにはそれぞれ、赤色、緑色および青色の有機発光層を有する有機EL素子が形成されている。
 図6は、画素内におけるサブピクセルの配列方向ならびに走査信号線およびデータ信号線の配列方向が従来の画像表示装置と同じものとなるように表示部13を形成し、複数のパネルを上下方向(マトリクスの列方向)に繋げた比較用の画像表示装置を示す図である。具体的には、図6の(a)および(b)に示すように、各サブピクセル51R、51Gおよび51Bは、画素50内において、マトリクスの行方向に並んで配置されている。走査信号線56はマトリクスの行方向と平行な方向に延びており、データ信号線54および電源線(電源供給配線)55はマトリクスの列方向と平行な方向に延びている。
 各データ信号線54はHスキャン14においてソースドライバ58と電気的に接続されており、各走査信号線56はVスキャン15においてゲートドライバ57と電気的に接続されている。このような構成では、各画素50にはデータ信号線54が3本(各サブピクセル分)必要となる。
 各パネル11のデータ信号線54は、各パネル11のHスキャン14においてソースドライバと接続される。そのため、画像表示装置の駆動に必要なソースドライバは、パネル11の数がn枚であるとき、表示部が分割されていない従来の画像表示装置と比較してn倍の数が必要になる。
 図7は、画素内におけるサブピクセルの配列方向ならびに走査信号線およびデータ信号線の配列方向が従来の画像表示装置と異なるものとなるように、表示部13を形成し、複数のパネルを上下方向(マトリクスの列方向)に繋げた本発明に係る画像表示装置を示す図である。具体的には、図7の(a)~(c)に示すように、各サブピクセル51R、51Gおよび51Bは、画素50内において、マトリクスの列方向に並んでいる。すなわち、パネル11を上下方向に繋げて画像表示体10を構成した場合において、各サブピクセルは画素内においてパネル11の短辺方向に並んで配置されている。走査信号線56はマトリクスの行方向と平行な方向に延びており、データ信号線54および電源線55はマトリクスの列方向と平行な方向に延びている(図7の(b))。あるいは、データ信号線54がマトリクスの行方向と平行な方向に延びており、走査信号線56および電源線55がマトリクスの列方向と平行な方向に延びている(図7の(c))。
 図7の(b)に示す構成を有する画像表示体10では、各データ信号線54はHスキャン14においてソースドライバ58と電気的に接続されており、各走査信号線56はVスキャン15においてゲートドライバ57と電気的に接続されている。このような構成では、各画素50に必要なデータ信号線54の数は1本(1サブピクセル分)である。
 したがって、図7の(b)に示す構成を有する画像表示体10では、画像表示装置の駆動に必要なソースドライバの数は、図6に示す比較構成を有する画像表示体10と比較して、その1/3で済む。すなわち、必要とするソースドライバの数を低減することができる。したがって、複数のパネルを用いることにより生じるソースドライバ数の増加を抑制することができるため、コストの増加を抑えることができる。
 なお、図7の(b)に示す構成では図6に示す構成と比較してゲートドライバの必要数が増加することになる。しかしながら、後述するように、ゲートドライバの方がソースドライバよりもコストが安いため、ゲートドライバの数が増加してもソースドライバの数が低減することにより、低コスト化を実現できる。
 一方、図7の(c)に示す構成を有する画像表示体10では、各データ信号線54はVスキャン15の端子群においてソースドライバ58と電気的に接続されており、各走査信号線56はHスキャン14の端子群においてゲートドライバ57と電気的に接続されている。このような構成では、各画素50にはデータ信号線54が3本(各サブピクセル分)必要となる。
 しかしながら、各パネル11のデータ信号線54は、各パネル11のVスキャン15においてソースドライバと接続される。そのため、画像表示装置の駆動に必要なソースドライバは、画像表示体10が複数枚のパネル11によって構成されていても、表示部が分割されていない従来の画像表示装置と同数で済む。
 例えば、画像表示装置が、ハイビジョンの縦横の画素数(1920画素×1080画素)を有している場合、すなわち横と縦との比が16:9である場合には、画像表示装置の駆動に必要なソースドライバは、図6に示す構成を有する画像表示装置と比較して、9/16nで済む(nはパネルの枚数)。すなわち、必要とするソースドライバの数を低減することができる。複数のパネル11を用いることにより生じるソースドライバ数の増加を抑制することができるため、コストの増加を抑えることができる。
 なお、本実施形態では、水平方向に長いパネル11同士を上下方向に繋げているが、本発明はこれに限定されるものではなく、垂直方向に長いパネル11´同士を水平方向に繋げて、図8のように構成してもよい。パネル11´では、パネル11と異なり、各パネル11´の表示部13の長辺側にVスキャン15の端子群が配列しており、各パネル11´の表示部13の短辺側にHスキャン14の端子群が配列している。その他の構成については、パネル11における説明を援用できる。なお、図8において、Hスキャン14側を従来の外部に設けられたソースドライバに接続し、Vスキャン15側を従来の外部に設けられたゲートドライバに接続することで、駆動を行うことも可能である。また、Hスキャン14側を従来の外部に設けられたゲートドライバに接続し、Vスキャン15側を従来の外部に設けられたソースドライバに接続することでも、駆動を行うことが可能である。
 図9は、画素内におけるサブピクセルの配列方向ならびに走査信号線およびデータ信号線の配列方向が従来の画像表示装置と同じものとなるように、表示部13を形成し、垂直方向に長いパネル11´同士を水平方向に繋げて作製した比較用の画像表示装置を示す図である。具体的には、図9の(a)および(b)に示すように、各サブピクセル51R、51Gおよび51Bは画素50内において、マトリクスの行方向に並んで配置されている。走査信号線56はマトリクスの行方向と平行な方向に延びており、データ信号線54および電源線55はマトリクスの列方向と平行な方向に延びている。
 各データ信号線54はHスキャン14においてソースドライバ58と電気的に接続されており、各走査信号線56はVスキャン15においてゲートドライバ57と電気的に接続されている。このような構成では、各画素50にはデータ信号線54が3本(各サブピクセル分)必要となる。
 各パネル11´のデータ信号線54は、各パネル11´のHスキャン14においてソースドライバと接続される。そのため、画像表示装置の駆動に必要なソースドライバは、画像表示体10が複数枚のパネル11´によって構成されていても、表示部が分割されていない従来の画像表示装置と同数で済む。
 図10は、画素内におけるサブピクセルの配列方向ならびに走査信号線およびデータ信号線の配列方向が従来の画像表示装置と異なるものとなるように、表示部13を形成し、複数のパネルを水平方向に組み合わせた画像表示装置を示す図である。具体的には、図10の(a)および(b)に示すように、各サブピクセル51R、51Gおよび51Bが画素50内において、マトリクスの列方向に並んでいる。すなわち、垂直方向に長いパネル11´同士を水平方向に繋げて画像表示体10を構成した場合において、各サブピクセルは画素内においてパネル11´の長辺方向に沿って並んで配置されている。また、図10の(b)に示すように、走査信号線56はマトリクスの行方向と平行な方向に延びており、データ信号線54および電源線55はマトリクスの列方向と平行な方向に延びている。
 図10に示す構成を有する画像表示体10は、各データ信号線54はHスキャン14の端子群(第二端子群)においてソースドライバ58と電気的に接続されており、各走査信号線56はVスキャン15の端子群(第一端子群)においてゲートドライバ57と電気的に接続されている。このような構成では、各画素50に必要なデータ信号線54の数は1本(1サブピクセル分)である。
 したがって、図10に示す構成を有する画像表示体10は、画像表示装置の駆動に必要なソースドライバの数は、図9に示す比較構成を有する画像表示体10と比較して、その1/3で済む。すなわち、必要とするソースドライバの数を低減することができる。これにより、複数のパネルを用いることにより生じるソースドライバ数の増加を抑制することができるため、コストの増加を抑えることができる。
 ・ 有機層
 図11に示す有機層30は、有機発光層単層であっても、有機発光層と電荷輸送層の多層構造であってもよく、具体的には、下記の1)~9)に示すような構成を挙げることができる。
1) 有機発光層
2) 正孔輸送層/有機発光層
3) 有機発光層/電子輸送層
4) 正孔輸送層/有機発光層/電子輸送層
5) 正孔注入層/正孔輸送層/有機発光層/電子輸送層
6) 正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
7) 正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
8) 正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
9) 正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
 しかし、本発明はこれらにより限定されるものではない。また、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層、および、電子注入層の各層は、単層構造でも多層構造でもよい。
 ここで、図11では、上記8)の構成を採用して、第一電極20から第二電極21に向けて、正孔注入層31、正孔輸送層32、有機発光層33、正孔防止層34、電子輸送層35、および電子注入層36が、この順で積層されている。
 有機発光層33は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料または添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。発光効率および発光寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
 有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、および高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、および燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いることが好ましい。
 ここで、具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 低分子有機発光材料としては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物、3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、およびフルオレノン誘導体等の蛍光性有機材料、ならびに、アゾメチン亜鉛錯体、および(8-ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光発光有機金属錯体等が挙げられる。
 高分子発光材料としては、例えば、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニルレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2’-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン](MPS-PPV)、およびポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)](CN-PPV)等のポリフェニレンビニレン誘導体、ならびにポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体が挙げられる。
 有機発光層33に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、スチリル誘導体、ペリレン、イリジウム錯体、クマリン誘導体、ルモーゲンFレッド、ジシアノメチレンピラン、フェノキザゾン、およびポリフィリン誘導体等の蛍光発光材料、ならびに、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)、およびトリス(2-フェニルピリジル)イリジウム(III)(Ir(ppy))、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq))等の燐光発光有機金属錯体等が挙げられる。
 また、ドーパントを用いるときのホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、ならびに、4,4’-ビス(カルバゾール)ビフェニル、および9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)等のカルバゾール誘導体等が挙げられる。
 また、電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と有機発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層31、電子注入層36)と電荷輸送層(正孔輸送層32、電子輸送層35)に分類される。電荷注入輸送層は、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
