WO2011059050A1 - 後輪操舵制御装置 - Google Patents

後輪操舵制御装置 Download PDF

Info

Publication number
WO2011059050A1
WO2011059050A1 PCT/JP2010/070177 JP2010070177W WO2011059050A1 WO 2011059050 A1 WO2011059050 A1 WO 2011059050A1 JP 2010070177 W JP2010070177 W JP 2010070177W WO 2011059050 A1 WO2011059050 A1 WO 2011059050A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
rear wheel
target value
toe angle
steering
Prior art date
Application number
PCT/JP2010/070177
Other languages
English (en)
French (fr)
Inventor
仁 佐々木
隆道 日野原
堀内 泰
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201080051220.7A priority Critical patent/CN102666258B/zh
Priority to US13/509,702 priority patent/US8433478B2/en
Priority to JP2011540548A priority patent/JP5427243B2/ja
Priority to EP10830009.6A priority patent/EP2502804A4/en
Publication of WO2011059050A1 publication Critical patent/WO2011059050A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Definitions

  • the present invention relates to a rear wheel steering control device capable of changing and controlling the steering angle of a rear wheel of a four-wheeled vehicle, for example.
  • various four-wheel steering devices for controlling the steering angle of the rear wheels have been proposed for the purpose of improving the turning performance of the vehicle. For example, when traveling at low speeds, the minimum turning radius can be reduced by setting the steering angle of the front wheels and the steering angle of the rear wheels in opposite phases, and at high speeds, the steering angle of the front wheels and the steering angle of the rear wheels are in phase. This makes it possible to improve maneuverability when changing lanes.
  • a technique for independently controlling the toe angles of the left and right rear wheels a technique using an actuator by a hydraulic mechanism and a technique using an actuator by a feed screw mechanism instead of the hydraulic mechanism have been proposed (for example, Patent Documents). 1 to FIG. 6).
  • Patent Document 2 includes a steering motor that drives a steering rod in an axial direction in order to change and control the direction of a steered wheel (front wheel) in an SBW (SteerteBy Wire) type steering device.
  • a technique is disclosed in which a control device controls a steering motor based on information on a steering angle from a steering handle to be operated. According to the steering device, the driver reverses the steering direction with the actual turning angle of the steered wheels having a follow-up delay with respect to the target steered angle of the front wheels according to the driver's steering.
  • Patent Document 2 is a technique related to an SBW type steering apparatus and cannot be applied to a rear wheel steering angle control apparatus as it is.
  • a large thrust may be required for an actuator depending on a suspension geometry. Since it is difficult to increase the size of the motor to increase the output of the actuator, it is difficult to install on the vehicle. Therefore, the thrust reduction is ensured by increasing the reduction ratio of the reduction gear, which is unique to the rear wheel steering control device. This is because there are different points.
  • the response of the actuator that is, the rear wheel rudder angle change speed or the rear wheel toe angle change speed decreases, so the rear wheel rudder angle instruction value
  • the absolute value of the change speed is large or when the absolute value of the change speed of the rear wheel toe angle instruction value is large, there is a problem in that the actual steering angle of the rear wheel or the follow-up delay of the actual toe angle occurs.
  • the direction of the rear wheel steering angle instruction value is determined.
  • the movement of the actual steering angle of the rear wheel or the direction of the toe angle instruction value of the rear wheel and the movement of the actual toe angle of the rear wheel may be reversed.
  • an object of the present invention is to provide a rear wheel steering control device that solves the above problems.
  • the invention according to claim 1 includes an actuator for changing a steering angle of a rear wheel provided in a vehicle, and a control means for controlling driving of the actuator, and the steering angle of the rear wheel is set.
  • the control means includes an actuator control means for controlling the actuator, and a steering angle instruction value calculation means for calculating a steering angle instruction value of the rear wheel based on at least a steering state amount of the front wheel;
  • a target value setting update for setting a target value update control by setting a steering angle target value of the rear wheel input to the actuator control means with respect to the value of the steering angle instruction value of the rear wheel inputted from the steering angle instruction value calculating means
  • the target value setting update means calculates the difference between the steering angle instruction value of the rear wheel and the steering wheel target value of the rear wheel set last time as the target value change amount, and calculate
  • the target value update control When the command value increase / decrease determination means detects that the increase / decrease direction of the rear wheel steering angle command value has changed, the target value change amount is set so that the actuator operates in the opposite direction and at the maximum speed. Is set to a predetermined maximum value and added to the previously set rear wheel steering angle target value, and target value update control is performed.
  • the target value setting update means calculates the difference between the steering angle instruction value of the rear wheel and the steering wheel target value of the rear wheel set last time as the target value change amount. Limit the calculated target value change amount to a predetermined maximum value or less if necessary, and add it to the previously set rear wheel steering angle target value to set it as the new rear wheel steering angle target value. Target value update control is performed.
  • the target value setting / updating means when the indicated value increase / decrease determining means detects that the increase / decrease direction of the steering angle indicated value of the rear wheel has changed, the operation of the actuator is in the opposite direction and the maximum
  • the target value change amount is set so as to be the speed, and the target value update control is performed by adding the target value change amount to the previously set rear wheel steering angle target value. Therefore, even if there is a follow-up delay in the steering angle target value of the rear wheel output to the actuator control means with respect to the steering angle instruction value of the rear wheel, when the increase / decrease direction of the steering angle instruction value of the rear wheel changes, The steering angle of the rear wheels is changed and controlled so that the follow-up delay is ignored and the maximum speed is reached in the opposite direction.
  • the steering angle control of the rear wheel follows the change in the steering angle command value of the rear wheel even when the driver performs the quick steering operation that produces the output of the fast turning of the steering angle command value of the rear wheel. This can prevent the driver from feeling uncomfortable due to a delay in vehicle behavior.
  • the invention according to claim 2 is the rear wheel steering control device according to claim 1, wherein the target value setting update means is the instruction value increase / decrease determination means, and the increase / decrease of the steering angle instruction value of the rear wheel.
  • the target value update control is started by detecting that the direction has changed, when the rear wheel rudder angle target value has reached the neutral position, the input rear wheel rudder angle command When the value does not reach the neutral position, the target value update control is performed by setting the rear wheel steering angle target value so as to hold the rear wheel steering angle target value at the neutral position.
  • the actuator when the instruction value increase / decrease determination unit detects that the increase / decrease direction of the rear wheel steering angle instruction value has changed, the actuator is maximized in the opposite direction. After starting the update control of the target value of the rear wheel rudder angle so that it becomes speed, it was detected that the rudder angle target value of the rear wheel reached the neutral position earlier than the rudder angle target value of the corresponding rear wheel At that time, the rear wheel steering angle target value is hold-controlled at the neutral position until the input rear wheel steering angle instruction value reaches the neutral position.
  • the rear wheel rudder angle target value overshoots, that is, the rear wheel actual rudder angle overshoots, and the vehicle is delayed to converge straight ahead. It is possible to prevent the user from feeling uncomfortable.
  • the invention according to claim 3 is a rear-wheel steering that includes an actuator that changes a steering angle of a rear wheel provided in a vehicle, and a control unit that controls driving of the actuator, and is capable of changing the steering angle of the rear wheel.
  • the control means is input from an actuator control means for controlling the actuator, an instruction value calculation means for calculating a steering angle instruction value for the rear wheels based on at least a steering state quantity of the front wheels, and an instruction value calculation means.
  • the target value speed limiting means for setting the first target value change amount limited to a predetermined maximum value or less as required so that the actuator can follow the input of the steering angle command value of the rear wheel
  • the instruction value increase / decrease direction determination means for determining the increase / decrease direction of the calculated steering angle instruction value of the rear wheel and the instruction value increase / decrease determination means detect that the increase / decrease direction of the steering angle instruction value of the rear wheel has changed.
  • the second A target value change amount setting means for setting a target value change amount in a new increased / decreased direction and set to a predetermined maximum value; a first target value change amount input from the target speed limit means; Output selection means for outputting one of the second target value change amounts inputted from the target value change amount setting means at the time of switching as the target value change amount; and the target value change amount inputted from the output selection means;
  • a target value update means for adding the previous rear wheel rudder angle target value and outputting to the actuator control means as a new rear wheel rudder angle target value;
  • the target value speed limiting means determines whether the following error, which is the difference between the input rear wheel steering angle instruction value and the rear wheel steering angle target value set last time, exceeds a predetermined maximum value.
  • the tracking error is set as the first target value change amount as it is,
  • the instruction value increase / decrease determination means detects that the increase / decrease direction of the steering angle instruction value of the rear wheel has changed, the output selection means selectively outputs the second target value change amount as the target value change amount,
  • the target value update means adds the target value change amount input from the output selection means and the previous rear wheel steering angle target value, and outputs the result to the actuator control means as a new rear wheel steering angle target value. It is characterized by that.
  • the output selection unit receives the input first
  • the target value change amount is switched to the second target value change amount input from the target value change amount and selectively output as the target value change amount.
  • the target value update means receives the target value change amount input from the output selection means and the previous rear wheel. Are added to the actuator control means as a new rear wheel steering angle target value.
  • the target value updating means outputs the rear wheel steering angle target value to the actuator control means based on the first target value change amount input from the target speed limiting means to the output selection means, and the rear wheel steering Even if there is a follow-up delay with respect to the angle command value, if the increase / decrease direction of the steering angle command value of the rear wheel changes, the output selection means will output the rear wheel input from the target value change amount setting means at the time of turnover.
  • the steering angle target value is switched to 2 and output to the target updating means.
  • the invention according to claim 4 is the rear wheel steering control device according to claim 3, wherein the control means changes the increase / decrease direction of the steering angle instruction value of the rear wheel in the instruction value increase / decrease determination means.
  • the output selection means detects that the second target value change amount is selected and output as the target value change amount and then detects that the rear wheel steering angle target value has reached the neutral position.
  • the target value updating means selects and outputs the second target value change amount as the target value change amount in the output selection means, and then confirms that the steering angle target value of the rear wheel has reached the neutral position in the turning-back neutral detection means.
  • the hold means replaces the steering angle target value change amount with zero, and the previous rear wheel steering angle target value is detected. Is added to the actuator control means as a new rear wheel steering angle target value.
  • the target value update means selects and outputs the second target value change amount as the target value change amount in the output selection means, and then the rear wheel in the turn-off neutral detection means.
  • the hold means sets the steering angle target value change amount to zero. Let it be replaced.
  • the rear wheel rudder angle command value returns to the neutral position
  • the rear wheel rudder angle target value overshoots, that is, the rear wheel actual rudder angle overshoots, and the vehicle is delayed to converge straight ahead. It is possible to prevent the user from feeling uncomfortable.
  • the invention according to claim 5 includes an actuator for independently changing the toe angles of the left and right rear wheels provided in the vehicle, and a control means for controlling the driving of each actuator, and the toe angle of the rear wheels.
  • the control means includes an actuator control means that enables each actuator to be controlled independently, and a toe for each of the left and right rear wheels based on at least the steering state amount of the front wheels.
  • a toe angle instruction value calculating means for calculating an angle instruction value and a left and right rear wheel input to the actuator control means with respect to the values of the toe angle instruction values of the left and right rear wheels inputted from the toe angle instruction value calculating means.
  • Target value setting and updating means for setting target value of each toe angle and performing target value update control, and determining the increase / decrease direction of the calculated toe angle instruction values for the left and right rear wheels It includes a command value decrease direction determination unit that, the,
  • the target value setting update means includes a left rear wheel toe angle instruction value and a previously set left rear wheel toe angle target value, and a right rear wheel toe angle instruction value and a previously set right rear wheel toe angle.
  • the difference between the rear wheel toe angle instruction value and the previously set rear wheel toe angle target value is calculated as a target value change amount, and the calculated target value change amount is limited to a predetermined maximum value or less as necessary.
  • the target value update control is performed.
  • the instruction value increase / decrease determination means when it is detected that the increase / decrease direction of any of the toe angle instruction values of the left and right rear wheels has changed, for the rear wheel detected that the increase / decrease direction has changed, Set the rear wheel toe angle target value change amount to a predetermined maximum value so that the actuator operates in the opposite direction and at the maximum speed, and the rear wheel toe angle set last time is set.
  • the target value update control is performed by adding to the target value.
  • the target value setting / updating means is set so that the toe angle target value of the left and right rear wheels follows the input toe angle instruction value of the left and right rear wheels.
  • the instruction value increase / decrease determination unit detects that the increase / decrease direction of any of the toe angle instruction values of the left and right rear wheels has changed, it is detected that the increase / decrease direction has changed.
  • the rear wheel set the rear wheel toe angle target value change amount so that the operation of the actuator is in the opposite direction and the maximum speed. Add to the toe angle target value to perform target value update control.
  • the rear wheel toe angle target value output to the actuator control means with respect to the rear wheel toe angle instruction value has a follow-up delay
  • the direction of increase or decrease in the steering angle instruction value of the rear wheel is changed
  • the rear wheel toe angle is controlled so as to reach the maximum speed in the opposite direction, ignoring the previous tracking delay.
  • the rear wheel toe angle control follows the change in the rear wheel toe angle command value even when the driver performs a quick turn steering operation that produces a fast turnback output of the rear wheel toe angle command value. This can prevent the driver from feeling uncomfortable due to a delay in vehicle behavior.
  • the invention according to claim 6 is the rear wheel steering control device according to claim 5, wherein the target value setting update means is the instruction value increase / decrease determination means in the toe angle instruction value of the left and right rear wheels.
  • the target value update control is started by detecting that any of the increase / decrease directions has changed, it is input when it is detected that the toe angle target value of the rear wheel has reached the neutral position. If the toe angle command value for the rear wheel does not reach the neutral position, set the rear wheel toe angle target value to hold the rear wheel toe angle target value at the neutral position.
  • Target value update control is performed.
  • the target value setting / updating means detects in the indicated value increase / decrease determining means that the increasing / decreasing direction of any of the left and right rear wheel toe angle indicating values has changed.
  • the toe angle target value of the rear wheel is set so that the operation of the actuator is in the opposite direction and the maximum speed with respect to the rear wheel in which the increase / decrease direction has been detected.
  • the target value update control is started with the predetermined maximum value set, the toe angle of the rear wheel that has been input is detected when it is detected that the target value of the toe angle of the rear wheel has reached the neutral position.
  • the target rear wheel toe angle value is held at the neutral position.
  • the rear wheel toe angle target value overshoots, that is, the actual rear wheel toe angle overshoots, and the vehicle is delayed in convergence to straight ahead. It is possible to prevent the user from feeling uncomfortable.
  • the invention according to claim 7 is a rear wheel steering system comprising an actuator for changing a steering angle of a rear wheel provided in a vehicle and a control means for controlling driving of the actuator, and capable of changing the steering angle of the rear wheel.
  • the control means includes an actuator control means for controlling the actuator, a steering angle instruction value calculation means for calculating a steering angle instruction value for the rear wheel based on at least a steering state amount of the front wheel, and an actual steering for the rear wheel.
  • the rear wheel actual steering angle acquisition means for acquiring information related to the angle, and the steering angle target of the rear wheel input to the actuator control means with respect to the value of the steering angle instruction value of the rear wheel input from the steering angle instruction value calculation means
  • Target value setting update means for setting a value and performing target value update control
  • instruction value increase / decrease direction determination means for determining the increase / decrease direction of the calculated steering angle instruction value of the rear wheel
  • the target value setting updating means calculates the difference between the rear wheel steering angle instruction value and the rear wheel actual steering angle acquired by the rear wheel actual steering angle as a target value change amount, and calculates the calculated target value change.
  • the target value change amount is set to a predetermined maximum so that the actuator operates in the opposite direction and reaches the maximum speed.
  • the value is set to a value and added to the actual steering angle of the rear wheel, and target value update control is performed.
  • the target value setting updating means calculates the difference between the steering angle instruction value of the rear wheel and the actual steering angle of the rear wheel as the target value change amount and is calculated
  • the target value change control is performed by limiting the target value change amount to a predetermined maximum value or less as necessary and adding it to the actual steering angle of the rear wheel to set it as a new rear wheel steering angle target value.
  • the instruction value increase / decrease determination means detects that the direction of increase / decrease of the rear wheel steering angle instruction value has changed, the target value change amount is set so that the actuator operates in the opposite direction and at the maximum speed. Set and add to the actual rudder angle of the rear wheels to perform target value update control.
  • the steering angle control of the rear wheels follows the change in the steering angle indication value of the rear wheels even when the driver performs a quick turning steering operation that produces a fast turning output of the steering angle indication values of the rear wheels. This can prevent the driver from feeling uncomfortable due to a delay in vehicle behavior.
  • the invention according to claim 8 is the rear wheel steering control device according to claim 7, wherein the target value setting update means is the instruction value increase / decrease determination means, and the increase / decrease of the steering angle instruction value of the rear wheel.
  • the target value update control is started by detecting that the direction has changed, the steering wheel angle command value that has been input at the time when it is detected that the actual steering angle of the rear wheel has reached the neutral position.
  • the target value update control is performed by setting the rear wheel steering angle target value so as to hold the actual steering angle of the rear wheel at the neutral position.
  • the instruction value increase / decrease determination means detects that the increase / decrease direction of the steering angle instruction value of the rear wheel has changed, the operation of the actuator is in the opposite direction. And after setting the steering wheel target value of the rear wheel to a predetermined maximum value so as to reach the maximum speed and starting the target value update control, it is detected that the actual steering angle of the rear wheel has reached the neutral position. At the time, when the input steering angle instruction value of the rear wheel does not reach the neutral position, the actual steering angle of the rear wheel is hold-controlled at the neutral position.
  • the rear wheel rudder angle target value overshoots, that is, the rear wheel actual rudder angle overshoots, and the vehicle is delayed to converge straight ahead. It is possible to prevent the user from feeling uncomfortable.
  • the invention according to claim 9 includes an actuator for independently changing the toe angles of the left and right rear wheels provided in the vehicle, and a control means for controlling the driving of each actuator, and the toe angle of the rear wheels.
  • the control means includes an actuator control means that enables each actuator to be controlled independently, and a toe for each of the left and right rear wheels based on at least the amount of steering state of the front wheels.
  • a toe angle instruction value calculating means for calculating an angle instruction value, an actual toe angle information acquiring means for acquiring information related to the actual toe angle of the left and right rear wheels, and a left and right rear wheel input from the toe angle instruction value calculating means.
  • Target value setting / updating means for performing target value update control by setting respective toe angle target values of the left and right rear wheels to be input to the actuator control means with respect to the value of the toe angle instruction value , Anda indicated value decrease direction determining means for determining the increase or decrease direction of the respective toe angle instruction value of the left and right rear wheels that is input,
  • the target value setting update means includes a left rear wheel toe angle instruction value and an actual toe angle information acquisition means acquired by a left rear wheel, and a right rear wheel toe angle instruction value and an actual toe angle information.
  • the difference between the rear wheel toe angle instruction value and the rear wheel actual toe angle is calculated as a target value change amount, and the calculated target value change amount is limited to a predetermined maximum value or less as required.
  • the target value setting update means uses the difference between the rear wheel toe angle instruction value and the rear wheel actual toe angle as the target value change amount independently for each of the left and right sides.
  • the calculated target value change amount is limited to a predetermined maximum value or less if necessary, and added to the actual toe angle of the rear wheels, and set as a new toe angle target value for the left and right rear wheels. To perform target value update control.
  • the instruction value increase / decrease determination means detects that the increase / decrease direction of any of the toe angle instruction values of the left and right rear wheels has changed, for the rear wheel detected that the increase / decrease direction has changed , Set the rear wheel toe angle target value change amount to a predetermined maximum value and add it to the actual toe angle of the rear wheel so that the actuator moves in the opposite direction and reaches the maximum speed. Then, target value update control is performed. Therefore, even if there is a follow-up delay in the rear wheel actual toe angle with respect to the rear wheel rudder angle command value, if the rear wheel rudder angle command value increases or decreases, the previous follow-up delay is ignored.
  • the steering angle of the rear wheel is changed and controlled so that the maximum speed is obtained in the opposite direction.
  • the steering angle control of the rear wheels follows the change in the steering angle indication value of the rear wheels even when the driver performs a quick turning steering operation that produces a fast turning output of the steering angle indication values of the rear wheels. This can prevent the driver from feeling uncomfortable due to a delay in vehicle behavior.
  • the invention according to claim 10 is the rear wheel steering control device according to claim 9, wherein the target value setting update means is configured to increase or decrease one of the toe angle instruction values of the left and right rear wheels.
  • the target value update control After starting the target value update control by detecting the change, at the time of detecting that the actual toe angle of the rear wheel has reached the neutral position, the input toe angle of the rear wheel is input.
  • the target value update control is performed by setting the rear wheel toe angle target value so as to hold the rear wheel toe angle target value at the neutral position.
  • the target value setting / updating means has changed the increasing / decreasing direction when detecting that the increasing / decreasing direction of any of the toe angle instruction values of the left and right rear wheels has changed.
  • the toe angle target value of the rear wheel is set to a predetermined maximum value so that the operation of the actuator is in the opposite direction and reaches the maximum speed.
  • the target value update control is started, when the actual toe angle of the rear wheel reaches the neutral position, the input rear wheel toe angle instruction value does not reach the neutral position. In this case, the rear wheel toe angle target value is controlled to be held at the neutral position.
  • a rear wheel steering control device that does not cause a sense of incongruity due to a delay in vehicle behavior when a driver performs a quick turn-back steering that generates a fast turn-back output of a steering angle instruction value of a rear wheel. be able to.
  • FIG. 1 is an overall conceptual diagram of a four-wheeled vehicle including a steering system including a rear wheel steering control device according to an embodiment of the present invention. It is a schematic control function block diagram of steering control ECU of a steering system, and a toe angle change apparatus. It is a functional block block diagram of toe angle change control ECU in 1st Embodiment. It is a detailed functional block block diagram of the toe angle target speed limiting part of the toe angle change control ECU in the first embodiment. It is operation
  • FIG. 1 is an overall conceptual diagram of a four-wheeled vehicle including a steering system including a rear wheel steering control device according to a first embodiment of the present invention.
  • the steering system 100 corresponds to the electric power steering device 110 that assists the steering by the steering handle 3 that steers the front wheels 1L and 1R by the electric motor 4, the operation angle of the steering handle 3, and the vehicle speed.
  • a steering control device 130 hereinafter referred to as a steering control ECU
  • an operation angle sensor SH SH
  • a vehicle speed sensor SV vehicle speed sensor
  • a toe angle instruction value calculation unit (steering angle instruction value calculation means) 71 described later included in the toe angle changing devices 120L and 120R and the steering control ECU 130 is included in the “rear wheel steering control device” described in the claims. Correspond.
