WO2021029129A1 - 無線通信システム、地上基地局、空中基地局、及び無線通信方法 - Google Patents

無線通信システム、地上基地局、空中基地局、及び無線通信方法 Download PDF

Info

Publication number
WO2021029129A1
WO2021029129A1 PCT/JP2020/022899 JP2020022899W WO2021029129A1 WO 2021029129 A1 WO2021029129 A1 WO 2021029129A1 JP 2020022899 W JP2020022899 W JP 2020022899W WO 2021029129 A1 WO2021029129 A1 WO 2021029129A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless communication
signal
terrestrial
transmission
Prior art date
Application number
PCT/JP2020/022899
Other languages
English (en)
French (fr)
Inventor
悠貴 外園
祥久 岸山
坪井 淳
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2021029129A1 publication Critical patent/WO2021029129A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a wireless communication system using a base station located at a high altitude, a ground base station, an aerial base station, and a wireless communication method.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • NR New Radio
  • NG Next Generation
  • 5G Time Division Duplex
  • UL uplink
  • DL downlink
  • 5G a system that uses a base station located at high altitude as a relay station is being studied as a relay technology for stable communication with a high-speed mobile body in the air such as an aircraft.
  • HAPS High-Altitude Platform Station
  • the wireless communication between the ground base station and the aerial base station is much longer than the wireless communication between the ground base stations (ultra-long-distance communication). It becomes.
  • TDD wireless communication when the communication distance becomes long, it is necessary to lengthen the guard time for switching DL / UL communication in consideration of the transmission delay due to the communication distance.
  • 5G it is necessary to shorten the DL / UL switching cycle from the viewpoint of ultra-high reliability and low latency communication (URLLC).
  • the DL / UL switching cycle in 5G is assumed to be a short cycle such as 125 ⁇ s.
  • the guard time required for communication with a base station (relay station) located at an altitude of 20 km is about 67 ⁇ s.
  • the ratio of guard time to the DL / UL switching cycle becomes large, and the frequency utilization efficiency may decrease and the transmission efficiency may decrease.
  • the present invention has been made in view of such a situation, and a wireless communication system, a ground base station, an aerial base station, and a radio base station that can prevent a decrease in transmission efficiency even when a base station located at a high altitude is used.
  • the purpose is to provide a wireless communication method.
  • the wireless communication system (wireless communication system 10) is a time-divided duplex system wireless communication and a frequency-divided duplex system in transmitting an uplink signal and a downlink signal in bidirectional wireless communication.
  • a ground base station ground base station 100
  • the frequency division and duplex wireless communication is executed, and an aerial base station located in high altitude (air).
  • the base station 200 and a terrestrial wireless communication device terrestrial wireless communication device 300 that executes the time-division multiplex wireless communication in the two-way wireless communication with the terrestrial base station are provided.
  • the ground base station frequency-divides the transmission of an uplink signal and a downlink signal in bidirectional wireless communication with an aerial base station (air base station 200) located at a high altitude.
  • an uplink signal and a downlink signal are used in bidirectional wireless communication between a first communication unit (FDD base station unit 101) that executes wireless communication using a duplex method and a terrestrial wireless communication device (terrestrial wireless communication device 300). It is provided with a second communication unit (TDD base station unit 102) that executes wireless communication using the time division duplex system for transmission.
  • FDD base station unit 101 that executes wireless communication using a duplex method
  • a terrestrial wireless communication device terrestrial wireless communication device
  • TDD base station unit 102 that executes wireless communication using the time division duplex system for transmission.
  • the aerial base station uses a time-division duplex system for transmission of an uplink signal and a downlink signal to and from a terrestrial wireless communication device (terrestrial wireless communication device 300).
  • a terrestrial wireless communication device terrestrial wireless communication device 300.
  • bidirectional wireless communication using the frequency division duplex system is executed for transmission of the uplink signal and the downlink signal, and the location is located at a high altitude.
  • the wireless communication method executes two-way wireless communication using a frequency division duplex method for transmission of an uplink signal and a downlink signal between an aerial base station located at a high altitude and a ground base station. This includes a step of executing bidirectional wireless communication using a time division duplex system for transmission of an uplink signal and a downlink signal between the terrestrial wireless communication device and the terrestrial base station.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram illustrating interference when FDD communication and TDD communication are shared.
  • FIG. 3 is a diagram showing a configuration example of the ground base station 100.
  • FIG. 4 is a diagram showing a configuration example of the ground base station 100a.
  • FIG. 5 is a diagram showing a configuration example of the terrestrial wireless communication device 300.
  • FIG. 6 is a diagram showing a configuration example of the aerial base station 200.
  • FIG. 7 is an overall schematic configuration diagram of the wireless communication system 10a.
  • FIG. 8 is an overall schematic configuration diagram of the wireless communication system 10b.
  • FIG. 9 is an overall schematic configuration diagram of the wireless communication system 10c.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the terrestrial base station 100, 100a, the aerial base station 200, the terrestrial wireless communication device 300, and the wireless communication device 400,500.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is, for example, a wireless communication system according to Long Term Evolution (LTE) and 5th generation mobile communication system (5G), and further, a wireless communication system according to the next-generation mobile communication system. There may be.
  • the wireless communication system 10 includes a ground base station 100, an aerial base station 200 located at a high altitude, and a ground wireless communication device 300.
  • the terrestrial base station 100 is a radio base station located on the ground, and in the transmission of an uplink signal (Uplink (UL) signal) and a downlink signal (Downlink (DL) signal) in bidirectional wireless communication with a communication partner, It supports Time Division Duplex (TDD: Time Division Duplex) wireless communication and Frequency Division Duplex (FDD: Frequency Division Duplex) wireless communication.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Ground base stations are sometimes referred to by terms such as eNodeB (eNB) and gNodeB (gNB).
  • the aerial base station 200 is an aerial floating body such as a balloon, an unmanned airship, an unmanned airplane, or a base station mounted on an aerial vehicle and located at a high altitude, and is a UL signal and a DL signal in two-way wireless communication with a communication partner. Supports at least FDD wireless communication (FDD communication) in transmission with. TDD system wireless communication (TDD communication) may be supported.
  • FDD communication FDD communication
  • HAPS High-Altitude Platform Station
  • HAPS High-Altitude Platform Station
  • the altitude here is intended to be about 2km to 100km as an example. As a narrower range, an altitude of about 8 to 60 km, which is the same as that of the stratosphere, may be intended.
  • the present invention is not limited to the above-exemplified altitude range.
  • the terrestrial wireless communication device 300 is a wireless communication device used on the ground, and supports at least TDD communication in the transmission of UL signal and DL signal in two-way wireless communication with a communication partner. FDD communication may be supported.
  • the terrestrial wireless communication device 300 is, for example, various wireless communication terminals such as a user device (UE), a wireless communication device mounted on a train, an automobile, or the like.
  • the terrestrial wireless communication device 300 can be used either as a fixed device or as a mobile device.
  • the above-ground includes structures other than the ground surface such as above and inside structures installed on the ground such as buildings and viaducts.
  • the ground base station 100 uses FDD communication for transmission of UL signal and DL signal in bidirectional wireless communication with the aerial base station 200 having a long communication distance. Further, the terrestrial base station 100 performs TDD for transmission of UL signal and DL signal in bidirectional wireless communication with the terrestrial wireless communication device 300, which is a communication of a communication distance in which a decrease in frequency utilization efficiency due to TDD communication does not become a major problem. Use communication.
  • the direction toward the air base station 200 is the UL direction
  • the direction toward the ground base station 100 is the DL direction.
  • the wireless communication system 10 may use a carrier wave having the same frequency as the TDD communication for UL or DL in FDD communication between the terrestrial base station 100 and the terrestrial wireless communication device 300.
  • the carrier frequency used in TDD communication on the ground can be applied to FDD communication with the aerial base station 200 located in the high altitude, and FDD communication and TDD communication can be shared more easily.
  • FDD communication is used for bidirectional wireless communication between the ground base station 100 and the aerial base station 200 located at a high altitude, which has a long communication distance.
  • the required guard band at the time of DL / UL communication switching becomes unnecessary, and it is possible to prevent a decrease in frequency utilization efficiency due to DL / UL communication switching.
  • communication can be performed while preventing a decrease in transmission efficiency.
  • TDD communication is performed between the terrestrial base station 100 and the terrestrial wireless communication device 300, the advantages of TDD communication can be utilized at the same time.
  • the wireless communication system 10 includes a step of executing bidirectional wireless communication using the FDD method for transmission of the UL signal and the DL signal between the aerial base station 200 and the ground base station 100 located at high altitude.
  • a wireless communication method including a step of executing bidirectional wireless communication using the TDD method for transmission of a UL signal and a DL signal is executed between the terrestrial wireless communication device 300 and the terrestrial base station 100.
  • FIG. 2 is a diagram for explaining interference when FDD communication and TDD communication are shared.
  • FIGS. 2 (1)-(3) show the carrier frequency of the downlink (DL) (carrier frequency of the communication path in the direction of the ground base station 100) in the FDD communication between the ground base station 100 and the aerial base station 200. It shows the interference that may occur when the carrier frequency used in the TDD communication between the terrestrial base station 100 and the terrestrial radio communication device 300 is the same.
  • FIGS. 2 (1) and 2 (5) are explanatory diagrams of self-interference that may occur at the ground base station 100.
  • interference between the FDD communication reception signal and the TDD communication transmission signal is considered.
  • interference between the FDD communication transmission signal and the TDD communication reception signal is considered.
  • FIG. 2 (2) is an explanatory diagram of multi-user interference that may occur at the ground base station 100.
  • the FDD antenna of the terrestrial base station 100 may receive the transmission signal from the terrestrial wireless communication device 300. is there.