 電荷注入輸送材料としては、有機EL用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料および電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 正孔注入・正孔輸送材料としては、例えば、酸化バナジウム(V)および酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)およびN,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物およびスチリルアミン化合物等の低分子材料、ならびに、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)およびポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。
 また、陽極からの正孔の注入/輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が高い材料を用いることが好ましい。
 また、正孔の注入/輸送性をより向上させるため、上記正孔注入/輸送材料にアクセプターをドープすることが好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 アクセプター材料としては、Au、Pt、W,Ir、POCl、AsF、Cl、Br、I、酸化バナジウム(V)および酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF(テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)およびDDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)およびDNF(ジニトロフルオレノン)等のニトロ基を有する化合物、ならびに、フルオラニル、クロラニルおよびブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF、TCNE、HCNB、およびDDQ等のシアノ基を有する化合物がキャリア濃度をより効果的に増加させることが可能であるためより好ましい。
 電子注入材料および電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体およびベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)およびポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。
 電子の陰極からの注入/輸送をより効率よく行う点で、電子注入層36として用いる材料としては、電子輸送層35に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層35として用いる材料としては、電子注入層36に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。
 また、電子の注入/輸送性をより向上させるため、上記電子注入/輸送材料にドナーをドープすることが好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、CuおよびIn等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)およびトリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセンおよびペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、ならびに、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジンおよびカルバゾール等の有機材料がある。この内、特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、およびアルカリ金属がキャリア濃度をより効果的に増加させることが可能であるためより好ましい。
 正孔注入層31、正孔輸送層32、有機発光層33、正孔防止層34、電子輸送層35、および、電子注入層36から構成される有機層30は、上記の材料を溶剤に溶解および分散させた有機層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法およびスプレーコート法等の塗布法、またはインクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法およびマイクログラビアコート法等の印刷法等による公知のウエットプロセスにより形成することができる。あるいは、上記の材料を用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、有機気相蒸着(OVPD)法等の公知のドライプロセス、又は、レーザー転写法等により形成することができる。なお、ウエットプロセスにより有機層30を形成する場合には、有機層形成用塗液に、レベリング剤、および粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。
 後述する実施例1では、上記ドライプロセスの1つである抵抗加熱蒸着法を用いて、更に、インライン方式で有機層30を形成している。図12は、インライン型抵抗加熱蒸着装置を用いた有機層30形成法を説明する図である。図12に示すように、第一電極20が形成された基板12に対して、有機層形成用塗液を貯留する蒸着ソース源40から塗液を塗布する。この際、所望の領域のみに塗液が塗布されるように、基板12と、蒸着ソース源40との間には、シャドーマスク41を配置して、塗布されると不都合な領域をマスキングして、塗液を塗布する。塗布処理の進行中に、図示しない基板ホルダーが、図12の矢印Aで示した方向に基板12を移動させる。この移動により、基板12の平坦面12a´上に形成済みの長方形を有した第一電極20上に、第一電極20と同じ大きさで長方形を有した有機層30が形成される。なお、図12では、基板12(基板ホルダー)を移動させているが、本発明はこれに限定されるものではなく、基板12は移動せず、蒸着ソース源40およびシャドーマスク41が基板12上を移動してもよい。
 有機層30の膜厚は、通常1~1000nm程度であるが、10~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)を得ることが困難である。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機層30の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。
 ・ 第一電極および第二電極
 図11に示す第一電極20および第二電極21は、有機EL素子の陽極又は陰極として対で機能する。つまり、第一電極20を陽極とした場合には、第二電極21は陰極となり、第一電極20を陰極とした場合には、第二電極21は陽極となる。以下に、具体的な化合物および形成方法を例示するが、本発明はこれらの材料および形成方法に限定されるものではない。
 第一電極20および第二電極21を形成する電極材料としては公知の電極材料を用いることができる。陽極である場合には、有機発光層33への正孔の注入をより効率よく行う観点から、仕事関数が4.5eV以上である金(Au)、白金(Pt)およびニッケル(Ni)等の金属、ならびに、インジウム(In)と錫(Sn)とからなる酸化物(ITO)、錫(Sn)の酸化物(SnO)およびインジウム(In)と亜鉛(Zn)とからなる酸化物(IZO)等の金属酸化物が透明電極材料として挙げられる。また、陰極を形成する電極材料としては、有機発光層33への電子の注入をより効率よく行う観点から、仕事関数が4.5eV以下であるリチウム(Li)、カルシウム(Ca)、セリウム(Ce)、バリウム(Ba)およびアルミニウム(Al)等の金属、ならびに、これらの金属を含有するMg:Ag合金、Li:Al合金等の合金が挙げられる。
 第一電極20および第二電極21は、上記の材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等の公知の方法により形成することができるが、本発明はこれらの形成方法に限定されるものではない。また、必要に応じて、フォトリソグラフフィー法、またはレーザー剥離法により、形成した電極をパターン化することもでき、シャドーマスクと組み合わせることで直接パターン化した電極を形成することもできる。その膜厚は、50nm以上が好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。
 有機発光層33からの発光を表示部13(図1および図2)の前面側(図1の紙面手前側)から取り出すためには、第二電極21が透明電極、もしくは、半透明電極であることが好ましい。また、有機発光層33からの発光をパネル11の背面側(図1の紙面奥側)から取り出す場合には、第一電極20が透明電極、もしくは、半透明電極であることが好ましい。
 透明電極材料としては、ITO、およびIZOが特に好ましい。透明電極の膜厚は、50~500nmが好ましく、100~300nmがより好ましい。膜厚が50nm未満の場合には、配線抵抗が高くなることから、駆動電圧の上昇が生じるおそれがある。また、膜厚が500nmを超える場合には、光の透過率が低下することから輝度が低下するおそれがある。
 また、色純度の向上、発光効率の向上等の目的でマイクロキャビティ(干渉)効果を用いる場合、および、有機発光層からの発光を第一電極20側(第二電極21)から取り出す場合には、第一電極20(第二電極21)として半透明電極を用いることが好ましい。半透明電極材料としては、金属の半透明電極単体、もしくは、金属の半透明電極と透明電極材料の組み合わせを用いることが可能である。半透明電極材料としては、反射率・透過率の観点から、銀が好ましい。半透明電極の膜厚は、5~30nmが好ましい。膜厚が5nm未満の場合には、光の反射が十分に行われず、干渉の効果を十分得ることができない。また、膜厚が30nmを超える場合には、光の透過率が急激に低下することから輝度、効率が低下するおそれがある。
 ここで、有機発光層からの発光を第一電極20(第二電極21)から取り出す場合には、第二電極21(第一電極20)として光を透過しない電極を用いることが好ましい。この際に用いる電極材料としては、例えば、タンタル、炭素等の黒色電極、アルミニウム、銀、金、アルミニウム-リチウム合金、アルミニウム-ネオジウム合金およびアルミニウム-シリコン合金等の反射性金属電極、ならびに透明電極と上記反射性金属電極(反射電極)を組み合わせた電極等が挙げられる。
 ・ エッジカバー
 第一電極20のエッジ部において、第一電極20と第二電極21との間でリークを起こすことを防止する目的でエッジカバーを設けることができる。
 ここで、図13および図14を用いて、エッジカバーの構成および効果について説明する。図13は、エッジカバーを設けた状態の断面構成を示した断面図であり、図14は、図13に対する比較構成であって、エッジカバーを配設していない状態の断面構成を示した断面図である。エッジカバー28は、図13に示すように、第一電極20のエッジ部に設けられる。エッジカバーを配設しない場合、図14に示すように、有機層30が薄くなり、第一電極20と第二電極21との間でリークを起こす。エッジカバー28は、このリークを効果的に防止することができる。
 エッジカバーは、絶縁材料を用いてEB蒸着法、スパッタリング法、イオンプレーティング法、および抵抗加熱蒸着法等の公知の方法により形成することができる。また、公知のドライおよびウエット法のフォトリソグラフィー法によりエッジカバーのパターン化をすることができる。しかしながら、本発明はこれらの形成方法に限定されるものではない。
 上記絶縁材料としては、公知の材料を使用することができ、本発明では特に限定されないが、光を透過する必要があり、例えば、SiO、SiON、SiN、SiOC、SiC、HfSiON、ZrO、HfO、LaO等が挙げられる。
 また、エッジカバーの膜厚としては、100~2000nmが好ましく。100nm以下であると、絶縁性が十分ではなく、第一電極と第二電極との間でリークが起こり、消費電力の上昇、非発光の原因となる。また、2000nm以上であると、成膜プロセスに時間が係り生産性の悪化、エッジカバーでの第二電極21の断線の原因となる。
 ・ 封止膜、封止基板
 最表面の第二電極21の上に、更に、封止を行う目的で、無機膜、または樹脂膜を介してガラス、およびプラスティック等の封止基板、もしくは封止膜を設けることができる(不図示)。
 封止基板および封止膜としては、公知の封止材料および封止方法により形成することができる。具体的には、窒素ガスおよびアルゴンガス等の不活性ガスをガラス、または金属等で封止する方法が挙げられる。更に、封入した不活性ガス中に酸化バリウム等の吸湿剤等を混入する方が水分による有機ELの劣化をより効果的に低減できるため好ましい。更に、第二電極21上に樹脂をスピンコート法、ODF、ラミレート法を用いて塗布する、または、貼り合わせることによって封止膜とすることもできる。更に、第二電極21上に、プラズマCVD法、イオンプレーティング法、イオンビーム法、またはスパッタ法等により、SiO、SiONおよびSiN等の無機膜を形成した後、更に、樹脂をスピンコート法、ODF、またはラミレート法を用いて塗布する、または、貼り合わせることによって封止膜とすることもできる。この封止膜により、外部からの素子内への酸素や水分の混入を防止することができ、有機EL素子の寿命が向上する。また、本発明は、これらの部材や形成方法に限定されるものではない。また、有機層30からの光を第2電極側、つまり、有機層30からの光をパネル11の前面側(図1の紙面手前側)から取り出す場合は、封止膜、封止基板共に光透過性の材料を使用する必要がある。