  • the electric power steering device 110 includes a main steering shaft 3a provided with a steering handle 3, an intermediate shaft (not shown), and a pinion shaft 7 having two universal joints (not shown). ), And a pinion gear 7a provided at the lower end of the pinion shaft 7 meshes with the rack teeth 8a of the rack shaft 8 that can reciprocate in the vehicle width direction.
  • the left and right front wheels 1L, 1R are connected via 9,9.
  • the electric power steering apparatus 110 can change the traveling direction of the vehicle when the steering handle 3 is operated.
  • the rack shaft 8, the rack teeth 8a, and the tie rods 9 and 9 constitute a turning mechanism.
  • the pinion shaft 7 is supported by a steering gear box (not shown) through three bearings (not shown) at its upper, middle, and lower parts.
  • the electric power steering device 110 includes an electric motor 4 that supplies an auxiliary steering force for reducing the steering force by the steering handle 3, and a worm gear 5a provided on the output shaft of the electric motor 4 is connected to a pinion shaft. 7 is meshed with a worm wheel gear 5b. That is, the worm gear 5a and the worm wheel gear 5b constitute a speed reduction mechanism. Further, the worm gear 5a, the worm wheel gear 5b, the pinion shaft 7, the rack shaft 8, the rack teeth 8a, the tie rods 9, 9 and the like connected to the rotor of the electric motor 4 and the electric motor 4 constitute a steering system. .
  • the electric motor 4 is, for example, a three-phase brushless motor including a stator (not shown) having a plurality of field coils and a rotor (not shown) that rotates inside the stator. It converts to mechanical energy.
  • the electric power steering apparatus 110 includes a motor drive circuit 23 for driving the electric motor 4, a resolver 25 for detecting the rotation angle of the electric motor 4, a torque sensor S T for detecting the pinion torque applied to the pinion shaft 7, a pinion a steering angle sensor S H for detecting the rotation angle of the shaft 7, and a differential amplifier circuit 21 for amplifying an output of the torque sensor S T, and a vehicle speed sensor S V for detecting the speed of the vehicle (vehicle speed).
  • the steering control ECU 130 of the steering system 100 includes an electric power steering control unit 130a (see FIG. 2), which will be described later, which drives and controls the electric motor 4 that is a functional unit of the electric power steering device 110.
  • the motor drive circuit 23 includes a plurality of switching elements such as a three-phase FET bridge circuit, for example, and generates a rectangular wave voltage using a DUTY (DU, DV, DW) signal from the electric power steering control unit 130a.
  • the motor 4 is driven.
  • the motor drive circuit 23 has a function of detecting a three-phase motor current using a hall element (not shown).
  • a vehicle speed sensor S V is for detecting the vehicle speed VS of the vehicle as a pulse number per unit time, and outputs a vehicle speed signal VS.
  • the control of the electric power steering device 110 and the control of the toe angle changing devices 120L and 120R will be described later.
  • the toe angle changing devices 120L and 120R are respectively attached to the left and right rear wheels 2L and 2R of the vehicle.
  • the toe angle changing device 120L includes an actuator 30L and a toe angle changing control device (hereinafter referred to as toe angle changing control ECU) 37LA.
  • the toe angle changing device 120R includes an actuator 30R and a toe angle changing control ECU 37RA.
  • the toe angle change control ECUs 37LA and 37RA correspond to “actuator control means” recited in the claims.
  • the actuators 30L and 30R have, for example, a mounting method and configuration to the rear wheels 2L and 2R as described in FIG. 3 and FIG. 4 of Japanese Patent Laid-Open No. 2008-201173.
  • Each of the actuators 30L and 30R includes an electric motor 31, a speed reduction mechanism (not shown), a feed screw portion (not shown), and the like.
  • the electric motor 31 includes a brush motor or a brushless motor that can rotate in both forward and reverse directions.
  • the speed reduction mechanism is configured by combining, for example, a two-stage planetary gear (not shown).
  • the actuators 30L and 30R are provided with a stroke sensor 38 that detects the amount of expansion and contraction of the feed screw portion (information relating to the actual steering angle of the rear wheel, information relating to the actual toe angle).
  • the stroke sensor 38 includes, for example, a magnet and can detect the position using magnetism. As described above, by detecting the position using the stroke sensor 38, the toe-in and toe-out rudder angles (toe angles) of the rear wheels 2L and 2R can be individually detected with high accuracy.
  • a toe angle facing the left side from the neutral position is defined as minus ( ⁇ )
  • a toe angle facing the right side from the neutral position is defined as plus (+).
  • a toe angle change control ECU 37LA is integrally attached to the actuator 30L
  • a toe angle change control ECU 37RA is integrally attached to the actuator 30R.
  • the toe angle change control ECUs 37LA and 37RA are fixed to the case bodies of the actuators 30L and 30R, respectively, and are connected to the stroke sensor 38 via a connector or the like.
  • the toe angle change control ECUs 37LA and 37RA are supplied with electric power from a power source such as a battery (not shown) mounted on the vehicle.
  • the steering control ECU 130 and the motor drive circuit 23 are also supplied with electric power from a power source such as a battery (not shown) in a separate system.
  • FIG. 2 is a schematic control function configuration diagram of the steering control ECU and the toe angle changing device of the steering system.
  • the steering control ECU 130 includes a microcomputer including a CPU, a ROM, a RAM, and the like (not shown) and peripheral circuits.
  • the steering control ECU 130 includes an electric power steering control unit 130 a that controls the electric power steering device 110, and instruction values for toe angles of the rear wheels 2L and 2R (hereinafter referred to as “toe angle instruction values”).
  • a toe angle command value calculation unit (steering angle command value calculation means) 71 is provided.
  • the toe angle instruction value corresponds to the “rear wheel steering angle instruction value” recited in the claims.
  • the electric power steering control unit 130a sets a target current signal for driving and controlling the electric motor 4 as described in FIG. 2 of JP-A-2002-59855, and the signal The inertia correction is performed, the damping correction is further performed, the output current of the motor drive circuit is feedback-controlled with the corrected target current, and the DUTY (DU, DV, DW) signal is output to the motor drive circuit 23.
  • Toe angle command value calculator Next, the rear wheel toe angle instruction value calculation unit will be described with reference to FIG. Toe angle instruction value calculation unit 71, a vehicle speed signal VS, the operation angle of the steering wheel 3 (steered state quantity) theta left and right rear wheels and a H 2L, each toe angle indicating value alpha TL1 of 2R, alpha TR1 And toe angle instruction values ⁇ TL1 and ⁇ TR1 are input to toe angle change control ECUs 37LA and 37RA that control the change of the toe angle of the left and right rear wheels 2L and 2R.
  • toe angle instruction value calculation unit 71 a vehicle speed signal VS, the operation angle of the steering wheel 3 (steered state quantity) theta left and right rear wheels and a H 2L, each toe angle indicating value alpha TL1 of 2R, alpha TR1 And toe angle instruction values ⁇ TL1 and ⁇ TR1 are input to toe angle change control ECUs 37LA and 37RA that control the change of the to
  • the operation angle theta H of the steering wheel 3 corresponds to the "front wheel steering state quantity" recited in the claims.
  • the angular velocity ⁇ H is obtained by differentiating the operation angle ⁇ H in the toe angle instruction value calculation unit 71. For example, the following expressions (1) and (2) are set.
  • K L (VS, ⁇ H , ⁇ H ) K R (VS, ⁇ H , ⁇ H ) ⁇ ⁇ H ⁇ (2)
  • K L (VS) and K R (VS) are front and rear wheel steering ratios depending on the vehicle speed VS, the operation angle ⁇ H and the angular speed ⁇ H , and the rear wheel toe angle instruction values ⁇ TL1 and ⁇ TR1 are range the vehicle speed is a predetermined low speed, the steering angle ⁇ rear wheel 2L in accordance with the H of the steering wheel 3, the 2R reverse phase, toe angle instruction values of respective rear wheels to make it easier to have small turn alpha TL1, alpha TR1 Is generated.
  • the operation angle ⁇ H In a high speed range exceeding the predetermined low speed range, when the absolute value of the angular velocity ⁇ H is equal to or less than a predetermined value and the operation angle ⁇ H is within a predetermined range on the left and right, the operation angle ⁇ H
  • the toe angle instruction values ⁇ TL1 and ⁇ TR1 of each rear wheel are set in the same phase. However, when the absolute value of the angular velocity ⁇ H exceeds a predetermined value within a high speed range that exceeds the predetermined low speed range, or when the operation angle ⁇ H is a large operation angle ⁇ H that exceeds the left and right predetermined ranges.
  • the toe angle instruction values ⁇ TL1 and ⁇ TR1 of each rear wheel are set in the opposite phase according to the operation angle ⁇ H.
  • FIG. 3 is a functional block configuration diagram of the toe angle change control ECU in the first embodiment. Since the toe angle change control ECUs 37LA and 37RA have the same configuration, the toe angle change control ECU 37RA will be described as an example. As shown in FIG. 3, the toe angle change control ECU 37RA has a function of driving and controlling the actuator 30R, that is, the electric motor 31, and includes a controller 81A and an electric motor drive circuit 88. The toe angle changing control ECU 37RA is connected to the steering control ECU 130 via a communication line.
  • the control unit 81A includes a microcomputer including a CPU, RAM, ROM, and peripheral circuits.
  • a portion 87 is provided.
  • the actual toe angle conversion unit 82 reads a stroke position signal from the stroke sensor 38, converts the stroke position into an actual toe angle ⁇ 1R , and inputs the converted value to the target current calculation unit 86.
  • Toe angle target speed limiting section 84A first, alpha TR1 certain period (steering angle instruction value of the rear wheel) toe angle instruction value from the toe angle instruction value calculation section 71 of the steering control ECU130 as a basic function, for example, in 100msec Loading, or perform limited processing on the change in the toe angle indicating value alpha TR1, or perform forward turning control processing to accelerate follow the crosscut change in toe angle indicating value alpha TR1, toe by forward turning control processing
  • the toe angle target value (the rear wheel rudder angle target value) ⁇ TR2A that is faster than the angle instruction value ⁇ TR1 is held when the neutral position is reached.
  • the target current calculation unit 86 performs feedback control based on the toe angle target value ⁇ TR2A input from the toe angle target speed limiting unit 84A and the actual toe angle ⁇ 1R of the rear wheel 2R from the actual toe angle conversion unit 82.
  • the target current signal is calculated and output to the motor control signal generator 87.
  • the target current signal is a current signal necessary for controlling the actual toe angle ⁇ 1R to follow the desired toe angle target value ⁇ TR2A at a desired speed.
  • the target current signal by feeding back the actual toe angle ⁇ 1R to the toe angle target value ⁇ TR2 input from the toe angle target speed limiting unit 84A to the target current calculating unit 86, the rear wheel current vehicle speed VS required for steering of the 2R, road environment, vehicle motion state, and the feedback from changing depending on the wear state of the tire can be controlled to follow the toe angle indicating value alpha T1.
  • the motor control signal generator 87 receives the target current signal from the target current calculator 86 and outputs the motor control signal to the motor drive circuit 88.
  • This electric motor control signal is a signal including the current value supplied to the electric motor 31 and the direction in which the electric current flows.
  • the motor drive circuit 88 is configured by a FET (Field Effect Transistor) bridge circuit or the like, and supplies a motor current to the motor 31 based on a motor control signal.
  • the toe angle change control ECUs 37LA and 37RA and the toe angle instruction value calculation unit 71 constitute “control means in the rear wheel operation control device” recited in the claims.
  • FIG. 4 is a detailed functional block configuration diagram of a toe angle target speed limiting unit of the toe angle changing control ECU in the first embodiment.
  • toe angle target value rear wheel rudder angle instruction value
  • ⁇ T1 toe angle target value
  • the value (rear wheel steering angle target value) ⁇ T2A , the first-order lag corrected toe angle target value ⁇ T2P , the tracking error ⁇ T1A , and the toe angle target value change amount (steering angle target value change amount) ⁇ T2 Specifically, for the toe angle change control ECU 37LA, the toe angle instruction value (rear wheel steering angle instruction value) ⁇ TL1 , the toe angle target value (rear wheel steering angle target value) ⁇ T2LA , and after the first-order lag correction Toe angle target value ⁇ T2PL , follow-up error ⁇ TL1A , toe angle target value change amount (steering angle target value change amount) ⁇ TL2 , and specifically toe angle instruction to the toe angle change control ECU 37RA value (steering angle indicating value of the rear wheel) ⁇ TR1, Over angle target value (the rear wheel steering angle target value) ⁇ T2RA, first-order lag corrected toe angle target value alpha
  • the toe angle target speed limiting unit 84A includes a subtraction unit 51A, a fixed value output unit 52, a minimum value selection unit 53, a fixed gain calculation unit 54, a maximum value selection unit 55, a turnover control unit 56A, a hold control unit 57A, and an addition unit 58A.
  • the first-order lag correction unit 59A is included.
  • the subtraction unit 51A subtracts the toe angle target value ⁇ T2A output last time in the iterative calculation process in the toe angle target speed limiting unit 84A from the toe angle instruction value ⁇ T1 input from the toe angle instruction value calculation unit 71.
  • the tracking error ⁇ T1A is calculated and input to the tracking error code determination unit 61, which will be described later, of the minimum value selection unit 53 and the switching control unit 56A.
  • the last output by the toe angle target value alpha T2A specifically, the subtraction unit 51A toe angle target value alpha T2A outputted last time as the first-order lag corrected previous toe angle target value alpha T2P the primary delay correction unit 59A Is input.
  • the fixed value output unit 52 restricts the maximum value for causing the toe angle target value change amount ⁇ T2 to follow the + side (right side) with respect to the change in the toe angle instruction value ⁇ T1 , for example, “+2”.
  • a minimum value selection unit 53 a fixed gain calculation unit 54, and a multiplication unit 64, which will be described later.
  • the minimum value selection unit 53 selects the smaller value of the tracking error ⁇ T1A and the maximum value “+2” on the + side of the toe angle target change amount and inputs the selected value to the maximum value selection unit 55.
  • the fixed gain calculation unit 54 performs a gain calculation of “ ⁇ 1” on a predetermined value input from the fixed value output unit 52, for example, a signal of “+2”, that is, outputs a signal of “ ⁇ 2”. Obtained and input to the maximum value selector 55. This is because the fixed gain calculation unit 54 limits a maximum value for causing the toe angle target value change amount ⁇ T2 to follow the minus side (left side) with respect to the change in the toe angle instruction value ⁇ T1 , “ ⁇ 2 "is generated.
  • the predetermined value output from the fixed value output unit 52 may depend on the vehicle speed as necessary.
  • the maximum value of the toe angle target value change amount [Delta] [alpha] T2 for each vehicle speed, for example, when a toe angle indicating value alpha 1 at a high speed diverges, the setting of the toe angle target value alpha T2A in the operation of the vehicle It can be regulated to a stable area.
  • the maximum value selection unit 55 selects the smaller value input from the minimum value selection unit 53 and the larger one of the negative maximum value “ ⁇ 2”, and the switching control unit 56A will be described later. It is input as one value (input value to the terminal 66 c) selected by the binary selection unit 66 to be selected.
  • the input value to the terminal 66c corresponds to the “first target value change amount” recited in the claims.
  • the toe angle target speed limiting unit 84A is first-order delayed from the result of the maximum and minimum limiting processing (also referred to as min-max processing) for the tracking error ⁇ T1A by the minimum value selecting unit 53 and the maximum value selecting unit 55 as described above.
  • the corrected previous toe angle target value ⁇ T2P is added by the adder 58A, and is output as the current toe angle target value ⁇ T2A from the toe angle target speed limiter 84A to the target current calculator 86.
  • the toe angle target speed limiting unit 84A further performs switching control (switching control) for generating and outputting the maximum value ⁇ Tmax as the toe angle target change amount ⁇ T2 in the switching control unit 56A described later.
  • switching control switching control
  • the toe angle instruction value ⁇ T1 becomes the toe angle target value. Hold control for waiting for ⁇ T2P to catch up.
  • the subtraction unit 51A, the fixed value output unit 52, the minimum value selection unit 53, the fixed gain calculation unit 54, and the maximum value selection unit 55 correspond to the “target value speed limiting means” described in the claims, and follow up.
  • the error code determination unit 61 and the multiplication units 64 and 56 correspond to the “target value change amount setting unit at switching” described in the claims, and the binary selection unit 66 includes the “output selection unit” described in the claims.
  • the adder 58A corresponds to “target value updating means” described in the claims.
  • a subtracting unit 51A corresponds to “target value setting update unit” described in the claims.
  • the adding unit 58A adds the previous toe angle target value ⁇ T2P corrected by the first order lag correction from the first order lag correcting unit 59A to the output from the hold control unit 57A, and supplies the target current calculating unit 86 with the toe angle target. Enter the value ⁇ T2A .
  • the correction constant in the primary delay correction unit 59A is set based on the time delay associated with the cycle of the repetitive calculation in the toe angle target speed limiting unit 84A.
  • the switching control unit 56A includes a follow-up error code determination unit 61, a toe angle instruction value differentiation unit (instruction value increase / decrease direction determination unit) 62, a toe angle instruction value speed code determination unit (instruction value increase / decrease direction determination unit) 63, and a multiplication unit 64. , 65, and a binary selection unit 66.
  • the tracking error sign determining unit 61 determines the plus (+), zero, and minus ( ⁇ ) signs of the tracking error ⁇ T1A input from the subtracting unit 51A, and +1, 0, A value of ⁇ 1 is input to the multiplication unit 65.
  • Toe angle instruction value differentiator 62 differentiates the toe angle indicating value alpha T1 time calculates the toe angle instruction value rate alpha 'T1, and inputs to the toe angle instruction value rate code determination section 63.
  • the toe angle instruction value speed sign determination unit 63 determines the signs of the plus (+), zero, and minus ( ⁇ ) of the toe angle instruction value speed ⁇ ′ T1 , and +1, 0, A value of ⁇ 1 is input to the multipliers 64 and 65.
  • the multiplication unit 64 multiplies the “+2” signal from the fixed value output unit 52 by any one of +1, 0, and ⁇ 1 corresponding to the determination result from the toe angle instruction value speed code determination unit 63.
  • the other value selected by the binary selection unit 66 (input value to the terminal 66d) is input.
  • the input value to the terminal 66d corresponds to the “second target value change amount” recited in the claims.
  • the multiplication unit 65 has a value of +1, 0, ⁇ 1 corresponding to the determination result from the tracking error code determination unit 61 and +1, 0 corresponding to the determination result from the toe angle instruction value speed code determination unit 63.
  • control value CS1 is input as a control input (input value to the terminal 66a) of the binary selection unit 66, and the control value CS1 is input to the hold control unit 57A. It inputs into the code
  • the binary selection unit 66 one of the binary values input to the terminals 66c and 66d in the expression form of the analog circuit is selected and connected to the movable contact 66b according to the control value CS1 input to the terminal 66a.
  • a control logic circuit is shown. Specifically, only when the control value CS1 is ⁇ 1, the movable contact 66b is connected to the terminal 66d, that is, selects an input value from the multiplication unit 64. When the control value CS1 is 0 or +1 other than ⁇ 1, the movable contact 66b is connected to the terminal 66c, that is, selects an input value from the maximum value selection unit 55.
  • the value selected by the binary selection unit 66 is input as one value (input value to the terminal 92c) selected by the binary selection unit 92 described later in the hold control unit 57A.
  • the control value CS1 input from the multiplication unit 65 to the binary selection unit 66 is ⁇ 1
  • the sign of the tracking error ⁇ T1A output from the tracking error code determination unit 61 and the toe angle instruction value speed This is a case where the sign of the toe angle instruction value speed ⁇ ′ T1 output from the sign determination unit 63 is plus and minus opposite to each other (see FIG. 6B).
  • the movable contact 66b in the value selection unit 66 is connected to the terminal 66d.
  • the switching control is turned off, and the movable contact 66b in the binary selection unit 66 is connected to the terminal 66c.
  • the hold control unit 57A includes a toe angle instruction value code determination unit 73, a target toe angle code determination unit 74A, a multiplication unit 75, fixed value output units 76, 78, 91, a code match determination unit 77, a code mismatch determination unit 79, A value selection unit 92 is included.
  • the toe angle instruction value sign determination unit 73 is a sign of plus or zero of the toe angle instruction value ⁇ T1 (specifically toe angle instruction values ⁇ TL1 , ⁇ TR1 ) from the toe angle instruction value calculation unit 71 of the steering control ECU 130.
  • Target toe angle sign determination unit 74A the primary delay first-order delay corrected previous toe angle target value alpha T2P code from the correction unit 59A, plus, zero and to determine the negative, is correspondingly +1,0, Any value of ⁇ 1 is input to the multiplier 75.
  • the multiplication unit 75 multiplies the input value from the toe angle instruction value code determination unit 73 and the input value from the target toe angle code determination unit 74A, and inputs the result to the code mismatch determination unit 79.
  • the fixed value output unit 76 detects a state where the control value CS1 indicating that the switching control is ON in the switching control unit 56A is outputting a value of ⁇ 1, “ ⁇ 1” as a reference value for comparison. Is generated and input to the code match determination unit 77.
  • the code match determination unit 77 determines whether or not the value of the control value CS1 input from the multiplication unit 65 matches the value ⁇ 1 input from the fixed value output unit 76.
  • a value of +1 is generated as the control value CS2 indicating -1 and, for example, a value of -1 is generated as the control value CS2 indicating that the values do not match when the values do not match, and are input to the code mismatch determination unit 79.
  • the fixed value output unit 78 generates a signal of a predetermined reference value “+1” for the code mismatch determination unit 79 to determine the code mismatch, and inputs the signal to the code mismatch determination unit 79. Only when the control value CS2 is +1, the code mismatch determination unit 79 obtains an input value +1 from the fixed value output unit 78 and a value (any one of +1, 0, ⁇ 1) input from the multiplication unit 75. It is determined whether or not there is a discrepancy. When the discrepancies occur, the control value CS3 is generated as +1, which means that the hold control is ON. This is input as a control input (input value to the terminal 92a) of the binary selection unit 92.
  • the fixed value output unit 91 generates a signal having a value of 0 (zero) for setting the toe angle target change amount ⁇ T2 to zero in order to perform hold control in the hold control unit 57A, and the binary selection unit 92 Is input as the other input value to be selected (input value to the terminal 92d).
  • the binary selection unit 92 one of the binary values input to the terminals 92c and 92d in an analog circuit expression format is selected and connected to the movable contact 92b according to the control value CS3 input to the terminal 92a.
  • a control logic circuit is shown. Specifically, only when the control value CS3 is +1, the movable contact 92b is connected to the terminal 92d, that is, selects the input value 0 (zero) from the fixed value output unit 91. When the control value CS3 is ⁇ 1, the movable contact 92b is connected to the terminal 92c, that is, selects the output value from the binary selection unit 66 of the switching control unit 56A. The value selected by the binary selection unit 92 is input to the addition unit 58A.
  • the control value CS3 input from the code mismatch determination unit 79 to the binary selection unit 92 is +1, the sign of the toe angle instruction value ⁇ T1 when the switching control in the switching control unit 56A is ON. And the sign of the previous toe angle target value ⁇ T2P corrected for the first-order lag do not match, that is, plus or minus, or at least one is zero (see FIG. 7B).
  • the movable contact 92b in the binary selection unit 92 is connected to the terminal 92d and outputs a value of 0 (zero) to the addition unit 58A.
  • the toe angle instruction value code determination unit 73 the target toe angle code determination unit 74A, the multiplication unit 75, the fixed value output units 76 and 78, the code match determination unit 77, and the code mismatch determination unit 79 are described in the claims.
  • the fixed value output unit 91 and the binary selection unit 92 correspond to the “hold means” described in the claims.
  • the sign of the tracking error ⁇ T1A with the previous toe angle target value ⁇ T2P is positive with respect to the change in the time transition of the toe angle instruction value ⁇ T1 shown by the curve L1 in FIG.
  • the turn-back control is turned on in this embodiment, and the binary selection unit
  • the output from 66 has a maximum value ⁇ Tmax of ⁇ 2, and in the binary selection unit 92, the movable contact 92b is kept connected to the terminal 92d, and the value of ⁇ 2 is set to the target toe angle change amount ⁇ T2. This occurs when time t4B is reached as it is.
  • the target instruction value alpha T1 is towards the toe angle target value alpha T2A becomes faster neutral position (value zero) in a time T4b. Therefore, when the toe angle target value ⁇ T2A reaches the neutral position (value zero) earlier than the target instruction value ⁇ T1 , the toe output from the binary selection unit 92 as the toe angle target change amount ⁇ T2
  • the angle target change amount ⁇ T2 is set to zero and is output to the adder 58A.
  • the toe angle target value ⁇ T2A is controlled to be held at the neutral position in the meantime, and it is possible to prevent overshoot of the toe angle target value ⁇ T2A in the reverse direction contradicting the value of the toe angle instruction value ⁇ T1 . That is, the actual toe angle alpha 1, the target current calculating section 86 (see FIG. 3) is hold control to the neutral position therebetween position to follow the toe angle target value alpha T2A, the value of the toe angle indicating value alpha T1 the actual toe angle alpha 1 to the opposite direction of conflict can be prevented from overshooting with.
  • FIG. 5 is an explanatory diagram of the action of control at the time of toe angle switching in the prior art
  • (a) is an explanatory diagram showing changes in the time transition of the toe angle instruction value and the toe angle target value
  • (b) It is a time chart which shows the change of the sign of each of the toe angle instruction value, the toe angle instruction value speed and the tracking error corresponding to the time transition of (a).
  • the toe angle target change amount toe angle target speed
  • this embodiment when the toe angle target change amount (toe angle target speed) is an upper limit value (this embodiment).
  • the toe angle target value ⁇ T2C is made to follow the toe angle instruction value ⁇ T1 . Then, after we catch up toe angle target value ⁇ T2C to toe angle command value ⁇ T1 at time t3, an attempt to follow the toe angle target value ⁇ T2C in response to the tracking error ⁇ T1A which became the opposite sign. In such control, the toe angle target value ⁇ T2C remains before the time t2 even though the toe angle instruction value ⁇ T1 has changed in the reverse direction from the time t2 after the time t2 of the A part. The control is changed to cause the driver to feel uncomfortable.
  • the toe angle target value is set to the actual toe angle ⁇ at the time t2 at time t2. replaced by a 1, a control for correcting the tracking error ⁇ T1A at the same time.
  • FIGS. 6A and 6B are explanatory diagrams of the operation of the toe angle switching control.
  • FIG. 6A is an explanatory diagram showing changes in the time transition of the toe angle instruction value and the toe angle target value
  • FIG. 6B is the time of FIG. Time indicating the change in the sign of the toe angle instruction value, the toe angle instruction value speed and the tracking error corresponding to the transition, the ON / OFF state of the return control, and the change in the return control output value when the return control is ON. It is a chart.
  • the toe angle target change amount (toe angle target speed) is limited to an upper limit value (corresponding to the maximum change amount value “2” of the present embodiment) that the actuator 30 can follow, and the toe angle target value ⁇ T2A is set. the to try to follow the toe angle command value ⁇ T1.
  • the control value CS1 output from the multiplier 65 is a value of ⁇ 1 (in FIG. 6B).
  • the value of the maximum change amount ⁇ Tmax of the value of ⁇ 2 calculated by the multiplier 64 is input from one of the binary selectors 92 to the binary selector 92 (terminal 92c). Input).
