WO2011058682A1 - 窒化ガリウム系化合物半導体発光素子 - Google Patents

窒化ガリウム系化合物半導体発光素子 Download PDF

Info

Publication number
WO2011058682A1
WO2011058682A1 PCT/JP2010/004433 JP2010004433W WO2011058682A1 WO 2011058682 A1 WO2011058682 A1 WO 2011058682A1 JP 2010004433 W JP2010004433 W JP 2010004433W WO 2011058682 A1 WO2011058682 A1 WO 2011058682A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan
plane
light emitting
active layer
Prior art date
Application number
PCT/JP2010/004433
Other languages
English (en)
French (fr)
Inventor
加藤亮
吉田俊治
横川俊哉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080038204.4A priority Critical patent/CN102484180B/zh
Priority to JP2011513563A priority patent/JP4891462B2/ja
Priority to EP10829650A priority patent/EP2461376A4/en
Publication of WO2011058682A1 publication Critical patent/WO2011058682A1/ja
Priority to US13/405,725 priority patent/US8546167B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region

Definitions

  • the present invention relates to a gallium nitride compound semiconductor light emitting device.
  • a nitride semiconductor having nitrogen (N) as a group V element is considered promising as a material for a short-wavelength light-emitting element because of its band gap.
  • gallium nitride compound semiconductors GaN-based semiconductors
  • LEDs blue light-emitting diodes
  • semiconductor lasers made of GaN-based semiconductors have been put into practical use.
  • FIG. 1 schematically shows a unit cell of GaN.
  • Al a Ga b In C N ( 0 ⁇ a, b, c ⁇ 1, a + b + c 1) semiconductor crystal, some of the Ga shown in FIG. 1 may be replaced by Al and / or In.
  • FIG. 2 shows four basic vectors a 1 , a 2 , a 3 , and c that are generally used to represent the surface of the wurtzite crystal structure in the 4-index notation (hexagonal crystal index).
  • the basic vector c extends in the [0001] direction, and this direction is called “c-axis”.
  • a plane perpendicular to the c-axis is called “c-plane” or “(0001) plane”.
  • c-axis” and “c-plane” may be referred to as “C-axis” and “C-plane”, respectively.
  • FIG. 3 there are typical crystal plane orientations other than the c-plane.
  • 3 (a) is the (0001) plane
  • FIG. 3 (b) is the (10-10) plane
  • FIG. 3 (c) is the (11-20) plane
  • FIG. 3 (d) is the (10-12) plane.
  • “-” attached to the left of the number in parentheses representing the Miller index means “bar”.
  • the (0001) plane, (10-10) plane, (11-20) plane, and (10-12) plane are the c-plane, m-plane, a-plane, and r-plane, respectively.
  • the m-plane and a-plane are “nonpolar planes” parallel to the c-axis, while the r-plane is a “semipolar plane”.
  • the m-plane is a general term for the (10-10) plane, the (-1010) plane, the (1-100) plane, the (-1100) plane, the (01-10) plane, and the (0-110) plane.
  • the X plane may be referred to as a “growth plane”.
  • a semiconductor layer formed by X-plane growth may be referred to as an “X-plane semiconductor layer”.
  • gallium nitride-based compound semiconductors on nonpolar surfaces such as m-plane and a-plane, or semipolar planes such as r-plane. If a nonpolar plane can be selected as the growth plane, polarization does not occur in the layer thickness direction (crystal growth direction) of the light-emitting portion, so that no quantum confined Stark effect occurs, and a potentially high-efficiency light-emitting element can be manufactured. Even when the semipolar plane is selected as the growth plane, the contribution of the quantum confined Stark effect can be greatly reduced.
  • FIG. 4A schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate surface) of the nitride-based semiconductor whose surface is m-plane. Since Ga atoms and nitrogen atoms exist on the same atomic plane parallel to the m-plane, no polarization occurs in the direction perpendicular to the m-plane. The added In and Al are located at the Ga site and replace Ga. Even if at least part of Ga is substituted with In or Al, no polarization occurs in the direction perpendicular to the m-plane.
  • FIG. 4B schematically shows the crystal structure of a nitride semiconductor cross section (cross section perpendicular to the substrate surface) having a c-plane surface.
  • Ga atoms and nitrogen atoms do not exist on the same atomic plane parallel to the c-plane.
  • polarization occurs in a direction perpendicular to the c-plane.
  • the c-plane GaN-based substrate is a general substrate for growing a GaN-based semiconductor crystal. Since the positions of the Ga (or In) atomic layer and the nitrogen atomic layer parallel to the c-plane are slightly shifted in the c-axis direction, polarization is formed along the c-axis direction.
  • JP 2008-34889 A Japanese Patent Laid-Open No. 2002-16284
  • FIG. 5 is a cross-sectional view showing the structure of the semiconductor light emitting device disclosed in Patent Document 1.
  • a first semiconductor layer 302 made of AlGaAs is provided on a substrate 301 having a c-plane on the surface.
  • An active layer 304 having a GaInNAs / GaAs double quantum well structure is disposed on the first semiconductor layer 302.
  • An intermediate layer 303 made of GaAs is provided above and below the active layer 304, and a second semiconductor layer 305 made of AlGaAs is provided on the intermediate layer 303 disposed above the active layer 304.
  • the semiconductor light-emitting element shown in FIG. 5 has a structure in which the first semiconductor layer 302 contains Al and the active layer 304 contains N. According to Patent Document 1, Al is detected in the active layer 304 in the semiconductor light emitting device having such a configuration. This is because Al remaining in the growth chamber when the active layer 304 is formed is combined with the nitrogen compound raw material or the like and taken into the active layer 304.
  • Patent Document 1 the amount of oxygen mixed in is reduced by reducing the Al concentration contained in the active layer 304, and the luminous efficiency is improved.
  • the present inventor formed an active layer 304 having a c-plane on the surface and an active layer having an m-plane on the surface like the active layer disclosed in Patent Document 1, and observed how oxygen was taken in. As a result, it has been clarified that in the active layer having the m-plane on the surface, oxygen is taken in differently from the case of the c-plane.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an m-plane grown nitride semiconductor device having high luminous efficiency and a method for manufacturing the same.
  • the semiconductor light emitting device includes an n-type gallium nitride compound semiconductor layer, a p-type gallium nitride compound semiconductor layer, and a gap between the n-type gallium nitride compound semiconductor layer and the p-type gallium nitride compound semiconductor layer.
  • the light emitting layer includes a light emitting layer, and the light emitting layer includes an In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer having a thickness of 6 nm to 17 nm.
  • the concentration of oxygen atoms contained in the light emitting layer is 3.0 ⁇ 10 17 cm ⁇ 3 or less.
  • the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer has a thickness of 8 nm to 16 nm.
  • the light emitting layer is a multiple quantum well active layer.
  • the light emitting layer is supported by a substrate, and Al is not included between the substrate and the light emitting layer.
  • the method for manufacturing a semiconductor light emitting device of the present invention includes an n-type gallium nitride compound semiconductor layer, a p-type gallium nitride compound semiconductor layer, and the n-type gallium nitride compound semiconductor layer and the p-type gallium nitride compound semiconductor layer.
  • the growth rate of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer is such that the concentration of oxygen atoms contained in the light emitting layer is 3.0 ⁇ 10
  • the speed is determined to be 17 cm ⁇ 3 or less.
  • the light emitting layer is grown at a growth rate of 7 nm / min or more and 20 nm / min or less.
  • the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer having a thickness of 8 nm to 16 nm is grown.
  • the amount of oxygen mixed in the light emitting layer can be reduced by increasing the growth rate of the light emitting layer. Therefore, since the non-light-emission center of a light emitting layer is reduced, high luminous efficiency can be obtained.
  • the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer included in the light emitting layer is 6 nm or more and 17 nm or less, the volume capable of capturing carriers is increased, so that high light emission is achieved. Efficiency can be obtained. Since m-plane growth is not affected by the quantum confined Stark effect, the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer can be increased to 6 nm or more.
  • FIG. 4 is a perspective view showing basic translation vectors a 1 , a 2 , a 3 , and c of a wurtzite crystal structure.
  • (A) to (d) are schematic views showing typical crystal plane orientations of a hexagonal wurtzite structure.
  • (A) schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate) of a nitride-based semiconductor whose surface is an m-plane, and (b) is a cross-section of the nitride-based semiconductor whose surface is a c-plane.
  • FIG. It is a figure which shows typically the crystal structure in (cross section perpendicular
  • FIG. It is sectional drawing which shows typically the structure of LED produced by c surface growth. It is a graph which shows the SIMS analysis result of LED produced by c surface growth. It is a graph which shows the SIMS analysis result of LED produced by m surface growth. It is sectional drawing which shows typically the structure of LED produced by making the growth rate of the GaN / InGaN multiple quantum well active layer 205 high. It is a graph which shows the SIMS analysis result of LED shown in FIG.
  • FIG. 6 is a cross-sectional view showing the structure of an LED fabricated by the present inventors by c-plane growth.
  • FIG. 7 is a graph showing the SIMS (Secondary Ion Mass Spectrometry) analysis results of the LED shown in FIG.
  • a c-plane GaN free-standing substrate was used as the substrate 101 shown in FIG.
  • an n-GaN layer 102, a GaN / InGaN multiple quantum well active layer 105 serving as a light emitting portion, a p-AlGaN overflow suppression layer 106, and a p-GaN layer 107 are deposited in this order. All the layers arranged on the substrate 101 are grown using the c-plane as a growth plane.
  • the GaN / InGaN multiple quantum well active layer 105 has three cycles of an In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 having a thickness of 3 nm and a GaN barrier layer 103 having a thickness of 7 nm alternately. It has a stacked configuration. That is, the first GaN barrier layer 103 is disposed on the n-GaN layer 102, and the first In x Ga 1-x N (0 ⁇ x ⁇ 1) is formed on the GaN barrier layer 103. A well layer 104 is disposed.
  • GaN / InGaN multiple quantum well active layer 105 three In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 are arranged, and the third In x Ga 1-x N (0 ⁇ x ⁇ 1) On the well layer 104, a fourth GaN barrier layer 103 is provided.
  • n ⁇ and p ⁇ indicate layers to which silicon (Si) as an n-type dopant or magnesium (Mg) as a p-type dopant is added, respectively.
  • n-type carriers (electrons) injected from the n-GaN layer 102 side are not trapped in the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104.
  • the p-AlGaN overflow suppression layer 106 has a thickness of approximately 20 nm.
  • the horizontal axis of FIG. 7 indicates the depth ( ⁇ m) from the surface of the p-GaN layer 107 in the semiconductor multilayer structure.
  • 0 ⁇ m corresponds to the surface of the p-GaN layer 107.
  • the ultrathin line indicates a profile of Ga
  • the solid line indicates Al
  • the dotted line indicates In
  • the triangle ⁇ indicates an oxygen profile.
  • the profiles of Ga, Al, and In are indicated by the vertical scale (intensity (counts / sec)) on the right side of the figure.
  • the oxygen profile is indicated by a scale (concentration (density) (atoms / cm 3 )) on the left side of the figure.
  • the depth at which the In peak is arranged indicates the position of the GaN / InGaN multiple quantum well active layer 105
  • the depth at which the Al peak is arranged indicates the position of the p-AlGaN overflow suppression layer 106.
  • Oxygen is not intentionally contained in the crystal, but is an impurity that has been mixed in the crystal as a result of what remains in the reaction furnace or is contained in the raw material gas.
  • the oxygen atom profile has a concentration of 8.0 ⁇ 10 17 cm ⁇ 3 only at a location corresponding to the p-AlGaN overflow suppression layer 106 (Al peak position) except for the vicinity of the outermost surface. A prominent peak is shown. From this result, it was confirmed that the oxygen-containing layer tends to be mixed in the Al-containing layer.
  • Al peak position p-AlGaN overflow suppression layer 106