 なお、封止基板は必ずしも必要ではなく、無機膜と樹脂膜のみで封止を行ってもよい。
 ・ 偏光板
 更に、表示部13には、有機発光層(有機層30)からの光の取り出し側に、偏光板を設けることができる。
 偏光板としては、直線偏光板とλ/4板とを組み合わせたものを用いることが可能である。ここで、偏光板を設けることによって、各種配線や電極からの外光反射、基板もしくは封止基板の表面での外光反射を防止することが可能であり、画像表示装置のコントラストを向上させることができる。
 [Hスキャン]
 図1および図2に示すHスキャン14は、水平(Horizontal)スキャンである。Hスキャン14は、各パネル11の基板12における隣接面12b´に形成されており、長方形の表示部13の一方の長辺に沿って、該長辺の長さと同じまたは略同じに延設されている。
 Hスキャン14は、各パネル11の表示部13の長辺側の端子群が水平方向に配列して接続されている。
 [Vスキャン]
 図1および図2に示すVスキャン15は、垂直(Vertical)スキャンである。Vスキャン15は、各パネル11の基板12における平坦面12a´に形成されており、長方形の表示部13の一方の短辺に沿って、該短辺の長さと同じまたは略同じに延設されている。
 Vスキャン15は、各パネル11の表示部13の短辺側の端子群が垂直方向に配列して接続されている。
 [駆動回路]
 本発明に係る画像表示装置は、通常の液晶ディスプレイ(液晶表示装置)と同様に、主として点順次駆動または線順次駆動によって駆動される。図20の(a)および(b)はそれぞれの駆動方法におけるソースドライバの構成を示す図である。
 点順次駆動は、例えばシリアル入力されるアナログ映像信号を水平走査期間にわたり順次サンプリングし、対応するデータ信号線54に信号電圧を印加するものである。点順次駆動の回路は、シフトレジスタ61を備えている。これに対して線順次駆動は、例えばシリアル入力されるデジタル映像信号を直並列変換し、ラッチした後、デジタル-アナログ変換して、対応するデータ信号線54に一度に信号電圧を印加するものである。そのため、線順次駆動の回路は、シフトレジスタ61のほかに、サンプリングラッチ62およびデジタル-アナログ変換器(DAC)63を備えている。
 一般に、線順次駆動の方が各表示画素への書き込み時間を一様に長く設定できるため、現在のところソースドライバとして広く用いられている。
 これに対して、ゲートドライバはほぼシフトレジスタのみを含んで構成されている。そのため、ゲートドライバの方が線順次駆動のソースドライバよりも価格が半額以下と安くなっている。したがって、ゲートドライバの個数を少なくすることより、ソースドライバの個数を少なくすることの方が、低コスト化の効果がより高くなる。
 また、パネル11の長辺方向に走査信号線56が延びている場合に、各パネル11を同時に駆動すれば、各パネル11におけるデータの書き込み時間が十分長くなる。たとえば、n枚のパネル11によって構成されている場合には、書き込み時間は従来のn倍になる。そのため、ソースドライバを点順次駆動により駆動しても書き込み時間が十分確保できる。したがって、この場合には、線順次駆動のドライバよりも低価格である点順次駆動のドライバをソースドライバとして使用でき、これによりさらなる低コスト化を実現できる。
 また、μc-Si(微結晶シリコン)あるいはInGaZnO(IGZO)半導体等の非晶質酸化物半導体を用いたTFTであれば、点順次駆動ドライバをTFT基板上に作りこむことができ、さらなる低コスト化が可能である。
 〔3〕パネル同士の連結
 図1に示した画像表示体10は、上述した構成を具備したパネル11を所望の枚数(図1では3枚)繋げてなる。
 そこで、パネル11同士の連結に際して、画素のズレを防止する目的で、パネル11には、位置合わせ用の位置合わせ部を具備することが好ましい。
 図15の(a)~(d)は、パネル11の連結を説明する図である。図15の(a)に示すように、パネル11には、基板12の表面に位置合わせ部16が形成されている。
 位置合わせ部16の形成位置としては、表示部13の形成領域12aである平坦面12a´内であって、且つ、表示部13およびVスキャン15の形成位置から外れた位置に設けられる。図15の(a)では、平坦面12a´と隣接面12b´との境界部分に表示部13を挟んで左右両側に1個ずつと、隣接面12b´隣接側とは反対側に表示部13を挟んで左右両側に1個ずつとが設けられている。
 なお、これらの位置合わせ部16の形成位置は、平坦面12a´に限らず、パネル11(基板12)の背面、すなわち平坦面12a´の背面に形成されてもよい。例えば、平坦面12a´と隣接面12b´との境界部分に設けられた位置合わせ部16が凸構造であり、他方の位置合わせ部16が、パネル11(基板12)の背面側の隣接面12b´隣接側とは反対側の端部に設けられている凹構造であれば、パネル11同士を、この凹構造に上記凸構造を挿入することで、図15の(d)に示すように精度良く連結させることができる。なお、この凹構造は、図15の(a)に示す隣接面12b´隣接側とは反対側の端部に設けられた位置合わせ部16のように、紙面下方に切り欠いた構造であってもよい。
 なお、位置合わせ部16は、上述したものに限定されるものではなく、マーカー等を描画してそれを利用してもよいし、パネル11とは別に用意された部品を用いて行ってもよい。
 パネル11同士の具体的な連結方法としては、図15の(c)および(d)に示すように、各パネル11をその長辺部分で接続する方法が挙げられる。これにより、パネル11を繋ぎ合わせることが可能となる。連結は、接着剤などを用いて行うことができる。しかし、本発明はこれに限定されるものではなく、例えば、上述したような凹凸構造を有した位置合わせ部を用いて、凹構造に凸構造を挿入・固定すれば、接着材などを用いることなくパネル同士を精度良く連結させることが可能である。また、フレキシブルな機材(プラスティック、金属等)を介して接続し、自由に折り曲げ出来るようにすると、一度設置した後で再度他の場所に、搬入・搬出・設置を行う際に便利である。
 連結されたパネル11は、図15の(d)に示すように、各々の基板12の隣接領域12bの隣接面12b´が、別のパネル11(連結によって隣り合っているパネル11)の基板12の背面と対向するような形で、該背面に該隣接領域12bがはみ出した構造となっている。すなわち、連結されたパネル11を上方からみると、図15の(b)に示すように、隣接面12b´が上方を向いた状態で基板12の背面側に出た構造となる。
 ここで、上述のようにパネル11同士を連結すると、図15の(d)に示すように各パネル11の表示部13に段差が生じてしまい、表示品質に悪影響を及ぼす事態となる。そこで、本実施形態では、この段差を埋めるための光学調整用基板17a・17bを備える。図15の(d)に示す連結形態においては、上から2番目のパネル11の表示部13が、一番上のパネル11の表示部13よりも背面側に位置することになる。そこで、両者の間に生じる段差を、2番目のパネル11の表示部13の表面に該段差と同じ厚さを有する光学調整用基板17aを配設することで、解消している。また、図15の(d)において上から3番目のパネル11の表示部13は、上から2番目のパネル11の表示部13よりも更に背面側に位置している。そのため、一番上のパネル11の表示部13と、上から3番目のパネル11の表示部13とには、上から2番目のパネル11の表示部13の場合よりも更に大きな段差が生じる。そこで、本実施形態では、図15の(d)示すように、2番目のパネル11の表示部13の表面に形成した光学調整用基板17aよりも厚く、且つ、大きな段差と同じ厚さを有する光学調整用基板17bを配設することで、該段差を埋めている。このように光学調整用基板17a・17bを備えることにより、画像表示体10にフラットな表示面を実現することが可能となる。
 なお、連結形態は、図15の(c)および(d)に示した形態に限定されるものではない。例えば、図16に示すように、位置合わせ用の枠18にパネル11を填めていく方法であってもよい。枠18は、画像表示体10の厚さに合わせて構成されている。枠18にパネル11を填めることにより、複数個のパネル11を組み合わせて得られる画像表示体の強度を増加させることが可能となる。これは、製品として非常に優位である。
 また更に、フレキシブル基材で接続する方法が好ましい。特にこの様な接続の場合、図17に示すように、パネル11の基板12自体がフレキシブルな基板材料から構成されているとよい。これにより、いつでも隣接領域12bを湾曲させることができるため、持ち運びが非常に容易になる。このようにフレキシブルな基材から基板12を構成してパネル11同士を繋げる場合には、例えば、図17の(d)において破線で囲んだ部分に示されているように、或るパネル11の平坦面12a´における隣接面12b´隣接側とは反対側の端部であって、パネル11(基板12)の背面側の端部と、別のパネル11の隣接面12b´とを貼り合わせて連結することも可能である。
 また、上述のように基板12自体をフレキシブル材料から構成することで、フレキシブル基材を別途設ける必要がなくなり、部品点数を低減することが可能となる。これにより、コストの低減が可能となる。しかし、本発明は、特にこれらに限定されるものではない。
 〔4〕駆動速度
 例えば、図7(b)に示す構成を有する画像表示装置、すなわち、サブピクセル51R、51Gおよび51Bが各画素50内においてパネル11の短辺方向に並んで配置されている複数のパネル11が上下方向に繋がっており、各発光素子から引き出される端子がパネル11の長辺側にてソースドライバ58と接続されている画像表示体10を有する画像表示装置の場合、1本の走査信号線56が選択された状態では、RGBのうちの1色分しか書き込まれない。そのため、従来の走査時間に1画素分(RGBの3サブピクセル分)を書き込むためには、3倍の走査速度が必要となる。そのため、ソースドライバも3倍の速度で駆動されなければならない。
 しかしながら、画像表示体10が走査信号線56と平行な方向に複数のパネル11に分割されており、各パネル11の隣接面にあるHスキャン14の端子がパネルごとに別のソースドライバと接続されていれば、各パネル11を同時駆動することによって一度に複数の走査信号線56が選択されても、走査信号線ごとに異なるデータ信号を供給できる。そのため、画像表示体10がn個のパネル11によって構成されている場合には、画像表示装置の1画面分の信号を入力する時間が画像表示部全体の1/n領域に与えられる。これにより、ソースドライバの駆動速度を1/nに下げることができる。
 逆に、駆動速度を1/nに下げず、従来の駆動速度と同じ速度で駆動する場合には、いわゆるn倍速駆動が可能となる。
 (本実施形態の構成の作用効果)
 以上のように、本実施形態の構成によれば、長方形の表示部13の長辺方向(長手方向)に配列している有機エレクトロルミネッセンス素子の電極から延びる端子群を、隣接面12b´に引き出して、隣接面12b´において該端子群に駆動回路を連結することができる。
 このように駆動回路を配置する構成が実現されたことにより、パネル11同士を連結したときに、一方のパネル11の表示部13と、他方のパネル11の表示部13とを隙間なく並べてパネル同士を繋げる(連結する)ことができる。なぜなら、このとき、駆動回路を配置した一方のパネル11の隣接面12b´は、一方のパネル11の表示部13と、他方のパネル11の表示部13との繋ぎ目(連結部の境界)近傍の基板12の背面側に反れて突き出たかたちで存在することになるからである。
 このように構成することにより、表示部13を観察する観察者には、隣接面12b´が例えばパネル11とパネル11の繋ぎ目から視認されることはない。観察者は、各パネル11の表示部13が隙間なく繋げられた1つの大きな表示面に表示された、高精度の画像を視認することができる。
 また、本実施形態の構成によれば、各パネル11の隣接面12b´をパネル11の背面側に出して連結するため、パネル数に制限なくパネルを連結させることができる。そのため、所望する大画面の表示面を形成することができる。
 また、従来構成とは異なり、組み合わせる個々のパネル11を所望の面積まで小型化できるためコンパクト化を実現でき、低コスト化が可能なパネルを実現することができる。
 また、本発明の構成によれば、長方形の表示部13を形成しているため、有機EL素子を設ける際に、従来のシャドーマスクを用いたマスク蒸着法による塗り分けの際のマスク加工が容易であり、且つ、マスクのアライメント精度も容易に高精度を実現でき、更には、マスクの撓みによるズレも問題にならない。
 また、パネルの製造装置がより小型の製造装置であっても、表示画面の大型化が可能となるため製造コストの低減が可能となる。そのため、本発明に係る発光パネル装置を搭載すれば、低コストの大型有機EL画像表示装置を提供することが可能となる。