  • interference between the received signal received from the terrestrial wireless communication device 300 by the FDD antenna and the received signal received from the aerial base station 200 by the FDD antenna can be considered. It is considered that this interference is unlikely to occur except when a large number of terrestrial wireless communication devices 300 simultaneously transmit signals to the terrestrial base station 100.
  • FIG. 2 (3) is an explanatory diagram of multi-user interference that may occur in the terrestrial wireless communication device 300.
  • Interference caused by the signal transmitted from the aerial base station 200 to the terrestrial base station 100 being directly received from the aerial base station 200 by the terrestrial wireless communication device 300 is considered. That is, the signal transmitted from the aerial base station 200 to the terrestrial base station 100 is received directly from the aerial base station 200 by the terrestrial wireless communication device 300 and the terrestrial wireless communication device 300 is received from the terrestrial base station 100. Interference with the received signal is considered.
  • the signal transmitted from the aerial base station 200 to the terrestrial base station 100 and the received signal received directly from the aerial base station 200 by the terrestrial wireless communication device 300 are often weak power.
  • FIG. 2 (4) is an explanatory diagram of multi-user interference that may occur in the aerial base station 200.
  • the signal transmitted from the terrestrial wireless communication device 300 to the terrestrial base station 100 is directly received from the terrestrial wireless communication device 300 by the aerial base station 200, causing interference. That is, the signal transmitted from the terrestrial wireless communication device 300 to the terrestrial base station 100 receives the received signal directly from the terrestrial wireless communication device 300 at the aerial base station 200 and the aerial base station 200 receives from the terrestrial base station 100. Interference with the received signal is considered. It is considered that this interference is unlikely to occur except when a large number of terrestrial wireless communication devices 300 simultaneously transmit signals to the terrestrial base station 100.
  • FIG. 2 (6) is an explanatory diagram of side lobe interference that may occur in the terrestrial wireless communication device 300.
  • sidelobe interference occurs in the received signal of the terrestrial wireless communication device 300 due to the influence of the directivity of the transmitting / receiving antenna of the terrestrial wireless communication device 300. Can be considered.
  • FIG. 3 is a configuration example of the ground base station 100.
  • the terrestrial base station 100 includes an FDD base station unit (first communication unit) 101 that performs FDD system wireless communication (FDD communication) and a TDD base station unit 102 (second communication unit) that performs TDD system wireless communication (TDD communication).
  • FDD base station unit first communication unit
  • TDD base station unit 102 second communication unit
  • TDD communication TDD system wireless communication
  • the main body 103 includes a CPU (Central Processing Unit), manages signals to be transmitted and received, and controls the entire ground base station 100.
  • CPU Central Processing Unit
  • the main body 103 may control the priority of the signal transmitted by the TDD base station 102 in consideration of the interference caused by the sharing of the FDD communication and the TDD communication in the ground base station 100. That is, the main unit 103 may control the priority of the signal transmitted by the TDD base station unit 102 at the timing when the occurrence of interference due to the sharing of FDD communication and TDD communication is predicted. For example, in the main body 103, at the timing when the FDD base station 101 receives a signal from the aerial base station 200, which is the timing at which interference is likely to occur, the TDD base station 102 is more than the transmission signal at other timings. Control to transmit a low priority signal. As a result, it is possible to reduce the adverse effect of interference when transmitting a high-priority signal.
  • the transmission signal supplied from the main body section 103 to the control section 104 is processed by the digital transmission section 105 and the analog transmission section 106 and supplied to the FDD transmission antenna 107 among the FDD antennas 114. ..
  • the transmission signal is transmitted from the FDD transmission antenna 107 to the aerial base station 200.
  • the received signal received from the aerial base station 200 by the FDD receiving antenna 108 among the FDD antennas 114 is processed by the analog receiving unit 110 and the digital receiving unit 111 and supplied to the control unit 104.
  • the control unit 104 supplies the received signal to the main unit 103.
  • the FDD base station section 101 is provided with an analog cancel section 112 and a digital cancel section 113 for removing interference between transmission / reception signals due to FDD communication, as in the conventional case.
  • the analog canceling unit 112 generates a canceling signal having the same amplitude in the opposite phase of the transmission signal that is the output of the analog transmitting unit 106. Then, the cancellation signal is added by the addition unit 109 to the reception signal received by the FDD reception antenna 108, and the transmission signal component that has entered the reception signal is removed.
  • the output of the adder 109 is supplied to the analog receiver 110.
  • the digital canceling unit 113 removes unnecessary signal components that could not be completely removed by the analog canceling unit 112.
  • the digital canceling unit 113 generates a canceling signal from the reception signal output from the analog receiving unit 110 and the transmitting signal output from the digital transmitting unit 105. Then, by supplying the cancel signal to the digital receiving unit 111, unnecessary signal components are removed from the received signal.
  • the TDD base station unit 102 processes the transmission signal supplied from the main unit 103 to the control unit 121 by the digital transmission unit 122 and the analog transmission unit 123, and supplies the transmission signal to the transmission / reception switching unit 124.
  • the transmission / reception switching unit 124 supplies the transmission signal to the TDD transmission / reception antenna 125 at the time of signal transmission.
  • the transmission / reception antenna 125 for TDD transmits a transmission signal to a terrestrial wireless communication device 300 such as a user terminal.
  • the received signal received from the terrestrial wireless communication device 300 by the TDD transmission / reception antenna 125 is supplied to the transmission / reception switching unit 124.
  • the transmission / reception switching unit 124 supplies the received signal to the analog receiving unit 126 when the signal is received.
  • the received signal is processed by the analog receiving unit 126 and the digital receiving unit 127, and is supplied to the control unit 121.
  • the control unit 121 supplies the received signal to the main body unit 103.
  • the FDD antenna 114 and the TDD transmitting / receiving antenna 125 are physically arranged independently. You may do so.
  • the FDD antenna 114 and the TDD transmitting / receiving antenna 125 are arranged at a predetermined distance.
  • the FDD antenna 114 is physically arranged separately from the base station main body 130 (the portion of the ground base station 100 shown in FIG. 3 excluding the FDD antenna 114).
  • FIG. 7 shows a wireless communication system 10a as an example in which the FDD antenna 114 is arranged as a separate body independent of the base station main body 130.
  • the FDD antenna 114 is arranged at a predetermined distance from the base station main body 130.
  • the FDD antenna 114 and the base station main body 130 may be connected wirelessly or by wire. Separating the FDD antenna 114 from the TDD transmitting / receiving antenna 125 and arranging them independently reduces the self-interference that may occur in the ground base station as described in FIGS. 2 (1) and 2 (5). It also has the effect of making it.
  • the directivity directions of the FDD antenna 114 and the TDD transmission / reception antenna 125 may be controlled.
  • the directivity direction of the FDD antenna 114 is narrower than that of the TDD transmission / reception antenna 125, and the directivity direction of the FDD antenna 114 and the direction direction of the TDD transmission / reception antenna 125 are different directions.
  • FIG. Shown in. The parts that operate in the same manner as the ground base station 100 shown in FIG. 3 are designated by the same reference numerals, and detailed description of the parts will be omitted.
  • the interference canceling unit 140 includes an analog canceling unit 112a and a digital canceling unit 113a, and an analog canceling unit 142 and a digital canceling unit 143.
  • the analog canceling unit 112a and the digital canceling unit 113a also perform an operation of reducing interference between transmission / reception signals due to FDD communication in the FDD base station unit 101. This operation is the same as that of the ground base station 100 shown in FIG.
  • the analog cancel section 112a and the digital cancel section 113a further reduce the self-interference that may occur at the ground base station by sharing FDD communication and TDD communication. That is, the interference between the transmission signal of the FDD base station section 101 and the reception signal of the TDD base station section 102 described in FIG. 2 (5) is reduced. Here, interference is reduced by removing the transmission signal component of the FDD base station 101 from the reception signal of the TDD base station 102.
  • the analog canceling unit 112a generates a canceling signal (for example, a canceling signal having the same amplitude in the opposite phase of the transmission signal) based on the transmission signal that is the output of the analog transmission unit 106 of the FDD base station unit 101. Then, the cancellation signal is added by the addition unit 144 to the reception signal received by the TDD transmission / reception antenna 125, and the transmission signal component of the FDD base station unit 101 that has entered the reception signal of the TDD base station unit 102 is removed. .. The output of the adder 144 is supplied to the analog receiver 126.
  • a canceling signal for example, a canceling signal having the same amplitude in the opposite phase of the transmission signal
  • the digital canceling unit 113a removes unnecessary signal components that could not be completely removed by the analog canceling unit 112a.
  • the digital canceling unit 113a generates a canceling signal from the reception signal of the TDD base station unit 102 output from the analog receiving unit 126 and the transmission signal of the FDD base station unit 101 output from the digital transmitting unit 105. Then, by supplying the cancel signal to the digital receiving unit 127, unnecessary signal components are removed from the received signal on the TDD side.
  • the analog canceling unit 142 and the digital canceling unit 143 of the interference canceling unit 140 reduce self-interference that may occur at the ground base station by sharing FDD communication and TDD communication. That is, the interference between the reception signal of the FDD base station section 101 and the transmission signal of the TDD base station section 102 described in FIG. 2 (1) is reduced.
  • interference is reduced by removing the transmission signal component of the TDD base station 102 from the reception signal of the FDD base station 101.
  • the analog canceling unit 142 generates a canceling signal (for example, a canceling signal having the same amplitude in the opposite phase of the transmission signal) based on the transmission signal which is the output of the analog transmission unit 123 of the TDD base station unit 102. Then, the cancellation signal is added by the addition unit 109 to the reception signal received by the FDD reception antenna 108, and the transmission signal component of the TDD base station unit 102 that has entered the reception signal of the FDD base station unit 101 is removed. .. The output of the adder 109 is supplied to the analog receiver 110.
  • a canceling signal for example, a canceling signal having the same amplitude in the opposite phase of the transmission signal
  • the digital canceling unit 143 removes unnecessary signal components that could not be completely removed by the analog canceling unit 142.