  • the oxygen concentration in the portion corresponding to the GaN / InGaN multiple quantum well active layer 105 is in other regions (GaN / InGaN multiple quantum well active layer 105 and p-AlGaN overflow suppression layer). (Region other than 106). From this result, it can be seen that in the GaN / InGaN multiple quantum well active layer 105, there is no noticeable mixing of oxygen as an impurity. Note that the oxygen concentration shown in FIG. 7 is higher than 1.0 ⁇ 10 15 cm ⁇ 3 .
  • FIG. 8 shows the SIMS experimental results of the LED fabricated by m-plane growth.
  • an LED having the same structure as that shown in FIG. 6 was produced under exactly the same growth conditions as the c-plane growth conditions. Since the surface of the substrate 101 is m-plane, the growth planes of all the layers deposited on the substrate 101 are m-plane.
  • oxygen is not only present at the location corresponding to the p-AlGaN overflow suppression layer 106 (Al peak position) but also at the location corresponding to the GaN / InGaN multiple quantum well active layer 105 (In peak position).
  • the concentration is high.
  • the concentration of oxygen in the GaN / InGaN multiple quantum well active layer 105 is 1.5 ⁇ 10 18 cm ⁇ 3, which is the same as the concentration of the p-AlGaN overflow suppression layer 106.
  • impurity oxygen is also mixed into the GaN / InGaN multiple quantum well active layer 105.
  • the inventor of the present application manufactured an LED by increasing the growth rate of the GaN / InGaN multiple quantum well active layer 205, and performed SIMS analysis.
  • the structure of the LED is shown in FIG. Table 1 below shows differences between the LED shown in FIG. 9 and the LED shown in FIG.
  • the LED shown in FIG. 9 uses an m-plane GaN free-standing substrate as the substrate 201. Therefore, the growth planes of all the layers (n-GaN layer 202 to p-GaN layer 207) deposited on the substrate 201 are m-planes.
  • the GaN / InGaN multiple quantum well active layer 205 a 15 nm thick In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 204 and a 30 nm thick GaN barrier layer 203 are alternately deposited in three cycles. Have a configuration.
  • An undoped GaN layer 208 having a thickness of 100 nm is inserted between the GaN / InGaN multiple quantum well active layer 204 and the p-AlGaN overflow suppression layer 206.
  • the GaN / InGaN multiple quantum well active layer 205 shown in FIG. 9 is formed at a growth rate of 9 nm / min.
  • the growth rate of the GaN / InGaN multiple quantum well active layer 205 was 1 nm / min.
  • the configuration and manufacturing method of the LED shown in FIG. 9 are the same as the configuration shown in FIG. 6 except for the points described above. For this reason, descriptions of other configurations and manufacturing methods are omitted here.
  • the growth of the In x Ga 1-x N well layer 204 is performed under a condition where ammonia, which is a nitrogen raw material, is supplied in a sufficient amount. Further, since In is an atom that easily evaporates among Group III atoms, the growth rate of the In x Ga 1-x N well layer 204 is limited only by the supply amount of Ga atoms.
  • the growth of the GaN barrier layer 203 is performed by supplying a sufficient amount of ammonia, which is a nitrogen raw material, and the growth rate of the GaN barrier layer 203 is limited only by the supply amount of Ga atoms.
  • the growth rate of the GaN / InGaN multiple quantum well active layer 205 can be easily controlled by adjusting the supply flow rate of trimethylgallium (TMG) or triethylgallium (TEG), which is a Ga source gas.
  • TMG trimethylgallium
  • TMG triethylgallium
  • the growth rate can be calculated from the film thickness measured by X-ray diffraction and the growth time.
  • FIG. 10 shows the SIMS analysis result of the LED shown in FIG.
  • each In x Ga 1-x N well layer 204 is thicker than the LED shown in FIG.
  • the GaN barrier layer 203 is thicker than the LED shown in FIG. 6, the spacing between the In x Ga 1-x N well layers 204 is also large. Therefore, in the measurement results shown in FIGS. 7 and 8, only one In peak is detected, whereas in the measurement results shown in FIG. 10, the In x Ga 1-x N well layer 204 is provided. The actual number of In (3 layers) In peaks are detected.
  • the oxygen concentration at the position corresponding to the GaN / InGaN multiple quantum well active layer 205 is higher than the oxygen concentration at the position corresponding to the p-AlGaN overflow suppression layer 206 (Al peak position). Is lower.
  • the oxygen concentration in the GaN / InGaN multiple quantum well active layer 205 is 2.5 ⁇ 10 17 cm ⁇ 3 . This oxygen concentration is comparable to the oxygen concentration in other regions (regions other than the GaN / InGaN multiple quantum well active layer 205 and the p-AlGaN overflow suppression layer 206). This oxygen concentration is about one-tenth of the oxygen concentration (1.5 ⁇ 10 18 cm ⁇ 3 ) of the GaN / InGaN multiple quantum well active layer in the graph shown in FIG.
  • the concentration of oxygen atoms in the p-AlGaN overflow suppression layer 106 is 8.0 ⁇ 10 17 cm ⁇ 3 in the c-plane growth shown in FIG. 7, whereas the m-plane growth shown in FIG. This is also supported by the fact that it is 1.5 ⁇ 10 18 cm ⁇ 3 which is nearly double.
  • FIG. 11 shows the relationship between the growth rate and the internal quantum efficiency of a GaN / InGaN multiple quantum well active layer whose growth surface is the m-plane.
  • an un-GaN layer having a thickness of 1.5 to 2.5 ⁇ m is deposited on an m-plane substrate, and a GaN / InGaN multiple quantum well active layer (InGaN well layer: 3 nm, GaN barrier) is deposited thereon.
  • a sample deposited with a layer (7 nm, 3 periods) was used.
  • the horizontal axis of the graph shown in FIG. 11 indicates the growth rate, and the vertical axis indicates the internal quantum efficiency.
  • the internal quantum efficiency is a ratio of the integrated intensity of the PL spectrum measured at room temperature (300 K) to the integrated intensity of the photoluminescence (PL) spectrum measured at low temperature (10 K).
  • indicates the measurement result of the sample in which the growth temperature when depositing the GaN / InGaN multiple quantum well active layer is unified to 780 ° C. and the emission peak wavelength is 450 ⁇ 10 nm.
  • the symbol ⁇ indicates the measurement result of a sample in which the growth temperature is unified at 790 ° C. and the emission peak wavelength is 415 ⁇ 10 nm.
  • the largest internal quantum efficiency is set to 1, and the data under each condition is normalized.
  • the composition ratio of each element of the In x Ga 1-x N well layer may change, and the emission peak wavelength may change greatly.
  • the emission peak wavelength becomes long under the condition where the growth rate is 4 to 8 nm / min, and falls outside the range of 450 ⁇ 10 nm.
  • the conditions for the growth rate of 4 to 8 nm / min are excluded from the comparison.
  • the growth temperature is 790 ° C.
  • the emission peak wavelength becomes long under the condition where the growth rate is 6 to 8 nm / min, and falls outside the range of 415 ⁇ 10 nm. Therefore, when the growth temperature is 780 ° C., the conditions for the growth rate of 6 to 8 nm / min are excluded from the comparison target.
  • the emission peak wavelength was extracted from the PL spectrum measured at room temperature (300K).
  • the internal quantum efficiency tends to increase as the growth rate when forming a GaN / InGaN multiple quantum well active layer increases. Can be seen. This is thought to be due to the fact that the concentration of mixed oxygen is reduced by increasing the growth rate of the GaN / InGaN multiple quantum well active layer, and as a result, the non-luminescent center of the GaN / InGaN multiple quantum well active layer is reduced. It is done.
  • the GaN / InGaN multiple quantum well active layer includes an In x Ga 1-x N well layer and a GaN barrier layer.
  • the growth rate of the In x Ga 1-x N well layer and the growth rate of the GaN barrier layer may be the same or different. Whether the growth rate of the In x Ga 1-x N well layer and the growth rate of the GaN barrier layer are the same or different, the “growth rate of the GaN / InGaN multiple quantum well active layer” is GaN / InGaN multiple quantum well active layer thickness divided by time spent growing GaN / InGaN multiple quantum well active layer.
  • the measurement shown in FIG. 11 confirms that the internal quantum efficiency can be improved by increasing the growth rate in the active layer emitting light having an emission wavelength of about 400 nm to 450 nm.
  • the effect of increasing the internal quantum efficiency can be obtained by increasing the growth rate.
  • FIG. 12 is a graph showing the relationship between the growth rate of the GaN / InGaN multiple quantum well active layer and the concentration of oxygen atoms contained in the GaN / InGaN multiple quantum well active layer.
  • the concentration of oxygen atoms was obtained by performing SIMS analysis.
  • the growth rate of the GaN / InGaN multiple quantum well active layer is 1 nm / min
  • the amount of mixed oxygen which was 1.5 ⁇ 10 18 cm ⁇ 3
  • the growth rate of 5 nm / min it decreases to 3.2 ⁇ 10 17 cm ⁇ 3 .
  • the oxygen concentration is 3.0 ⁇ 10 17 cm ⁇ 3 or less.
  • the change in the oxygen concentration decreases, and it is considered that the concentration eventually converges in the vicinity of 2.5 ⁇ 10 17 cm ⁇ 3 .
  • the internal quantum efficiency (standardized value) tends to increase dramatically. It is believed that there is. From these results, it can be considered that if the oxygen concentration is 3.0 ⁇ 10 17 cm ⁇ 3 or less, the adverse effect of lowering the light emission characteristics is not exerted by oxygen, and a desirable internal quantum efficiency can be obtained.
  • the amount of oxygen mixed into the GaN / InGaN multiple quantum well active layer is controlled only by the growth rate.
  • the amount of oxygen mixed into the GaN / InGaN multiple quantum well active layer depends on the thickness of the GaN / InGaN multiple quantum well active layer 205 and the In composition of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer ( It was found that it does not depend on x).
  • FIG. 13 is a graph showing the relationship between the thickness of the InGaN well layer and the internal quantum efficiency.
  • indicates the measurement result of the sample with the growth rate of the GaN / InGaN multiple quantum well active layer of 1 nm / min
  • indicates the sample with the growth rate of the GaN / InGaN multiple quantum well active layer of 3 nm / min.
  • indicates the measurement results of the sample with the growth rate of the GaN / InGaN multiple quantum well active layer being 9 nm / min.
  • the internal quantum efficiency exceeding 50% was not obtained regardless of the thickness of the InGaN well layer.
  • the growth rate was 9 nm / min ( ⁇ in the figure)
  • an internal quantum efficiency exceeding 50% was obtained in a sample having an InGaN well layer thickness of 3 nm to 15 nm.
  • the internal quantum efficiency (about 50%) of the sample with the growth rate of 9 nm / min is approximately equal to the internal quantum efficiency of the sample with the growth rate of 1 nm / min or 3 nm / min (about 50%).
  • the value is 1.5 times or more compared to about 30%).
  • the amount of oxygen as an impurity is reduced as the growth rate is increased, and this is considered to be caused by a decrease in non-radiative centers in the GaN / InGaN multiple quantum well active layer. It is done.
  • the internal quantum efficiency is improved.
  • the growth rate is 1 nm / min (in the figure, ⁇ )
  • the internal quantum efficiency remains almost flat, about 30%, and the tendency to improve I could't see it.
  • the growth rate is 3 nm / min ( ⁇ in the figure)
  • the internal quantum efficiency is improved by increasing the thickness of the InGaN well layer from 3 nm to 9 nm.
  • the internal quantum efficiency was a value smaller than 50%.
  • the internal quantum efficiency when the thickness of the InGaN well layer was 9 nm was 85%. This can be said to be a dramatic improvement in the internal quantum efficiency as compared with the case where the thickness of the InGaN well layer is 3 nm at the same growth rate (internal quantum efficiency: about 50%). From this result, it is considered that when the growth rate is 9 nm / min, the effect that the volume capable of capturing carriers is increased by effectively increasing the thickness of the InGaN well layer.
  • the value of the internal quantum efficiency of 85% is an internal quantum efficiency (growth rate of 1 nm / min) when a sample having an InGaN well layer having a thickness of 9 nm at a growth rate of 1 nm / min or 3 nm / min is formed. Compared with about 30% for the minute and about 45% for the growth rate of 3 nm / min), the value is nearly double.
  • FIG. 13 shows that the internal quantum efficiency is 80% or more when the thickness of the InGaN well layer is in the range of about 8 nm to about 16 nm.
  • the internal quantum efficiency decreases because of lattice mismatch such as dislocations and defects from the interface due to stress due to strain. This is thought to be due to the generation of non-luminescent centers.