 また、本発明は、上記のように、或るパネルの表示部13の長辺側において別のパネルを繋げることから、表示部13の短辺側において繋げるよりも、同じ幅(各パネル11の表示部13における短辺の長さ)で各パネル11を作製した場合、より少ない枚数で大型の有機EL画像表示装置を作製することができる。具体的には、65型のハイビジョンテレビを想定した場合、横(最終形態での長辺)×縦(最終形態での短辺)の大きさが1400mm×800mmとなる。100mmの幅のパネル11でそれぞれ最終形態での短辺方向に沿って組み合わせる場合および最終形態での長辺方向に沿って組み合わせる場合を考察すると、本実施形態の画像表示装置において、パネル11を、最終形態での短辺方向に沿って繋げる場合は、パネル11は、大きさが1400mm×100mmとなり、8枚繋げることで最終形態を完成することができる。これに比べ、最終形態での長辺方向に沿って繋げる場合は、パネルは、大きさが800mm×100mmとなり、最終形態を完成するために14枚のパネルが必要となる。この結果、少ない連結部で大型の発光パネル装置を実現することができる。
 また、サブピクセルの配列方向や各駆動ドライバの接続位置を従来の画像表示装置と異なる構成にしているため、駆動ドライバの数、とりわけコストがより高いソースドライバの数を低減できる。
 (本実施形態の変形例)
 なお、本実施形態では、表示部13を有するパネル11を繋げてなる画像表示装置について説明したが、本発明はこれに限定されるものではなく、表示部13を、画像を表示させるのではなく、発光・非発光を制御するだけの発光部として構成し、該発光部を有するパネルを繋げてなる照明装置(発光部に有機EL素子を設けた場合は有機EL照明装置)であっても適用できる。すなわち、本発明は、電流供給、もしくは、電圧印加により発光を制御する発光素子を複数具備することによって形成される長方形の発光部をパネルに備え、このパネルを複数枚繋げてなる装置であれば、いかなる用途の装置であっても本発明に該当する。ここで、有機EL照明装置のように、発光部全面を駆動させればよい場合は、例えば、各パネルの発光部の長辺側の端子群を直接電気的に接続を行った後、長辺側の端子群、短辺側の端子をそれぞれ外部電源回路に接続することで駆動可能となる。また、各パネルの長辺側と短辺側を直接外部電源回路に接続することでも駆動が可能である。
 また、本実施形態では、表示部13として有機EL素子を用いているが、本発明はこれに限定されるものではなく、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子であれば有機EL素子の代わりに採用することができる。具体的には、無機EL、無機LEDなどが挙げられる。
 また、本実施形態では基板12の隣接面12b´が湾曲した構造となっているが、本発明はこれに限定されるものではない。例えば、図18は、隣接面12b´の他の形態について示した部分斜視図である。図18に示すように、隣接面12b´が折れ曲がって構成されている構造であってもよい。
 最後に、本実施形態に係る画像表示装置について、実施例に基づいて、より詳細に説明する。なお、本発明はこれらの例によってなんら限定されるものではない。
 〔実施例1:画像表示装置〕
 RGBの各サブピクセルがパネルの短辺方向に並んで配置されている単純マトリクス駆動の有機EL画像表示装置を以下の手順で作製した。
 厚さ200nmの酸化シリコンによってコートされた、厚さ0.2mmで、一表面の面積500×220mmのプラスティック基板を基板12(図2)として用いた。
 プラスティック基板12の上記一表面に、面抵抗10Ω/□となるようにインジウム-スズ酸化物(ITO)をスパッタ法により堆積させることにより、第一電極20としての膜厚200nmの透明電極(陽極)を形成した。
 次に、一表面500×220mmのうち、492×220mmの領域にのみ、フォトリソグラフィー法によりパターニングして、長さ250mmで幅1mmのストライプにパターニングされた第一電極20(図11)を形成した。
 次に、第一電極20のエッジ部にエッジカバーを形成するために、SiOをスパッタ法により厚さ200nmほど積層し、フォトリソグラフィー法によって第一電極20のエッジ部のみをSiOが覆うようにパターニングした。本実施例では、細長く形成された第一電極20の4辺のそれぞれの端から10μm分だけSiOで覆う構造とした。
 その後、水洗し、純水超音波洗浄10分間、アセトン超音波洗浄10分間、およびイソプロピルアルコール蒸気洗浄5分間をこの順番で行い、100℃にて1時間乾燥させた。
 ここで、500×220mmの基板12に形成する表示部13は、492×200mmと設計した。また、表示部13の上下左右には幅2mmの封止エリアが設けられており、長方形を有する表示部13の一方の短辺側には、更に封止エリアの外にそれぞれ幅2mmの端子取り出し領域(図2におけるVスキャン15の配設領域)を設けた。また、長方形を有する表示部13の一方の長辺側は、折り曲げを行う領域(隣接領域)として、幅2mmの端子取り出し部(隣接面)を設けた。
 次に、ここまでの工程を経て得られた、第一電極20形成済みの基板12を、図12に示したインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。本実施例では、シャドーマスク41を用いたマスク蒸着法による塗り分け方法を用いてRGBの発光画素を形成する方法を採用した。
 その後、所望の領域に、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い、抵抗加熱蒸着法により膜厚100nmの正孔注入層31(図11)を形成した。
 次に正孔輸送材料として、N,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、抵抗加熱蒸着法により膜厚40nmの正孔輸送層32(図11)を形成した。
 次いで、シャドーマスク41を用いたマスク塗り分け法により、正孔輸送層32の上の所望の赤色発光画素上に赤色有機発光層(厚さ:30nm)を形成する。この赤色有機発光層は、3-フェニル-4(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)(ホスト材料)と、ビス(2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’)イリジウム(アセチルアセトネート)(btpIr(acac))(赤色燐光発光ドーパント)とを、それぞれの蒸着速度を1.4Å/秒、および0.15Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスク41を用いたマスク塗り分け法により、正孔輸送層32の上の所望の緑色発光画素上に緑色有機発光層(厚さ:30nm)を形成する。この緑色有機発光層は、TAZ(ホスト材料)と、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy))(緑色燐光発光ドーパント)とを、それぞれの蒸着速度を1.5Å/秒、および0.2Å/秒とし、共蒸着することで作製した。
 次いで、シャドーマスク41を用いたマスク塗り分け法により正孔輸送層32の上の所望の青色発光画素上に青色有機発光層(厚さ:30nm)を形成する。この緑色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)とを、それぞれの蒸着速度を1.5Å/秒、および0.2Å/秒とし、共蒸着することで作製した。
 次いで、上述の方法で形成された有機発光層33(図11)の上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて膜厚10nmの正孔防止層34(図11)を形成した。
 次いで、正孔防止層34の上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて、膜厚30nmの電子輸送層35を形成した。
 次いで、電子輸送層35の上にフッ化リチウム(LiF)を用いて、膜厚1nmの電子注入層36を形成した。
 この後、第二電極21(図11)を形成した。まず、基板12(第一電極20および有機層30形成済み)を、金属蒸着用チャンバーに固定した。次に、第二電極形成用のシャドーマスク(第一電極20のストライプの長手方向と直交する向きに長手方向を有する1mm幅のストライプ状に第二電極を形成できるように開口部が空いているマスク)と、金属蒸着用チャンバーに固定した基板12とをアライメントした。そして、電子注入層36の表面に真空蒸着法によりアルミニウムを所望のパターンで形成した。これにより、膜厚200nmの第二電極21が形成された。
 続いて、スパッタ法により、膜厚1μmのSiOからなる無機保護層を、シャドーマスクを用いて、表示部13の端から上下左右2mmの封止エリアまでパターニング形成した。更に、この上に、蒸着重合法により膜厚2μmのパリレン膜を形成した。このSiOとパリレンの形成を5回繰り返し、5層からなる積層膜を形成し、これを封止膜とした。以上により、図2に示すパネル11を完成させた。
 次に、作製したパネル11を、短辺側の表示部13の外に設けた位置合わせ部16としてのマーカーを用いて位置合わせを行って、図15の(c)および(d)に示すようにパネル11の長辺同士が上下に並ぶように3枚繋げた。
 なお、長辺側に設けている隣接領域12bはパネル同士を繋げる前の段階で折り曲げておいた。
 最後に、短辺側に形成している端子、および長辺側に形成している端子を外部電源に接続することにより、3つの表示部13を合わせて492×600mmの表示領域を実現した画像表示体10(図1)を備えた画像表示装置を完成させた。
 完成した画像表示装置を用いて、外部電源により所望の電流を所望のストライプ状の第一電極および第二電極に印加することにより、所望の良好な画像を得ることができることを確認した。
 〔実施例2:照明装置〕
 RGBの各サブピクセルがパネルの短辺方向に並んで配置されている単純マトリクス駆動の有機EL照明装置を以下の手順で作製した。厚さ200nmの酸化シリコンによってコートされた、厚さ0.2mmで、一表面の面積500×220mmのプラスティック基板を基板12(図2)として用いた。
 プラスティック基板12の上記一表面に、面抵抗10Ω/□となるようにインジウム-スズ酸化物(ITO)をスパッタ法により堆積させることにより、第一電極20としての膜厚300nmの透明電極(陽極)を形成した。
 次に、一表面500×220mmのうち、492×216mmの領域にのみ、フォトリソグラフィー法によりパターニングして、ITOを残し第一電極20(図11)を形成した。
 次に、第一電極20のエッジ部にエッジカバーを形成するために、SiOをスパッタ法により厚さ200nmほど積層し、フォトリソグラフィー法によって第一電極20のエッジ部のみをSiOが覆うようにパターニングした。本実施例では、第一電極20の4辺のそれぞれの端から10μm分だけSiOで覆う構造とした。
 その後、水洗し、純水超音波洗浄10分間、アセトン超音波洗浄10分間、イソプロピルアルコール蒸気洗浄5分間をこの順番で行い、100℃にて1時間乾燥させた。
 ここで、500×220mmの基板12に形成する表示部13は、492×200mmと設計した。また、表示部13の上下左右には幅2mmの封止エリアが設けられており、長方形を有する表示部13の一方の短辺側には、更に封止エリアの外にそれぞれ幅2mmの端子取り出し領域(図2におけるVスキャナ15の配設領域)を設けた。また、長方形を有する表示部13の一方の長辺側は、折り曲げを行う領域(隣接領域)として、幅2mmの端子取り出し部(隣接面)を設けた。
 次に、ここまでの工程を経て得られた、第一電極20形成済みの基板12を、図12に示したインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。本実施例では、シャドーマスク41を用いたマスク蒸着法による塗り分け方法を用いてRGBの発光画素を形成する方法を採用した。
 その後、膜厚100nmの正孔注入層31(図11)と、膜厚40nmの正孔輸送層32(図11)とは、上記実施例1と同一の手法で形成した。
 シャドーマスク41を用いたマスク塗り分け法により正孔輸送層32の上の所望の赤色発光画素上に赤色有機発光層(厚さ:20nm)を形成する。この赤色有機発光層に用いる材料および蒸着速度などは実施例1において示した赤色有機発光層の作製方法と同じである。
 次いで、実施例1と同一の手法で、緑色有機発光層(厚さ:20nm)を形成し、次いで、実施例1と同一の手法で、青色有機発光層(厚さ:20nm)を形成した。
 次いで、実施例1と同一の手法で、正孔防止層34(図4)(厚さ:10nm)、電子輸送層35(厚さ:30nm)、電子注入層36(厚さ:1nm)を形成する。
 この後、第二電極21(図11)を形成した。まず、基板12(第一電極20および有機層30形成済み)を、金属蒸着用チャンバーに固定した。次に、第二電極形成用のシャドーマスク(第一電極20全体を2mm大きく覆うように第二電極21を形成できるように開口部が空いているマスク)と、金属蒸着用チャンバーに固定した基板12とをアライメントした。そして、電子注入層36の表面に真空蒸着法によりアルミニウムを所望のパターンで形成した。これにより、膜厚200nmの第二電極21が形成された。
 続いて、上記実施例1と同じく、スパッタ法により、膜厚1μmのSiOからなる無機保護層を、シャドーマスクを用いて、表示部13の端から上下左右2mmの封止エリアまでパターニング形成した。更に、この上に、蒸着重合法により膜厚2μmのパリレン膜を形成した。このSiOとパリレンの形成を5回繰り返し、5層からなる積層膜を形成し、これを封止膜とした。以上により、図2に示すパネル11を完成させた。
 次に、作製したパネル11を、短辺側の表示部13の外に設けた位置合わせ部16としてのマーカーを用いて位置合わせを行って、図15の(c)および(d)に示すようにパネル11の長辺同士が上下に並ぶように3枚繋げた。
 なお、長辺側に設けている隣接領域12bはパネル同士を繋げる前の段階で折り曲げておいた。