  • the digital cancel unit 143 generates a cancellation signal from the reception signal of the FDD base station unit 101 output from the analog reception unit 110 and the transmission signal of the TDD base station unit 102 output from the digital transmission unit 122. Then, by supplying the cancel signal to the digital receiving unit 111, unnecessary signal components are removed from the received signal on the FDD side.
  • the interference canceling unit 140 may be controlled to operate only at the timing when interference due to sharing between FDD communication and TDD communication is predicted to occur. As a result, power consumption and signal processing amount can be reduced.
  • a configuration example of a terrestrial wireless communication device 300 provided with an interference canceling unit 340 Is shown in FIG.
  • the interference generated by the signal transmitted from the air base station 200 to the ground base station 100 being directly received from the air base station 200 by the terrestrial radio communication device 300 is reduced. That is, in the interference canceling unit 340, the signal transmitted from the air base station 200 to the ground base station 100 is directly received from the air base station 200 by the ground radio communication device 300, and the ground radio communication device 300 It reduces interference with the received signal received from the ground base station 100.
  • the transmission signal supplied from the main unit 303 to the control unit 321 is processed by the digital transmission unit 322 and the analog transmission unit 323 and supplied to the transmission / reception switching unit 324.
  • the transmission / reception switching unit 324 supplies the transmission signal to the TDD transmission / reception antenna 325 at the time of signal transmission.
  • the transmission / reception antenna 325 for TDD transmits a transmission signal to the ground base station 100.
  • the received signal received from the ground base station 100 by the TDD transmission / reception antenna 325 is supplied to the transmission / reception switching unit 324.
  • the transmission / reception switching unit 324 supplies the received signal to the analog receiving unit 326 when the signal is received.
  • the received signal is processed by the analog receiving unit 326 and the digital receiving unit 327 and supplied to the control unit 321.
  • the control unit 321 supplies the received signal to the main unit 303.
  • the interference canceling unit 340 includes an analog canceling unit 342 and a digital canceling unit 343.
  • the terrestrial wireless communication device 300 stores the signal patterns (received digital signal pattern and received analog signal pattern) of the signal directly received from the aerial base station 200 in the main body 303 in advance, and interferes based on the received signal pattern. An example of reducing the above will be described.
  • the analog canceling unit 342 is supplied with a received analog signal pattern from the main body unit 303, and generates a canceling signal based on the received analog signal pattern. Then, the cancellation signal is added to the reception signal received by the TDD transmission / reception antenna 325 by the addition unit 344, and the reception received directly from the aerial base station 200 that has entered the reception signal received from the ground base station 100. Remove the signal component.
  • the output of the adder 344 is supplied to the analog receiver 326.
  • the digital canceling unit 343 removes unnecessary signal components that could not be completely removed by the analog canceling unit 342.
  • the digital canceling unit 343 supplies a received digital signal pattern from the main body 303, and generates a canceling signal based on the received digital signal pattern. Then, by supplying the canceling signal to the digital receiving unit 327, unnecessary signal components are removed from the received signal received from the ground base station 100.
  • the signal patterns (received analog signal pattern and received digital signal pattern) received by the ground base station 100 from the aerial base station 200 may be used for interference cancellation.
  • the terrestrial wireless communication device 300 requests the terrestrial base station 100 to acquire the received signal pattern, and reduces the interference based on the received signal pattern.
  • FIG. 5 shows that the received analog signal pattern and the received digital signal pattern are transmitted from the ground base station 100 to the analog canceling unit 342 and the digital canceling unit 343. This is schematically shown.
  • the received analog signal pattern and the received digital signal pattern are received from the ground base station 100 by the TDD transmission / reception antenna 325, stored in a memory or the like, and analog canceled from the memory. It is supplied to the unit 342 and the digital cancel unit 343.
  • the analog canceling unit 342 is supplied with a received analog signal pattern acquired from the ground base station 100, and generates a canceling signal based on the received analog signal pattern.
  • the digital canceling unit 343 is supplied with a received digital signal pattern acquired from the ground base station 100, and generates a canceling signal based on the received digital signal pattern. Others are the same operations as the above-mentioned example of obtaining the received signal pattern from the main body 303.
  • the interference canceling unit 340 may be controlled so as to operate only at the timing when the occurrence of interference is predicted. As a result, power consumption and signal processing amount can be reduced.
  • the terrestrial wireless communication device 300 may be provided with an interference canceling unit for reducing interference due to the side lobes described in FIG. 2 (6).
  • FIG. 6 shows a configuration example of the aerial base station 200 provided with the interference canceling unit 240 as a measure for reducing the multi-user interference that may occur in the aerial base station described in FIG. 2 (4).
  • the interference caused by the signal transmitted from the terrestrial radio communication device 300 to the terrestrial base station 100 being directly received from the terrestrial radio communication device 300 by the aerial base station 200 is reduced. That is, in the interference canceling unit 240, the signal transmitted from the terrestrial wireless communication device 300 to the terrestrial base station 100 is directly received from the terrestrial wireless communication device 300 by the aerial base station 200, and the aerial base station 200 It reduces interference with the received signal received from the ground base station 100.
  • the transmission signal supplied from the main unit 203 to the control unit 204 is processed by the digital transmission unit 205 and the analog transmission unit 206 and transmitted for FDD in the FDD antenna 214.
  • the transmission signal is transmitted from the FDD transmission antenna 207 to the terrestrial base station 100.
  • the received signal received from the ground base station 100 by the FDD receiving antenna 208 of the FDD antennas 214 is processed by the analog receiving unit 210 and the digital receiving unit 211 and supplied to the control unit 204.
  • the control unit 204 supplies the received signal to the main unit 203.
  • the interference canceling unit 240 provided in the aerial base station 200 includes an analog canceling unit 212 and a digital canceling unit 213.
  • the interference canceling unit 240 also operates as an interference canceling unit for removing interference between transmission / reception signals due to FDD communication, as in the conventional case. This operation will be described.
  • the analog canceling unit 212 generates a canceling signal having the same amplitude in the opposite phase of the transmission signal that is the output of the analog transmitting unit 206. Then, the cancellation signal is added by the addition unit 209 to the reception signal received by the FDD reception antenna 208, and the transmission signal component that has entered the reception signal is removed. The output of the adder 209 is supplied to the analog receiver 210.
  • the digital canceling unit 213 removes unnecessary signal components that could not be completely removed by the analog canceling unit 212.
  • the digital canceling unit 213 generates a canceling signal from the reception signal output from the analog receiving unit 210 and the transmitting signal output from the digital transmitting unit 205. Then, by supplying the cancel signal to the digital receiving unit 211, unnecessary signal components are removed from the received signal.
  • the signal patterns (received digital signal pattern and received analog signal pattern) of the signal directly received by the aerial base station 200 from the terrestrial wireless communication device 300 are stored in the main body 203 in advance.
  • the analog canceling unit 212 is supplied with a received analog signal pattern from the main body unit 203, and generates a canceling signal based on the received analog signal pattern.
  • the cancellation signal is added by the addition unit 209 to the reception signal received by the FDD reception antenna 208.
  • unnecessary signal components added due to interference of the received signal directly received from the terrestrial wireless communication device 300 are removed from the received signal received from the terrestrial base station 100.
  • the output of the adder 209 is supplied to the analog receiver 210.
  • the digital canceling unit 213 removes unnecessary signal components that could not be completely removed by the analog canceling unit 212.
  • the digital cancel unit 213 is supplied with a received digital signal pattern from the main body unit 203, and generates a cancel signal based on the received digital signal pattern. Then, by supplying the cancellation signal to the digital receiving unit 211, the unnecessary signal component added due to the interference of the received signal received from the terrestrial wireless communication device 300 is removed from the received signal received from the terrestrial base station 100. ..
  • the interference canceling unit 340 may be controlled so as to operate only at the timing when the occurrence of interference is predicted. As a result, power consumption and signal processing amount can be reduced.
  • FIG. 8 shows a wireless communication system 10b as an example of performing access communication and backhaul communication with the aerial base station 200.
  • the ground base station 100 performs backhaul communication with the aerial base station 200.
  • FDD communication is used for the transmission of the UL signal and DL signal of this backhaul communication.
  • the aerial base station 200 performs access communication with a wireless communication device 400 (for example, a wireless communication device mounted on a high-speed mobile body such as an aircraft). FDD communication or TDD communication is used for transmission of UL signal and DL signal of this access communication depending on the situation.
  • the ground base station 100 can communicate with the wireless communication device 400 via (relay) the aerial base station 200.
  • the wireless communication device 400 may be various wireless communication terminals such as a user device (UE) mounted on an aircraft or the like and located in the air, or a base station located in the air similar to the aerial base station 200. Further, the wireless communication device 400 may be a wireless communication device located on the ground.
  • the wireless communication device 400 may operate as a wireless communication terminal device for receiving data signals that receive data signals from the aerial base station 200.
  • the data signal here is, for example, a user data signal (U-plane signal) flowing on the bearer set by the control signal (C-plane signal).
  • U-plane signal user data signal
  • C-plane signal control signal
  • the wireless communication device 400 may receive the data signal from the ground base station 100 via the aerial base station 200 (relay). it can.
  • the aerial base station 200 may perform backhaul communication with the wireless communication device 400.
  • FDD communication or TDD communication is used for the transmission of the UL signal and DL signal of this backhaul communication depending on the situation.
  • the terrestrial wireless communication device 300 that performs access communication between the terrestrial base station 100 and TDD communication communicates with the wireless communication device 400 via (relays) the terrestrial base station 100 and the aerial base station 200. Is possible.
  • the terrestrial wireless communication device 300 may directly perform access communication with the aerial base station 200.
  • FDD communication or TDD communication is used for transmission of UL signal and DL signal of this access communication depending on the situation.