  • the internal quantum high rate of about 90% is already close to the upper limit. Practically, an internal quantum efficiency of about 70% is required. From the graph of FIG. 13, the thickness of the InGaN well layer at which the value of the internal quantum efficiency becomes 70% or more when the growth rate is 9 nm is about 6 nm or more and about 17 nm or less.
  • the semiconductor light emitting device of this embodiment includes an n-GaN layer 102, a p-GaN layer 107, and a GaN / InGaN multiple quantum well active layer 105 positioned between these layers.
  • the n-GaN layer 102 is formed on a crystal growth substrate 101 having an m-plane on the surface.
  • a GaN / InGaN multiple quantum well active layer 105 is formed on a part of the n-GaN layer 102.
  • An n-side electrode 108 is formed in a region of the n-GaN layer 102 where the GaN / InGaN multiple quantum well active layer 105 is not provided.
  • the GaN / InGaN multiple quantum well active layer 105 has a configuration in which In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 and GaN barrier layers 103 are alternately stacked.
  • a p-AlGaN overflow suppression layer 106 is formed on the GaN / InGaN multiple quantum well active layer 105.
  • a p-GaN layer 107 is formed on the AlGaN overflow suppression layer 106.
  • a p-side electrode 109 is provided on the p-GaN layer 107.
  • the GaN / InGaN multiple quantum well active layer 105 is an m-plane semiconductor layer including an In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 having a thickness of 6 nm to 17 nm.
  • the concentration of oxygen atoms contained in the GaN / InGaN multiple quantum well active layer 105 is 3.0 ⁇ 10 17 cm ⁇ 3 or less.
  • the concentration of oxygen atoms contained in the GaN / InGaN multiple quantum well active layer (light emitting layer) 105 includes the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 and the GaN barrier layer 103.
  • the average oxygen concentration Specifically, the amount of oxygen contained in the entire GaN / InGaN multiple quantum well active layer 105 (that is, all In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 and all GaN barrier layers 103). It is calculated by dividing the sum of (unit: atom) by the volume of the entire GaN / InGaN multiple quantum well active layer 105.
  • the amount of oxygen contained in the entire GaN / InGaN multiple quantum well active layer 105 can be obtained by SIMS analysis.
  • the volume of the GaN / InGaN multiple quantum well active layer 105 is obtained by multiplying the thickness of the GaN / InGaN multiple quantum well active layer 105 by the area to be sputtered.
  • the thickness of the GaN / InGaN multiple quantum well active layer 105 can be measured by X-ray diffraction.
  • the present inventors have found that the oxygen concentration of the GaN / InGaN multiple quantum well active layer 105 can be reduced by increasing the growth rate of the GaN / InGaN multiple quantum well active layer 105.
  • the GaN / InGaN multiple quantum well active layer 105 is formed by MOCVD.
  • the GaN / InGaN multiple quantum well active layer 105 is formed at a growth rate of 7 nm / min or more and 20 nm / min or less to be contained in the GaN / InGaN multiple quantum well active layer 105.
  • the concentration of oxygen atoms can be suppressed to 3.0 ⁇ 10 17 cm ⁇ 3 or less.
  • the growth of the GaN / InGaN multiple quantum well active layer 105 can be performed at 790 ° C., for example.
  • the value of the internal quantum efficiency is set to 70. % Or more.
  • a substrate capable of growing (10-10) m-plane gallium nitride (GaN) is used.
  • As the crystal growth substrate 101 it is most desirable to use a self-supporting substrate of gallium nitride that exposes the m-plane.
  • silicon carbide (SiC) having a close lattice constant may be used.
  • SiC silicon carbide
  • a substrate different from the gallium nitride compound semiconductor is used as the crystal growth substrate 101, it is necessary to insert an appropriate intermediate layer or buffer layer between the gallium nitride compound semiconductor layer deposited on the substrate 101. is there.
  • the actual surface (main surface) of the m-plane semiconductor layer does not need to be a plane that is completely parallel to the m-plane, and is inclined at a slight angle (for example, greater than 0 ° and ⁇ 1 ° or less) from the m-plane. You may do it. It is difficult to form a substrate or a semiconductor layer having a surface that is completely parallel to the m-plane from the viewpoint of manufacturing technology. For this reason, when an m-plane substrate or an m-plane semiconductor layer is formed by the current manufacturing technology, the actual surface is inclined from the ideal m-plane. Since the inclination angle and orientation vary depending on the manufacturing process, it is difficult to accurately control the inclination angle and inclination orientation of the surface.
  • the m-plane semiconductor layer in the present invention is not only a semiconductor layer having a surface (main surface) completely parallel to the m-plane, but also at a slight angle (for example, greater than 0 ° and ⁇ 1 ° or less) from the m-plane. It also includes a semiconductor layer having an inclined surface.
  • the GaN / InGaN multiple quantum well active layer 105 and other gallium nitride compound semiconductors are deposited by MOCVD.
  • the substrate 101 is washed with a buffered hydrofluoric acid solution (BHF), and then sufficiently washed with water and dried.
  • BHF buffered hydrofluoric acid solution
  • the substrate 101 is placed in the reaction chamber of the MOCVD apparatus so as not to be exposed to air as much as possible. Thereafter, the substrate is heated to 850 ° C. while supplying only nitrogen (N 2 ) and (H 2 ) as carrier gases and ammonia as a nitrogen source as source gas, and the surface of the substrate 101 is cleaned.
  • n-GaN layer 102 is deposited.
  • Silane is a source gas for Si, which is an n-type dopant.
  • the supply of SiH 4 is stopped, and the temperature of the substrate is lowered to less than 800 ° C., thereby forming the GaN barrier layer 103.
  • N 2 at a flow rate of 15 to 20 slm
  • trimethyl gallium (TMG) or triethyl gallium (TEG) at a flow rate of 4 to 10 sccm
  • ammonia at a flow rate of 15 to 20 slm are supplied into the reaction chamber.
  • TMG trimethyl gallium
  • TMG triethyl gallium
  • ammonia at a flow rate of 15 to 20 slm
  • the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 is formed.
  • GaN barrier layers 103 and In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104 are alternately formed for three periods or more, thereby forming a GaN / InGaN multiple quantum well active layer 105 serving as a light emitting portion. .
  • the reason why the number of periods is three or more is that the larger the number of In x Ga 1-x N (0 ⁇ x ⁇ 1) well layers 104, the larger the volume capable of capturing carriers contributing to luminescence recombination, and the device efficiency. This is because of the increase.
  • the quantum confined Stark effect does not occur on nonpolar surfaces such as the m-plane. Therefore, in the m plane, it is not necessary to reduce the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 as in the case of the c plane. In m-plane growth, the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 can be set to 6 nm or more and 17 nm or less without being affected by the quantum confined Stark effect. As a result, high internal quantum efficiency can be realized.
  • the growth conditions are controlled, and the growth rate of the GaN / InGaN multiple quantum well active layer 105 is set to 7 nm. / Min or more is desirable.
  • the concentration of oxygen atoms mixed in the GaN / InGaN multiple quantum well active layer is 3.0 ⁇ 10 17 cm ⁇ that does not adversely affect the light emission characteristics. Can be suppressed to 3 or less.
  • the growth rate is increased to 7 nm / min or more.
  • the controllability of the thickness decreases.
  • the means for improving the growth rate of the GaN / InGaN multiple quantum well active layer 105 is particularly useful for the m-plane which is a nonpolar plane.
  • the growth rate of the GaN / InGaN multiple quantum well active layer 105 exceeds 20 nm / min, 17 nm In x Ga 1-x N (0 ⁇ x ⁇ 1), which is the upper limit of the desirable thickness in the case of m-plane growth.
  • the growth time is less than 1 minute.
  • crystal growth is performed by placing the substrate 101 on a rotating susceptor, and the substrate 101 obtains a sufficient number of revolutions within the time of crystal growth, so that the source gas reaches the substrate 101 evenly. Is intended to be. Therefore, if the growth time becomes extremely short, the substrate 101 cannot obtain a sufficient number of rotations within the set time.
  • the growth rate of the GaN / InGaN multiple quantum well active layer 105 is preferably 20 nm / min or less.
  • the supply of TMI is stopped, and the supply of hydrogen is resumed in addition to nitrogen as a carrier gas. Further, by raising the growth temperature to 850 ° C. to 1000 ° C. and supplying trimethylaluminum (TMA) and biscyclopentadienylmagnesium (Cp 2 Mg) as a raw material for Mg as a p-type dopant, p ⁇ An AlGaN overflow suppression layer 106 is formed. Next, the supply of TMA is stopped, and the p-GaN layer 107 is formed.
  • TMA trimethylaluminum
  • Cp 2 Mg biscyclopentadienylmagnesium
  • the substrate is taken out of the reaction chamber, and only predetermined regions of the p-GaN layer 107 and the GaN / InGaN multiple quantum well active layer 105 are removed using a technique such as photolithography, using a technique such as etching, and n -Part of the GaN layer 102 is exposed.
  • a technique such as photolithography
  • a technique such as etching
  • n -Part of the GaN layer 102 is exposed.
  • an n-side electrode 108 made of Ti / Al or the like is formed.
  • the p-side electrode 109 is formed on the p-GaN layer 107.
  • an electrode made of any one of Mg / Pt, Zn / Pt, Mg / Ag, and Zn / Ag may be formed, or an electrode made of Ni / Au may be formed.
  • the nitride-based light emitting device of this embodiment can be manufactured. Note that part or all of the crystal growth substrate 101 may be removed after the element is formed. Further, a part of the n-GaN layer 102 may be removed by polishing or the like.
  • the amount of oxygen mixed into the GaN / InGaN multiple quantum well active layer 105 can be reduced. Thereby, since the non-light-emission center in the GaN / InGaN multiple quantum well active layer 105 is reduced, high luminous efficiency can be obtained.
  • the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 is 6 nm or more and 17 nm or less, the volume capable of capturing carriers is increased, so that high luminous efficiency can be obtained. it can.
  • the In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 104 can be made thicker than 6 nm because it is not affected by the quantum confined Stark effect.
  • the n-GaN layer 102, the GaN / InGaN multiple quantum well active layer 105, the AlGaN overflow suppression layer 106, and the p-GaN layer 107 are formed in this order on the crystal growth substrate 101. ing.
  • the arrangement of each layer is not limited to this.
  • the overflow suppression layer 106 may not be provided.
  • the arrangement of the n-GaN layer 102 and the p-GaN layer 107 may be reversed. In this case, the arrangement of the n-side electrode 108 and the p-side electrode 109 is also reversed.
  • an undoped GaN layer 208 as shown in FIG. 9 may be provided between the GaN / InGaN multiple quantum well active layer 105 and the AlGaN overflow suppression layer 106.
  • Patent Document 2 discloses a technique in which the light emission efficiency of an element is improved by increasing the growth rate of an active layer serving as a light emitting portion.
  • Patent Document 2 does not describe the relationship between the growth rate of the active layer and the amount of impurities such as oxygen. For this reason, the invention of Patent Document 2 is not intended to increase the growth rate of the active layer as a means for reducing impurities contained in the active layer.
  • the thickness of the well layer constituting the active layer is typically 4.5 nm or less. If the growth rate at the time of depositing such a thin well layer is excessively increased, the growth time becomes extremely short. When the growth time is shortened, it becomes difficult to obtain a desired thickness by suppressing variation in the thickness of the well layer. Furthermore, the controllability for depositing a uniform well layer within the substrate plane is significantly reduced.
  • the present invention can be particularly suitably applied to a light-emitting element because it is possible to suppress the mixing of impurity oxygen which is a non-luminescent center in the active layer.
  • Substrate 102 202 n-GaN layer 103, 203 GaN barrier layer 104, 204 In x Ga 1-x N (0 ⁇ x ⁇ 1) well layer 105, 205 GaN / InGaN multiple quantum well active layers 106, 206 p-AlGaN overflow suppression layers 107 and 207 p-GaN layer 108 n-side electrode 109 p-side electrode 208 undoped GaN layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