 最後に、短辺側に形成している端子と、長辺側に形成している端子を外部電源に接続することにより、3つの表示部13を合わせて492×600mmの発光領域を持つ照明装置(有機EL照明装置)を完成した。
 ここで、完成した有機EL照明装置の電極に、外部電源から所望の電流を印加することで、所望の良好で、均一な白色発光を得ることができることを確認した。
 〔実施例3:アクティブ駆動型有機EL画像表示装置〕
 まず、RGBの各サブピクセルがパネルの短辺方向に並んで配置されているアクティブマトリクス基板を以下の手順で作製した。厚さ10μmの酸化シリコンによってコートされた、厚さ0.1mmで、一表面の面積750×220mmのインバー材基板を基板12(図2)として用いた。
 ガラス基板上に、PECVD法を用いて、アモルファスシリコン半導体膜を形成する。続いて、結晶化処理を施すことにより多結晶シリコン半導体膜を形成する。次に、フォトリソグラフィー法を用いて多結晶シリコン半導体膜を複数の島状にパターンニングする。続いて、パターニングした多結晶シリコン半導体層の上にゲート絶縁膜及びゲート電極層をこの順番で形成し、フォトリソグラフィー法を用いてパターニングを行った。
 その後、パターニングした多結晶シリコン半導体膜にリン等の不純物元素をドーピングすることによりソースおよびドレイン領域を形成し、TFT素子を作製した。その後、平坦化膜を形成した。平坦化膜としては、PECVD法で形成した窒化シリコン膜、スピンコーターでアクリル系樹脂層をこの順で積層し形成する。まず、窒化シリコン膜を形成した後、窒化シリコン膜とゲート絶縁膜とを一括してエッチングすることによりソース及び/又はドレイン領域に通ずるコンタクトホールを形成し、続いて、ソース配線を形成した。その後、アクリル系樹脂層を形成し、ゲート絶縁膜及び窒化シリコン膜に穿孔したドレイン領域のコンタクトホールと同じ位置に、ドレイン領域に通ずるコンタクトホールを形成することにより、アクティブマトリクス基板が完成する。平坦化膜としての機能は、アクリル系樹脂層で実現される。なお、TFTのゲート電位を定電位にするためのコンデンサーは、スイッチング用TFTのドレインと駆動用TFTのソースとの間に層間絶縁膜等の絶縁膜を介することで形成される。
 アクティブマトリクス基板上には、平坦化層を貫通して駆動用TFTと、赤色発光有機EL素子の第一電極、緑色発光有機EL素子の第一電極、青色発光有機EL素子の第一電極とをそれぞれ電気的に接続するコンタクトホールが設けられている。
 次に、各発光画素を駆動する為のTFTと接続した平坦化層を貫通して設けられたコンタクトホールに、電気的接続用に、スパッタ法によって各画素の第一電極(陽極)を形成した。第一電極20(図11)は、膜厚150nmのAl(アルミニウム)、膜厚20nmのIZO(酸化インジウム-酸化亜鉛)、を積層して形成した。
 次に、第一電極を各画素に対応した形状に従来のフォトリソグラフィー法でパターン化した。ここでは、第一電極の面積としては、300μm×100μmとした。また750×220mmの基板に形成する表示部13(図11)は、742×200mmで、表示部の上下左右に設けている2mm幅の封止エリアを設けた。また、長方形を有する表示部13の一方の短辺側には、更に封止エリアの外にそれぞれ幅2mmの端子取り出し領域(図2におけるVスキャン15の配設領域)を設けた。また、長方形を有する表示部13の一方の長辺側は、折り曲げを行う領域(隣接領域)として、幅2mmの端子取り出し部(隣接面)を設けた。
 次に、第一電極20のエッジ部にエッジカバー28を形成するために、SiOをスパッタ法により厚さ200nm積層し、従来のフォトリソグラフィー法によって第一電極20のエッジ部のみをSiOが覆うようにパターニングした。本実施例では、第一電極20の4辺のそれぞれの端から10μm分だけSiOで覆う構造とした。
 次に、上記アクティブ基板を洗浄する。アクティブ基板の洗浄としては、例えば、アセトン、またはIPAを用いて、超音波洗浄を10分間行い、次に、UV-オゾン洗浄を30分間行う。
 次に、この基板を、図12に示したインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧した。本実施例では、シャドーマスク41を用いたマスク蒸着法による塗り分け方法を用いてRGBの発光画素を形成する方法を採用した。
 その後、所望の領域に、シャドーマスクを用いたマスク塗り分け法により、正孔注入材料として1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い、抵抗加熱蒸着法により赤色発光画素部には膜厚50nm、緑色発光画素部には膜厚150nm、青色発光画素部には膜厚が100nmの正孔注入層31(図11)を形成した。
 次に、正孔輸送材料としてN,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、抵抗加熱蒸着法により膜厚40nmの正孔輸送層32(図11)を形成した。
 次いで、上記実施例1と同一の方法で、赤色有機発光層(厚さ:30nm)、緑色有機発光層(厚さ:30nm)、および青色有機発光層(厚さ:30nm)の有機発光層33を形成した。
 次いで、上記実施例1と同一の方法で、正孔防止層34(厚さ:10nm)、および電子輸送層35(厚さ:30nm)を形成した。
 この後、第二電極21(図11)を形成した。まず、上記基板を金属蒸着用チャンバーに固定した。次に、第二電極形成用のシャドーマスク(発光領域全体と基板上に予め形成している陰極コンタクトエリアの上下左右1mm大きな領域に第二電極を形成できるように開口部が空いているマスク)、および前記基板をアライメントし、電子輸送層35の表面に真空蒸着法によりマグネシウム-銀合金(比率1:9)を膜厚19nmで形成した。これにより、半透明の第二電極21(図11)が形成される。
 次に、半透明の第二電極21上に、イオンプレーティングにより、100nmのSiONからなる保護層29(図13)を、シャドーマスクを用いてパターニング形成した。ここで、成膜条件は、以下の通りである。プラズマビームパワー:4.0kW、ビーム断面積S1:12.56cm、ビームエネルギー密度:310W/cm、N:20sccm、O:10sccmで導入。ソース材質:SiON焼結体で密度:相対密度99%以上。
 次に、ポリイミドフィルム上に予め接着用の熱硬化樹脂が塗布している封止基板を、有機EL素子が形成されているアクティブ基板とを貼り合わせ、80℃、1時間ホットプレートで加熱することで樹脂を硬化させた。なお、上記貼り合わせ工程は、有機EL素子の水分による劣化を防止する目的でドライエアー環境下(水分量:-80℃)で行った。
 次に、光を取り出す方向の基板に、偏光板を張り合わせ、本実施例のパネル11を完成させた。
 本実施例のパネル11の断面図を図13に示す。図13中の22はゲートメタル、23はゲート絶縁膜、24は配線、25はTFT電極、26は平坦化膜、27はスルーホール、37は熱硬化樹脂、38は封止基板、39は上記偏光板を示す。
 次に、以上のようにして作製した長方形アクティブ駆動型有機ELを、位置合わせ用の枠18(図16)を用いて、長辺同士が上下に並ぶように3枚に連結させた。
 なお、長辺側に設けている隣接領域12bはパネル同士を繋げる前の段階で折り曲げておいた。
 最後に、短辺側に形成している端子をソースドライバを介して電源回路に、長辺側に形成している端子をゲートドライバを介して外部電源に接続することにより、742×600mmの表示面を有するアクティブ駆動型有機ELディスプレイ(画像表示装置)を完成させた。
 完成した画像表示装置を用いて、外部電源により所望の電流を各画素に印加することにより、所望の良好な画像を得ることができることを確認した。
 本発明に係る画像表示装置においては、上記長手方向が上記行方向と平行であり、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の短辺と平行な方向に並んで配置されており、
 上記第二端子群が上記走査駆動回路に接続されており、
 上記第一端子群が上記データ駆動回路に接続されていることができる。
 上記の構成によれば、画素内の発光素子の配列方向、ならびに走査駆動回路およびデータ駆動回路の接続方向を従来の画像表示装置の状態を維持したまま複数のパネルが上下方向に並ぶように組み合わされている画像表示装置の場合と比較し、走査駆動回路の数をその1/3に削減することができる。
 また、本発明に係る画像表示装置においては、上記長手方向が上記列方向と平行であり、
 複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の長辺と平行な方向に並んで配置されており、
 上記第一端子群が上記走査駆動回路に接続されており、
 上記第二端子群が上記データ駆動回路に接続されていることができる。
 上記の構成によれば、画素内の発光素子の配列方向、ならびに走査駆動回路およびデータ駆動回路の接続方向を従来の画像表示装置の状態を維持したまま複数のパネルが水平方向に並ぶように組み合わされている画像表示装置の場合と比較し、走査駆動回路の数をその1/3に削減することができる。
 また、上記第1のパネルと、上記第2のパネルとは、
 第1のパネルの上記基材の上記平坦面における上記隣接面に隣接している側の上記端部と、第2のパネルの上記基材の上記平坦面における上記隣接面に隣接している側とは反対側の上記端部とを連結させて、繋げることができる。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 各上記発光素子は、有機発光層を含む有機層を第一電極と第二電極との間に有して構成された有機エレクトロルミネッセンス素子であり、
 各上記有機エレクトロルミネッセンス素子の上記第一電極から引き出された上記端子群が、上記隣接面において上記長辺に沿って配列させることができる。
 上記の構成によれば、上記長方形の発光部が形成されている平坦面内には端子を配さない構成となることから、発光部と発光部との間に端子が存在することによる視覚的な不快感を無くすことができる。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 上記平坦面における上記隣接面に隣接している側とは反対側の上記端部は、上記長方形の発光部における他方の長辺に沿った端部と重畳していることが好ましい。
 上記の構成によれば、上記長方形の発光部をその対面側から観察したときに、上記他方の長辺の端部の外側に基材の平坦面の上記端部が視認されることがない。
 これにより、パネルとパネルとを繋いだ場合に、隙間のない1つの大きな発光部を実現することができる。
 また、本発明に係る画像表示装置は、上記の構成に加えて、上記隣接面には、封止エリアが設けられていないことが好ましい。
 上記の構成によれば、ストレス無く隣接面を湾曲もしくは折り曲げることが可能となる。
 有機ELの場合、有機ELの形成されている基板部分と封止基板の密着性が、不十分であり、特に、有機EL部で有機層と電極(通常は、陰極)との密着性が悪いため有機EL部を曲げた場合、剥がれが問題となる。特に有機EL部でも有機層と電極の剥がれが問題となる。
 これに対して、本発明の構成によれば、より効果的に湾曲、折り曲げた隣接面を形成することが可能となるため、継ぎ目を解消した表示品位の優れた低コスト化の大型有機ELディスプレイ、有機EL表示装置および有機EL照明を提供することが可能となる。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 上記基材には、各上記パネルの基材同士を連結させる際の位置合わせに用いることができる位置合わせ部が設けられていることが好ましい。
 上記の構成によれば、パネルを複数貼り合わせた時に、連結部分での有機エレクトロルミネッセンス素子のズレを防止することが可能となる。
 パネルとパネルとの連結部において有機エレクトロルミネッセンス素子(すなわち、画素)のズレが生じると、表示画像に欠陥を生じてしまう。例えば、65型のハイビジョンテレビを想定した場合、各サブピクセルの大きさは210μm×70μmとなり、70μmのズレが生じた場合、連結部でサブ画素がズレてしまい、継ぎ目が視認できてしまう。これに対して、本発明の構成によれば、位置合わせ部を設けていることから、このようなズレを回避し、表示装置においても良好な画像表示を実現させることができる。
 また、位置合わせ部の配設位置について、連結部分に位置合わせ部を設けると、連結したときに位置合わせ部が継ぎ目として視認されてしまうため、位置合わせ部を連結部分とは異なる領域に設けることが好ましい。
 また、本発明に係る画像表示装置は、上記の構成に加えて、上記基材が板部材とすることができる。また、板部材だけに限らず、上記基材は、フレキシブル基材であってもよい。
 上記基材は、金属、もしくは、プラスティックからなることが好ましい。
 上記の構成によれば、ストレス無く湾曲させたり、折り曲げたりして上記隣接面を作製することが可能となる。
 従来構成では、厚さが0.7mm程度のガラス基板を使用してパネルを構成しているため、曲げることが不可能である。そのため、仮に本発明のように湾曲させたりする場合にも、ガラスの折り曲げ部分にのみ、フレキシブルのプラスティック等を接続して作製する必要が生じ、コストアップの原因となり、また、パネルとパネルの連結部での不良の原因ともなる。そこで、本発明の金属、プラスティックを基材として用いることによって、基材自身を曲げることが可能となる。
 この結果、パネルの基板自身を、湾曲もしくは折り曲げさせることが可能となる為、低コスト化の発光パネル装置を実現でき、これを備えた画像表示装置や照明装置の低コスト化にも貢献することができる。