  • the terrestrial wireless communication device 300 can communicate (relay) with the wireless communication device 400 that performs backhaul communication with the aerial base station 200 via the aerial base station 200.
  • the ground base station 100 is used.
  • a data signal may be received from the control signal and the aerial base station 200.
  • the frequency band used for the FDD communication and the TDD communication on the ground may be used, or different frequency bands may be used.
  • the UL signal and the DL signal of each communication are transmitted.
  • FDD communication may be used.
  • FIG. 9 shows a wireless communication system 10c as an example of performing wireless communication with the aerial base station 200 by a feeder link and a service link.
  • the ground base station 100 performs two-way communication with the aerial base station 200 by a feeder link.
  • FDD communication is used for transmission of UL signal and DL signal of communication by this feeder link.
  • the aerial base station 200 performs two-way communication with the wireless communication device 500 (a service receiving terminal as an example) by a service link.
  • FDD communication or TDD communication is used for transmission of UL signal and DL signal of two-way communication by this service link, depending on the situation.
  • access communication is performed between the wireless communication device 500 and the ground base station 100.
  • TDD communication is used for the transmission of the UL signal and DL signal of this access communication.
  • the wireless communication device 500 receives a service data signal (a type of user data) from the aerial base station 200 via the ground base station 100.
  • a service data signal (a type of user data) from the aerial base station 200 via the ground base station 100.
  • the service data signal transmitted from the aerial base station 200 to the ground base station 100 may be directly received from the aerial base station 200 by the wireless communication device 500.
  • Interference may occur in the wireless communication device 500. That is, the service data signal received by the terrestrial wireless communication device 300 directly from the aerial base station 200 regardless of the service link, and the service data signal received by the terrestrial wireless communication device 300 from the terrestrial base station 100 via the service link. Interference may occur.
  • the wireless communication device 500 does not perform wireless communication with the ground base station 100 via the service link, but performs wireless communication with the aerial base station 200 via the service link. Therefore, since the wireless communication device 500 can receive the service data signal from the aerial base station 200 by the service link instead of from the ground base station 100, the wireless communication system 10c can reduce the above-mentioned interference.
  • the wireless communication device 500 may be a wireless communication device located on the ground similar to the terrestrial wireless communication device 300 described with reference to FIG. 1, or a wireless communication device located in the air similar to the wireless communication device 400 described with reference to FIG. It may be a communication device.
  • the wireless communication device 500 When the wireless communication device 500 performs access communication with the ground base station 100 and communicates with the aerial base station 200 by a service link, that is, at the time of dual connectivity (DC) of the wireless communication device 500, the ground base station
  • the control signal may be received from 100, and the data signal may be received from the aerial base station 200.
  • the same frequency band as that used for FDD communication and TDD communication on the ground may be used, or different frequencies may be used. Bands may be used.
  • FDD communication may be used for the transmission of the UL signal and the DL signal of the communication.
  • TDD communication is used for the transmission of the UL signal and the DL signal in the bidirectional communication by the feeder link between the ground base station 100 and the aerial base station 200. You may.
  • the wireless communication system of the present embodiment is necessary for TDD communication because FDD communication is used for bidirectional wireless communication between the ground base stations 100, 100a and the aerial base station 200 located at a high altitude, which have a long communication distance.
  • the guard band at the time of DL / UL communication switching is no longer required, and it is possible to prevent a decrease in frequency utilization efficiency due to DL / UL communication switching.
  • communication can be performed while preventing a decrease in transmission efficiency.
  • TDD communication is performed between the terrestrial base stations 100 and 100a and the terrestrial wireless communication device 300, the advantages of TDD communication can be utilized at the same time.
  • the ground base station 100a shown in FIG. 4 is provided with the interference canceling unit 140, it is possible to reduce self-interference that may occur at the ground base station by sharing FDD communication and TDD communication. That is, the ground base station 100a can reduce the interference between the reception signal of the FDD base station section 101 and the transmission signal of the TDD base station section 102, and the interference between the transmission signal of the FDD base station section 101 and the reception signal of the TDD base station section 102.
  • the aerial base station 200 shown in FIG. 6 is provided with the interference canceling unit 240, it is possible to reduce the multi-user interference that may occur in the aerial base station. That is, in the aerial base station 200, the signal transmitted from the terrestrial wireless communication device 300 to the terrestrial base station 100 is directly received from the terrestrial wireless communication device 300 by the aerial base station 200, and the aerial base station 200 Interference with the received signal received from the ground base station 100 can be reduced.