 本発明の窒化物系半導体発光素子は、n-GaN層102、p-GaN層107、および、n-GaN層102とp-GaN層107との間に位置するGaN/InGaN多重量子井戸活性層105を備える半導体発光素子であって、GaN/InGaN多重量子井戸活性層105は、6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層104を含むm面半導体層であり、GaN/InGaN多重量子井戸活性層105に含有される酸素原子の濃度が3.0×1017cm-3以下である。

Description

窒化ガリウム系化合物半導体発光素子
 本発明は、窒化ガリウム系化合物半導体発光素子に関している。
 V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体)の研究は盛んに行われ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている。
 窒化ガリウム系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlaGabInCN(0≦a,b,c≦1、a+b+c=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
 図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。
 ウルツ鉱型結晶構造には、図3に示すように、c面以外にも代表的な結晶面方位が存在する。図3(a)は、(0001)面、図3(b)は(10-10)面、図3(c)は(11-20)面、図3(d)は(10-12)面を示している。ここで、ミラー指数を表すカッコ内の数字の左に付された「-」は、「バー」を意味する。(0001)面、(10-10)面、(11-20)面、および(10-12)面は、それぞれ、c面、m面、a面、およびr面である。m面およびa面はc軸に平行な「非極性面」であるが、r面は「半極性面」である。なお、m面は、(10-10)面、(-1010)面、(1-100)面、(-1100)面、(01-10)面、(0-110)面の総称である。
 長年、窒化ガリウム系化合物半導体を利用した発光素子は、「c面成長(c-plane growth)」によって作製されてきた。本明細書において、「X面成長」とは、六方晶ウルツ鉱構造のX面(X=c、m、a、rなど)に垂直な方向にエピタキシャル成長が生じることを意味するものとする。X面成長において、X面を「成長面」と称する場合がある。また、X面成長によって形成された半導体の層を「X面半導体層」と称する場合もある。
 c面成長によって形成された半導体積層構造を用いて発光素子を製造すると、c面が極性面であるため、c面に垂直な方向(c軸方向)に強い内部分極が生じる。分極が生じる理由は、c面において、Ga原子とN原子の位置がc軸方向にずれているからである。このような分極が発光部に生じると、キャリアの量子閉じ込めシュタルク効果が発生する。この効果により、発光部内におけるキャリアの発光再結合確率が下がるため、発光効率が低下してしまう。
 このため、近年、m面やa面などの非極性面、またはr面などの半極性面上に窒化ガリウム系化合物半導体を成長させることが活発に研究されている。非極性面を成長面として選択できれば、発光部の層厚方向(結晶成長方向)に分極が発生しないため、量子閉じ込めシュタルク効果も生じず、潜在的に高効率の発光素子を作製できる。半極性面を成長面に選択した場合でも、量子閉じ込めシュタルク効果の寄与を大幅に軽減できる。
 図4(a)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示している。Ga原子と窒素原子は、m面に平行な同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。なお、添加されたInおよびAlは、Gaのサイトに位置し、Gaを置換する。Gaの少なくとも一部がInやAlで置換されていても、m面に垂直な方向に分極は発生しない。
 参考のために、図4(b)に、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。Ga原子と窒素原子は、c面に平行な同一原子面上に存在しない。その結果、c面に垂直な方向に分極が発生する。c面GaN系基板は、GaN系半導体結晶を成長させるための一般的な基板である。c面に平行なGa(又はIn)の原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、c軸方向に沿って分極が形成される。
特開2008-34889号公報 特開2002-16284号公報
 従来から、窒化ガリウム系化合物半導体の結晶成長において、アルミニウム(Al)を含むAlaGabInCN(0<a≦1、0≦b、c≦1、a+b+c=1)層を有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)によって堆積する場合、酸素(O)原子が不純物として混入しやすい傾向があることが知られていた。活性層内に不純物として混入された酸素は、非発光中心となり、素子の発光効率を低下させる。
 図5は、特許文献1に開示された半導体発光素子の構造を示す断面図である。半導体素子300では、c面を表面に有する基板301の上に、AlGaAsからなる第1の半導体層302が設けられている。第1の半導体層302の上には、GaInNAs/GaAs2重量子井戸構造を有する活性層304が配置されている。活性層304の上下には、GaAsからなる中間層303が設けられ、活性層304の上側に配置された中間層303の上には、AlGaAsからなる第2の半導体層305が設けられている。
 図5に示す半導体発光素子は、第1の半導体層302がAlを含み、活性層304がNを含む構成を有する。特許文献1によると、このような構成を有する半導体発光素子では、活性層304内にAlが検出されている。これは、活性層304の形成時に成長室内に残留しているAlが、窒素化合物原料等と結合して活性層304内に取り込まれることが原因である。
 AlとOとの結合力は大きいため、Alが活性層304に含まれると、反応炉内にわずかに残留する酸素原子や、反応炉に供給する原料ガスに含まれている酸素原子が、結晶成長中に結晶内へ巻き込まれると考えられている。その結果、活性層304の酸素濃度が高くなる。
 この考えの証左として、MOCVD法よりもはるかに真空度の高い状態で成長をおこなうMBE(Molecular Beam Epitaxy)であれば、反応炉内に残留する酸素が徹底的に排除されるため、活性層304内に酸素は混入しないことが知られている。また、MOCVD法であっても、Alを含まないGabInCN(0≦b,c≦1、b+c=1)層を形成する場合には、酸素は混入しない。
 特許文献1では、活性層304に含有されるAl濃度を低下させることによって酸素の混入量を低減し、発光効率を向上させている。
 本発明者は、特許文献1に開示された活性層のようにc面を表面に有する活性層304と、m面を表面に有する活性層とを形成し、酸素の取り込まれ方を観察した。その結果、m面を表面に有する活性層では、c面の場合とは酸素の取り込まれ方が異なることが明らかとなった。
 本発明は、上記課題を解決するためになされたものであり、その目的は、発光効率の高いm面成長の窒化物系半導体素子およびその製造方法を提供することにある。
 本発明の半導体発光素子は、n型窒化ガリウム系化合物半導体層、p型窒化ガリウム系化合物半導体層、および、前記n型窒化ガリウム系化合物半導体層と前記p型窒化ガリウム系化合物半導体層との間に位置する発光層を備える半導体発光素子であって、前記発光層は、6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層を含むm面半導体層であり、前記発光層に含有される酸素原子の濃度が3.0×1017cm-3以下である。
 ある実施形態において、前記InxGa1-xN(0<x<1)井戸層の厚さは、8nm以上16nm以下である。
 ある実施形態において、前記発光層は、多重量子井戸活性層である。
 ある実施形態において、前記発光層は基板に支持され、前記基板と前記発光層との間にAlは含まれていない。
 本発明の半導体発光素子の製造方法は、n型窒化ガリウム系化合物半導体層、p型窒化ガリウム系化合物半導体層、および、前記n型窒化ガリウム系化合物半導体層と前記p型窒化ガリウム系化合物半導体層との間に位置する発光層を備える半導体発光素子の製造方法であって、基板を有機金属気相成長装置の反応室内に導入する工程(a)と、有機金属気相成長法により、前記基板上に6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層を含む(10-10)m面半導体層からなる発光層を成長させる工程(b)とを包含し、前記工程(b)において、前記InxGa1-xN(0<x<1)井戸層の成長速度は、前記発光層に含有される酸素原子の濃度が3.0×1017cm-3以下になる速度に決定される。
 ある実施形態において、前記工程(b)では、7nm/分以上20nm/分以下の成長速度で前記発光層が成長される。
 ある実施形態において、前記工程(b)では、厚さ8nm以上16nm以下の前記InxGa1-xN(0<x<1)井戸層が成長される。
 本発明によると、発光層の成長速度を高くすることにより、発光層に混入される酸素の量を少なくすることができる。これにより、発光層の非発光中心が低減されるため、高い発光効率を得ることができる。
 特に、発光層内に含まれるInxGa1-xN(0<x<1)井戸層の厚さを6nm以上17nm以下にすることにより、キャリアの捕獲可能な体積が増大するため、高い発光効率を得ることができる。m面成長では、量子閉じ込めシュタルク効果の影響を受けないため、InxGa1-xN(0<x<1)井戸層の厚さを6nm以上に厚くすることができる。
 以上のように、本発明によると、量子閉じ込めシュタルク効果の寄与のない、高効率なLEDを安定に作製することが可能になる。
GaNの単位格子を模式的に示す斜視図である。 ウルツ鉱型結晶構造の基本並進ベクトル(primitive translation vectors)a1、a2、a3、cを示す斜視図である。 (a)から(d)は、六方晶ウルツ鉱構造の代表的な結晶面方位を示す模式図である。 (a)は、表面がm面である窒化物系半導体の断面(基板に垂直な断面)における結晶構造を模式的に示し、(b)は、表面がc面である窒化物系半導体の断面(基板に垂直な断面)における結晶構造を模式的に示す図である。 特許文献1に開示された半導体発光素子の構造を示す断面図である。 c面成長によって作製したLEDの構造を模式的に示す断面図である。 c面成長によって作製したLEDのSIMS分析結果を示すグラフである。 m面成長によって作製したLEDのSIMS分析結果を示すグラフである。 GaN/InGaN多重量子井戸活性層205の成長速度を高くして作製したLEDの構造を模式的に示す断面図である。 図9に示すLEDのSIMS分析結果を示すグラフである。 GaN/InGaN多重量子井戸活性層の成長速度と、内部量子効率との関係を示すグラフである。 GaN/InGaN多重量子井戸活性層の成長速度と、混入する酸素原子の濃度の関係を示すグラフである。 GaN/InGaN多重量子井戸活性層におけるInGaN井戸層の厚さと、GaN/InGaN多重量子井戸活性層の内部量子効率の関係を示すグラフである。 実施形態の窒化ガリウム系化合物半導体発光素子の構造を示す模式図である。
 図6は、本発明者がc面成長によって作製したLEDの構造を示す断面図である。図7は、図6に示すLEDのSIMS(Secondary Ion Mass Spectrometry)分析結果を示すグラフである。
 図6に示す基板101としては、c面GaN自立基板を用いた。基板101上には、n-GaN層102、発光部となるGaN/InGaN多重量子井戸活性層105、p-AlGaNオーバーフロー抑制層106、p-GaN層107が、この順序で堆積されている。基板101上に配置されるすべての層はc面を成長面として成長されている。なお、GaN/InGaN多重量子井戸活性層105は、厚さ3nmのInxGa1-xN(0<x<1)井戸層104と、厚さ7nmのGaNバリア層103とを交互に3周期積層した構成を有している。すなわち、n-GaN層102の上には1層目のGaNバリア層103が配置され、そのGaNバリア層103の上には1層目のInxGa1-xN(0<x<1)井戸層104が配置されている。GaN/InGaN多重量子井戸活性層105内には3層のInxGa1-xN(0<x<1)井戸層104が配置され、3層目のInxGa1-xN(0<x<1)井戸層104の上には、4層目のGaNバリア層103が設けられている。また、「n-」、「p-」はそれぞれn型ドーパントであるシリコン(Si)、またはp型ドーパントであるマグネシウム(Mg)が添加された層であることを示す。p-AlGaNオーバーフロー抑制層106は、n-GaN層102側から注入されるn型キャリア(電子)が、InxGa1-xN(0<x<1)井戸層104で捕獲されずにp-GaN層107側まで到達してしまうこと(オーバーフロー)を抑制するためのポテンシャルバリア層である。p-AlGaNオーバーフロー抑制層106は、およそ20nmの厚さを有する。
 図7の横軸は、半導体積層構造におけるp-GaN層107の表面からの深さ(μm)を示している。図7のグラフにおける0μmは、p-GaN層107の表面に対応している。図7において、極細線はGa、実線はAl、点線はIn、三角△は酸素のプロファイルを示している。Ga、Al、Inのプロファイルは、図の右側の縦軸の目盛り(強度(counts/sec))で示される。また、酸素のプロファイルは、図の左側の縦軸の目盛り(濃度(密度)(atoms/cm3))で示される。Inのピークが配置する深さがGaN/InGaN多重量子井戸活性層105の位置を示し、Alのピークが配置する深さがp-AlGaNオーバーフロー抑制層106の位置を示す。
 酸素は結晶内に意図して含まれるものではなく、反応炉内に残留していたものや、原料ガスに含まれていたものが結果として結晶内に混入してしまった不純物である。図7によれば、酸素原子のプロファイルは、最表面近傍を除くと、p-AlGaNオーバーフロー抑制層106に相当する箇所(Alのピーク位置)でのみ8.0×1017cm-3の濃度の顕著なピークを示す。この結果から、Alを含む層には不純物である酸素の混入が発生しやすい傾向を確認できた。また、図7において、GaN/InGaN多重量子井戸活性層105に相当する箇所(Inのピーク位置)の酸素濃度は、他の領域(GaN/InGaN多重量子井戸活性層105およびp-AlGaNオーバーフロー抑制層106以外の領域)と同程度である。この結果から、GaN/InGaN多重量子井戸活性層105においては、不純物である酸素の目立った混入は起きていないことが分かる。なお、図7に示される酸素濃度は、1.0×1015cm-3より高い。
 本願発明者は、m面を表面に有する他は図6に示すLEDと同様の構造を有するLEDを作製し、SIMS分析を行った。図8に、m面成長で作製したLEDのSIMS実験結果を示す。このLEDは、基板101としてm面GaN自立基板を用いた以外は、図6に示す構造と同じ構造のLEDを、c面成長条件とまったく同じ成長条件によって作製した。基板101の表面がm面であるため、基板101上に堆積したすべての層の成長面はm面である。
 図8に示すグラフでは、p-AlGaNオーバーフロー抑制層106に相当する箇所(Alのピーク位置)だけでなく、GaN/InGaN多重量子井戸活性層105に相当する箇所(Inのピーク位置)においても酸素濃度が高くなっている。具体的には、GaN/InGaN多重量子井戸活性層105における酸素の濃度は、p-AlGaNオーバーフロー抑制層106の濃度と同じ1.5×1018cm-3である。このように、m面成長を行った場合には、GaN/InGaN多重量子井戸活性層105にも不純物の酸素が混入してしまうことが明らかとなった。
 次に、本願発明者は、GaN/InGaN多重量子井戸活性層205の成長速度を高くしてLEDを作製し、SIMS分析を行った。そのLEDの構造を、図9に示す。また、図9に示すLEDと図6に示すLEDとの相違点を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図9に示すLEDは、基板201としてm面GaN自立基板を用いている。そのため、基板201上に堆積したすべての層(n-GaN層202からp-GaN層207)の成長面はm面である。GaN/InGaN多重量子井戸活性層205は、厚さ15nmのInxGa1-xN(0<x<1)井戸層204と、厚さ30nmのGaNバリア層203とが交互に3周期堆積された構成を有する。また、GaN/InGaN多重量子井戸活性層204とp-AlGaNオーバーフロー抑制層206の間に、厚さ100nmのアンドープGaN層208が挿入されている。
 また、図9に示すGaN/InGaN多重量子井戸活性層205は、9nm/分の成長速度で形成されている。図6に示すLED(すなわち図7、図8に示す測定に用いたLED)では、GaN/InGaN多重量子井戸活性層205の成長速度は1nm/分であった。図9に示すLEDの構成および製造方法は、以上に述べた点を除いて図6に示す構成と同様である。そのため、ここでは、これら以外の構成および製造方法についての説明は省略する。
 なお、InxGa1-xN井戸層204の成長は、窒素原料であるアンモニアを十分潤沢に供給する条件の下で行っている。また、III族原子のうちInは非常に蒸発しやすい原子であるため、InxGa1-xN井戸層204の成長を律速するのはGa原子の供給量だけとなる。また、GaNバリア層203の成長は、窒素原料であるアンモニアを十分潤沢に供給して行っており、GaNバリア層203の成長を律速するのはGa原子の供給量だけとなる。したがって、GaN/InGaN多重量子井戸活性層205の成長速度の制御は、Ga原料ガスであるトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)の供給流量を調節することにより容易に行うことができる。成長速度は、X線回折によって測定した膜厚と成長時間によって算出することができる。
 図10に、図9に示すLEDのSIMS分析結果を示す。図9に示すLEDでは、図6に示すLEDよりも、それぞれのInxGa1-xN井戸層204の厚さが大きい。また、図9に示すLEDでは、図6に示すLEDよりも、GaNバリア層203の厚さが大きいため、InxGa1-xN井戸層204同士の間隔も大きい。そのため、図7、図8に示す測定結果ではInのピークが1つのみ検出されているのに対して、図10に示す測定結果では、InxGa1-xN井戸層204が設けられている実際の数(3層)の数だけInのピークが検出されている。
 図10に示すグラフでは、p-AlGaNオーバーフロー抑制層206に相当する箇所(Alピーク位置)の酸素濃度よりも、GaN/InGaN多重量子井戸活性層205に相当する位置(Inピーク位置)における酸素濃度のほうが低くなっている。GaN/InGaN多重量子井戸活性層205における酸素濃度は2.5×1017cm-3である。この酸素濃度は、他の領域(GaN/InGaN多重量子井戸活性層205およびp-AlGaNオーバーフロー抑制層206以外の領域)の酸素濃度と同程度である。また、この酸素濃度は、図8に示すグラフにおけるGaN/InGaN多重量子井戸活性層の酸素濃度(1.5×1018cm-3)のおよそ10分の1である。
 図10および図8に示す結果から、m面成長では、Alを含まないGaN/InGaN多重量子井戸活性層205に酸素が混入する現象は、GaN/InGaN多重量子井戸活性層205の成長速度に大きく依存するものであるといえる。これに対して、c面成長のGaN/InGaN多重量子井戸活性層では、成長速度にかかわらず、Alが反応室内に存在していなければ酸素などの不純物の混入は起こらない。よって、m面はもともと酸素などの不純物を取り込みやすい面方位であるといえる。これは、p-AlGaNオーバーフロー抑制層106における酸素原子の濃度が、図7に示すc面成長の場合は8.0×1017cm-3であるのに対して、図8に示すm面成長の場合は2倍近くの1.5×1018cm-3になっていることからも裏付けられる。
 成長速度を高めると不純物である酸素の混入が抑えられる理由について詳しくは明らかではない。不純物である酸素に混入の機会を与える間もなく、次々に成長が進行するため、結果的に酸素の混入が防がれると考えられる。
 以下に、十分な内部量子効率を得ることができるGaN/InGaN多重量子井戸活性層の成長速度および酸素濃度を検討した結果を説明する。
 図11に、m面を成長面とするGaN/InGaN多重量子井戸活性層の成長速度と内部量子効率との関係を示す。図11の測定には、m面基板上に厚さ1.5~2.5μmのun-GaN層を堆積し、その上にGaN/InGaN多重量子井戸活性層(InGaN井戸層:3nm、GaNバリア層:7nm、3周期)を堆積した試料を用いた。
 図11に示すグラフの横軸は成長速度を示し、縦軸は内部量子効率を示している。内部量子効率は、低温(10K)で測定したフォトルミネッセンス(PL)スペクトルの積分強度に対する、室温(300K)で測定したPLスペクトルの積分強度を、比にして表したものである。
 図11において、△はGaN/InGaN多重量子井戸活性層を堆積する際の成長温度を780℃に統一し、発光ピーク波長が450±10nmとなる試料の測定結果を示している。◇は成長温度を790℃に統一し、発光ピーク波長が415±10nmとなる試料の測定結果を示している。なお、図11では、最も大きい内部量子効率を1として、それぞれの条件におけるデータを規格化している。
 成長条件によって、InxGa1-xN井戸層のそれぞれの元素の組成比が変化し、発光ピーク波長が大きく変化してしまう場合がある。成長温度が780℃の場合、成長速度が4~8nm/分の条件では発光ピーク波長が長くなり、450±10nmの範囲から外れてしまう。そのため、成長温度が780℃の場合には、成長速度が4~8nm/分の条件を比較の対象から外している。同様に、成長温度が790℃の場合、成長速度が6~8nm/分の条件では発光ピーク波長が長くなり、415±10nmの範囲から外れてしまう。そのため、成長温度が780℃の場合には、成長速度が6~8nm/分の条件を比較の対象から外している。なお、発光ピーク波長は室温(300K)で測定したPLスペクトルから抽出した。
 図11によると、同一の構造および発光ピーク波長を有する試料を同じ成長温度で形成しても、GaN/InGaN多重量子井戸活性層を形成する際の成長速度が高くなると、内部量子効率が大きい傾向が現われることがわかる。これは、GaN/InGaN多重量子井戸活性層の成長速度を高めることにより、混入する酸素の濃度が低下する結果、GaN/InGaN多重量子井戸活性層の非発光中心が低減されるためであると考えられる。
 成長速度7nm/分をおよその境界として、それ以上の成長速度で内部量子効率(規格値)が飛躍的に向上する傾向がみられる。さらに、成長速度が9nm/分以上では、内部量子効率はほぼ飽和する傾向がみられる。
 なお、GaN/InGaN多重量子井戸活性層はInxGa1-xN井戸層とGaNバリア層とを含んでいる。InxGa1-xN井戸層の成長速度とGaNバリア層の成長速度は同じであってもよいし、異なっていてもよい。InxGa1-xN井戸層の成長速度とGaNバリア層の成長速度とが同じ場合、および異なる場合のいずれであっても、「GaN/InGaN多重量子井戸活性層の成長速度」は、GaN/InGaN多重量子井戸活性層の厚さをGaN/InGaN多重量子井戸活性層の成長に費やした時間で除した値になる。
 図11に示す測定では、およそ400nmから450nmの発光波長の光を発する活性層では、成長速度を高めることによって内部量子効率を向上できることを確認している。ただし、例えば近紫外発光(380nm付近)や緑色発光(520nm付近)であっても、成長速度を高めることにより内部量子効率を高めることができるという効果が得られることは明らかである。
 図12は、GaN/InGaN多重量子井戸活性層の成長速度と、GaN/InGaN多重量子井戸活性層内に含まれる酸素原子の濃度との関係を示すグラフである。酸素原子の濃度はSIMS分析を行うことによって得た。GaN/InGaN多重量子井戸活性層の成長速度が1nm/分の場合には1.5×1018cm-3であった酸素の混入量が、成長速度を高めるほどに単調に低減され、成長速度が3nm/分の場合には約5.3×1017cm-3になっている。成長速度5nm/分では3.2×1017cm-3まで低下する。さらに、成長速度が7nm/分以上になると、酸素濃度は3.0×1017cm-3以下になっている。成長速度が7nm/分よりも高くなると酸素濃度の変化は少なくなっていき、最終的には、2.5×1017cm-3近傍で収束すると考えられる。図11を用いてすでに説明したように、GaN/InGaN多重量子井戸活性層205の成長速度が7nm/分以上になると、内部量子効率(規格化された値)は、飛躍的に向上する傾向があると考えられる。これらの結果から、酸素濃度が3.0×1017cm-3以下であれば、発光特性を低下させるような悪影響が酸素によって及ぼされず、望ましい内部量子効率を得ることができると考えられる。
 また、図11から、GaN/InGaN多重量子井戸活性層205の成長速度が9nm/分以上になると、内部量子効率は飽和する傾向がある。一方、図12では、成長速度が9nm/分以上になると、2.5×1017cm-3に近づいている。これらの結果から、酸素濃度が2.5×1017cm-3以下であれば、さらに高い内部量子効率が得られることがわかる。
 SIMS分析結果によれば、GaN/InGaN多重量子井戸活性層への酸素の混入量は、成長速度だけで制御されるものであることがわかった。GaN/InGaN多重量子井戸活性層への酸素の混入量は、GaN/InGaN多重量子井戸活性層205の厚さ、およびInxGa1-xN(0<x<1)井戸層のIn組成(x)には依存しないことがわかった。
 以下に、InxGa1-xN(0<x<1)井戸層の適切な厚さを検討した結果を説明する。図13は、InGaN井戸層の厚さと、内部量子効率との関係を示すグラフである。図13において、◇は、GaN/InGaN多重量子井戸活性層の成長速度が1nm/分の試料の測定結果を、△は、GaN/InGaN多重量子井戸活性層の成長速度が3nm/分の試料の測定結果を、○は、GaN/InGaN多重量子井戸活性層の成長速度が9nm/分の試料の測定結果を示している。
 図13に示すように、成長速度が1nm/分および3nm/分の場合には、InGaN井戸層の厚さに関わらず、50%を上回る内部量子効率は得られなかった。一方、成長速度が9nm/分の場合(図中○)には、InGaN井戸層の厚さが3nmから15nmの試料において50%を超える内部量子効率が得られた。InGaN井戸層の厚さが3nmの場合で比較すると、成長速度が9nm/分の試料の内部量子効率(約50%)は、成長速度が1nm/分または3nm/分の試料の内部量子効率(共に約30%)と比べると、1.5倍以上の値である。これは、図12に示すように、成長速度が高くなるほど不純物である酸素の混入量が低減されるため、GaN/InGaN多重量子井戸活性層内の非発光中心が減ることが原因であると考えられる。
 一般的に、InGaN井戸層の厚さを大きくすると、発光に寄与するキャリアを捕獲することができる体積が大きくなるために、内部量子効率は向上する。しかしながら、成長速度が1nm/分(図中◇)の場合には、InGaN井戸層の厚さを3nmから9nmへ大きくしても内部量子効率はほぼ横ばいの30%程度に留まり、向上する傾向は見られなかった。成長速度が3nm/分(図中△)の場合には、InGaN井戸層の厚さを3nmから9nmに大きくすると内部量子効率は向上している。しかしながら、InGaN井戸層の厚さが9nmの場合にも、内部量子効率は50%よりも小さい値であった。
 これに対して、成長速度が9nm/分の場合には、InGaN井戸層の厚さが9nmのときの内部量子効率は85%であった。これは、同じ成長速度でInGaN井戸層の厚さが3nmのとき(内部量子効率:約50%)と比べると内部量子効率の飛躍的な向上であるといえる。この結果から、成長速度が9nm/分の場合には、InGaN井戸層の厚さを増大させることによってキャリアの捕獲可能な体積が増大するという効果が有効に引き出されていると考えられる。
 さらに言及すれば、85%という内部量子効率の値は、1nm/分または3nm/分の成長速度で厚さが9nmのInGaN井戸層を有する試料を形成した場合の内部量子効率(成長速度1nm/分の場合は約30%、成長速度3nm/分の場合は約45%)と比較して、2倍近い値である。これらの結果は、GaN/InGaN多重量子井戸活性層の成長速度を適切に高めて、酸素原子の混入を十分に抑制しない限りは、InGaN井戸層の厚さを増大させても内部量子効率を十分に向上させることができないことを示唆している。
 ところで、GaN/InGaN多重量子井戸活性層の成長速度が9nm/分の場合、InGaN井戸層の厚さが15nmの場合には87%と高効率な結果が得られた。しかしながら、InGaN井戸層の厚さが21nmになると顕著に効率は低下した。図13から、InGaN井戸層の厚さが約8nm以上約16nm以下の範囲内であれば、内部量子効率が80%以上の値になることがわかる。InxGa1-xN(0<x<1)井戸層の厚さが15nmを超えると内部量子効率が低下するのは、歪みによる応力が原因で界面から転位・欠陥などの格子不整合が発生し、非発光中心が多くなるためと考えられる。
 なお、内部量子高率が90%程度というのは既に上限に近いものであると述べても過言ではない。実用的には、70%程度の内部量子効率が必要とされる。成長速度が9nmの場合に内部量子効率の値が70%以上になるInGaN井戸層の厚さは、図13のグラフから、約6nm以上約17nm以下である。
  (実施形態)
 以下、図14を参照しながら、本発明による窒化ガリウム系化合物半導体発光素子の実施形態を説明する。
 本実施形態の半導体発光素子は、n-GaN層102と、p-GaN層107と、これらの層の間に位置するGaN/InGaN多重量子井戸活性層105とを備える。
 n-GaN層102は、m面を表面に有する結晶成長用基板101の上に形成されている。n-GaN層102の一部の上にはGaN/InGaN多重量子井戸活性層105が形成されている。n-GaN層102のうちGaN/InGaN多重量子井戸活性層105が設けられていない領域には、n側電極108が形成されている。
 GaN/InGaN多重量子井戸活性層105は、InxGa1-xN(0<x<1)井戸層104とGaNバリア層103とが交互に積層された構成を有する。GaN/InGaN多重量子井戸活性層105の上にはp-AlGaNオーバーフロー抑制層106が形成されている。AlGaNオーバーフロー抑制層106の上にはp-GaN層107が形成されている。p-GaN層107の上にはp側電極109が設けられている。
 GaN/InGaN多重量子井戸活性層105は、6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層104を含むm面半導体層である。GaN/InGaN多重量子井戸活性層105に含有される酸素原子の濃度は3.0×1017cm-3以下である。
 「GaN/InGaN多重量子井戸活性層(発光層)105に含有される酸素原子の濃度」とは、InxGa1-xN(0<x<1)井戸層104およびGaNバリア層103に含まれる酸素濃度の平均である。具体的には、GaN/InGaN多重量子井戸活性層105全体(すなわち、全てのInxGa1-xN(0<x<1)井戸層104および全てのGaNバリア層103)に含まれる酸素量(単位:atom)の合計を、GaN/InGaN多重量子井戸活性層105全体の体積で除することによって算出される。GaN/InGaN多重量子井戸活性層105全体に含まれる酸素量は、SIMS分析によって得ることができる。GaN/InGaN多重量子井戸活性層105の体積は、GaN/InGaN多重量子井戸活性層105の厚さとスパッタリングされる面積とを乗ずることによって得られる。GaN/InGaN多重量子井戸活性層105の厚さは、X線回折によって測定することができる。
 上述したように、本願発明者は、GaN/InGaN多重量子井戸活性層105の成長速度を高めることにより、GaN/InGaN多重量子井戸活性層105の酸素濃度を低減できることを見出した。本実施形態では、GaN/InGaN多重量子井戸活性層105をMOCVDによって形成している。図12を用いて説明したように、GaN/InGaN多重量子井戸活性層105を7nm/分以上20nm/分以下の成長速度で形成することにより、GaN/InGaN多重量子井戸活性層105に含有される酸素原子の濃度を3.0×1017cm-3以下に抑制できている。GaN/InGaN多重量子井戸活性層105の成長は、例えば790℃で行うことができる。
 また、図13を用いて説明したように、InxGa1-xN(0<x<1)井戸層104の厚さを6nm以上17nm以下に設定することにより、内部量子効率の値を70%以上にすることができる。
 以下、本実施形態の半導体発光素子の製造方法を説明する。
 本実施形態において使用する結晶成長用基板101としては、(10-10)m面の窒化ガリウム(GaN)が成長できるものを使用する。結晶成長用基板101としては、m面を表出する窒化ガリウムそのものの自立基板を用いることが最も望ましい。ただし、格子定数が近い炭化珪素(SiC)を用いてもよい。この場合、4H、6H構造を有し、m面が表出した炭化珪素基板を用いることが好ましい。また、m面が表出したサファイアを用いてもよい。ただし、結晶成長用基板101として窒化ガリウム系化合物半導体とは異なる基板を使用するのであれば、上部に堆積する窒化ガリウム系化合物半導体層との間に適切な中間層もしくは緩衝層を挿入する必要がある。
 実際のm面半導体層の表面(主面)は、m面に対して完全に平行な面である必要は無く、m面から僅かな角度(例えば、0°より大きく±1°以下)で傾斜していても良い。表面がm面に対して完全に平行な表面を有する基板や半導体層を形成することは、製造技術の観点から困難である。このため、現在の製造技術によってm面基板やm面半導体層を形成した場合、現実の表面は理想的なm面から傾斜してしまう。傾斜の角度および方位は、製造工程によってばらつくため、表面の傾斜角度および傾斜方位を正確に制御することは難しい。本発明におけるm面半導体層は、m面に対して完全に平行な表面(主面)を有する半導体層のみならず、m面から僅かな角度(例えば、0°より大きく±1°以下)で傾斜した表面を有する半導体層をも含む。
 GaN/InGaN多重量子井戸活性層105をはじめとする窒化ガリウム系化合物半導体の堆積は、MOCVD法によって行う。まず、基板101をバッファードフッ酸溶液(BHF)で洗浄し、その後十分に水洗して乾燥する。基板101の洗浄後には、基板101をなるべく空気に触れさせないようにして、MOCVD装置の反応室に載置する。その後、キャリアガスとして窒素(N2)および(H2)を、原料ガスとしては窒素源のアンモニアのみを供給しながら基板を850℃まで加熱して、基板101の表面にクリーニング処置を施す。
 次に、窒素、水素およびアンモニアの供給を継続しながら、トリメチルガリウム(TMG)またはトリエチルガリウム(TEG)とシラン(SiH4)との供給を開始し、基板を1100℃程度に加熱することにより、n-GaN層102を堆積する。シランはn型ドーパントであるSiの原料ガスである。
 次にSiH4の供給を停止し、基板の温度を800℃未満まで下げることにより、GaNバリア層103を形成する。このとき、例えば、流量15~20slmのN2と、流量4~10sccmのトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)と、流量15~20slmのアンモニアとを反応室内に供給する。さらに、例えば流量300~600sccmのトリメチルインジウム(TMI)の供給を開始することにより、InxGa1-xN(0<x<1)井戸層104を形成する。GaNバリア層103とInxGa1-xN(0<x<1)井戸層104とを交互に3周期以上形成することにより、発光部となるGaN/InGaN多重量子井戸活性層105を形成する。3周期以上とするのは、InxGa1-xN(0<x<1)井戸層104の数が多い方が、発光再結合に寄与するキャリアを捕獲できる体積が大きくなり、素子の効率が高まるためである。
 ところで、m面成長を行う場合、キャリアを捕獲する体積を大きくする目的で、InxGa1-xN(0<x<1)井戸層104の厚さを増やすことが有効となる。従来の(0001)c面成長では量子閉じ込めシュタルク効果が無視できないため、InxGa1-xN(0<x<1)井戸層104の厚さを増大させることは困難であった。なぜなら、量子閉じ込めシュタルク効果をなるべく無効にするためには、InxGa1-xN(0<x<1)井戸層104の厚さをある程度まで薄く、典型的には5nm以下に抑える必要があるからである。それに対して、m面をはじめとする非極性面ではもともと量子閉じ込めシュタルク効果が発生しない。したがって、m面では、c面の場合のようにInxGa1-xN(0<x<1)井戸層104の厚さを小さくする必要はない。m面成長では、量子閉じ込めシュタルク効果の影響を受けることなく、InxGa1-xN(0<x<1)井戸層104の厚さを6nm以上17nm以下にすることができる。その結果、高い内部量子効率を実現することができる。
 InxGa1-xN(0<x<1)井戸層104およびGaNバリア層103を堆積する際には、その成長条件を制御し、GaN/InGaN多重量子井戸活性層105の成長速度を7nm/分以上とすることが望ましい。図12によれば、成長速度を7nm/分以上とすることによって、GaN/InGaN多重量子井戸活性層に混入する酸素原子の濃度を、発光特性に悪影響を及ぼさない3.0×1017cm-3以下まで抑制することができる。
 従来のc面成長InxGa1-xN(0<x<1)井戸層104のように典型的には4.5nm以下の薄い層を堆積する場合に、成長速度を7nm/分以上にすると、厚さの制御性が低下する。一方、厚さ6nm以上17nm以下のm面成長InxGa1-xN(0<x<1)井戸層104を7nm/分以上の速度で成長させても、厚さの制御性は低下しない。したがって、GaN/InGaN多重量子井戸活性層105の成長速度の向上という手段は、非極性面であるm面で特に有用な手段であるといえる。
 しかしながら、GaN/InGaN多重量子井戸活性層105の成長速度が20nm/分を超えると、m面成長の場合の望ましい厚さの上限である17nmのInxGa1-xN(0<x<1)井戸層104を堆積する場合であっても、成長時間は1分未満となる。一般的に、結晶成長は基板101を回転サセプタ上に載置して実施し、結晶成長の時間内に基板101が十分な回転数を得ることで、原料ガスが基板101の面内に満遍なく到達することを意図している。したがって、成長時間が極端に短くなると、設定時間内に基板101が十分な回転数が得られない。その結果、原料ガスの到達について場所によるばらつきが発生し、面内均一性が悪化する。このため、好ましくはGaN/InGaN多重量子井戸活性層105の成長速度は20nm/分以下であることが望ましい。
 GaN/InGaN多重量子井戸活性層105の形成後には、TMIの供給を停止し、キャリアガスとして、窒素に加えて水素の供給を再開する。さらに、成長温度を850℃~1000℃に上昇させ、トリメチルアルミニウム(TMA)と、p型ドーパントであるMgの原料としてビスシクロペンタジエニルマグネシウム(Cp2Mg)とを供給することにより、p-AlGaNオーバーフロー抑制層106を形成する。次にTMAの供給を停止し、p-GaN層107を形成する。
 その後、基板を反応室から取り出し、フォトリソグラフィー等の手段を用いて、p-GaN層107およびGaN/InGaN多重量子井戸活性層105の所定の領域だけをエッチング等の手法を用いて除去し、n-GaN層102の一部を表出させる。n-GaN層102が表出した領域にはTi/Al等で構成されるn側電極108を形成する。また、p-GaN層107の上に、p側電極109を形成する。p側電極109としては、例えば、Mg/Pt、Zn/Pt、Mg/AgおよびZn/Agのいずれかからなる電極を形成してもよいし、Ni/Auからなる電極を形成してもよい。
 以上の工程によって、本実施形態の窒化物系発光素子を作製することができる。なお、素子を形成した後に、結晶成長用基板101の一部または全部を除去してもよい。また、n-GaN層102の一部を研磨等によって除去してもよい。
 本実施形態によると、GaN/InGaN多重量子井戸活性層105の成長速度を高くすることにより、GaN/InGaN多重量子井戸活性層105に混入される酸素の量を少なくすることができる。これにより、GaN/InGaN多重量子井戸活性層105内の非発光中心が低減されるため、高い発光効率を得ることができる。
 特に、InxGa1-xN(0<x<1)井戸層104の厚さを6nm以上17nm以下にすることにより、キャリアの捕獲可能な体積が増大するため、高い発光効率を得ることができる。c面成長では、量子閉じ込めシュタルク効果の影響により、InxGa1-xN(0<x<1)井戸層104の厚さを6nm以上にすることは困難であった。m面成長では、量子閉じ込めシュタルク効果の影響を受けないため、InxGa1-xN(0<x<1)井戸層104の厚さを6nm以上に厚くすることができる。
 なお、本実施形態では、結晶成長用基板101の上にn-GaN層102、GaN/InGaN多重量子井戸活性層105、AlGaNオーバーフロー抑制層106、p-GaN層107の順にそれぞれの層が形成されている。それぞれの層の配置はこれに限定されるものではない。例えば、オーバーフロー抑制層106はなくてもよい。オーバーフロー抑制層106がない場合、n-GaN層102およびp-GaN層107の配置が逆であってもよい。この場合、n側電極108およびp側電極109の配置も逆になる。
 本実施形態では、GaN/InGaN多重量子井戸活性層105とAlGaNオーバーフロー抑制層106との間に、図9に示すようなアンドープGaN層208が設けられていてもよい。
 特許文献2は、発光部となる活性層の成長速度を高めることで素子の発光効率が向上する技術を開示している。しかし、特許文献2には、活性層の成長速度と酸素などの不純物の混入量との関係性についての記述がない。このため、特許文献2の発明は、活性層に含まれる不純物を低減する手段として、活性層の成長速度を高くすることを意図するものではない。
 また、特許文献2では、活性層を構成する井戸層の厚さを典型的には4.5nm以下としている。このような薄い井戸層を堆積する際の成長速度を過剰に高くしてしまうと、成長時間は極めて短くなる。成長時間が短くなると、井戸層の厚さのばらつきを抑えて所望の厚さにすることが困難になる。さらに、基板面内で均一な井戸層を堆積するための制御性が著しく低下する。
 本発明は、活性層において非発光中心となる不純物酸素の混入を抑制することが可能となるため、発光素子に特に好適に適用できる。
101、201  基板
102、202  n-GaN層
103、203  GaNバリア層
104、204  InxGa1-xN(0<x<1)井戸層
105、205  GaN/InGaN多重量子井戸活性層
106、206  p-AlGaNオーバーフロー抑制層
107、207  p-GaN層
108      n側電極
109      p側電極
208      アンドープGaN層

Claims (7)

  1.  n型窒化ガリウム系化合物半導体層、
     p型窒化ガリウム系化合物半導体層、および、
     前記n型窒化ガリウム系化合物半導体層と前記p型窒化ガリウム系化合物半導体層との間に位置する発光層を備える半導体発光素子であって、
     前記発光層は、6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層を含むm面半導体層であり、
     前記発光層に含有される酸素原子の濃度が3.0×1017cm-3以下である半導体発光素子。
  2.  前記InxGa1-xN(0<x<1)井戸層の厚さは、8nm以上16nm以下である請求項1に記載の半導体発光素子。
  3.  前記発光層は、多重量子井戸活性層である請求項1または2に記載の半導体発光素子。
  4.  前記発光層は基板に支持され、
     前記基板と前記発光層との間にAlは含まれていない請求項1から3のいずれか1つに記載の半導体発光素子。
  5.  n型窒化ガリウム系化合物半導体層、p型窒化ガリウム系化合物半導体層、および、前記n型窒化ガリウム系化合物半導体層と前記p型窒化ガリウム系化合物半導体層との間に位置する発光層を備える半導体発光素子の製造方法であって、
     基板を有機金属気相成長装置の反応室内に導入する工程(a)と、
     有機金属気相成長法により、前記基板上に6nm以上17nm以下の厚さを有するInxGa1-xN(0<x<1)井戸層を含む(10-10)m面半導体層からなる発光層を成長させる工程(b)とを包含し、
     前記工程(b)において、前記InxGa1-xN(0<x<1)井戸層の成長速度は、前記発光層に含有される酸素原子の濃度が3.0×1017cm-3以下になる速度に決定される半導体発光素子の製造方法。
  6.  前記工程(b)では、7nm/分以上20nm/分以下の成長速度で前記発光層が成長される請求項5に記載の半導体発光素子の製造方法。
  7.  前記工程(b)では、厚さ8nm以上16nm以下の前記InxGa1-xN(0<x<1)井戸層が成長される請求項5または6に記載の半導体発光素子の製造方法。
PCT/JP2010/004433 2009-11-12 2010-07-07 窒化ガリウム系化合物半導体発光素子 WO2011058682A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080038204.4A CN102484180B (zh) 2009-11-12 2010-07-07 氮化镓系化合物半导体发光元件
JP2011513563A JP4891462B2 (ja) 2009-11-12 2010-07-07 窒化ガリウム系化合物半導体発光素子
EP10829650A EP2461376A4 (en) 2009-11-12 2010-07-07 SEMICONDUCTOR LIGHT-EMITTING ELEMENT COMPRISING GALLIUM NITRIDE
US13/405,725 US8546167B2 (en) 2009-11-12 2012-02-27 Gallium nitride-based compound semiconductor light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009259162 2009-11-12
JP2009-259162 2009-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/405,725 Continuation US8546167B2 (en) 2009-11-12 2012-02-27 Gallium nitride-based compound semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
WO2011058682A1 true WO2011058682A1 (ja) 2011-05-19

Family

ID=43991357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004433 WO2011058682A1 (ja) 2009-11-12 2010-07-07 窒化ガリウム系化合物半導体発光素子

Country Status (5)

Country Link
US (1) US8546167B2 (ja)
EP (1) EP2461376A4 (ja)
JP (1) JP4891462B2 (ja)
CN (1) CN102484180B (ja)
WO (1) WO2011058682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185678A (ja) * 2014-03-24 2015-10-22 株式会社東芝 半導体発光素子及びその製造方法
JP2015233111A (ja) * 2014-05-13 2015-12-24 パナソニックIpマネジメント株式会社 窒化物半導体発光ダイオード
JP7469677B2 (ja) 2019-11-26 2024-04-17 日亜化学工業株式会社 窒化物半導体素子

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361925B2 (ja) * 2011-03-08 2013-12-04 株式会社東芝 半導体発光素子およびその製造方法
JP5060637B1 (ja) * 2011-05-13 2012-10-31 株式会社東芝 半導体発光素子及びウェーハ
US9985168B1 (en) 2014-11-18 2018-05-29 Cree, Inc. Group III nitride based LED structures including multiple quantum wells with barrier-well unit interface layers
CN105140367B (zh) * 2015-09-29 2018-03-09 华南师范大学 一种GaN基LED外延结构
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
US11393948B2 (en) 2018-08-31 2022-07-19 Creeled, Inc. Group III nitride LED structures with improved electrical performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085797A (ja) * 1999-09-01 2001-03-30 Sharp Corp 半導体デバイス
JP2002016284A (ja) 2000-06-29 2002-01-18 Toshiba Corp 窒化ガリウム系半導体発光素子の製造方法
JP2004072070A (ja) * 2002-06-11 2004-03-04 Ricoh Co Ltd 半導体発光素子の製造方法および半導体発光素子および面発光型半導体レーザ素子の製造方法および面発光型半導体レーザ素子および面発光型半導体レーザアレイおよび光送信モジュールおよび光送受信モジュールおよび光通信システム
JP2008034889A (ja) 2001-07-11 2008-02-14 Ricoh Co Ltd 半導体発光素子
WO2008073385A1 (en) * 2006-12-11 2008-06-19 The Regents Of The University Of California Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices
WO2008126695A1 (ja) * 2007-04-06 2008-10-23 Sumitomo Electric Industries, Ltd. 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693963A (en) 1994-09-19 1997-12-02 Kabushiki Kaisha Toshiba Compound semiconductor device with nitride
US6765232B2 (en) * 2001-03-27 2004-07-20 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
US7180100B2 (en) 2001-03-27 2007-02-20 Ricoh Company, Ltd. Semiconductor light-emitting device, surface-emission laser diode, and production apparatus thereof, production method, optical module and optical telecommunication system
JP2003092456A (ja) * 2001-07-11 2003-03-28 Ricoh Co Ltd 半導体発光素子及びその製造方法
WO2005122267A2 (en) 2004-06-03 2005-12-22 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
KR100685302B1 (ko) 2005-11-02 2007-02-22 엠텍비젼 주식회사 수직 동기 신호 지연 출력 방법 및 그 방법을 수행하는이미지 시그널 프로세서
JP2009043970A (ja) 2007-08-09 2009-02-26 Panasonic Corp 半導体素子及びその製造方法
JP4375497B1 (ja) 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085797A (ja) * 1999-09-01 2001-03-30 Sharp Corp 半導体デバイス
JP2002016284A (ja) 2000-06-29 2002-01-18 Toshiba Corp 窒化ガリウム系半導体発光素子の製造方法
JP2008034889A (ja) 2001-07-11 2008-02-14 Ricoh Co Ltd 半導体発光素子
JP2004072070A (ja) * 2002-06-11 2004-03-04 Ricoh Co Ltd 半導体発光素子の製造方法および半導体発光素子および面発光型半導体レーザ素子の製造方法および面発光型半導体レーザ素子および面発光型半導体レーザアレイおよび光送信モジュールおよび光送受信モジュールおよび光通信システム
WO2008073385A1 (en) * 2006-12-11 2008-06-19 The Regents Of The University Of California Metalorganic chemical vapor deposition (mocvd) growth of high performance non-polar iii-nitride optical devices
WO2008126695A1 (ja) * 2007-04-06 2008-10-23 Sumitomo Electric Industries, Ltd. 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461376A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185678A (ja) * 2014-03-24 2015-10-22 株式会社東芝 半導体発光素子及びその製造方法
JP2015233111A (ja) * 2014-05-13 2015-12-24 パナソニックIpマネジメント株式会社 窒化物半導体発光ダイオード
JP7469677B2 (ja) 2019-11-26 2024-04-17 日亜化学工業株式会社 窒化物半導体素子

Also Published As

Publication number Publication date
US20120153258A1 (en) 2012-06-21
CN102484180B (zh) 2014-09-17
JP4891462B2 (ja) 2012-03-07
EP2461376A4 (en) 2013-03-13
JPWO2011058682A1 (ja) 2013-03-28
US8546167B2 (en) 2013-10-01
CN102484180A (zh) 2012-05-30
EP2461376A1 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4891462B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP6092961B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP4714712B2 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP5049659B2 (ja) Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
WO2009154129A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP5262206B2 (ja) Iii族窒化物半導体層の製造方法及びiii族窒化物半導体発光素子の製造方法
JP2009123718A (ja) Iii族窒化物化合物半導体素子及びその製造方法、iii族窒化物化合物半導体発光素子及びその製造方法、並びにランプ
JPWO2010032423A1 (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子並びにランプ、iii族窒化物半導体発光素子ウエーハの発光波長分布のばらつき低減方法
JP2009135197A (ja) Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
WO2013042297A1 (ja) 窒化ガリウム系化合物半導体発光素子及びそれを用いた光源装置
JP5036907B2 (ja) 窒化ガリウム系化合物半導体発光素子
WO2008075559A1 (ja) Iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP2008109084A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
JP2008124060A (ja) Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ
WO2010035849A1 (en) Group iii nitride-based compound semiconductor light-emitting device and production method therefor
JP6925141B2 (ja) 半導体基板、半導体発光素子および灯具
WO2011058697A1 (ja) 窒化物半導体素子の製造方法
JP4974635B2 (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP5113305B2 (ja) 窒化ガリウム系化合物半導体発光素子および当該発光素子を備える光源
WO2004107460A1 (ja) 化合物半導体及びその製造方法
JP2008115463A (ja) Iii族窒化物半導体の積層構造及びその製造方法と半導体発光素子とランプ
JP2008098245A (ja) Iii族窒化物化合物半導体積層構造体の成膜方法
JP2006128653A (ja) 3−5族化合物半導体、その製造方法及びその用途
WO2020075849A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
JP5179055B2 (ja) Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038204.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011513563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010829650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE