WO2011047616A1 - 一种中继方法、设备和*** - Google Patents

一种中继方法、设备和*** Download PDF

Info

Publication number
WO2011047616A1
WO2011047616A1 PCT/CN2010/077866 CN2010077866W WO2011047616A1 WO 2011047616 A1 WO2011047616 A1 WO 2011047616A1 CN 2010077866 W CN2010077866 W CN 2010077866W WO 2011047616 A1 WO2011047616 A1 WO 2011047616A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeater
relay
division duplex
mode
base station
Prior art date
Application number
PCT/CN2010/077866
Other languages
English (en)
French (fr)
Inventor
王燚
张伟
陈小锋
白伟
万蕾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011047616A1 publication Critical patent/WO2011047616A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst

Definitions

  • a relay method, device and system The present application claims priority to Chinese Patent Application No. 200910180532.7, entitled “Relay Method, Equipment and System", filed on October 19, 2009, with the Chinese Patent Office. The entire contents of which are incorporated herein by reference.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a relay method, device, and system.
  • a link between a base station and a repeater is called a relay backhaul link
  • a link between the repeater and a terminal served by the repeater is called a relay access. link.
  • the base station sends a downlink data packet to the repeater through the relay backhaul link, and receives the uplink data packet sent by the relay device; the relay device sends the downlink data packet to the terminal it serves through the relay access link, and receives the downlink data packet.
  • the uplink packet sent by the corresponding terminal is a link between a base station and a repeater through the relay backhaul link, and receives the uplink data packet sent by the relay device.
  • embodiments of the present invention provide a relay method, device, and system, which can avoid loopback self-interference in a relay process.
  • An embodiment of the present invention provides a relay method, where the method includes: The improved repeater communicates with the base station in a first manner;
  • the improved repeater and the terminal served by the improved repeater communicate in a second manner;
  • the first mode is a time division duplex mode
  • the second mode is a frequency division duplex mode.
  • the first mode is a frequency division duplex mode
  • the second mode is a time division duplex mode.
  • the embodiment of the present invention further provides a repeater, where the repeater includes: a first relay unit, configured to communicate with a base station in a first manner; and a second relay unit, configured to be in the first The relay unit communicates with the base station in the first manner, and communicates with the terminal served by the repeater in the second manner;
  • the first mode is a time division duplex mode
  • the second mode is a frequency division duplex mode.
  • the first mode is a frequency division duplex mode
  • the second mode is a time division duplex mode.
  • An embodiment of the present invention further provides a communication system, where the system includes a base station, a repeater, and a terminal served by the repeater.
  • the second mode is used for communication between the repeater and the base station by using the first mode.
  • the first mode is a time division duplex mode.
  • the second mode is a frequency division duplex mode; or the first mode is a frequency division duplex mode, and the second mode is a time division duplex mode.
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the time division duplex mode and the frequency division duplex mode, and effectively solves the relay.
  • the loopback self-interference problem in the system realizes high-quality relay communication and satisfies the needs of users.
  • the technical solution of the embodiment of the present invention fully utilizes the resources of the existing time division duplex system and the frequency division duplex system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay equipment, and the maximum The system's capacity is increased to a large extent, reducing the cost and consumption of the system.
  • FIG. 1 is a schematic diagram of a self-interference in a time-division manner to avoid loopback according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of implementing in-band relay by using TDD/FDD in an FDD LTE system according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of implementing in-band relay by using TDD/FDD in a TDD LTE system according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of implementing an outband relay by using TDD/FDD in an FDD LTE system according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of implementing an outband relay by using TDD/FDD in a TDD LTE system according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of a unidirectional relay method according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a frequency band allocation in a unidirectional relay mode according to Embodiment 2 of the present invention
  • FIG. 8 is a schematic diagram of a frame structure in a unidirectional relay mode according to Embodiment 2 of the present invention
  • FIG. 8 is a schematic diagram of a special subframe in a one-way relay mode according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a principle of a relay method according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of bandwidth allocation according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic structural diagram of a frame according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic structural diagram of another frame according to Embodiment 2 of the present invention.
  • FIG. 13A is a schematic structural diagram of a repeater according to Embodiment 3 of the present invention.
  • FIG. 13B is a schematic structural diagram of another repeater according to Embodiment 3 of the present invention
  • FIG. 14 is a schematic structural diagram of a relay communication module according to Embodiment 3 of the present invention
  • FIG. 15 is a schematic structural diagram of still another relay communication module according to Embodiment 3 of the present invention.
  • a solution provided by the embodiment of the present invention is to use a time division duplex (TDD) method to distinguish two links in the time domain, that is, to allow the repeaters to transmit and receive at different times.
  • TDD time division duplex
  • a Multi-media Broadcast over a Single Frequency Network is reserved in a radio frame structure configured for a repeater.
  • MBSFN base station and repeater
  • NB-to-relay base station and repeater
  • the resources of the system are occupied, which limits the capacity of the system.
  • the physical resources reserved for the MBSFN subframe are used alone as base station-to-repeater communication, they can no longer be used as relay-to-terminal communication, and when the system capacity needs to be increased, the system capacity is limited;
  • the process of the hybrid automatic repeat request (HQQ) of the MBSFN sub-frame between the base station, the repeater, and the terminal needs to be considered at the same time, the HARQ coordination is complicated, the delay is increased, and the repeater node is limited. Capacity and number of users.
  • Another solution provided by the embodiment of the present invention is a frequency division duplex (FDD) mode, in which a repeater is separately configured with a microwave backhaul system with a special proprietary protocol, and the microwave backhaul system utilizes an additional frequency band to implement the base station to Repeater communication.
  • FDD frequency division duplex
  • this method is currently only applied in the microwave backhaul system, which belongs to the point-to-point transmission mode.
  • Each relay backhaul link requires a set of backhaul transceivers.
  • the base station side is undoubtedly greatly increased.
  • Equipment cost Moreover, after the microwave frequency band is used for the relay link, the channel quality is still poor, which is far from the line-of-sight requirement and cannot achieve the desired effect.
  • a relay method the method comprising:
  • the improved repeater communicates with the base station in a first manner
  • the improved repeater and the terminal served by the improved repeater communicate in a second manner;
  • the first mode is a TDD mode
  • the second mode is an FDD mode.
  • the first mode is an FDD mode
  • the second mode is a TDD mode.
  • the improved repeater of the present invention needs to simultaneously support communication of data on the time division frequency band and the frequency division frequency band.
  • the improved repeater is simply referred to as a repeater.
  • the relay method provided by the embodiment of the present invention can be applied to an LTE system, an LTE-Advanced (LTE-A) system, but is not limited thereto, and the embodiment of the present invention can also be used for other access devices and a macro base station.
  • Backhaul connections of access devices in a common networking scenario such as the micro-area Micro, 3 ⁇ 4 cell Pico and home base station Femeto backhaul connection, can also be used in two duplex mode systems in subsequent LTE-A systems and other wireless communication systems.
  • the working mode of the hybrid networking can also be used for the working mode of the common networking of different frequency bands in the same duplex mode.
  • the devices involved in performing the foregoing relay method may be different.
  • the method may be:
  • the repeater Communicating in a first manner between the evolved base station (eNB) and the repeater; communicating in a second manner between the repeater and the terminal served by the repeater; wherein, the first The mode is the TDD mode, and the second mode is the FDD mode.
  • the first mode is the FDD mode
  • the second mode is the TDD mode.
  • the repeater needs to support TDD at the same time.
  • the processing of the data in the mode and the processing of the data in the FDD mode, and the communication of the corresponding data in the TDD mode and the FDD mode to ensure that the data is relayed when the relay backhaul link and the relay access link are respectively relayed in different manners. Normal transmission.
  • the same description applies equally to the relevant content below.
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the TDD mode and the FDD mode, and effectively solves the loopback in the relay system. Interference problems, high-quality relay communication, to meet the needs of users. Moreover, the technical solution of the embodiment of the present invention fully utilizes resources of the existing TDD system and the FDD system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay devices, thereby maximizing the system. The capacity reduces the cost and consumption of the system.
  • the relay method provided in the second embodiment of the present invention is described in detail below.
  • the second embodiment of the present invention is mainly described by using a scenario in LTE as an example.
  • the TDD and FDD systems in the existing LTE standard protocols are quite the same to a considerable extent.
  • the physical layer has a similar frame structure, has the same pilot pattern and modulation and coding mode, and has the same L2 layer.
  • the user plane protocol stack has the same L3 protocol stack, and the similarity on the protocol ensures the communication on the device.
  • the embodiment of the present invention does not need to perform large hardware modification on existing devices in the TDD and FDD systems, and completes the evolved base station to relay (eNB-relay) and repeater through the cooperation of the same devices. Communication between terminals (relay-UE) avoids loopback self-interference between the relay backhaul link and the relay access link.
  • FIG. 2 a schematic diagram of implementing in-band relay by using TDD/FDD in a macro base station overlay network composed of an FDD LTE system.
  • communication is performed between the eNB and the repeater and between the eNB and the terminal in the same manner (FDD).
  • FDD Frequency Division Duplex
  • the eNB-relay relay communication is provided by the FDD LTE method
  • the relay-UE communication is implemented by the TDD LTE method.
  • FIG. 3 a schematic diagram of implementing in-band relay by TDD/FDD in a macro base station overlay network composed of a TDD LTE system.
  • communication is performed between the eNB and the repeater and between the eNB and the terminal in the same manner (TDD).
  • TDD Time Division Duplex
  • eNB-relay relay communication is provided by TDD LTE mode
  • relay-UE communication is implemented by FDD LTE mode.