 また、上記基材は、線膨張係数が1×10-5/℃以下の鉄-ニッケル系合金であってもよい。
 上記の構成によれば、熱膨張率がガラスと同様の金属を有機ELの基板として用いるため、通常のTFTプロセルを使用することが可能である。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 上記画像表示部に上記発光素子を駆動するアクティブマトリクス駆動素子を備えており、アクティブマトリクス駆動を行うことが好ましい。
 上記の構成によれば、各画素のアクティブマトリクス駆動が可能となる。アクティブマトリクス駆動の有機ELディスプレイ、有機EL表示装置は、単純マトリクス駆動の有機ELディスプレイ、有機EL表示装置と比較して1フレーム当たりの発光時間を長くとれるため、1フレーム当たりの発光輝度を低くすることが可能である。具体的には、ディスプレイ(解像度1920×1080のハイビジョン)として100cd/mの輝度を得る場合、単純マトリクス駆動では、108,000cd/m(=100cd/m×1080)の瞬間輝度が必要となるのに対し、アクティブマトリクス駆動では1フレーム当たりの全時間を発光時間として使用可能であるため、100cd/m(=100cd/m×1)の輝度で良い。これにより、低電圧駆動が可能となる。また、一般的に有機ELは輝度の上昇とともに発光効率が低下するため、高い発光効率を使用できる領域での駆動が可能であり、消費電力を大幅に低減することが可能となる。
 この結果、より低消費電力で表示品位の優れた大型のアクティブマトリクス駆動型の画像表示装置を提供することが可能となる。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 上記第一電極および上記第二電極が互いに直交して上記平坦面と平行に延びるライン状の電極であり、単純マトリクス駆動を行う構成であってもよい。
 また、本発明に係る画像表示装置は、上記の構成に加えて、
 上記画像表示部に設けられた上記発光素子は、有機発光層を含む有機層を第一電極と第二電極との間に有して構成された有機エレクトロルミネッセンス素子であり、
 上記画像表示部に電源を供給する電源供給配線を、上記第二電極に連結させており、
 上記電源供給配線の端子は、上記基材の上記平坦面における、上記画像表示部である上記長方形の発光部を構成する一対の短辺のうちの一方の側に配列していることが好ましい。
 上記の構成によれば、有機エレクトロルミネッセンス素子は、電流駆動であるため、その発光には電流を必要とする。ここで、電流供給配線が長い従来のディスプレイ(表示装置)では、電流を流すことによる電流供給配線での抵抗成分による、電圧降下による消費電力の上昇、発熱が問題であることが知られている。そこで、本発明の構成によれば、各パネルの平坦面に、そのパネルの発光部の第二電極に連結された電流供給配線の端子を配列させることから、該電流供給配線の長さを短く実現することができる。これは、先の問題の解決に非常に有意である。特に、大型の高精細ディスプレイ(表示装置)では、画素数の増加、ディスプレイ(表示装置)の表示領域の増加に伴う画素面積の増加により、より大電流を電流供給配線で供給する必要が要求され、上記の問題はより深刻な問題となる。これにより本発明では、電流供給配線に電流を流すことに起因する問題を解消することが可能となり、消費電力を大幅に低減することが、発熱を大幅に低減することが可能となる。
 この結果、より低消費電力、発熱の少ない大型の発光パネル装置を作製することができ、この発光パネル装置を表示装置に搭載すれば、表示品位の優れた大型の表示装置を作製することが可能となる。
 本発明は、画像表示装置として最適に使用できるほか、照明装置としても使用することができる等、産業上の利用可能性は高い。
2 スイッチング用TFT
3 駆動用TFT
10 画像表示体(画像表示装置)
11 パネル
12 基板(基材)
12a 形成領域
12a´ 平坦面
12b 隣接領域
12b´ 隣接面
13 表示部(発光部)
14 Hスキャン
15 Vスキャン
17a 光学調整用基板
17b 光学調整用基板
20 第一電極
21 第二電極
22 ゲートメタル
23 ゲート絶縁膜
24 配線
25 TFT電極
26 平坦化膜
27 スルーホール
28 エッジカバー
29 保護層
30 有機層
31 正孔注入層
32 正孔輸送層
33 有機発光層
34 正孔防止層
35 電子輸送層
36 電子注入層
37 熱硬化樹脂
38 封止基板
39 偏光板
40 蒸着ソース源
41 シャドーマスク
50 画素
51R、51G、51B サブピクセル
54 データ信号線
55 電源線
56 走査信号線
57 ゲートドライバ(走査駆動回路)
58 ソースドライバ(データ駆動回路)
59 電源回路
61 シフトレジスタ
62 サンプリングラッチ
63 デジタル-アナログ変換器

Claims (18)

  1.  基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
     上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
     上記隣接面には、上記長方形の発光部の上記第一電極から引き出された第一端子群が形成されており、
     上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
     第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
     複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
     複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの列方向に沿って並んで配置されており、
     上記第一端子群および上記第二端子群のうち上記マトリクスの行方向に引き出された端子群に接続された、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
     上記第一端子群および上記第二端子群のうち上記マトリクスの列方向に引き出された端子群に接続された、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えていることを特徴とする画像表示装置。
  2.  上記長手方向が上記行方向と平行であり、
     複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の短辺と平行な方向に並んで配置されており、
     上記第二端子群が上記走査駆動回路に接続されており、
     上記第一端子群が上記データ駆動回路に接続されていることを特徴とする請求項1に記載の画像表示装置。
  3.  上記長手方向が上記列方向と平行であり、
     複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の長辺と平行な方向に並んで配置されており、
     上記第一端子群が上記走査駆動回路に接続されており、
     上記第二端子群が上記データ駆動回路に接続されていることを特徴とする請求項1に記載の画像表示装置。
  4.  基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルを複数備えた画像表示装置であって、
     上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
     上記隣接面には、上記長方形の発光部の上記第一電極から引き出された第一端子群が形成されており、
     上記平坦面における、上記長方形の発光部を構成する一対の短辺のうちの一方の側に、各上記発光素子の上記第二電極から引き出された第二端子群が形成されており、
     第1の上記パネルと、該第1のパネルとは異なる第2の上記パネルとは、第1のパネルの上記発光部と、第2のパネルの上記発光部とが同じ向きに配置され、且つ、第1のパネルおよび第2のパネルの各々の上記長方形の発光部の長手方向が平行になるように、各々の上記基材の上記平坦面の上記端部同士を連結させて、繋がっており、
     複数ある上記パネルの各上記発光部の組み合わせにより、複数の上記画素がマトリクス状に配列している画像表示部を形成しており、
     上記長手方向が、上記マトリクスの行方向と平行であり、
     複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記マトリクスの行方向または列方向に沿って並んで配置されており、
     上記第一端子群に接続されている、上記発光素子を選択状態に設定する走査信号を出力する走査駆動回路と、
     上記第二端子群に接続されている、上記走査信号により選択状態に設定された上記発光素子に対してデータ信号を出力するデータ駆動回路とをさらに備えていることを特徴とする画像表示装置。
  5.  上記第1のパネルと、上記第2のパネルとは、
     第1のパネルの上記基材の上記平坦面における上記隣接面に隣接している側の上記端部と、第2のパネルの上記基材の上記平坦面における上記隣接面に隣接している側とは反対側の上記端部とを連結させて、繋がっていることを特徴とする請求項1~4の何れか1項に記載の画像表示装置。
  6.  各上記発光素子は、有機発光層を含む有機層を第一電極と第二電極との間に有して構成された有機エレクトロルミネッセンス素子であり、
     各上記有機エレクトロルミネッセンス素子の上記第一電極から引き出された上記端子群が、上記隣接面において上記長辺に沿って配列していることを特徴とする請求項1~5の何れか1項に記載の画像表示装置。
  7.  上記平坦面における上記隣接面に隣接している側とは反対側の上記端部は、上記長方形の発光部における他方の長辺に沿った端部と重畳していることを特徴とする請求項1~6の何れか1項に記載の画像表示装置。
  8.  上記隣接面には、封止エリアが設けられていないことを特徴とする請求項1~7の何れか1項に記載の画像表示装置。
  9.  上記基材には、各上記パネルの基材同士を連結させる際の位置合わせに用いることができる位置合わせ部が設けられていることを特徴とする請求項1~8の何れか1項に記載の画像表示装置。
  10.  上記基材は、板部材であることを特徴とする請求項1~9の何れか1項に記載の画像表示装置。
  11.  上記基材は、フレキシブル基材であることを特徴とする請求項1~10の何れか1項に記載の画像表示装置。
  12.  上記基材は、金属またはプラスティックからなることを特徴とする請求項1~11の何れか1項に記載の画像表示装置。
  13.  上記基材は、線膨張係数が1×10-5/℃以下の鉄-ニッケル系合金であることを特徴とする請求項1~11の何れか1項に記載の画像表示装置。
  14.  上記画像表示部に上記発光素子を駆動するアクティブマトリクス駆動素子を備えており、アクティブマトリクス駆動を行うことを特徴とする請求項1~13の何れか1項に記載の画像表示装置。
  15.  上記第一電極および上記第二電極が互いに直交して上記平坦面と平行に延びるライン状の電極であり、単純マトリクス駆動を行うことを特徴とする請求項1~13の何れか1項に記載の画像表示装置。
  16.  上記画像表示部に設けられた上記発光素子は、有機発光層を含む有機層を第一電極と第二電極との間に有して構成された有機エレクトロルミネッセンス素子であり、
     上記画像表示部に電源を供給する電源供給配線を、上記第二電極に連結させており、
     上記電源供給配線の端子は、上記基材の上記平坦面における、上記画像表示部である上記長方形の発光部を構成する一対の短辺のうちの一方の側に配列していることを特徴とする請求項1~15の何れか1項に記載の画像表示装置。
  17.  基材の平坦面に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子を複数個配設して構成される画素を複数備えている長方形の発光部を形成したパネルであって、
     上記基材の上記平坦面の端部であって、上記長方形の発光部を構成する一対の長辺に沿って延びた端部のうちの一方の端部に隣接して、上記平坦面を反らす方向に上記基材が湾曲もしくは折れ曲がった隣接面が設けられており、
     上記隣接面には、上記長方形の発光部の上記第一電極から引き出された端子群が形成されており、
     複数ある上記画素のそれぞれに含まれる複数個の上記発光素子が、該画素内において、上記長方形の発光部を構成する一対の短辺と平行な方向に沿って並んで配置されていることを特徴とするパネル。
  18.  請求項1~16の何れか1項に記載の画像表示装置に設けられた上記パネルの製造方法であって、
     上記平坦面および上記隣接面を有した上記基材を準備する基材準備工程と、
     上記基材準備工程により準備された上記基材の上記平坦面の上に、第一電極および第二電極を有して電流供給、もしくは、電圧印加により光を出射する発光素子である有機エレクトロルミネッセンス素子を形成する発光素子形成工程と、
    を含み、
     上記発光素子形成工程には、
     上記基材の上記平坦面の上に、上記第一電極もしくは上記第二電極を形成する電極形成工程と、
     上記電極形成工程によって形成された電極の上に、上記有機エレクトロルミネッセンス素子において上記第一電極と上記第二電極との間に設けられる有機層を、インライン型蒸着方法を用いて形成する有機層形成工程と、
    が含まれることを特徴とする製造方法。
PCT/JP2010/071572 2009-12-03 2010-12-02 画像表示装置、パネルおよびパネルの製造方法 WO2011068158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/512,861 US9024936B2 (en) 2009-12-03 2010-12-02 Image display device, panel and panel manufacturing method
CN201080054689.6A CN102640200B (zh) 2009-12-03 2010-12-02 图像显示装置、面板和面板的制造方法
JP2011544286A JP5254469B2 (ja) 2009-12-03 2010-12-02 画像表示装置、パネルおよびパネルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009275522 2009-12-03
JP2009-275522 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011068158A1 true WO2011068158A1 (ja) 2011-06-09

Family

ID=44115004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071572 WO2011068158A1 (ja) 2009-12-03 2010-12-02 画像表示装置、パネルおよびパネルの製造方法

Country Status (4)

Country Link
US (1) US9024936B2 (ja)
JP (1) JP5254469B2 (ja)
CN (1) CN102640200B (ja)
WO (1) WO2011068158A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091018A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 有機el表示ユニット、有機el表示装置、及び有機el表示ユニットの製造方法
JP2015129891A (ja) * 2014-01-08 2015-07-16 パナソニック株式会社 ディスプレイ装置及びパネルユニット
JP2016136529A (ja) * 2016-03-22 2016-07-28 株式会社半導体エネルギー研究所 発光装置
CN106537486A (zh) * 2014-07-31 2017-03-22 株式会社半导体能源研究所 显示装置及电子装置
JP2018032840A (ja) * 2016-08-26 2018-03-01 エルジー ディスプレイ カンパニー リミテッド 表示装置
US10043989B2 (en) 2011-12-23 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
WO2018220683A1 (ja) * 2017-05-29 2018-12-06 シャープ株式会社 表示装置及び表示装置の製造方法
WO2019064572A1 (ja) * 2017-09-29 2019-04-04 シャープ株式会社 表示装置の製造方法および表示装置
JP2022058677A (ja) * 2014-11-28 2022-04-12 株式会社半導体エネルギー研究所 表示装置および表示装置の画像処理方法
JP2022095679A (ja) * 2014-05-02 2022-06-28 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211268B1 (en) * 2012-09-28 2019-02-19 Imaging Systems Technology, Inc. Large area OLED display
US8674370B2 (en) * 2009-10-08 2014-03-18 Sharp Kabushiki Kaisha Light emitting panel device wherein a plurality of panels respectively having light emitting sections are connected, and image display device and illuminating device provided with the light emitting panel device
US8519618B2 (en) * 2011-08-30 2013-08-27 Htc Corporation Display
US9019170B2 (en) * 2013-03-14 2015-04-28 Lg Electronics Inc. Display device and method for controlling the same
DE112015000739T5 (de) 2014-02-11 2016-12-29 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung und elektronisches Gerät
KR102281910B1 (ko) * 2014-06-26 2021-07-28 삼성디스플레이 주식회사 표시모듈 및 이를 포함하는 표시장치
JP2016029464A (ja) 2014-07-18 2016-03-03 株式会社半導体エネルギー研究所 表示装置
JP6602585B2 (ja) 2014-08-08 2019-11-06 株式会社半導体エネルギー研究所 表示装置および電子機器
CN106796769B (zh) 2014-10-08 2019-08-20 株式会社半导体能源研究所 显示装置
JP2016095502A (ja) 2014-11-11 2016-05-26 株式会社半導体エネルギー研究所 表示システム、表示装置
JPWO2016116833A1 (ja) * 2015-01-22 2017-12-21 株式会社半導体エネルギー研究所 表示装置及び電子機器
CN104733503B (zh) * 2015-03-17 2018-05-08 京东方科技集团股份有限公司 一种显示面板以及曲面显示面板
CN104916660B (zh) * 2015-04-20 2018-04-20 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN104867450B (zh) * 2015-06-05 2017-09-19 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
KR102612798B1 (ko) 2015-09-08 2023-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US10424632B2 (en) 2015-11-30 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2017115208A1 (en) 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Device, television system, and electronic device
KR20230065378A (ko) 2016-11-30 2023-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US10203929B2 (en) * 2017-06-13 2019-02-12 International Business Machines Corporation Extendable display strips
KR20190010052A (ko) * 2017-07-20 2019-01-30 엘지전자 주식회사 디스플레이 디바이스
JP7128187B2 (ja) 2017-07-27 2022-08-30 株式会社半導体エネルギー研究所 表示装置
CN109727531A (zh) * 2017-10-31 2019-05-07 云谷(固安)科技有限公司 一种显示面板以及终端
US10651159B2 (en) * 2018-08-20 2020-05-12 Christie Digital Systems Usa, Inc. Light emitting diode module and display for hiding physical gaps between modules
KR20200069125A (ko) 2018-12-06 2020-06-16 삼성전자주식회사 디스플레이 장치
US10937993B2 (en) * 2018-12-28 2021-03-02 Wuhan China Star Optoelectronics Semiconductor Display Co., Ltd. Organic light-emitting diode display panel having under-the-screen structure and display device thereof
TWI692747B (zh) * 2019-03-28 2020-05-01 聚積科技股份有限公司 顯示系統及其共用驅動電路
CN110649042B (zh) * 2019-09-30 2021-12-14 厦门天马微电子有限公司 显示面板和显示装置
KR20220065953A (ko) * 2020-11-13 2022-05-23 삼성디스플레이 주식회사 표시장치
CN113204118A (zh) * 2021-04-29 2021-08-03 歌尔股份有限公司 头戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100662A (ja) * 1999-09-30 2001-04-13 Seiko Epson Corp El大型パネル及びその製造方法
JP2002297066A (ja) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2004006724A (ja) * 2002-03-28 2004-01-08 Seiko Epson Corp 半導体装置およびその製造方法、電気光学装置、液晶表示装置、電子機器
JP2004111059A (ja) * 2002-09-13 2004-04-08 Sony Corp 表示装置
JP2005509904A (ja) * 2001-11-10 2005-04-14 イメージ ポータル リミテッド ディスプレイ
JP2005123153A (ja) * 2003-09-24 2005-05-12 Fuji Photo Film Co Ltd エレクトロルミネッセンス表示パネル、エレクトロルミネッセンス表示装置およびそれらの製造方法
WO2008126250A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203907A (ja) * 1995-11-20 1997-08-05 Sharp Corp 液晶表示装置及びその製造装置
CA2222031C (en) * 1996-03-25 2002-01-29 Rainbow Displays, Inc. Tiled, flat-panel displays with color-correction capability
US6369867B1 (en) * 1998-03-12 2002-04-09 Gl Displays, Inc. Riveted liquid crystal display comprising at least one plastic rivet formed by laser drilling through a pair of plastic plates
WO2000023976A1 (en) * 1998-10-16 2000-04-27 Sarnoff Corporation Linear array of light-emitting elements
US6274978B1 (en) * 1999-02-23 2001-08-14 Sarnoff Corporation Fiber-based flat panel display
US6259846B1 (en) * 1999-02-23 2001-07-10 Sarnoff Corporation Light-emitting fiber, as for a display
US6228228B1 (en) * 1999-02-23 2001-05-08 Sarnoff Corporation Method of making a light-emitting fiber
US6693684B2 (en) * 1999-09-15 2004-02-17 Rainbow Displays, Inc. Construction of large, robust, monolithic and monolithic-like, AMLCD displays with wide view angle
US6496238B1 (en) * 2000-01-21 2002-12-17 Rainbow Displays, Inc. Construction of large, robust, monolithic and monolithic-like, AMLCD displays with wide view angle
JP3498020B2 (ja) 1999-09-29 2004-02-16 Nec液晶テクノロジー株式会社 アクティブマトリックス基板及びその製造方法
US6667783B2 (en) * 2000-01-21 2003-12-23 Rainbow Displays, Inc. Construction of large, robust, monolithic and monolithic-like, AMLCD displays with wide view angle
US20030184703A1 (en) * 2000-01-21 2003-10-02 Greene Raymond G. Construction of large, robust, monolithic and monolithic-like, AMLCD displays with wide view angle
US6692646B2 (en) * 2000-08-29 2004-02-17 Display Science, Inc. Method of manufacturing a light modulating capacitor array and product
US6590782B2 (en) * 2001-02-28 2003-07-08 Adc Telecommunications, Inc. Telecommunications chassis and card
US7362046B2 (en) * 2001-11-10 2008-04-22 Image Portal Limited Partial overlapping display tiles of organic light emitting device
KR100941129B1 (ko) * 2002-03-26 2010-02-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광장치 및 그의 제조방법
JP2004111119A (ja) * 2002-09-17 2004-04-08 Sony Corp 表示装置およびその製造方法
JP4307126B2 (ja) * 2003-03-31 2009-08-05 シャープ株式会社 液晶表示装置
EP1624333B1 (en) * 2004-08-03 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device, manufacturing method thereof, and television set
JP4399337B2 (ja) * 2004-09-13 2010-01-13 株式会社フューチャービジョン 平面パターンを有する基板およびそれを用いた表示装置
US20060091794A1 (en) * 2004-11-04 2006-05-04 Eastman Kodak Company Passive matrix OLED display having increased size
US20070001927A1 (en) * 2005-07-01 2007-01-04 Eastman Kodak Company Tiled display for electronic signage
CN101496082A (zh) * 2006-07-27 2009-07-29 夏普株式会社 显示装置
WO2008029545A1 (fr) * 2006-09-07 2008-03-13 Sharp Kabushiki Kaisha Structure et élément de retenue de source lumineuse, unité à source lumineuse et appareil d'affichage
JP4518199B2 (ja) * 2007-10-23 2010-08-04 エプソンイメージングデバイス株式会社 電気光学装置
US20100156761A1 (en) * 2008-12-19 2010-06-24 Janos Veres Edge emissive display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100662A (ja) * 1999-09-30 2001-04-13 Seiko Epson Corp El大型パネル及びその製造方法
JP2002297066A (ja) * 2001-03-30 2002-10-09 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置およびその製造方法
JP2005509904A (ja) * 2001-11-10 2005-04-14 イメージ ポータル リミテッド ディスプレイ
JP2004006724A (ja) * 2002-03-28 2004-01-08 Seiko Epson Corp 半導体装置およびその製造方法、電気光学装置、液晶表示装置、電子機器
JP2004111059A (ja) * 2002-09-13 2004-04-08 Sony Corp 表示装置
JP2005123153A (ja) * 2003-09-24 2005-05-12 Fuji Photo Film Co Ltd エレクトロルミネッセンス表示パネル、エレクトロルミネッセンス表示装置およびそれらの製造方法
WO2008126250A1 (ja) * 2007-03-30 2008-10-23 Pioneer Corporation 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGSHIK SHIM: "Simulation study for seamless imaging of OLED tiled display", PROCEEDINGS OF THE 15TH INTERNATIONAL DISPLAY WORKSHOPS, vol. 1, 2008, pages 173 - 176 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091018A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 有機el表示ユニット、有機el表示装置、及び有機el表示ユニットの製造方法
JP5858367B2 (ja) * 2010-12-28 2016-02-10 シャープ株式会社 有機el表示ユニット、有機el表示装置、及び有機el表示ユニットの製造方法
US10541372B2 (en) 2011-12-23 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US10043989B2 (en) 2011-12-23 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
JP2015129891A (ja) * 2014-01-08 2015-07-16 パナソニック株式会社 ディスプレイ装置及びパネルユニット
JP2022095679A (ja) * 2014-05-02 2022-06-28 株式会社半導体エネルギー研究所 半導体装置
JP7385695B2 (ja) 2014-05-02 2023-11-22 株式会社半導体エネルギー研究所 半導体装置
CN106537486A (zh) * 2014-07-31 2017-03-22 株式会社半导体能源研究所 显示装置及电子装置
US11659636B2 (en) 2014-07-31 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN106537486B (zh) * 2014-07-31 2020-09-15 株式会社半导体能源研究所 显示装置及电子装置
JP2019148815A (ja) * 2014-07-31 2019-09-05 株式会社半導体エネルギー研究所 表示装置
US10764973B2 (en) 2014-07-31 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2022058677A (ja) * 2014-11-28 2022-04-12 株式会社半導体エネルギー研究所 表示装置および表示装置の画像処理方法
JP2016136529A (ja) * 2016-03-22 2016-07-28 株式会社半導体エネルギー研究所 発光装置
JP2018032840A (ja) * 2016-08-26 2018-03-01 エルジー ディスプレイ カンパニー リミテッド 表示装置
US10403684B2 (en) 2016-08-26 2019-09-03 Lg Display Co., Ltd. Display device
US11437439B2 (en) 2016-08-26 2022-09-06 Lg Display Co., Ltd. Display device
US10573710B2 (en) 2017-05-29 2020-02-25 Sharp Kabushiki Kaisha Display device
WO2018220683A1 (ja) * 2017-05-29 2018-12-06 シャープ株式会社 表示装置及び表示装置の製造方法
US10884463B2 (en) 2017-09-29 2021-01-05 Sharp Kabushiki Kaisha Method for manufacturing display device and display device
WO2019064572A1 (ja) * 2017-09-29 2019-04-04 シャープ株式会社 表示装置の製造方法および表示装置

Also Published As

Publication number Publication date
CN102640200B (zh) 2014-10-29
US20120268445A1 (en) 2012-10-25
CN102640200A (zh) 2012-08-15
JPWO2011068158A1 (ja) 2013-04-18
US9024936B2 (en) 2015-05-05
JP5254469B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5254469B2 (ja) 画像表示装置、パネルおよびパネルの製造方法
JP5356532B2 (ja) 発光部を有する複数のパネルを繋げてなる発光パネル装置、それを備えた画像表示装置および照明装置
JP5858367B2 (ja) 有機el表示ユニット、有機el表示装置、及び有機el表示ユニットの製造方法
WO2012026209A1 (ja) 有機発光装置およびその帯電防止方法
JP5094477B2 (ja) 有機発光表示装置及びその製造方法
WO2012090786A1 (ja) 発光デバイス、表示装置、及び照明装置
US9123665B2 (en) Organic EL device, method for manufacturing the same, and electronic apparatus
WO2011083620A1 (ja) 複数の発光パネルを有する照明装置
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
WO2011040294A1 (ja) 有機エレクトロルミネッセンス素子
JPH10289784A (ja) 有機電界発光素子
JP2013109907A (ja) 蛍光体基板および表示装置
CN107665953B (zh) 极高分辨率堆叠oled显示器和其制造方法
WO2007086137A1 (ja) 光デバイス、および光デバイスの製造方法
WO2012043172A1 (ja) 蛍光体基板、およびこれを用いた表示装置、照明装置
JP4718761B2 (ja) 発光装置の作製方法
WO2011024348A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置、有機エレクトロルミネッセンス照明装置、および有機エレクトロルミネッセンス素子の製造方法
WO2011024346A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置、および有機エレクトロルミネッセンス照明装置
JP2010277949A (ja) 有機el表示装置及びその製造方法
WO2012121287A1 (ja) 蛍光体基板および表示装置
WO2011102023A1 (ja) 有機エレクトロルミネッセンス素子及び表示装置
JP4314000B2 (ja) 表示装置
WO2012046599A1 (ja) 発光デバイス、表示装置、及び電子機器
JP2008234890A (ja) 有機エレクトロルミネセンスパネル及び有機エレクトロルミネセンス表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054689.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011544286

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512861

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10834608

Country of ref document: EP

Kind code of ref document: A1