  • the value input to the terminal 92c is input to the adding unit 58A as the toe angle target change amount ⁇ T2 , where it is added to the toe angle target value ⁇ T2P corrected by the first-order lag, and the toe angle target value ⁇ T2A is input to the target current calculation unit 86.
  • the maximum change amount ⁇ Tmax having the same sign as the toe angle command value change rate ⁇ ′ T1 is set. That is, control is performed to change the toe angle target value ⁇ T2A in the neutral direction at the maximum speed at time t2.
  • the switching control of the actual toe angle ⁇ 1 is simply performed at a timing earlier than the conventional technique in which the follow-up error ⁇ T1A subjected to the min-max processing according to the follow-up error ⁇ T1 is set as the toe angle target value change amount ⁇ T2.
  • Can do. Therefore, the toe angle of the rear wheel can be controlled without causing the driver to feel uncomfortable in the turning motion of the vehicle that involves turning back the toe angle of the rear wheel.
  • the sign of the tracking error ⁇ T1A becomes negative after t6B has elapsed, and the sign minus the toe angle command value speed ⁇ ′ T1. Then, the turn-back control is turned off for the first time. From time t6B to time t5, the toe angle target value ⁇ T2A is controlled to follow the toe angle instruction value ⁇ T1 with the toe angle target change amount ⁇ T2 obtained by subjecting the value of the normal following error ⁇ T1A to min-max processing. .
  • the value input to the terminal 92c is input to the adding unit 58A as the toe angle target change amount ⁇ T2 , where it is added to the toe angle target value ⁇ T2P corrected by the first-order lag, and the toe angle target value ⁇ T2A is input to the target current calculation unit 86.
  • the maximum change amount ⁇ Tmax having the same sign as the toe angle command value change rate ⁇ ′ T1 is set. That is, control is performed to change the toe angle target value ⁇ T2A in the neutral direction at the maximum speed at time t5.
  • the switching control in the switching control unit 56A is turned OFF, and normal min-max processing is performed.
  • the toe angle target value ⁇ T2A is converged to zero with the toe angle target change amount ⁇ T2 . Accordingly, there remains a problem that the toe angle target value ⁇ T2A overshoots the toe angle instruction value ⁇ T1 after the switching control is turned on only by the function of the switching control unit 56A.
  • the curve L2A shown in FIG. 5A is also shown for reference.
  • FIG. 7 is an explanatory diagram of the action of the hold control after the toe angle switching control.
  • FIG. 7A is an explanatory diagram showing changes in the time transition of the toe angle instruction value and the toe angle target value, and FIG. The sign change of the toe angle command value, the toe angle command value speed and the tracking error corresponding to the time transition of a), the switching control ON / OFF state, and the switching control output value when the switching control is ON.
  • 4 is a time chart showing a change in toe angle target value code, hold control ON / OFF state, and hold control output value.
  • the hold control unit 57A when the hold control unit 57A is provided and the switching control is in the ON state (when the control value CS1 is ⁇ 1), the sign of the toe angle instruction value ⁇ T1 and the previous toe angle target value ⁇ T2A when the code (Fig. 4 the first-order lag corrected toe angle target value alpha T2P sign) and do not match, for example, when the sign of the toe angle target value alpha T2A at time t4B changes from positive to zero, the code mismatch determination
  • the unit 79 inputs the control value CS3 to be in the hold control ON state to the binary selection unit 92, and the binary selection unit 92 sets the value ( ⁇ 2) of ⁇ Tmax until then as the toe angle target change amount ⁇ T2.
  • the output is stopped and switched to output a value of 0 (zero) (see curve L4A in FIG. 7A).
  • the turn-back control is still ON, the toe angle target value ⁇ T2A is maintained at zero (in the neutral position), the toe angle instruction value ⁇ T1 catches up to zero at time t4, and the sign mismatch determination unit 79
  • the hold control is turned off.
  • the control value CS1 output from the multiplication unit 65 also becomes a value other than ⁇ 1 (0 or +1) almost simultaneously, and the switching back control is also turned off.
  • the binary selection unit 92 is input to one of the binary selection units 92 (input to the terminal 92c).
  • the In the binary selection unit 92 the value input to the terminal 92c is input to the adding unit 58A as the toe angle target change amount ⁇ T2 , where it is added to the toe angle target value ⁇ T2P corrected by the first-order lag, and the toe angle target value ⁇ T2A is input to the target current calculation unit 86.
  • the sign mismatch determination unit 79 sets the control value CS3 to the binary selection unit in the same manner as time t4B described above when the hold control is turned on.
  • the binary selection unit 92 stops outputting the value ( ⁇ 2) of ⁇ Tmax as the toe angle target change amount ⁇ T2 and outputs a value of 0 (zero). Switching is performed (see curve L4A in FIG. 7A).
  • the turn-back control is still in the ON state, the toe angle target value ⁇ T2A is maintained at zero (in the neutral position), the toe angle instruction value ⁇ T1 catches up to zero at time t7, and the sign mismatch determination unit 79 When it is determined that the code determination results are no longer inconsistent, the hold control is turned off. In addition, the control value CS1 output from the multiplication unit 65 also becomes a value other than ⁇ 1 (0 or +1) almost simultaneously, and the switching back control is also turned off.
  • the toe angle instruction value ⁇ T1 is maintained at 0
  • the toe angle instruction value ⁇ T1 is changed to the toe angle instruction value ⁇ T1 by the toe angle target change amount ⁇ T2 obtained by subjecting the normal follow-up error ⁇ T1A to min-max processing.
  • the target value ⁇ T2A is controlled to follow up, and the toe angle target value ⁇ T2A converges to zero (neutral position) without overshooting as shown at time t7 in FIG.
  • the hold control unit 57A when the toe angle instruction value ⁇ T1 is switched, the actual toe angle ⁇ 1 can be controlled with high responsiveness, and the toe angle instruction value ⁇ T1 can be controlled.
  • the toe angle target value ⁇ T2A that returns to the neutral direction earlier than the overshoot that passes the neutral position. That is, it prevents that by following the actual toe angle alpha 1 to the toe angle target value alpha T2A, actual toe angle alpha 1 and the left-right direction until the opposite direction indicated by the toe angle indicating value alpha T1 overshoots.
  • FIG. 8 and FIG. 9 are flowcharts showing a flow of update control of the toe angle target value in the second embodiment.
  • the toe angle target speed limiting unit 84A in the second embodiment is a function realized by executing a program by the microcomputer of the control unit 81A included in the toe angle change control ECUs 37RA and 37LA as shown in FIG.
  • the toe angle updating control target value alpha T2A are processed in the toe angle target speed limiting section 84A with a constant period.
  • toe angle change control ECU37LA for a representative description of their toe angle target speed limiting section 84A of 37RA, toe angle indicating value alpha T1, toe angle target value alpha T2A
  • the toe angle target value ⁇ T2P of the previous output, the tracking error ⁇ T1A , and the toe angle target value change amount ⁇ T2 are specifically referred to as toe angle instruction value ⁇ TL1 , toe angle change control ECU 37LA.
  • the angle target value ⁇ T2LA , the previous output toe angle target value ⁇ T2PL , the tracking error ⁇ TL1A , and the toe angle target value change amount ⁇ TL2 specifically toe angle instruction to the toe angle change control ECU 37RA.
  • the value ⁇ TR1 , the toe angle target value ⁇ T2RA , the previous output toe angle target value ⁇ T2PR , the tracking error ⁇ TR1A , and the toe angle target value change amount ⁇ TR2 are meant.
  • step S01 output by calculating the toe angle instruction value alpha T1 at a fixed period in toe angle instruction value calculation section 71 of the steering control ECU130 toe angle change control ECU37RA, the toe angle target speed limiting section 84A of 37LA toe
  • the angle instruction value ⁇ T1 is read.
  • step S02 it reads the toe angle target value alpha T2P outputted last time in the toe angle target speed limiting section 84A.
  • This toe angle target value ⁇ T2P output last time is temporarily stored in step S14, which will be described later in the previous process in the repetition process.
  • ⁇ ′ T1 is a time differential value of the toe angle instruction value, and indicates the toe angle instruction value speed ⁇ ′ T1 in the first embodiment.
  • the sign function is a sign determination function that outputs ⁇ 1 when the numerical value is negative, +1 when the numerical value is positive, and 0 (zero) when the numerical value is 0 (zero).
  • step S06 it is checked whether the product of the sign ⁇ T1 determined in step S04 and the sign ⁇ ⁇ determined in step S05 is a negative value (“ ⁇ T1 ⁇ ⁇ ⁇ ⁇ 0?”). If the product of the sign sigma T1 and code sigma [Delta] [alpha] is negative (Yes), in accordance connector (A), the process proceeds to step S10 in FIG. 9, when the product of the sign sigma T1 and code sigma [Delta] [alpha] is 0 (zero) or more (No) advances to step S07.
  • step S07 it is checked whether or not the absolute value of the tracking error ⁇ T1A is larger than a predetermined positive value ⁇ max (“
  • step S06 When the process proceeds from step S06 to step S10 according to the connector (A), it is checked whether or not the sign of the toe angle instruction value ⁇ T1 and the sign of the toe angle target value ⁇ T2P output last time read in step S02 do not match (“ sign ( ⁇ T1 ) ⁇ sign ( ⁇ T2P )? "). If the sign of the toe angle instruction value ⁇ T1 does not match the sign of the toe angle target value ⁇ T2P output last time (Yes), the process proceeds to step S12. If the sign matches (No), the process proceeds to step S11. In step S11, the toe angle target value change amount ⁇ T2 is output at the maximum speed.
  • Step S04 in the flowcharts shown in FIGS. 8 and 9 is “instruction value increase / decrease direction determination means” described in the claims, and steps S05 to S09 are “target value speed limit for setting first target value change amount”.
  • S10 and S11 correspond to "means for changing target value change amount at switching”, respectively.
  • steps S06 and S10 correspond to “neutral detection means at switching”
  • step S12 corresponds to “hold means”
  • step S13 corresponds to “output selection means” and “target value update means”, respectively.
  • the toe angle target value ⁇ corresponds to the curve L1 indicating the transition of the toe angle instruction value ⁇ T1 as shown in FIG.
  • the process proceeds to steps S10 and S11 at time t2 and time t5, and the toe angle target value change amount ⁇ T2 is set to a predetermined value (maximum value) ⁇ max.
  • the toe angle target value ⁇ T2A can be changed in the neutral direction in which the toe angle instruction value ⁇ T1 changes at the maximum possible speeds of 30L and 30R.
  • the turn-back control can be performed at an earlier timing than in the case of the prior art shown in FIG. Then, to control forward turning the actual toe angle alpha 1 so as to follow the target current calculating section 86 toe angle target value at maximum speed in response to the forward turning control of the toe angle indicating value alpha T1 (see FIG. 3) alpha T2A,
  • the problem that the direction of the rear wheel toe angle instruction value ⁇ T1 and the movement of the actual rear wheel toe angle ⁇ 1 are reversed to cause a sense of incongruity due to a delay in vehicle behavior is solved.
  • step S10 the forward turning control start time t2 later as shown in FIG. 7, or at time t5 and later, to the neutral position sooner than toe angle indicating value alpha T1 precedes the toe angle target value alpha T2A
  • step S10 when the toe angle instruction value ⁇ T1 is turned back, the process proceeds from step S10 to step S11 to control the actual toe angle ⁇ 1 with high responsiveness, and from step S10 to step S12, It is possible to prevent the toe angle target value ⁇ T2A that returns in the neutral direction ahead of the toe angle instruction value ⁇ T1 from overshooting past the neutral position. That is, it prevents that by following the actual toe angle alpha 1 to the toe angle target value alpha T2A, actual toe angle alpha 1 and the left-right direction until the opposite direction indicated by the toe angle indicating value alpha T1 overshoots.
  • FIG. 10 is a functional block configuration diagram of a toe angle change control ECU in the third embodiment
  • FIG. 11 is a detailed functional block configuration of a toe angle target speed limiter of the toe angle change control ECU in the third embodiment.
  • FIG. 10 is a functional block configuration diagram of a toe angle change control ECU in the third embodiment
  • FIG. 11 is a detailed functional block configuration of a toe angle target speed limiter of the toe angle change control ECU in the third embodiment.
  • FIG. in this embodiment as shown in () in FIGS. 1 and 2, the toe angle change control ECU 37LA. 37RA replaces toe angle change control ECUs 37LB and 37RB.
  • FIG. 37LA. 37RA replaces toe angle change control ECUs 37LB and 37RB.
  • the actual toe angle ⁇ 1L calculated by the actual toe angle converting unit 82 is supplied to the toe angle target speed limiting unit 84A.
  • the actual toe angle ⁇ 1R calculated by the actual toe angle conversion unit 82 is the toe angle target speed limiting unit 84A.
  • the control unit 81A of the toe angle change control ECU 37RB in the present embodiment it is also input to the toe angle target speed limiting unit 84B, as shown in FIG.
  • the subtraction unit 51A, the switching control unit 56A, the hold control unit 57A, the addition unit 58A, and the primary delay correction unit 59A in the first embodiment. are replaced by a subtractor 51B, a switching controller 56B, a hold controller 57B, an adder 58B, and a first-order lag corrector 59B, respectively.
  • the same reference numerals are given to the same components as those in the first embodiment, and only the components different from those in the first embodiment will be described, and redundant descriptions will be omitted.
  • Subtraction unit 51B from the toe angle indicating value alpha T1 inputted from toe angle instruction value calculation section 71, the real and actual toe angle alpha 1 from the toe angle conversion section 82 by the primary delay correction unit 59B first-order lag corrected real
  • the toe angle ⁇ 2 (hereinafter simply referred to as “actual toe angle ⁇ 2 ”) is subtracted to calculate the follow-up error ⁇ T1B , and the minimum value selection unit 53 and the follow-up error sign determination unit 61 of the switch back control unit 56 input.
  • the switching system subtraction unit 51B has the same configuration as the switching system subtraction unit 51A in the first embodiment, except that the tracking error ⁇ T1B is input to the tracking error code determination unit 61.
  • the addition unit 58B is the toe angle target value change amount [Delta] [alpha] T2 outputted from the hold control part 57B, by adding the actual toe angle alpha 2 which is a first-order lag compensation from the primary delay correction unit 59B, target current calculation
  • the toe angle target value ⁇ T2B is input to the part 86.
  • the correction constant in the first-order lag correction unit 59B mainly takes into account the time constants of the motor drive circuit 88 and the motor 31 and the reduction ratio of the reducer of the actuator 30 (shown as 30L, 30R in FIG. 3). Is set.
  • the hold control unit 57B in the present embodiment has an actual toe angle code determination unit 74B instead of the target toe angle code determination unit 74A of the hold control unit 57A in the first embodiment.
  • the actual toe angle code determination unit 74B uses the actual toe angle ⁇ 2 (specifically, the actual toe angles ⁇ 2L and ⁇ 2R (not shown) corrected by the first order delay) corrected by the first order delay from the first order delay correction unit 59B.
  • the sign of the actual toe angle ⁇ 2 plus, zero, minus is determined, and one of the values +1, 0, ⁇ 1 is input to the multiplier 75 in correspondence with it.
  • the toe angle change control ECUs 37LB, 37RB and the toe angle instruction value calculation unit 71 constitute “control means in the rear wheel operation control device” described in the claims, and in particular, the toe angle change control ECUs 37LB, 37RB.
  • the toe angle change control ECUs 37LB, 37RB corresponds to the “actuator control means” recited in the claims.
  • the stroke sensor 38 corresponds to the “rear wheel actual rudder angle acquisition means, actual toe angle information acquisition means” recited in the claims, and the expansion / contraction amount of the feed screw portion of the actuators 30L, 30R falls within the claims. This corresponds to “information relating to the actual steering angle of the rear wheels, information relating to the actual toe angle”.
  • the toe angle instruction value ⁇ T1 is the “rear wheel steering angle instruction value” described in the claims
  • the toe angle target value ⁇ T2B is the “rear wheel steering angle target value”
  • the toe angle target value change amount ⁇ T2 corresponds to the “steering angle target value change amount”.
  • the toe angle command value differentiating unit 62 and the toe angle command value speed code determination unit 63 of the switching control unit 56B correspond to the “command value increase / decrease direction determination unit” described in the claims.
  • the control unit 57B and the addition unit 58B correspond to “target value setting update means” described in the claims.
  • the subtraction unit 51B, the fixed value output unit 52, the minimum value selection unit 53, the fixed gain calculation unit 54, and the maximum value selection unit 55 correspond to “target value speed limiting means”.
  • the tracking error code determination unit 61 and the multiplication units 64 and 56 correspond to the “target value change amount setting unit at the time of switching”
  • the binary selection unit 66 corresponds to the “output selection unit”
  • the addition unit 58B This corresponds to “target value update means”.
  • FIG. 12 is a diagram for explaining the operation of control at the time of toe angle switching in the prior art
  • (a) is an explanatory diagram showing changes in the time transition of the toe angle instruction value and the actual toe angle
  • (b) is ( It is a time chart which shows the change of the code
  • angle target value change amount (toe angle target speed) is set to the upper limit value (corresponding to the value "2" of the maximum change in the present embodiment), the actual toe angle alpha 1 to follow the toe angle instruction value alpha T1 Try to. Then, after I arrived to follow the actual toe angle ⁇ 1 in the toe angle command value ⁇ T1 at time t3, an attempt to follow the actual toe angle ⁇ 1 in response to the tracking error ⁇ T1B which became the opposite sign.
  • FIGS. 13A and 13B are diagrams for explaining the operation of the toe angle switching control.
  • FIG. 13A is an explanatory diagram showing changes in the time transition between the toe angle instruction value and the actual toe angle
  • FIG. 13B is a time transition in FIG. Time chart showing change in sign of toe angle command value, toe angle command value speed and follow-up error corresponding to each, change-over control ON / OFF state, and change-back control output value when turn-back control is ON It is.
  • the toe angle target value change amount ⁇ T2 (toe angle target speed) is limited to the upper limit value (corresponding to the maximum change amount value “2” of the present embodiment) that the actuator 30 can follow, and the actual toe angle the ⁇ 1 to try to follow the toe angle command value ⁇ T1.
  • the control value CS1 output from the multiplication unit 65 is a value of ⁇ 1 (in FIG. 13B).
  • the value of the maximum change amount ⁇ Tmax of the value of ⁇ 2 calculated by the multiplier 64 is input from one of the binary selectors 92 to the binary selector 92 (terminal 92c). Input).
  • the value input to the terminal 92c is input to the addition unit 58B as the toe angle target value change amount ⁇ T2 , where it is added to the actual toe angle ⁇ 2 corrected for the first-order lag, and the target toe angle ⁇ It is input to the target current calculation unit 86 as T2B .
  • the maximum change amount ⁇ Tmax having the same sign as the toe angle command value change rate ⁇ ′ T1 is set. In other words, it performs control to change to the neutral direction actual toe angle alpha 1 at a maximum speed at time t2.
  • the control value CS1 output from the multiplication unit 65 becomes ⁇ 1 as in the time t2 and thereafter, and the binary selection unit 66 receives the multiplication unit.
  • the value of the maximum change change ⁇ Tmax of the value +2 calculated in 64 is input to one of the binary selection units 92 (input to the terminal 92c).
  • the value input to the terminal 92c is input to the addition unit 58B as the toe angle target value change amount ⁇ T2 , where it is added to the actual toe angle ⁇ 2 corrected for the first-order lag, and the target toe angle ⁇ It is input to the target current calculation unit 86 as T2B .
  • the maximum change amount ⁇ Tmax having the same sign as the toe angle command value change rate ⁇ ′ T1 is set. In other words, it performs control to change to the neutral direction actual toe angle alpha 1 at a maximum speed at time t5.
  • FIG. 14 is an explanatory diagram of the action of the hold control after the toe angle switching control.
  • FIG. 14A is an explanatory diagram showing a change in the time transition of the toe angle instruction value and the actual toe angle, and FIG. ) Toe angle command value, toe angle command value speed and follow-up error sign change corresponding to the time transition, and switching control ON / OFF state, switching control output value when switching control is ON, It is a time chart which shows the change of an actual toe angle code, the ON / OFF state of hold control, and the hold control output value.
  • the hold control unit 57B when the hold control unit 57B is provided and the switching control is in the ON state (when the control value CS1 is ⁇ 1), the sign of the toe angle instruction value ⁇ T1 and the sign of the actual toe angle ⁇ 1 (when in FIG. 11 the first-order lag corrected actual toe angle alpha 2 of the code) and do not match, for example, when the sign of the actual toe angle alpha 1 is changed from positive to zero at the time T4b, code mismatch determination unit 79, the hold A control value CS3 for setting the control ON state is input to the binary selection unit 92.
  • the binary selector 92 stops outputting the value ( ⁇ 2) of ⁇ Tmax as the toe angle target value change amount ⁇ T2 , and outputs a value of 0 (zero). Switching is performed (see curve L4B in FIG. 14A).
  • the forward turning control is still continuing is ON, the actual toe angle ⁇ 1 is maintained at zero (the neutral position), the toe angle indicating value alpha T1 at time t4 caught up to zero, the code mismatch determination unit 79, reference numeral
  • the hold control is turned off.
  • the control value CS1 output from the multiplication unit 65 also becomes a value other than ⁇ 1 (0 or +1) almost simultaneously, and the switching back control is also turned off.
  • the actual toe angle is changed to the toe angle instruction value ⁇ T1 by the toe angle target value change amount ⁇ T2 obtained by subjecting the normal follow-up error ⁇ T1B to min-max processing. to follow-up control of the ⁇ 1.
  • the control value CS1 output from the multiplication unit 65 becomes ⁇ 1 as in the time t2 and thereafter, and the binary selection unit 66 receives the multiplication unit.
  • the value of the maximum change amount ⁇ Tmax which is a value of +2 calculated in 64 (corresponding to the switching control output value in FIG.
  • the binary selection unit 92 is input to one of the binary selection units 92 (input to the terminal 92c).
  • the value input to the terminal 92c is input to the addition unit 58B as the toe angle target value change amount ⁇ T2 , where it is added to the actual toe angle ⁇ 2 corrected for the first-order lag,
  • the toe angle target value ⁇ T2B is input to the target current calculation unit 86.
  • the binary selection unit 92 stops outputting the value ( ⁇ 2) of ⁇ Tmax as the toe angle target value change amount ⁇ T2 , and switches to output a value of 0 (zero). (Refer to the curve L4B in FIG. 14A).
  • the forward turning control is still continuing is ON, the actual toe angle ⁇ 1 is maintained at zero (the neutral position), the toe angle indicating value alpha T1 at time t7 caught up to zero, the code mismatch determination unit 79, reference numeral
  • the hold control is turned off.
  • the control value CS1 output from the multiplication unit 65 also becomes a value other than ⁇ 1 (0 or +1) almost simultaneously, and the switching back control is also turned off.
  • the toe angle instruction value ⁇ T1 is maintained at 0
  • the value of the normal follow-up error ⁇ T1B is reduced to the toe angle instruction value ⁇ T1 by the toe angle target value change amount ⁇ T2 subjected to min-max processing. becomes up control the toe angles alpha 1, without actual toe angle alpha 1 is an overshoot as shown in time t7 in FIG. 12, it converges to zero (neutral position).
  • the hold control unit 57B when the toe angle instruction value ⁇ T1 is turned over, it is possible to control the actual toe angle ⁇ 1 with quick response, and toe angle instruction value ⁇ T1. too preceded the actual toe angle alpha 1 than the actual toe angle alpha 1 and the left-right direction until the opposite direction indicated by the toe angle indicating value alpha T1 can be prevented that an overshoot.
  • the driver when the driver performs fast turn-back steering that produces a fast turn-back output of the toe angle instruction value ⁇ T1 (specifically, the toe angle instruction values ⁇ T1L , ⁇ T1R ).
  • FIGS. 15 and 16 are flowcharts showing the flow of update control of the toe angle target value in the fourth embodiment.
  • the toe angle target speed limiting unit 84B in the fourth embodiment is a function realized by executing a program by the microcomputer of the control unit 81B included in the toe angle change control ECUs 37RB and 37LB as shown in FIG.
  • the update control of the toe angle target value ⁇ T2B is processed in the toe angle target speed limiter 84B at a constant cycle.
  • the toe angle target speed limiter 84B of the toe angle change control ECUs 37LB and 37RB is representatively described, so that the toe angle instruction value ⁇ T1 and the toe angle target value ⁇ T2B , Actual toe angle ⁇ 2 , first order lag corrected actual toe angle ⁇ 2 , follow-up error ⁇ T1B , toe angle target value change amount ⁇ T2 , but specifically toe angle change control ECU 37LA
  • toe angle indicating value specifically alpha TR1 toe angle target value ⁇ T2RB
  • actual toe angle target value alpha T2pr first-
  • Steps S21 to S33 in the flowchart in the fourth embodiment shown in FIGS. 15 and 16 substantially correspond to steps S01 to S13 in the flowchart in the second embodiment, respectively, and correspond to step S14 in the second embodiment.
  • the step has been deleted.
  • Other differences between the flowchart of the fourth embodiment and the flowchart of the second embodiment are that “read the toe angle target value ⁇ T2P output last time” in step S02 and “actual toe angle ⁇ T1 in step S22”.
  • Step S24 in the flowcharts shown in FIGS.
  • steps S25 to S29 are used as “target value speed limiting means for setting the first target value change amount” in the second embodiment
  • S30 and S31 are used as “target value change amount setting means during switching”.
  • steps S26 and S30 correspond to “neutral detecting means at switching”
  • step S32 corresponds to “hold means”
  • step S33 corresponds to “output selection means” and “target value update means”, respectively.
  • the toe angle target value ⁇ corresponds to the curve L1 indicating the transition of the toe angle instruction value ⁇ T1 as shown in FIG.
  • T2B is set and controlled as indicated by the curve L4B
  • the process proceeds to steps S30 and S31 at time t2 and time t5, and the toe angle target value change amount ⁇ T2 is set to a predetermined value (maximum value) ⁇ max.
  • the toe angle target value ⁇ T2B can be changed in the neutral direction in which the toe angle instruction value ⁇ T1 changes at the maximum possible speeds of 30L and 30R.
  • the turn-back control can be performed at an earlier timing than in the conventional technique shown in FIG. Then, to control forward turning the actual toe angle alpha 1 so as to follow the target current calculating section 86 toe angle target value at maximum speed in response to the forward turning control of the toe angle indicating value alpha T1 (see FIG. 10) alpha T2B, actual toe angle alpha 1 of the movement of the change and the rear wheel toe angle indicating value alpha T1 of the rear wheels is reversed, a problem that uncomfortable feeling due to the delay of the vehicle behavior is eliminated.
  • step S30 the forward turning control start time t2 later as shown in FIG. 14, or at the time t5 and later, reaches the neutral position sooner than toe angle indicating value alpha T1 precedes the actual toe angle alpha 1
  • step S30 when the toe angle instruction value ⁇ T1 is turned back, the process proceeds from step S30 to step S31, and the real toe angle ⁇ 1 with high responsiveness can be controlled, and from step S30 to step S32, Even when the actual toe angle ⁇ 1 that returns to the neutral direction ahead of the toe angle instruction value ⁇ T1 is generated, it is possible to prevent overshooting past the neutral position. That is, it prevents that by following the actual toe angle alpha 1 to the toe angle target value alpha T2B, actual toe angle alpha 1 and the left-right direction until the opposite direction indicated by the toe angle indicating value alpha T1 overshoots.
  • the present invention is not limited to the first to fourth embodiments described above, and various modifications such as the following are possible.
  • the rear wheel steering control device according to the first to fourth embodiments has two toe angle changing devices 120L and 120R (see FIG. 1), and each changes the toe angle of the rear wheel independently on the left and right.
  • the present invention includes a rear-wheel steering control device that steers the rear wheels 1L and 2R (see FIG. 1) in the same direction with one actuator.
  • the rear wheel steering control device has one rear wheel toe angle device instead of the aforementioned rear wheel toe angle devices 120L and 120R, and the rear wheel toe angle device has one toe angle change control ECU.
  • a front wheel turning angle detection sensor front wheel (Steering state quantity acquisition means) SFS is provided so that the front wheel turning angle ⁇ is detected and used, and the target current calculation unit 86 also calculates the target current value using the front wheel turning angle ⁇ . good.
  • the left and right toe angle changing devices 120L, 120 have individual toe angle changing control ECUs 37LA (37LB), 37RA (37RB), and steering control. Although provided separately from ECU 130, the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

 通常、トー角目標速度制限部(84A)は、最小値選択部(53)と最大値選択部(55)で追従誤差ΔαT1Aをmin-max処理した結果に一次遅れ補正されたトー角目標値αT2Pを加算部(58A)で加算して、トー角目標値αT2Aとして目標電流算出部(86)に出力する。しかし、本トー角目標速度制限部(84A)では、切り返し制御部(56A)でトー角目標変化量ΔαT2として最大値ΔαTmaxを発生させて出力する切替制御(切り返し制御)や、切り返し制御後に、トー角指示値αT1より先行したトー角目標値αT2Aの中立位置への到達に対して、ホールド制御を行う。

Description

後輪操舵制御装置
 本発明は、例えば、四輪自動車の後輪の舵角を変更制御できる後輪操舵制御装置に関する。
 従来、車両の旋回性などを向上させる目的で、後輪の舵角を制御する4輪操舵装置が種々提案されている。例えば、低速走行時には、前輪の転舵角と後輪の舵角を逆位相にして最小回転半径を小さくすることができ、高速走行時には、前輪の転舵角と後輪の舵角を同位相にして車線変更などの際の操縦性を高めることができる。また、左右の後輪のトー角を独立に制御する技術として、油圧機構によるアクチュエータを用いたもの、油圧機構に代えて送りねじ機構によるアクチュエータを用いたものも提案されている(例えば、特許文献1の図1~図6参照)。
 また、特許文献2には、SBW(Steer By Wire)式の操舵装置において、転舵輪(前輪)の方向を変更制御するためにステアリングロッドを軸方向に駆動するステアリングモータが設けられ、運転者が操作する操向ハンドルからの操舵角の情報にもとづいて制御装置がステアリングモータを制御する技術が開示されている。そして、その操舵装置によれば、運転者の操舵に応じた前輪の転舵角目標値に対して転舵輪の実転舵角が追従遅れを有する状態で、運転者が操舵方向を反転させた場合であっても、この時点で測定される前輪の実転舵角を転舵角目標値に反映させることで、運転者の操舵方向と、前輪の実転舵角に従う車両の旋回方向との対応関係が逆転してしまうことを防止する技術が開示されている。
特開2008-201173号公報 特開2006-69259号公報(図4)
 しかしながら、特許文献2の技術は、SBW式の操舵装置に関する技術であり、そのまま後輪舵角制御装置に適用することができない。
 従来、後輪操舵制御装置においてサスペンションジオメトリによってはアクチュエータに大きな推力が求められる場合がある。アクチュエータの出力増大のためのモータ大型化は、車両へ搭載配置上難しいため、減速機の減速比を大きくすることで、推力を確保しているという、後輪操舵制御装置特有の前輪転舵装置とは異なる点があるためである。そして、減速機の減速比を大きくすることによってアクチュエータの応答性、つまり、後輪の舵角変更速度、または後輪のトー角変更速度が低下してしまうため、後輪の舵角指示値の変化速度の絶対値が大きい場合または後輪のトー角指示値の変化速度の絶対値が大きい場合は、後輪の実舵角や実トー角の追従遅れを生じる問題がある。
 特に、後輪操舵制御装置において後輪の舵角指示値またはトー角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合、後輪の舵角指示値の向きと後輪の実舵角の動き、または後輪のトー角指示値の向きと後輪の実トー角の動きが逆転することがあり、車両挙動の遅れによる違和感を生じさせるという問題があった。
 そこで、本発明は、前記問題を解決する後輪操舵制御装置を提供することを目的とする。
 前記課題を解決するため請求の範囲第1項に係る発明は、車両に備わる後輪の舵角を変更するアクチュエータと、アクチュエータの駆動を制御する制御手段と、を備え、後輪の舵角を変更可能な後輪操舵制御装置において、制御手段は、アクチュエータを制御するアクチュエータ制御手段と、少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する舵角指示値算出手段と、舵角指示値算出手段から入力され後輪の舵角指示値の値に対して、アクチュエータ制御手段に入力する後輪の舵角目標値を設定して目標値更新制御をする目標値設定更新手段と、算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
 目標値設定更新手段は、後輪の舵角指示値と前回設定した後輪の舵角目標値との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前回設定した後輪の舵角目標値に加算して新たな後輪の舵角目標値として設定して前記目標値更新制御をし、
 指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合に、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように目標値変化量を所定の最大値に設定して前回設定した後輪の舵角目標値に加算し、目標値更新制御をすることを特徴とする。
 請求の範囲第1項に係る発明によれば、目標値設定更新手段は、後輪の舵角指示値と前回設定した後輪の舵角目標値との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前回設定した後輪の舵角目標値に加算して新たな後輪の舵角目標値として設定して目標値更新制御をする。そして、目標値設定更新手段は、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合に、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように目標値変化量を設定して前回設定した後輪の舵角目標値に加算して目標値更新制御をする。従って、後輪の舵角指示値に対してアクチュエータ制御手段に出力される後輪の舵角目標値に追従遅れがあっても、後輪の舵角指示値の増減方向が変わったときは、それまでの追従遅れを無視して、それまでと反対方向に最大速度となるように後輪の舵角を変更制御する。その結果、後輪の舵角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、後輪の舵角指示値の変化に追従する後輪の舵角制御ができ、車両挙動の遅れによる運転者の違和感を防止できる。
 請求の範囲第2項に係る発明は、請求の範囲第1項に記載の後輪操舵制御装置において、目標値設定更新手段は、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出することで、目標値更新制御を開始した後、後輪の舵角目標値が中立位置に達したのを検出した時点において、入力されている後輪の舵角指示値が中立位置に達していないときは、後輪の舵角目標値を中立位置にホールドするように後輪の舵角目標値を設定して前記目標値更新制御をすることを特徴とする。
 請求の範囲第2項に係る発明によれば、前記指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合に、アクチュエータをそれまでと反対方向に最大速度となるように後輪の舵角の目標値を更新制御を開始した後、後輪の舵角目標値が対応する後輪の舵角指示値よりも早く中立位置に達したのを検出した時点で、入力されている後輪の舵角指示値が中立位置に達するまで後輪の舵角目標値を中立位置にホールド制御する。その結果、後輪の舵角指示値が中立位置に戻る際に、後輪の舵角目標値がオーバーシュート、つまり、後輪の実舵角がオーバーシュートして、車両の直進への収斂遅れによる違和感を生じさせることを防止できる。
 請求の範囲第3項に係る発明は、車両に備わる後輪の舵角を変更するアクチュエータと、アクチュエータの駆動を制御する制御手段と、を備え、後輪の舵角を変更可能な後輪操舵制御装置において、制御手段は、アクチュエータを制御するアクチュエータ制御手段と、少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する指示値算出手段と、指示値算出手段から入力された後輪の舵角指示値の入力を受けて、アクチュエータが追従可能なように、必要に応じて所定の最大値以下に制限された第1の目標値変化量を設定する目標値速度制限手段と、算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、指示値増減判定手段において、後輪の舵角指示値の増減方向が変化したことを検出した場合、第2の目標値変化量を、変化した新たな増減方向であって、所定の最大値に設定する切り返し時目標値変化量設定手段と、目標速度制限手段から入力された第1の目標値変化量と、切り返し時目標値変化量設定手段から入力された第2の目標値変化量のうちの一方を目標値変化量として出力する出力選択手段と、出力選択手段から入力された前記目標値変化量と、前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値としてアクチュエータ制御手段に出力する目標値更新手段と、を有し、
 前記目標値速度制限手段は、入力された後輪の舵角指示値と、前回設定した後輪の舵角目標値との差分である追従誤差が、所定の最大値を超えている場合に第1の目標値変化量を所定の最大値に制限し、追従誤差が所定の最大値を超えていない場合は、追従誤差をそのまま第1の目標値変化量とし、
 指示値増減判定手段が、後輪の舵角指示値の増減方向が変わったことを検出した場合は、出力選択手段は、第2の目標値変化量を目標値変化量として選択出力し、
 目標値更新手段は、出力選択手段から入力された目標値変化量と、前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値としてアクチュエータ制御手段に出力することを特徴とする。
 請求の範囲第3項に係る発明によれば、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合、出力選択手段が、入力された第1の目標値変化量から入力された第2の目標値変化量に切替えて目標値変化量として選択出力し、目標値更新手段が、出力選択手段から入力された目標値変化量と、前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値としてアクチュエータ制御手段に出力する。従って、目標値更新手段が目標速度制限手段から出力選択手段に入力された第1の目標値変化量に基づいてそれまでアクチュエータ制御手段に後輪の舵角目標値を出力し、後輪の舵角指示値に対して追従遅れがあっても、後輪の舵角指示値の増減方向が変わったときは、出力選択手段が、切り返し時目標値変化量設定手段から入力された後輪の第2の舵角目標値に切り替え目標更新手段に出力する。その結果、後輪の舵角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、後輪の舵角指示値の変化に追従する後輪の舵角制御ができ、車両挙動の遅れによる運転者の違和感を防止できる。
 請求の範囲第4項に係る発明は、請求の範囲第3項に記載の後輪操舵制御装置において、制御手段は、指示値増減判定手段において、後輪の舵角指示値の増減方向が変化したことを検出した場合に、出力選択手段が、第2の目標値変化量を目標値変化量として選択出力した後、後輪の舵角目標値が中立位置に達したことを検出する切り返し時中立検出手段と、舵角目標値変化量をゼロに置き換えるホールド手段と、をさらに有し、
 目標値更新手段は、出力選択手段において、第2の目標値変化量を目標値変化量として選択出力した後、切り返し時中立検出手段において後輪の舵角目標値が中立位置に達したことを検出した時点において、入力されている後輪の舵角指示値が中立位置に達していないときは、ホールド手段に舵角目標値変化量をゼロに置き換えさせ、前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値として前記アクチュエータ制御手段に出力することを特徴とする。
 請求の範囲第4項に係る発明によれば、目標値更新手段は、出力選択手段において、第2の目標値変化量を目標値変化量として選択出力した後、切り返し時中立検出手段において後輪の舵角目標値が中立位置に達したことを検出したとき、入力されている後輪の舵角指示値が中立位置に達していない場合は、ホールド手段に舵角目標値変化量をゼロに置き換えさせる。その結果、後輪の舵角指示値が中立位置に戻る際に、後輪の舵角目標値がオーバーシュート、つまり、後輪の実舵角がオーバーシュートして、車両の直進への収斂遅れによる違和感を生じさせることを防止できる。
 請求の範囲第5項に係る発明は、車両に備わる左右の後輪のトー角をそれぞれ独立に変更するアクチュエータと、それぞれのアクチュエータの駆動を制御する制御手段と、を備え、後輪のトー角を左右独立に変更可能な後輪操舵制御装置において、制御手段は、それぞれのアクチュエータを独立に制御可能とするアクチュエータ制御手段と、少なくとも前輪の転舵状態量にもとづいて左右後輪のそれぞれのトー角指示値を算出するトー角指示値算出手段と、トー角指示値算出手段から入力され左右の後輪それぞれのトー角指示値の値に対して、アクチュエータ制御手段に入力する左右の後輪のそれぞれのトー角目標値を設定して目標値更新制御をする目標値設定更新手段と、算出された左右の後輪のそれぞれのトー角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
 目標値設定更新手段は、左の後輪のトー角指示値と前回設定した左の後輪のトー角目標値、および右の後輪のトー角指示値と前回設定した右の後輪のトー角目標値の2組に対し、左右独立にそれぞれに、
 後輪のトー角指示値と前回設定した後輪のトー角目標値との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前回設定した後輪のトー角目標値に加算し、新たな左右後輪のトー角目標値として設定して目標値更新制御をし、
 指示値増減判定手段において、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値変化量を所定の最大値に設定して、前回設定した当該の後輪のトー角目標値に加算して目標値更新制御をすることを特徴とする。
 請求の範囲第5項に係る発明によれば、目標値設定更新手段は、入力された左右の後輪のトー角指示値に左右の後輪のトー角目標値を追従させるように設定して目標値更新制御をするとともに、指示値増減判定手段において、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値変化量を設定して、前回設定した当該の後輪のトー角目標値に加算して目標値更新制御をする。従って、当該の後輪のトー角指示値に対してアクチュエータ制御手段に出力される当該の後輪のトー角目標値に追従遅れがあっても、当該の後輪の舵角指示値の増減方向が変わったときは、それまでの追従遅れを無視して、それまでと反対方向に最大速度となるように後輪のトー角を変更制御する。その結果、後輪のトー角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、後輪のトー角指示値の変化に追従する後輪のトー角制御ができ、車両挙動の遅れによる運転者の違和感を防止できる。
 請求の範囲第6項に係る発明は、請求の範囲第5項に記載の後輪操舵制御装置において、目標値設定更新手段は、指示値増減判定手段において、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出することで、目標値更新制御を開始した後、当該の後輪のトー角目標値が中立位置に達したのを検出した時点において、入力されている当該の後輪のトー角指示値が中立位置に達していないときは、当該の後輪のトー角目標値を中立位置にホールドするように当該の後輪のトー角目標値を設定して目標値更新制御をすることを特徴とする。
 請求の範囲第6項に係る発明によれば、目標値設定更新手段が、指示値増減判定手段において、前記左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値を所定の最大値に設定して目標値更新制御を開始した後、当該の後輪のトー角目標値が中立位置に達したのを検出した時点において、入力されている当該の後輪のトー角指示値が中立位置に達していないときは、当該の後輪のトー角目標値を中立位置にホールドする。その結果、後輪のトー角指示値が中立位置に戻る際に、後輪のトー角目標値がオーバーシュート、つまり、後輪の実トー角がオーバーシュートして、車両の直進への収斂遅れによる違和感を生じさせることを防止できる。
 請求の範囲第7項に係る発明は、車両に備わる後輪の舵角を変更するアクチュエータと、アクチュエータの駆動を制御する制御手段と、を備え、後輪の舵角を変更可能な後輪操舵制御装置において、制御手段は、アクチュエータを制御するアクチュエータ制御手段と、少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する舵角指示値算出手段と、後輪の実舵角に係わる情報を取得する後輪実舵角取得手段と、舵角指示値算出手段から入力され後輪の舵角指示値の値に対して、アクチュエータ制御手段に入力する後輪の舵角目標値を設定して目標値更新制御をする目標値設定更新手段と、算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
 目標値設定更新手段は、後輪の舵角指示値と後輪実舵角取得手段が取得した後輪の実舵角との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、後輪の実舵角に加算して新たな後輪の舵角目標値として設定して前記目標値更新制御し、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合に、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように目標値変化量を所定の最大値に設定して後輪の実舵角に加算し、目標値更新制御をすることを特徴とする。
 請求の範囲第7項に係る発明によれば、目標値設定更新手段は、後輪の舵角指示値と後輪の実舵角との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、後輪の実舵角に加算して新たな後輪の舵角目標値として設定して目標値更新制御をする。指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように目標値変化量を設定して後輪の実舵角に加算して目標値更新制御をする。従って、後輪の舵角指示値に対して後輪の実舵角に追従遅れがあっても、後輪の舵角指示値の増減方向が変わったときは、それまでの追従遅れを無視して、それまでと反対方向に最大速度となるように後輪の実舵角を変更制御する。その結果、後輪の舵角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、後輪の舵角指示値の変化に追従する後輪の舵角制御ができ、車両挙動の遅れによる運転者の違和感を防止できる。
 請求の範囲第8項に係る発明は、請求の範囲第7項に記載の後輪操舵制御装置において、目標値設定更新手段は、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出することで、目標値更新制御を開始した後、後輪の実舵角が中立位置に達したのを検出した時点において、入力されている後輪の舵角指示値が中立位置に達していないときは、後輪の実舵角を中立位置にホールドするように後輪の舵角目標値を設定して目標値更新制御をすることを特徴とする。
 請求の範囲第8項に係る発明によれば、指示値増減判定手段において、後輪の舵角指示値の増減方向が変わったことを検出した場合に、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように後輪の舵角目標値を所定の最大値に設定して目標値更新制御を開始した後、後輪の実舵角が中立位置に達したのを検出した時点において、入力されている後輪の舵角指示値が中立位置に達していないときは、後輪の実舵角を中立位置にホールド制御する。その結果、後輪の舵角指示値が中立位置に戻る際に、後輪の舵角目標値がオーバーシュート、つまり、後輪の実舵角がオーバーシュートして、車両の直進への収斂遅れによる違和感を生じさせることを防止できる。
 請求の範囲第9項に係る発明は、車両に備わる左右の後輪のトー角をそれぞれ独立に変更するアクチュエータと、それぞれのアクチュエータの駆動を制御する制御手段と、を備え、後輪のトー角を左右独立に変更可能な後輪操舵制御装置において、制御手段は、それぞれのアクチュエータを独立に制御可能とするアクチュエータ制御手段と、少なくとも前輪の転舵状態量にもとづいて左右後輪のそれぞれのトー角指示値を算出するトー角指示値算出手段と、左右後輪の実トー角に係わる情報を取得する実トー角情報取得手段と、トー角指示値算出手段から入力され左右の後輪それぞれのトー角指示値の値に対して、アクチュエータ制御手段に入力する左右の後輪のそれぞれのトー角目標値を設定して目標値更新制御をする目標値設定更新手段と、入力された左右の後輪のそれぞれのトー角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
 目標値設定更新手段は、左の後輪のトー角指示値と実トー角情報取得手段が取得した左の後輪の実トー角、および右の後輪のトー角指示値と実トー角情報取得手段が取得した右の後輪の実トー角、の2組に対し、左右独立にそれぞれに、
 後輪のトー角指示値と後輪の実トー角との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、後輪の実トー角に加算し、新たな左右の後輪のトー角目標値として設定して目標値更新制御をし、
 指示値増減判定手段において、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値変化量を所定の最大値に設定して当該の後輪の実トー角に加算して目標値更新制御をすることを特徴とする。
 請求の範囲第9項に係る発明によれば、目標値設定更新手段は、、左右独立にそれぞれに、後輪のトー角指示値と後輪の実トー角との差分を目標値変化量として算出するとともに、算出された目標値変化量を必要に応じて所定の最大値以下に制限して、後輪の実トー角に加算し、新たな左右の後輪のトー角目標値として設定して目標値更新制御をする。そして、指示値増減判定手段において、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値変化量を所定の最大値に設定して当該の後輪の実トー角に加算して目標値更新制御をする。従って、後輪の舵角指示値に対して後輪の実トー角に追従遅れがあっても、後輪の舵角指示値の増減方向が変わったときは、それまでの追従遅れを無視して、それまでと反対方向に最大速度となるように後輪の舵角を変更制御する。その結果、後輪の舵角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、後輪の舵角指示値の変化に追従する後輪の舵角制御ができ、車両挙動の遅れによる運転者の違和感を防止できる。
 請求の範囲第10項に係る発明は、請求の範囲第9項に記載の後輪操舵制御装置において、目標値設定更新手段は、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出することで、目標値更新制御を開始した後、当該の後輪の実トー角が中立位置に達したのを検出した時点において、入力されている当該の後輪のトー角指示値が中立位置に達していないときは、当該の後輪のトー角目標値を中立位置にホールドするように当該の後輪のトー角目標値を設定して目標値更新制御をすることを特徴とする。
 請求の範囲第10項に係る発明によれば、目標値設定更新手段は、左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、増減方向が変わったことを検出された当該の後輪に対して、アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように当該の後輪のトー角目標値を所定の最大値に設定して目標値更新制御を開始した後、当該の後輪の実トー角が中立位置に達したのを検出した時点において、入力されている当該の後輪のトー角指示値が中立位置に達していないときは、当該の後輪のトー角目標値を中立位置にホールド制御する。その結果、後輪の舵角指示値が中立位置に戻る際に、後輪の実トー角がオーバーシュートして、車両の直進への収斂遅れによる違和感を生じさせることを防止できる。
 本発明によれば、後輪の舵角指示値の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合、車両挙動の遅れによる違和感を生じさせない後輪操舵制御装置を提供することができる。
本発明の実施形態に係る後輪操舵制御装置を含む操舵システムを備えた四輪自動車の全体概念図である。 操舵システムの操舵制御ECUとトー角変更装置の概略制御機能構成図である。 第1の実施形態におけるトー角変更制御ECUの機能ブロック構成図である。 第1の実施形態におけるトー角変更制御ECUのトー角目標速度制限部の詳細な機能ブロック構成図である。 従来技術におけるトー角切り返し時の制御の作用説明図である。 トー角切り返し制御の作用説明図である。 トー角切り返し制御後のホールド制御の作用説明図である。 第2の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。 第2の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。 第3の実施形態におけるトー角変更制御ECUの機能ブロック構成図である。 第3の実施形態におけるトー角変更制御ECUのトー角目標速度制限部の詳細な機能ブロック構成図である。 従来技術におけるトー角切り返し時の制御の作用説明図である。 トー角切り返し制御の作用説明図である。 トー角切り返し制御後のホールド制御の作用説明図である。 第4の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。 第4の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。
《第1の実施形態》
 図1から図4を参照しながら本発明の第1の実施形態に係る後輪操舵制御装置を説明する。
 図1は本発明の第1の実施形態に係る後輪操舵制御装置を含む操舵システムを備えた四輪自動車の全体概念図である。
 図1に示すように、操舵システム100は、前輪1L,1Rを転舵させる操向ハンドル3による操舵を電動機4で補助する電動パワーステアリング装置110、操向ハンドル3の操作角と車速とに応じて後輪2L,2Rのトー角(後輪の舵角)をそれぞれ独立にアクチュエータ30L,30Rによって変更させるトー角変更装置120L,120R、電動パワーステアリング装置110およびトー角変更装置120L,120Rを制御する操舵制御装置130(以下、操舵制御ECUと称する)、操作角センサS、車速センサSなどを含んで構成されている。ここで、トー角変更装置120L,120Rと操舵制御ECU130に含まれる後記するトー角指示値演算部(舵角指示値算出手段)71が、請求の範囲に記載の「後輪操舵制御装置」に対応する。
(電動パワーステアリング装置)
 電動パワーステアリング装置110は、図1に示すように操向ハンドル3が設けられたメインステアリングシャフト3aと、中間シャフト(図示せず)と、ピニオン軸7とが、2つのユニバーサルジョイント(図示せず)によって連結され、また、ピニオン軸7の下端部に設けられたピニオンギア7aは、車幅方向に往復運動可能なラック軸8のラック歯8aに噛合し、ラック軸8の両端には、タイロッド9,9を介して左右の前輪1L,1Rが連結されている。この構成により、電動パワーステアリング装置110は、操向ハンドル3の操作時に車両の進行方向を変えることができる。ここで、ラック軸8、ラック歯8a、タイロッド9,9は転舵機構を構成する。
 なお、ピニオン軸7はその上部、中間部、下部を3つの軸受(図示せず)を介してステアリングギアボックス(図示せず)に支持されている。
 また、電動パワーステアリング装置110は、操向ハンドル3による操舵力を軽減するための補助操舵力を供給する電動機4を備えており、この電動機4の出力軸に設けられたウォームギア5aが、ピニオン軸7に設けられたウォームホイールギア5bに噛合している。
 すなわち、ウォームギア5aとウォームホイールギア5bとで減速機構が構成されている。また、電動機4の回転子と電動機4に連結されてているウォームギア5aとウォームホイールギア5bとピニオン軸7とラック軸8とラック歯8aとタイロッド9,9などにより、ステアリング系が構成されている。
 電動機4は、例えば、複数の界磁コイルを備えた固定子(図示せず)とこの固定子の内部で回動する回転子(図示せず)からなる3相ブラシレスモータであり、電気エネルギーを機械的エネルギーに変換するものである。
 また、電動パワーステアリング装置110は、電動機4を駆動する電動機駆動回路23と、電動機4の回転角を検出するレゾルバ25と、ピニオン軸7に加えられるピニオントルクを検出するトルクセンサSと、ピニオン軸7の回転角を検出する操作角センサSと、トルクセンサSの出力を増幅する差動増幅回路21と、車両の速度(車速)を検出する車速センサSとを備えている。
 そして、操舵システム100の操舵制御ECU130は、電動パワーステアリング装置110の機能部である電動機4を駆動制御する後記する電動パワーステアリング制御部130a(図2参照)を有している。
 電動機駆動回路23は、例えば、3相のFETブリッジ回路のような複数のスイッチング素子を備え、電動パワーステアリング制御部130aからのDUTY(DU,DV,DW)信号を用いて、矩形波電圧を生成し、電動機4を駆動するものである。
 また、電動機駆動回路23は図示しないホール素子を用いて3相の電動機電流を検出する機能を備えている。
 車速センサSは、車両の車速VSを単位時間あたりのパルス数として検出するものであり、車速信号VSを出力する。
 操舵制御ECU130の機能構成については、電動パワーステアリング装置110の制御とトー角変更装置120L,120Rの制御とをまとめて後記する。
(トー角変更装置)
 次に、トー角変更装置の構成を簡単に説明する。
 トー角変更装置120L,120Rは、車両の左右の後輪2L,2Rにそれぞれ取り付けられるものである。トー角変更装置120Lは、アクチュエータ30L,トー角変更制御装置(以下、トー角変更制御ECUと称する)37LAを備えている。同様に、トー角変更装置120Rは、アクチュエータ30R、トー角変更制御ECU37RAを備えている。ここで、トー角変更制御ECU37LA,37RAは、請求の範囲に記載の「アクチュエータ制御手段」に対応する。
 アクチュエータ30L,30Rは、例えば、特開2008―201173号公報の図3、図4に記載されているような後輪2L,2Rへの取り付け方法および構成である。アクチュエータ30L,30Rは、それぞれ電動機31、減速機構(図示せず)、送りねじ部(図示せず)などを備えて構成されている。
 電動機31は、正逆両方向に回転可能なブラシモータやブラシレスモータなどで構成されている。減速機構は、例えば、2段のプラネタリギア(図示せず)などが組み合わされて構成されている。
 また、アクチュエータ30L,30Rには、送りねじ部の伸縮量(後輪の実舵角に係る情報、実トー角に係る情報)を検出するストロークセンサ38が設けられている。このストロークセンサ38は、例えば、マグネットが内蔵され、磁気を利用して位置を検出できるようになっている。このように、ストロークセンサ38を用いて位置を検出することにより、後輪2L,2Rのトーイン、トーアウトの舵角(トー角)を個別に高精度に検出できるようになっている。
 そして、中立位置から左側を向いたトー角をマイナス(-)、中立位置から右側を向いたトー角をプラス(+)と定義しておく。
 また、アクチュエータ30Lにはトー角変更制御ECU37LAが、アクチュエータ30Rにはトー角変更制御ECU37RAが、それぞれ一体に取り付けられている。トー角変更制御ECU37LA,37RAは、それぞれアクチュエータ30L,30Rのケース本体に固定され、ストロークセンサ38とコネクタなどを介して接続されている。トー角変更制御ECU37LA,37RAには、車両に搭載された図示しないバッテリなどの電源から電力が供給される。また、操舵制御ECU130、電動機駆動回路23にも前記とは別系統でバッテリなどの電源から電力が供給される(図示せず)。
(操舵制御ECU)
 次に、図2を参照しながら操舵制御ECUの機能を説明する。
 図2は操舵システムの操舵制御ECUとトー角変更装置の概略制御機能構成図である。
 操舵制御ECU130は、図示しないCPU,ROM,RAMなどを備えるマイクロコンピュータおよび周辺回路などから構成されている。
 図2に示すように操舵制御ECU130は、電動パワーステアリング装置110を制御する電動パワーステアリング制御部130aと、後輪2L,2Rのトー角の指示値(以下、「トー角指示値」と称する)を演算するトー角指示値演算部(舵角指示値算出手段)71を備えている。
 ここで、トー角指示値は、請求の範囲に記載の「後輪の舵角指示値」に対応する。
(電動パワーステアリング制御部)
 電動パワーステアリング制御部130aは、詳細な説明を省略するが、特開2002-59855号公報の図2に記載されているような電動機4を駆動制御するための目標電流信号を設定し、その信号をイナーシャ補正し、さらにダンピング補正し、補正された目標電流を、電動機駆動回路の出力電流をフィードバック制御して、電動機駆動回路23にDUTY(DU,DV,DW)信号を出力する。
(トー角指示値算出部)
 次に、図2を参照しながら後輪トー角指示値算出部について説明する。
 トー角指示値演算部71は、車速信号VSと、操向ハンドル3の操作角(転舵状態量)θとから左右の後輪2L,2Rのそれぞれのトー角指示値αTL1、αTR1を生成し、左右の後輪2L,2Rのそれぞれのトー角変更を制御するトー角変更制御ECU37LA,37RAにトー角指示値αTL1、αTR1を入力する。このトー角指示値αTL1、αTR1の生成は、予め左右の後輪2L,2Rごとに設定されたトー角テーブル71aを操作角θ、操作角θの角速度ω、車速VSとにもとづいて参照することによって行われる。ここで操向ハンドル3の操作角θは、請求の範囲に記載の「前輪の転舵状態量」に対応する。
 なお、角速度ωはトー角指示値演算部71内で操作角θを微分して求める。
 例えば、次式(1)、(2)のように設定される。
 αTL1=K(VS,ω,θ)・θ      ・・・・(1)
 αTR1=K(VS,ω,θ)・θ      ・・・・(2)
 ここで、K(VS)、K(VS)は車速VS、操作角θおよび角速度ωに依存する前後輪操舵比であり、後輪のトー角指示値αTL1、αTR1が、車速が所定の低速の範囲では、操向ハンドル3の操作角θに応じて後輪2L,2Rが逆位相に、小回りがしやすいように各後輪のトー角指示値αTL1,αTR1が生成される。
 前記所定の低速の範囲を超える高速の範囲では、角速度ωの絶対値が所定の値以下で、かつ、操作角θが左右の所定の範囲以内の場合は、操作角θに応じて同位相に各後輪のトー角指示値αTL1、αTR1が設定される。
 しかし、前記所定の低速の範囲を超える高速の範囲で、角速度ωの絶対値が所定の値を超えるか、または、操作角θが左右の所定の範囲を超える大きな操作角θの場合は、操作角θに応じた逆位相に各後輪のトー角指示値αTL1、αTR1が設定される。
《トー角変更制御ECU》
 次に、図3を参照しながらトー角変更制御ECUの詳細な構成を説明する。図3は、第1の実施形態におけるトー角変更制御ECUの機能ブロック構成図である。トー角変更制御ECU37LA,37RAは、同じ構成であるのでトー角変更制御ECU37RAを例に説明する。
 図3に示すように、トー角変更制御ECU37RAはアクチュエータ30R、つまり電動機31を駆動制御する機能を有し、制御部81Aと電動機駆動回路88とで構成されている。また、トー角変更制御ECU37RAは、操舵制御ECU130と通信線を介して接続されている。
 制御部81Aは、CPU,RAM,ROMなどを備えるマイクロコンピュータおよび周辺回路などから構成されており、実トー角変換部82、トー角目標速度制限部84A、目標電流算出部86、電動機制御信号生成部87を有している。
 実トー角変換部82は、ストロークセンサ38からのストローク位置信号を読み込んで、ストローク位置を実トー角α1Rに変換し、目標電流算出部86に入力する。
 トー角目標速度制限部84Aは、まず、基本機能として操舵制御ECU130のトー角指示値演算部71からのトー角指示値(後輪の舵角指示値)αTR1を一定周期、例えば、100msecで読み込んで、トー角指示値αTR1の変化に対して制限処理を行ったり、トー角指示値αTR1の切り返し変化に対して追従を加速するための切り返し制御処理を行ったり、切り返し制御処理によるトー角指示値αTR1より速いトー角目標値(後輪の舵角目標値)αTR2Aの中立位置に到達時のホールド制御を行ったりする。これらの制御は、前記した一定周期で行なわれる。このトー角目標速度制限部84Aの詳細な制御処理の方法については、図5から図7を参照して後記する。
 目標電流算出部86は、トー角目標速度制限部84Aから入力されるトー角目標値αTR2Aと、実トー角変換部82からの後輪2Rの実トー角α1Rとにもとづいて、フィードバック制御の目標電流信号を算出して、電動機制御信号生成部87に出力する。
 ここで、目標電流信号とは、アクチュエータ30Rを所望の速度で実トー角α1Rを所望のトー角目標値αTR2Aに追従制御するのに必要な電流信号である。
 このようにトー角目標速度制限部84Aから目標電流算出部86に入力されたトー角目標値αTR2に対して実トー角α1Rをフィードバックして、目標電流信号を設定することにより、後輪2Rの転舵に要する電流値が車速VS、路面環境、車両の運動状態、タイヤの磨耗状態などによって変化するのをフィードバックして、トー角指示値αT1に追従制御することができる。
 電動機制御信号生成部87は、目標電流算出部86から目標電流信号が入力され、電動機駆動回路88に電動機制御信号を出力する。この電動機制御信号は、電動機31に供給する電流値と電流を流す方向を含む信号である。電動機駆動回路88は、FET(Field Effect Transistor)のブリッジ回路などで構成され、電動機制御信号にもとづいて電動機31に電動機電流を供給する。
 なお、トー角変更制御ECU37LAでは、前記したトー角変更制御ECU37RAにおけるトー角指示値αTR1をトー角指示値αTL1に、トー角目標値αTR2をトー角目標値αTL2に、実トー角α1Rを実トー角α1Lに、後輪2Rを後輪2Lに、アクチュエータ30Rをアクチュエータ30Lに読み替える。
 ここで、トー角変更制御ECU37LA,37RAおよびトー角指示値演算部71は、請求の範囲に記載の「後輪操作制御装置における制御手段」を構成する。
《トー角目標速度制限部》
 次に、図4を参照しながら、適宜、図3を参照してトー角目標速度制限部84Aの詳細な機能について説明する。図4は、第1の実施形態におけるトー角変更制御ECUのトー角目標速度制限部の詳細な機能ブロック構成図である。図4の説明では、トー角変更制御ECU37LA,37RAのそれぞれのトー角目標速度制限部84Aを代表的に説明するため、トー角指示値(後輪の舵角指示値)αT1、トー角目標値(後輪の舵角目標値)αT2A、一次遅れ補正後のトー角目標値αT2P、追従誤差ΔαT1A、トー角目標値変化量(舵角目標値変化量)ΔαT2と称するが、トー角変更制御ECU37LAに対しては、具体的にはトー角指示値(後輪の舵角指示値)αTL1、トー角目標値(後輪の舵角目標値)αT2LA、一次遅れ補正後のトー角目標値αT2PL、追従誤差ΔαTL1A、トー角目標値変化量(舵角目標値変化量)ΔαTL2を意味し、トー角変更制御ECU37RAに対しては、具体的にはトー角指示値(後輪の舵角指示値)αTR1、トー角目標値(後輪の舵角目標値)αT2RA、一次遅れ補正後のトー角目標値αT2PR、追従誤差ΔαTR1A、トー角目標値変化量(舵角目標値変化量)ΔαTR2を意味する。
 トー角目標速度制限部84Aは、減算部51A、固定値出力部52、最小値選択部53、固定ゲイン演算部54、最大値選択部55、切り返し制御部56A、ホールド制御部57A、加算部58A、一次遅れ補正部59Aを有している。
 減算部51Aは、トー角指示値演算部71から入力されるトー角指示値αT1から、トー角目標速度制限部84Aにおける繰り返し演算処理のにおける前回出力したトー角目標値αT2Aを減算して、追従誤差ΔαT1Aを算出し、最小値選択部53および切り返し制御部56Aの後記する追従誤差符号判定部61に入力する。この前回出力したトー角目標値αT2Aは、具体的には、前回出力したトー角目標値αT2Aを一次遅れ補正部59Aで一次遅れ補正された前回のトー角目標値αT2Pとして減算部51Aに入力される。
 固定値出力部52は、トー角指示値αT1の変化に対してトー角目標値変化量ΔαT2を+側(右側)に追従させる最大値を制限するための所定値、例えば、「+2」の信号を発生させて、最小値選択部53、固定ゲイン演算部54および切り返し制御部56Aの後記する乗算部64に入力する。
 最小値選択部53は、追従誤差ΔαT1Aと、トー角目標変化量の+側の最大値「+2」とのうちの小さい方の値を選択して、最大値選択部55に入力する。固定ゲイン演算部54は、固定値出力部52から入力された所定値、例えば、「+2」の信号に対して、「-1」のゲイン演算をして、つまり、「-2」の信号を得て最大値選択部55に入力する。これは、固定ゲイン演算部54が、トー角指示値αT1の変化に対してトー角目標値変化量ΔαT2をマイナス側(左側)に追従させる最大値を制限するための所定値、「-2」の信号を発生させていることを意味する。固定値出力部52から出力される所定値は、必要に応じて車速依存にすることもある。トー角目標値変化量ΔαT2の最大値を車速ごとに設定することで、例えば、高速にてトー角指示値αが発散した場合に、トー角目標値αT2Aの設定を車両の運転において安定な領域に規制できる。
 最大値選択部55は、最小値選択部53から入力された前記した小さい方の値と、マイナス側の最大値「-2」のうちの大きい方の値を選択し、切り返し制御部56Aの後記する二値選択部66に選択される一方の値(端子66cへの入力値)として入力する。ここで、端子66cへの入力値が、請求の範囲に記載の「第1の目標値変化量」に対応する。
 通常なら、トー角目標速度制限部84Aは、このように最小値選択部53と最大値選択部55で追従誤差ΔαT1Aを最大最小の制限処理(min-max処理ともいう)した結果に一次遅れ補正された前回のトー角目標値αT2Pを加算部58Aで加算して、トー角目標速度制限部84Aから目標電流算出部86への今回のトー角目標値αT2Aとして出力する。しかし、本実施形態では、トー角目標速度制限部84Aは、さらに、後記する切り返し制御部56Aにおいてトー角目標変化量ΔαT2として最大値ΔαTmaxを発生させて出力する切替制御(切り返し制御)や、切り返し制御後に、後記するホールド制御部57Aにおいてトー角指示値αT1より先行した前回のトー角目標値αT2Pの中立位置への到達に対して、トー角指示値αT1がトー角目標値αT2Pに追いつくのを待たせるホールド制御を行う。この切り返し制御部56Aおよびホールド制御部57Aの詳細な機能については後記する。
 ここで、減算部51A、固定値出力部52、最小値選択部53、固定ゲイン演算部54、最大値選択部55が、請求の範囲に記載の「目標値速度制限手段」に対応し、追従誤差符号判定部61、乗算部64,56が、請求の範囲に記載の「切り返し時目標値変化量設定手段」に対応し、二値選択部66が、請求の範囲に記載の「出力選択手段」に対応し、加算部58Aが、請求の範囲に記載の「目標値更新手段」に対応する。
 また、減算部51A、固定値出力部52、最小値選択部53、固定ゲイン演算部54、最大値選択部55、追従誤差符号判定部61、乗算部64,65、二値選択部66およびホールド制御部57A、加算部58Aが、請求の範囲に記載の「目標値設定更新手段」に対応する。
 そして、加算部58Aは、ホールド制御部57Aからの出力に、一次遅れ補正部59Aからの一次遅れ補正された前回のトー角目標値αT2Pを加算して、目標電流算出部86にトー角目標値αT2Aを入力する。ここで、一次遅れ補正部59Aにおける補正定数は、トー角目標速度制限部84Aにおける繰り返し演算の周期に伴う時間遅れにもとづいて設定される。
(切り返し制御部)
 次に、図4を参照しながら、適宜、図6を参照して切り返し制御部56Aの詳細な機能を説明する。
 切り返し制御部56Aは、追従誤差符号判定部61、トー角指示値微分部(指示値増減方向判定手段)62、トー角指示値速度符号判定部(指示値増減方向判定手段)63、乗算部64,65、二値選択部66を含んで構成されている。
 追従誤差符号判定部61は、減算部51Aから入力された追従誤差ΔαT1Aのプラス(+)、ゼロ、マイナス(-)の符号を判定し、それらの判定結果に対応して、+1,0,-1の値を乗算部65に入力する。
 トー角指示値微分部62は、トー角指示値αT1を時間微分してトー角指示値速度α′T1を算出し、トー角指示値速度符号判定部63に入力する。
 トー角指示値速度符号判定部63は、トー角指示値速度α′T1のプラス(+)、ゼロ、マイナス(-)の符号を判定し、それらの判定結果に対応して、+1,0,-1の値を乗算部64,65に入力する。
 乗算部64は、固定値出力部52からの「+2」の信号と、トー角指示値速度符号判定部63からの判定結果に対応した+1,0,-1のいずれかの値とを乗算し、二値選択部66の選択される他方の値(端子66dへの入力値)として入力する。
 ここで、端子66dへの入力値が、請求の範囲に記載の「第2の目標値変化量」に対応する。
 乗算部65は、追従誤差符号判定部61からの判定結果に対応した+1,0,-1のいずれかの値と、トー角指示値速度符号判定部63からの判定結果に対応した+1,0,-1のいずれかの値とを乗算し、その結果の制御値CS1を二値選択部66の制御入力(端子66aへの入力値)として入力するとともに、制御値CS1をホールド制御部57Aの後記する符号一致判定部77に入力する。
 図4において二値選択部66は、アナログ回路の表現形式で端子66c,66dに入力された二値の中から一方を、端子66aに入力される制御値CS1に応じて可動接点66bが選択接続する制御ロジック回路を示している。具体的には、制御値CS1が-1のときだけ可動接点66bは、端子66dと接続する、つまり、乗算部64からの入力値を選択する。制御値CS1が-1以外の0,+1のときは、可動接点66bは、端子66cと接続する、つまり、最大値選択部55からの入力値を選択する。
 二値選択部66において選択された値は、ホールド制御部57Aの後記する二値選択部92に選択される一方の値(端子92cへの入力値)として入力される。
 ここで、乗算部65から二値選択部66に入力される制御値CS1が-1のときとは、追従誤差符号判定部61から出力される追従誤差ΔαT1Aの符号と、トー角指示値速度符号判定部63から出力されるトー角指示値速度α′T1の符号とがが互いにプラス、マイナス逆の場合であり(図6の(b)参照)、そのとき切り返し制御がON状態となり、二値選択部66における可動接点66bは、端子66dと接続する。乗算部65から二値選択部66に入力される制御値CS1が-1以外のときは、切り返し制御がOFF状態となり、二値選択部66における可動接点66bは、端子66cと接続する。
 そして、乗算部65から二値選択部66に入力される制御値CS1が-1のときに、乗算部64から二値選択部66における端子66dへの入力値(図6の(b)に表示の「切り返し制御出力値」)は、トー角指示値速度α′T1と同じ符号を有するトー角目標変化量ΔαT2としては最大値ΔαTmaxの+2または-2のいずれかの値である。
 従って、乗算部65から二値選択部66に入力される制御値CS1が-1のときに、後記する二値選択部92の端子92cへの入力値は、+2または-2のいずれかの値として入力される。
(ホールド制御部)
 次に、図4を参照しながら、適宜、図7を参照してホールド制御部57Aの詳細な機能を説明する。
 ホールド制御部57Aは、トー角指示値符号判定部73、目標トー角符号判定部74A、乗算部75、固定値出力部76,78,91、符号一致判定部77、符号不一致判定部79、二値選択部92を含んで構成されている。
 トー角指示値符号判定部73は、操舵制御ECU130のトー角指示値演算部71からのトー角指示値αT1(具体的にはトー角指示値αTL1,αTR1)の符号、プラス、ゼロ、マイナスを判定して、それに対応させて+1,0,-1のいずれかの値を乗算部75に入力する。
 目標トー角符号判定部74Aは、一次遅れ補正部59Aからの一次遅れ補正された前回のトー角目標値αT2Pの符号、プラス、ゼロ、マイナスを判定して、それに対応させて+1,0,-1のいずれかの値を乗算部75に入力する。
 乗算部75では、トー角指示値符号判定部73からの入力値と目標トー角符号判定部74Aからの入力値を乗算して、その結果を符号不一致判定部79に入力する。
 固定値出力部76は、切り返し制御部56Aにおいて切り返し制御がONの状態を示す制御値CS1が、-1の値を出している状態を検出するための、比較基準の所定値、「-1」の信号を発生させて、符号一致判定部77に入力する。
 符号一致判定部77は、乗算部65から入力される制御値CS1の値が固定値出力部76から入力される値-1と一致するか否かを判定し、一致したときだけ、一致したことを示す制御値CS2として、例えば、+1の値を発生し、一致しないときは一致しないことを示す制御値CS2として、例えば、-1の値を発生し、符号不一致判定部79に入力する。
 固定値出力部78は、符号不一致判定部79において符号不一致を判定するための、所定の基準値「+1」の信号を発生させて、符号不一致判定部79に入力する。
 符号不一致判定部79は、制御値CS2が+1のときだけ、固定値出力部78からの入力値+1と乗算部75から入力される値(+1,0,-1のいずれかの値)とが不一致か否かを判定し、不一致のときは、出力として制御値CS3をホールド制御ONを意味する+1として発生し、不一致でないときは制御値CS3をホールド制御OFFを意味する-1として発生し、二値選択部92の制御入力(端子92aへの入力値)として入力する。
 固定値出力部91は、ホールド制御部57Aにおいてホールド制御するために、トー角目標変化量ΔαT2をゼロに設定するための0(ゼロ)の値の信号を発生させて、二値選択部92のが選択する他方の入力値(端子92dへの入力値)として入力する。
 図4において二値選択部92は、アナログ回路の表現形式で端子92c,92dに入力された二値の中から一方を、端子92aに入力される制御値CS3に応じて可動接点92bが選択接続する制御ロジック回路を示している。具体的には、制御値CS3が+1のときだけ可動接点92bは、端子92dと接続する、つまり、固定値出力部91からの入力値0(ゼロ)を選択する。制御値CS3が-1のときは、可動接点92bは、端子92cと接続する、つまり、切り返し制御部56Aの二値選択部66からの出力値を選択する。
 二値選択部92において選択された値は、加算部58Aに入力される。
 ここで、符号不一致判定部79から二値選択部92に入力される制御値CS3が+1のときとは、切り返し制御部56Aにおける切り返し制御がON状態のときに、トー角指示値αT1の符号と一次遅れ補正された前回のトー角目標値αT2Pの符号が不一致、つまり、プラス、マイナス逆か、少なくとも一方がゼロの場合であり(図7の(b)参照)、そのときホールド制御がON状態となり、二値選択部92における可動接点92bは、端子92dと接続し、0(ゼロ)の値を加算部58Aに出力する。
 ここで、トー角指示値符号判定部73、目標トー角符号判定部74A、乗算部75、固定値出力部76,78、符号一致判定部77、符号不一致判定部79は、請求の範囲に記載の「切り返し時中立検出手段」対応し、固定値出力部91、二値選択部92が、請求の範囲に記載の「ホールド手段」に対応する。
 このような場合は、図7の(a)の曲線L1に示すトー角指示値αT1の時間推移の変化に対して、前回のトー角目標値αT2Pとの追従誤差ΔαT1Aの符号がプラスまたはマイナスのまま変化せず、例えば、時間t2においてトー角指示値速度α′T1の符号がプラスからマイナスに変化した場合に、本実施形態では切り返し制御がON状態になって、二値選択部66からの出力は最大値ΔαTmaxの-2の値となり、二値選択部92においても、可動接点92bは端子92dに接続を維持していて、-2の値をトー角目標変化量ΔαT2として出力し、そのまま時間t4Bに到る場合に発生する。その結果、時間t4Bにおいて目標指示値αT1よりもトー角目標値αT2Aの方が早く中立位置(値ゼロ)となってしまうことがありうる。そこで、目標指示値αT1よりもトー角目標値αT2Aの方が早く中立位置(値ゼロ)となってしまったときは、トー角目標変化量ΔαT2として二値選択部92から出力するトー角目標変化量ΔαT2をゼロとして、加算部58Aに出力するようにする。そうするとトー角目標値αT2Aは、その間位置を中立位置にホールド制御されて、トー角指示値αT1の値と矛盾する逆方向までのトー角目標値αT2Aのオーバーシュートを防止できる。つまり、実トー角αも、目標電流算出部86(図3参照)によりトー角目標値αT2Aに追従するようにその間位置を中立位置にホールド制御されて、トー角指示値αT1の値と矛盾する逆方向までの実トー角αのがオーバーシュートするのを防止できる。
 図5は、従来技術におけるトー角切り返し時の制御の作用説明図であり、(a)は、トー角指示値とトー角目標値の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号の変化を示すタイムチャートである。従来技術においては、時間t1からトー角指示値αT1が所定の速度以上で変化して追従誤差ΔαT1Aが大きくなると、トー角目標変化量(トー角目標速度)は、上限値(本実施形態の最大変化量の値“2”に対応)に設定され、トー角目標値αT2Cをトー角指示値αT1に追従させようとする。そして、時間t3でトー角指示値αT1にトー角目標値αT2Cが追い着いた後に、逆符号となった追従誤差ΔαT1Aに応じてトー角目標値αT2Cを追従させようとする。このような、制御では、A部の時間t2以降トー角指示値αT1が時間t2以前と逆方向に変化しているにも拘らず、トー角目標値αT2Cは時間t2以前のままの方向に変更制御され、運転者に違和感を与えてしまう。
 これは、図5において時間t4~t7の制御の場合のB部においても同様である。また、従来の制御では、C部の時間t7~t8のようにトー角指示値αT1がゼロ(中立位置)に戻っていても、まだトー角目標値αT2Cがゼロに速やかに戻らず、追従遅れを示し、車両の旋回運動が続き、運転者に違和感を与える問題があった。
 そこで、特許文献2におけるSBW式の操舵装置における前輪の転舵角制御の技術を後輪のトー角制御に適用すると、時間t2の時点で、トー角目標値をt2の時点の実トー角αに置き換え、同時に追従誤差ΔαT1Aを補正する制御となる。しかし、このようなトー角目標値αT2Cを置き換え、追従誤差ΔαT1Aを補正する制御としても、追従誤差ΔαT1Aの大きさおよびその符号に応じた制御としているので、トー角変更装置120L,120Rに用いられているアクチュエータ30L,30Rにおける減速機構の減速比が大きい場合、実トー角αの追従は遅く、トー角指示値αT1の切り返しに十分追従できない。
 次に、図6を参照して本実施形態におけるトー角指示値αT1の切り返しの際の実トー角αの追従制御方法を説明する。図6は、トー角切り返し制御の作用説明図であり、(a)は、トー角指示値とトー角目標値の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号変化、並びに切り返し制御のON,OFFの状態、切り返し制御がON状態のときの切り返し制御出力値の変化を示すタイムチャートである。
 本実施形態によれば、図6の(a)に曲線L3Aに示すように時間t1からトー角指示値αT1が所定の速度以上で変化して追従誤差ΔαT1Aが大きくなると、最大値選択部55においてトー角目標変化量(トー角目標速度)は、アクチュエータ30が追従可能な上限値(本実施形態の最大変化量の値“2”に対応)に制限設定され、トー角目標値αT2Aをトー角指示値αT1に追従させようとする。
 そして、時間t2でトー角指示値αT1が時間t2以前と逆方向に変化する(切り返される)と、乗算部65から出力される制御値CS1が-1の値(図6の(b)における切り返し制御出力値に対応)となり、二値選択部66からは、乗算部64で算出された-2の値の最大変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。二値選択部92では、端子92cへ入力された値がトー角目標変化量ΔαT2として加算部58Aに入力され、そこで一次遅れ補正されたトー角目標値αT2Pと加算され、トー角目標値αT2Aとして目標電流算出部86に入力される。このように、時間t2でトー角指示値αT1が切り返されると直ちに、トー角指示値変化速度α′T1と同じ符号の最大変化量ΔαTmaxに設定される。つまり、時間t2で最大速度でトー角目標値αT2Aを中立方向に変化させる制御を行う。その結果、単に、追従誤差ΔαT1に応じてmin-max処理された追従誤差ΔαT1Aをトー角目標値変化量ΔαT2とする従来技術よりもより早いタイミングで、実トー角αの切り返し制御ができる。従って、後輪のトー角の切り返しを伴うような車両の旋回運動において、運転者に違和感を与えることなく、後輪のトー角を制御できる。
 そして、このままの制御では、切り返し制御が時間t6BまでON状態になるので、トー角指示値αT1の変化によっては、トー角目標値αT2Aの方がトー角指示値αT1の示す方向よりも早く左方向に変化してしまうおそれがある。これを、補正するのがホールド制御部57A(図4参照)の機能である。
 ちなみに、ホールド制御部57Aの機能が無いときは、図6の曲線L3Aに示すように、追従誤差ΔαT1Aの符号がt6B経過後マイナスになり、トー角指示値速度α′T1の符号マイナスと一致して、初めて切り返し制御がOFFとなる。そして、時間t6Bから時間t5までは、通常の追従誤差ΔαT1Aの値をmin-max処理されたトー角目標変化量ΔαT2でトー角指示値αT1にトー角目標値αT2Aを追従制御する。その後、時間t5でトー角指示値αT1が切り返されると、時間t2以降と同様に、乗算部65から出力される制御値CS1が-1の値となり、二値選択部66からは、乗算部64で算出された+2の値(図6の(b)における切り返し制御出力値に対応)の最大変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。二値選択部92では、端子92cへ入力された値がトー角目標変化量ΔαT2として加算部58Aに入力され、そこで一次遅れ補正されたトー角目標値αT2Pと加算され、トー角目標値αT2Aとして目標電流算出部86に入力される。このように、時間t5でトー角指示値αT1が切り返されると直ちに、トー角指示値変化速度α′T1と同じ符号の最大変化量ΔαTmaxに設定される。つまり、時間t5で最大速度でトー角目標値αT2Aを中立方向に変化させる制御を行う。
 また、時間t7以降においてトー角指示値αT1がゼロに戻ると、そのとき乗算部65の出力する制御値CS1が0となり、切り返し制御部56Aにおける切り返し制御がOFFとなり、通常のmin-max処理されたトー角目標変化量ΔαT2でトー角目標値αT2Aをゼロに収斂させる。従って、切り返し制御部56Aの機能だけでは、切り返し制御がON状態になってから、トー角目標値αT2Aがトー角指示値αT1よりもオーバーシュートしてしまうという問題が残っている。
 なお、図6の(a)には、参考のため図5の(a)に示した曲線L2Aも記載してある。
 次に、図7を参照して本実施形態におけるトー角指示値αT1の切り返し制御後のホールド制御の方法を説明する。図7は、トー角切り返し制御後のホールド制御の作用説明図であり、(a)は、トー角指示値とトー角目標値の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号変化、並びに、切り返し制御のON,OFFの状態、切り返し制御がON状態のときの切り返し制御出力値、トー角目標値符号、ホールド制御のON,OFFの状態、ホールド制御出力値の変化を示すタイムチャートである。
 本実施形態のように、ホールド制御部57Aを設け、切り返し制御がON状態の場合(制御値CS1が-1の場合)に、トー角指示値αT1の符号と前回のトー角目標値αT2Aの符号(図4では一次遅れ補正されたトー角目標値αT2Pの符号)とが不一致のとき、例えば、時間t4Bにおいてトー角目標値αT2Aの符号がプラスからゼロに変わると、符号不一致判定部79は、ホールド制御ONの状態とする制御値CS3を二値選択部92に入力して、二値選択部92がトー角目標変化量ΔαT2としてそれまでΔαTmaxの値(-2)を出力していたのを止めて0(ゼロ)の値を出力するように切替させる(図7の(a)の曲線L4A参照)。そして、切り返し制御がON状態がまだ継続し、トー角目標値αT2Aはゼロ(中立位置に)に維持され、時間t4でトー角指示値αT1がゼロに追いついて、符号不一致判定部79において、符号判定結果が不一致では無くなったと判定したとき、ホールド制御をOFFとする。また、乗算部65の出力する制御値CS1も略同時に、-1以外の値(0または+1)となり、切り返し制御もOFF状態となる。
 その後、図7の(a)の曲線L4Aに示すように通常の追従誤差ΔαT1Aの値をmin-max処理しされたトー角目標変化量ΔαT2でトー角指示値αT1にトー角目標値αT2Aを追従制御する。その後、時間t5でトー角指示値αT1が切り返されると、時間t2以降と同様に、乗算部65から出力される制御値CS1が-1の値となり、二値選択部66からは、乗算部64で算出された+2の値(図7の(b)における切り返し制御出力値に対応)である最大変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。二値選択部92では、端子92cへ入力された値がトー角目標変化量ΔαT2として加算部58Aに入力され、そこで一次遅れ補正されたトー角目標値αT2Pと加算され、トー角目標値αT2Aとして目標電流算出部86に入力される。
 さらに、時間t7Bでトー角目標値αT2Aの符号がマイナスからゼロに変わると、符号不一致判定部79は、ホールド制御ONの状態とする前記した時間t4Bと同様に制御値CS3を二値選択部92に入力して、二値選択部92がトー角目標変化量ΔαT2としてそれまでΔαTmaxの値(-2)を出力していたのを止めて0(ゼロ)の値を出力するように切替させる(図7の(a)の曲線L4A参照)。そして、切り返し制御がON状態がまだ継続し、トー角目標値αT2Aはゼロ(中立位置に)に維持され、時間t7でトー角指示値αT1がゼロに追いついて、符号不一致判定部79において、符号判定結果が不一致では無くなったと判定したとき、ホールド制御をOFFとする。また、乗算部65の出力する制御値CS1も略同時に、-1以外の値(0または+1)となり、切り返し制御もOFF状態となる。
 この後、トー角指示値αT1が0に維持されると、通常の追従誤差ΔαT1Aの値をmin-max処理しされたトー角目標変化量ΔαT2でトー角指示値αT1にトー角目標値αT2Aを追従設定する制御となり、トー角目標値αT2Aが図6の時間t7に示すようなオーバーシュートをすることなく、ゼロ(中立位置)に収斂する。
 このように、ホールド制御部57Aを設けて機能させることにより、トー角指示値αT1の切り返しがある場合に、応答性の速い実トー角αの制御ができるとともに、トー角指示値αT1よりも先行して中立方向に戻るトー角目標値αT2Aが中立位置を通り越すオーバーシュートすることをを防止できる。つまり、トー角目標値αT2Aに実トー角αが追従して、トー角指示値αT1の示す左右方向と反対方向にまで実トー角αがオーバーシュートするということを防止できる。
 その結果、本実施形態によれば、トー角指示値αT1(具体的にはトー角指示値αT1L,αT1R)の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、車両挙動の遅れによる違和感を生じさせない後輪操舵制御装置を提供することができる。
《第2の実施形態》
 前記第1の実施形態では、トー角目標速度制限部84Aを図4に示すような機能ブロック構成で説明したが、それに限定されるものではない。図8、図9を参照しながら第2の実施形態に係る後輪操舵制御装置におけるトー角指示値αT1に対するトー角目標値αT2Aの更新制御(目標値更新制御)の方法について説明する。
 図8、図9は第2の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。
 第2の実施形態におけるトー角目標速度制限部84Aは、図3に示すようにトー角変更制御ECU37RA,37LAに含まれる制御部81Aのマイクロコンピュータがプログラムを実行して実現される機能である。このトー角目標値αT2Aの更新制御は一定の周期でトー角目標速度制限部84Aにおいて処理される。
 本実施形態でも第1の実施形態と同様にトー角変更制御ECU37LA,37RAのそれぞれのトー角目標速度制限部84Aを代表的に説明するため、トー角指示値αT1、トー角目標値αT2A、前回出力のトー角目標値αT2P、追従誤差ΔαT1A、トー角目標値変化量ΔαT2と称するが、トー角変更制御ECU37LAに対しては、具体的にはトー角指示値αTL1、トー角目標値αT2LA、前回出力のトー角目標値αT2PL、追従誤差ΔαTL1A、トー角目標値変化量ΔαTL2を意味し、トー角変更制御ECU37RAに対しては、具体的にはトー角指示値αTR1、トー角目標値αT2RA、前回出力のトー角目標値αT2PR、追従誤差ΔαTR1A、トー角目標値変化量ΔαTR2を意味する。
 ステップS01では、操舵制御ECU130のトー角指示値演算部71において一定の周期でトー角指示値αT1を計算してトー角変更制御ECU37RA,37LAのトー角目標速度制限部84Aに出力されたトー角指示値αT1を読み込む。ステップS02では、トー角目標速度制限部84Aにおいて前回出力したトー角目標値αT2Pを読み込む。この前回出力したトー角目標値αT2Pは、繰り返し処理における前回の処理で後記するステップS14において一時記憶されたものである。
 ステップS03では、トー角指示値αT1とトー角目標値αT2Pとの差を追従誤差ΔαT1Aとして算出する(ΔαT1A=αT1-αT2P)。ステップS04では、トー角指示値αT1の増減方向σT1を判定する{σT1=sign(α′T1)}。ここで、α′T1は、トー角指示値の時間微分値であり、第1の実施形態におけるトー角指示値速度α′T1を示す。ちなみに、sign関数は、数値が負のとき-1、数値が正のとき+1、数値が0(ゼロ)のとき0(ゼロ)を出力する符号判定の関数である。
 ステップS05では、追従誤差ΔαT1Aの符号σΔαを判定する{σΔα=sign(ΔαT1A)}。ステップS06では、ステップS04において判定した符号σT1とステップS05で判定した符号σΔαの積が負値か否かをチェックする(「σT1・σΔα<0?」)。符号σT1と符号σΔαの積が負の場合(Yes)は、結合子(A)に従って、図9のステップS10へ進み、符号σT1と符号σΔαの積が0(ゼロ)以上の場合(No)は、ステップS07へ進む。
 ステップS07では、追従誤差ΔαT1Aの絶対値が、所定の正の値Δαmaxより大きいか否かをチェックする(「|ΔαT1A|>最大変化量Δαmax?」)。
 追従誤差ΔαT1Aの絶対値が、所定の正の値Δαmaxより大きい場合(Yes)は、ステップS09へ進み、そうでない場合(No)は、ステップS08へ進む。
 ステップS08では、トー角目標値変化量ΔαT2をmax-mini処理をしない通常出力とする。具体的には、トー角目標値変化量ΔαT2をステップS03において算出された追従誤差ΔαT1Aとする(ΔαT2=ΔαT1A)。ステップS09では、トー角目標値変化量ΔαT2をmax-mini処理をしたレートリミット出力とする。具体的には、トー角目標値変化量ΔαT2を、前記した所定の正の値Δαmaxに、ΔαT1Aの符号を付した値とする{ΔαT2=(Δαmax)・sign(ΔαT1A)}。
 ステップS08、ステップS09の後、結合子(B)に従って、図9のステップS13に進む。
 ステップS06から結合子(A)に従ってステップS10へ進むと、トー角指示値αT1の符合とステップS02において読み込んだ前回出力したトー角目標値αT2Pの符号が不一致か否かをチェックする(「sign(αT1)≠sign(αT2P)?」)。
 トー角指示値αT1の符合と前回出力したトー角目標値αT2Pの符号が不一致の場合(Yes)は、ステップS12へ進み、一致の場合(No)は、ステップS11へ進む。ステップS11では、トー角目標値変化量ΔαT2を最大速度で切り返し出力する。具体的には、トー角目標値変化量ΔαT2を、前記した所定の正の値Δαmaxに、トー角指示値速度α′T1の符号を付した値とする{ΔαT2=(Δαmax)・sign(α′T1)}。ステップS12では、トー角目標値変化量ΔαT2をホールド出力とする。具体的には、トー角目標値変化量ΔαT2をゼロとする(「トー角目標値変化量ΔαT2=0」)。
 ステップS11、ステップS12の後、ステップS13へ進む。
 ステップS13では、トー角目標値αT2Aを計算して目標電流算出部86へ出力する(「αT2A=αT2P+ΔαT2」)。具体的には、ステップS02において読み込んだ前回出力のトー角目標値αT2Pに、スッテップS08,S09,S11,S12のいずれかにおいて設定されたトー角目標値変化量ΔαT2を加算して今回出力のトー角目標値αT2Aとする。ステップS14では、ステップS13において今回出力のトー角目標値αT2Aを前回出力したトー角目標値αT2Pとして一時記憶する。
 以上でトー角目標速度制御部84Aにおいてトー角目標値αT2Aを設定する一連の繰り返し処理が終了する。
 図8、図9に示すフローチャートにおけるステップS04は、請求の範囲に記載の「指示値増減方向判定手段」に、ステップS05~S09は、「第1の目標値変化量を設定する目標値速度制限手段」に、S10,S11は、「切り返し時目標値変化量設定手段」にそれぞれ対応する。特に、ステップS06,S10は、「切り返し時中立検出手段」に、ステップS12は、「ホールド手段」に、ステップS13は、「出力選択手段」および「目標値更新手段」にそれぞれ対応する。
 本実施形態によれば、前記した第1の実施形態と同様に、図7の(a)に示すようにトー角指示値αT1の推移を示す曲線L1に対応して、トー角目標値αT2Aが曲線L4Aのように設定制御されて推移すると、時間t2、時間t5において、ステップS10,S11へ進み、トー角目標値変化量ΔαT2を所定値(最大値)Δαmaxとし、つまり、アクチュエータ30L,30Rの可能な最大速度でトー角目標値αT2Aをトー角指示値αT1の変化する中立方向に変化させることができる。従って、トー角目標値αT2Aの設定の制御において図5に示す従来技術の場合よりも早いタイミングで切り返し制御できる。そして、目標電流算出部86(図3参照)においてトー角指示値αT1の切り返し制御に対応して最大速度でトー角目標値αT2Aに追従させるように実トー角αを切り返し制御でき、後輪のトー角指示値αT1の向きと後輪の実トー角αの動きが逆転して、車両挙動の遅れによる違和感を生じさせるという問題が解消される。
 また、図7の(a)に示すように切り返し制御が開始された時間t2以降、または時間t5以降において、トー角目標値αT2Aが先行してトー角指示値αT1よりも早く中立位置に達したとき(時間t4Bまたは時間t7Bに達した場合)、ステップS10からステップS12へ進み、トー角目標値変化量ΔαT2=0として、トー角目標値αT2Aの値をホールドさせる。
 このように、トー角指示値αT1の切り返しがある場合に、ステップS10からステップS11へ進んで応答性の速い実トー角αの制御ができるとともに、テップS10からステップS12へ進むことにより、トー角指示値αT1よりも先行して中立方向に戻るトー角目標値αT2Aが中立位置を通り越すオーバーシュートすることを防止できる。つまり、トー角目標値αT2Aに実トー角αが追従して、トー角指示値αT1の示す左右方向と反対方向にまで実トー角αがオーバーシュートするということを防止できる。
 その結果、本実施形態によれば、トー角指示値αT1(具体的にはトー角指示値αT1L,αT1R)の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、車両挙動の遅れによる違和感を生じさせい後輪操舵制御装置を提供することができる。
《第3の実施形態》
 次に、図1、図2、図10、図11を参照しながら適宜、図3、図4を参照して本発明の第3の実施形態に係る後輪操舵制御装置を説明する。図10は、第3の実施形態におけるトー角変更制御ECUの機能ブロック構成図で、図11は、第3の実施形態におけるトー角変更制御ECUのトー角目標速度制限部の詳細な機能ブロック構成図である。
 本実施形態では、図1、図2において( )内に示したように第1の実施形態におけるトー角変更制御ECU37LA.37RAがトー角変更制御ECU37LB,37RBに置き換わる。
 特に、図3に示すように第1の実施形態におけるトー角変更制御ECU37LAの制御部81Aでは、実トー角変換部82にて算出された実トー角α1Lがトー角目標速度制限部84Aには入力されていなかったのが、図10に示すように本実施形態におけるトー角変更制御ECU37LBの制御部81Aでは、トー角目標速度制限部84Bにも入力されている。同様に、図3に示すように第1の実施形態におけるトー角変更制御ECU37RAの制御部81Aでは、実トー角変換部82にて算出された実トー角α1Rがトー角目標速度制限部84Aには入力されていなかったのが、図10に示すように本実施形態におけるトー角変更制御ECU37RBの制御部81Aでは、トー角目標速度制限部84Bにも入力されている。
 そして、本実施形態におけるトー角目標速度制限部84Bでは、図11に示すように第1の実施形態における減算部51A、切り返し制御部56A、ホールド制御部57A、加算部58A、一次遅れ補正部59Aが、それぞれ減算部51B、切り返し制御部56B、ホールド制御部57B、加算部58B、一次遅れ補正部59Bに置き換わっている。
 以下、第1の実施形態と同じ構成については同じ符号を付し、第1の実施形態と異なる構成についてのみ説明し、重複する説明を省略する。
 減算部51Bは、トー角指示値演算部71から入力されるトー角指示値αT1から、実トー角変換部82からの実トー角αを一次遅れ補正部59Bで一次遅れ補正された実トー角α(以下では、単に「実トー角α」と称する)を減算して、追従誤差ΔαT1Bを算出し、最小値選択部53および切り返し制御部56の追従誤差符号判定部61に入力する。
 切り返し制減算部51Bは、第1の実施形態における切り返し制減算部51A同じ構成であるが、追従誤差符号判定部61に入力されるのが追従誤差ΔαT1Bである点が異なる。
 そして、加算部58Bは、ホールド制御部57Bから出力されるトー角目標値変化量ΔαT2に、一次遅れ補正部59Bからの一次遅れ補正された実トー角αを加算して、目標電流算出部86にトー角目標値αT2Bを入力する。ここで、一次遅れ補正部59Bにおける補正定数は、主に電動機駆動回路88および電動機31の時定数と、前記したアクチュエータ30(図3では30L,30Rと表示)の減速機の減速比とを考慮して設定される。
 また、本実施形態におけるホールド制御部57Bでは、第1の実施形態におけるホールド制御部57Aの目標トー角符号判定部74Aの代わりに、実トー角符号判定部74Bを有している。実トー角符号判定部74Bは、一次遅れ補正部59Bからの一次遅れ補正された実トー角α(具体的には一次遅れ補正された実トー角α2L,α2R(図示せず)を入力されて、実トー角αの符号、プラス、ゼロ、マイナスを判定して、それに対応させて+1,0,-1のいずれかの値を乗算部75に入力する。
 ここで、トー角変更制御ECU37LB,、37RBおよびトー角指示値演算部71は、請求の範囲に記載の「後輪操作制御装置における制御手段」を構成し、特に、トー角変更制御ECU37LB,37RBは、請求の範囲に記載の「アクチュエータ制御手段」に対応する。また、ストロークセンサ38が、請求の範囲に記載の「後輪実舵角取得手段、実トー角情報取得手段」に対応し、アクチュエータ30L,30Rの、送りねじ部の伸縮量が請求の範囲に記載の「後輪の実舵角に係る情報、実トー角に係る情報」に対応する。
 また、トー角指示値αT1は、請求の範囲に記載の「後輪の舵角指示値」、トー角目標値αT2Bは「後輪の舵角目標値」に、トー角目標値変化量ΔαT2は、「舵角目標値変化量」に対応する。さらに、切り返し制御部56Bのトー角指示値微分部62、トー角指示値速度符号判定部63が、請求の範囲に記載の「指示値増減方向判定手段」に対応する。
 また、減算部51B、固定値出力部52、最小値選択部53、固定ゲイン演算部54、最大値選択部55、追従誤差符号判定部61、乗算部64,65、二値選択部66およびホールド制御部57B、加算部58Bが、請求の範囲に記載の「目標値設定更新手段」に対応する。
 また、第1の実施形態と同様に、減算部51B、固定値出力部52、最小値選択部53、固定ゲイン演算部54、最大値選択部55が、「目標値速度制限手段」に対応し、追従誤差符号判定部61、乗算部64,56が、「切り返し時目標値変化量設定手段」に対応し、二値選択部66が、「出力選択手段」に対応し、加算部58Bが、「目標値更新手段」に対応する。
 本実施形態の作用を図12から図14を参照しながら説明する。図12は、従来技術におけるトー角切り返し時の制御の作用説明図であり、(a)は、トー角指示値と実トー角の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号の変化を示すタイムチャートである。従来技術においては、アクチュエータ30L,30Rの減速比が大きい場合、曲線L2Bに示したように時間t1からトー角指示値αT1が所定の速度以上で変化して追従誤差ΔαT1Bが大きくなると、トー角目標値変化量(トー角目標速度)は、上限値(本実施形態の最大変化量の値“2”に対応)に設定され、実トー角αをトー角指示値αT1に追従させようとする。そして、時間t3でトー角指示値αT1に実トー角αが追い着いた後に、逆符号となった追従誤差ΔαT1Bに応じて実トー角αを追従させようとする。このような、制御では、D部の時間t2以降トー角指示値αT1が時間t2以前と逆方向に変化しているにも拘らず、実トー角αは時間t2以前のままの方向に変更制御され、運転者に違和感を与えてしまう。
 これは、図12において時間t4~t7の制御の場合のE部においても同様である。また、従来の制御では、F部の時間t7~t8のようにトー角指示値αT1がゼロ(中立位置)に戻っていても、まだ実トー角αがゼロに速やかに戻らず、追従遅れを示し、車両の旋回運動が続き、運転者に違和感を与える問題があった。
 次に、図13を参照して本実施形態におけるトー角指示値αT1の切り返しの際の実トー角αの追従制御方法を説明する。図13は、トー角切り返し制御の作用説明図であり、(a)は、トー角指示値と実トー角の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号変化、並びに切り返し制御のON,OFFの状態、切り返し制御がON状態のときの切り返し制御出力値の変化を示すタイムチャートである。
 本実施形態によれば、図13の(a)に曲線L3Bに示すように時間t1からトー角指示値αT1が所定の速度以上で変化して追従誤差ΔαT1Bが大きくなると、最大値選択部55においてトー角目標値変化量ΔαT2(トー角目標速度)は、アクチュエータ30が追従可能な上限値(本実施形態の最大変化量の値“2”に対応)に制限設定され、実トー角αをトー角指示値αT1に追従させようとする。
 そして、時間t2でトー角指示値αT1が時間t2以前と逆方向に変化する(切り返される)と、乗算部65から出力される制御値CS1が-1の値(図13の(b)における切り返し制御出力値に対応)となり、二値選択部66からは、乗算部64で算出された-2の値の最大変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。二値選択部92では、端子92cへ入力された値がトー角目標値変化量ΔαT2として加算部58Bに入力され、そこで一次遅れ補正された実トー角αと加算され、目標トー角αT2Bとして目標電流算出部86に入力される。このように、時間t2でトー角指示値αT1が切り返されると直ちに、トー角指示値変化速度α′T1と同じ符号の最大変化量ΔαTmaxに設定される。つまり、時間t2で最大速度で実トー角αを中立方向に変化させる制御を行う。その結果、単に、追従誤差ΔαT1Bに応じてmin-max処理された追従誤差ΔαT1Bをトー角目標値変化量ΔαT2とする従来技術よりもよりも早いタイミングで、実トー角αの切り返し制御ができる。従って、後輪のトー角の切り返しを伴うような車両の旋回運動において、運転者に違和感を与えることなく、後輪のトー角を制御できる。
 そして、このままの制御では、切り返し制御が時間t6BまでON状態になるので、トー角指示値αT1の変化によっては、実トー角α1の方がトー角指示値αT1の示す方向よりも早く左方向に切ってしまうおそれがある。これを、補正するのがホールド制御部57B(図11参照)の機能である。
 ちなみに、ホールド制御部57Bの機能が無いときは、図13の曲線L3Bに示すように、追従誤差ΔαT1Bの符号がt6B経過後マイナスになり、トー角指示値速度α′T1の符号マイナスと一致して、初めて切り返し制御がOFFとなる。そして、時間t6Bから時間t5までは、通常の追従誤差ΔαT1Bの値をmin-max処理されたトー角目標値変化量ΔαT2でトー角指示値αT1に実トー角αを追従制御する。その後、時間t5でトー角指示値αT1が切り返されると、時間t2以降と同様に、乗算部65から出力される制御値CS1が-1の値となり、二値選択部66からは、乗算部64で算出された+2の値(図13の(b)における切り返し制御出力値に対応)の最大変化変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。二値選択部92では、端子92cへ入力された値がトー角目標値変化量ΔαT2として加算部58Bに入力され、そこで一次遅れ補正された実トー角αと加算され、目標トー角αT2Bとして目標電流算出部86に入力される。このように、時間t5でトー角指示値αT1が切り返されると直ちに、トー角指示値変化速度α′T1と同じ符号の最大変化量ΔαTmaxに設定される。つまり、時間t5で最大速度で実トー角αを中立方向に変化させる制御を行う。
 また、時間t7以降においてトー角指示値αT1がゼロに戻ると、そのとき乗算部65の出力する制御値CS1が0となり、切り返し制御部56Bにおける切り返し制御がOFFとなり、通常のmin-max処理されたトー角目標値変化量ΔαT2で実トー角αをゼロに収斂させる。従って、切り返し制御部56Bの機能だけでは、切り返し制御がON状態になってから、実トー角αがトー角指示値αT1よりもオーバーシュートしてしまうという問題が残っている。
 なお、図13の(a)には、参考のため図12の(a)に示した曲線L2Bも記載してある。
 次に、図14を参照して本実施形態におけるトー角指示値αT1の切り返し制御後のホールド制御の方法を説明する。図14は、トー角切り返し制御後のホールド制御の作用説明図であり、(a)は、トー角指示値と実トー角の時間推移のを変化を示す説明図、(b)は、(a)の時間推移に対応させたトー角指示値、トー角指示値速度および追従誤差それぞれの符号変化、並びに、切り返し制御のON,OFFの状態、切り返し制御がON状態のときの切り返し制御出力値、実トー角符号、ホールド制御のON,OFFの状態、ホールド制御出力値の変化を示すタイムチャートである。
 本実施形態のように、ホールド制御部57Bを設け、切り返し制御がON状態の場合(制御値CS1が-1の場合)に、トー角指示値αT1の符号と実トー角αの符号(図11では一次遅れ補正された実トー角αの符号)とが不一致のとき、例えば、時間t4Bにおいて実トー角αの符号がプラスからゼロに変わると、符号不一致判定部79は、ホールド制御ONの状態とする制御値CS3を二値選択部92に入力する。それを受けて、二値選択部92がトー角目標値変化量ΔαT2としてそれまでΔαTmaxの値(-2)を出力していたのを止めて0(ゼロ)の値を出力するように切替させる(図14の(a)の曲線L4B参照)。そして、切り返し制御がON状態がまだ継続し、実トー角α1はゼロ(中立位置に)に維持され、時間t4でトー角指示値αT1がゼロに追いついて、符号不一致判定部79において、符号判定結果が不一致では無くなったと判定したとき、ホールド制御をOFFとする。また、乗算部65の出力する制御値CS1も略同時に、-1以外の値(0または+1)となり、切り返し制御もOFF状態となる。
 その後、図14の(a)の曲線L4Bに示すように通常の追従誤差ΔαT1Bの値をmin-max処理しされたトー角目標値変化量ΔαT2でトー角指示値αT1に実トー角αを追従制御する。その後、時間t5でトー角指示値αT1が切り返されると、時間t2以降と同様に、乗算部65から出力される制御値CS1が-1の値となり、二値選択部66からは、乗算部64で算出された+2の値(図14の(b)における切り返し制御出力値に対応)である最大変化量ΔαTmaxの値が、二値選択部92の一方に入力(端子92cへ入力)される。それを受けて二値選択部92では、端子92cへ入力された値がトー角目標値変化量ΔαT2として加算部58Bに入力され、そこで一次遅れ補正された実トー角αと加算され、トー角目標値αT2Bとして目標電流算出部86に入力される。
 さらに、時間t7Bで前記した時間t4Bと同様に、実トー角αの符号がマイナスからゼロに変わると、符号不一致判定部79は、ホールド制御ONの状態とする制御値CS3を二値選択部92に入力する。それを受けて二値選択部92がトー角目標値変化量ΔαT2としてそれまでΔαTmaxの値(-2)を出力していたのを止めて0(ゼロ)の値を出力するように切替させる(図14の(a)の曲線L4B参照)。そして、切り返し制御がON状態がまだ継続し、実トー角α1はゼロ(中立位置に)に維持され、時間t7でトー角指示値αT1がゼロに追いついて、符号不一致判定部79において、符号判定結果が不一致では無くなったと判定したとき、ホールド制御をOFFとする。また、乗算部65の出力する制御値CS1も略同時に、-1以外の値(0または+1)となり、切り返し制御もOFF状態となる。
 この後、トー角指示値αT1が0に維持されると、通常の追従誤差ΔαT1Bの値をmin-max処理しされたトー角目標値変化量ΔαT2でトー角指示値αT1に実トー角αを追従制御となり、実トー角αが図12の時間t7に示すようなオーバーシュートをすることなく、ゼロ(中立位置)に収斂する。
 このように、ホールド制御部57Bを設けて機能させることにより、トー角指示値αT1の切り返しがある場合に、応答性の速い実トー角αの制御ができるとともに、トー角指示値αT1よりも実トー角αが先行し過ぎて、トー角指示値αT1の示す左右方向と反対方向にまで実トー角αがオーバーシュートするということを防止できる。
 その結果、本実施形態によれば、トー角指示値αT1(具体的にはトー角指示値αT1L,αT1R)の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、車両挙動の遅れによる違和感を生じさせない後輪操舵制御装置を提供することができる。
《第4の実施形態》
 前記第3の実施形態では、トー角目標速度制限部84Bを図11に示すような機能ブロック構成で説明したが、それに限定されるものではない。図15、図16を参照しながら第4の実施形態に係る後輪操舵制御装置におけるトー角指示値αT1に対するトー角目標値αT2Bの更新制御(目標値設定更新制御)の方法について説明する。
 図15、図16は第4の実施形態におけるトー角目標値の更新制御の流れを示すフローチャートである。
 第4の実施形態におけるトー角目標速度制限部84Bは、図10に示すようにトー角変更制御ECU37RB,37LBに含まれる制御部81Bのマイクロコンピュータがプログラムを実行して実現される機能である。このトー角目標値αT2Bの更新制御は一定の周期でトー角目標速度制限部84Bにおいて処理される。
 本実施形態でも第3の実施形態と同様にトー角変更制御ECU37LB,37RBのそれぞれのトー角目標速度制限部84Bを代表的に説明するため、トー角指示値αT1、トー角目標値αT2B、実トー角α、一次遅れ補正された実トー角α、追従誤差ΔαT1B、トー角目標値変化量ΔαT2と称するが、トー角変更制御ECU37LAに対しては、具体的にはトー角指示値αTL1、トー角目標値αT2LB、実トー角目標値α2L、一次遅れ補正された実トー角α2L、追従誤差ΔαTL1B、トー角目標値変化量ΔαTL2を意味し、トー角変更制御ECU37RBに対しては、具体的にはトー角指示値αTR1、トー角目標値αT2RB、実トー角目標値αT2PR、一次遅れ補正された実トー角α2R、追従誤差ΔαTR1B、トー角目標値変化量ΔαTR2を意味する。
 図15、図16に示す第4の実施形態におけるフローチャートのステップS21~S33は、第2の実施形態におけるフローチャートのステップS01~S13にそれぞれほぼ対応し、第2の実施形態におけるステップS14に対応するステップが削除されたものとなっている。
 第4の実施形態のフローチャートと第2の実施形態におけるフローチャートの前記以外の差異は、ステップS02の「前回出力したトー角目標値αT2Pを読み込み」を、ステップS22の「実トー角αT1を読み込んで、一次遅れ補正をし、補正された実トー角αとする」と読み替え、ステップS03、S05、S07,S08およびS09の「追従誤差ΔαT1A」をステップS23,S25,S27,S28およびS29において「追従誤差ΔαT1B」に読み替え、ステップS03およびS10の「前回出力したトー角目標値αT2P」をステップS23およびS30において「一次遅れ補正された実トー角α」、ステップS13の「トー角目標値αT2A」をステップS33において「トー角目標値αT2B」に読み替えた点である。
 図15、図16に示すフローチャートにおけるステップS24は、請求の範囲に記載の「指示値増減方向判定手段」に対応する。特に、ステップS25~S29は、第2の実施形態における「第1の目標値変化量を設定する目標値速度制限手段」に、S30,S31は、「切り返し時目標値変化量設定手段」に、ステップS26,S30は、「切り返し時中立検出手段」に、ステップS32は、「ホールド手段」に、ステップS33は、「出力選択手段」および「目標値更新手段」にそれぞれ対応する。
 本実施形態によれば、前記した第3の実施形態と同様に、図14の(a)に示すようにトー角指示値αT1の推移を示す曲線L1に対応して、トー角目標値αT2Bが曲線L4Bのように設定制御されて推移すると、時間t2、時間t5において、ステップS30,S31へ進み、トー角目標値変化量ΔαT2を所定値(最大値)Δαmaxとし、つまり、アクチュエータ30L,30Rの可能な最大速度でトー角目標値αT2Bをトー角指示値αT1の変化する中立方向に変化させることができる。従って、トー角目標値αT2Bの設定の制御において図12に示す従来技術の場合よりも早いタイミングで切り返し制御できる。そして、目標電流算出部86(図10参照)においてトー角指示値αT1の切り返し制御に対応して最大速度でトー角目標値αT2Bに追従させるように実トー角αを切り返し制御でき、後輪のトー角指示値αT1の変化と後輪の実トー角αの動きが逆転して、車両挙動の遅れによる違和感を生じさせるという問題が解消される。
 また、図14の(a)に示すように切り返し制御が開始された時間t2以降、または時間t5以降において、実トー角αが先行してトー角指示値αT1よりも早く中立位置に達したとき(時間t4Bまたは時間t7Bに達した場合)、ステップS30からステップS32へ進み、トー角目標値変化量ΔαT2=0として、トー角目標値αT2Bの値をホールドさせる。
 このように、トー角指示値αT1の切り返しがある場合に、ステップS30からステップS31へ進んで応答性の速い実トー角αの制御ができるとともに、テップS30からステップS32へ進むことにより、トー角指示値αT1よりも先行して中立方向に戻る実トー角αを生じる場合でも、中立位置を通り越すオーバーシュートすることをを防止できる。つまり、トー角目標値αT2Bに実トー角αが追従して、トー角指示値αT1の示す左右方向と反対方向にまで実トー角αがオーバーシュートするということを防止できる。
 その結果、本実施形態によれば、トー角指示値αT1(具体的にはトー角指示値αT1L,αT1R)の速い切り返しの出力が生じるような速い切り返し操舵を運転者が行った場合にも、車両挙動の遅れによる違和感を生じさせい後輪操舵制御装置を提供することができる。
(変形例)
 本発明の前記した第1から第4の実施形態に限定されるものではなく、例えば、以下のような種々の変形が可能である。
 (1)前記第1から第4の実施形態に係る後輪操舵制御装置では、2つのトー角変更装置120L,120R(図1参照)を有し、それぞれ後輪のトー角を左右独立に変更できる構成としたがそれに限定されるものではなく、本発明は、1つのアクチュエータで後輪1L,2R(図1参照)を同一方向に操舵する後輪操舵制御装置を含む。その場合は、後輪操舵制御装置は、前記した後輪トー角装置120L,120Rの代わりに1つの後輪トー角装置を有しており、その後輪トー角装置は1つのトー角変更制御ECUを有している構成とすることで容易に実現できる。
 (2)前記した第1から第4の実施形態におけるトー角指示値演算部71において用いる操向角θの代わりに、図1に破線枠で示すように前輪転舵角検出センサ(前輪転舵状態量取得手段)SFSを設けて、前輪転舵角δを検出して用いるようにし、目標電流算出部86においても前輪転舵角δを用いて目標電流値を算出するようにしても良い。
 (3)前記した第1から第4の実施形態において、左右のトー角変更装置120L,120は個別のトー角変更制御ECU37LA(37LB),37RA(37RB)を有するものとした、また、操舵制御ECU130とも別個に設けるものとしたがそれに限定されるものではない。
 (3a)この3つのECUの機能のCPUで構成する部分を1つのCPUで対応する構成としても良い。
 (3b)また、2つのトー角変更制御ECU37LA(120LB),37RA(120RB)の機能のCPUで構成する部分を1つのCPUで対応する構成としても良い。
 (4)第1から第4の実施形態に係る後輪操舵制御装置に信号を信号を出力する電動パワーステアリング装置110には、操向ハンドル3と前輪1L,1Rとが機械的に切り離されたステアバイワイヤ(Steer By Wire)式のものが含まれる。
 1L,1R 前輪
 2L,2R 後輪
 3   操向ハンドル
 30L,30R  アクチュエータ
 37LA,37RA,37LB,37RB トー角変更制御ECU(アクチュエータ制御手段、制御手段)
 38  ストロークセンサ(後輪実舵角取得手段)
 51A,51B 減算部(目標値設定更新手段、目標値速度制限手段)
 52  固定値出力部(目標値設定更新手段、目標値速度制限手段)
 53  最小値選択部(目標値設定更新手段、目標値速度制限手段)
 54  固定ゲイン演算部(目標値設定更新手段、目標値速度制限手段)
 55  最大値選択部(目標値設定更新手段、目標値速度制限手段)
 56A,56B 切り返し制御部
 57A、57B ホールド制御部(目標値設定更新手段)
 58A 加算部(目標値設定更新手段、目標値更新手段)
 61  追従誤差符号判定部(目標値設定更新手段、切り返し時目標値変化量設定手段)
 62  トー角指示値微分部(指示値増減方向判定手段)
 63  トー角指示値速度符号判定部(指示値増減方向判定手段)
 64,65 乗算部(目標値設定更新手段、切り返し時目標値変化量設定手段)
 66  二値選択部(目標値設定更新手段、出力選択手段)
 71  トー角指示値演算部(舵角指示値算出手段、制御手段)
 73  トー角指示値符号判定部(切り返し時中立検出手段)
 74A 目標トー角符号判定部(切り返し時中立検出手段)
 74B 実トー角符号判定部(切り返し時中立検出手段)
 75  乗算部(切り返し時中立検出手段)
 76,78 固定値出力部(切り返し時中立検出手段)
 77  符号一致判定部(切り返し時中立検出手段)
 79  符号不一致判定部(切り返し時中立検出手段)
 81A,81B 制御部
 84A,84B トー角目標速度制限部
 91  固定値出力部(ホールド手段)
 92  二値選択部
 120L,120R トー角変更装置(後輪操舵制御装置)
 130 操舵制御ECU
 SFS 前輪転舵角センサ
 S  操作角センサ

Claims (10)

  1.  車両に備わる後輪の舵角を変更するアクチュエータと、該アクチュエータの駆動を制御する制御手段と、を備え、前記後輪の舵角を変更可能な後輪操舵制御装置において、
     前記制御手段は、
     前記アクチュエータを制御するアクチュエータ制御手段と、
     少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する舵角指示値算出手段と、
     該舵角指示値算出手段から入力され前記後輪の舵角指示値の値に対して、前記アクチュエータ制御手段に入力する後輪の舵角目標値を設定して目標値更新制御をする目標値設定更新手段と、
     前記算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
     前記目標値設定更新手段は、
     前記後輪の舵角指示値と前回設定した前記後輪の舵角目標値との差分を目標値変化量として算出するとともに、前記算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前記前回設定した前記後輪の舵角目標値に加算して新たな前記後輪の舵角目標値として設定して前記目標値更新制御をし、
     前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変わったことを検出した場合に、前記アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように前記目標値変化量を前記所定の最大値に設定して前記前回設定した前記後輪の舵角目標値に加算し、前記目標値更新制御をすることを特徴とする後輪操舵制御装置。
  2.  前記目標値設定更新手段は、前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変わったことを検出することで、前記目標値更新制御を開始した後、前記後輪の舵角目標値が中立位置に達したのを検出した時点において、入力されている前記後輪の舵角指示値が中立位置に達していないときは、前記後輪の舵角目標値を中立位置にホールドするように前記後輪の舵角目標値を設定して前記目標値更新制御をすることを特徴とする請求の範囲第1項に記載の後輪操舵制御装置。
  3.  車両に備わる後輪の舵角を変更するアクチュエータと、該アクチュエータの駆動を制御する制御手段と、を備え、前記後輪の舵角を変更可能な後輪操舵制御装置において、
     前記制御手段は、
     前記アクチュエータを制御するアクチュエータ制御手段と、
     少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する指示値算出手段と、
     該指示値算出手段から入力された前記後輪の舵角指示値の入力を受けて、前記アクチュエータが追従可能なように、必要に応じて所定の最大値以下に制限された第1の目標値変化量を設定する目標値速度制限手段と、
     前記算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、
     前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変化したことを検出した場合、第2の目標値変化量を、前記変化した新たな増減方向であって、前記所定の最大値に設定する切り返し時目標値変化量設定手段と、
     前記目標速度制限手段から入力された前記第1の目標値変化量と、前記切り返し時目標値変化量設定手段から入力された前記第2の目標値変化量のうちの一方を目標値変化量として出力する出力選択手段と、
     前記出力選択手段から入力された前記目標値変化量と、前記前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値として前記アクチュエータ制御手段に出力する目標値更新手段と、を有し、
     前記目標値速度制限手段は、入力された前記後輪の舵角指示値と、前回設定した後輪の舵角目標値との差分である追従誤差が、所定の最大値を超えている場合に前記第1の目標値変化量を前記所定の最大値に制限し、前記追従誤差が所定の最大値を超えていない場合は、前記追従誤差をそのまま前記第1の目標値変化量とし、
     前記指示値増減判定手段が、前記後輪の舵角指示値の増減方向が変わったことを検出した場合は、前記出力選択手段は、前記第2の目標値変化量を前記目標値変化量として選択出力し、
     前記目標値更新手段は、前記出力選択手段から入力された前記目標値変化量と、前記前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値として前記アクチュエータ制御手段に出力することを特徴とする後輪操舵制御装置。
  4.  前記制御手段は、
     前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変化したことを検出した場合に、前記出力選択手段が、前記第2の目標値変化量を前記目標値変化量として選択出力した後、前記後輪の舵角目標値が中立位置に達したことを検出する切り返し時中立検出手段と、
     前記舵角目標値変化量をゼロに置き換えるホールド手段と、をさらに有し、
     前記目標値更新手段は、前記出力選択手段において、前記第2の目標値変化量を前記目標値変化量として選択出力した後、前記切り返し時中立検出手段において前記後輪の舵角目標値が中立位置に達したことを検出した時点において、入力されている前記後輪の舵角指示値が中立位置に達していないときは、前記ホールド手段に前記舵角目標値変化量をゼロに置き換えさせ、前記前回の後輪の舵角目標値とを加算して、新たな後輪の舵角目標値として前記アクチュエータ制御手段に出力することを特徴とする請求の範囲第3項に記載の後輪操舵制御装置。
  5.  車両に備わる左右の後輪のトー角をそれぞれ独立に変更するアクチュエータと、それぞれのアクチュエータの駆動を制御する制御手段と、を備え、前記後輪のトー角を左右独立に変更可能な後輪操舵制御装置において、
     前記制御手段は、
     前記それぞれのアクチュエータを独立に制御可能とするアクチュエータ制御手段と、
     少なくとも前輪の転舵状態量にもとづいて左右後輪のそれぞれのトー角指示値を算出するトー角指示値算出手段と、
     該トー角指示値算出手段から入力され前記左右の後輪それぞれのトー角指示値の値に対して、前記アクチュエータ制御手段に入力する左右の後輪のそれぞれのトー角目標値を設定して目標値更新制御をする目標値設定更新手段と、
     前記算出された左右の後輪のそれぞれのトー角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
     前記目標値設定更新手段は、
     前記左の後輪のトー角指示値と前回設定した前記左の後輪のトー角目標値、および前記右の後輪のトー角指示値と前回設定した前記右の後輪のトー角目標値の2組に対し、左右独立にそれぞれに、
     前記後輪のトー角指示値と前回設定した前記後輪のトー角目標値との差分を目標値変化量として算出するとともに、前記算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前記前回設定した前記後輪のトー角目標値に加算し、新たな前記左右の後輪のトー角目標値として設定して前記目標値更新制御をし、
     前記指示値増減判定手段において、前記左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、前記増減方向が変わったことを検出された当該の後輪に対して、前記アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように前記当該の後輪のトー角目標値変化量を前記所定の最大値に設定して、前記前回設定した前記当該の後輪のトー角目標値に加算して前記目標値更新制御をすることを特徴とする後輪操舵制御装置。
  6.  前記目標値設定更新手段は、前記指示値増減判定手段において、前記左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出したすることで、前記目標値更新制御を開始した後、前記当該の後輪のトー角目標値が中立位置に達したのを検出した時点において、入力されている前記当該の後輪のトー角指示値が中立位置に達していないときは、前記当該の後輪のトー角目標値を中立位置にホールドするように前記当該の後輪のトー角目標値を設定して前記目標値更新制御をすることを特徴とする請求の範囲第5項に記載の後輪操舵制御装置。
  7.  車両に備わる後輪の舵角を変更するアクチュエータと、該アクチュエータの駆動を制御する制御手段と、を備え、前記後輪の舵角を変更可能な後輪操舵制御装置において、
     前記制御手段は、
     前記アクチュエータを制御するアクチュエータ制御手段と、
     少なくとも前輪の転舵状態量にもとづいて後輪の舵角指示値を算出する舵角指示値算出手段と、
     後輪の実舵角に係わる情報を取得する後輪実舵角取得手段と、
     前記舵角指示値算出手段から入力され前記後輪の舵角指示値の値に対して、前記アクチュエータ制御手段に入力する後輪の舵角目標値を設定して目標値更新制御をする目標値設定更新手段と、
     前記算出された後輪の舵角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
     前記目標値設定更新手段は、
     前記後輪の舵角指示値と前記後輪実舵角取得手段が取得した前記後輪の実舵角との差分を目標値変化量として算出するとともに、前記算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前記後輪の実舵角に加算して新たな前記後輪の舵角目標値として設定して前記目標値更新制御し、
     前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変わったことを検出した場合に、前記アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように前記目標値変化量を前記所定の最大値に設定して前記後輪の実舵角に加算し、前記目標値更新制御をすることを特徴とする後輪操舵制御装置。
  8.  前記目標値設定更新手段は、前記指示値増減判定手段において、前記後輪の舵角指示値の増減方向が変わったことを検出することで、前記目標値更新制御を開始した後、前記後輪の実舵角が中立位置に達したのを検出した時点において、入力されている前記後輪の舵角指示値が中立位置に達していないときは、前記後輪の実舵角を中立位置にホールドするように前記後輪の舵角目標値を設定して前記目標値更新制御をすることを特徴とする請求の範囲第7項に記載の後輪操舵制御装置。
  9.  車両に備わる左右の後輪のトー角をそれぞれ独立に変更するアクチュエータと、それぞれのアクチュエータの駆動を制御する制御手段と、を備え、前記後輪のトー角を左右独立に変更可能な後輪操舵制御装置において、
     前記制御手段は、
     前記それぞれのアクチュエータを独立に制御可能とするアクチュエータ制御手段と、
     少なくとも前輪の転舵状態量にもとづいて左右後輪のそれぞれのトー角指示値を算出するトー角指示値算出手段と、
     左右後輪の実トー角に係わる情報を取得する実トー角情報取得手段と、
     前記トー角指示値算出手段から入力され前記左右の後輪それぞれのトー角指示値の値に対して、前記アクチュエータ制御手段に入力する左右の後輪のそれぞれのトー角目標値を設定して目標値更新制御をする目標値設定更新手段と、
     前記入力された左右の後輪のそれぞれのトー角指示値の増減方向を判定する指示値増減方向判定手段と、を有し、
     前記目標値設定更新手段は、
     前記左の後輪のトー角指示値と前記実トー角情報取得手段が取得した左の後輪の実トー角、および前記右の後輪のトー角指示値と前記実トー角情報取得手段が取得した右の後輪の実トー角、の2組に対し、左右独立にそれぞれに、
     前記後輪のトー角指示値と前記後輪の実トー角との差分を目標値変化量として算出するとともに、前記算出された目標値変化量を必要に応じて所定の最大値以下に制限して、前記後輪の実トー角に加算し、新たな前記左右の後輪のトー角目標値として設定して前記目標値更新制御をし、
     前記指示値増減判定手段において、前記左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出した場合に、前記増減方向が変わったことを検出された当該の後輪に対して、前記アクチュエータの動作がそれまでと反対方向で、且つ、最大速度となるように前記当該の後輪のトー角目標値変化量を前記所定の最大値に設定して前記当該の後輪の実トー角に加算して前記目標値更新制御をすることを特徴とする後輪操舵制御装置。
  10.  前記目標値設定更新手段は、前記左右の後輪のトー角指示値のいずれかの増減方向が変わったことを検出することで、前記目標値更新制御を開始した後、前記当該の後輪の実トー角が中立位置に達したのを検出した時点において、入力されている前記当該の後輪のトー角指示値が中立位置に達していないときは、前記当該の後輪のトー角目標値を中立位置にホールドするように前記当該の後輪のトー角目標値を設定して前記目標値更新制御をすることを特徴とする請求の範囲第9項に記載の後輪操舵制御装置。
PCT/JP2010/070177 2009-11-16 2010-11-12 後輪操舵制御装置 WO2011059050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080051220.7A CN102666258B (zh) 2009-11-16 2010-11-12 后轮转向控制装置
US13/509,702 US8433478B2 (en) 2009-11-16 2010-11-12 Rear wheel steering control device
JP2011540548A JP5427243B2 (ja) 2009-11-16 2010-11-12 後輪操舵制御装置
EP10830009.6A EP2502804A4 (en) 2009-11-16 2010-11-12 DEVICE FOR CONTROLLING A REAR WHEEL STEERING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009260808 2009-11-16
JP2009-260808 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011059050A1 true WO2011059050A1 (ja) 2011-05-19

Family

ID=43991706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070177 WO2011059050A1 (ja) 2009-11-16 2010-11-12 後輪操舵制御装置

Country Status (5)

Country Link
US (1) US8433478B2 (ja)
EP (1) EP2502804A4 (ja)
JP (1) JP5427243B2 (ja)
CN (1) CN102666258B (ja)
WO (1) WO2011059050A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2502804A4 (en) * 2009-11-16 2013-09-04 Honda Motor Co Ltd DEVICE FOR CONTROLLING A REAR WHEEL STEERING
US8903607B2 (en) * 2012-01-11 2014-12-02 GM Global Technology Operations LLC Lane tracking system with active rear-steer
JP6243134B2 (ja) * 2013-04-05 2017-12-06 Ntn株式会社 車両の停車制御装置
US9663142B2 (en) * 2013-12-11 2017-05-30 GM Global Technology Operations LLC Methods and systems for aligning a steering system of a vehicle
KR102190095B1 (ko) * 2014-10-17 2020-12-11 현대모비스 주식회사 후륜 조향장치 및 그 제어방법
JP6548023B2 (ja) * 2015-09-11 2019-07-24 株式会社ジェイテクト 車両用操舵装置
KR20170085633A (ko) * 2016-01-14 2017-07-25 주식회사 만도 전동식 파워 스티어링 제어 방법 및 그 장치
WO2017141819A1 (ja) * 2016-02-17 2017-08-24 日本精工株式会社 車両用ステアリング制御装置
JP6694460B2 (ja) * 2018-03-14 2020-05-13 本田技研工業株式会社 車両のトー角制御装置
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058577A (ja) * 1999-08-23 2001-03-06 Koyo Seiko Co Ltd 車両用操舵装置
JP2001063606A (ja) * 1999-08-27 2001-03-13 Toyota Motor Corp 車両用操舵制御装置
JP2002059855A (ja) 2000-08-23 2002-02-26 Honda Motor Co Ltd 電動パワーステアリング装置
JP2003048555A (ja) * 2001-08-02 2003-02-18 Toyota Industries Corp 操舵装置及び車両
JP2004042796A (ja) * 2002-07-12 2004-02-12 Toyoda Mach Works Ltd 車両の運動制御方法および車両の運動制御装置
JP2004284513A (ja) * 2003-03-24 2004-10-14 Toyoda Mach Works Ltd 操舵系伝達比可変システム
JP2006069259A (ja) 2004-08-31 2006-03-16 Honda Motor Co Ltd 操舵装置
JP2007131041A (ja) * 2005-11-08 2007-05-31 Mitsubishi Electric Corp 車両用操舵装置
JP2008201173A (ja) 2007-02-16 2008-09-04 Honda Motor Co Ltd トー角変更装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069977B2 (ja) * 1984-02-22 1994-02-09 日産自動車株式会社 車両の後輪操舵方法
GB2157242B (en) * 1984-02-28 1988-07-27 Mitsubishi Motors Corp Rear wheel steering apparatus
JPS6460476A (en) * 1987-08-31 1989-03-07 Mazda Motor Four-wheel steering device for vehicle
US4976328A (en) * 1988-04-11 1990-12-11 Mazda Motor Corporation Rear wheel turning system
US5007494A (en) * 1988-05-30 1991-04-16 Mazda Motor Corporation Rear wheel turning system
DE3819849A1 (de) * 1988-06-10 1989-12-14 Siemens Ag Prozessrechnergesteuerte aktive hinterachsenkinematik eines kfz
JP2557961B2 (ja) * 1988-10-08 1996-11-27 日産自動車株式会社 後輪舵角制御装置
JP2578975B2 (ja) * 1989-05-15 1997-02-05 日産自動車株式会社 車両動特性制御装置
JP2987945B2 (ja) * 1991-01-10 1999-12-06 日産自動車株式会社 操舵角センサフェイル検出装置
JP2913852B2 (ja) * 1991-01-28 1999-06-28 日産自動車株式会社 操舵角センサフェイル検出装置
KR970000621B1 (ko) * 1992-10-14 1997-01-16 미쯔비시 지도샤 고교 가부시끼가이샤 차량용 서스펜션 장치의 얼라인먼트 제어장치 및 제어방법
DE69311511T2 (de) * 1992-12-10 1998-02-05 Mazda Motor Vierradlenkungssystem für ein Fahrzeug
JPH0848256A (ja) * 1994-08-08 1996-02-20 Toyota Motor Corp 車両の運動制御装置
JP3828663B2 (ja) * 1998-06-11 2006-10-04 本田技研工業株式会社 車両の障害物回避制御装置
JP3859405B2 (ja) * 1999-10-01 2006-12-20 カヤバ工業株式会社 フェールセーフ回路
JP2001354154A (ja) * 2000-04-13 2001-12-25 Honda Motor Co Ltd 後輪転舵装置
US6540043B2 (en) * 2001-06-21 2003-04-01 General Motors Corporation Vehicle steering system with electronic power regulation unit for limiting the steering angle of rear wheels at high speeds
US7130729B2 (en) * 2004-07-26 2006-10-31 General Motors Corporation Adaptive compensation of rear-wheel steering control using vehicle dynamics parameter estimation
US7734418B2 (en) * 2005-06-28 2010-06-08 Honda Motor Co., Ltd. Vehicle operation assisting system
US7987029B2 (en) * 2005-12-27 2011-07-26 Honda Motor Co., Ltd. Vehicle control device
CA2688416C (en) * 2007-05-30 2012-11-27 Honda Motor Co., Ltd. A vehicle control system and a method for judging abnormal actuation in the vehicle control system
JP4528327B2 (ja) * 2007-12-03 2010-08-18 本田技研工業株式会社 操舵システム
EP2266863B1 (en) * 2008-03-12 2015-01-28 Honda Motor Co., Ltd. Vehicle toe angle controller
CN101537853B (zh) * 2009-03-04 2010-08-18 长安大学 汽车四轮主动转向操纵控制***
EP2502804A4 (en) * 2009-11-16 2013-09-04 Honda Motor Co Ltd DEVICE FOR CONTROLLING A REAR WHEEL STEERING

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058577A (ja) * 1999-08-23 2001-03-06 Koyo Seiko Co Ltd 車両用操舵装置
JP2001063606A (ja) * 1999-08-27 2001-03-13 Toyota Motor Corp 車両用操舵制御装置
JP2002059855A (ja) 2000-08-23 2002-02-26 Honda Motor Co Ltd 電動パワーステアリング装置
JP2003048555A (ja) * 2001-08-02 2003-02-18 Toyota Industries Corp 操舵装置及び車両
JP2004042796A (ja) * 2002-07-12 2004-02-12 Toyoda Mach Works Ltd 車両の運動制御方法および車両の運動制御装置
JP2004284513A (ja) * 2003-03-24 2004-10-14 Toyoda Mach Works Ltd 操舵系伝達比可変システム
JP2006069259A (ja) 2004-08-31 2006-03-16 Honda Motor Co Ltd 操舵装置
JP2007131041A (ja) * 2005-11-08 2007-05-31 Mitsubishi Electric Corp 車両用操舵装置
JP2008201173A (ja) 2007-02-16 2008-09-04 Honda Motor Co Ltd トー角変更装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2502804A4

Also Published As

Publication number Publication date
EP2502804A1 (en) 2012-09-26
CN102666258A (zh) 2012-09-12
JP5427243B2 (ja) 2014-02-26
EP2502804A4 (en) 2013-09-04
CN102666258B (zh) 2014-07-23
US8433478B2 (en) 2013-04-30
JPWO2011059050A1 (ja) 2013-04-04
US20120277956A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5427243B2 (ja) 後輪操舵制御装置
JP5194716B2 (ja) 電動パワーステアリング装置
JP3753511B2 (ja) 電動パワーステアリング装置
US7832522B2 (en) Vehicle steering system, vehicle including the same and method for turning wheel of vehicle
EP3517406B1 (en) Steering control apparatus
JPH10217998A (ja) 操舵制御装置
JP4579056B2 (ja) 車両用操舵装置
JP4034294B2 (ja) 反力制御装置
JP2004042796A (ja) 車両の運動制御方法および車両の運動制御装置
JP2020132008A (ja) 操舵装置
JP5617455B2 (ja) 電動パワーステアリング装置
US20050096814A1 (en) Method for operating a steering system for a motor vehicle and steering system
US11745792B2 (en) Steering device
JP2019131015A (ja) 操舵制御装置
JP2015199415A (ja) 電動パワーステアリング制御装置
JP2012183881A (ja) 電動パワーステアリング装置
JP4620513B2 (ja) 電動パワーステアリング装置
JP2008221996A (ja) 操舵システム
JP2020111130A (ja) 転舵制御装置
JP2006264393A (ja) 車両用操舵装置
JP2003063429A (ja) 車両用操舵装置
CN112498468A (zh) 转向控制装置
JP5863354B2 (ja) 車両のパワーステアリング制御装置
JP5412790B2 (ja) 電動パワーステアリング装置
JP5217901B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051220.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540548

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509702

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010830009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010830009

Country of ref document: EP