  • TDD/FDD is utilized in the macro base station overlay network formed by the FDD LTE system.
  • TDD repeater
  • FDD the terminal
  • the eNB-relay relay communication is provided through the TDD LTE mode, and the relay-UE communication is implemented by the FDD LTE method.
  • FIG. 5 a schematic diagram of implementing out-of-band relay by using TDD/FDD in a macro base station overlay network composed of a TDD LTE system.
  • communication between the eNB and the repeater (FDD) and between the eNB and the terminal (TDD) is performed in different ways.
  • the eNB-relay relay communication is provided by the FDD LTE mode
  • the relay-UE communication is implemented by the TDD LTE mode.
  • the communication links at both ends of the repeater respectively use different system spectrum resources to avoid performance loss caused by co-channel interference; and, the relay backhaul link and the relay access link respectively adopt TDD/FDD
  • the spectrum resources maximize the capacity of the original LTE system, and effectively utilize the cheaper TDD spectrum resources.
  • the TDD single-mode terminal roaming can be realized at a low cost by the TDD relay coverage method.
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the TDD mode and the FDD mode, and effectively solves the loopback in the relay system. Interference problems, high-quality relay communication, to meet the needs of users. Moreover, the technical solution of the embodiment of the present invention fully utilizes resources of the existing TDD system and the FDD system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay devices, thereby maximizing the system. The capacity reduces the cost and consumption of the system. Further, a relay method provided in Embodiment 2 of the present invention is described in detail below.
  • the repeater supports one-way transmission of the eNB-relay-UE or one-way transmission of the UE-relay-eNB at the same time, that is, the repeater adopts a one-way relay (one- Mode of the way-relay), in the first moment, only the repeater is allowed to receive the data transmitted by the eNB/NB in the first manner and the repeater transmits the data to the terminal in the second manner; Only allowing the repeater to receive data transmitted by the terminal in the first manner and the repeater passes the second mode Transmitting data to the eNB/NB; wherein the first moment and the second moment are different moments.
  • FIG. 6 is a schematic diagram of a one-way relay method according to an embodiment of the present invention.
  • the repeater supports eNB -> relay -> UE downlink communication, that is, the eNB-relay downlink communication link occupies the FDD downlink spectrum; the relay-UE downlink communication link occupies the TDD downlink spectrum;
  • the repeater supports the eNB ⁇ -relay ⁇ -UE uplink communication, that is, the eNB-relay uplink communication link, occupies the FDD uplink spectrum, and the relay-UE uplink communication link occupies the FDD uplink frequency.
  • the time i and the time j are different times.
  • the carrier frequency of the repeater is the TDD carrier frequency and the FDD downlink carrier frequency;
  • the carrier frequency of the repeater is the TDD carrier frequency and the FDD uplink carrier frequency.
  • the repeater switches the carrier at the TDD carrier frequency point and the FDD carrier frequency point at different times, so that the repeater time i transmits data on the time division duplex frequency band, and the time j transmits data on the frequency division duplex, or
  • the repeater time i transmits data on the frequency division duplex band
  • the time j transmits data on the time division duplex
  • the repeater time i receives the data on the time division duplex band
  • the time j receives the data on the frequency division duplex.
  • the repeater time i receives data on the frequency division duplex band
  • the time j receives data on the time division duplex, thereby ensuring that the repeater uses the same frequency band when transmitting data or receiving data.
  • Figure 6 shows only a spectrum allocation method. It is also possible that the link between the eNB and the relay occupies the TDD spectrum, and the link between the relay and the UE occupies the FDD spectrum.
  • a guard band is set in the adopted TDD band and FDD band ( Guard Band).
  • the relay can send and receive data at the same time, and the relay backhaul link needs to perform corresponding HARQ configuration according to the uplink and downlink configuration of the TDD spectrum, that is, when the downlink access link adopts TDD in the downlink direction, the relay backhaul link
  • the downlink frame of the FDD is used.
  • the uplink frame of the FDD is used for the relay backhaul link.
  • the relay can be regarded as a half-duplex FDD mode, and the relay backhaul link needs to modify the HARQ timing according to the TDD uplink and downlink configuration of the relay access link, and the TDD corresponding subframe of the repeater needs to be associated with the eNB.
  • the corresponding subframe remains synchronized.
  • FIG. 8 a schematic diagram of a frame structure in a one-way relay mode is shown.
  • the scenario in which the TDD frame structure of the repeater is configured as Configure #1 is taken as an example.
  • the block diagram of the first row shows the downlink frame structure in the FDD mode of the eNB
  • the block diagram of the second row shows the structure of the uplink frame in the FDD mode of the eNB
  • the block diagram of the third row shows a frame structure of the repeater, for each frame structure.
  • a row from left to right represents the 0th subframe to the 9th subframe in order.
  • the D in the box indicates that the box represents the downlink subframe
  • U indicates that the box represents the uplink subframe
  • S indicates that the box represents the special subframe.
  • the solid arrows in the figure indicate that the current subframe belongs to the sync/broadcast/paging sub-frame, which is the sub-frame that the system must transmit, and the dashed arrow is a general sub-frame, such as a data frame.
  • the arrow down indicates that the subframe is transmitted in the downstream direction
  • the arrow upward indicates that the subframe is transmitted in the upstream direction.
  • the different padding textures in the block are used to distinguish different subframes, and the blocks with the same padding texture have corresponding relationships.
  • the repeater can transmit the FDD uplink of the eNB to the 0th and 1st subframes of the FDD downlink from the eNB.
  • the seventh subframe performs feedback and the like, thereby clearly showing the HARQ of the relay backhaul link and the HARQ of the relay access link in the one-way relay mode, and the configured HARQ can be received when the repeater receives
  • the downlink subframe from the base station is used, feedback can be performed on the corresponding uplink subframe, and when the uplink subframe is sent to the base station, the feedback can be confirmed by receiving feedback from the downlink subframe of the base station.
  • the repeater sends a downlink subframe to the terminal, it can receive feedback from the terminal in the corresponding uplink subframe, and can receive the downlink subframe sent to the terminal when receiving the uplink subframe sent by the terminal. Feedback is confirmed.
  • the repeater After receiving the synchronization/broadcast/paging sub-frame from the eNB, the repeater displays the 0th subframe (filled with square cells) and the 4th subframe (filled) as shown in the first line of FIG. There is a diamond small grid), the 5th subframe (filled with a left diagonal grid), the 9th subframe (filled with a right diagonal grid), and simultaneously send its own synchronization/broadcast/paging sub-frame, as shown in Figure 8 The 0th, 1st, 5th, and 6th subframes displayed by the line.
  • the TDD subframe of the repeater can synchronize the FDD subframe of the eNB.
  • the repeater in the one-way relay mode sends a special subframe through the TDD method, because The UPPTS symbol exists in the special subframe to receive the uplink synchronization data.
  • the base station is transmitting the downlink data to the repeater through the downlink subframe of the FDD mode, so that the repeater needs to simultaneously receive the downlink data from the base station and the terminal. Uplink data, causing a collision of one-way transmission of the repeater.
  • the FDD downlink subframe of the base station may be configured as an MBSFN subframe at a corresponding TDD special subframe time. As shown in FIG.
  • the FDD downlink subframe corresponding to the TDD special subframe including the UPPTS is configured as The MBSFN subframe consisting of the physical downlink control channel subframe (PDCCH) and the physical multicast channel (PMCH) subframe, so that the repeater does not receive the downlink data from the base station while receiving the uplink data from the terminal, thereby avoiding Receiving a collision; or as shown in FIG. 8D, the downlink symbol of the FDD downlink subframe on the base station corresponding to the time when the UPPTS symbol of the TDD special subframe is corresponding may be removed, for example, by masking the downlink symbol, by not transmitting the downlink data. Avoid receiving conflicts with repeaters.
  • PDCCH physical downlink control channel subframe
  • PMCH physical multicast channel
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the TDD mode and the FDD mode, and effectively solves the loopback in the relay system.
  • the interference problem has achieved a good relay effect.
  • the technical solution of the embodiment of the present invention fully utilizes resources of the existing TDD system and the FDD system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay equipment, thereby maximizing the system.
  • the capacity reduces the cost and consumption of the system.
  • another relay method provided by the second embodiment of the present invention is described in detail below. In the second embodiment of the present invention, referring to FIG.
  • the TDD mode can be adopted between the NB/eNB and the repeater, and the FDD mode can be adopted between the repeater and the terminal.
  • the repeater supports receiving data transmitted by the eNB and transmitting by the receiving terminal.
  • the eNB-relay downlink communication link occupies the FDD downlink spectrum;
  • the relay-UE uplink communication link occupies the uplink subframe of the HFDD DL;
  • the repeater supports the repeater to send data to and transmit data to the eNB, and the uplink communication link on the eNB-relay uplink communication link; the relay-UE uplink communication link occupies HFDD UL
  • the HFDD frequency band may be a TDD frequency band or an FDD frequency band.
  • the repeater cannot receive data at the same time.
  • the uplink and downlink subframes of the physical frame of the eNB and the relay are complementary at the same time, that is, the relay receives the downlink frame from the eNB.
  • the setting of the HARQ timing when the TDD frame structure of Configure #0 is used is shown. Because the repeater receives the synchronization/broadcast/paging sub-frame from the eNB, such as the 0th, 4th, 5th, and 9th subframes, the repeater cannot send the repeater's synchronization/broadcast/paging to the terminal.
  • Subframes such as 0th, 1st, 5th, and 6th subframes, so shifting through the subframe is required, so that the FDD downlink frame of the eNB and the TDD downlink frame of the repeater are staggered in the sending direction, at least making the FDD
  • the 0, 5 subframes on the spectrum and the 0, 5 subframes on the TDD spectrum are staggered in the transmission direction, and the corresponding downlink frame is not transmitted to the terminal even after the relay receives the downlink frame from the eNB.
  • the 0, 4, 5, and 9 subframes of the repeater can be completely shifted by the 0, 1, 5, and 6 subframes of the eNB by shifting the two subframes, and the other configured TDD subframes are shifted by shift.
  • the two subframes cannot be completely staggered. If the 4th and 9th subframes cannot be staggered, the corresponding paging information can be placed on the 0th and 5th subframes.
  • the setting of the HARQ timing when the TDD frame structure of Configure #2 is employed is shown.
  • TDD configuration #2 you can adjust the repeater by shifting three subframes.
  • Configuring HARQ for the shifted subframe so that when the repeater receives the downlink subframe from the base station, it can perform feedback on the corresponding uplink subframe, and when transmitting the uplink subframe to the base station, It can be confirmed by receiving feedback from the downlink subframe of the base station.