  • the terrestrial wireless communication device 300 shown in FIG. 5 can reduce multi-user interference that may occur in the terrestrial wireless communication device by providing the interference canceling unit 340. That is, in the terrestrial wireless communication device 300, the signal transmitted from the aerial base station 200 to the terrestrial base station 100 is directly received from the aerial base station 200 by the terrestrial wireless communication device 300, and the terrestrial wireless communication device 300. Can reduce interference with the received signal received from the ground base station 100.
  • the wireless communication device 400 shown in FIG. 8 operates as a wireless communication device for receiving a data signal from the aerial base station 200, so that it is difficult to directly receive the data signal from the ground base station 100. Even in this case, it is possible to receive a data signal from the ground base station 100 via the aerial base station 200 (relay).
  • the wireless communication system 10c shown in FIG. 9 can reduce the interference generated in the wireless communication device 500 due to the signal transmitted from the aerial base station 200 to the ground base station 100.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the terrestrial base station 100, 100a, the aerial base station 200, the terrestrial wireless communication device 300, and the wireless communication device 400,500.
  • the terrestrial base station 100,100a, the aerial base station 200, the terrestrial wireless communication device 300, and the wireless communication device 400,500 include a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, and an output device 1006. And may be configured as a computer device including a bus 1007 and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the terrestrial base station 100, 100a, the aerial base station 200, and the terrestrial wireless communication device 300 is realized by any hardware element of the computer device or a combination of the hardware elements. Will be done.
  • each function of the terrestrial base station 100, 100a, the aerial base station 200, the terrestrial wireless communication device 300, and the wireless communication device 400, 500 is performed by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002.
  • the processor 1001 performs an operation, controls the communication by the communication device 1004, and controls at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • Physical RB Physical RB: PRB
  • Sub-Carrier Group: SCG sub-carrier Group: SCG
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

無線通信システム10においては、地上基地局100は、通信距離が長距離となる空中基地局200との双方向無線通信において、UL信号とDL信号との伝送にFDD通信を用いる。また、地上基地局100は、地上無線通信装置300との双方向無線通信において、UL信号とDL信号との伝送にTDD通信を用いる。

Description

無線通信システム、地上基地局、空中基地局、及び無線通信方法
 本発明は、高空に位置する基地局を用いる無線通信システム、地上基地局、空中基地局、及び無線通信方法に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。5Gでは、双方向無線通信での上り信号(Uplink(UL)信号)と下り信号(Downlink(DL)信号)との伝送に、Time Division Duplex (TDD:時分割複信)方式の無線通信の採用が検討されている。また、5Gでは、航空機等の空中の高速移動体との安定した通信を行うためのリレー技術として、高空に位置する基地局を中継局として利用するシステムが検討されている。例えば、高度18-53km付近に位置する高高度気球等のHigh-Altitude Platform Station(HAPS)を中継局に利用することが議論されている。
3GPP TS 38.331 V15.6.0 Release 15  NR;Radio Resource Control (RRC) protocol specification , 3GPP , 2019年6月
 高空に位置する空中基地局を利用する場合、地上基地局と空中基地局との間の無線通信は、地上基地局同士の無線通信に比べて、非常に長い距離の通信(超長距離通信)となる。TDD方式の無線通信(TDD通信)では、通信距離が長くなる場合に、通信距離による伝送遅延を考慮して、DL/ULの通信を切り替えるためのガードタイムを長くする必要ある。また、5Gでは、超高信頼・低遅延通信(URLLC)の観点から、DL/ULの切替周期を短くする必要がある。
 5GにおけるDL/ULの切替周期は例えば125μs等の短い周期が想定されている。これに対し、高度20kmに位置する基地局(中継局)との通信に必要なガードタイムは約67μsとなる。
 このように、TDD通信を用いた超長距離通信においては、DL/ULの切替周期に占めるガードタイムの割合が大きくなり、周波数利用効率が低下し伝送効率が低下することがある。
 本発明は、このような状況に鑑みてなされたものであり、高空に位置する基地局を用いる場合においても、伝送効率の低下を防止し得る無線通信システム、地上基地局、空中基地局、及び無線通信方法を提供することを目的とする。
 本発明の一態様に係る無線通信システム(無線通信システム10)は、双方向無線通信での上り信号と下り信号との伝送において、時分割複信方式の無線通信と、周波数分割複信方式の無線通信をサポートする地上基地局(地上基地局100)と、前記地上基地局との双方向無線通信において、前記周波数分割複信方式の無線通信を実行し、高空に位置する空中基地局(空中基地局200)と、前記地上基地局との双方向無線通信において、前記時分割複信方式の無線通信を実行する地上無線通信装置(地上無線通信装置300)とを備える。
 本発明の一態様に係る地上基地局(地上基地局100)は、高空に位置する空中基地局(空中基地局200)との双方向無線通信において、上り信号と下り信号との伝送に周波数分割複信方式を用いた無線通信を実行する第1の通信部(FDD基地局部101)と、地上無線通信装置(地上無線通信装置300)との双方向無線通信において、上り信号と下り信号との伝送に時分割複信方式を用いた無線通信を実行する第2の通信部(TDD基地局部102)とを備える。
 本発明の一態様に係る空中基地局(空中基地局200)は、地上無線通信装置(地上無線通信装置300)との間で上り信号と下り信号との伝送に時分割複信方式を用いた双方向無線通信を実行する地上基地局(地上基地局100)に対して、上り信号と下り信号との伝送に周波数分割複信方式を用いた双方向無線通信を実行し、高空に位置する。
 本発明の一態様に係る無線通信方法は、高空に位置する空中基地局と地上基地局の間で、上り信号と下り信号との伝送に周波数分割複信方式を用いた双方向無線通信を実行するステップと、地上無線通信装置と前記地上基地局の間で、上り信号と下り信号との伝送に時分割複信方式を用いた双方向無線通信を実行するステップとを含む。
図1は、無線通信システム10の全体概略構成図である。 図2は、FDD通信とTDD通信とを共用した場合の干渉を説明する図である。 図3は、地上基地局100の構成例を示す図である。 図4は、地上基地局100aの構成例を示す図である。 図5は、地上無線通信装置300の構成例を示す図である。 図6は、空中基地局200の構成例を示す図である。 図7は、無線通信システム10aの全体概略構成図である。 図8は、無線通信システム10bの全体概略構成図である。 図9は、無線通信システム10cの全体概略構成図である。 図10は、地上基地局100,100a、空中基地局200、地上無線通信装置300、無線通信装置400,500のハードウェア構成の一例を示す図である。
 以下、本発明の実施形態について、図面を参照して説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (無線通信システムの全体概略構成)
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。この無線通信システム10は、例えば、Long Term Evolution(LTE)や5th generation mobile communication system (5G)に従った、無線通信システムであり、さらには、次世代の移動通信システムに従った無線通信システムであってもよい。無線通信システム10は、地上基地局100、高空に位置する空中基地局200、地上無線通信装置300を含む。
 地上基地局100は、地上に位置する無線基地局であり、通信相手との双方向無線通信での上り信号(Uplink(UL)信号)と下り信号(Downlink(DL)信号)との伝送において、Time Division Duplex (TDD:時分割複信)方式の無線通信と、Frequency Division Duplex (FDD:周波数分割複信)方式の無線通信をサポートする。地上基地局は、eNodeB(eNB)、gNodeB(gNB)などの用語で呼ばれる場合もある。
 空中基地局200は、気球、無人飛行船、無人飛行機等の空中浮遊体、空中飛行体に搭載されて高空に位置する基地局であり、通信相手との双方向無線通信でのUL信号とDL信号との伝送において、少なくともFDD方式の無線通信(FDD通信)をサポートする。TDD方式の無線通信(TDD通信)をサポートとしてもよい。空中浮遊体、空中飛行体の一例としては、高度18-53km付近に位置する高高度気球等のHigh-Altitude Platform Station(HAPS)がある。
 高空とは、ここでは、一例として高度2kmから100km程度を意図する。より狭い範囲としては成層圏と同程度の高度8kmから60km程度を意図してもよい。なお、本発明は例示した高度の範囲に限定されるものではない。
 地上無線通信装置300は、地上で使用される無線通信装置であり、通信相手との双方向無線通信でのUL信号とDL信号との伝送において、少なくともTDD通信をサポートする。FDD通信をサポートしてもよい。地上無線通信装置300は、例えば、ユーザ装置(user equipment:UE)等の各種無線通信端末、電車、自動車等に搭載された無線通信装置などである。地上無線通信装置300は、固定されているもの、移動するもののどちらでも使用可能である。
 ここで、地上とはビル、高架橋等の地上に設置された構造物の上や内部等の地表以外も含むものとする。
