WO2011067423A1 - Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción - Google Patents

Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción Download PDF

Info

Publication number
WO2011067423A1
WO2011067423A1 PCT/ES2009/070549 ES2009070549W WO2011067423A1 WO 2011067423 A1 WO2011067423 A1 WO 2011067423A1 ES 2009070549 W ES2009070549 W ES 2009070549W WO 2011067423 A1 WO2011067423 A1 WO 2011067423A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
power
electric motors
overexcitation
coupling
Prior art date
Application number
PCT/ES2009/070549
Other languages
English (en)
French (fr)
Inventor
José Ignacio IGLESIAS AGUINAGA
Angel Goti Atxa
Adrián MARTÍN SANDI
Alberto PEÑA RODRÍGUEZ
Original Assignee
Fundacion Robotiker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Robotiker filed Critical Fundacion Robotiker
Priority to EP09804268A priority Critical patent/EP2508385A1/en
Priority to PCT/ES2009/070549 priority patent/WO2011067423A1/es
Publication of WO2011067423A1 publication Critical patent/WO2011067423A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention falls within the technical field of the automotive industry, and more specifically in the purely electric propulsion systems of both automobile and industrial vehicles, particularly small industrial vehicles, provided with direct drive systems in which the tractor wheels of the vehicle are directly connected to two electric motors.
  • Electric propulsion vehicles have great advantages over those of internal combustion and one of the main ones is the very high efficiency with which electric machines work that can exceed 95%, while the two types of engines mostly used today, the Otto cycle engine and diesel engine, do not exceed 25-30% efficiency in the case of Otto, and 30-45% in the case of diesel, taking into account that diesel engines are engines with high efficiencies between of internal combustion used in vehicular applications.
  • direct drive the direct drive configuration
  • motor in wheel the motor in wheel
  • direct drive is based on the transmission of the torque of the electric motor to the tractor wheel by means of a direct mechanical connection (flanged and bearing), without any other type of movement transformation.
  • direct drive By means of direct drive, the losses associated with differentials and stages of reduction can be reduced (therefore it is proposed as a solution of high mechanical efficiency), simplifying the system.
  • Another advantage is that direct drive motors are anchored to the chassis and therefore form part of the suspended mass of the vehicle (the one corresponding to the proportion of the total mass that is supported by the suspension), reducing the non-suspended mass. (which includes all or part of the mass of components such as wheels, sleeves, bearings, suspension arms, etc.), and thereby improving the dynamic behavior of the suspension.
  • the wheel motor propulsion system is a solution consisting of bringing the direct drive to its last expression, directly connecting the electric motor to the wheel without intermediate mechanical elements, thus integrating the motor into the gap that exists in the tire.
  • This arrangement obtains a global mechanical efficiency slightly higher than direct drive (this increase is due to the elimination of losses in the bearing and homokinetic joints), although at the level of dynamic behavior the wheel motor system presents several drawbacks that are detailed in continuation:
  • This problem can be particularly important in vehicles of reduced total power, and in which in certain situations of low or different adhesion between wheels of the same axis, it would be convenient to be able to transmit to the ground all the available power in the system to maintain minimum performance Vehicle dynamics It would also have application to enable the maximum use of the regenerative braking that vehicles with electric propulsion systems have.
  • German patent application DE-A-4434237 describes an axle of a vehicle with individual electric motors connected to the tractor wheels through their respective gears. Steering movements are recorded using a sensor, and individual motor loads are measured to ensure optimal distribution through coupling control means, which controls a clutch that allows the motors to be interconnected.
  • this system is not based on the direct drive of the drive wheels and, therefore, suffers from the disadvantages already mentioned when introducing mechanical elements into the propulsion system, such as differentials, homokinetic joints and reduction stages, efficiency Global propulsion system decreases, and in turn increases the weight of the vehicle, which results in worse energy consumption.
  • the PCT patent application WO 2004/035342 describes a vehicle with individual transmissions to the tractor wheels in which electric motors are arranged radially out of the tractor wheels and connected thereto. Tractor wheels can be connected or disconnected through a clutch.
  • This patent does not have a direct drive arrangement of the driving wheels and, therefore, suffers from the disadvantages already mentioned when introducing mechanical elements into the propulsion system, such as differentials, homokinetic joints and reduction stages, the overall efficiency of the system propulsion decreases, and in turn increases the weight of the vehicle, impacting it on worse energy consumption.
  • US-3799284 refers to a propulsion system that includes two electric motors that can act independently or together, depending on the situation of a differential that joins them. This patent does not present a direct drive arrangement of the driving wheels, therefore it presents the aforementioned problems.
  • the mechanical connection between the two motors by means of a differential is not very flexible in terms of degree of coupling.
  • US-2005067199 describes a propulsion device comprising two electric motors and a clutch.
  • the motors have an output shaft that goes directly to the clutch, which allows one of the engines to be used alternately depending on the traffic conditions. It is not about direct drive motors to the wheels.
  • German patent DE-102005026874 describes a propulsion system for all-terrain vehicles that incorporates two electric motors and three clutches on a tractor axle, which increases its complexity, increases wear and makes the control logic also complex.
  • German patent DE-102006028790 still refers to the mechanism of distribution of torque of permanent use, with which the losses of the system by the coupling are continuous.
  • the ES-2027099 patent refers to an electronic differential for electric vehicles with a total coupling in case of emergency, making it a rigid axle with the consequent danger and reduced maneuverability.
  • US Patent No. 5453930 describes a drive system for electric vehicle wheels with at least two electric motors connected to the wheels independently of one another.
  • Each of the engines inherently has different torque characteristics with respect to the turning speed and maximum torque, and a control device that responds to the driving conditions and the characteristics of the engine torque of the vehicle's engines in one mode. of lower consumption in which at least one of the motors is propelled in a high efficiency range to ensure the possibility of traveling a long instance for each battery charge.
  • the wheel motor system described in this patent presents the problem described above, that is, when one of the wheels loses grip, the power available in the electric motor that drives that wheel cannot be used to move the vehicle, so that The dynamic performance of the vehicle decreases as the total power of the two electric motors of the system cannot be used.
  • US patent application US 2005/252701 describes a propellant system for an electric vehicle that allows to select the tractor wheels according to the circumstances on the road. Each wheel has its own engine capable of operating as a propellant or regenerative brake, as selected to propel or brake according to the circumstances of the vehicle.
  • the wheel motor system described in this patent also presents the problem described above, that is, when one of the wheels loses grip, the power available in the electric motor that drives that wheel cannot be used to move the vehicle, so that the dynamic performance of the vehicle decreases by not being able to use the total power of the two electric motors of the system.
  • Japanese patent application JP-A-2008207739 describes an electric vehicle with light electric motors connected to two hubs of the tractor wheels, provided, among other elements, with two internal power adjustment devices connected to the electric motors, as well as clutches. of the devices that are actuated in order to connect the right tractor wheel to the left wheel motor.
  • two clutches per motor are disposed within the engine, resulting in a complex system in terms of the system as such and in terms of its manufacturing, high cost , while the use of the plurality of clutches implies many losses in the form of energy dissipation and, therefore, a reduction in efficiency.
  • Patent ES-2289726T3 describes a vehicle with all-wheel drive that includes at least two axles and an electric or hydraulic drive device that has several electric or hydraulic motors each associated with one of the driving wheels and which drive it. Through a gear.
  • the motors of one axle can be coupled to each other by means of switchable transverse blocking devices and at least one motor of one side of the vehicle can be coupled, through a switchable longitudinal locking device with a motor associated to one of the other axles.
  • This system does not allow optimal use of the system.
  • the object of the present invention is to overcome the drawbacks of the state of the art detailed above, by means of a traction system for a direct drive electric vehicle comprising a right electric motor with a first right power axis directly connected to a right tractor wheel and an electric motor with a first left power shaft connected directly to a left tractor wheel, a traction control circuit comprising sensing means and transmitting additional power to a tractor wheel when the sensing means detects a loss of traction of another wheel tractor unit, means of overexcitation to individually and incrementally overexcite each electric motor during a time of overexcitation and with a power of over-excitation, and at least one power source that feeds the electric motors, in which the traction control circuit comprises a coupling device connected to two second power axes of the electric motors and capable of carrying out a transmission of variable torque from a degree of zero coupling up to a degree total coupling between electric motors, as well as a management logic that activates and regulates the degree of coupling of the coupling device between electric motor
  • the present invention allows to have an electric propulsion system composed of two motors in direct drive arrangement or wheel motor, with a connectable mechanical coupling that allows the torque to pass from one motor to another when low is detected.
  • adhesion that is, a loss of traction on one of the wheels, which will vary its torque transmission from a zero coupling (0% transmitted torque between the two motors) to a total coupling (100% transmitted torque between the two motors), with the infinite intermediate possibilities available.
  • the management logic allows a variable degree of coupling between both electric motors, depending on the adhesion available on each wheel, and the time that the sliding situation lasts.
  • the traction control circuit further comprises comparator means for comparing the degree of traction loss of each wheel and continuously determining which of the electric motors is connected to a wheel with the greatest loss of traction and which of The engines are connected to a wheel with less traction loss; means of overexcitation to individually and incrementally overexcite each electric motor during a time of overexcitation and with an overexcitation power; power control means to derive, through the means of overexcitation, electrical power from the power supply, from the electric motor connected to the wheel with a greater degree of loss of traction to the electric motor connected to the wheel with a lower degree of traction loss when the loss of traction exceeds a threshold of traction loss; detecting means for detecting individually if the total overexcitation time at a real overexcitation power of each electric motor exceeds a maximum allowed threshold of continuous overexcitation of the electric motor; as well as activating means for stopping the overexcitation means and activating said management logic if the actual overexcitation time exceeds a maximum allowed time threshold
  • the management logic allows, in addition to a variable degree of coupling between both electric motors, depending on the adhesion available on each wheel, to control the duration of the sliding situation depending on the characteristics of the motor (peak power and time that the electric motor can maintain that power without being damaged), in order to avoid damage to the electric motors.
  • the total continuous sliding time is less than the maximum time that the motor can be continuously overexcited, the motor will continue to be overexcited with traction incrementally, but when the total continuous sliding time is greater than the maximum continuous overexcitation time of the engine, the mechanical coupling device will start to activate incrementally until the slip disappears.
  • this solution can achieve a good compromise (high efficiency, high reliability).
  • the electric propulsion system maintains periods of slippage, ie periods of loss of traction of a vehicle. or both tractor wheels, tall and continuous.
  • the system would be designed in its entirety or to understand a mode of operation, which will make it possible to use the motors in an overexcited way, in which the overall efficiency of the system will be maximum by avoiding coupling losses.
  • the coupling would come into operation, lowering the request of the motors, which would re-enter the overexcited mode when the operating conditions allowed.
  • efficiency would be optimized, using overexcitation as long as possible, and using the coupling when necessary and the electric motors could be damaged.
  • a second application occurs in systems in which the motors do not allow too high overexcitation ( ⁇ 20-25%), so that the system can be designed taking into account this low overexcitation and with a more continuous use of the coupling.
  • the overall efficiency could remain high, and the complete traction system could be designed with very optimized minimum total power requirements (and with engines with a low permissible overexcitation and basically nominal operation), having this option of being able to have the entire system torque in a single wheel blocking the coupling at 100%.
  • the coupling device is designed in such a way as to allow a variable degree of slip (variable torque transmission between 0-100% between electric motor shafts), and with zero or negligible wear, and low energy dissipation. , to obtain a high efficiency of the set.
  • the coupling device must be a type of clutch designed looking for these three requirements that will allow continued use without appreciable wear, a variable torque transmission range and high efficiency by not offering significant energy losses, which could reduce the Good efficiency of electric motors, and lower overall efficiency which is one of the strengths of the proposed solution.
  • the traction system according to the present invention is of the direct drive type in which the electric motors are anchored in the vehicle chassis and each of the first power axes is connected to one of the tractor wheels. through two coupling shafts, so that the coupling device is mounted between the two electric motors and connected to the respective second power axes.
  • the traction system according to the invention is of a wheel motor type in which each of the electric motors is anchored in a hollow of a wheel of a tractor wheel and each of the first power axes is directly connected to one of the tractor wheels, so that the coupling device is mounted between the two electric motors in the vehicle chassis and connected to the respective second power axes through a coupling shaft.
  • the present invention relates to a propulsion vehicle with electric motors, which comprises the traction system described above.
  • the present invention has different advantages over the traditional solution of overexciting electric motors to take them to ways in which they can offer a significant increase in power (peak power) over nominal, to solve the problem of lack of power in one of the Wheels when the other is sliding.
  • peak power peak power
  • the present invention allows the system to be sized of electric propulsion optimally, so that without the need to design the drive assembly with electric motors that have very high peak power values for long periods of time, through the use of a mechanical connection of the two engines the vehicle can maintain its dynamic qualities, solving the problem of the sliding of one of the tractor wheels, passing the unused power at that moment in the wheel that slides to the one that has a good traction by means of the system of adjustable coupling (clutch).
  • the present invention solves the drawbacks of the prior art state of the art traction systems, allowing not to use or use this overexcited high power mode for short periods of time, mechanically connecting the two motors when the power requirements are for longer periods of time, in which the electric motors could be damaged, in addition to allowing to design the electric propulsion assembly having in mind a sizing (torque, power) of the electric motors much more conservative, since the possibility of connecting the motors physically allows that altogether it is not necessary to work with overexcitations or so high peak powers are not necessary for situations in which there is slippage, directly influencing the sophistication of the motors and by therefore in the final price of the traction system, and so to the electric vehicle.
  • Figure 1 is a front schematic view illustrating the mechanical and electromechanical elements of a basic embodiment of the traction system according to the invention
  • FIG. 2 is a block diagram of an embodiment of the control circuit according to the present invention.
  • Figure 3 is a diagram showing an embodiment of the mode of basic operation of the management logic integrated in the control circuit shown in a figure 2;
  • Figure 4 is a schematic front view, partially sectioned, of the system shown in Figure 1 with its coupling device in the disconnected state;
  • Figure 5 is a schematic front view, partially sectioned, of the system shown in Figure 1 with its coupling device in connected state:
  • Figure 6 is a schematic front sectional view of an embodiment of the system according to the invention applied to a direct drive system
  • Figure 7 is a schematic front sectional view of an embodiment of the system according to the invention applied to a motor wheel system.
  • Figure 1 shows an embodiment of the invention for the front axle of a direct drive electric vehicle -19-, comprising a right electric motor -3a- with a first right power shaft -2a- connected directly to a tractor wheel right -1 a- and a left electric motor -3b- with a first left power shaft -2b- connected directly to a left tractor wheel -1 b-.
  • a frictionless coupling device -5- such as an Eddy current clutch, connected to two second power shafts -4a, 4b- of the electric motors -3a, 3b- and capable of carrying out a variable torque transmission from a degree of zero coupling to a degree of total coupling between the electric motors -3a, 3b-.
  • the motors -3a, 3b- and the coupling device -5- are connected to a traction control circuit -7- intended to transmit additional power to one of the tractor wheels -1 a, 1 b- when, by means of sensors -7a, 7b- it detects a loss of traction of another tractor wheel -1 a, 1 b-.
  • traction control circuit -7- comprises comparator means -9- to compare the degree of traction loss of each tractor wheel -1 a, 1 b- with each other individually detected by each of the sensor means -7a, 7b- and continuously determine which of the electric motors -3a, 3b- is connected to a wheel with greater traction loss and which of the electric motors -3a, 3b- is connected to a tractor wheel -3a, 3b- with less loss traction
  • the comparator means -9- are connected to power control means -10a, 10b- which, through overexcitation means -1 1 a, 1 1 b-, derive electrical power from the power supply -8-, from the electric motor
  • the overexcitation means -1 1 a, 1 1 b- individually and incrementally overexcite each electric motor 3a, 3b during an overexcitation time and with an overexcitation power and are connected to detector means -12a, 12b- which individually detect if the total overexcitation time at a real overexcitation power of each electric motor -3a, 3b- exceeds a maximum allowed time threshold of continuous overexcitation of the electric motor -3a, 3b-.
  • any of the detecting means -12a, 12b- detects that the actual overexcitation time of at least one of the electric motors -3a, 3b- exceeds a maximum permissible time threshold of the electric motor -3a, 3b- respective overexcited, sends the signal corresponding to activating means -13- that then stop the overexcitation means -1 1 a, 1 1 b- and activate a management logic -6- connected to the coupling device -5-, so that the means activators -12- keep the coupling device -5- active until the traction loss is again below the traction loss threshold.
  • the management logic -6- that activates and regulates the coupling degree of the coupling device -5- between the electric motors -3a, 3b- depending on the degree of traction loss of the minus a tractor wheel -1 a, 1 b-, detected by the sensor means -7a, 7b-.
  • FIG 6 shows an embodiment of the present invention applied to the front axle of a conventional direct drive drive system itself. It can be seen that, in this embodiment, the electric motors -3a, 3b- are anchored in the chassis -18- of the vehicle -19- and each of the first power axes -2a, 2b- is connected to one of the wheels tractors -1 a, 1 b- through two coupling shafts -14a, 14b-, while the coupling device -5- is mounted between the two electric motors -3a, 3b- and connected to the respective second axes of power -4a, 4b-.
  • Figure 7 shows a Figure 6 shows an embodiment of the present invention applied to the front axle of a conventional motor wheel drive system.
  • the electric motors -3a, 3b- are anchored in the respective holes -15a, 15b- of two -16a, 16b- wheels of the tractor wheels -1 a, 1 b-.
  • Each of the first power shafts -2a, 2b- is directly connected to one of the tractor wheels -1 a, 1 b-, while the coupling device -5- is mounted, between the two electric motors - 3a, 3b-, in the chassis -18- of the vehicle -19- and connected to the respective second power shafts -4a, 4b- through two coupling shafts -17a, 17b-.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Sistema de tracción para un vehículo eléctrico de accionamiento directo sendos motores eléctricos (3a, 3b) con respectivos primeros eje de potencia (2a, 2b) conectados directamente a una rueda tractora derecha (1a) y a una rueda tractora izquierda (1b), un circuito de control de tracción (7) que transmite potencia adicional a una rueda tractora (1a, 1b) cuando unos medios sensores (7a, 7b) detectan una pérdida de tracción de otra rueda tractora (1a, 1b), y que comprende un dispositivo de acoplamiento (5) conectado a sendos segundos ejes de potencia (4a, 4b) de los motores eléctricos (3a, 3b) para realizar una transmisión de par variable desde un grado de acoplamiento nulo hasta a un grado acoplamiento total entre los motores eléctricos (3a, 3b); una lógica de gestión (6) que activa y regula el grado de acoplamiento del dispositivo de acoplamiento (5) entre los motores eléctricos (3a, 3b) en función del grado de pérdida de tracción de una rueda tractora (1a, 1b).

Description

SISTEMA DE TRACCIÓN PARA UN VEHÍCULO ELÉCTRICO Y VEHÍCULO ELÉCTRICO QUE COMPRENDE EL SISTEMA DE TRACCIÓN
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se encuadra en el campo técnico de la industria de la automoción, y más concretamente en los sistemas de propulsión puramente eléctricos de vehículos tanto automóviles como industriales, particularmente vehículos industriales pequeños, provistos de sistemas de accionamiento directo en los que las ruedas tractoras del vehículo están conectadas directamente a sendos motores eléctricos.
ANTECEDENTES DE LA INVENCIÓN
Dentro de las tecnologías de propulsión disponibles y de uso en aplicaciones de tracción dentro del campo de automoción, la tracción eléctrica presenta unas características muy atractivas de cara a poder llegar a ser la tecnología de uso mayoritario en los próximos años.
Los vehículos de propulsión eléctrica tienen grandes ventajas sobre los de combustión interna y una de las principales es la altísima eficiencia con las que trabajan las maquinas eléctricas que puede superar el 95%, mientras que los dos tipos de motores mayoritariamente usados en la actualidad, el motor de ciclo Otto y el motor diesel, no superan el 25-30% de eficiencia en el caso del Otto, y el 30-45% en el caso del diesel, teniendo en cuenta que los motores diesel son motores con altas eficiencias entre los de combustión interna usados en aplicaciones vehiculares.
A medida que se introducen elementos mecánicos en el sistema de propulsión, como diferenciales, juntas homocinéticas y estadios de reducción, la eficiencia global del sistema de propulsión disminuye, y a su vez aumenta el peso del vehículo, lo repercute en unos peores consumos energéticos. Por lo tanto, de entre todas las arquitecturas de vehículos eléctricos existentes, las que prescinden de elementos mecánicos que introduzcan pérdidas, como elementos de modificación del par, velocidad, ángulo de ataque, etc. entre la salida de fuerza del motor y la rueda son los más apropiados en términos de eficiencia energética, afectando directamente a la mejora de la eficiencia global del sistema de propulsión.
Actualmente, siguiendo este concepto de reducir al máximo los elementos mecánicos entre la salida del motor eléctrico y la rueda, existen básicamente dos tipos de configuraciones que se utilizan a la hora de diseñar un sistema de propulsión puramente eléctrico; la configuración de accionamiento directo ("direct drive") y la de motor en rueda ("motor in wheel"), que se puede considerar como un tipo particular de la configuración de accionamiento directo.
El concepto de accionamiento directo se basa en la transmisión del par del motor eléctrico a la rueda tractora mediante una conexión mecánica directa (embridado y palier), sin ningún otro tipo de transformación del movimiento. Mediante el accionamiento directo se consigue reducir las pérdidas asociadas a diferenciales y estadios de reducción (por lo tanto se plantea como una solución de alta eficiencia mecánica), simplificando a su vez el sistema. Otra de las ventajas es que los motores de accionamiento directo van anclados al chasis y por lo tanto forman parte de la masa suspendida del vehículo (la correspondiente a la proporción de la masa total que es soportada por la suspensión), reduciendo la masa no suspendida (que incluye la totalidad o una parte de la masa de componentes como las ruedas, manguetas, rodamientos, brazos de suspensión, etc.), y mejorando por lo tanto el comportamiento dinámico de la suspensión.
El sistema de propulsión motor en rueda es una solución consistente en llevar el accionamiento directo a su última expresión, conectando directamente el motor eléctrico a la rueda sin elementos mecánicos intermedios, quedando integrado por lo tanto el motor dentro del hueco que existe en la llanta. Esta disposición obtiene una eficiencia mecánica global ligeramente mayor que el accionamiento directo (este aumento es debido a la eliminación de las pérdidas en el palier y juntas homocinéticas), aunque a nivel de comportamiento dinámico el sistema motor en rueda presenta varios inconvenientes que se detallan a continuación:
- Aumento de peso de la masa no suspendida, que puede ser muy alta en algunos casos si se quieren alcanzar potencias elevadas, comprometiendo el buen comportamiento de la suspensión que está directamente ligado al peso de la masa no suspendida, mejorando este comportamiento cuando la masa no suspendida se reduce.
- Los sistemas motor en rueda están mucho más expuestos a las condiciones adversas, como suciedad, agentes oxidantes y/o corrosivos, etc., así como a vibraciones mucho mayores que una disposición de accionamiento directo convencional.
Los sistemas de tracción eléctrica usados en la actualidad basados en ambas disposiciones (accionamiento directo y motor en rueda), presentan soluciones en las que las dos ruedas tractoras del mismo eje no tienen ningún tipo de unión mecánica que permita el acoplamiento regulado de sus movimientos. Esto provoca que cuando una de las ruedas pierde adherencia, la potencia disponible en el motor eléctrico que acciona esa rueda no puede ser utilizada para mover el vehículo, con lo que el rendimiento dinámico del vehículo disminuye al no poder utilizar la potencia total de los dos motores eléctricos del sistema. Este problema puede ser particularmente importante en vehículos de potencia total reducida, y en los que en determinadas situaciones de baja o diferente adherencia entre ruedas de un mismo eje, sería conveniente poder transmitir al suelo toda la potencia disponible en el sistema para mantener unas mínimas prestaciones dinámicas del vehículo. Tendría también aplicación para posibilitar el aprovechamiento máximo del frenado regenerativo que disponen los vehículos con sistemas de propulsión eléctrica.
Actualmente este problema tiene una solución relativamente sencilla basada en las características de los motores eléctricos, que permiten funcionamientos por encima del régimen nominal durante un periodo relativamente alto (dependiendo del tipo de motor), y ofreciendo en algunos casos de motores orientados al sector de automoción, potencias superiores en un 45-50% al nominal durante periodos que pueden oscilar entre los 60-90 segundos. Esta característica permite resolver el problema anteriormente citado de falta de potencia final en una de las ruedas, simplemente llevando el motor correspondiente a esa rueda a un modo de funcionamiento sobreexcitado, consiguiendo una potencia extra durante periodos cortos de tiempo. La desventaja de esta solución es que si el vehículo circula por terrenos muy deslizantes, será necesario el uso de los motores en estos modos sobreexcitados durante largos periodos de tiempo, con lo que los motores acabaran siendo dañados, al estar diseñados para funcionar en estos modos sobreexcitados solamente durante cortos periodos de tiempo.
La solicitud de patente alemana DE-A-4434237 describe un eje de un vehículo con sendos motores eléctricos individualmente conectados a las ruedas tractoras a través de sus respectivos engranajes. Mediante un sensor se registran los movimientos de la dirección, y las cargas de los motores individuales se miden para asegurar una distribución óptima a través de medios de control de acoplamiento, que controla un embrague que permite interconectar los motores. No obstante, este sistema no se basa en el accionamiento directo de las ruedas motrices y, por tanto, adolece de las desventajas ya anteriormente comentadas al introducir elementos mecánicos en el sistema de propulsión, como diferenciales, juntas homocinéticas y estadios de reducción, la eficiencia global del sistema de propulsión disminuye, y a su vez aumenta el peso del vehículo, lo que repercute en unos peores consumos energéticos. La solicitud de patente PCT WO 2004/035342 describe un vehículo con transmisiones individuales a las ruedas tractoras en las que unos motores eléctricos están dispuestos radialmente hacia fuera de las ruedas tractoras y conectados a los mismos. Las ruedas tractoras pueden conectarse o desconectarse a través de un embrague. Esta patente no presenta una disposición de accionamiento directo de las ruedas motrices y, por tanto, adolece de las desventajas ya anteriormente comentadas al introducir elementos mecánicos en el sistema de propulsión, como diferenciales, juntas homocinéticas y estadios de reducción, la eficiencia global del sistema de propulsión disminuye, y a su vez aumenta el peso del vehículo, lo repercute en unos peores consumos energéticos. La patente US-3799284 se refiere a un sistema de propulsión que incluye dos motores eléctricos que pueden actuar de manera independiente o conjunta, dependiendo de la situación de un diferencial que los une. Esta patente no presenta una disposición de accionamiento directo de las ruedas motrices por lo que presenta los problemas ya mencionados. Además la unión mecánica entre los dos motores mediante un diferencial es poco flexible en cuanto a grado de acoplamiento.
La patente US-2005067199 describe un dispositivo de propulsión que comprende dos motores eléctricos y un embrague. Los motores presentan un eje de salida que va directamente al embrague lo que permite usar alternativamente uno de los motores dependiendo de las condiciones de circulación. No se trata de motores de accionamiento directo a las ruedas.
La patente alemana DE-102005026874 describe un sistema de propulsión para vehículos todo terreno que incorpora en un eje tractor dos motores eléctricos y tres embragues, lo que aumenta su complejidad, aumenta el desgaste y hace que la lógica de control resulte también compleja.
La patente alemana DE-102006028790 se refiere aun mecanismo de distribución de par de uso permanente, con lo que las perdidas del sistema por el acoplamiento son continuas.
La patente ES-2027099 se refiere a un diferencial electrónico para vehículos eléctricos con un acoplamiento total en caso de emergencia, convirtiéndolo en un eje rígido con la consecuente peligrosidad y reducción en la maniobrabilidad.
La patente estadounidense US-5453930 describe un sistema propulsor para ruedas de vehículos eléctricos con al menos dos motores eléctricos conectados a las ruedas independientemente uno de otro. Cada uno de los motores inherentemente presenta características de par distintas con respecto a la velocidad de giro y al par máximo, y un dispositivo de control que responde a las condiciones de marcha y a las características de los motor par de los motores del vehículo en un modo de menor consumo en el que al menos uno de los motores es propulsado en un rango de alta eficiencia para asegurar la posibilidad de recorrer un larga instancia por cada carga de batería. EL sistema motor en rueda descrito en esta patente presenta el problema ya anteriormente descrito, es decir, cuando una de las ruedas pierde adherencia, la potencia disponible en el motor eléctrico que acciona esa rueda no puede ser utilizada para mover el vehículo, con lo que el rendimiento dinámico del vehículo disminuye al no poder utilizar la potencia total de los dos motores eléctricos del sistema.
La solicitud de patente estadounidense US 2005/252701 describe un sistema propulsor para un vehículo eléctrico que permite seleccionar las ruedas tractoras de acuerdo con las circunstancias en carretera. Cada rueda tiene su propio motor capaz de funcionar como propulsor o freno regenerativo, según sea seleccionado para propulsar o frenar de acuerdo con las circunstancias de marcha del vehículo. EL sistema motor en rueda descrito en esta patente también presenta el problema ya anteriormente descrito, es decir, cuando una de las ruedas pierde adherencia, la potencia disponible en el motor eléctrico que acciona esa rueda no puede ser utilizada para mover el vehículo, con lo que el rendimiento dinámico del vehículo disminuye al no poder utilizar la potencia total de los dos motores eléctricos del sistema.
La solicitud de patente japonesa JP-A-2008207739 describe un vehículo eléctrico con motores eléctricos ligeros conectados a sendos bujes de las ruedas tractoras, provisto de, entre otros elementos, sendos dispositivos de ajuste de potencia interiores conectados a los motores eléctricos, así como embragues de los dispositivos que se accionan para poder conectar la rueda tractora derecha al motor en rueda izquierdo. En el sistema de accionamiento de tipo motor en rueda descrito en este documento se emplean dos embragues por motor dispuestos dentro del motor, lo que resulta en un sistema complejo en lo se refiere al sistema como tal y en cuanto a su fabricación, de coste elevado, a la vez que el uso de la pluralidad de embragues implica muchas pérdidas en forma de disipación de energía y, por lo tanto, una reducción en la eficiencia.
La patente ES-2289726T3 describe un vehículo con tracción a todas las ruedas que incluye al menos dos ejes y un dispositivo de accionamiento eléctrico o hidráulico que presenta varios motores eléctricos o hidráulicos asociados cada uno de ellos a una de las ruedas motrices y que accionan ésta a través de un engranaje. Los motores de un eje pueden acoplarse entre si mediante dispositivos de bloqueo transversal conmutables y al menos un motor de un lado del vehículo puede acoplarse, a través de un dispositivo de bloqueo longitudinal conmutable con un motor asociados a uno de los otros ejes. Este sistema no permite un aprovechamiento óptimo del sistema.
Ninguno de estos documentos describe un sistema de accionamiento directo (o motor en rueda que sería también una disposición similar al no disponer del mismo modo que el accionamiento directo, de estadios de reducción, diferenciales, juntas homocinéticas, etc.), en el que la potencia del motor eléctrico conectado a una rueda con pérdida de tracción pueda ser aprovechada de forma variable entre un 0 y un 100% para propulsar la rueda que no ha sufrido, o que ha sufrido menos pérdida de tracción.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención tiene por objeto superar ios inconvenientes del estado de la técnica más arriba detallados, mediante un sistema de tracción para un vehículo eléctrico de accionamiento directo que comprende un motor eléctrico derecho con un primer eje de potencia derecho conectado directamente a una rueda tractora derecha y un motor eléctrico con un primer eje de potencia izquierdo conectado directamente a una rueda tractora izquierda, un circuito de control de tracción que comprende medios sensores y que transmite potencia adicional a una rueda tractora cuando los medios sensores detectan una pérdida de tracción de otra rueda tractora, medios de sobreexcitación para sobreexcitar individualmente e incrementalmente cada motor eléctrico durante un tiempo de sobreexcitación y con una potencia de sobrexcitación, y ai menos una fuente de alimentación que alimenta ios motores eléctricos, en el que el circuito de control de tracción comprende un dispositivo de acoplamiento conectado a sendos segundos ejes de potencia de los motores eléctricos y susceptible de realizar una transmisión de par variable desde un grado de acoplamiento nulo hasta a un grado acoplamiento total entre los motores eléctricos, así como una lógica de gestión que activa y regula el grado de acoplamiento del dispositivo de acoplamiento entre los motores eléctricos en función del grado de pérdida de tracción de al menos una rueda tractora, detectada por los medios sensores y en función de si el tiempo de sobreexcitación de cada uno de los motores eléctricos supera un valor umbral de manera que debajo de este valor umbral no se producirá la activación del dispositivo de acoplamiento si se puede solucionar la pérdida de tracción por sobreexcitación del motor.
Se puede observar, que la presente invención permite contar con un sistema de propulsión eléctrica compuesto por dos motores en disposición de accionamiento directo o motor en rueda, con un acoplamiento mecánico conectable que permite el paso de par de un motor a otro cuando se detecta baja adherencia, es decir, una pérdida de tracción en una de las ruedas, que variara su transmisión de par desde un acoplamiento nulo (par transmitido 0% entre los dos motores) a un acoplamiento total (par transmitido 100% entre los dos motores), con las infinitas posibilidades intermedias disponibles. De esta forma, la lógica de gestión permite un grado de acoplamiento variable entre ambos motores eléctricos, dependiente de la adherencia disponible en cada rueda, y del tiempo que dure la situación de deslizamiento.,
En una realización preferente de la invención, el circuito de control de tracción comprende además medios comparadores para comparar el grado de pérdida de tracción de cada rueda y determinar continuamente cuál de los motores eléctricos está conectado a una rueda con mayor pérdida de tracción y cuál de los motores está conectado a una rueda con menor pérdida de tracción; medios de sobreexcitación para sobreexcitar individualmente e incrementalmente cada motor eléctrico durante un tiempo de sobreexcitación y con una potencia de sobrexcitación; medios controladores de potencia para derivar, a través de los medios de sobreexcitación, potencia eléctrica de la fuente de alimentación, desde el motor eléctrico conectado a la rueda con mayor grado de pérdida de tracción hacia el motor eléctrico conectado a la rueda con menor grado de pérdida de tracción cuando la pérdida de tracción supera un umbral de pérdida de tracción; medios detectores para detectar individualmente si el tiempo de sobreexcitación total a una potencia de sobreexcitación real de cada motor eléctrico supera un umbral de tiempo máximo admitido de sobreexcitación continuada del motor eléctrico; así como medios activadores para parar los medios de sobreexcitación y activar dicha lógica de gestión si el tiempo de sobreexcitación real supera un umbral de tiempo máximo admitido de motor eléctrico sobrexcitado de tal forma que los medios activadores mantienen activo el dispositivo mecánico de acoplamiento hasta que la pérdida de tracción vuelva a estar debajo del umbral de pérdida de tracción.
En esta realización preferente, la lógica de gestión permite, además de un grado de acoplamiento variable entre ambos motores eléctricos, dependiente de la adherencia disponible en cada rueda, controlar el tiempo que dure la situación de deslizamiento dependiendo de las características del motor (potencia pico y tiempo que el motor eléctrico puede mantener esa potencia sin dañarse), para así evitar daños en los motores eléctricos. Así, si el tiempo total de deslizamiento continuado es menor que el tiempo máximo que el motor puede estar continuamente sobreexcitado, se seguirá sobreexcitando el motor con tracción incrementalmente, pero cuando el tiempo total de deslizamiento continuado sea mayor que el tiempo máximo de sobreexcitación continuada del motor, se comenzará a activar el dispositivo mecánico de acoplamiento incrementalmente hasta que el deslizamiento desaparezca. Por lo tanto, en esta realización preferente se plantea tanto la utilización de la sobreexcitación del motor fuera de sus rangos nominales, como el uso del sistema de acoplamiento mecánico para poder resolver el problema de falta de tracción pasando par de un motor a otro. Dependiendo de las características de la aplicación, y de la situación de deslizamiento concreta se pueden plantear varios escenarios en los que esta solución podrá lograr un buen compromiso (alta eficiencia, alta fiabilidad).
En una primera aplicación, como la que puede ser por ejemplo el caso de un vehículo agrícola o el de un vehículo todoterreno que se desplaza por terrenos deslizantes, el sistema de propulsión eléctrico mantiene periodos de deslizamiento, es decir periodos de pérdida de tracción de una o ambas ruedas tractoras, altos y continuados. En este caso el sistema se diseñaría en su totalidad o para comprender un modo de funcionamiento, que posibilitara al máximo el uso de los motores en modo sobreexcitado, en el que la eficiencia global del sistema será máxima al evitar las pérdidas del acoplamiento. Cuando el sistema sobrepasara el tiempo máximo continuado de sobreexcitación de los motores, entraría en funcionamiento el acoplamiento, bajando la solicitación de los motores, que volverían a entrar en modo sobreexcitado cuando las condiciones de funcionamiento lo permitieran. En esta aplicación se optimizaría la eficiencia, usando la sobreexcitación el mayor tiempo posible, y utilizando el acoplamiento cuando fuera necesario y los motores eléctricos pudieran dañarse.
Una segunda aplicación se da en sistemas en los que los motores no permiten una sobreexcitación demasiado elevada (<20-25%), con lo que el sistema se puede diseñar teniendo en cuenta esta baja sobreexcitación y con un uso más continuado del acoplamiento. En estos casos y dependiendo de la aplicación (aplicaciones con baja probabilidad de adherencia baja por ejemplo), la eficiencia global podría seguir siendo alta, y se podría diseñar el sistema de tracción completo con unos requisitos de potencia total mínima muy optimizados (y con motores con una sobreexcitación permisible baja y funcionamiento en nominal básicamente), al tener esta opción de poder disponer de todo el par del sistema en una sola rueda bloqueando el acoplamiento al 100%.
Convenientemente, el dispositivo de acoplamiento está diseñado de tal forma que permita un grado de deslizamiento variable (transmisión de par variable entre un 0-100% entre ejes de motores eléctricos), y con un desgaste nulo o despreciable, y una disipación de energía baja, para obtener una alta eficiencia del conjunto. Así, el dispositivo de acoplamiento debe ser un tipo de embrague diseñado buscando estos tres requisitos que permitirán un uso continuado sin desgaste apreciable, un rango de transmisión de par variable y una alta eficiencia al no ofrecer unas pérdidas de energía significantes, que pudieran reducir la buena eficiencia de los motores eléctricos, y bajar la eficiencia global que es uno de los puntos fuertes de la solución propuesta.
Existen actualmente sistemas de acoplamiento que cumplen con estos tres requisitos indispensables, transmisión de par variable, desgaste despreciable, y alta eficiencia. Una solución técnica son los embragues de corrientes de Eddy o de histéresis (ambos sin fricción), que permiten grados de deslizamiento infinitos, con desgaste inapreciable pero con disipación de energía (buena opción cuando el uso del acoplamiento no vaya a ser ocasional en la aplicación concreta). Otro tipo de acoplamiento son los embragues de partículas magnéticas, que ofrecen respuestas rápidas, control preciso del par, muy buena duración, pero existe fricción y por lo tanto perdida energética que se podría reducir dependiendo de la aplicación final. Es necesaria una corriente eléctrica para excitarlos, pero el consumo eléctrico es bajo en comparación con la potencia requerida en un vehículo eléctrico, con lo que el rendimiento global no bajaría apreciablemente. También es posible emplear embragues de fluido magnetoreológico o magnéticos que implican un gasto de energía que suele ser bajo y que de la misma forma que los de partículas magnéticas no disminuiría el rendimiento global del sistema notablemente dependiendo de la aplicación.
En una realización de la invención, el sistema de tracción según la presente invención es de tipo accionamiento directo en el que los motores eléctricos están anclados en el chasis del vehículo y cada uno de los primeros ejes de potencia está conectado a una de las ruedas tractoras a través de sendos palieres de acoplamiento, de tal forma que el dispositivo de acoplamiento está montado entre los dos motores eléctricos y conectado a los respectivos segundos ejes de potencia. En otra realización, el sistema de tracción según la invención es de tipo motor en rueda en el que cada uno de los motores eléctricos está anclado en un hueco de una llanta de una rueda tractora y cada uno de los primeros ejes de potencia está directamente conectado a una de las ruedas tractoras, de manera que el dispositivo de acoplamiento está montado entre los dos motores eléctricos en el chasis del vehículo y conectado a los respectivos segundos ejes de potencia a través de un eje de acoplamiento.
Asimismo, la presente invención se refiere a un vehículo de propulsión con motores eléctricos, que comprende el sistema de tracción anteriormente descrito.
La presente invención presenta diferentes ventajas frente a la solución tradicional de sobreexcitar los motores eléctricos para llevarlos a modos en los que puedan ofrecer un incremento de potencia (potencia pico) significante sobre la nominal, para resolver el problema de falta de potencia en una de las ruedas cuando la otra esta deslizando. A la vista de que los motores eléctricos no pueden trabajar en rangos sobreexcitados durante largos periodos de tiempo, y además su dimensionamiento y su complejidad aumenta si se quieren llevar a estos modos sobreexcitados y conseguir una potencia pico significante, la presente invención permite dimensionar el sistema de propulsión eléctrico de forma óptima, de modo que sin necesidad de diseñar el conjunto motriz con motores eléctricos que dispongan de valores de potencia pico muy altas durante largos periodos de tiempo, mediante el uso de una conexión mecánica de los dos motores el vehículo podrá mantener sus cualidades dinámicas, resolviendo el problema del deslizamiento de una de las ruedas tractoras, pasando la potencia no usada en ese momento en la rueda que desliza a la que tiene una buena tracción mediante el sistema de acoplamiento regulable (embrague). Por lo tanto, mediante el uso de dos elementos del sistema con unas características concretas se consigue una alta eficiencia del conjunto, y unas posibilidades dinámicas mejoradas, además de la posibilidad de dimensionar el sistema de forma óptima al aprovechar al máximo, tanto las características propias de los motores eléctricos (potencia nominal y potencia pico altas), como la potencia total del conjunto al poder acoplar mecánicamente los dos motores.
De acuerdo con lo que se desprende de lo anterior, la presente invención resuelve los inconvenientes de los sistemas de tracción del estado de la técnica anterior, permitiendo no usar o usar este modo sobreexcitado de alta potencia durante cortos periodos de tiempo, pasando a conectar mecánicamente los dos motores cuando los requerimientos de potencia son durante periodos más largos de tiempo, en los que los motores eléctricos pudieran resultar dañados, además de permitir diseñar el conjunto de propulsión eléctrico teniendo en mente un dimensionamiento (par, potencia) de los motores eléctricos mucho más conservador, ya que la posibilidad de conectar los motores físicamente permite que en conjunto no sea necesario trabajar con sobreexcitaciones o que no sean necesarias potencias de pico tan altas para situaciones en las que exista deslizamiento, influyendo directamente en la sofisticación de los motores y por lo tanto en el precio final del sistema de tracción, y por tanto del vehículo eléctrico.
Kbv b UboL^nlrUIUI Ub LAb rlvaUHAo
A continuación se describen aspectos y realizaciones de la invención sobre la base de unos dibujos, en los que
la figura 1 es una vista esquemática frontal que ilustra los elementos mecánicos y electromecánicos de una realización básica del sistema de tracción según la invención;
la figura 2 es un diagrama de bloques de una realización del circuito de control según la presente invención;
la figura 3 es un diagrama que muestra una realización del modo de funcionamiento básico del la lógica de gestión integrada en el circuito de control mostrado en a figura 2;
la figura 4 es una vista esquemática frontal, parcialmente seccionada, del sistema mostrada en la figura 1 con su dispositivo de acoplamiento en estado desconectado;
la figura 5 es una vista esquemática frontal, parcialmente seccionada, del sistema mostrada en la figura 1 con su dispositivo de acoplamiento en estado conectado:
la figura 6 es una vista esquemática frontal en sección de una realización del sistema según la invención aplicada a un sistema de accionamiento directo;
la figura 7 es una vista esquemática frontal en sección de una realización del sistema según la invención aplicada a un sistema motor en rueda.
En estas figuras, aparecen unas referencias numéricas que identifican los siguientes documentos:
1 a, 1 b rueda de tracción
2a, 2b primer eje de potencia
3, 3a, 3b motor eléctrico
4a, 4b segundo eje de potencia
5 dispositivo de acoplamiento
6 lógica de gestión
7 circuito de control de tracción
7a, 7b medios sensores
8 fuente de alimentación
9 medios comparadores
10, 10a, 10b medios controladores de potencia
1 1 , 1 1 a, 1 1 b medios de sobreexcitación
12, 12a, 12b medios detectores
13 medios activadores
14a, 14b palier de acoplamiento
15a, 15b hueco de la llanta
16a, 16b llanta
17a, 17b eje de acoplamiento
18 chasis del vehículo
19 vehículo MODOS DE REALIZAR LA INVENCIÓN
La figura 1 muestra una realización de la invención para el eje delantero de un vehículo eléctrico -19- de accionamiento directo, que comprende un motor eléctrico derecho -3a- con un primer eje de potencia derecho -2a- conectado directamente a una rueda tracto ra derecha -1 a- y un motor eléctrico izquierdo -3b- con un primer eje de potencia izquierdo -2b- conectado directamente a una rueda tractora izquierda -1 b-. Entre los motores eléctricos -3a, 3b- está dispuesto un dispositivo de acoplamiento -5- sin fricción, como por ejemplo un embrague de corrientes de Eddy, conectado a sendos segundos ejes de potencia -4a, 4b- de los motores eléctricos -3a, 3b- y susceptible de realizar una transmisión de par variable desde un grado de acoplamiento nulo hasta a un grado acoplamiento total entre los motores eléctricos -3a, 3b-.
Como puede verse en la figura 2, los motores -3a, 3b- y el dispositivo de acoplamiento -5- están conectados a un circuito de control de tracción -7- destinado transmitir potencia adicional a una de las ruedas tractoras -1 a, 1 b- cuando, mediante medios sensores -7a, 7b- detecta una pérdida de tracción de otra rueda tractora -1 a, 1 b-. Para ello, circuito de control de tracción -7- comprende medios comparadores -9- para comparar entre sí el grado de pérdida de tracción de cada rueda tractora -1 a, 1 b- detectado individualmente por cada uno de los medios sensores -7a, 7b- y determinar continuamente cuál de los motores eléctricos -3a, 3b- está conectado a una rueda con mayor pérdida de tracción y cuál de los motores eléctricos -3a, 3b- está conectado a una rueda tractora -3a, 3b- con menor pérdida de tracción. Los medios comparadores -9- están conectados a unos medios controladores de potencia -10a, 10b- que, a través de unos medios de sobreexcitación -1 1 a, 1 1 b-, derivan potencia eléctrica de la fuente de alimentación -8-, desde el motor eléctrico
-3a, 3b- conectado a la rueda tractora -1 a, 1 b- con mayor grado de pérdida de tracción hacia el motor eléctrico -3a, 3b- conectado a la rueda tractora -1 a, 1 b- con menor grado de pérdida de tracción cuando la pérdida de tracción supera un umbral de pérdida de tracción. De esta manera, los medios de sobreexcitación -1 1 a, 1 1 b- sobreexcitan individualmente e incrementalmente cada motor eléctrico 3a, 3b durante un tiempo de sobreexcitación y con una potencia de sobrexcitación y están conectados a medios detectores -12a, 12b- que detectan individualmente si el tiempo de sobreexcitación total a una potencia de sobreexcitación real de cada motor eléctrico -3a, 3b- supera un umbral de tiempo máximo admitido de sobreexcitación continuada del motor eléctrico -3a, 3b-. Cuando alguno de los medios detectores -12a, 12b- detecta que el tiempo de sobreexcitación real de al menos uno de los motores eléctricos -3a, 3b- supera un umbral de tiempo máximo admitido del motor eléctrico -3a, 3b- sobrexcitado respectivo, envía la señal correspondiente a unos medios activadores -13- que entonces paran los medios de sobreexcitación -1 1 a, 1 1 b- y activan una lógica de gestión -6- conectada al dispositivo de acoplamiento -5-, de tal forma que los medios activadores -12- mantienen activo el dispositivo de acoplamiento -5- hasta que la pérdida de tracción vuelva a estar debajo del umbral de pérdida de tracción.
Como se puede apreciar en la figura 3, la lógica de gestión -6- que activa y regula el grado de acoplamiento del dispositivo de acoplamiento -5- entre los motores eléctricos -3a, 3b- en función del grado de pérdida de tracción de al menos una rueda tractora -1 a, 1 b-, detectada por los medios sensores -7a, 7b-. De esta manera, cuando el tiempo total de deslizamiento, continuado es decir, la pérdida de tracción continuada, es menor que el tiempo máximo que el motor -3- puede estar continuamente sobreexcitado, se seguirá sobreexcitando el motor con tracción incrementalmente encontrándose el dispositivo de acoplamiento -5- en la posición esquemáticamente representada en la figura 4, mientras que cuando el tiempo total de deslizamiento continuado es mayor que el tiempo máximo de sobreexcitación continuada del motor, se activa incrementalmente el acoplamiento -5- que entonces adopta una posición de acoplamiento como la que está representada esquemáticamente en la figura 5 hasta que el deslizamiento desaparezca.
La realización mostrada en las figuras 2 y 3 permite, por lo tanto, la utilización tanto de la sobreexcitación del motor fuera de sus rangos nominales, como el uso del sistema de acoplamiento para poder resolver el problema de falta de tracción pasando par de un motor a otro.
La figura 6 muestra una realización de la presente invención aplicada al eje delantero de un sistema de tracción de accionamiento directo en sí convencional. Puede observarse que, en esta realización, los motores eléctricos -3a, 3b- están anclados en el chasis -18- del vehículo -19- y cada uno de los primeros ejes de potencia -2a, 2b- está conectado a una de las ruedas tractoras -1 a, 1 b- a través de sendos palieres de acoplamiento -14a, 14b-, mientras que el dispositivo de acoplamiento -5- está montado entre los dos motores eléctricos -3a, 3b- y conectado a los respectivos segundos ejes de potencia -4a, 4b-. La figura 7 muestra una La figura 6 muestra una realización de la presente invención aplicada al eje delantero de un sistema de tracción motor en rueda en sí convencional. En esta realización, los motores eléctricos -3a, 3b- están anclados en los respectivos huecos -15a, 15b- de sendas llantas -16a, 16b- de las ruedas tractoras -1 a, 1 b-. Cada uno de los primeros ejes de potencia -2a, 2b- está directamente conectado a una de las ruedas tractoras -1 a, 1 b-, a la vez que el dispositivo de acoplamiento -5- está montado, entre los dos motores eléctricos -3a, 3b-, en el chasis -18- del vehículo -19- y conectado a los respectivos segundos ejes de potencia -4a, 4b- través de sendos ejes de acoplamiento -17a, 17b-.

Claims

REIVINDICACIONES
1. Sistema de tracción para un vehículo eléctrico de accionamiento directo que comprende un motor eléctrico derecho (3a) con un primer eje de potencia derecho (2a) conectado directamente a una rueda tractora derecha (1 a) y un motor eléctrico izquierdo (3b) con un primer eje de potencia izquierdo (2b) conectado directamente a una rueda tractora izquierda (1 b), un circuito de control de tracción (7) que comprende medios sensores (7a, 7b) y que transmite potencia adicional a una rueda tractora (1 a, 1 b) cuando los medios sensores (7a, 7b) detectan una pérdida de tracción de otra rueda tractora (1 a, 1 b), medios de sobreexcitación (1 1 a, 1 1 b) para sobreexcitar individualmente e incrementalmente cada motor eléctrico (3a, 3b) durante un tiempo de sobreexcitación y con una potencia de sobrexcitación y ai menos una fuente de alimentación (8) que alimenta los motores eléctricos (3a, 3b), caracterizado porque el circuito de control de tracción comprende
un dispositivo de acoplamiento (5) conectado a sendos segundos ejes de potencia (4a, 4b) de los motores eléctricos (3a, 3b) y susceptible de realizar una transmisión de par variable desde un grado de acoplamiento nulo hasta a un grado acoplamiento total entre los motores eléctricos (3a, 3b);
una lógica de gestión (6) que activa y regula el grado de acoplamiento del dispositivo de acoplamiento (5) entre los motores eléctricos (3a, 3b) en función del grado de pérdida de tracción de al menos una rueda tractora (1 a, 1 b), detectada por al menos uno de los medios sensores (7a, 7b), y en función de si el tiempo de sobreexcitación de cada uno de los motores eléctricos (3a, 3b) supera un valor umbral.
2. Sistema de tracción, según la reivindicación 1 , caracterizado porque el circuito de control de tracción (7) comprende
medios comparadores (9) para comparar el grado de pérdida de tracción de cada rueda tractora (1 a, 1 b) y determinar continuamente cuál de los motores eléctricos (3a, 3b) está conectado a una rueda con mayor pérdida de tracción y cuál de los motores eléctricos (3a, 3b) está conectado a una rueda tractora (3a, 3b) con menor pérdida de tracción;
medios controladores de potencia (10a, 10b) para derivar, a través de los medios de sobreexcitación (1 1 a, 1 1 b), potencia eléctrica de la fuente de alimentación (8), desde el motor eléctrico (3a, 3b) conectado a la rueda tractora (1 a, 1 b) con mayor grado de pérdida de tracción hacia el motor eléctrico (3a, 3b) conectado a la rueda tractora (1 a, 1 b) con menor grado de pérdida de tracción cuando la pérdida de tracción supera un umbral de pérdida de tracción;
medios detectores (12a, 12b) para detectar individualmente si el tiempo de sobreexcitación total a una potencia de sobreexcitación real de cada motor eléctrico
(3a, 3b) supera un umbral de tiempo máximo admitido de sobreexcitación continuada del motor eléctrico (3a, 3b);
medios activadores (13) para parar los medios de sobreexcitación (1 1 a, 1 1 b) y activar dicha lógica de gestión (6) si el tiempo de sobreexcitación real de uno de los motores eléctricos (3a, 3b) supera un umbral de tiempo máximo admitido del motor eléctrico (3a, 3b) sobrexcitado de tal forma que los medios activadores (12) mantienen activo el dispositivo de acoplamiento (5) hasta que la pérdida de tracción vuelva a estar debajo del umbral de pérdida de tracción.
3. Sistema de tracción, según la reivindicación 1 ó 2, caracterizado porque el dispositivo de acoplamiento (5) comprende un embrague de corrientes Eddy.
4. Sistema de tracción, según la reivindicación 1 ó 2, caracterizado porque el dispositivo de acoplamiento comprende un embrague de histéresis.
5. Sistema de tracción, según la reivindicación 1 ó 2, caracterizado porque el dispositivo de acoplamiento (5) comprende un embrague de partículas magnéticas.
6. Sistema de tracción, según una cualquiera de las reivindicaciones precedentes, caracterizado porque
los motores eléctricos (3a, 3b) están anclados en el chasis (18) del vehículo
(19);
cada uno de los primeros ejes de potencia (2a, 2b) está conectado a una de las ruedas tractoras (1 a, 1 b) a través de sendos palieres de acoplamiento (14a, 14b);
el dispositivo de acoplamiento (5) está montado entre los dos motores eléctricos (3a, 3b) y conectado a los respectivos segundos ejes de potencia (4a, 4b).
7. Sistema de tracción, según una cualquiera de las reivindicaciones precedentes, caracterizado porque
cada uno de los motores eléctricos (3a, 3b) está anclado en un hueco (15a, 15b) de una llanta (16a, 16b) de una rueda tractora (1 a, 1 b);
cada uno de los primeros ejes de potencia (2a, 2b) está directamente conectado a una de las ruedas tractoras (1 a, 1 b);
el dispositivo de acoplamiento (5) está montado entre los dos motores eléctricos (3a, 3b) en el chasis (18) del vehículo (19) y conectado a los respectivos segundos ejes de potencia a (4a, 4b) través de sendos ejes de acoplamiento (17a, 17b).
8. Vehículo de propulsión con motores eléctricos, caracterizado porque comprende un sistema de tracción según una de las reivindicaciones 1 a 7.
PCT/ES2009/070549 2009-12-02 2009-12-02 Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción WO2011067423A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09804268A EP2508385A1 (en) 2009-12-02 2009-12-02 Traction system for an electric vehicle and electric vehicle including the traction system
PCT/ES2009/070549 WO2011067423A1 (es) 2009-12-02 2009-12-02 Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070549 WO2011067423A1 (es) 2009-12-02 2009-12-02 Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción

Publications (1)

Publication Number Publication Date
WO2011067423A1 true WO2011067423A1 (es) 2011-06-09

Family

ID=42668287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070549 WO2011067423A1 (es) 2009-12-02 2009-12-02 Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción

Country Status (2)

Country Link
EP (1) EP2508385A1 (es)
WO (1) WO2011067423A1 (es)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799284A (en) 1971-10-30 1974-03-26 B Hender Drive systems
JPS5529229A (en) * 1978-08-17 1980-03-01 Mitsubishi Electric Corp Compensating device for load transfer of axle
WO1991014596A1 (es) * 1990-03-21 1991-10-03 Universidad De Oviedo Differencial electronico autoblocante para vehiculos de traccion electrica
US5453930A (en) 1991-02-08 1995-09-26 Nissan Motor Co., Ltd. Drive system for electric automobiles
DE4434237A1 (de) 1994-09-24 1996-03-28 Deere & Co Fahrzeugachse mit elektrischem Einzelradantrieb
WO2004035342A1 (de) 2002-10-16 2004-04-29 Zf Friedrichshafen Ag Fahrzeug mit elektrischen einzelradantrieben
US20050067199A1 (en) 2003-09-29 2005-03-31 Nissan Motor Co., Ltd. Vehicle drive device
US20050252701A1 (en) 2002-09-24 2005-11-17 Hiroshi Shimizu Driver of electric automobile
DE102005026874A1 (de) 2005-06-10 2006-12-14 Volkswagen Ag Vorrichtung und Verfahren zum Antrieb eines Fahrzeuges
DE102006028790A1 (de) 2006-06-23 2008-01-03 Zf Friedrichshafen Ag Einrichtung zum Verteilen eines Antriebsmonentes auf wenigstens zwei Abtriebswellen einer Fahrzeugachse bzw. eines Achsgetriebes
ES2289726T3 (es) 2005-04-27 2008-02-01 KRAUSS-MAFFEI WEGMANN GMBH &amp; CO. KG Vehiculo automovil con traccion a todas las ruedas.
JP2008207739A (ja) 2007-02-27 2008-09-11 Honda Motor Co Ltd 電動車両

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799284A (en) 1971-10-30 1974-03-26 B Hender Drive systems
JPS5529229A (en) * 1978-08-17 1980-03-01 Mitsubishi Electric Corp Compensating device for load transfer of axle
WO1991014596A1 (es) * 1990-03-21 1991-10-03 Universidad De Oviedo Differencial electronico autoblocante para vehiculos de traccion electrica
ES2027099A6 (es) 1990-03-21 1992-05-16 Univ De Oviedo Representada Po Diferencial electronico autoblocante para vehiculos de traccion electrica.
US5453930A (en) 1991-02-08 1995-09-26 Nissan Motor Co., Ltd. Drive system for electric automobiles
DE4434237A1 (de) 1994-09-24 1996-03-28 Deere & Co Fahrzeugachse mit elektrischem Einzelradantrieb
US20050252701A1 (en) 2002-09-24 2005-11-17 Hiroshi Shimizu Driver of electric automobile
WO2004035342A1 (de) 2002-10-16 2004-04-29 Zf Friedrichshafen Ag Fahrzeug mit elektrischen einzelradantrieben
US20050067199A1 (en) 2003-09-29 2005-03-31 Nissan Motor Co., Ltd. Vehicle drive device
ES2289726T3 (es) 2005-04-27 2008-02-01 KRAUSS-MAFFEI WEGMANN GMBH &amp; CO. KG Vehiculo automovil con traccion a todas las ruedas.
DE102005026874A1 (de) 2005-06-10 2006-12-14 Volkswagen Ag Vorrichtung und Verfahren zum Antrieb eines Fahrzeuges
DE102006028790A1 (de) 2006-06-23 2008-01-03 Zf Friedrichshafen Ag Einrichtung zum Verteilen eines Antriebsmonentes auf wenigstens zwei Abtriebswellen einer Fahrzeugachse bzw. eines Achsgetriebes
JP2008207739A (ja) 2007-02-27 2008-09-11 Honda Motor Co Ltd 電動車両

Also Published As

Publication number Publication date
EP2508385A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
ES2289726T3 (es) Vehiculo automovil con traccion a todas las ruedas.
US7743859B2 (en) Hybrid drivetrains for trailers
RU2539306C2 (ru) Способ приведения в движение сочлененного гусеничного транспортного средства
ES2368605T3 (es) Acoplamiento de línea de tracción para módulo eléctrico.
ES2692044T3 (es) Sistema de frenado ferroviario regenerativo
ES2877145T3 (es) Buje de rueda para ejes tándem
US20070158119A1 (en) Independent axle motors for a road coupled hybrid vehicle
US20110320074A1 (en) Kinetic energy recovery and electric drive for vehicles
JP6462914B2 (ja) 無段変速システム
CN101519040A (zh) 电动汽车双电机防滑差速驱动桥
KR101484216B1 (ko) 토크 벡터링을 구현하는 듀얼 클러치 타입의 전기식 사륜 구동장치 및 그 제어 방법
US20220314788A1 (en) Heavy-duty vehicle and electric driveline system
BR102017018694A2 (pt) Combinação veículo reboque / veículo rodoviário, especialmente como combinação longa de veículo comercial
US20160047450A1 (en) Differential assembly and speed sensor mounting arrangement therefor
ES2394417T3 (es) Automóvil, en particular automóvil militar así como procedimiento para el control de un automóvil
ES2381125T3 (es) Vehículo urbano y dispositivo de recuperación de energía para dicho vehículo
US7628242B2 (en) Vehicle limited slip differential
BR102015020826A2 (pt) Device for a hydraulic wheel drive of an automotive vehicle, method for the operation of an automotive vehicle, use of the device and automotive vehicle
US20100210390A1 (en) Limited Slip Differential with Electrohydraulic Clutch Actuator
US10407073B2 (en) Electro-hydraulic traction support
BR112015010414B1 (pt) Veículo rodoviário pesado compreendendo um sistema de propulsão híbrido e método para controle de um sistema de propulsão híbrido
ES2654905T3 (es) Vehículo que comprende una transmisión hidrostática que comprende un embrague que realiza una función de diferencial
WO2011067423A1 (es) Sistema de tracción para un vehículo eléctrico y vehículo eléctrico que comprende el sistema de tracción
ES2627329T3 (es) Vehículo articulado para el transporte de pasajeros con un sistema de accionamiento mejorado.
RU2521457C1 (ru) Полноприводная трансмиссия /варианты/

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009804268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009804268

Country of ref document: EP