  • the repeater sends a downlink subframe to the terminal, it can receive feedback from the terminal in the corresponding uplink subframe, and can receive the downlink subframe sent to the terminal when receiving the uplink subframe sent by the terminal. Feedback is confirmed.
  • the half-duplex FDD can be configured with the uplink and downlink configuration to design the HARQ timing.
  • the HARQ configuration mode shown in FIG. 8, 11, and 12 is only an exemplary setting, and the configuration of the HARQ is different for different configured TDD subframes, when adopting HARQ compatible with the existing relay system. In the manner, the manner of reconfiguring HARQ with the relay system according to the embodiment of the present invention is also different.
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the TDD mode and the frequency division duplex mode, and effectively solves the problem in the relay system.
  • the self-interference problem of the loopback achieves a better relay effect.
  • the technical solution of the embodiment of the present invention fully utilizes resources of the existing TDD system and the frequency division duplex system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay devices, to the greatest extent. Increased system capacity reduces system cost and consumption.
  • a third embodiment of the present invention provides a repeater, where the repeater includes:
  • a first relay unit configured to communicate with the base station in a first manner
  • a second relay unit configured to: when the first relay unit communicates with the base station in the first manner, using the second mode Communicating between terminals served by the repeater
  • the first mode is a TDD mode
  • the second mode is a frequency division duplex mode.
  • the first mode is a frequency division duplex mode
  • the second mode is a TDD mode.
  • the repeater further includes a configuration module, configured to configure a HARQ timing of the subframe of the base station and a subframe of the repeater to satisfy the HARQ between the base station and the repeater, and the middle HARQ between the relay and the terminal served by the repeater.
  • the repeater further includes: a time division transceiver module 131 and a frequency division transceiver module 132,
  • the time division transceiver module 131 is configured to enable the first relay unit to communicate with the base station by using a time division duplex mode, and to enable the second relay unit to use frequency division in the first relay unit and the base station. While communicating in the duplex mode, the time division duplex mode is used to communicate with the terminal served by the repeater;
  • the frequency division transceiver module 132 is configured to enable the first relay unit to communicate with the base station by using a frequency division duplexing manner, and to enable the second relay unit to be used by the first relay unit and the base station. While communicating in the time division duplex mode, the frequency division duplex mode is used to communicate with the terminal served by the repeater.
  • the first relay unit further includes a time division baseband processing unit 133
  • the second relay unit further includes a frequency division baseband processing unit 134
  • the first relay unit further includes a frequency division baseband processing unit.
  • the second relay unit further includes a time division baseband processing unit 133, which is illustrated by a broken line in FIG. 13A.
  • the time division baseband processing unit 133 is configured to receive data from the time division transceiver module, perform corresponding processing, and then send the data to the frequency division baseband processing unit, or receive data from the frequency division baseband processing unit, and perform corresponding After processing, sending to the time division transceiver module;
  • the frequency division baseband processing unit 134 is configured to receive data from the frequency division transceiver module, perform corresponding processing, and send the data to the time division baseband processing unit, or receive data from the time division baseband processing unit, and perform corresponding After processing, it is sent to the frequency division transceiver module.
  • the time division baseband unit (BBU) 133 and the frequency division baseband processing unit 134 can communicate with each other to ensure interaction between the time division mode and the corresponding data in the frequency division mode.
  • the first relay unit or the second relay unit may be implemented by the relay communication module shown in FIG.
  • the time division transceiver module 131 can be implemented by a TDD switch (TDD SWITCH), and the time division baseband processing unit 133 is configured to process data in a time division manner.
  • the frequency division transceiver module 132 can be implemented by a duplexer (Duplexer). Frequency division baseband processing list Element 134 is used to process data in frequency division mode.
  • Figure 14 also shows some required units in TDD mode and in FDD mode, such as digital / analog (D / A) conversion module, analog / digital (A / D) conversion module, oscillator (Oscilator ), TDD Carrier Frequency PLL, FDD Carrier Frequency PLL, Power Amplifier (PA) and Low Noise Amplifier (LNA), etc., are omitted in Figures 14 and 15.
  • D / A digital / analog
  • a / D analog / digital
  • Oscilator oscillator
  • TDD Carrier Frequency PLL TDD Carrier Frequency PLL
  • FDD Carrier Frequency PLL Power Amplifier
  • LNA Low Noise Amplifier
  • the repeater can complete the communication between the two links of the relay backhaul link and the relay access link in a half-duplex manner while satisfying the relay capacity requirement.
  • the relay only supports unilateral communication of the relay backhaul link and the relay access link at the same time.
  • the repeater can complete the relay backhaul link and the relay access chain by using one transceiver.
  • the repeater further includes a mixing transceiver module 135 and a mixing baseband processing unit 136.
  • the mixing and receiving module 135 is configured to enable the first relay unit to communicate with the base station in a first manner, and to enable the second relay unit to adopt the first in the first relay unit and the base station. While communicating in a manner, communication is performed between the terminal served by the repeater in a second manner.
  • the above-described mixing baseband processing unit 136 has a function of simultaneously processing data in the time division band and data in the frequency division band.
  • the repeater further includes a first relay control module or a second relay control module according to different processing manners during relaying.
  • the first relay control module is configured to allow only the first relay unit to receive downlink data sent by the base station in a first manner and the second relay unit to use a second manner at a first moment And transmitting, by the second relay unit, the uplink data sent by the terminal by using the second manner, and the first relay unit sending the uplink data by using the first manner.
  • the repeater further includes: a first special subframe configuration module, configured to configure, in a special subframe in the time division duplex mode, a downlink subframe of a frequency division duplex mode corresponding to the special subframe as a multicast multicast single frequency network
  • a special subframe configuration module configured to remove the downlink symbol in the downlink subframe for the special subframe in the time division duplex mode, to avoid the uplink pilot subframe UPPTS according to the special subframe of the relay receiving terminal
  • the HFDD method when the relay device performs relaying, the HFDD method may also be adopted. In this manner, it is not necessary to set a guard frequency band between the TDD frequency band and the FDD frequency band, and only the repeater is allowed to receive data at one time. Or transmitting the data at the same time, in which the second relay control module may be configured to allow only the first relay unit to receive the downlink data sent by the base station in the first manner and the The second relay unit receives the uplink data sent by the terminal in the second manner; at the second time, the first relay unit is only allowed to send the uplink data to the base station and the second relay unit in the first manner.
  • the downlink data is sent to the terminal in a second manner, where the first time and the second time are different times.
  • the repeater further includes:
  • a subframe shifting module configured to shift a subframe in the time division duplex mode of the base station or the relay, so that when the repeater receives a synchronization/broadcast/paging subroutine from the base station At the time of the frame, the repeater does not transmit the synchronization/broadcast/paging sub-frame of the repeater to the corresponding terminal.
  • the processing of data under TDD and FDD can be implemented by the BBU.
  • the mixing transceiver module is implemented by a radio processing device such as Duplexes, and the single-link relay time division/frequency division switch (Single-Link Relay Switch TDD) /FDD ) Enables switching at different carrier frequencies.
  • the repeater only needs one set of uplink and downlink radio equipment, and at the same time can ensure reuse of the TDD spectrum under the condition of avoiding adjacent frequency interference, so the eNB system of the original LTE can be utilized.
  • the structure can complete the communication functions of the two links of eNB-relay and relay-UE.
  • the BBU in the relay unit has both TDD LTE functions for TDD LTE data processing and FDD LTE functions for FDD LTE data processing, and Duplexer simultaneously processes signals in the TDD LTE and FDD LTE bands.
  • the repeater in this structure can simultaneously perform communication between two systems, TDD LTE and FDD LTE. For example, for a relay backhaul link, the repeater performs data communication in the TDD mode through the TDD LTE function of the BBU, in the BBU. After receiving the data of the relay backhaul link, the data is forwarded to the FDD LTE function for processing, and the data communication of the relay access link is completed by the FDD LTE function.
  • each functional module and unit in the device embodiment of the present invention refers to the method embodiment of the present invention.
  • the functional modules and units in the device embodiment of the present invention may be implemented separately or integrated in one or more units.
  • An embodiment of the present invention further provides a communication system, where the system includes a base station, a relay, and a terminal served by the repeater, and the first mode is used for communication between the base station and the repeater; The second mode is used for communication between the repeater and the terminal served by the repeater; or the second mode is used for communication between the base station and the repeater; The first mode is used for communication between the repeater and the terminal served by the repeater.
  • the technical solution provided by the embodiment of the present invention realizes communication between the base station and the repeater, between the repeater and the corresponding terminal by the cooperation of the time division duplex mode and the frequency division duplex mode, and effectively solves the relay.
  • the loopback self-interference problem in the system realizes high-quality relay communication and satisfies the needs of users.
  • the technical solution of the embodiment of the present invention fully utilizes the resources of the existing time division duplex system and the frequency division duplex system, and does not need to reserve specific system resources when performing relaying, and does not need to add additional relay equipment, and the maximum The system's capacity is increased to a large extent, reducing the cost and consumption of the system.
  • the present invention can be implemented by means of software plus the necessary general hardware platform. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, can be embodied in the form of a software product, the computer soft
  • the product may be stored in a storage medium, such as a ROM/RAM, a magnetic disk, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention or The method described in certain sections of the examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

一种中继方法、 设备和*** 本申请要求于 2009 年 10 月 19 日提交中国专利局、 申请号为 200910180532.7, 发明名称为"一种中继方法、设备和***"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种中继方法、 设备和***。
背景技术 由于中继( Relay )技术能够提供良好的用户覆盖和极高的数据吞吐量, 在移动通信技术中得到了广泛应用。
在中继***中, 基站与中继器之间的链路被称之为中继回程链路, 中 继器与该中继器服务的终端之间的链路被称之为中继接入链路。 基站通过 中继回程链路向中继器发送下行数据包, 并接收中继器发送的上行数据包; 中继器通过中继接入链路向其所服务的终端发送下行数据包, 并接收相应 终端发送的上行数据包。
由于中继回程链路和中继接入链路采用同一链路, 当中继器同时进行 收发通信时, 会造成回环自干扰, 影响数据的正常收发, 导致中继的效果 较差, 无法满足用户需要。 发明内容 为解决现有技术中存在的问题, 本发明的实施例提供了一种中继方法、 设备和***, 能够避免中继过程中的回环自干扰问题。
为达到上述目的, 本发明的实施例采用如下技术方案:
本发明实施例提供了一种中继方法, 所述方法包括: 改进的中继器采用第一方式与基站进行通信;
在所述改进的中继器和所述基站之间采用第一方式进行通信的同时, 所述改进的中继器和该改进的中继器所服务的终端之间采用第二方式进行 通信;
其中, 所述第一方式为时分双工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工方式, 所述第二方式为时分双工方式。
本发明实施例还提供了一种中继器, 所述中继器包括: 第一中继单元, 用于采用第一方式与基站进行通信; 第二中继单元, 用于在所述第一中继 单元与基站采用第一方式进行通信的同时, 采用第二方式与所述中继器所 服务的终端之间进行通信;
其中, 所述第一方式为时分双工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工方式, 所述第二方式为时分双工方式。
本发明实施例还提供了一种通信***, 该***包括基站、 中继器和该 中继器所服务的终端,
所述中继器和所述基站之间采用第一方式进行通信的同时, 所述中继 器和所述终端之间采用第二方式进行通信; 其中, 所述第一方式为时分双 工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工 方式, 所述第二方式为时分双工方式。
本发明实施例提供的技术方案, 通过时分双工方式和频分双工方式的 互相配合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有 效解决了中继***中的回环自干扰问题, 实现高质量的中继通信, 满足了 用户的需要。 并且, 本发明实施例的技术方案充分利用了现有时分双工系 统和频分双工***的资源, 在执行中继时无需预留特定的***资源, 也无 需增设额外的中继设备, 最大程度地增加了***的容量, 降低了***的成 本和消耗。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例提供的一种时分方式避免回环自干扰的原理图; 图 2为本发明实施例二提供的 FDD LTE***中利用 TDD/FDD实现带 内中继的示意图;
图 3为本发明实施例二提供的 TDD LTE***中利用 TDD/FDD实现带 内中继的示意图;
图 4为本发明实施例二提供的 FDD LTE***中利用 TDD/FDD实现带 外中继的示意图;
图 5为本发明实施例二提供的 TDD LTE***中利用 TDD/FDD实现带 外中继的示意图;
图 6为本发明实施例二提供的单向中继方法示意图;
图 7为本发明实施例二提供的一种单向中继方式下频带分配示意图; 图 8为本发明实施例二提供的一种单向中继方式下帧结构的示意图; 图 8C 为本发明实施例二提供的一种单向中继方式下特殊子帧的示意 图;
图 8D 为本发明实施例二提供的一种单向中继方式下特殊子帧的示意 图;
图 9为本发明实施例二提供的中继方法原理示意图;
图 10为本发明实施例二提供的频带分配示意图;
图 11为本发明实施例二提供的一种帧结构示意图;
图 12为本发明实施例二提供的另一种帧结构示意图;
图 13A为本发明实施例三提供的一种中继器结构示意图;
图 13B为本发明实施例三提供的另一种中继器结构示意图; 图 14为本发明实施例三提供的一种中继通信模块的结构示意图; 图 15为本发明实施例三提供的又一种中继通信模块的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
对于回环自干扰, 本发明实施例提供的一种解决方案是采用时分双工 ( TDD ) 方式, 在时域上将两条链路进行区分, 即让中继器不同时进行收 发。 例如, 参见图 1, 长期演进(Long Term Evolution, LTE ) ***中, 在 为中继器配置的无线帧结构里预留了多播组播单频网 ( Multi-media Broadcast over a Single Frequency Network, MBSFN )子贞, 在 MBSFN子 帧处, 只进行基站和中继器(NB-to-relay )的通信, 在其他的非 MBSFN子 帧处, 中继器与相应的终端 ( relay -to-UE )进行通信。
然而,采用这种方式时,由于 MBSFN子帧的使用, 占用了***的资源, 限制了***的容量。例如, 由于为 MBSFN子帧预留的物理资源单独用作基 站至中继器的通信, 不能再用作中继器至终端的通信, 当需要提升***容 量时, 限制了***容量的提升; 而且, 由于需要同时考虑基站、 中继器和 终端三者间 MBSFN 子帧混合自动重传清求 ( Hybrid Automatic Repeat Request, HARQ ) 的进程, 造成 HARQ协调复杂, 时延增加, 限制了中继 器节点的容量和用户数。
本发明实施例提供的另一种解决方案是频分双工 (FDD ) 方式, 该方 式为中继器单独配置了具有特殊私有协议的微波回程***, 该微波回程系 统利用额外的频段实现基站至中继器的通信。 然而, 这种方式目前仅应用在微波回程***中, 属于点对点的传输方 式, 每条中继回程链路都需要一套回程收发设备, 对于具有多个中继节点 ***, 无疑大大增加了基站侧设备成本。 并且, 将微波频段用于中继链路 后, 信道质量仍然较差, 远远达不到视距要求, 不能取得预期的效果。
因此, 本发明实施例提供了一种中继方法, 能够避免中继过程中的回 环自干扰问题, 实现高质量的中继通信, 满足用户的需要, 详情如下: 本发明实施例一提供了一种中继方法, 所述方法包括:
改进的中继器采用第一方式与基站进行通信;
在所述改进的中继器和所述基站之间采用第一方式进行通信的同时, 所述改进的中继器和该改进的中继器所服务的终端之间采用第二方式进行 通信;
其中, 所述第一方式为 TDD方式, 所述第二方式为 FDD方式; 或者, 所述第一方式为 FDD方式, 所述第二方式为 TDD方式。
本发明中的改进的中继器需要同时支持时分频段和频分频段上数据的 通信, 下文中统一将改进的中继器简称为中继器。
本发明实施例提供的中继方法可应用于 LTE***、长期演进高级(LTE Advanced, LTE-A )***, 但不局限于此, 本发明实施例还可以用于其他接 入设备与宏基站的共同组网场景下的接入设备的回程连接, 如微小区 Micro, ¾ 小区 Pico及家庭基站 Femeto的回程连接,也可用于后续 LTE-A ***及其他无线通信***中的两种双工模式***混合组网的工作方式, 还 可用于相同双工模式下不同频段***共同组网的工作方式等。
可以理解, 在不同的通信***中, 执行上述中继方法所参与的设备可 能不同, 例如, 所述方法可以为:
在演进的基站(eNB )和中继器之间采用第一方式进行通信; 在所述中 继器和该中继器所服务的终端之间采用第二方式进行通信; 其中, 所述第 一方式为 TDD方式, 所述第二方式为 FDD方式; 或者, 所述第一方式为 FDD方式, 所述第二方式为 TDD方式。 并且, 中继器需要同时支持 TDD 方式下数据的处理和 FDD方式下数据的处理, 以及 TDD方式下和 FDD方 式下相应数据的通信, 以确保在中继回程链路和中继接入链路分别采用不 同方式中继时数据的正常传输。 相同描述同样适用于下文的相关内容。
本发明实施例提供的技术方案, 通过 TDD方式和 FDD方式的互相配 合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有效解决 了中继***中的回环自干扰问题, 实现高质量的中继通信, 满足了用户的 需要。 并且, 本发明实施例的技术方案充分利用了现有 TDD ***和 FDD ***的资源, 在执行中继时无需预留特定的***资源, 也无需增设额外的 中继设备, 最大程度地增加了***的容量, 降低了***的成本和消耗。
下面对本发明实施例二提供的中继方法进行详细说明。 本发明实施例 二主要以 LTE中的场景为例进行说明。
现有的 LTE标准协议中 TDD和 FDD***在相当大程度上是相同的, 例如, 物理层上具有相似的帧结构, 具有相同的导频图案和调制编码方式、 传输模式, 具有相同的 L2层用户面协议栈, 具有完全相同的 L3协议栈, 协议上的相似保证了设备上的相通。 本发明实施例无需对 TDD和 FDD系 统中的现有设备进行较大的硬件改动, 通过这种相通的设备间的互相配合 完成演进的基站至中继器 (eNB-relay )、 中继器至终端 (relay-UE ) 间的通 信, 避免了中继回程链路与中继接入链路之间的回环自干扰。
参见图 2,为在 FDD LTE***构成的宏基站覆盖网络中,利用 TDD/FDD 实现带内中继的示意图。 在该***中, eNB和中继器之间以及 eNB和终端 之间采用相同的方式( FDD )进行通信。 进行中继时, 通过 FDD LTE方式 提供 eNB-relay的中继通信, 而利用 TDD LTE方式实现 relay-UE的通信。
参见图 3,为在 TDD LTE***构成的宏基站覆盖网络中,利用 TDD/FDD 实现带内中继的示意图。 在该***中, eNB和中继器之间以及 eNB和终端 之间采用相同的方式( TDD )进行通信。 进行中继时, 通过 TDD LTE方式 提供 eNB-relay的中继通信, 而利用 FDD LTE方式实现 relay-UE的通信。
参见图 4,为在 FDD LTE***构成的宏基站覆盖网络中,利用 TDD/FDD 实现带外中继的示意图。在该***中, eNB和中继器之间(TDD )以及 eNB 和终端之间( FDD )采用不同的方式进行通信。进行中继时,通过 TDD LTE 方式提供 eNB-relay的中继通信, 而利用 FDD LTE方式实现 relay-UE的通 信。
参见图 5,为在 TDD LTE***构成的宏基站覆盖网络中,利用 TDD/FDD 实现带外中继的示意图。在该***中, eNB和中继器之间(FDD )以及 eNB 和终端之间( TDD )采用不同的方式进行通信。进行中继时,通过 FDD LTE 方式提供 eNB-relay的中继通信, 而利用 TDD LTE方式实现 relay-UE的通 信。
由上所述, 中继器两端的通信链路分别采用不同的***频谱资源, 避 免了同频干扰造成的性能损失; 并且, 中继回程链路和中继接入链路分别 采用 TDD/FDD频谱资源, 最大程度的增加了原有 LTE***的容量, 同时 有效的利用了成本更加便宜的 TDD频谱资源, 例如, 可以 TDD中继覆盖 方式低成本的实现 TDD单模终端的漫游。
本发明实施例提供的技术方案, 通过 TDD方式和 FDD方式的互相配 合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有效解决 了中继***中的回环自干扰问题, 实现高质量的中继通信, 满足了用户的 需要。 并且, 本发明实施例的技术方案充分利用了现有 TDD ***和 FDD ***的资源, 在执行中继时无需预留特定的***资源, 也无需增设额外的 中继设备, 最大程度地增加了***的容量, 降低了***的成本和消耗。 进一步的, 下面对本发明实施例二提供的一种中继方法进行详细说明。 在本发明实施例二中, 中继器在同一时刻支持 eNB-relay-UE的单向传输或 者 UE-relay-eNB的单向传输,即中继器采用了一种单向中继( one-way-relay ) 的模式, 在第一时刻,只允许中继器接收 eNB/NB通过第一方式发送的数据 以及该中继器通过第二方式将数据发送至所述终端; 在第二时刻, 只允许 中继器接收所述终端通过第一方式发送的数据以及该中继器通过第二方式 将数据发送至所述 eNB/NB;其中,所述第一时刻和第二时刻为不同的时刻。 参见图 6, 为本发明实施例提供的单向中继方法示意图。
下行方向上时刻 i , 中继器支持 eNB -〉 relay -〉 UE 下行通信, 即 eNB-relay下行通信链路, 占用 FDD下行频谱; relay-UE下行通信链路, 占 用 TDD下行频谱;
上行方向上时刻 j,中继器支持 eNB<-relay<-UE上行通信,即 eNB-relay 上行通信链路, 占用 FDD上行频谱, relay-UE上行通信链路, 占用 FDD 上行频普。
其中, 时刻 i和时刻 j为不同的时刻。 在时刻 i, 中继器的载频为 TDD 载频和 FDD下行载频; 在时刻 j, 中继器的载频为 TDD载频和 FDD上行 载频。
中继器在不同时刻对载波在 TDD载频点和 FDD载频点上进行切换, 以使中继器时刻 i在时分双工频段上发送数据, 时刻 j在频分双工上发送数 据, 或者中继器时刻 i在频分双工频段上发送数据, 时刻 j在时分双工上发 送数据, 以及中继器时刻 i在时分双工频段上接收数据, 时刻 j在频分双工 上接收数据, 或者, 中继器时刻 i在频分双工频段上接收数据, 时刻 j在时 分双工上接收数据, 从而保证了中继器在发送数据或接收数据时采用相同 的频段。
图 6只是示出了一种频谱分配方式,也可以是 eNB-relay之间的链路占 用 TDD频谱, relay-UE之间的链路占用 FDD频谱。
这种方式下, 为了避免中继器在发射数据时采用的频谱对接收数据时 采用的与其相邻的频谱产生干扰, 参见图 7, 在所采用的 TDD频带和 FDD 频带中设置有保护频带 (Guard Band )。
这种方式下, 由于中继器可以同时收发数据, 中继回程链路需要根据 TDD频谱的上下行配置进行相应 HARQ配置, 即中继接入链路下行方向采 用 TDD时, 中继回程链路采用 FDD 的下行帧; 或是, 中继接入链路上行 方向采用 TDD时, 中继回程链路采用 FDD 的上行帧。 中继回程链路对中 继器而言可以视为半双工 FDD方式, 中继回程链路需要根据中继接入链路 的 TDD上下行链路配置修改 HARQ时序, 并且中继器的 TDD相应子帧需 要和 eNB的相应子帧保持同步。
参见图 8, 示出了一种单向中继方式下的帧结构的示意图。 图 8中以中 继器的 TDD帧结构为配置( Configure ) #1的场景为例进行说明。 第一行的 框图表示了 eNB的 FDD方式下的下行帧结构, 第二行框图表示了 eNB的 FDD方式下的上行帧结构, 第三行框图表示了中继器的一种帧结构, 对每 一行从左至右的方框依次代表了第 0子帧至第 9子帧。 方框中的 D表示该 方框代表了下行子帧, U表示该方框代表了上行子帧, S表示该方框代表了 特殊子帧。 图中的实线箭头表示当前子帧属于同步 /广播 /寻呼子帧, 是*** 必须传输的子帧, 虚线箭头是一般子帧, 如数据帧。 箭头向下表示该子帧 在下行方向上发送, 箭头向上表示该子帧在上行方向上发送。 方框中不同 的填充紋理用于区分不同的子帧, 具有相同填充紋理的方框具有对应关系, 例如, 中继器对来自 eNB的 FDD下行第 0、 1子帧, 可以发送 eNB的 FDD 上行第 7子帧进行反馈等等, 从而清楚显示了单向中继方式下中继回程链 路的 HARQ和中继接入链路的 HARQ,配置后的 HARQ可使当所述中继器 接收到来自所述基站的下行子帧时, 能在相应的上行子帧上进行反馈, 同 时在向基站发送上行子帧时, 能通过接收来自基站下行子帧的反馈进行确 认。 当所述中继器向终端发送下行子帧时, 能在相应的上行子帧上接收来 自终端的反馈, 同时在接收来自终端发送的上行子帧时, 能通过发送到终 端的下行子帧的反馈进行确认。
如图 8所示, 中继器接收到来自 eNB的同步 /广播 /寻呼子帧后, 如图 8 第一行显示的第 0子帧(填充有正方形小格)、第 4子帧(填充有菱形小格)、 第 5子帧 (填充有左向斜格)、 第 9子帧 (填充有右向斜格), 同时发送自 己的同步 /广播 /寻呼子帧, 如图 8第三行显示的第 0、 1、 5、 6子帧。 从而 使中继器的 TDD子帧可以同步 eNB的 FDD子帧。
其中, 单向中继方式下的中继器通过 TDD方式发送特殊子帧时, 由于 特殊子帧存在 UPPTS符号以接收上行同步数据, 而此时基站正通过 FDD 方式的下行子帧向中继器发送下行数据, 这样就要求中继器还要同时接收 来自基站的下行数据和终端的上行数据, 造成中继器单向传输的沖突。 为 了避免这种沖突, 可以在相应的 TDD特殊子帧时刻配置基站的 FDD下行 子帧为 MBSFN子帧, 参见图 8C所示, 将包括 UPPTS的 TDD特殊子帧对 应的 FDD下行子帧配置为由物理下行控制信道子帧( PDCCH )和物理多播 信道( PMCH )子帧构成的 MBSFN子帧, 这样中继器就不会在接收来自终 端的上行数据的同时接收来自基站的下行数据, 避免了接收沖突; 或者参 见图 8D所示,也可以通过将 TDD特殊子帧的 UPPTS符号对应时刻的基站 上的 FDD下行子帧的下行符号打掉, 如屏蔽掉该下行符号, 通过不发送下 行数据来避免中继器的接收沖突。
本发明实施例提供的技术方案, 通过 TDD方式和 FDD方式的互相配 合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有效解决 了中继***中的回环自干扰问题, 达到了较好的中继效果。 并且, 本发明 实施例的技术方案充分利用了现有 TDD***和 FDD***的资源, 在执行 中继时无需预留特定的***资源, 也无需增设额外的中继设备, 最大程度 地增加了***的容量, 降低了***的成本和消耗。 进一步的, 下面对本发明实施例二提供的又一种中继方法进行详细说 明。在本发明实施例二中,参见图 9,在第一时刻,只允许中继器接收 NB/eNB 通过第一方式发送的数据和所述终端通过第二方式发送的数据; 在第二时 刻, 只允许中继器通过第一方式将数据发送至所述 NB/eNB 以及该中继器 通过第二方式将数据发送至所述终端; 其中, 所述第一时刻和第二时刻为 不同的时刻, 即限制中继器在同一时刻只能同时接收数据或发送数据。
图 9中只显示出了一种频谱分配方式, 例如, 在 NB/eNB和中继器之 间可以采用 TDD方式, 在中继器和终端之间可以采用 FDD方式。
在下行方向上时刻 i,中继器支持接收 eNB发送的数据和接收终端发送 的数据, 在 eNB-relay下行通信链路, 占用 FDD下行频谱; relay-UE上行 通信链路, 占用 HFDD DL的上行子帧;
在上行方向上时刻 j,中继器支持该中继器向 eNB发送数据和向终端发 送数据, 在 eNB-relay上行通信链路, 占用 FDD上行频谱; relay-UE上行 通信链路, 占用 HFDD UL的下行子帧, 其中, i和 j为不同的时刻。
这种方式下, 参见图 10, 在 TDD和 FDD的相邻频带间无需设置保护 频带,采用了一种混合频分双工 (Hybrid Frequency Division Duplex, HFDD) 的方式, 可以利用 HFDD频带进行上行数据的传输或者下行数据的传输, 该 HFDD频带可以是 TDD频带或者是 FDD频带。
这种方式下, 由于中继器不能同时收发数据, 实际上 eNB与 relay的物 理帧的上下行子帧在同一时刻内是互补的, 即中继器接收到来自 eNB的下 行帧时会接收到来自终端的上行帧, 或者, 中继器向 eNB发送上行帧时, 会向终端发送下行帧。 因此, 本发明实施例在进行帧结构设计时, 考虑到 了 eNB与 relay的上下行子帧的时序问题, 对 HARQ时序进行了设置。
如图 11所示, 显示了采用 Configure #0的 TDD帧结构时对 HARQ时 序的设置。因为中继器接收到来自 eNB的同步 /广播 /寻呼的子帧时,如第 0、 4、 5、 9子帧, 中继器不能向终端发送该中继器的同步 /广播 /寻呼的子帧, 如第 0、 1、 5、 6子帧, 因此需要通过子帧移位(shift ), 使得 eNB的 FDD 下行帧与中继器的 TDD下行帧在发送方向上错开, 至少使得 FDD频谱上 的 0、 5子帧和 TDD频谱上的 0、 5子帧在发送方向上错开, 即使中继器接 收到来自 eNB 的下行帧后不向终端发送相应的下行帧。 对 TDD configuration #0, 可以通过 shift两个子帧使中继器的第 0、 4、 5、 9子帧完 全错开 eNB的第 0、 1、 5、 6子帧, 其他配置的 TDD子帧通过 shift两个子 帧不能完全错开, 如无法使第 4、 9子帧错开, 则可将相应寻呼信息放置在 第 0、 5子帧上。
如图 12所示, 显示了采用 Configure #2的 TDD帧结构时对 HARQ时 序的设置。对 TDD configuration #2可以通过 shift三个子帧来调整中继器和 eNB之间 HARQ时序以及中继器和相应终端之间的 HARQ时序。 对 shift 后的子帧配置 HARQ, 以使当所述中继器接收到来自所述基站的下行子帧 时, 能在相应的上行子帧上进行反馈, 同时在向基站发送上行子帧时, 能 通过接收来自基站下行子帧的反馈进行确认。 当所述中继器向终端发送下 行子帧时, 能在相应的上行子帧上接收来自终端的反馈, 同时在接收来自 终端发送的上行子帧时, 能通过发送到终端的下行子帧的反馈进行确认。
可以理解, 对半双工的 FDD可以采用上述相似的方法进行上下行配置 来设计 HARQ时序。 图 8、 11、 12中所示的 HARQ配置方式只是一种示例 性的设置, 对不同配置的 TDD子帧, HARQ的配置的也不相同, 当采用与 现有中继***中的 HARQ兼容的方式时, 与根据本发明实施例的中继*** 重新配置 HARQ的方式也不同。
本发明实施例提供的技术方案, 通过 TDD方式和频分双工方式的互相 配合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有效解 决了中继***中的回环自干扰问题, 达到了较好的中继效果。 并且, 本发 明实施例的技术方案充分利用了现有 TDD***和频分双工***的资源, 在 执行中继时无需预留特定的***资源, 也无需增设额外的中继设备, 最大 程度地增加了***的容量, 降低了***的成本和消耗。
本发明实施例三提供了一种中继器, 所述中继器包括:
第一中继单元, 用于采用第一方式与基站进行通信; 第二中继单元, 用于在所述第一中继单元与基站采用第一方式进行通信的同时, 采用第二 方式与所述中继器所服务的终端之间进行通信;
其中, 所述第一方式为 TDD方式, 所述第二方式为频分双工方式; 或 者, 所述第一方式为频分双工方式, 所述第二方式为 TDD方式。
进一步的, 所述中继器还包括配置模块, 用于配置所述基站的子帧与 中继器的子帧的 HARQ时序,以满足所述基站与中继器之间的 HARQ和所 述中继器与该中继器所服务的终端之间的 HARQ。
当对 TDD方式和 FDD方式都采用双工方式通信时, 根据这种具体的 工作方式, 如图 13A所示, 所述中继器还包括: 时分收发模块 131和频分 收发模块 132,
所述时分收发模块 131,用于使所述第一中继单元采用时分双工方式与 基站进行通信, 以及, 使所述第二中继单元在所述第一中继单元与基站采 用频分双工方式进行通信的同时, 采用时分双工方式与所述中继器所服务 的终端之间进行通信;
所述频分收发模块 132,用于使所述第一中继单元采用频分双工方式与 基站进行通信, 以及, 使所述第二中继单元在所述第一中继单元与基站采 用时分双工方式进行通信的同时, 采用频分双工方式与所述中继器所服务 的终端之间进行通信。
这时, 所述第一中继单元还包括时分基带处理单元 133, 所述第二中继 单元还包括频分基带处理单元 134, 或者, 所述第一中继单元还包括频分基 带处理单元 134, 所述第二中继单元还包括时分基带处理单元 133, 这种情 况由图 13A中的虚线示出,
所述时分基带处理单元 133, 用于接收来自所述时分收发模块的数据, 进行相应处理后发送至所述频分基带处理单元, 或者, 接收来自所述频分 基带处理单元的数据, 进行相应处理后, 发送至所述时分收发模块;
所述频分基带处理单元 134, 用于接收来自所述频分收发模块的数据, 进行相应处理后发送至所述时分基带处理单元, 或者, 接收来自所述时分 基带处理单元的数据, 进行相应处理后, 发送至所述频分收发模块。
所述时分基带处理单元(Base Band Unit, BBU ) 133与所述频分基带 处理单元 134之间能够进行通信, 以保证时分方式与频分方式下相应数据 的交互。
其中, 参见图 14, 所第一中继单元或第二中继单元可以由图 14中所示 的中继通信模块实现。 上述的时分收发模块 131可以由 TDD切换器(TDD SWITCH )实现,时分基带处理单元 133用于对时分方式下的数据进行处理, 上述的频分收发模块 132可以由双工器(Duplexer )实现, 频分基带处理单 元 134用于对频分方式下的数据进行处理。其中, 图 14中还显示了在 TDD 方式下和在 FDD 方式下一些所需的单元, 如数 /模 ( D/A )转换模块, 模 / 数 (A/D)转换模块, 振荡器 (Oscilator ) , 时分载频锁相环 ( TDD Carrier Frequency PLL ), 频分载频锁相环( FDD Carrier Frequency PLL ), 功率放大 器(PA )和低噪声放大器(LNA )等, 图 14、 15中略去了本领域普通技术 人员根据已公开的内容可以获知的一些器件。
为了进一步减少中继器的硬件成本, 中继器可以在满足中继容量需求 的情况下采用半双工的方式完成中继回程链路和中继接入链路两条链路的 通信, 中继器在同一时刻只支持中继回程链路和中继接入链路的单边通信, 参见图 15, 中继器可以使用一套收发装置完成在中继回程链路和中继接入 链路两条链路的上 TDD和 FDD的通信, 这时, 参见图 13B, 所述中继器 还包括混频收发模块 135和混频基带处理单元 136,
所述混频收发模块 135,用于使所述第一中继单元采用第一方式与基站 进行通信, 以及, 使所述第二中继单元在所述第一中继单元与基站采用第 一方式进行通信的同时, 采用第二方式与所述中继器所服务的终端之间进 行通信。
上述混频基带处理单元 136具有同时对时分频段下的数据和频分频段 下的数据处理的功能。
根据中继时不同的处理方式, 所述中继器还包括第一中继控制模块或 第二中继控制模块,
所述第一中继控制模块, 用于在第一时刻, 只允许所述第一中继单元 接收所述基站通过第一方式发送的下行数据以及所述第二中继单元通过第 二方式将下行数据发送至所述终端; 在第二时刻, 只允许所述第二中继单 元接收所述终端通过第二方式发送的上行数据以及所述第一中继单元通过 第一方式将上行数据发送至所述基站。 这时, 需要在 TDD频带和 FDD频 带之间设置保护频带, 并采用滤波器消除 TDD/FDD邻频的干扰。
这时, 所述中继器还包括: 第一特殊子帧配置模块, 用于对于时分双工方式下的特殊子帧, 将与 所述特殊子帧对应的频分双工方式的下行子帧配置为多播组播单频网
MBSFN子帧或者去掉该下行子帧中的下行符号, 以避免当中继器接收终端
二特殊子帧配置模块, 用于对于时分双工方式下的特殊子帧, 去掉该下行 子帧中的下行符号, 以避免当中继器接收终端根据所述特殊子帧的上行导 频子帧 UPPTS符号发送的上行数据时, 接收到基站根据所述频分双工下行 子帧上的下行符号发送的下行数据。
或者,
本发明实施例中上述中继器在进行中继时, 还可以采用 HFDD方式, 这种方式下, 无需在 TDD频带和 FDD频带之间设置保护频带, 在一个时 刻只允许中继器同时接收数据或者同时发送数据, 这时, 可以采用所述第 二中继控制模块, 用于在第一时刻, 只允许所述第一中继单元接收所述基 站通过第一方式发送的下行数据和所述第二中继单元接收终端通过第二方 式发送的上行数据; 在第二时刻, 只允许所述第一中继单元通过第一方式 将上行数据发送至所述基站以及所述第二中继单元通过第二方式将下行数 据发送至所述终端, 其中, 所述第一时刻和第二时刻为不同的时刻。
这时, 所述中继器还包括:
子帧移位模块, 用于对所述基站或中继器时分双工方式下的子帧进行 移位, 以使当所述中继器接收到来自所述基站的同步 /广播 /寻呼子帧时, 所 述中继器不向相应终端发送该中继器的同步 /广播 /寻呼子帧。
参见图 15, 可以由 BBU实现对 TDD下和 FDD下数据的处理, 由射 频处理设备, 如 Duplexes 实现混频收发模块, 由单链路中继时分 /频分切 换器( Single-Link Relay Switch TDD/FDD ) 实现在不同载频点上的切换。
这种方式下中继器只需要一套上下行射频设备, 同时又能保证避免邻 频干扰的条件下重复利用 TDD频谱, 因此可以利用原先 LTE的 eNB*** 结构就可以完成 eNB-relay和 relay-UE两条链路的通信功能。
这种半双工结构下, 中继单元中的 BBU同时具有对 TDD LTE数据处 理的 TDD LTE功能和对 FDD LTE数据处理的 FDD LTE功能, Duplexer同 时处理 TDD LTE和 FDD LTE频段的信号。 这种结构下的中继器可以同时 进行 TDD LTE和 FDD LTE两种***的通信, 例如, 对于中继回程链路, 中继器通过 BBU的 TDD LTE功能在 TDD方式下进行数据通信, 在 BBU 处得到中继回程链路的数据后再提交给其 FDD LTE功能进行处理,由 FDD LTE功能完成中继接入链路的数据通信。
本发明装置实施例中各功能模块和单元的具体工作方式参见本发明方 法实施例。 本发明装置实施例中各功能模块和单元可以单独实现, 也可以 集成在一个或多个单元中实现。
本发明实施例还提供了一种通信***, 该***包括基站、 中继器和该 中继器所服务的终端, 基站和中继器之间采用第一方式进行通信; 在中继 器与基站采用第一方式进行通信的同时, 所述中继器和该中继器所服务的 终端之间采用第二方式进行通信; 或者, 基站和中继器之间采用第二方式 进行通信; 所述中继器和该中继器所服务的终端之间采用第一方式进行通 信。
本发明实施例提供的技术方案, 通过时分双工方式和频分双工方式的 互相配合实现了基站和中继器之间、 中继器和相应的终端之间的通信, 有 效解决了中继***中的回环自干扰问题, 实现高质量的中继通信, 满足了 用户的需要。 并且, 本发明实施例的技术方案充分利用了现有时分双工系 统和频分双工***的资源, 在执行中继时无需预留特定的***资源, 也无 需增设额外的中继设备, 最大程度地增加了***的容量, 降低了***的成 本和消耗。
本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用 硬件平台的方式来实现。 基于这样的理解, 本发明的技术方案本质上或者 说对现有技术做出贡献的部分可以软件产品的形式体现出来, 该计算机软 件产品可以存储在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干 指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设 备等 )执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种中继方法, 其特征在于, 所述方法包括:
改进的中继器采用第一方式与基站进行通信;
当所述中继器和所述基站之间采用第一方式进行通信的时, 所述中继 器和所述中继器所服务的终端之间采用第二方式进行通信;
其中, 所述第一方式为时分双工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工方式, 所述第二方式为时分双工方式。
2、 根据权利要求 1所述的中继方法, 其特征在于, 所述方法包括: 在带外中继的频分双工***中, 当所述中继器和所述基站之间采用时 分双工方式进行通信时, 所述中继器和所述中继器所服务的终端之间采用 频分双工方式进行通信; 或者
在带外中继的时分双工***中, 当所述中继器和所述基站之间采用频 分双工方式进行通信时, 所述中继器和所述中继器所服务的终端之间采用 时分双工方式进行通信; 或者
在带内中继的频分双工***中, 当所述中继器和所述基站之间采用频 分双工方式进行通信时, 所述中继器和所述中继器所服务的终端之间采用 时分双工方式进行通信; 或者,
在带内中继的时分双工***中, 当所述中继器和所述基站之间采用时 分双工方式进行通信时, 所述中继器和所述中继器所服务的终端之间采用 频分双工方式进行通信。
3、 根据权利要求 1所述的中继方法, 其特征在于, 所述方法包括: 在第一时刻, 只允许中继器接收所述基站通过第一方式发送的下行数 据以及所述中继器通过第二方式将下行数据发送至所述终端;
在第二时刻, 只允许所述中继器接收所述终端通过第二方式发送的上 行数据以及所述中继器通过第一方式将上行数据发送至所述基站;
其中, 所述第一时刻和第二时刻为不同的时刻, 所述中继器在第二时 刻时进行载频切换, 以使所述中继器第一时刻在时分双工频段上发送数据, 第二时刻在频分双工上发送数据, 或者所述中继器第一时刻在频分双工频 段上发送数据, 第二时刻在时分双工上发送数据, 以及所述中继器第一时 刻在时分双工频段上接收数据, 第二时刻在频分双工上接收数据, 或者, 所述中继器第一时刻在频分双工频段上接收数据, 第二时刻在时分双工上 接收数据。
4、 根据权利要求 3所述的中继方法, 其特征在于, 所述方法还包括: 对于时分双工方式下的特殊子帧, 将与所述特殊子帧对应的频分双工 方式的下行子帧配置为多播组播单频网 MBSFN子帧或者去掉该下行子帧 中的下行符号, 以避免当所述中继器接收终端根据所述特殊子帧的上行导 频子帧 UPPTS符号发送的上行数据时, 接收到基站根据所述频分双工下行 子帧上的下行符号发送的下行数据。
5、 根据权利要求 1所述的中继方法, 其特征在于, 所述方法包括: 在第一时刻, 只允许所述中继器接收所述基站通过第一方式发送的下 行数据和所述终端通过第二方式发送的上行数据;
在第二时刻, 只允许所述中继器通过第一方式将上行数据发送至所述 基站以及所述中继器通过第二方式将下行数据发送至所述终端;
其中, 所述第一时刻和第二时刻为不同的时刻。
6、 根据权利要求 5所述的中继方法, 其特征在于, 所述方法还包括: 对所述基站或所述中继器时分双工方式下的子帧进行移位, 以使当所 述中继器接收到来自所述基站的同步 /广播 /寻呼子帧时, 所述中继器不向相 应终端发送该中继器的同步 /广播 /寻呼子帧。
7、 根据权利要 1至 6任一项所述的方法, 其特征在于, 所述方法还包 括:
配置所述基站的子帧与所述中继器的子帧的混合自动重传请求 HARQ 时序, 以使满足所述基站与所述中继器之间的 HARQ和所述中继器与所述 中继器所服务的终端之间的 HARQ。
8、 一种中继器, 其特征在于, 所述中继器包括: 第一中继单元, 用于采用第一方式与基站进行通信;
第二中继单元, 用于当所述第一中继单元与基站采用第一方式进行通 信的时, 采用第二方式与所述中继器所服务的终端之间进行通信;
其中, 所述第一方式为时分双工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工方式, 所述第二方式为时分双工方式。
9、 根据权利要求 8所述的中继器, 其特征在于, 所述中继器还包括时 分收发模块和频分收发模块,
所述时分收发模块, 用于使所述第一中继单元采用时分双工方式与所 述基站进行通信, 以及, 当在所述第一中继单元与所述基站采用频分双工 方式进行通信的时, 使所述第二中继单元采用时分双工方式与所述中继器 所服务的终端之间进行通信;
所述频分收发模块, 用于使所述第一中继单元采用频分双工方式与所 述基站进行通信, 以及, 当所述第一中继单元与所述基站采用时分双工方 式进行通信的时, 使所述第二中继单元采用频分双工方式与所述中继器所 服务的终端之间进行通信。
10、 根据权利要求 8所述的中继器, 其特征在于, 所述中继器还包括 混频收发模块,
所述混频收发模块, 用于使所述第一中继单元采用第一方式与所述基 站进行通信, 以及, 当所述第一中继单元与所述基站采用第一方式进行通 信的时, 使所述第二中继单元采用第二方式与所述中继器所服务的终端之 间进行通信。
11、 根据权利要求 10所述的中继器, 其特征在于, 所述中继器还包括 第一中继控制模块或第二中继控制模块,
所述第一中继控制模块, 用于在第一时刻, 只允许所述第一中继单元 接收所述基站通过第一方式发送的下行数据以及所述第二中继单元通过第 二方式将下行数据发送至所述终端; 在第二时刻, 只允许所述第二中继单 元接收所述终端通过第二方式发送的上行数据以及所述第一中继单元通过 第一方式将上行数据发送至所述基站;
所述第二中继控制模块, 用于在第一时刻, 只允许所述第一中继单元 接收所述基站通过第一方式发送的下行数据和所述第二中继单元接收终端 通过第二方式发送的上行数据; 在第二时刻, 只允许所述第一中继单元通 过第一方式将上行数据发送至所述基站以及所述第二中继单元通过第二方 式将下行数据发送至所述终端;
其中, 所述第一时刻和第二时刻为不同的时刻。
12、 根据权利要求 11所述的中继器, 其特征在于, 当采用所述第一中 继控制模块时, 所述中继器还包括:
第一特殊子帧配置模块, 用于对于时分双工方式下的特殊子帧, 将与 所述特殊子帧对应的频分双工方式的下行子帧配置为多播组播单频网 MBSFN子帧或者去掉该下行子帧中的下行符号, 以避免当中继器接收终端
第二特殊子帧配置模块, 用于对于时分双工方式下的特殊子帧, 去掉 该下行子帧中的下行符号, 以避免当中继器接收终端根据所述特殊子帧的 上行导频子帧 UPPTS符号发送的上行数据时, 接收到基站根据所述频分双 工下行子帧上的下行符号发送的下行数据。
13、 根据权利要求 11所述的中继器, 其特征在于, 当采用所述第二中 继控制模块时, 所述中继器还包括:
子帧移位模块, 用于对所述基站或中继器时分双工方式下的子帧进行 移位, 以使当所述中继器接收到来自所述基站的同步 /广播 /寻呼子帧时, 所 述中继器不向相应终端发送该中继器的同步 /广播 /寻呼子帧。
14、 根据权利要求 8至 13任一项所述的中继器, 其特征在于, 所述中 继器还包括配置模块,
所述配置模块, 用于配置所述基站的子帧与中继器的子帧的 HARQ时 序, 以满足所述基站与中继器之间的 HARQ和所述中继器与该中继器所服 务的终端之间的 HARQ。
15、 一种通信***, 其特征在于, 所述***包括基站、 中继器和该中 继器所服务的终端,
所述中继器和所述基站之间采用第一方式进行通信的同时, 所述中继 器和所述终端之间采用第二方式进行通信;
其中, 所述第一方式为时分双工方式, 所述第二方式为频分双工方式; 或者, 所述第一方式为频分双工方式, 所述第二方式为时分双工方式。
PCT/CN2010/077866 2009-10-19 2010-10-19 一种中继方法、设备和*** WO2011047616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101805327A CN102045779A (zh) 2009-10-19 2009-10-19 一种中继方法、设备和***
CN200910180532.7 2009-10-19

Publications (1)

Publication Number Publication Date
WO2011047616A1 true WO2011047616A1 (zh) 2011-04-28

Family

ID=43899832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077866 WO2011047616A1 (zh) 2009-10-19 2010-10-19 一种中继方法、设备和***

Country Status (2)

Country Link
CN (1) CN102045779A (zh)
WO (1) WO2011047616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029129A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 無線通信システム、地上基地局、空中基地局、及び無線通信方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841631B (zh) * 2012-11-20 2017-06-27 华为技术有限公司 一种基于自干扰消除技术的通信方法、基站及通信***
CN104244337A (zh) * 2014-09-02 2014-12-24 余凤莲 一种lte双模中继网络的优化传输***
US10645703B2 (en) * 2014-12-23 2020-05-05 Sony Corporation Methods, infrastructure unit, base station and network unit
CN106131923B (zh) * 2016-06-30 2020-03-27 厦门纵行信息科技有限公司 一种混合接入模式多跳网络的组网方法及无线通信设备
CN108990153B (zh) 2017-06-02 2021-05-14 维沃移动通信有限公司 一种针对终端自干扰的传输方法、相关设备和***
CN107634792A (zh) * 2017-09-04 2018-01-26 上海华为技术有限公司 一种接入回传共站干扰抑制的方法、设备及网络设备
US11824620B2 (en) 2019-09-05 2023-11-21 Qualcomm Incorporated Remote unit with a configurable mode of operation
US11671168B2 (en) * 2019-09-05 2023-06-06 Qualcomm Incorporated Relay with a configurable mode of operation
CN113890584B (zh) * 2021-08-25 2023-03-24 力同科技股份有限公司 对讲中继***及其射频收发控制方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098207A2 (ja) * 2003-04-28 2004-11-11 Matsushita Electric Works Ltd. 無線中継器
CN101119153A (zh) * 2006-08-03 2008-02-06 中兴通讯股份有限公司 一种无线数字中继***和传输时间间隔选取方法
CN101137204A (zh) * 2006-08-30 2008-03-05 华为技术有限公司 移动通信***及移动通信方法
CN101527916A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 在正交频分复用***中存在中继站时控制信道的复用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098207A2 (ja) * 2003-04-28 2004-11-11 Matsushita Electric Works Ltd. 無線中継器
CN101119153A (zh) * 2006-08-03 2008-02-06 中兴通讯股份有限公司 一种无线数字中继***和传输时间间隔选取方法
CN101137204A (zh) * 2006-08-30 2008-03-05 华为技术有限公司 移动通信***及移动通信方法
CN101527916A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 在正交频分复用***中存在中继站时控制信道的复用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029129A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 無線通信システム、地上基地局、空中基地局、及び無線通信方法

Also Published As

Publication number Publication date
CN102045779A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2011047616A1 (zh) 一种中继方法、设备和***
US9660749B2 (en) Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same
US9831990B2 (en) Communication system, method, base station, and communication device
EP2524451B1 (en) Apparatus and method for relay switching time
US8761074B2 (en) Relay backhaul in wireless communication
JP5956634B2 (ja) 無線通信システムにおけるリレーノードのための探索空間設定方法及びそのための装置
US9131494B2 (en) Method for backhaul subframe setting between a base station and a relay node in a wireless communication system and a device therefor
KR101740445B1 (ko) 무선 통신 시스템에서 릴레이 노드로 제어 채널을 송신하는 방법 및 이를 위한 장치
KR20160116330A (ko) 이중 접속을 구현하기 위한 방법 및 장치
WO2013111601A1 (en) Control channel design for relay node backhaul
US20110103269A1 (en) Wireless communication system and relay station and wireless communication device thereof
IL194097A (en) Activation of a wireless subscription terminal in a number of cells based on OFDMA
US9119174B2 (en) Method and device for user equipment transmitting ACK/NACK signals to relay node in a wireless communication system
US20230180248A1 (en) Method for operating iab node connected to plurality of parent nodes in wireless communication system, and apparatus using method
TWI444083B (zh) 無線通訊系統及其中繼通訊裝置與無線通訊裝置
Khan et al. LTE advanced: Necessities and technological challenges for 4th generation mobile network
US20130286931A1 (en) Method and device for transmitting an uplink signal from a relay node to a base station in a wireless communication system
WO2011038621A1 (zh) 一种下行控制信息的发送方法和发送装置
EP4383895A1 (en) Method for operating iab node in wireless communication system, and device using method
US20230247571A1 (en) Handling of collision with ssb for ntn
Jia et al. A cut-through scheduling for delay optimization in TD-LTE relay enhanced networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824457

Country of ref document: EP

Kind code of ref document: A1