 この無線通信システム10においては、地上基地局100は、通信距離が長距離となる空中基地局200との双方向無線通信において、UL信号とDL信号との伝送にFDD通信を用いる。また、地上基地局100は、TDD通信による周波数利用効率低下が大きな問題とならない通信距離の通信である、地上無線通信装置300との双方向無線通信において、UL信号とDL信号との伝送にTDD通信を用いる。
 なお、本実施形態においては、地上基地局100と空中基地局200との間のFDD通信において、空中基地局200に向かう方向をUL方向、地上基地局100に向かう方向をDL方向とする。
 無線通信システム10は、地上基地局100と地上無線通信装置300との間のFDD通信において、ULまたはDLに、TDD通信と同一周波数の搬送波を用いるようにしてもよい。この場合、地上でのTDD通信で用いられている搬送波周波数を、高空に位置する空中基地局200とのFDD通信に適用でき、FDD通信とTDD通信との共用化をより容易に行える。
 このように、本実施形態によれば、通信距離が長距離となる、地上基地局100と高空に位置する空中基地局200との双方向無線通信にFDD通信を用いたことにより、TDD通信時に必要とされたDL/ULの通信切り替え時のガードバンドが不要となり、DL/ULの通信切り替えに伴う周波数利用効率の低下を防止できる。これにより、本実施形態は、高空に位置する空中基地局を用いる場合においても、伝送効率の低下を防止して通信が行える。また、地上基地局100と地上無線通信装置300との間はTDD通信を行うので、TDD通信の利点も同時に活用できる。
 ここで、無線通信システム10は、高空に位置する空中基地局200と地上基地局100の間で、UL信号とDL信号との伝送にFDD方式を用いた双方向無線通信を実行するステップと、地上無線通信装置300と地上基地局100の間で、UL信号とDL信号との伝送にTDD方式を用いた双方向無線通信を実行するステップとを含む無線通信方法を実行するものである。
(FDD通信とTDD通信との共用による干渉)
 ここで、FDD通信とTDD通信とを地上基地局100で共用したことにより、使用環境次第では、次に説明するような干渉が発生する場合が考えられる。図2は、FDD通信とTDD通信とを共用した場合における干渉を説明するための図である。図2(1)-(3)は、地上基地局100と空中基地局200との間のFDD通信における、ダウンリンク(DL) の搬送波周波数(地上基地局100方向の通信路の搬送波周波数)を、地上基地局100と地上無線通信装置300との間のTDD通信で使用する搬送波周波数と同一とした場合に発生することのある干渉を示している。図2(4)-(6)は、地上基地局100と空中基地局200との間のFDD通信における、アップリンク(UL) の搬送波周波数(空中基地局200方向の通信路の搬送波周波数)を、地上基地局100と地上無線通信装置300との間のTDD通信で使用する搬送波周波数と同一とした場合に発生することのある干渉を示している。
 図2(1)、(5)は、地上基地局100で発生する場合のある自干渉の説明図である。図2(1)の地上基地局100において、FDD通信の受信信号とTDD通信の送信信号との間での干渉が考えられる。図2(5)の地上基地局100において、FDD通信の送信信号とTDD通信の受信信号との間での干渉が考えられる。
 図2(2)は、地上基地局100で発生する場合のあるマルチユーザ干渉の説明図である。ユーザ端末等の地上無線通信装置300が同時に多数、地上基地局100にTDD通信で信号を送信した場合、地上基地局100のFDD用アンテナで地上無線通信装置300からの送信信号を受信する場合がある。この場合、地上基地局100において、地上無線通信装置300からFDD用アンテナで受信された受信信号と、空中基地局200からFDD用アンテナで受信される受信信号との間での干渉が考えられる。なお、この干渉は、多数の地上無線通信装置300が、同時に地上基地局100に信号を送信する場合以外には、発生する確立は低いものと考えられる。
 図2(3)は、地上無線通信装置300で発生する場合のあるマルチユーザ干渉の説明図である。空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300で受信されることにより発生する干渉が考えられる。即ち、空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300において受信される受信信号と、地上無線通信装置300が地上基地局100から受信する受信信号とによる干渉が考えられる。なお、空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300において受信される受信信号は、微弱な電力であることが多い。
 図2(4)は、空中基地局200で発生する場合のあるマルチユーザ干渉の説明図である。地上無線通信装置300から地上基地局100に送信された信号が、地上無線通信装置300から直接、空中基地局200で受信されることにより発生する干渉が考えられる。即ち、地上無線通信装置300から地上基地局100に送信された信号が、地上無線通信装置300から直接、空中基地局200において受信される受信信号と、空中基地局200が地上基地局100から受信した受信信号とによる干渉が考えられる。なお、この干渉は、多数の地上無線通信装置300が、同時に地上基地局100に信号を送信する場合以外には、発生する確立は低いものと考えられる。
 図2(6)は、地上無線通信装置300で発生する場合のあるサイドローブ干渉の説明図である。地上無線通信装置300と地上基地局100との間のTDD通信において、地上無線通信装置300の送受信アンテナの指向性の影響により、地上無線通信装置300の受信信号にサイドローブによる干渉が発生することが考えられる。
 次に、上述した干渉を低減する手段を備える、地上基地局、空中基地局、地上無線通信装置の具体的な構成例を説明する。
 (地上基地局)
 図3は、地上基地局100の構成例である。
 地上基地局100は、FDD方式の無線通信(FDD通信)を行うFDD基地局部(第1の通信部)101と、TDD方式の無線通信(TDD通信)を行うTDD基地局部102(第2の通信部)と本体部103とを備える。本体部103はCPU(中央処理装置)を備え、送受信する信号を管理すると共に、地上基地局100全体の制御を行う。
 本体部103は、地上基地局100での、FDD通信とTDD通信との共用による干渉を考慮して、TDD基地局部102が送信する信号の優先度を制御してもよい。即ち、FDD通信とTDD通信との共用による干渉の発生が予測されるタイミングで、本体部103は、TDD基地局部102が送信する信号の優先度を制御してもよい。例えば、本体部103は、干渉が発生する確率の高いタイミングである、FDD基地局部101が空中基地局200から信号を受信するタイミングでは、TDD基地局部102が、他のタイミングでの送信信号よりも優先度の低い信号を送信するように制御する。これにより、優先度の高い信号送信時に、干渉の悪影響を受けることを低減できる。
 FDD基地局部101では、本体部103から制御部104に供給された送信信号を、デジタル送信部105、アナログ送信部106にて処理してFDD用アンテナ114の内のFDD用送信アンテナ107に供給する。その送信信号をFDD用送信アンテナ107から空中基地局200に送信する。
 FDD用アンテナ114の内のFDD用受信アンテナ108により空中基地局200から受信された受信信号は、アナログ受信部110、デジタル受信部111で処理されて、制御部104に供給される。制御部104は、その受信信号を本体部103に供給する。
 FDD基地局部101には、従来と同様、FDD通信による送受信信号間の干渉を除去するためのアナログキャンセル部112とデジタルキャンセル部113とを備えている。アナログキャンセル部112は、アナログ送信部106の出力である送信信号の逆位相で同振幅のキャンセル用信号を生成する。そして、そのキャンセル用信号をFDD用受信アンテナ108により受信された受信信号に加算部109にて加算して、受信信号内に入り込んだ送信信号成分を除去する。加算部109の出力はアナログ受信部110に供給される。
 デジタルキャンセル部113は、アナログキャンセル部112で除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部113は、アナログ受信部110から出力される受信信号と、デジタル送信部105から出力される送信信号とからキャンセル用信号を生成する。そして、キャンセル用信号をデジタル受信部111に供給することによって、受信信号から不要信号成分を除去する。
 次に、TDD基地局部102では、本体部103から制御部121に供給された送信信号を、デジタル送信部122、アナログ送信部123にて処理して、送受信切替部124に供給する。送受信切替部124は、信号送信時にはその送信信号をTDD用送受信アンテナ125に供給する。TDD用送受信アンテナ125は、送信信号をユーザ端末等の地上無線通信装置300に送信する。
 TDD用送受信アンテナ125により地上無線通信装置300から受信された受信信号は、送受信切替部124に供給される。送受信切替部124は、信号受信時にはその受信信号をアナログ受信部126に供給する。受信信号は、アナログ受信部126、デジタル受信部127で処理されて、制御部121に供給される。制御部121は、その受信信号を本体部103に供給する。
 ここで、図2(2)で説明した地上基地局100で発生する場合のあるマルチユーザ干渉を低減する対策として、FDD用アンテナ114とTDD用送受信アンテナ125とを物理的に独立して配置するようにしてもよい。例えば、FDD用アンテナ114とTDD用送受信アンテナ125とを所定距離離して配置する。また、例えば、FDD用アンテナ114を基地局本体130(図3に示す地上基地局100からFDD用アンテナ114を除いた部分)とは別体として、物理的に独立して配置する。図7に、FDD用アンテナ114を基地局本体130と独立した別体として配置した一例として、無線通信システム10aを示す。具体的には、FDD用アンテナ114を基地局本体130から所定距離離して配置する。なお、FDD用アンテナ114と基地局本体130(もしくはFDD基地局部101)とは、無線接続としてもよいし、有線接続としてもよい。こうした、FDD用アンテナ114をTDD用送受信アンテナ125と分離し、独立して配置することは、図2(1),(5)で説明した、地上基地局で発生する場合のある自干渉を軽減させる効果もある。
 地上基地局100で発生する場合のあるマルチユーザ干渉を低減する別の対策として、FDD用アンテナ114とTDD用送受信アンテナ125との指向方向を制御するようにしてもよい。例えば、FDD用アンテナ114の指向方向をTDD用送受信アンテナ125よりも狭いものとする、FDD用アンテナ114の指向方向とTDD用送受信アンテナ125の指向方向とを異なる方向とする。
 このような干渉低減対策により、ユーザ端末等の地上無線通信装置300が同時に多数、地上基地局100に信号を送信する場合においても、FDD用アンテナ114で地上無線通信装置300からの送信信号が受信されることを低減して、マルチユーザ干渉の発生を低減できる。
 次に、図2(1),(5)で説明した、地上基地局で発生する場合のある自干渉を低減する対策として、干渉キャンセル部140を設けた地上基地局100aの構成例を図4に示す。図3に示した地上基地局100と同様の動作をする部分には、同一の符号を付し、その部分の詳細な説明は省略する。
 干渉キャンセル部140は、アナログキャンセル部112aとデジタルキャンセル部113a、アナログキャンセル部142とデジタルキャンセル部143とを備えている。アナログキャンセル部112aとデジタルキャンセル部113aとは、FDD基地局部101におけるFDD通信による送受信信号間の干渉を低減する動作も行う。この動作は図3に示した地上基地局100と同様である。
 アナログキャンセル部112aとデジタルキャンセル部113aは、さらに、FDD通信とTDD通信との共用により地上基地局で発生する場合のある自干渉を低減する。即ち、図2(5)で説明したFDD基地局部101の送信信号とTDD基地局部102の受信信号との干渉を低減する。ここでは、TDD基地局部102の受信信号からFDD基地局部101の送信信号成分を除去することにより干渉を低減する。
 アナログキャンセル部112aは、FDD基地局部101のアナログ送信部106の出力である送信信号に基づくキャンセル用信号(例えば、送信信号の逆位相で同振幅のキャンセル用信号)を生成する。そして、そのキャンセル用信号をTDD用送受信アンテナ125により受信された受信信号に加算部144にて加算して、TDD基地局部102の受信信号内に入り込んだFDD基地局部101の送信信号成分を除去する。加算部144の出力はアナログ受信部126に供給される。
 デジタルキャンセル部113aは、アナログキャンセル部112aで除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部113aは、アナログ受信部126から出力されるTDD基地局部102の受信信号と、デジタル送信部105から出力されるFDD基地局部101の送信信号とからキャンセル用信号を生成する。そして、キャンセル用信号をデジタル受信部127に供給することによって、TDD側の受信信号から不要信号成分を除去する。
 次に、干渉キャンセル部140のアナログキャンセル部142とデジタルキャンセル部143とは、FDD通信とTDD通信との共用により地上基地局で発生する場合のある自干渉を低減する。即ち、図2(1)で説明したFDD基地局部101の受信信号とTDD基地局部102の送信信号との干渉を低減する。ここでは、FDD基地局部101の受信信号からTDD基地局部102の送信信号成分を除去することにより干渉を低減する。
 アナログキャンセル部142は、TDD基地局部102のアナログ送信部123の出力である送信信号に基づくキャンセル用信号(例えば、送信信号の逆位相で同振幅のキャンセル用信号)を生成する。そして、そのキャンセル用信号をFDD用受信アンテナ108により受信された受信信号に加算部109にて加算して、FDD基地局部101の受信信号内に入り込んだTDD基地局部102の送信信号成分を除去する。加算部109の出力はアナログ受信部110に供給される。
 デジタルキャンセル部143は、アナログキャンセル部142で除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部143は、アナログ受信部110から出力されるFDD基地局部101の受信信号と、デジタル送信部122から出力されるTDD基地局部102の送信信号とからキャンセル用信号を生成する。そして、キャンセル用信号をデジタル受信部111に供給することによって、FDD側の受信信号から不要信号成分を除去する。
 なお、干渉キャンセル部140は、FDD通信とTDD通信との共用による干渉の発生が予測されるタイミングでのみ動作させるように制御してもよい。これにより、消費電力や信号処理量の低減が図れる。
 (地上無線通信装置)
 次に、図2(3)で説明した、ユーザ端末等の地上無線通信装置で発生する場合のあるマルチユーザ干渉を低減する対策として、干渉キャンセル部340を設けた地上無線通信装置300の構成例を図5に示す。空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300で受信されることにより発生する干渉を低減する。即ち、干渉キャンセル部340は、空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300で受信される受信信号と、地上無線通信装置300が地上基地局100から受信する受信信号と、による干渉を低減する。
 TDD通信対応の地上無線通信装置300では、本体部303から制御部321に供給された送信信号を、デジタル送信部322、アナログ送信部323にて処理して、送受信切替部324に供給する。送受信切替部324は、信号送信時にはその送信信号をTDD用送受信アンテナ325に供給する。TDD用送受信アンテナ325は、送信信号を地上基地局100に送信する。
 TDD用送受信アンテナ325により地上基地局100から受信された受信信号は、送受信切替部324に供給される。送受信切替部324は、信号受信時にはその受信信号をアナログ受信部326に供給する。受信信号は、アナログ受信部326、デジタル受信部327で処理されて、制御部321に供給される。制御部321は、その受信信号を本体部303に供給する。
 干渉キャンセル部340はアナログキャンセル部342とデジタルキャンセル部343とを備えている。まず、地上無線通信装置300が、空中基地局200から直接受信する信号の信号パターン(受信デジタル信号パターンと受信アナログ信号パターン)を予め本体部303に記憶させておき、その受信信号パターンに基づき干渉を低減する例を説明する。アナログキャンセル部342は、本体部303から受信アナログ信号パターンが供給され、その受信アナログ信号パターンに基づくキャンセル用信号を生成する。そして、そのキャンセル用信号をTDD用送受信アンテナ325により受信された受信信号に加算部344にて加算して、地上基地局100から受信した受信信号内に入り込んだ空中基地局200から直接受信した受信信号成分を除去する。加算部344の出力はアナログ受信部326に供給される。
 デジタルキャンセル部343は、アナログキャンセル部342で除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部343は、本体部303から受信デジタル信号パターンが供給され、その受信デジタル信号パターンに基づくキャンセル用信号を生成する。そして、そのキャンセル用信号をデジタル受信部327に供給することによって、地上基地局100から受信した受信信号から不要信号成分を除去する。
 なお、地上基地局100が空中基地局200から受信した信号のパターン(受信アナログ信号パターンと受信デジタル信号パターン)を、干渉キャンセルに利用してもよい。この場合、地上無線通信装置300が、その受信信号パターンを地上基地局100に要求して取得し、その受信信号パターンに基づき干渉を低減するようにする。この例を、図5では、受信アナログ信号パターンと受信デジタル信号パターンとが、地上基地局100からアナログキャンセル部342とデジタルキャンセル部343とに送信されるように示している。これは模式的に示したものであり、当然、受信アナログ信号パターンと受信デジタル信号パターンとは、地上基地局100からTDD用送受信アンテナ325により受信され、メモリ等に記憶され、そのメモリからアナログキャンセル部342とデジタルキャンセル部343とに供給される。
 アナログキャンセル部342は、地上基地局100から取得した受信アナログ信号パターンが供給され、その受信アナログ信号パターンに基づくキャンセル用信号を生成する。デジタルキャンセル部343は、地上基地局100から取得した受信デジタル信号パターンが供給され、その受信デジタル信号パターンに基づくキャンセル用信号を生成する。その他は、上述した本体部303から受信信号パターンを得る例と同様な動作である。
 なお、干渉キャンセル部340は、干渉の発生が予測されるタイミングでのみ動作させるように制御してもよい。これにより、消費電力や信号処理量の低減が図れる。
 また、地上無線通信装置300は、図2(6)で説明したサイドローブによる干渉を低減するための干渉キャンセル部を設けてもよい。
 (空中基地局)
 次に、図2(4)で説明した、空中基地局で発生する場合のあるマルチユーザ干渉を低減する対策として、干渉キャンセル部240を設けた空中基地局200の構成例を図6に示す。地上無線通信装置300から地上基地局100に送信された信号が、地上無線通信装置300から直接、空中基地局200で受信されることにより発生する干渉を低減する。即ち、干渉キャンセル部240は、地上無線通信装置300から地上基地局100に送信された信号が、地上無線通信装置300から直接、空中基地局200で受信される受信信号と、空中基地局200が地上基地局100から受信した受信信号と、による干渉を低減する。
 FDD通信をサポートする空中基地局200では、本体部203から制御部204に供給された送信信号を、デジタル送信部205、アナログ送信部206にて処理してFDD用アンテナ214の内のFDD用送信アンテナ207に供給する。その送信信号をFDD用送信アンテナ207から地上基地局100に送信する。
 FDD用アンテナ214の内のFDD用受信アンテナ208により地上基地局100から受信された受信信号は、アナログ受信部210、デジタル受信部211で処理されて、制御部204に供給される。制御部204は、その受信信号を本体部203に供給する。
 空中基地局200に設けた干渉キャンセル部240は、アナログキャンセル部212とデジタルキャンセル部213とを備えている。この干渉キャンセル部240は、従来と同様、FDD通信による送受信信号間の干渉を除去するための干渉キャンセル部としても動作する。この動作について説明する。
 アナログキャンセル部212は、アナログ送信部206の出力である送信信号の逆位相で同振幅のキャンセル用信号を生成する。そして、そのキャンセル用信号をFDD用受信アンテナ208により受信された受信信号に加算部209にて加算して、受信信号内に入り込んだ送信信号成分を除去する。加算部209の出力はアナログ受信部210に供給される。
 デジタルキャンセル部213は、アナログキャンセル部212で除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部213は、アナログ受信部210から出力される受信信号と、デジタル送信部205から出力される送信信号とからキャンセル用信号を生成する。そして、キャンセル用信号をデジタル受信部211に供給することによって、受信信号から不要信号成分を除去する。
 次に、干渉キャンセル部240が、上述のマルチユーザ干渉を低減する動作を説明する。まず、空中基地局200が地上無線通信装置300から直接受信する信号の信号パターン(受信デジタル信号パターンと受信アナログ信号パターン)を予め本体部203に記憶させておく。アナログキャンセル部212は、本体部203から受信アナログ信号パターンが供給され、その受信アナログ信号パターンに基づくキャンセル用信号を生成する。そして、そのキャンセル用信号を、FDD用受信アンテナ208により受信された受信信号に加算部209にて加算する。これにより、地上基地局100から受信した受信信号から、地上無線通信装置300から直接受信した受信信号の干渉により加算された不要信号成分を除去する。加算部209の出力はアナログ受信部210に供給される。
 デジタルキャンセル部213は、アナログキャンセル部212で除去しきれなかった不要信号成分を除去するものである。デジタルキャンセル部213は、本体部203から受信デジタル信号パターンが供給され、その受信デジタル信号パターンに基づくキャンセル用信号を生成する。そして、そのキャンセル用信号をデジタル受信部211に供給することによって、地上基地局100から受信した受信信号から、地上無線通信装置300から受信した受信信号の干渉により加算された不要信号成分を除去する。
 なお、干渉キャンセル部340は、干渉の発生が予測されるタイミングでのみ動作させるように制御してもよい。これにより、消費電力や信号処理量の低減が図れる。
(アクセス通信とバックホール通信への適用例)
 空中基地局200に対して、アクセス通信とバックホール通信とを行う一例として、無線通信システム10bを図8に示す。地上基地局100は空中基地局200とバックホール通信を行う。このバックホール通信のUL信号とDL信号との伝送にはFDD通信を用いる。
 空中基地局200は、無線通信装置400(一例として航空機等の高速移動体に搭載された無線通信装置)とアクセス通信を行う。このアクセス通信のUL信号とDL信号との伝送には、状況に応じてFDD通信またはTDD通信を用いる。これにより、地上基地局100は、空中基地局200を介して(中継して)、無線通信装置400と通信が可能となる。無線通信装置400は、航空機等に搭載されて空中に位置するユーザ装置(UE)等の各種無線通信端末、空中基地局200と同様な空中に位置する基地局であってもよい。また、無線通信装置400は地上に位置する無線通信装置であってもよい。
 無線通信装置400は、空中基地局200からデータ信号を受信するデータ信号受信用の無線通信端末装置として動作してもよい。ここでのデータ信号とは、例えば、制御信号(C-plane信号)により設定されたベアラ上で流れるユーザデータ信号(U-plane信号)である。無線通信装置400は、地上基地局100から直接データ信号を受信することが困難な場合においても、地上基地局100から空中基地局200を介して(中継して)、データ信号を受信することができる。
 空中基地局200は、無線通信装置400とバックホール通信を行うようにしてもよい。このバックホール通信のUL信号とDL信号との伝送には、状況に応じてFDD通信またはTDD通信を用いる。これにより、地上基地局100とTDD通信を用いたアクセス通信を行う地上無線通信装置300は、地上基地局100と空中基地局200とを介して(中継して)、無線通信装置400との通信が可能となる。
 また、地上無線通信装置300は、空中基地局200と直接、アクセス通信を行ってもよい。このアクセス通信のUL信号とDL信号との伝送には、状況に応じてFDD通信またはTDD通信を用いる。これにより、地上無線通信装置300は、空中基地局200とバックホール通信を行う無線通信装置400と、空中基地局200を介して(中継して)通信が可能となる。
 地上無線通信装置300が、地上基地局100と空中基地局200とに対してアクセス通信を行っている場合、即ち、地上無線通信装置300のデュアルコネクティビティ(DC)時においては、地上基地局100から制御信号、空中基地局200からデータ信号を受信するようにしてもよい。
 また、空中基地局200と無線通信装置400間、及び空中基地局200と地上無線通信装置300間の上記FDD通信、TDD通信においては、地上でのFDD通信、TDD通信に使用している周波数帯と同じ周波数帯を用いてもよいし、異なる周波数帯を用いてもよい。
 なお、空中基地局200と無線通信装置400間、及び空中基地局200と地上無線通信装置300間の通信において、長距離通信となる場合には、各通信のUL信号とDL信号との伝送にFDD通信を用いるようにしてもよい。
 (フィーダリンクとサービスリンクへの適用例)
 空中基地局200に対して、フィーダリンクとサービスリンクとにより無線通信を行う一例として、無線通信システム10cを図9に示す。地上基地局100は、空中基地局200とフィーダリンクによる双方向通信を行う。このフィーダリンクによる通信のUL信号とDL信号との伝送にはFDD通信を用いる。
 空中基地局200は、無線通信装置500(一例としてサービス受信端末)とサービスリンクによる双方向通信を行う。このサービスリンクによる双方向通信のUL信号とDL信号との伝送には、状況に応じてFDD通信またはTDD通信を用いる。
 また、無線通信装置500と地上基地局100との間ではアクセス通信を行う。このアクセス通信のUL信号とDL信号との伝送にはTDD通信を用いる。
 ここで、無線通信装置500が、空中基地局200とサービスリンクによる無線通信を行わずに、地上基地局100とサービスリンクによる無線通信を行う場合を考える。無線通信装置500は、空中基地局200からのサービスデータ信号(ユーザデータの一種)を地上基地局100経由で受信する。この場合、図2(3)で説明したように、空中基地局200から地上基地局100に送信されたサービスデータ信号が、空中基地局200から直接、無線通信装置500で受信されることがあり、無線通信装置500で干渉が発生することがある。即ち、空中基地局200からサービスリンクによらず、直接、地上無線通信装置300が受信してしまうサービスデータ信号と、地上無線通信装置300が地上基地局100からサービスリンクにより受信するサービスデータ信号とによる干渉が発生することがある。
 図9に示す無線通信システム10cにおいては、無線通信装置500は、地上基地局100とサービスリンクによる無線通信を行わず、空中基地局200とサービスリンクによる無線通信を行うようにした。よって、無線通信装置500は、地上基地局100からではなく、空中基地局200からサービスリンクによりサービスデータ信号を受信できるので、この無線通信システム10cは上述した干渉を低減できる。
 無線通信装置500は、図1で説明した地上無線通信装置300と同様の地上に位置する無線通信装置であってもよいし、図8で説明した無線通信装置400と同様の空中に位置する無線通信装置であってもよい。
 無線通信装置500が、地上基地局100とアクセス通信を行い、空中基地局200とサービスリンクによる通信を行っている場合、即ち、無線通信装置500のデュアルコネクティビティ(DC)時においては、地上基地局100から制御信号、空中基地局200からデータ信号を受信するようにしてもよい。
 また、空中基地局200と無線通信装置500間の上記FDD通信、TDD通信においては、地上でのFDD通信、TDD通信に使用している周波数帯と同じ周波数帯を用いてもよいし、異なる周波数帯を用いてもよい。
 なお、空中基地局200と無線通信装置500間の通信において、長距離通信となる場合には、その通信のUL信号とDL信号との伝送に、FDD通信を用いるようにしてもよい。
 また、上述した無線通信装置500での干渉低減効果の観点からは、地上基地局100と空中基地局200間のフィーダリンクによる双方向通信において、UL信号とDL信号との伝送にTDD通信を用いてもよい。
 (作用・効果)
 上述した実施形態によれば、以下の作用効果が得られる。
 本実施形態の無線通信システムは、通信距離が長距離となる、地上基地局100,100aと高空に位置する空中基地局200との双方向無線通信にFDD通信を用いたことにより、TDD通信時に必要とされたDL/ULの通信切り替え時のガードバンドが不要となり、DL/ULの通信切り替えに伴う周波数利用効率の低下を防止できる。これにより、本実施形態は、高空に位置する空中基地局を用いる場合においても、伝送効率の低下を防止して通信が行える。また、地上基地局100,100aと地上無線通信装置300との間はTDD通信を行うので、TDD通信の利点も同時に活用できる。
 図4に示した地上基地局100aは、干渉キャンセル部140を設けたことより、FDD通信とTDD通信との共用により地上基地局で発生する場合のある自干渉を低減できる。即ち、地上基地局100aは、FDD基地局部101の受信信号とTDD基地局部102の送信信号との干渉、及びFDD基地局部101の送信信号とTDD基地局部102の受信信号との干渉を低減できる。
 図6に示した空中基地局200は、干渉キャンセル部240を設けたことより、空中基地局で発生する場合のあるマルチユーザ干渉を低減できる。即ち、空中基地局200は、地上無線通信装置300から地上基地局100に送信された信号が、地上無線通信装置300から直接、空中基地局200で受信される受信信号と、空中基地局200が地上基地局100から受信した受信信号とによる干渉を低減できる。
 図5に示した地上無線通信装置300は、干渉キャンセル部340を設けたことにより、地上無線通信装置で発生する場合のあるマルチユーザ干渉を低減できる。即ち、地上無線通信装置300は、空中基地局200から地上基地局100に送信された信号が、空中基地局200から直接、地上無線通信装置300で受信される受信信号と、地上無線通信装置300が地上基地局100から受信する受信信号とによる干渉を低減できる。
 図8に示した無線通信装置400は、空中基地局200からデータ信号を受信するデータ信号受信用の無線通信装置として動作することにより、地上基地局100から直接データ信号を受信することが困難な場合においても、地上基地局100から空中基地局200を介して(中継して)、データ信号を受信することが可能となる。
 図9に示した無線通信システム10cは、空中基地局200から地上基地局100に送信される信号による無線通信装置500で発生する干渉を低減できる。
 (その他の実施形態)
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 また、上述した実施形態の説明に用いたブロック構成図(図3-図6)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述した地上基地局100,100a、空中基地局200、地上無線通信装置300、無線通信装置400,500は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、地上基地局100,100a、空中基地局200、地上無線通信装置300、無線通信装置400,500のハードウェア構成の一例を示す図である。図10に示すように、地上基地局100,100a、空中基地局200、地上無線通信装置300、無線通信装置400,500は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 地上基地局100,100a、空中基地局200、地上無線通信装置300の各機能ブロック(図3-図6参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、地上基地局100,100a、空中基地局200、地上無線通信装置300、無線通信装置400,500における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10,10a,10b,10c 無線通信システム
100,100a 地上基地局
101 FDD基地局部(第1の通信部)
102 TDD基地局部(第2の通信部)
114 FDD用アンテナ
125 TDD用送受信アンテナ
140 干渉キャンセル部
200 空中基地局
240 干渉キャンセル部
300 地上無線通信装置
340 干渉キャンセル部
400,500 無線通信装置

Claims (10)

  1.  双方向無線通信での上り信号と下り信号との伝送において、時分割複信方式の無線通信と、周波数分割複信方式の無線通信をサポートする地上基地局と、
     前記地上基地局との双方向無線通信において、前記周波数分割複信方式の無線通信を実行し、高空に位置する空中基地局と、
     前記地上基地局との双方向無線通信において、前記時分割複信方式の無線通信を実行する地上無線通信装置と、を備えることを特徴とする無線通信システム。
  2.  前記地上基地局と前記空中基地局との間の前記周波数分割複信方式の無線通信において、前記空中基地局に向かう方向の上り通信路、または、前記地上基地局に向かう方向の下り通信路に、前記地上基地局と前記地上無線通信装置との間の前記時分割複信方式の無線通信と同一周波数の搬送波を用いることを特徴とする請求項1に記載の無線通信システム。
  3.  前記地上基地局は、周波数分割複信方式の無線通信用アンテナと、時分割複信方式の無線通信用アンテナとを独立して配置していることを特徴とする請求項1または2に記載の無線通信システム。
  4.  前記地上基地局は、前記空中基地局との間の前記周波数分割複信方式の無線通信と、前記地上無線通信装置との間の前記時分割複信方式の無線通信との干渉をキャンセルする干渉キャンセル部を備えることを特徴とする請求項1乃至3の何れか一項に記載の無線通信システム。
  5.  前記空中基地局は、前記地上無線通信装置から前記地上基地局を介さずに受信した信号による干渉をキャンセルする干渉キャンセル部を備えることを特徴とする請求項1乃至4の何れか一項に記載の無線通信システム。
  6.  前記地上無線通信装置は、前記空中基地局から前記地上基地局を介さずに受信した信号よる干渉をキャンセルする干渉キャンセル部を備えることを特徴とする請求項1乃至5の何れか一項に記載の無線通信システム。
  7.  前記空中基地局と通信を実行し、データ信号を受信する無線通信装置を備えることを特徴とする請求項1乃至6の何れか一項に記載の無線通信システム。
  8.  高空に位置する空中基地局との双方向無線通信において、上り信号と下り信号との伝送に周波数分割複信方式を用いた無線通信を実行する第1の通信部と、
     地上無線通信装置との双方向無線通信において、上り信号と下り信号との伝送に時分割複信方式を用いた無線通信を実行する第2の通信部と、を備えることを特徴とする地上基地局。
  9.  地上無線通信装置との間で上り信号と下り信号との伝送に時分割複信方式を用いた双方向無線通信を実行する地上基地局に対して、上り信号と下り信号との伝送に周波数分割複信方式を用いた双方向無線通信を実行し、高空に位置することを特徴とする空中基地局。
  10.  高空に位置する空中基地局と地上基地局の間で、上り信号と下り信号との伝送に周波数分割複信方式を用いた双方向無線通信を実行するステップと、
     地上無線通信装置と前記地上基地局の間で、上り信号と下り信号との伝送に時分割複信方式を用いた双方向無線通信を実行するステップと、を含むことを特徴とする無線通信方法。
PCT/JP2020/022899 2019-08-15 2020-06-10 無線通信システム、地上基地局、空中基地局、及び無線通信方法 WO2021029129A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149116 2019-08-15
JP2019-149116 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021029129A1 true WO2021029129A1 (ja) 2021-02-18

Family

ID=74569417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022899 WO2021029129A1 (ja) 2019-08-15 2020-06-10 無線通信システム、地上基地局、空中基地局、及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2021029129A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079705A1 (fr) * 1999-06-17 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Systeme de communications mobiles
WO2011047616A1 (zh) * 2009-10-19 2011-04-28 华为技术有限公司 一种中继方法、设备和***
JP2011529318A (ja) * 2008-08-01 2011-12-01 エルジー エレクトロニクス インコーポレイティド 中継局を含む無線通信システムにおけるバックホールリンク及びアクセスリンクのためのリソース割当方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079705A1 (fr) * 1999-06-17 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Systeme de communications mobiles
JP2011529318A (ja) * 2008-08-01 2011-12-01 エルジー エレクトロニクス インコーポレイティド 中継局を含む無線通信システムにおけるバックホールリンク及びアクセスリンクのためのリソース割当方法
WO2011047616A1 (zh) * 2009-10-19 2011-04-28 华为技术有限公司 一种中继方法、设备和***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGATE, ATSUSHI ET AL.: "HAPS Radio Repeater Using the Same System as Terrestrial Mobile Communications System", PROCEEDINGS OF THE 2018 IEICE SOCIETY CONFERENCE, 14 September 2018 (2018-09-14) *

Similar Documents

Publication Publication Date Title
WO2021199346A1 (ja) 端末
JPWO2020170405A1 (ja) ユーザ装置及び基地局装置
JPWO2020144825A1 (ja) ユーザ装置及び基地局装置
JPWO2020121502A1 (ja) 端末、基地局、通信方法、及び、システム
WO2021199415A1 (ja) 端末及び通信方法
WO2021186721A1 (ja) 無線通信ノード及び端末
WO2021149110A1 (ja) 端末及び通信方法
JP7073529B2 (ja) 端末、基地局及び通信方法
WO2021090444A1 (ja) 通信装置
WO2021064975A1 (ja) ユーザ装置及び通信方法
WO2022091557A1 (ja) 端末、基地局及び通信方法
JPWO2020065884A1 (ja) ユーザ装置
WO2022044729A1 (ja) 端末、無線通信方法、及び基地局
WO2021193832A1 (ja) 制御装置、無線通信システム及び制御方法
JPWO2020095455A1 (ja) ユーザ装置及び基地局装置
WO2022149194A1 (ja) 端末、基地局及び通信方法
WO2022079868A1 (ja) 端末、及び基地局
WO2021140665A1 (ja) 端末及び通信方法
WO2020246185A1 (ja) 端末及び基地局
WO2021149256A1 (ja) 端末
WO2021029129A1 (ja) 無線通信システム、地上基地局、空中基地局、及び無線通信方法
WO2021038920A1 (ja) 端末、基地局及び通信方法
WO2020202545A1 (ja) ユーザ装置及び基地局装置
WO2021044598A1 (ja) 端末及び通信方法
WO2021070397A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP