WO2011047540A1 - 一种提高柴油十六烷值桶的催化转化方法 - Google Patents

一种提高柴油十六烷值桶的催化转化方法 Download PDF

Info

Publication number
WO2011047540A1
WO2011047540A1 PCT/CN2010/001645 CN2010001645W WO2011047540A1 WO 2011047540 A1 WO2011047540 A1 WO 2011047540A1 CN 2010001645 W CN2010001645 W CN 2010001645W WO 2011047540 A1 WO2011047540 A1 WO 2011047540A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oil
reaction
catalytic
diesel
Prior art date
Application number
PCT/CN2010/001645
Other languages
English (en)
French (fr)
Inventor
许友好
龚剑洪
程从礼
崔守业
胡志海
陈昀
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200910180775 external-priority patent/CN102041093B/zh
Priority claimed from CN200910180776.5A external-priority patent/CN102041094B/zh
Priority claimed from CN200910224272.9A external-priority patent/CN102079985B/zh
Priority claimed from CN 200910224271 external-priority patent/CN102079992B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US13/503,529 priority Critical patent/US8932457B2/en
Priority to KR1020127012515A priority patent/KR101816668B1/ko
Priority to RU2012119926/04A priority patent/RU2547152C2/ru
Priority to JP2012534520A priority patent/JP5988875B2/ja
Publication of WO2011047540A1 publication Critical patent/WO2011047540A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
    • C10G51/026Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only only catalytic cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention relates to a catalytic conversion process, and more particularly to a catalytic conversion process for converting a maximum amount of heavy feedstock to high cetane diesel. Background technique
  • FCC light diesel oil In order to meet the demand for high-quality diesel, FCC light diesel oil needs to be modified, or a large amount of high-quality FCC light diesel oil can be produced directly through FCC.
  • the methods for catalyzing the upgrading of light diesel oil mainly include hydrotreating and alkylation.
  • USP 5,543,036 discloses a process for the upgrading of FCC light cycle oil by hydrotreating.
  • CN1289832A likewise discloses a process for the upgrading of catalytically cracked diesel by hydrotreating, in which the feedstock is passed sequentially through a single stage series of hydrofinishing catalyst and hydrocracking catalyst under hydrogenation conditions without intermediate separation. The method increases the cetane number of the diesel fraction of the product by more than 10 units compared with the raw material, and the sulfur and nitrogen contents thereof are remarkably lowered.
  • USP 4,871,444 discloses a process for increasing the cetane number of FCC light cycle oil by alkylating FCC light cycle oil in the presence of a solid acid catalyst with a linear olefin of 3 to 9 carbon atoms.
  • U.S. Patent No. 5,719,916 discloses a FCC light cycle oil upgrading process in which an FCC light cycle oil is alkylated on a solid acid catalyst with oi-C 14 olefin or coker gas oil.
  • CN1900226A discloses a catalytic cracking cocatalyst for producing diesel fuel and a preparation method thereof, and adding a certain amount of the cocatalyst can improve the diesel yield and improve the FCC catalytic device without changing the original catalyst used in the refinery device. Product distribution, but this method does not mention improvements in diesel properties.
  • CN1683474A is also a catalytic cracking cocatalyst for producing diesel fuel and a preparation method thereof.
  • CN1473908A relates to a method for producing diesel oil from heavy oil and residual oil by catalytic cracking with Ca 2+ -EDTA.
  • CN101 171063A relates to a fluid catalytic cracking (FCC) process for improving the quality of distillate suitable as a blending oil for diesel fuel.
  • FCC fluid catalytic cracking
  • the FCC method combines the segmentation FCC conversion process with Interstage molecular separation of polycyclic aromatic hydrocarbon species.
  • the less stringent and higher reaction zones in the riser of the FCC reactor together with the selective molecular separation increase the yield of diesel quality distillate.
  • This method focuses on the separation of high cetane-rich diesel fractions saturated with saturated hydrocarbons by membrane separation.
  • CN1896192A enters the hydrotreating unit together with the catalytic cracking heavy cycle oil and catalytic cracking diesel oil, and the hydrogenated tail oil enters the catalytic cracking unit, which can reduce the aromatic content and sulfur content of the diesel and increase its cetane number.
  • CN 1382776 A is a combination of resid hydrotreating and heavy oil catalytic cracking. The above patented process does not require any catalytic cracking process, but only by hydrogenation to reform the diesel.
  • CN101362959A discloses a catalytic conversion method for preparing propylene and high-octane gasoline.
  • the refractory raw material is first contacted with a thermal regeneration catalyst at a temperature of 600 to 750 ° C, a weight hourly space velocity of 100 to 800, a pressure of 0.10 to 1.0 MPa,
  • the catalyst is mixed with the raw material by a weight ratio of 30 to 150, and the weight ratio of water vapor to the raw material is 0.05 to 1.0, and the reaction stream is mixed with the easily crackable feedstock oil at a temperature of 450 to 620 ° C and a weight hourly space velocity of 0.1.
  • the catalyst to be introduced enters the stripper, is returned to the reactor after being stripped and charred, and the reaction oil is separated to obtain the target product propylene and high-octane gasoline and the re-cracked raw material, and the re-cracking raw material comprises distillation.
  • the process is a centrifugation and heavy aromatics raffinate oil of 180 ⁇ 260 °C. The yield and selectivity of propylene are greatly increased, the yield and octane number of gasoline are obviously increased, and the dry gas yield is reduced as much as possible. 80% by weight or more.
  • the object of the present invention is to provide a method for converting the maximum amount of heavy oil into high cetane number diesel based on the prior art, which is to increase the cetane number of the diesel and increase the yield of the diesel, that is, to improve
  • the cetane barrel of diesel fuel here the "cetane number barrel” refers to the product of the cetane number of diesel fuel and the yield of diesel. It is mainly by selectively cracking the alkane, alkyl side in the catalytic feedstock. Hydrocarbons such as chains, while minimizing the entry of aromatics in the feedstock into the diesel fraction, and avoiding other components in the product from aromatization and other aromatic hydrocarbons remaining in the diesel fraction, and the cracked feedstock is converted to high cetane diesel. At the same time, the yield of dry gas and coke is greatly reduced, thereby realizing the effective use of petroleum resources.
  • a catalyst for improving diesel cetane barrels is provided a conversion method, wherein the feedstock oil is reacted in a catalytic conversion reactor with a catalyst having a relatively uniform activity mainly containing a large pore zeolite, wherein the reaction temperature, the residence time of the oil and gas, and the weight ratio of the catalyst to the feedstock oil are sufficient to cause the reaction to be contained in the diesel, accounting for
  • the feedstock oil is from about 12 to about 60% by weight of the reaction product of the catalytic wax oil, wherein the reaction temperature is from about 420 to about 550 ° C, and the hydrocarbon residence time is from about 0.1 to about 5 seconds. It is about 1 to about 10.
  • the reaction temperature is from about 430 to about 500 ° C, preferably from about 430 to about 480. C.
  • the hydrocarbon residence time is from about 0.5 to about 4 seconds, preferably from about 0.8 to about 3 seconds.
  • the catalyst to feedstock weight ratio is from about 2 to about 8, preferably from about 3 to about 6.
  • reaction pressure of about 0, 10MPa ⁇ about 1.0MPa, preferably from about 0. 15MPa ⁇ about 0.6MPa o
  • the feedstock oil is selected from or comprises petroleum hydrocarbons and/or other mineral oils, wherein the petroleum hydrocarbons are selected from the group consisting of vacuum gas oil, atmospheric gas oil, coker gas oil, deasphalted oil, decompression a mixture of one or more of residual oil and atmospheric residue (including two, similar in the following expressions), and other mineral oils are one of coal liquefied oil, oil sand oil, shale oil or A mixture of two or more.
  • the catalyst comprising predominantly large pore zeolite comprises zeolite, inorganic oxide, clay.
  • each component comprises the total weight of the catalyst: from about 5 wt% to about 50 wt%, preferably from about 10 wt% to about 30 wt% of the zeolite; from about 0.5 wt% to about 50 wt% of the inorganic oxide; About 70% by weight.
  • zeolite is an active fraction selected from large pore zeolite.
  • the large pore zeolite refers to one or a mixture of two or more of the zeolites consisting of rare earth Y, rare earth hydroquinone, and ultra-stable bismuth and high silicon germanium obtained by different methods.
  • the inorganic oxide is used as a matrix selected from the group consisting of silicon dioxide (SiO 2 ) and/or aluminum oxide (Al 2 2 3 3 ).
  • the silica in the inorganic oxide accounts for from about 50% by weight to about 90% by weight based on the dry basis, and the aluminum oxide accounts for from about 10% by weight to about 50% by weight.
  • the activity-relative catalyst means that its initial activity does not exceed about 80, preferably does not exceed about 75, more preferably does not exceed about 70; the self-equilibration time of the catalyst is about 0.1.
  • the hour is about 50 hours, preferably about 0.2 to about 30 hours, more preferably about 0.5 to about 10 hours; and the equilibrium activity is from about 35 to about 60, preferably from about 40 to about 55.
  • the initial activity of the catalyst or the fresh catalyst activity described hereinafter refers to the catalyst activity evaluated by the light oil microreactor. It can be measured by the measurement method in the prior art: Enterprise Standard RIPP 92-90 - Microreverse Activity Test Method for Catalytic Cracking Fresh Catalyst "Petrochemical Analysis Method (RIPP Test Method)", Yang Cuiding et al., 1990, below Referred to as RIPP 92-90.
  • the light oil micro-reverse device (refer to RIPP 92-90) is evaluated according to the following conditions: The catalyst is broken into particles with a particle diameter of about 420 ⁇ 841 ⁇ m, the loading is 5 g, and the reaction raw material is a straight distillation range of 235 ⁇ 337 °C. Distilled light diesel oil, reaction temperature 46 CTC, weight airspeed of 16 hours, ratio of agent to oil 3.2.
  • the catalyst self-equilibration time refers to the time required for the catalyst to age to reach equilibrium activity under 80 CTC and 100% water vapor conditions (refer to RIPP 92-90).
  • the catalyst having a relatively uniform activity can be obtained, for example, by the following three treatment methods: Catalyst treatment method 1 :
  • the processing method 1 is embodied as follows:
  • the fresh catalyst is charged into the fluidized bed, preferably in the dense phase fluidized bed, water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of water vapor, and the steam aging the catalyst, and the aging temperature is about 400°.
  • the apparent line speed of the fluidized bed is about 0.1 m / s to about 0.6 m / s, preferably From about 0.15 seconds to about 0.5 meters per second, after aging for about 1 hour to about 720 hours, preferably about 5 hours to about 360 hours, the catalyst having relatively uniform activity is obtained, and the catalyst having relatively uniform activity is required by the industrial device. It is added to an industrial plant, preferably to a regenerator of an industrial plant.
  • Catalyst treatment method 2 (1) charging fresh catalyst into a fluidized bed, preferably a dense phase fluidized bed, in contact with an aging medium containing water vapor, and aging after a certain ice heat environment to obtain a catalyst having relatively uniform activity;
  • the catalyst is charged into a fluidized bed, preferably a dense phase fluidized bed, and an aging medium containing water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of an aging medium containing water vapor, and at the same time, the aging medium of the water vapor is used for the catalyst.
  • the aging temperature is about 400 to about 850 ° C, preferably about 500 ° C to about 75 CTC, preferably about 600 ° C to about 700 ° C, and the apparent line speed of the fluidized bed is about 0.1 m / s to about 0.6 m.
  • the weight ratio of water vapor to the aged medium is from about 0.20 to about 0.9, preferably from about 0.40 to about 0.60, and the aging is from about 1 hour to about 720 hours, preferably from about 5 hours to about 2,000 seconds per second.
  • the catalyst having a relatively uniform activity is obtained, and the catalyst having a relatively uniform activity is added to an industrial unit as required by an industrial unit, preferably to a regenerator of an industrial unit.
  • the aging medium includes air, dry gas, regenerated flue gas, air and dry gas combustion, burnt gas or air and combustion oil burned gas, or other gases such as nitrogen.
  • the weight ratio of the water vapor to the aging medium is from about 0.2 to about 0.9, preferably from about 0.40 to about 0.60.
  • the fresh catalyst is delivered to a fluidized bed, preferably a dense phase fluidized bed, while a thermally regenerated catalyst of the regenerator is also delivered to the fluidized bed where heat is exchanged.
  • the aging medium of steam or water vapor is injected into the bottom of the fluidized bed, and the fresh catalyst is fluidized by the aging medium of steam or water vapor.
  • the aging medium of water vapor or water vapor aging and aging the fresh catalyst.
  • the temperature is from about 400 ° C to about 85 CTC, preferably from about 500 ° C to about 750 ° C, preferably from about 600 ° C to about 700 ° C, and the apparent line speed of the fluidized bed is about 0.1 m / s to about 0.6 m.
  • a catalyst having a relatively uniform activity is obtained, and the catalyst having a relatively uniform activity is required by the industrial apparatus. It is added to an industrial plant, preferably to a regenerator of an industrial plant.
  • the water vapor after the aging step enters the reaction system (as one of the stripping steam, the anti-coke steam, the atomized steam, the elevated steam, or the stripper, the settler, the raw material nozzle respectively entering the catalytic cracking unit)
  • the pre-lifting section or the regeneration system, and the aging medium of the water vapor after the aging step enters the regeneration system, and the regenerated catalyst after the heat exchange returns to the regenerator.
  • the aging medium includes air, dry gas, regenerated flue gas, air or dry gas burned gas or air and combustion oil burned gas, or other gases such as nitrogen.
  • the activity and selective distribution of the catalyst in the industrial reactor are more uniform, and the selectivity of the catalyst is remarkably improved, so that the dry gas yield and the coke yield are remarkably lowered.
  • the particle size distribution of the catalyst may be a particle size distribution of a conventional catalytic cracking catalyst or a coarse particle size distribution.
  • the catalyst is characterized by a catalyst having a coarse particle size distribution.
  • the sieve of the coarse particle size distribution catalyst is grouped into: a volume ratio of particles smaller than 40 ⁇ m to all particles is less than about 10%, preferably less than about 5%; a particle larger than 80 ⁇ m accounts for less than a volume ratio of all particles. About 15%, preferably less than about 10%, the rest are 40-80 meters of particles.
  • the reactor is selected from one or more of a riser, a constant velocity fluidized bed, a fluidized bed of equal diameter, an upstream conveyor line, and a down conveyor line. Combinations, or a combination of two or more of the same reactors, including series or/and parallel, wherein the riser is a conventional equal diameter riser or a riser of various forms.
  • the feedstock oil is introduced into the reactor at one location, or the feedstock oil is introduced into the reactor at one or more locations of the same or different heights.
  • the method further comprises separating the reaction product from the catalyst, and the catalyst is recycled to the reactor after stripping and charring, and the separated product comprises high cetane diesel and catalytic wax oil.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 330 ° C and a hydrogen content of not less than 10.8% by weight.
  • the catalytic eucalyptus oil is a distillation having an initial boiling point of not less than 350 ° C.
  • the catalytic wax oil has a hydrogen content of not less than 1 1.5%.
  • a catalytic conversion process for increasing a diesel cetane barrel characterized in that the method comprises reacting a feedstock oil in a catalytic conversion reactor with respect to activity mainly comprising a large pore zeolite.
  • the catalyst is contacted to carry out the reaction, wherein the reaction temperature, the residence time of the oil and gas, and the weight ratio of the catalyst to the feedstock oil are sufficient for the reaction to obtain diesel fuel, and about 12 to about 60 weight of the feedstock oil. /.
  • Catalyzing a reaction product of a wax oil wherein the reaction temperature is about 420 to about 55 CTC, the gas and gas residence time is from about 0.1 to about 5 seconds, and the weight ratio of the catalyst to the feedstock oil is from about 1 to about 10; Catalyzing the wax oil in whole or in part into a conventional catalytic cracking or reduction riser reactor to further produce a product comprising diesel and gasoline, or/and returning the catalytic wax oil to the original catalytic conversion reactor or feeding to another catalytic conversion reactor .
  • the reaction temperature is from about 430 to about 500 ° C, preferably from about 430 to about 480 ° C.
  • the hydrocarbon residence time is from about 0.5 to about 4 seconds, preferably from about 0.8 to about 3 seconds.
  • the catalyst to feedstock weight ratio is from about 2 to about 8, preferably from about 3 to about 6.
  • the reaction pressure is from about 0.1 MPa to about 1.0 MPa, preferably from about 0.15 MPa to about 0.6 MPa.
  • the feedstock oil is selected from or comprises petroleum hydrocarbons and/or other mineral oils, wherein the petroleum hydrocarbons are selected from the group consisting of vacuum gas oil, atmospheric gas oil, coker gas oil, deasphalted oil, decompression One or a mixture of two or more of residual oil, atmospheric residue, and other mineral oils are one or a mixture of two or more of coal liquefied oil, oil, oil, shale oil.
  • the catalyst comprising predominantly large pore zeolite comprises zeolite, inorganic oxide, clay.
  • each component comprises the total weight of the catalyst: from about 5 wt% to about 50 wt%, preferably from about 10 wt% to about 30 wt% of the zeolite; from about 0.5 wt% to about 50 wt% of the inorganic oxide; About 70% by weight.
  • zeolite is an active fraction selected from large pore zeolite.
  • the large pore zeolite refers to one or a mixture of two or more of the zeolites consisting of rare earth Y, rare earth hydroquinone, and ultra-stable bismuth and high silicon germanium obtained by different methods.
  • the inorganic oxide is used as a matrix selected from the group consisting of silicon dioxide (SiO 2 ) and/or aluminum oxide (Al 2 2 3 3 ). On the dry basis, the silica in the inorganic oxide accounts for about 50 to about 90 The amount of aluminum oxide accounts for from about 10% by weight to about 50% by weight.
  • a clay as a binder selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, bentonite or Several.
  • the activity-relative catalyst means that its initial activity does not exceed about 80, preferably does not exceed about 75, more preferably does not exceed about 70; the self-equilibration time of the catalyst is about 0.1. From about 0 to about 50 hours, preferably from about 0.2 to about 30 hours, more preferably from about 0.5 to about 10 hours; and an equilibrium activity of from about 35 to about 60, preferably from about 40 to about 55.
  • the initial activity of the catalyst or the fresh catalyst activity described hereinafter refers to the catalyst activity evaluated by the light oil microreactor. It can be measured by the measurement method in the prior art: Enterprise Standard RJPP 92-90 - Micro-reaction Activity Test Method for Catalytic Cracking Fresh Catalyst "Petrochemical Analysis Method (RIPP Test Face Method)", Yang Cuiding et al., 1990, below Referred to as RIPP 92-90.
  • the light oil micro-reverse device (refer to RJPP 92-90) is evaluated according to the following conditions: The catalyst is broken into particles with a particle diameter of about 420 ⁇ 841 ⁇ m, the loading is 5 g, and the reaction material is straight at a distillation range of 235 ⁇ 337 °C. Distilled light diesel oil, reaction temperature 460 ° C, weight airspeed of 16 hours, agent to oil ratio of 3.2.
  • the catalyst self-equilibration time refers to the time required for the catalyst to age to reach equilibrium activity under 8 CKTC and 100% water vapor conditions (refer to RIPP 92-90).
  • the catalyst having a relatively uniform activity can be obtained, for example, by the following three treatment methods: Catalyst treatment method 1 :
  • the processing method 1 is embodied as follows:
  • the fresh catalyst is charged into the fluidized bed, preferably in the dense phase fluidized bed, water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of water vapor, and the steam aging the catalyst, and the aging temperature is about 400°.
  • ⁇ about 850 Torr preferably about 500 ° C to about 750 ° C, preferably about 600 ° C to about 700 ° C
  • the apparent line speed of the fluidized bed is from about 0.1 m/sec to about 0.6 m/sec, preferably about 0.15 Seconds ⁇ about 0.5 m / s, aging about 1 hour ⁇ about 720 hours, preferably about 5 After an hour to about 360 hours, the catalyst having a relatively uniform activity is obtained, and the catalyst having a relatively uniform activity is added to an industrial unit, preferably to a regenerator of an industrial unit, as required by an industrial plant.
  • the catalyst is charged into a fluidized bed, preferably a dense phase fluidized bed, and an aging medium containing water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of an aging medium containing water vapor, and at the same time, the aging medium of the water vapor is used for the catalyst.
  • the aging is carried out at an aging temperature of about 40 CTC to about 850 ° C, preferably about 500 ° C to about 750 ° C, preferably about 600 ° C to about 700 ° C, and the apparent line speed of the fluidized bed is about 0.1 m/sec.
  • the weight ratio of water vapor to aging medium is from about 0.20 to about 0.9, preferably from about 0.40 to about 0.60, and aging is from about 1 hour to about 720 hours, preferably about After 5 hours to about 360 hours, the catalyst having a relatively uniform activity is obtained, and the catalyst having a relatively uniform activity is added to an industrial plant, preferably to a regenerator of an industrial plant, as required by an industrial plant.
  • the aging medium includes air, dry gas, regenerated flue gas, gas or air after combustion of air and dry gas, gas burned with combustion oil, or other gases such as nitrogen.
  • the weight ratio of the water vapor to the aging medium is from about 0.2 to about 0.9, preferably from about 0.40 to about 0.60.
  • Catalyst treatment method 3
  • the fresh catalyst is delivered to a fluidized bed, preferably a dense phase fluidized bed, while a thermally regenerated catalyst of the regenerator is also delivered to the fluidized bed where heat is exchanged.
  • the aging medium of steam or water vapor is injected into the bottom of the fluidized bed, and the fresh catalyst is fluidized by the aging medium of steam or water vapor, and at the same time, water vapor or water vapor.
  • the aging medium ages the fresh catalyst at an aging temperature of from about 400 ° C to about 850 ° C, preferably from about 500 ° C to about 750 ° C, preferably from about 600 ° C to about 700 ° C, and an apparent line speed of the fluidized bed.
  • the weight ratio of the water vapor to the aging medium is from more than about 0 to about 4, preferably from about 0.5 to about 1.5, to obtain a catalyst having relatively uniform activity, and a catalyst having relatively uniform activity according to an industrial device. It is required to add to an industrial unit, preferably to a regenerator of an industrial unit.
  • the water vapor after the aging step enters the reaction system (as one of the stripping steam, the anti-coke steam, the atomized steam, the elevated steam, or the stripper, the settler, the raw material nozzle respectively entering the catalytic cracking unit)
  • the pre-lifting section or the regeneration system, and the aging medium of the water vapor after the aging step enters the regeneration system, and the regenerated catalyst after the heat exchange returns to the regenerator.
  • the aging medium includes air, dry gas, regenerated flue gas, air or dry gas burned gas or air and combustion oil burned gas, or other gases such as nitrogen.
  • the activity and selective distribution of the catalyst in the industrial reactor are more uniform, and the selectivity of the catalyst is remarkably improved, so that the dry gas yield and the coke yield are remarkably lowered.
  • the particle size distribution of the catalyst may be a particle size distribution of a conventional catalytic cracking catalyst or a coarse particle size distribution.
  • the catalyst is characterized by a catalyst having a coarse particle size distribution.
  • the sieve of the coarse particle size distribution catalyst is grouped into: a volume ratio of particles smaller than 40 ⁇ m to all particles is less than about 10%, preferably less than about 5%; a particle larger than 80 ⁇ m accounts for less than a volume ratio of all particles. About 15%, preferably less than about 10%, and the rest are 40-80 mils.
  • the catalytic wax oil is fed to another conversion reactor for cracking reaction, and the generated oil and gas is subjected to hydrogen transfer reaction and isomerization reaction under a certain reaction environment, and the separation includes low olefins.
  • Gasoline reaction product The harsh conversion reactor can be divided into two reaction zones, and the reaction conditions of each reaction zone are as follows:
  • the reaction zone is mainly subjected to a cracking reaction, and the reaction temperature is about 480 ° C to about 600 ° C, preferably about 485 to about 580 ° C, and the reaction time is about 0.1 to about 3 seconds, preferably about 0.5 to about 2 seconds.
  • the weight ratio of the conversion catalyst to the catalytic wax oil is from about 0.5 to about 25:1, preferably from about 1 to about 15:1;
  • the weight ratio of the pre-lifting medium to the catalytic wax oil is from about 0.01 to about 2:1, preferably from about 0.05 to about 1:1; and the reaction pressure is from about 130 to about 450 kPa, preferably from about 250 to about 400 kPa.
  • the second reaction zone mainly performs a hydrogen transfer reaction and an isomerization reaction, and the reaction temperature is about 450 ° C to about 550 ° C, preferably about 460 to about 530 ° C.
  • the dense phase operation is maintained in the second reaction zone, and the catalyst bed is dense.
  • the phase density is from about 100 to about 700 kg/ m3 , preferably from about 120 to about 500 kg/ m3 ;
  • the second reaction zone has a weight hourly space velocity of from about 1 to about 50 hours, preferably from about 1 to about 40 hours - a reaction pressure of about 130 ⁇ about 450 kPa, preferably about 250 ⁇ about 400 kPa.
  • the method further comprises separating the another conversion reaction product and the conversion catalyst, and the conversion catalyst is subjected to steam stripping, charring regeneration, and returned to the other conversion reactor, and the separated product includes low Olefin gasoline, etc.
  • the reactor is selected from one or more of a riser, a constant velocity fluidized bed, a fluidized bed of equal diameter, an upstream conveyor line, and a down conveyor line. Combinations, or a combination of two or more of the same reactors, including series or/and parallel, wherein the riser is a conventional equal diameter riser or a riser of various forms.
  • the feedstock oil is introduced into the reactor at one location, or the feedstock oil is introduced into the reactor at one or more locations of the same or different heights.
  • the method further comprises separating the reaction product from the catalyst, and the catalyst is recycled to the reactor after stripping and charring, and the separated product comprises high cetane diesel and catalytic wax oil.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 330 ° C and a hydrogen content of not less than 10.8% by weight.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 350 ° C, and the catalytic wax oil has a hydrogen content of not less than 1 1.5%.
  • a catalytic conversion process for increasing a diesel cetane barrel characterized in that the process comprises reacting a feedstock oil in a catalytic conversion reactor with respect to activity predominantly containing large pore zeolites.
  • the reaction is carried out by a uniform catalyst contact, wherein the reaction temperature, the residence time of the oil and gas, and the weight ratio of the catalyst to the feedstock oil are sufficient to obtain a reaction product comprising diesel fuel, about 12 to about 60% by weight of the catalytic wax oil, which is the reaction temperature.
  • the hydrocarbon residence time is from about 0.1 to about 5 seconds, and the weight ratio of the catalyst to the feedstock oil is from about 1 to about 10; and the catalyst wax is wholly or partially introduced into the hydrocracking unit for further production.
  • High cetane number diesel In a preferred embodiment, the treated hydrocracked tail oil can be reintroduced into a conventional catalytic cracking or reduction riser reactor to further produce products including diesel and gasoline. In a preferred embodiment, the hydrocracked tail oil can be returned to the catalytic conversion reactor.
  • the reaction temperature is from about 430 to about 500 ° C, preferably from about 430 to about 480 ° C.
  • the hydrocarbon residence time is from about 0.5 to about 4 seconds, preferably from about 0.8 to about 3 seconds.
  • the catalyst to feedstock weight ratio is from about 2 to about 8, preferably from about 3 to about 6.
  • the reaction pressure is from about 0.10 MPa to about 1.0 MPa, preferably from about 0.15 MPa to about 0.6 MPa.
  • the feedstock oil is selected from or comprises petroleum hydrocarbons and/or other mineral oils, wherein the petroleum hydrocarbons are selected from the group consisting of vacuum gas oil, atmospheric gas oil, coker gas oil, deasphalted oil, decompression One or a mixture of two or more of residual oil, atmospheric residue, and other mineral oils are one or a mixture of two or more of coal liquefied oil, oil sand oil, shale oil.
  • the catalyst comprising predominantly large pore zeolite comprises zeolite, inorganic oxide, clay.
  • each component comprises the total weight of the catalyst: from about 5 wt% to about 50 wt%, preferably from about 10 wt% to about 30 wt% of the zeolite; from about 0.5 wt% to about 50 wt% of the inorganic oxide; About 70% by weight.
  • zeolite is an active fraction selected from large pore zeolite.
  • the large pore zeolite refers to one or a mixture of two or more of the zeolites consisting of rare earth Y, rare earth hydroquinone, and ultra-stable bismuth and high silicon germanium obtained by different methods.
  • the inorganic oxide is used as a matrix selected from the group consisting of silicon dioxide (SiO 2 ) and/or aluminum oxide (Al 2 2 3 3 ).
  • SiO 2 silicon dioxide
  • Al 2 2 3 3 aluminum oxide
  • silica in the inorganic oxide comprises from about 50 to about 90 wt% by weight
  • alumina comprises from about 10 weight to about 50 wt 0/0.
  • Clay as a binder selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, bentonite Or several.
  • the activity-relative catalyst means that its initial activity does not exceed about 80, preferably does not exceed about 75, more preferably does not exceed about 70; the self-equilibration time of the catalyst is about 0. 1 hour to about 50 hours, preferably about 0.2 to about 30 hours, more preferably about 0.5 to about 10 hours; an equilibrium activity of about 35 to about 60, preferably About 40 ⁇ about 55.
  • the initial activity of the catalyst or the fresh catalyst activity described hereinafter refers to the catalyst activity evaluated by the light oil microreactor. It can be measured by the measurement method in the prior art: Enterprise Standard RIPP 92-90 Microreactor activity test method for catalytic cracking fresh catalyst "Petrochemical Analysis Method (RIPP Test Method)", Yang Cuiding et al., 1990, hereinafter referred to as RIPP 92-90.
  • the light oil micro-reverse device (refer to RIPP 92-90) is evaluated as:
  • the catalyst is broken into particles having a particle diameter of about 420-841 ⁇ m, and the loading amount is 5 g.
  • the reaction raw material is a straight-run light with a distillation range of 235-337 ⁇ . Diesel, the reaction temperature is 460 °C, and the weight space velocity is 16 hours.
  • the catalyst self-equilibration time refers to the time required for the catalyst to age to reach equilibrium activity at 800 ° C and 100% water vapor conditions (refer to RIPP 92-90).
  • the catalyst having relatively relatively uniform activity can be obtained, for example, by the following three treatment methods: Catalyst treatment method 1 :
  • the processing method 1 is embodied as follows:
  • the fresh catalyst is charged into the fluidized bed, preferably in the dense phase fluidized bed, water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of water vapor, and the steam aging the catalyst, and the aging temperature is about 400°.
  • the apparent line speed of the fluidized bed is about 0.1 m / s to about 0.6 m / s, preferably From about 0.15 seconds to about 0.5 meters per second, after aging for about 1 hour to about 720 hours, preferably about 5 hours to about 360 hours, the catalyst having relatively uniform activity is obtained, and the catalyst having relatively relatively active activity is required by the industrial device. It is added to an industrial plant, preferably to a regenerator of an industrial plant.
  • the technical solution of the catalyst treatment method 2 is specifically embodied as follows: The catalyst is charged into a fluidized bed, preferably a dense phase fluidized bed, and an aging medium containing water vapor is injected into the bottom of the fluidized bed, and the catalyst acts on an aging medium containing water vapor. The fluidization is carried out, and at the same time, the aging medium containing water vapor ages the catalyst, and the aging temperature is about 400 ° C to about 850 ° C, preferably about 500 ° C to about 750 ° C, preferably about 600 ° C to about 700 ° C.
  • the apparent linear velocity of the fluidized bed is from about 0.1 m/s to about 0.6 m/s, preferably from about 0.15 seconds to about 0.5 m/s, and the weight ratio of water vapor to the aged medium is from about 0.20 to about 0.9, preferably about 0.40.
  • About 0.60 aging for about 1 hour to about 720 hours, preferably about 5 hours after about 360 hours, the catalyst having relatively uniform activity is obtained, and the catalyst having relatively uniform activity is added to the industrial device according to the requirements of the industrial device, preferably added to Regenerator for industrial plants.
  • the aging medium includes air, dry gas, regenerated flue gas, air or dry gas burned gas or air and combustion oil burned gas, or other gases such as nitrogen.
  • the weight ratio of the water vapor to the aging medium is from about 0.2 to about 0.9, preferably from about 0.40 to about 0.60.
  • Catalyst treatment method 3
  • the fresh catalyst is delivered to a fluidized bed, preferably a dense phase fluidized bed, while a thermally regenerated catalyst of the regenerator is also delivered to the fluidized bed where heat is exchanged.
  • the aging medium of steam or water vapor is injected into the bottom of the fluidized bed, and the fresh catalyst is fluidized by the aging medium of steam or water vapor.
  • the aging medium of water vapor or water vapor aging and aging the fresh catalyst.
  • the temperature is from about 400 ° C to about 850 ° C, preferably from about 500 ° C to about 750 ° C, preferably from about 600 ° C to about 700 ° C.
  • the apparent line speed of the fluidized bed is from about 0.1 m/s to about 0.6 m.
  • the weight ratio of the medium is from about 0 to about 4, preferably from about 0.5 to about 1.5, to obtain a catalyst having relatively uniform activity, and the catalyst having relatively uniform activity is added to an industrial device, preferably to an industrial, as required by an industrial plant.
  • the regenerator of the device is from about 0 to about 4, preferably from about 0.5 to about 1.5, to obtain a catalyst having relatively uniform activity, and the catalyst having relatively uniform activity is added to an industrial device, preferably to an industrial, as required by an industrial plant.
  • the water vapor after the aging step enters the reaction system (as stripping steam, prevention Aging of steam, atomized steam, one or more of the lift steam into the catalytic cracker, the settler, the feed nozzle, the pre-lift section, or the regeneration system, and the aging of the water vapor after the aging step
  • the medium enters the regeneration system, and the regenerated catalyst after heat exchange is returned to the regenerator.
  • the aging medium includes air, kilowatts, regenerated flue gas, gas after combustion of air and dry gas, gas after combustion of air with combustion oil, or other gas such as nitrogen.
  • the activity and selective distribution of the catalyst in the industrial reactor are more uniform, and the selectivity of the catalyst is remarkably improved, so that the dry gas yield and the coke yield are remarkably lowered.
  • the particle size distribution of the catalyst may be a particle size distribution of a conventional catalytic cracking catalyst or a coarse particle size distribution.
  • the catalyst is characterized by a catalyst having a coarse particle size distribution.
  • the sieve of the coarse particle size distribution catalyst is grouped into: a volume ratio of particles smaller than 40 ⁇ m to all particles is less than about 10%, preferably less than about 5%; a particle larger than 80 ⁇ m accounts for less than a volume ratio of all particles. About 15%, preferably about 10%, the rest are 40 ⁇ 80 meters of particles.
  • the reactor is selected from one or more of a riser, a constant velocity fluidized bed, a fluidized bed of equal diameter, an upstream conveyor line, and a down conveyor line. Combinations, or a combination of two or more of the same reactors, including series or/and parallel, wherein the riser is a conventional equal diameter riser or a riser of various forms.
  • the feedstock oil is introduced into the reactor at one location, or the feedstock oil is introduced into the reactor at one or more locations of the same or different heights.
  • the method further comprises separating the reaction product from the catalyst, and the catalyst is recycled to the reactor after stripping and charring, and the separated product comprises high cetane diesel and catalytic wax oil.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 330 ° C and a hydrogen content of not less than 10.8% by weight.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 350 ° C, and the catalytic wax oil has a hydrogen content of not less than 1 1.5%.
  • the reaction system of the hydrocracking unit usually includes a refining reactor and a cracking reactor, both of which For fixed bed reactors, other types of reactors can also be used.
  • the refined reactor and cracking reaction are usually charged with an argon refining catalyst and a hydrocracking catalyst.
  • the hydrofinishing catalyst is supported on an amorphous alumina or/and a silica-alumina carrier.
  • hydrocracking catalysts are Group VIB or / and Group VIII non-noble metal catalysts supported on a molecular sieve.
  • the non-precious metal of group VIB is molybdenum or / and ruthenium; and the non-precious metal of group VIII is one or more of nickel, cobalt and iron.
  • the molecules supported by the hydrocracking catalyst are selected from one or more of a Y-type molecular sieve, a ⁇ -type molecular sieve, a ZSM-5 type molecular sieve, and a SAPO series molecular sieve.
  • the hydrocracking process conditions are: hydrogen partial pressure of about 4.0 to about 20.0 MPa, reaction temperature of about 280 to about 45 CTC, volumetric space velocity of about 0.1 to about 20 h - hydrogen to oil ratio of about 300 to about 2000 v/vo.
  • the hydrogen to oil ratio refers to the volume ratio of hydrogen to catalytic wax oil.
  • a catalytic conversion process for increasing a diesel cetane barrel characterized in that the process comprises reacting a feedstock oil in a catalytic conversion reactor with respect to activity predominantly containing large pore zeolites.
  • the catalyst is contacted to carry out the reaction, wherein the reaction temperature, the residence time of the oil and gas, and the weight ratio of the catalyst to the feedstock oil are sufficient for the reaction to obtain diesel oil, which accounts for about 12 to about 60 weight of the feedstock oil. /.
  • Catalyzing the reaction product of the wax oil wherein the reaction temperature is about 420 to about 550 ° C, the gas and oil residence time is about 0.1 to about 5 seconds, and the weight ratio of the catalyst to the feedstock oil is about 1 to about 10;
  • the catalytic wax oil is wholly or partially introduced into the hydrotreating unit for further treatment to obtain a high quality hydrogenated catalytic wax oil.
  • the treated hydrocatalytic wax oil can be reintroduced into a conventional catalytic cracking or reduction riser reactor to further produce products including diesel and gasoline.
  • the hydrogenated catalytic wax oil can be returned to the catalytic conversion reactor.
  • reaction temperature is from about 430 to about 50CTC, preferably from about 430 to about 480 ° C 0
  • the hydrocarbon residence time is from about 0.5 to about 4 seconds, preferably from about 0.8 to about 3 seconds.
  • the catalyst to feedstock weight ratio is from about 2 to about 8, preferably from about 3 to about 6.
  • the reaction pressure is from about 0.10 MPa to about 1.0 MPa, preferably from about 0.15 MPa to about 0.6 MPa.
  • the hydrocracking tail oil of the catalytic wax oil is fed to a conventional catalyst
  • the cracking or/and reducing riser reactor, or/and the present catalytic converter, or/and the hydrocracking unit are further processed.
  • the feedstock oil is selected from or comprises petroleum hydrocarbons and/or other mineral oils, wherein the petroleum hydrocarbons are selected from the group consisting of vacuum gas oil, atmospheric gas oil, coker gas oil, deasphalted oil, decompression One or a mixture of two or more of residual oil, atmospheric residue, and other mineral oils are one or a mixture of two or more of coal liquefied oil, oil, oil, shale oil.
  • the catalyst comprising predominantly large pore zeolite comprises zeolite, inorganic oxide, clay.
  • each component comprises the total weight of the catalyst: from about 5 wt% to about 50 wt%, preferably from about 10 wt% to about 30 wt% of the zeolite; from about 0.5 wt% to about 50 wt% of the inorganic oxide; About 70% by weight.
  • zeolite is an active fraction selected from large pore zeolite.
  • the large pore zeolite refers to one or a mixture of two or more of the zeolites consisting of rare earth Y, rare earth hydroquinone, and ultra-stable bismuth and high silicon germanium obtained by different methods.
  • the inorganic oxide is used as a matrix selected from the group consisting of silicon dioxide (SiO 2 ) and/or aluminum oxide (Al 2 2 3 3 ).
  • SiO 2 silicon dioxide
  • Al 2 2 3 3 aluminum oxide
  • silica in the inorganic oxide comprises from about 50 to about 90 wt% by weight
  • alumina comprises from about 10 weight to about 50 wt 0/0.
  • a clay as a binder selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, bentonite or Several.
  • the activity-relative catalyst means that its initial activity does not exceed about 80, preferably does not exceed about 75, more preferably does not exceed about 70; the self-equilibration time of the catalyst is about 0.1. From about 0 to about 50 hours, preferably from about 0.2 to about 30 hours, more preferably from about 0.5 to about 10 hours; and an equilibrium activity of from about 35 to about 60, preferably from about 40 to about 55.
  • the initial activity of the catalyst or the fresh catalyst activity described hereinafter refers to the catalyst activity evaluated by the light oil microreactor. It can be measured by the measurement method in the prior art: Enterprise Standard RIPP 92-90 - Micro-reaction Activity Test Method for Catalytic Cracking Fresh Catalyst "Petrochemical Analysis Method (RIPP Test Method)", Yang Cuiding et al., 1990, below Referred to as RIPP 92-90.
  • the light oil micro-reverse device (refer to RIPP 92-90) is evaluated as: crushing the catalyst into particles The particles with a diameter of about 420 ⁇ 841 micrometers are loaded with 5 grams.
  • the reaction raw material is straight-run light diesel oil with a distillation range of 235 ⁇ 337.
  • the reaction temperature is 460 °C, the weight space velocity is 16 hours, and the ratio of solvent to oil is 3.2.
  • the catalyst self-equilibration time refers to the time required for the catalyst to age to reach equilibrium activity at 800 ° C and 100% water vapor conditions (refer to RIPP 92-90).
  • the catalyst having relatively relatively uniform activity can be obtained, for example, by the following three treatment methods: Catalyst treatment method 1 :
  • the processing method 1 is embodied as follows:
  • the fresh catalyst is charged into the fluidized bed, preferably in the dense phase fluidized bed, water vapor is injected into the bottom of the fluidized bed, the catalyst is fluidized by the action of water vapor, and the steam aging the catalyst, and the aging temperature is about 400 °. C to about 850 ° C, preferably about 500 V to about 750 ° C, preferably about 600 ° C to about 700 V, and the apparent line speed of the fluidized bed is from about 0.1 m/sec to about 0.6 m/sec, preferably about 0.15.
  • the catalyst with relatively uniform activity is added to the requirements of industrial equipment.
  • Industrial plants are preferably added to the regenerator of the industrial plant.
  • the catalyst is charged into a fluidized bed, preferably a dense phase fluidized bed, and an aging medium containing water vapor is injected into the bottom of the fluidized bed, and the catalyst is fluidized under the action of an aging medium containing water vapor, and at the same time, the aging medium of the water vapor
  • the catalyst is aged, and the aging temperature is about 400 ° C to about 850 ° C, preferably about 500 ° C to about 750 ° C, preferably about 600 ° C to about 700 C, and the apparent line speed of the fluidized bed is about 0.1 m / sec.
  • the weight ratio of water vapor to aged medium is from about 0.20 to about 0.9, preferably from about 0.40 to about 0.60, and aged from about 1 hour to about 720 hours, preferably about After 5 hours to about 360 hours, the catalyst having relatively uniform activity is obtained, and the catalyst having relatively uniform activity is required by the industrial device. It is added to an industrial plant, preferably to a regenerator of an industrial plant.
  • the aging medium includes air, dry gas, regenerated flue gas, air or dry gas burned gas or air and combustion oil burned gas, or other gases such as nitrogen.
  • the weight ratio of the water vapor to the aging medium is about
  • Catalyst treatment method 3
  • the fresh catalyst is delivered to a fluidized bed, preferably a dense phase fluidized bed, while the thermal regenerated catalyst of the regenerator is also delivered to the fluidized bed where 3 ⁇ 4 of the heat is applied.
  • the aging medium of steam or water vapor is injected into the bottom of the fluidized bed, and the fresh catalyst is fluidized by the aging medium of steam or water vapor.
  • the aging medium of water vapor or water vapor aging and aging the fresh catalyst.
  • the temperature is from about 400 ° C to about 850 ° C, preferably from about 500 ° C to about 750 ° C, preferably from about 600 ° C to about 700 ° C.
  • the apparent line speed of the fluidized bed is from about 0.1 m/s to about 0.6 m.
  • the weight ratio is greater than about 0 to about 4, preferably about 0.5 to about 1.5, to obtain a catalyst having relatively uniform activity.
  • the catalyst having relatively uniform activity is added to an industrial device, preferably to an industrial device, according to the requirements of an industrial plant. Regenerator.
  • the water vapor after the aging step enters the reaction system (as one of the stripping steam, the anti-coke steam, the atomized steam, the elevated steam, or the stripper, the settler, the raw material nozzle respectively entering the catalytic cracking unit)
  • the pre-lifting section or the regeneration system, and the aging medium of the water vapor after the aging step enters the regeneration system, and the regenerated catalyst after the heat exchange returns to the regenerator.
  • the aging medium includes air, dry gas, regenerated flue gas, gas after combustion of air and dry gas or gas after combustion with combustion oil, or other gases such as nitrogen.
  • the activity and selective distribution of the catalyst in the industrial reactor are more uniform, and the selectivity of the catalyst is remarkably improved, so that the dry gas yield and the coke yield are remarkably lowered.
  • the particle size distribution of the catalyst may be a particle size distribution of a conventional catalytic cracking catalyst. It can also be a coarse particle size distribution. In a more preferred embodiment, the catalyst is characterized by a catalyst having a coarse particle size distribution.
  • the grouping of the coarse particle size distribution catalysts is such that: a particle size of less than 40 microns accounts for less than about 10%, preferably less than about 5%, of all particles; a particle size of more than 80 microns accounts for less than about 10% of all particles. 15%, preferably about 10%, and the rest are 40 ⁇ 80 4 meters of particles.
  • the reactor is selected from one or more of a riser, a constant velocity fluidized bed, a fluidized bed of equal diameter, an upstream conveyor line, and a down conveyor line. Combinations, or a combination of two or more of the same reactors, including series or/and parallel, wherein the riser is a conventional equal diameter riser or a riser of various forms.
  • the feedstock oil is introduced into the reactor at one location, or the feedstock oil is introduced into the reactor at one or more locations of the same or different heights.
  • the method further comprises separating the reaction product from the catalyst, and the catalyst is recycled to the reactor after stripping and charring, and the separated product comprises high cetane diesel and catalytic wax oil.
  • the catalytic wax oil is a fraction having an initial boiling point of not less than 330 ° C and a hydrogen content of not less than 10.8% by weight.
  • the catalytic wax oil is a fraction having a preliminary point of not less than 350 ° C, and the catalytic wax oil has a hydrogen content of not less than 11.5%.
  • the reaction system of the hydrotreating unit is usually a fixed bed reactor, and other types of reactors can also be used.
  • the catalytic wax oil hydrogenation catalyst consists of a metal of the group periodic table and group VIB as the active component, and alumina and zeolite as carriers.
  • the hydrogenation catalyst contains a support and molybdenum and/or tungsten and nickel and/or cobalt supported on the support. Calculated as the oxide and based on the total catalyst, whichever content of the hydrogenation catalyst is molybdenum and / or tungsten by weight from about 10 to about 35 0/0, preferably from about 18 to about 32 wt%, the content of nickel and / or cobalt From about 1 to about 15% by weight, preferably from about 3 to about 12% by weight.
  • the support comprises alumina and zeolite in a weight ratio of alumina to zeolite of from about 90:10 to about 50:50, preferably from about 90:10 to about 60:40.
  • the alumina is composed of a small pore alumina and a large pore alumina in a weight ratio of from about 75:25 to about 50:50.
  • the zeolite is selected from one or more of faujasite, mordenite, erionite zeolite, L-type zeolite, omega zeolite, ZSM-4 zeolite, Beta zeolite, preferably Y-type zeolite, and particularly preferred zeolite is total acid amount. From about 0.02 to less than about 0.5 millimoles per gram, preferably from about 0.05 to about 0.2 mole percent per gram of the zeolite Y.
  • the hydrotreating process conditions are: hydrogen partial pressure of about 3.0 to about 20.0 MPa, reaction temperature of about 280 to about 450 ° C, volumetric space velocity of about 0.1 to about 20 h, and hydrogen to oil ratio of about 300 to about 2000 v/v.
  • the hydrogen to oil ratio in the present invention refers to the volume ratio of hydrogen to catalytic wax oil.
  • the preparation method of the catalytic wax oil hydrogenation catalyst comprises:
  • the precursor of alumina is mixed with zeolite, calcined, impregnated with an aqueous solution containing nickel and/or cobalt and molybdenum and/or tungsten, and then dried and calcined, the precursor of the alumina being a pore having a pore diameter of less than 80 angstroms.
  • the aluminum precursor, the macroporous alumina precursor and the zeolite are used in an amount such that the weight ratio of the small pore alumina to the macroporous alumina in the catalyst is from about 75:25 to about 50:50, and the ratio of the total weight of the alumina to the weight of the zeolite is about 90. : 10 ⁇ about 50 : 50, preferably about 90 : 10 ⁇ about 60 : 40.
  • the precursor of the small pore alumina is hydrated alumina having a boehmite content of greater than about 60% by weight
  • the precursor of the macroporous alumina is hydrated alumina having a boehmite content of greater than about 50% by weight.
  • the invention has the following technical effects:
  • the alkane and alkyl aromatic side chains in the raw materials are selectively cracked into the product diesel fraction to ensure that the composition of the diesel fraction is mainly alkane, and finally It is possible to produce high cetane diesel by catalytic conversion;
  • the heavy oil is mainly converted into the catalytic wax oil after the catalytic conversion by the method provided by the invention.
  • an aromatic hydrocarbon component As an aromatic hydrocarbon component, its properties change little with the nature of the raw material, so that the ammonia treatment or/and the hydrocracking device are stable, and the operation cycle is correspondingly improved;
  • the catalyst consumption is reduced, and the amount of catalyst entrained in the catalytic wax oil is reduced.
  • the term “includes” means that other steps and ingredients that do not affect the end result can be added. This term includes the terms “consisting of” and “consisting essentially of”.
  • method refers to the means, means, techniques, and procedures used to achieve a specified task, including but not limited to, those known to those skilled in the chemical and chemical arts, or they are readily known by known means, means, techniques, and The methods, means, techniques and procedures developed by the program.
  • range format various aspects of the invention may be represented in a range format. It is to be understood that the description of the range format is for convenience and brief purpose only and should not be considered as a limitation of the scope of the invention. Accordingly, a range of descriptions should be considered as specifically disclosing all possible sub-ranges and values in the range. For example, a description of a range such as 1 to 6 should be considered as specifically disclosing sub-ranges such as 1 to 3, 1 to 4, 1 to 5, 2 to 4, 2 to 6, 3 to 6, and Values within this range, such as 1, 2, 3, 4, 5, and 6. This applies regardless of the width of the range.
  • Figure 1 is a schematic flow diagram of an embodiment of the present invention.
  • FIG. 2 is a schematic illustration of one embodiment of the invention. Specific implementation process
  • Figure 1 is a schematic flow diagram of an embodiment of the present invention.
  • the feedstock oil enters the catalytic cracking reactor to obtain components such as catalytic diesel oil and catalytic wax oil, wherein the catalytic diesel oil is taken out through the pipeline 5; wherein all or part of the catalytic wax oil passes through the pipeline 6, and the pipeline 8' Lead out.
  • the regenerated catalyst is controlled by the regeneration inclined tube 12 and the slide valve 1 to enter the pre-lift section 2 at the bottom of the riser reactor 4, and the pre-lifting medium also enters the pre-lift section via the pipeline 1. 2.
  • the regenerated catalyst enters the reaction zone I in the lower part of the riser reactor 4 through the pre-lifting section 2, and the catalytic feedstock oil also enters the reaction zone I in the lower part of the riser reactor via the pipeline 3, and is in contact with the catalyst.
  • the reaction proceeds to the reaction zone II.
  • the reacted oil mixture enters the cyclone 7 from the outlet of the riser, is subjected to gas-solid separation by the cyclone 7, and the separated oil and gas enters the settler plenum 6.
  • the carbon-bearing catalyst after separation from the reaction oil and gas enters the stripping section 5, and is stripped by superheated steam in the stripping section 5.
  • the stripped charcoal catalyst is controlled by the inclined tube 8 and controlled by the slide valve 9.
  • the regenerator 10 is regenerated, the main wind enters the regenerator 10 via the pipeline 20, the coke on the catalyst to be produced is burned, the deactivated catalyst is regenerated, the flue gas enters the hood through the pipeline 21, and the regenerated catalyst is regenerated by the inclined tube. 12. It is controlled by the spool valve 1 to return to the pre-lift section 2 for recycling.
  • reaction product oil in the plenum 6 passes through the large oil and gas pipeline 13 and enters the subsequent separation system 14, and the separated dry gas, liquefied gas, gasoline, diesel and catalytic wax oil are respectively passed through the pipelines 15, 16, 17, 18 and 19 respectively. Lead out.
  • All or part of the catalytic wax oil from line 19 may be optionally taken directly; or/and directly introduced into a conventional catalytic cracking or reduction riser reactor; or/and introduced into a hydrotreating unit to obtain a hydrotreated catalytic wax oil, hydrotreating Catalytic wax oil is fed to the riser reactor; or/and introduced into the hydrocracking reactor.
  • the catalytic wax oil is further processed to obtain the intended product.
  • the following examples will further illustrate the method, but do not limit the method accordingly.
  • VGO-D vacuum gas oil
  • AR atmospheric residue
  • the catalyst zeolite used in the examples of the present invention is an aged silica gel.
  • the high silica zeolite is prepared as follows: a sample prepared by gas phase treatment of NaY by SiC and rare earth ion exchange, the ratio of silicon to aluminum is 18, and the content of rare earth in terms of RE 2 0 3 is 2% by weight, and then the sample is Aging treatment was carried out at 800 ° C under 100% steam. 4,300 g of deionized water was used to beat 969 g of kaolinite (China Kaolin Company, solid content 73%), and then 7 ⁇ 1 g of pseudo-boehmite (Shandong Zibo Aluminite Factory, solid content 64%) and 144 ml of hydrochloric acid were added.
  • a part of the aging agent is subjected to decantation to remove fine particles and particles larger than ⁇ to obtain a catalyst having a coarse particle size distribution, which is coded as ruthenium.
  • the catalyst properties are listed in Table 2.
  • the commercial brands of the hydrofinishing catalyst and the hydrocracking catalyst used in the examples were RN-2 and RT-1, respectively, both of which were produced by Changling Catalyst Plant of Sinopec Catalyst Branch.
  • This example illustrates the use of the method provided by the present invention for the selective cracking reaction to produce high quality light diesel oil and catalytic wax oil.
  • the flow chart of the medium-sized catalytic cracking unit is shown in Fig. 2.
  • the feedstock oil VGO-D is injected into the riser reactor via line 3, and is contacted with the catalyst B raised by the steam in the lower part of the riser reactor, reacting, and reacting in the riser.
  • the weight ratio of catalyst B to feedstock oil was 4:1, the residence time of the feedstock oil in the riser reactor was 1,6 seconds, and the reaction temperature was 460 °C.
  • the plenum pressure is 0.15 MPa.
  • the charcoal-containing catalyst enters the stripping section, and the stripped catalyst is regenerated by the regenerator, and the regenerated catalyst is returned to the riser reactor for recycling.
  • the test conditions and test results are listed in Table 3.
  • the diesel properties are listed in Table 4. Comparative example
  • the test was carried out using the same riser reactor as in the above embodiment, and the raw material oil used was the same as that of the above embodiment.
  • the test procedure and method were identical to those of Example 1, except that the catalyst used was changed from Catalyst B of the Example to Catalyst A. Operating conditions and product distribution are listed in Table 3.
  • the test results are shown in Table 3.
  • the diesel properties are listed in Table 4.
  • the catalytic wax oil properties are listed in Table 5.
  • Example 1 3 ⁇ ratio 1 Catalyst number B A Reaction temperature, V 460 460 Reaction time, second 1.6 1.6 Agent oil ratio 4 4 Water injection amount (% of feed), % 10 10 Product distribution, % by weight
  • Diesel cetane barrel diesel cetane number X diesel yield
  • This example illustrates the use of the process provided by the present invention for the selective cracking reaction to produce high quality light diesel oil and low olefin gasoline.
  • the flow chart of the medium-sized catalytic cracking unit is shown in Fig. 2.
  • the feedstock oil VGO-D is injected into the riser reactor via line 3, and is contacted with the catalyst B raised by the steam in the lower part of the riser reactor, reacting, and reacting in the riser.
  • the weight ratio of catalyst B to feedstock oil is 4:1
  • the residence time of feedstock oil in the riser reactor is 1.6 seconds
  • the reaction temperature is 46 (TC.
  • the gas collection chamber pressure is 0.15 MPa
  • oil and gas from the riser After being separated, the cyclone separator is separated and then enters the rear parting system to separate the target product diesel oil and catalytic wax oil, etc.
  • the carbon-containing catalyst is introduced into the stripping section, and the stripped catalyst is regenerated by the regenerator. The regenerated catalyst is returned to the riser reactor for recycling.
  • the obtained catalytic wax oil is directly sent into the variable diameter riser reactor for catalytic conversion, using the same catalyst B, in the variable diameter riser reactor, the catalyst B and the catalytic wax oil
  • the weight ratio is 6:1
  • the residence time of the catalytic wax oil in the riser reactor is 5.5 seconds
  • the temperature of the first reaction zone (referred to as a reverse) is 510 °C
  • the temperature of the first reaction zone (referred to as the second reaction) is 490.
  • °C the oil and gas from the variable diameter riser is separated by the cyclone separator and then enters the rear branching system to separate the target product diesel and gasoline.
  • the test conditions and test results are shown in Table 6.
  • the properties of the diesel oil were comparable to those of the diesel fuel of Example 1, and the properties of the gasoline were listed in Table 7.
  • This example illustrates the use of the process provided by the present invention to produce high quality diesel by selective cracking reaction by catalytic cracking in combination with a hydrocracking process.
  • the flow chart of the medium-sized catalytic cracking unit is shown in Fig. 2.
  • the feedstock oil (VGO-D) is injected into the riser reactor via line 3, and is contacted and reacted with the catalyst B lifted by the steam in the lower part of the riser reactor.
  • the weight ratio of catalyst B to feedstock oil in the tube reactor was 4:1, the residence time of the feedstock oil in the riser reactor was 1.6 seconds, and the reaction temperature was 460 °C.
  • the gas collection chamber pressure is 0.15 MPa. After the oil and gas exits the riser, it is separated by a cyclone separator and then enters the rear fractionation system to separate the target product diesel oil and catalytic wax oil.
  • the carbon-containing catalyst is introduced into the stripping section, and the stripped catalyst is regenerated by the regenerator, and the regenerated catalyst is returned to the riser reactor for recycling.
  • the reaction conditions for hydrocracking are: purified reaction temperature is 370 ° C, the cracking reaction temperature is 380 ° C, a hydrogen partial pressure of 12.0 MPa, a volume space velocity of 1.211- 1.
  • the test conditions and test results are shown in Table 8.
  • the properties of the catalytic diesel oil were comparable to those of the light diesel oil of Example 1.
  • the properties of the hydrocracked diesel oil are listed in Table 9, and the hydrocracking tail oil properties are listed in Table 10.
  • the catalytic diesel fuel yield of this example was as high as 29.76% by weight, and the hydrogen cracked diesel oil yield was as high as 18.63% by weight. /.
  • the dry gas yield is only 0.48% by weight, and the coke yield is only 1.78 wt%.
  • the catalytic diesel fuel produced in this example has a cetane number of up to 53, and the hydrocracked diesel oil is ten.
  • the hexadecane value is as high as 68.2, and the diesel cetane barrel is as high as 2,847.846 (ie 29.76 ⁇ 53+18.63 ⁇ 68.2).
  • the BMCI value of the by-product hydrocracking tail oil reaches 15.6, which is a good raw material for reactor cracking and other reactors.
  • This example illustrates the use of the process provided by the present invention to produce high quality diesel by selective cracking reaction by catalytic cracking in combination with a hydrotreating process.
  • the flow chart of the medium-sized catalytic cracking unit is shown in Fig. 2.
  • the atmospheric residue (AR) is injected into the riser reactor via line 3, and contacts and reacts with the catalyst A lifted by the water vapor in the lower part of the riser reactor.
  • the weight ratio of the catalyst B to the feedstock in the tube reactor was 3: 1, the residence time of the feedstock in the riser reactor was 1.6 seconds, and the reaction temperature was 450 °C.
  • the plenum pressure is 0.2 MPa, and the oil and gas are separated from the riser and separated by the cyclone.
  • the fractionation system of the part is separated to obtain the target product diesel and catalytic wax oil.
  • the carbon-containing catalyst is introduced into the stripping section, and the stripped catalyst is regenerated by the regenerator, and the regenerated catalyst is returned to the riser reactor for recycling.
  • Catalytic wax oil enters the subsequent hydrotreating unit.
  • the hydrogenation reaction conditions are: hydrogen partial pressure of 14 MPa, reaction temperature of 385 C, and volumetric space velocity of 0.235 hours.
  • the hydrotreating of the unit is catalyzed by the wax oil. Cracking unit.
  • the test conditions and test results are shown in Table 10. The diesel properties are listed in Table 11.
  • the diesel oil yield of this example was as high as 46.51% by weight; as can be seen from Table 4, the diesel cetane number of this example was as high as 52.5, and the diesel cetane barrel was as high as 2441.78.
  • the same riser reactor as in the above Example 4 was used for the test.
  • the raw material oil used was the same as that of the above embodiment, and the test procedures and methods were identical to those of the examples except that the catalyst used was changed from the coarse particle size catalyst B of Example 4. It is a conventional particle size catalyst A.
  • the test conditions and test results are listed in Table 10.
  • the diesel properties are listed in Table 11.
  • the diesel oil yield of this example was as high as 45.88% by weight; as can be seen from Table 11, the diesel cetane number of this example was as high as 51.4, and the diesel cetane number barrel was as high as 2,358.23.
  • Example 5 It can also be seen from Table 10 that the dry gas and coke yield of Example 5 is significantly higher than that of Example 4, indicating that the coarse particle size cracking catalyst B can reduce the dry gas and coke yield more than the conventional particle size cracking catalyst A. .
  • Diesel cetane barrel diesel cetane number X diesel yield It will be appreciated that certain aspects and features of the inventions disclosed in the various embodiments of the invention may be combined in a single embodiment. Conversely, various aspects and features of the inventions which are described in a single embodiment may also be provided separately or in any suitable sub-combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

一种提高柴油十六烷值桶的催化转化方法 技术领域
本发明涉及一种催化转化方法, 更具体地, 是将重质原料最大量 转化为高十六烷值柴油的催化转化方法。 背景技术
在全世界范围内对高品质柴油的需求日益增加, 而对燃料油的需 求则日渐减少。 虽然汽、 柴油需求增加随地区不同而不同, 但总体上 在世界范围内对柴油需求的增长速度将超过对汽油需求增长速度。 因 此, 更多的低十六烷值的催化裂化( FCC )轻柴油正被用于作为柴油的 调和组分。 而为了满足高品质柴油的需求, 需要对 FCC轻柴油进行改 质, 或者直接通过 FCC生产出大量的高品质 FCC轻柴油。
现有技术中, 对催化轻柴油改质的方法主要包括加氢处理和烷基 化。 USP5543036披露了一种利用加氢处理来对 FCC轻循环油改质的 方法。 CN1289832A同样披露了一种釆用加氢处理来对催化裂化柴油改 质的方法, 是在加氢条件下使原料依次通过单段串联的加氢精制催化 剂和加氢裂化催化剂而不经中间分离。 该方法使产品柴油馏分的十六 烷值较原料提高 10个单位以上, 其硫、 氮含量显著降低。 USP4871444 披露了一种提高 FCC轻循环油十六烷值的方法,是将 FCC轻循环油在 固体酸催化剂存在条件下和 3 ~ 9 个碳原子的线性烯烃进行烷基化反 应。 USP5171916披露了一种 FCC轻循环油改质的方法, 是将 FCC轻 循环油在固体酸催化剂上和 oi-C 14烯烃或焦化瓦斯油进行烷基化反应。
另外一种直接提高催化轻柴油品质的方法是通过改变催化裂化工 艺参数或催化剂完成。 CN1900226A披露了一种多产柴油的催化裂化助 催化剂及其制备方法, 添加一定量该助催化剂, 可以在不改变炼油装 置原来所采用的催化剂的情况下, 提高 FCC催化装置的柴油产率、 改 善产品分布,但该方法没有提到柴油性质的改善。 CN1683474A也是一 种多产柴油的催化裂化助催化剂及其制备方法。 CN1473908A涉及一种 采用 Ca2+-EDTA 催化裂化将重油及渣油生产柴油的方法。 CN101 171063A 涉及改进适合作为柴油燃料用调和油的馏出物质量的 流化催化裂化( FCC )方法。 该 FCC方法结合了分段 FCC转化过程与 多环芳烃物种的级间分子分离。 在 FCC反应器的提升器中苛刻性较低 和较高的反应区与选择性分子分离一起提高柴油品质馏出物的产量。 该方法重点强调通过膜分离得到富饱和烃的高十六烷值的柴油馏分。
还有一种提高催化轻柴油品质的方法是利用加氢处理和催化裂化 双向組合。 如 CN1896192A将蜡油和催化裂化重循环油、 催化裂化柴 油一起进入加氢处理装置, 而加氢尾油进入催化裂化装置, 该方法可 以降低柴油的芳烃含量和硫含量并提高其十六烷值。 CN 1382776 A是将 渣油加氢处理与重油催化裂化联合的方法。 上述专利方法对催化裂化 过程均没有提出要求, 只是通过加氢来改质柴油。
CN101362959A 公开了一种制取丙烯和高辛烷值汽油的催化转化 方法, 难裂化的原料先与热再生催化剂接触, 在温度 600 ~ 750 °C、 重 时空速 100 ~ 800 压力 0.10 ~ 1.0MPa、催化剂与原料的重量比 30 ~ 150 , 水蒸汽与原料的重量比为 0.05 ~ 1.0 的条件下进行裂化反应, 反 应物流与易裂化的原料油混合,在温度 450 ~ 620 °C、重时空速 0.1 ~ 100 h"1 , 压力 0.10 ~ l ,0MPa、 催化剂与原料的重量比 1 ,0 ~ 30, 水蒸汽与原 料的重量比为 0.05 ~ 1.0的条件下进行裂化反应; 待生催化剂和反应油 气分离后, 待生催化剂进入汽提器, 经汽提、 烧焦再生后返回反应器, 反应油气经分离得到目的产物丙烯和高辛烷值汽油及再裂化的原料, 所述再裂化的原料包含馏程为 180 ~ 260 °C的镏分、 重芳烃抽余油。 该 方法丙烯的产率和选择性大幅增加, 汽油的产率和辛烷值明显地提高, 干气产率降低幅度高达 80重量%以上。 发明内容
本发明的目的是在现有技术基础上, 提供将重质油最大量转化为 高十六烷值柴油的方法, 既要提高柴油的十六烷值, 又要提高柴油的 产率, 即提高柴油的十六烷值桶, 这里的 "十六烷值桶,, 是指柴油的 十六烷值与柴油的产率之乘积。 其主要是通过选择性地裂化催化原料 中烷烃、 烷基侧链等烃类, 同时最大限度地减少原料中的芳烃进入柴 油馏分, 并避免产物中其它組分通过芳构化等反应生成芳烃而存留在 柴油馏分中, 裂化原料转化为高十六烷值柴油的同时, 干气和焦炭的 产率大幅度降低, 从而实现石油资源的有效利用。
在本发明的一个方面中, 提供了一种提高柴油十六烷值桶的催化 转化方法, 其中原料油在催化转化反应器内与主要含大孔沸石的活性 相对均匀的催化剂接触进行反应, 其中反应温度、 油气停留时间、 催 化剂与原料油重量比足以使反应得到包含柴油、 占原料油约 12〜约 60 重量%催化蜡油的反应产物, 其中所述反应温度约 420 ~约 550 °C , 所 述油气停留时间约 0. 1 ~约 5秒, 所述催化剂与原料油重量比约 1 ~约 10。
在更优选的实施方案中,反应温度约 430 ~约 500 °C ,优选约 430 ~ 约 480。C。
在更优选的实施方案中, 油气停留时间约 0.5 ~约 4 秒, 优选约 0.8 ~约 3秒。
在更优选的实施方案中, 催化剂与原料油重量比约 2 ~约 8 , 优选 约 3 ~约 6。
在更优选的实施方案中, 反应压力约 0, 10MPa ~约 1.0MPa, 优选 约 0. 15MPa ~约 0.6MPao
在更优选的实施方案中, 所迷原料油选自或包括石油烃和 /或其它 矿物油, 其中石油烃选自减压瓦斯油、 常压瓦斯油、 焦化瓦斯油、 脱 沥青油、 减压渣油、 常压渣油中的一种或两种以上 (包括两种, 下面 类似的表述意义相同) 的混合物, 其它矿物油为煤液化油、 油砂油、 页岩油中的一种或两种以上的混合物。
在更优选的实施方案中, 所述主要含大孔沸石的催化剂包括沸石、 无机氧化物、 粘土。 以干基计, 各組分分别占催化剂总重量: 沸石约 5 重量 ~约 50重量%, 优选约 10重量 ~约 30重量%; 无机氧化物约 0.5 重量〜约 50重量%; 粘土 0重量〜约 70重量%。 其中沸石作为活性活 分, 选自大孔沸石。 所述的大孔沸石是指由稀土 Y、 稀土氢 Υ、 不同 方法得到的超稳 Υ、 高硅 Υ构成的这组沸石中的一种或两种以上的混 合物。
无机氧化物作为基质, 选自二氧化硅 (Si02 ) 和 /或三氧化二铝 ( A1203 ) 。 以干基计, 无机氧化物中二氧化硅占约 50重量〜约 90重 量%, 三氧化二铝占约 10重量〜约 50重量%。
粘土作为粘接剂, 选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一 种或几种。 所述活性相对均勾的催化剂 (包括催化裂化催化剂和多产柴油催 化剂)是指其初始活性不超过约 80 , 优选不超过约 75 , 更优选不超过 约 70; 该催化剂的自平衡时间约 0.1 小时 ~约 50小时, 优选约 0.2 ~ 约 30小时, 更优选约 0.5〜约 10小时; 平衡活性为约 35〜约 60 , 优 选约 40 ~约 55。
所述的催化剂的初始活性或者后文所述的新鲜催化剂活性是指轻 油微反装置评价的催化剂活性。 其可通过现有技术中的测量方法测量: 企业标准 RIPP 92-90 --催化裂化新鲜催化剂的微反活性试猃法《石油化 工分析方法(RIPP试验方法)》,杨翠定等人, 1990 , 下文简称为 RIPP 92-90。 所述催化剂初始活性由轻油微反活性 (MA ) 表示, 其计算公 式为 MA = (产物中低于 204 °C的汽油产量 +气体产量 +焦炭产量) /进料 总量 X 100%=产物中低于 204 °C的汽油产率 +气体产率 +焦炭产率。轻油 微反装置 (参照 RIPP 92-90 ) 的评价条件是: 将催化剂破碎成颗粒直 径约 420 ~ 841微米的颗粒, 装量为 5克, 反应原料是馏程为 235 ~ 337 °C的直馏轻柴油, 反应温度 46CTC , 重量空速为 16小时 , 剂油比 3.2。
所述的催化剂自平衡时间是指催化剂在 80CTC和 100%水蒸气条件 (参照 RIPP 92-90 ) 下老化达到平衡活性所需的时间。
所述活性相对均勾的催化剂例如可经下述 3种处理方法而得到: 催化剂处理方法 1 :
( 1 )、 将新鲜催化剂装入流化床, 优选密相流化床, 与水蒸汽接 触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 2 ) 、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 处理方法 1例如是这样具体实施的:
将新鲜催化剂装入流化床优选密相流化床内, 在流化床的底部注 入水蒸汽, 催化剂在水蒸汽的作用下实现流化, 同时水蒸汽对催化剂 进行老化, 老化温度约 400°0 ~约 850°C , 优选约 500°〇~约 750°C , 优选约 600 °C -约 700 °C ,流化床的表观线速约 0.1米 /秒 ~约 0.6米 /秒, 优选约 0.15秒 ~约 0.5米 /秒, 老化约 1小时 ~约 720小时, 优选约 5 小时〜约 360 小时后, 得到所述的活性相对均匀的催化剂, 活性相对 均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业 装置的再生器。
催化剂处理方法 2: ( 1 )、 将新鲜催化剂装入流化床优选密相流化床, 与含水蒸汽的 老化介质接触, 在一定的氷热环境下进行老化后得到活性相对均匀的 催化剂;
( 2 )、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 催化剂处理方法 2的技术方案例如是这样具体实施的:
将催化剂装入流化床优选密相流化床内, 在流化床的底部注入含 水蒸汽的老化介质, 催化剂在含水蒸汽的老化介质作用下实现流化, 同时, 含水蒸汽的老化介质对催化剂进行老化, 老化温度约 400 ~约 850 °C , 优选约 500°C ~约 75CTC , 优选约 600°C ~约 700°C , 流化床的 表观线速约 0.1米 /秒〜约 0.6米 /秒, 优选约 0.15秒~约 0.5米 /秒, 水 蒸汽与老化介质的重量比约 0.20〜约 0.9 , 优选约 0.40 ~约 0.60 , 老化 约 1 小时 ~约 720小时, 优选约 5小时 ~约 360小时后, 得到所述的 活性相对均勾的催化剂, 活性相对均勾的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再生器。 所述老化介质包括 空气、 干气、 再生烟气、 空气与干气燃、烧后的气体或空气与燃烧油燃 烧后的气体、 或其它气体如氮气。 所述水蒸气与老化介质的重量比约 0.2 ~约 0.9 , 优选约 0.40 ~约 0.60。
催化剂处理方法 3:
( 1 )、 将新鲜催化剂输入到流化床优选密相流化床, 同时将再生 器的热再生催化剂输送到所述流化床, 在所述流化床内进行换热;
( 2 )、 换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 3 ), 将所述活性相对均匀的催化剂加入到相应的反应装置内。 本发明的技术方案例如是这样具体实施的:
将新鲜催化剂输送到流化床优选密相流化床内, 同时将再生器的 热再生催化剂也输送到所述流化床, 在所述流化床内进行换热。 在流 化床的底部注入水蒸汽或含水蒸汽的老化介质, 新鲜催化剂在水蒸汽 或含水蒸汽的老化介质作用下实现流化, 同时, 水蒸汽或含水蒸汽的 老化介质对新鲜催化剂进行老化, 老化温度约 400°C〜约 85CTC , 优选 约 500°C ~约 750°C , 优选约 600°C ~约 700°C , 流化床的表观线速约 0. 1米 /秒 ~约 0.6米 /秒,优选约 0. 15秒 ~约 0.5米 /秒,老化约 1小时 ~ 约 720小时, 优选约 5小时 ~约 360小时, 在含水蒸汽的老化介质的 情况下, 所述水蒸气与老化介质的重量比为大于约 0 ~约 4 , 优选约 0.5 ~约 1.5 , 得到在所述的活性相对均匀的催化剂, 活性相对均匀的催 化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再 生器。 此外, 老化步骤后的水蒸汽进入反应*** (作为汽提蒸汽、 防 焦蒸汽、 雾化蒸汽、 提升蒸汽中的一种或几种分别进入催化裂化装置 中的汽提器、 沉降器、 原料喷嘴、 预提升段) 或再生***, 而老化步 骤后的含水蒸汽的老化介质进入再生***, 换热后的再生催化剂返回 到该再生器内。 所述老化介质包括空气、 干气、 再生烟气、 空气与干 气燃烧后的气体或空气与燃烧油燃烧后的气体、 或其它气体如氮气。
通过上述处理方法, 工业反应装置内的催化剂的活性和选择性分 布更加均匀, 催化剂的选择性得到明显改善, 从而干气产率和焦炭产 率明显的降低。
所述催化剂的粒径分布可以是常规催化裂化催化剂的粒径分布, 也可以是粗粒径分布。 在更优选的实施方案中, 所述催化剂其特征在 于釆用粗粒径分布的催化剂。
所述粗粒径分布的催化剂的筛分组成为: 小于 40微米的颗粒占所 有颗粒的体积比例低于约 10%, 优选低于约 5%; 大于 80微米的颗粒 占所有颗粒的体积比例低于约 15%, 优选低于约 10% , 其余均为 40 ~ 80 米的颗粒。
在更优选的实施方案中, 所述反应器选自提升管、 等线速的流化 床、 等直径的流化床、 上行式输送线、 下行式输送线中的一种或一种 以上的组合, 或同一种反应器两个或两个以上的组合, 所述組合包括 串联或 /和并联, 其中提升管是常规的等直径的提升管或者各种形式变 径的提升管。
在更优选的实施方案中, 在一个位置将所述原料油引入反应器内, 或在一个以上相同或不同高度的位置将所述原料油引入反应器内。
在更优选的实施方案中, 所迷方法还包括将反应产物和催化剂进 行分离, 催化剂经汽提、 烧焦再生后返回反应器, 分离后的产物包括 高十六烷值柴油和催化蜡油。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 330 °C的馏 分, 氢含量不低于 10.8重量%。
在更优选的实施方案中,所述催化蝉油为初馏点不小于 350°C的馏 分, 所述催化蜡油氢含量不低于 1 1.5%。
在本发明的又一个方面中, 提供了一种提高柴油十六烷值桶的催 化转化方法, 其特征在于所述方法包括使原料油在催化转化反应器内 与主要含大孔沸石的活性相对均勾的催化剂接触进行反应, 其中反应 温度、 油气停留时间、 催化剂与原料油重量比足以使反应得到包含柴 油、 占原料油约 12〜约 60重量。 /。催化蜡油的反应产物, 其中所述反应 温度约 420〜约 55CTC , 所述油气停留时间为约 0.1 ~约 5秒, 所述催 化剂与原料油重量比为约 1 ~约 10; 以及使所述催化蜡油全部或部分 进入常规催化裂化或变径提升管反应器进一步生产包括柴油和汽油的 产品, 或 /和所述催化蜡油返回原催化转化反应器或进料至另一催化转 化反应器。
在更优选的实施方案中,反应温度约 430 ~约 500 °C ,优选约 430 ~ 约 480°C。
在更优选的实施方案中, 油气停留时间约 0.5〜约 4 秒, 优选约 0.8 ~约 3秒。
在更优选的实施方案中, 催化剂与原料油重量比约 2 ~约 8, 优选 约 3 ~约 6。
在更优选的实施方案中, 反应压力约 O. lOMPa〜约 l .OMPa, 优选 约 0.15MPa〜约 0.6MPa。
在更优选的实施方案中, 所述原料油选自或包括石油烃和 /或其它 矿物油, 其中石油烃选自减压瓦斯油、 常压瓦斯油、 焦化瓦斯油、 脱 沥青油、 减压渣油、 常压渣油中的一种或两种以上的混合物, 其它矿 物油为煤液化油、 油 、油、 页岩油中的一种或两种以上的混合物。
在更优选的实施方案中, 所述主要含大孔沸石的催化剂包括沸石、 无机氧化物、 粘土。 以干基计, 各组分分别占催化剂总重量: 沸石约 5 重量 ~约 50重量%, 优选约 10重量 ~约 30重量%; 无机氧化物约 0.5 重量〜约 50重量%; 粘土 0重量 ~约 70重量%。 其中沸石作为活性活 分, 选自大孔沸石。 所述的大孔沸石是指由稀土 Y、 稀土氢 Υ、 不同 方法得到的超稳 Υ、 高硅 Υ构成的这组沸石中的一种或两种以上的混 合物。
无机氧化物作为基质, 选自二氧化硅 ( Si02 ) 和 /或三氧化二铝 ( A1203 ) 。 以干基计, 无机氧化物中二氧化硅占约 50重量 ~约 90重 量%, 三氧化二铝占约 10重量 ~约 50重量%。
粘土作为粘接剂, 选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一 种或几种。
所述活性相对均勾的催化剂 (包括催化裂化催化剂和多产柴油催 化剂)是指其初始活性不超过约 80 , 优选不超过约 75 , 更优选不超过 约 70; 该催化剂的自平衡时间约 0.1 小时〜约 50小时, 优选约 0.2 ~ 约 30小时, 更优选约 0.5 ~约 10小时; 平衡活性约 35 ~约 60, 优选 约 40 ~约 55。
所述的催化剂的初始活性或者后文所述的新鲜催化剂活性是指轻 油微反装置评价的催化剂活性。 其可通过现有技术中的测量方法测量: 企业标准 RJPP 92-90 --催化裂化新鲜催化剂的微反活性试验法《石油化 工分析方法(RIPP试脸方法)》, 杨翠定等人, 1990 , 下文简称为 RIPP 92-90。 所述催化剂初始活性由轻油微反活性 (MA ) 表示, 其计算公 式为 MA = (产物中低于 204 Ό的汽油产量 +气体产量 +焦炭产量) /进料 总量 * 100%=产物中低于 204 °C的汽油产率 +气体产率 +焦炭产率。 轻油 微反装置 (参照 RJPP 92-90 ) 的评价条件是: 将催化剂破碎成颗粒直 径约 420 ~ 841微米的颗粒, 装量为 5克, 反应原料是馏程为 235 ~ 337 °C的直馏轻柴油, 反应温度 460 °C , 重量空速为 16小时 剂油比 3.2。
所述的催化剂自平衡时间是指催化剂在 8CKTC和 100%水蒸气条件 (参照 RIPP 92-90 ) 下老化达到平衡活性所需的时间。
所述活性相对均勾的催化剂例如可经下述 3种处理方法而得到: 催化剂处理方法 1 :
( 1 )、 将新鲜催化剂装入流化床, 优选密相流化床, 与水蒸汽接 触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 2 ) 、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 处理方法 1例如是这样具体实施的:
将新鲜催化剂装入流化床优选密相流化床内, 在流化床的底部注 入水蒸汽, 催化剂在水蒸汽的作用下实现流化, 同时水蒸汽对催化剂 进行老化, 老化温度约 400°( ~约 850Ό , 优选约 500°C〜约 750°C , 优选约 600 °C -约 700 °C ,流化床的表观线速约 0.1米 /秒 ~约 0.6米 /秒, 优选约 0.15秒 ~约 0.5米 /秒, 老化约 1 小时 ~约 720小时, 优选约 5 小时 ~约 360 小时后, 得到所述的活性相对均匀的催化剂, 活性相对 均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业 装置的再生器。
催化剂处理方法 2:
( 1 )、 将新鲜催化剂装入流化床优选密相流化床, 与含水蒸汽的 老化介质接触, 在一定的水热环境下进行老化后得到活性相对均匀的 催化剂;
( 2 )、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 催化剂处理方法 2的技术方案例如是这样具体实施的:
将催化剂装入流化床优选密相流化床内, 在流化床的底部注入含 水蒸汽的老化介质, 催化剂在含水蒸汽的老化介质作用下实现流化, 同时, 含水蒸汽的老化介质对催化剂进行老化, 老化温度约 40CTC〜约 850 °C , 优选约 500 °C〜约 750°C , 优选约 600 °C〜约 700 °C , 流化床的 表观线速约 0.1米 /秒-约 0.6米 /秒, 优选约 0. 15秒~约 0.5米 /秒, 水 蒸汽与老化介质的重量比约 0.20〜约 0.9 , 优选约 0.40 ~约 0.60 , 老化 约 1 小时 ~约 720小时, 优选约 5小时 ~约 360小时后, 得到所述的 活性相对均匀的催化剂, 活性相对均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再生器。 所述老化介质包括 空气、 干气、 再生烟气、 空气与干气燃烧后的气体或空气与燃烧油燃 烧后的气体、 或其它气体如氮气。 所述水蒸气与老化介质的重量比约 0.2 ~约 0.9 , 优选约 0.40〜约 0.60。
催化剂处理方法 3 :
( 1 )、 将新鲜催化剂输入到流化床优选密相流化床, 同时将再生 器的热再生催化剂输送到所述流化床, 在所述流化床内进行换热;
( 2 )、 换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 3 )、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 本发明的技术方案例如是这样具体实施的:
将新鲜催化剂输送到流化床优选密相流化床内, 同时将再生器的 热再生催化剂也输送到所述流化床, 在所述流化床内进行换热。 在流 化床的底部注入水蒸汽或含水蒸汽的老化介质, 新鲜催化剂在水蒸汽 或含水蒸汽的老化介质作用下实现流化, 同时, 水蒸汽或含水蒸汽的 老化介质对新鲜催化剂进行老化, 老化温度约 400°C ~约 850 °C , 优选 约 500°C ~约 750 °C , 优选约 600 °C -约 700°C , 流化床的表观线速约 0, 1米 /秒 ~约 0.6米 /秒,优选约 0. 15秒 ~约 0.5米 /秒,老化约 1小时 ~ 约 720小时, 优选约 5小时 ~约 360小时, 在含水蒸汽的老化介质的 情况下, 所述水蒸气与老化介质的重量比为大于约 0 ~约 4 , 优选约 0.5 ~约 1.5 , 得到在所述的活性相对均匀的催化剂, 活性相对均匀的催 化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再 生器。 此外, 老化步驟后的水蒸汽进入反应*** (作为汽提蒸汽、 防 焦蒸汽、 雾化蒸汽、 提升蒸汽中的一种或几种分别进入催化裂化装置 中的汽提器、 沉降器、 原料喷嘴、 预提升段) 或再生***, 而老化步 骤后的含水蒸汽的老化介质进入再生***, 换热后的再生催化剂返回 到该再生器内。 所述老化介质包括空气、 干气、 再生烟气、 空气与干 气燃烧后的气体或空气与燃烧油燃烧后的气体、 或其它气体如氮气。
通过上述处理方法, 工业反应装置内的催化剂的活性和选择性分 布更加均匀, 催化剂的选择性得到明显改善, 从而干气产率和焦炭产 率明显的降低。
所述催化剂的粒径分布可以是常规催化裂化催化剂的粒径分布, 也可以是粗粒径分布。 在更优选的实施方案中, 所述催化剂其特征在 于采用粗粒径分布的催化剂。
所述粗粒径分布的催化剂的筛分组成为: 小于 40微米的颗粒占所 有颗粒的体积比例低于约 10% , 优选低于约 5%; 大于 80微米的颗粒 占所有颗粒的体积比例低于约 15% , 优选低于约 10% , 其余均为 40 ~ 80 ί米的颗粒。
所述催化蜡油送入的变径提升管反应器更为详细的描述参见 CN1237477A。
在更优选的实施方案中, 所述催化蜡油进料至另一转化反应器内 进行裂化反应, 生成的油气在一定的反应环境下进行氢转移反应和异 构化反应, 分离得到包括低烯烃汽油的反应产物苛刻转化反应器可以 分为两个反应区, 各反应区的反应条件如下:
笫一反应区主要进行裂化反应, 反应温度约 480°C ~约 600 °C、 优 选约 485〜约 580 °C , 反应时间约 0. 1〜约 3秒、 优选约 0.5 ~约2秒, 苛刻转化催化剂与催化蜡油的重量比约 0.5〜约 25 : 1、 优选约 1 ~约 15: 1 ; 预提升介质与催化蜡油的重量比约 0.01〜约 2: 1、 优选约 0.05 ~ 约 1 : 1 ; 反应压力约 130〜约 450千帕、 优选约 250〜约 400千帕。
笫二反应区主要进行氢转移反应和异构化反应, 反应温度约 450 °C ~约 550 °C、 优选约 460〜约 530 °C ; 第二反应区内维持密相操作, 催化剂床层密相密度约 100 ~约 700千克 /米 3、 优选约 120〜约 500千 克 /米 3; 第二反应区的重时空速约 1 ~约 50 小时 、 优选约 1 ~约 40 小时— 反应压力约 130 ~约 450千帕、 优选约 250 ~约 400千帕。
在更优选的实施方案中, 所述方法还包括将该另一转化反应产物 和转化催化剂进行分离, 转化催化剂经汽提、 烧焦再生后返回该另一 转化反应器, 分离后的产物包括低烯烃汽油等。
在更优选的实施方案中, 所述反应器选自提升管、 等线速的流化 床、 等直径的流化床、 上行式输送线、 下行式输送线中的一种或一种 以上的組合, 或同一种反应器两个或两个以上的组合, 所述组合包括 串联或 /和并联, 其中提升管是常规的等直径的提升管或者各种形式变 径的提升管。
在更优选的实施方案中, 在一个位置将所述原料油引入反应器内, 或在一个以上相同或不同高度的位置将所述原料油引入反应器内。
在更优选的实施方案中, 所述方法还包括将反应产物和催化剂进 行分离, 催化剂经汽提、 烧焦再生后返回反应器, 分离后的产物包括 高十六烷值柴油和催化蜡油。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 330 °C的馏 分, 氢含量不低于 10.8重量%。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 350°C的馏 分, 所述催化蜡油氢含量不低于 1 1.5%。
在本发明的另一个方面中, 提供了一种提高柴油十六烷值桶的催 化转化方法, 其特征在于所述方法包括使原料油在催化转化反应器内 与主要含大孔沸石的活性相对均匀的催化剂接触进行反应, 其中反应 温度、 油气停留时间、 催化剂与原料油重量比足以使反应得到包含柴 油、 占原料油约 12〜约 60重量%催化蜡油的反应产物, 其中所述反应 温度约 420 ~约 550Ό , 所述油气停留时间约 0.1 ~约 5秒, 所述催化 剂与原料油重量比约 1 ~约 10; 其特征在于所述催化蜡油全部或部分 进入加氢裂化装置进一步生产高十六烷值柴油。 在一种优选的实施方案中, 处理后的加氢裂化尾油可以再进入常 规催化裂化或变径提升管反应器进一步生产包括柴油和汽油的产品。 在一种优选的实施方案中, 加氢裂化尾油可以返回催化转化反应器。
在更优选的实施方案中,反应温度约 430 ~约 500 °C ,优选约 430 ~ 约 480 °C。
在更优选的实施方案中, 油气停留时间约 0.5〜约 4 秒, 优选约 0.8〜约 3秒。
在更优选的实施方案中, 催化剂与原料油重量比约 2〜约 8 , 优选 约 3〜约 6。
在更优选的实施方案中, 反应压力约 0.10MPa ~约 l .OMPa, 优选 约 0.15MPa ~约 0.6MPa。
在更优选的实施方案中, 所迷原料油选自或包括石油烃和 /或其它 矿物油, 其中石油烃选自减压瓦斯油、 常压瓦斯油、 焦化瓦斯油、 脱 沥青油、 减压渣油、 常压渣油中的一种或两种以上的混合物, 其它矿 物油为煤液化油、 油砂油、 页岩油中的一种或两种以上的混合物。
在更优选的实施方案中, 所述主要含大孔沸石的催化剂包括沸石、 无机氧化物、 粘土。 以干基计, 各组分分别占催化剂总重量: 沸石约 5 重量 ~约 50重量%, 优选约 10重量 ~约 30重量%; 无机氧化物约 0.5 重量〜约 50重量%; 粘土 0重量〜约 70重量%。 其中沸石作为活性活 分, 选自大孔沸石。 所述的大孔沸石是指由稀土 Y、 稀土氢 Υ、 不同 方法得到的超稳 Υ、 高硅 Υ构成的这组沸石中的一种或两种以上的混 合物。
无机氧化物作为基质, 选自二氧化硅 ( Si02 ) 和 /或三氧化二铝 ( A1203 ) 。 以干基计, 无机氧化物中二氧化硅占约 50重量〜约 90重 量%, 三氧化二铝占约 10重量 ~约 50重量0 /0
粘土作为粘接剂, 选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一 '种或几种。
所述活性相对均勾的催化剂 (包括催化裂化催化剂和多产柴油催 化剂)是指其初始活性不超过约 80 , 优选不超过约 75 , 更优选不超过 约 70; 该催化剂的自平衡时间约 0. 1 小时 ~约 50小时, 优选约 0.2 ~ 约 30小时, 更优选约 0.5 -约 10小时; 平衡活性约 35 -约 60 , 优选 约 40 ~约 55。
所述的催化剂的初始活性或者后文所述的新鲜催化剂活性是指轻 油微反装置评价的催化剂活性。 其可通过现有技术中的测量方法测量: 企业标准 RIPP 92-90 催化裂化新鲜催化剂的微反活性试猃法《石油化 工分析方法(RIPP试验方法)》,杨翠定等人, 1990 , 下文简称为 RIPP 92-90。 所述催化剂初始活性由轻油微反活性 (MA ) 表示, 其计算公 式为 MA = (产物中低于 204 °C的汽油产量 +气体产量 +焦炭产量) /进料 总量 * 100%=产物中低于 204 °C的汽油产率 +气体产率 +焦炭产率。 轻油 微反装置 (参照 RIPP 92-90 ) 的评价条件是: 将催化剂破碎成颗粒直 径约 420-841微米的颗粒, 装量为 5克, 反应原料是馏程为 235-337Ό 的直馏轻柴油, 反应温度 460 °C , 重量空速为 16小时 剂油比 3.2。
所述的催化剂自平衡时间是指催化剂在 800°C和 100%水蒸气条件 (参照 RIPP 92-90 ) 下老化达到平衡活性所需的时间。
所述活性相对均匀的催化剂例如可经下述 3种处理方法而得到: 催化剂处理方法 1 :
( 1 )、 将新鲜催化剂装入流化床, 优选密相流化床, 与水蒸汽接 触, 在一定的水热环境下进行老化后得到活性相对均匀的催化剂;
( 2 ) 、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 处理方法 1例如是这样具体实施的:
将新鲜催化剂装入流化床优选密相流化床内, 在流化床的底部注 入水蒸汽, 催化剂在水蒸汽的作用下实现流化, 同时水蒸汽对催化剂 进行老化, 老化温度约 400°C ~约 850°C , 优选约 500°C ~约 750°C , 优选约 600°C ~约 700 °C ,流化床的表观线速约 0.1米 /秒 ~约 0.6米 /秒, 优选约 0.15秒〜约 0.5米 /秒, 老化约 1小时〜约 720小时, 优选约 5 小时 ~约 360 小时后, 得到所述的活性相对均匀的催化剂, 活性相对 均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业 装置的再生器。
催化剂处理方法 2:
( 1 )、 将新鲜催化剂装入流化床优选密相流化床, 与含水蒸汽的 老化介质接触, 在一定的水热环境下进行老化后得到活性相对均匀的 催化剂;
( 2 ), 将所迷活性相对均匀的催化剂加入到相应的反应装置内。 催化剂处理方法 2的技术方案例如是这样具体实施的: 将催化剂装入流化床优选密相流化床内, 在流化床的底部注入含 水蒸汽的老化介质, 催化剂在含水蒸汽的老化介质作用下实现流化, 同时, 含水蒸汽的老化介质对催化剂进行老化, 老化温度约 400 °C ~约 850 °C , 优选约 500 °C ~约 750°C , 优选约 600 °C ~约 700 °C , 流化床的 表观线速约 0.1米 /秒〜约 0.6米 /秒, 优选约 0.15秒~约 0.5米 /秒, 水 蒸汽与老化介质的重量比约 0.20〜约 0.9 , 优选约 0.40 ~约 0.60, 老化 约 1 小时 ~约 720小时, 优选约 5小时 约 360小时后, 得到所述的 活性相对均匀的催化剂, 活性相对均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再生器。 所述老化介质包括 空气、 干气、 再生烟气、 空气与干气燃烧后的气体或空气与燃烧油燃 烧后的气体、 或其它气体如氮气。 所迷水蒸气与老化介质的重量比约 0.2 ~约 0.9 , 优选约 0.40 ~约 0.60。
催化剂处理方法 3 :
( 1 )、 将新鲜催化剂输入到流化床优选密相流化床, 同时将再生 器的热再生催化剂输送到所述流化床, 在所述流化床内进行换热;
( 2 )、 换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 3 )> 将所述活性相对均匀的催化剂加入到相应的反应装置内。 本发明的技术方案例如是这样具体实施的:
将新鲜催化剂输送到流化床优选密相流化床内, 同时将再生器的 热再生催化剂也输送到所述流化床, 在所述流化床内进行换热。 在流 化床的底部注入水蒸汽或含水蒸汽的老化介质, 新鲜催化剂在水蒸汽 或含水蒸汽的老化介质作用下实现流化, 同时, 水蒸汽或含水蒸汽的 老化介质对新鲜催化剂进行老化, 老化温度约 400°C〜约 850 °C , 优选 约 500°C ~约 750°C , 优选约 600 °C ~约 700°C, 流化床的表观线速约 0.1米 /秒 ~约 0.6米 /秒,优选约 0. 15秒 ~约 0.5米 /秒,老化约 1小时 ~ 约 720小时, 优选约 5小时 ~约 360小时, 在含水蒸汽的老化介质的 情况下, 所述水蒸气与老化介质的重量比为大于约 0 ~约 4 , 优选约 0.5 ~约 1.5, 得到在所述的活性相对均匀的催化剂, 活性相对均匀的催 化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再 生器。 此外, 老化步骤后的水蒸汽进入反应*** (作为汽提蒸汽、 防 焦蒸汽、 雾化蒸汽、 提升蒸汽中的一种或几种分别进入催化裂化装置 中的汽提器、 沉降器、 原料喷嘴、 预提升段) 或再生***, 而老化步 骤后的含水蒸汽的老化介质进入再生***, 换热后的再生催化剂返回 到该再生器内。 所述老化介质包括空气、 千气、 再生烟气、 空气与干 气燃烧后的气体或空气与燃烧油燃烧后的气体、 或其它气体如氮气。
通过上述处理方法, 工业反应装置内的催化剂的活性和选择性分 布更加均匀, 催化剂的选择性得到明显改善, 从而干气产率和焦炭产 率明显的降低。
所述催化剂的粒径分布可以是常规催化裂化催化剂的粒径分布, 也可以是粗粒径分布。 在更优选的实施方案中, 所述催化剂其特征在 于釆用粗粒径分布的催化剂。
所述粗粒径分布的催化剂的筛分组成为: 小于 40微米的颗粒占所 有颗粒的体积比例低于约 10%, 优选低于约 5%; 大于 80微米的颗粒 占所有颗粒的体积比例低于约 15% , 优选氏于约 10% , 其余均为 40 ~ 80 米的颗粒。
所述催化蜡油送入的变径提升管反应器更为详细的描述参见 CN1237477A。
在更优选的实施方案中, 所述反应器选自提升管、 等线速的流化 床、 等直径的流化床、 上行式输送线、 下行式输送线中的一种或一种 以上的组合, 或同一种反应器两个或两个以上的组合, 所述组合包括 串联或 /和并联, 其中提升管是常规的等直径的提升管或者各种形式变 径的提升管。
在更优选的实施方案中, 在一个位置将所述原料油引入反应器内, 或在一个以上相同或不同高度的位置将所述原料油引入反应器内。
在更优选的实施方案中, 所述方法还包括将反应产物和催化剂进 行分离, 催化剂经汽提、 烧焦再生后返回反应器, 分离后的产物包括 高十六烷值柴油和催化蜡油。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 330 °C的馏 分, 氢含量不低于 10.8重量%。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 350°C的馏 分, 所述催化蜡油氢含量不低于 1 1.5%。
加氢裂化装置的反应***通常包括精制反应器和裂化反应器, 均 为固定床反应器, 也可以釆用其它型式反应器。
所述精制的反应器和裂化反应通常装填加氬精制催化剂和加氢裂 化催化剂。
所述加氢精制催化剂是负载在无定型氧化铝或 /和硅铝载体上的
VIB族或 /和 VIII族非贵金属催化剂; 所述加氢裂化催化剂为负载在分 子筛上的 VIB族或 /和 VIII族非贵金属催化剂。 所述 VIB族非贵金属 为钼或 /和鵠; 所述 VIII族非贵金属为镍、 钴、 铁中的一种或多种。 所 述加氢裂化催化剂负载的分子筛选自 Y型分子筛、 β型分子筛、 ZSM-5 型分子筛、 SAPO系列分子筛中的一种或多种。
所述加氢裂化的工艺条件为: 氢分压约 4.0〜约 20.0MPa, 反应温 度约 280 ~约 45CTC , 体积空速约 0.1 ~约 20h— 氢油比约 300〜约 2000v/vo 本发明中的氢油比均指氢气与催化蜡油的体积比。
在本发明的另一方面中, 提供了一种提高柴油十六烷值桶的催化 转化方法, 其特征在于所述方法包括使原料油在催化转化反应器内与 主要含大孔沸石的活性相对均勾的催化剂接触进行反应, 其中反应温 度、 油气停留时间、 催化剂与原料油重量比足以使反应得到包含柴油、 占原料油约 12 ~约 60重量。 /。催化蜡油的反应产物, 其中所述反应温度 约 420 ~约 550 °C , 所述油气停留时间约 0.1〜约 5秒, 所述催化剂与 原料油重量比约 1 ~约 10; 其特征在于所述催化蜡油全部或部分进入 加氢处理装置进一步处理获得高品质加氢催化蜡油。
在一种优选的实施方案中, 处理后的加氢催化蜡油可以再进入常 规催化裂化或变径提升管反应器进一步生产包括柴油和汽油的产品。 在一种优选的实施方案中, 加氢催化蜡油可以返回催化转化反应器。
在更优选的实施方案中,反应温度约 430 ~约 50CTC ,优选约 430 ~ 约 480 °C 0
在更优选的实施方案中, 油气停留时间约 0.5 ~约 4 秒, 优选约 0.8〜约 3秒。
在更优选的实施方案中, 催化剂与原料油重量比约 2 ~约 8, 优选 约 3〜约 6。
在更优选的实施方案中, 反应压力约 0.10MPa ~约 l.OMPa, 优选 约 0.15MPa ~约 0.6MPa。
在更优选的实施方案中, 催化蜡油的加氢裂化尾油送入常规催化 裂化或 /和变径提升管反应器, 或 /和本催化转化装置, 或 /和加氢裂化装 置进一步处理。
在更优选的实施方案中, 所述原料油选自或包括石油烃和 /或其它 矿物油, 其中石油烃选自减压瓦斯油、 常压瓦斯油、 焦化瓦斯油、 脱 沥青油、 减压渣油、 常压渣油中的一种或两种以上的混合物, 其它矿 物油为煤液化油、 油 、油、 页岩油中的一种或两种以上的混合物。
在更优选的实施方案中, 所述主要含大孔沸石的催化剂包括沸石、 无机氧化物、 粘土。 以干基计, 各组分分别占催化剂总重量: 沸石约 5 重量 ~约 50重量%, 优选约 10重量 ~约 30重量%; 无机氧化物约 0.5 重量 ~约 50重量%; 粘土 0重量〜约 70重量%。 其中沸石作为活性活 分, 选自大孔沸石。 所述的大孔沸石是指由稀土 Y、 稀土氢 Υ、 不同 方法得到的超稳 Υ、 高硅 Υ构成的这組沸石中的一种或两种以上的混 合物。
无机氧化物作为基质, 选自二氧化硅 ( Si02 ) 和 /或三氧化二铝 ( A1203 ) 。 以干基计, 无机氧化物中二氧化硅占约 50重量〜约 90重 量%, 三氧化二铝占约 10重量〜约 50重量0 /0
粘土作为粘接剂, 选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一 种或几种。
所述活性相对均勾的催化剂 (包括催化裂化催化剂和多产柴油催 化剂)是指其初始活性不超过约 80 , 优选不超过约 75 , 更优选不超过 约 70; 该催化剂的自平衡时间约 0.1 小时 ~约 50小时, 优选约 0.2 ~ 约 30小时, 更优选约 0.5 ~约 10小时; 平衡活性约 35 ~约 60, 优选 约 40 ~约 55。
所述的催化剂的初始活性或者后文所述的新鲜催化剂活性是指轻 油微反装置评价的催化剂活性。 其可通过现有技术中的测量方法测量: 企业标准 RIPP 92-90 --催化裂化新鲜催化剂的微反活性试验法《石油化 工分析方法(RIPP试猃方法)》,杨翠定等人, 1990 , 下文简称为 RIPP 92-90。 所述催化剂初始活性由轻油微反活性 (MA ) 表示, 其计算公 式为 MA = (产物中低于 204 °C的汽油产量 +气体产量 +焦炭产量) /进料 总量 * 100%=产物中低于 204 °C的汽油产率 +气体产率 +焦炭产率。 轻油 微反装置 (参照 RIPP 92-90 ) 的评价条件是: 将催化剂破碎成颗粒直 径约 420 ~ 841微米的颗粒, 装量为 5克, 反应原料是馏程为 235 ~ 337 的直馏轻柴油, 反应温度 460 °C , 重量空速为 16小时 , 剂油比 3.2。
所述的催化剂自平衡时间是指催化剂在 800 °C和 100%水蒸气条件 (参照 RIPP 92-90 ) 下老化达到平衡活性所需的时间。
所述活性相对均匀的催化剂例如可经下述 3种处理方法而得到: 催化剂处理方法 1 :
( 1 )、 将新鲜催化剂装入流化床, 优选密相流化床, 与水蒸汽接 触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 2 ) 、 将所述活性相对均匀的催化剂加入到相应的反应装置内。 处理方法 1例如是这样具体实施的:
将新鲜催化剂装入流化床优选密相流化床内, 在流化床的底部注 入水蒸汽, 催化剂在水蒸汽的作用下实现流化, 同时水蒸汽对催化剂 进行老化, 老化温度约 400 °C〜约 850°C , 优选约 500 V ~约 750 °C , 优选约 600 °C ~约 700 V ,流化床的表观线速约 0.1米 /秒 -约 0.6米 /秒, 优选约 0.15秒 ~约 0.5米 /秒, 老化约 1小时 ~约 720小时, 优选约 5 小时 ~约 360 小时后, 得到所述的活性相对均匀的催化剂, 活性相对 均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业 装置的再生器。
催化剂处理方法 2:
( 1 )、 将新鲜催化剂装入流化床优选密相流化床, 与含水蒸汽的 老化介质接触, 在一定的水热环境下进行老化后得到活性相对均匀的 催化剂;
( 2 ), 将所迷活性相对均匀的催化剂加入到相应的反应装置内。 催化剂处理方法 2的技术方案例如是这样具体实施的:
将催化剂装入流化床优选密相流化床内, 在流化床的底部注入含 水蒸汽的老化介质, 催化剂在含水蒸汽的老化介质作用.下实现流化, 同时, 含水蒸汽的老化介质对催化剂进行老化, 老化温度约 400°C〜约 850 °C , 优选约 500 °C ~约 750°C , 优选约 600 °C ~约 700 C , 流化床的 表观线速约 0.1米 /秒〜约 0.6米 /秒, 优选约 0.15秒〜约 0.5米 /秒, 水 蒸汽与老化介质的重量比约 0.20〜约 0.9, 优选约 0.40 ~约 0.60 , 老化 约 1 小时 ~约 720小时, 优选约 5小时 ~约 360小时后, 得到所述的 活性相对均匀的催化剂, 活性相对均匀的催化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再生器。 所述老化介质包括 空气、 干气、 再生烟气、 空气与干气燃烧后的气体或空气与燃烧油燃 烧后的气体、 或其它气体如氮气。 所述水蒸气与老化介质的重量比约
0.2 ~约 0.9, 优选约 0.40 ~约 0.60。
催化剂处理方法 3 :
( 1 )、 将新鲜催化剂输入到流化床优选密相流化床, 同时将再生 器的热再生催化剂输送到所述流化床, 在所述流化床内进行换热;
( 2 )、 换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 3 )、 将所述活性相对均勾的催化剂加入到相应的反应装置内。 本发明的技术方案例如是这样具体实施的:
将新鲜催化剂输送到流化床优选密相流化床内, 同时将再生器的 热再生催化剂也输送到所述流化床, 在所述流化床内进行 ¾热。 在流 化床的底部注入水蒸汽或含水蒸汽的老化介质, 新鲜催化剂在水蒸汽 或含水蒸汽的老化介质作用下实现流化, 同时, 水蒸汽或含水蒸汽的 老化介质对新鲜催化剂进行老化, 老化温度约 400°C ~约 850°C , 优选 约 500°C ~约 750°C , 优选约 600 °C ~约 700°C , 流化床的表观线速约 0.1米 /秒〜约 0.6米 /秒,优选约 0.15秒 ~约 0.5米 /秒,老化约 1小时 ~ 约 720小时, 优选约 5小时 ~约 360小时, 在含水蒸汽的老化介质的 情况下, 所述水蒸气与老化介质的重量比为大于约 0 ~约 4 , 优选约 0.5 ~约 1.5 , 得到在所述的活性相对均勾的催化剂, 活性相对均匀的催 化剂按工业装置的要求, 加入到工业装置, 优选加入到工业装置的再 生器。 此外, 老化步骤后的水蒸汽进入反应*** (作为汽提蒸汽、 防 焦蒸汽、 雾化蒸汽、 提升蒸汽中的一种或几种分别进入催化裂化装置 中的汽提器、 沉降器、 原料喷嘴、 预提升段) 或再生***, 而老化步 骤后的含水蒸汽的老化介质进入再生***, 换热后的再生催化剂返回 到该再生器内。 所述老化介质包括空气、 干气、 再生烟气、 空气与干 气燃烧后的气体或空气与燃烧油燃烧后的气体、 或其它气体如氮气。
通过上述处理方法, 工业反应装置内的催化剂的活性和选择性分 布更加均勾, 催化剂的选择性得到明显改善, 从而干气产率和焦炭产 率明显的降低。
所述催化剂的粒径分布可以是常规催化裂化催化剂的粒径分布, 也可以是粗粒径分布。 在更优选的实施方案中, 所述催化剂其特征在 于采用粗粒径分布的催化剂。
所述粗粒径分布的催化剂的 分组成为: 小于 40微米的颗粒占所 有颗粒的体积比例低于约 10%, 优选低于约 5%; 大于 80微米的颗粒 占所有颗粒的体积比例低于约 15%, 优选 ^氏于约 10%, 其余均为 40 ~ 80 4敖米的颗粒。
所述催化蜡油送入的变径提升管反应器更为详细的描述参见 CN1237477A。
在更优选的实施方案中, 所述反应器选自提升管、 等线速的流化 床、 等直径的流化床、 上行式输送线、 下行式输送线中的一种或一种 以上的組合, 或同一种反应器两个或两个以上的组合, 所述组合包括 串联或 /和并联, 其中提升管是常规的等直径的提升管或者各种形式变 径的提升管。
在更优选的实施方案中, 在一个位置将所述原料油引入反应器内, 或在一个以上相同或不同高度的位置将所述原料油引入反应器内。
在更优选的实施方案中, 所述方法还包括将反应产物和催化剂进 行分离, 催化剂经汽提、 烧焦再生后返回反应器, 分离后的产物包括 高十六烷值柴油和催化蜡油。
在更优选的实施方案中,所述催化蜡油为初馏点不小于 330°C的馏 分, 氢含量不低于 10.8重量%。
在更优选的实施方案中,所述催化蜡油为初熘点不小于 350 °C的馏 分, 所述催化蜡油氢含量不低于 11.5%。
加氢处理装置的反应***通常为固定床反应器, 也可以采用其它 型式反应器。
' 催化蜡油加氢催化剂组成是以元素周期表中 族、 VIB族的金属为 活性組分, 以氧化铝和沸石为载体。 具体地说, 该加氢催化剂含有一 种载体和负载在该载体上的钼和 /或钨及镍和 /或鈷。 以氧化物计并以催 化剂总量为准, 该加氢催化剂中钼和 /或钨的含量约 10 ~约35重量0 /0, 优选约 18 ~约 32重量%, 镍和 /或钴的含量约 1 ~约 15重量%, 优选 约 3 ~约 12重量%。 所述载体由氧化铝和沸石组成, 氧化铝与沸石的 重量比约 90: 10 ~约 50: 50 , 优选约 90: 10 ~约 60: 40。 所述氧化 铝是由小孔氧化铝和大孔氧化铝按照约 75: 25〜约 50: 50的重量比复 合而成的氧化铝, 其中小孔氧化铝的直径小于 80A孔的孔体积占总孔 体积约 95%以上的氧化铝,大孔氧化铝的直径 60 ~ 600A孔的孔体积占 总孔体积约 70%以上的氧化铝。 所述沸石选自八面沸石、 丝光沸石、 erionite沸石、 L型沸石、 Ω沸石、 ZSM-4沸石、 Beta沸石中的一种或 几种, 优选 Y型沸石, 特别优选的沸石是总酸量约 0.02至小于约 0.5 毫摩尔 /克, 优选约 0.05〜约 0.2亳摩尔 /克的 Y型沸石。
所述加氢处理的工艺条件为: 氢分压约 3.0 ~约 20.0MPa, 反应温 度约 280 ~约 450°C , 体积空速约 0.1 ~约 20h , 氢油比约 300 ~约 2000v/v。 本发明中的氢油比均指氢气与催化蜡油的体积比。
催化蜡油加氢催化剂的制备方法包括:
将氧化铝的前身物与沸石混合成型, 焙烧, 用含镍和 /或鈷及钼和 / 或钨的水溶液浸渍, 然后干燥和焙烧, 所述氧化铝的前身物为孔直径 小于 80埃孔的孔体积占总体积约 95%以上的小孔氧化铝的前身物和孔 直径 60 ~ 600埃孔的孔体积占总孔体积约 70%以上的大孔氧化铝的前 身物的混合物, 小孔氧化铝前身物、 大孔氧化铝前身物和沸石的用量 使得催化剂中小孔氧化铝与大孔氧化铝的重量比约 75 : 25〜约 50 : 50, 氧化铝总重量与沸石重量的比约 90 : 10 ~约 50 : 50, 优选约 90 : 10 ~约 60 : 40。 所述小孔氧化铝的前身物为一水铝石含量大于约 60%重量的水合氧化铝, 大孔氧化铝的前身物为一水铝石含量大于约 50%重量的水合氧化铝。 该技术方案将催化裂化、 加氢处理和加氢裂化等工艺有机结合, 从氢含量较低的重质原料最大限度地生产高十六烷值的柴油。
本发明与现有技术相比, 具有下列技术效果:
1、 通过工艺参数和催化剂性质的优化控制, 最大程度地将原料中 的烷烃、 烷基芳烃侧链等选择性地裂化进入产物柴油馏分中, 以确保 柴油馏分的组成中主要是烷烃, 从而最终可以实现通过催化转化生产 高十六烷值柴油;
2、 不同性质烃类在各自适宜反应条件下进行选择性反应, 干气和 焦炭的选择性得到改善, 粗粒径分布的催化剂可以进一步改善干气和 焦炭的选择性;
3、 重质油经本发明提供方法催化转化后, 得到的催化蜡油中主要 为芳烃组分, 其性质随原料性质变化较小, 因此加氨处理或 /和加氢裂 化装置原料稳定, 操作周期相应得到明显地提高;
4、 因颗粒更加均勾, 从而在再生过程中局部的温度分布也更加均 匀, 催化剂破碎倾向也相应地降低;
5、 催化剂消耗降低, 催化蜡油中夹带的催化剂含量减少。
除非另行指明, 本文所用的所有技术和科学术语具有与本发明所 属领域的普通技术人员的一般理解相同的含义。 尽管在本发明的实践 或测试中可以使用与本文所述的那些类似或等同的方法和材料, 但下 文仍描述了合适的方法和材料。在冲突的情况下, 以本专利说明书(包 括定义) 为准。 此外, 这些材料、 方法和实施例仅是示例性而非限制 性的。
本文所用的术语 "包括" 是指可以加入不影响最终结果的其它步 骤和成分。 这一术语包括术语 "由 ...组成" 和 "基本由…组成" 。
术语 "方法" 或 "工艺" 是指用于实现指定任务的方式、 手段、 技术和程序, 包括但不限于, 化学和化工领域从业者已知的或他们容 易由已知方式、 手段、 技术和程序开发出的那些方式、 手段、 技术和 程序。
在本公开中, 本发明的各种方面可以以范围格式表示。 应该理解 的是, 范围格式的描述仅为方便和简要目的使用, 不应被视为对本发 明范围的刚性限制。 相应地, 一范围的描述应被视为具体公开了所有 可能的子范围以及在该范围内的逐个数值。 例如, 如 1 至 6这样的范 围的描述应被视为具体公开了如 1至 3 , 1至 4 , 1至 5 , 2至 4 , 2至 6, 3至 6之类的子范围, 以及在该范围内的逐个数值, 例如 1、 2、 3、 4、 5和 6。 无论该范围的幅宽如何, 这都适用。
在本文中只要指出数值范围, 意在包括所示范围内的任何列举数 值(分数或整数)。 短语 "在" 第一所示数值 "和" 第二所示数值 "之 间,, 以及 "从" 第一所示数值 "至" 第二所示数值在本文中可互换使 用并意在包括该第一和第二所示数值以及它们之间的所有分数和整 数。 附图说明
本文中参照附图仅举例描述本发明。 现在详细地特别参照附图, 要强调, 所示细节仅作为实例和仅用于举例说明本发明的优选实施方 案, 并且是为了提供本发明的原理和概念方面的据信最为有用和容易 理解的描述而呈现的。 在这方面, 除基本理解本发明所必须的外, 不 试图更详细展示本发明的结构细节, 联系附图的该描述使本领域技术 人员弄清可以如何具体实施本发明的几种形式。 '
附图 1是本发明的实施方案示意流程图。
附图 2是本发明的一种实施方案的示意图。 具体实施示意流程
下面结合附图对本发明所提供的方法进行进一步的说明, 但并不 因此限制本发明。
附图 1是本发明的实施方案示意流程图。
其示意流程如下:
如附图 1 所示, 原料油进入催化裂化反应器 Γ得到催化柴油和催 化蜡油等组分, 其中催化柴油经管线 5,引出; 其中全部或部分催化蜡 油经管线 6,和管线 8'引出。
或 /和, 其中全部或部分催化蜡油经管线 6'和管线 7,送入常规催化 裂化或变径提升管反应器 2,用于生产柴油和汽油等其它产品。
或 /和, 其中全部或部分催化蜡油经管线 6,、 管线 9'和管线 10,送 入加氢处理装置 2' ,加氢处理催化蜡油经管线 1 Γ送入常规催化裂化或 变径提升管反应器 3 '用于生产柴油和汽油等其它产品。
或 /和, 其中全部或部分催化蜡油经管线 6,、 管线 9,和管线 12,送 入加氢裂化装置 4' , 催化蜡油加氢裂化尾油可以引出送入常规催化裂 化, 变径提升管反应器, 本装置等反应器用于生产柴油和汽油等其它 产品。 具体实施方式
下面结合附图对本发明所提供的方法进行进一步的说明, 但并不 因此限制本发明。
其工艺流程如下:
如附图 2所示, 再生催化剂经再生斜管 12、 受滑阀 1 1控制进入提 升管反应器 4底部的预提升段 2,预提升介质经管线 1也进入预提升段 2, 在预提升介质的作用下, 再生催化剂经预提升段 2进入提升管反应 器 4下部的反应区 I, 催化原料油经管线 3也进入提升管反应器下部的 反应区 I, 与催化剂接触、 反应, 并上行至反应区 II, 反应后的油剂混 合物从提升管出口进入旋风分离器 7,通过旋风分离器 7进行气固分离, 分离后的油气进沉降器集气室 6。与反应油气分离后的带炭待生催化剂 下行进入汽提段 5, 在汽提段 5采用过热蒸汽进行汽提, 汽提后的带炭 催化剂经待生斜管 8、 受滑阀 9控制进入再生器 10再生, 主风经管线 20进入再生器 10, 烧去待生催化剂上的焦炭, 使失活的待生催化剂再 生, 烟气经管线 21进入烟机, 再生后的催化剂经再生斜管 12、 受滑阀 1 1控制返回预提升段 2循环使用。
集气室 6 中的反应产物油气经大油气管线 13 , 进入后续的分离系 统 14, 分离得到的干气、 液化气、 汽油、 柴油和催化蜡油分别经管线 15、 16、 17、 18和 19引出。
来自管线 19的全部或部分催化蜡油可以选择直接引出;或 /和直接 引入常规催化裂化或变径提升管反应器; 或 /和引入加氢处理装置得到 加氢处理催化蜡油, 加氢处理催化蜡油送入提升管反应器; 或 /和引入 加氢裂化反应器。 以使催化蜡油进一步处理得到目的产品。 下面的实施例将对本方法予以进一步的说明, 但并不因此限制本 方法。
实施例中所用的原料为减压瓦斯油 (VGO-D )和常压渣油 (AR ), 其性质如表 1所示。
本发明实例中所用的催化剂沸石是经老化处理的高硅沸石。 该高 硅沸石是的制备如下: 用 NaY经 SiC 气相处理及稀土离子交换, 制备 得到的样品, 其硅铝比为 18, 以 RE203计的稀土含量为 2重量%, 然 后该样品在 800°C ,100%水蒸气下进行老化处理。用 4300克脱阳离子水 将 969克多水高岭土 (中国高岭土公司产品, 固含量 73% ) 打浆, 再 加入 7δ1克拟薄水铝石(山东淄博铝石厂产品, 固含量 64% )和 144ml 盐酸 (浓度 30%, 比重 1.56 ) 搅拌均勾, 在 60°C静置老化 1 小时, 保 持 pH为 2 ~ 4, 降至常温, 再加入预先准备好的含 800克高硅沸石(干 基)和 2000克化学水的沸石浆液,搅拌均匀, 喷雾干燥, 洗去游离 Na+, 得催化剂 (该新鲜催化剂活性为 79 , 在温度为 800°C和 100%水蒸气条 件下自平衡时间为 10h, 平衡活性为 55 ) 。 将得到催化剂经 800 °C和 100%水蒸汽进行老化, 老化后的催化剂代号为 A。 将部分老化剂进行 扬析, 除去细颗粒和大于 ΙΟΟμιη的颗粒, 得到粗粒径分布的催化剂, 其代号为 Β。 催化剂性质列于表 2。 实施例中所用的加氢精制催化剂和加氢裂化催化剂的商品牌号分 别为 RN-2和 RT-1 , 均由中国石化催化剂分公司长岭催化剂厂生产。 实施例 1
本实施例说明采用本发明提供的方法进行选择性裂化反应生产高 品质轻柴油和催化蜡油的' 况。
中型催化裂化装置流程图如附图 2所示, 原料油 VGO-D经管线 3 注入提升管反应器, 与由水蒸汽提升的催化剂 B在提升管反应器的下 部接触、 反应, 在提升管反应器内催化剂 B和原料油的重量比为 4: 1 , 原料油在提升管反应器内的停留时间为 1 ,6秒, 反应温度为 460°C。 集 气室压力为 0.15兆帕, 油气从提升管出来后经旋风分离器分离后进入 后部的分馏***。 而带炭的待生催化剂进入汽提段, 汽提后的待生催 化剂去再生器再生, 再生后的催化剂返回提升管反应器循环使用。 试 验条件、 试验结果列于表 3 , 柴油性质列于表 4。 对比例
釆用同上述实施例相同的提升管反应器进行试验, 所用原料油与 上述实施例相同, 试验步骤及方法与实施例 1 完全相同, 只是采用的 催化剂由实施例的催化剂 B改为催化剂 A。 操作条件和产品分布列于 表 3。 试验结果列于表 3 , 柴油性质列于表 4 , 催化蜡油性质列于表 5。
从表 3 可以看出, 实施例的干气和焦炭产率明显低于对比例; 从 表 4可以看出, 实施例的柴油性质与对比例略好, 分别为 53和 52。 表 1
原料油类型 VGO-D AR 密度(20°C ) , g/cm3 0.8653 0.9029 残炭, 重量% 0.15 4.0 总氮, 重量% 0.04 0.26 硫, 重量% 0.09 0, 13
86.12 86.86
13.47 12.86 重金属含量, pm
镍 0.12 5.3 钒 <0.1 1.1 馏程, °C
初媳点 284 308
10% 342 395
30% 390 440
50% 420 479
70% 449 550
90% 497 1
表 2
Figure imgf000029_0001
表 3
实施例 1 3†比例 1 催化剂编号 B A 反应温度, V 460 460 反应时间, 秒 1.6 1.6 剂油比 4 4 注水量 (占进料量) , % 10 10 产物分布, 重量%
干气 0,48 0.57 液化气 7.01 7.03 汽油 20.76 20.91 柴油 29.76 29.46 催化蜡油 39.83 39.67 焦炭 1 ,78 1.98 损失 0.38 0.38 表 4
Figure imgf000030_0001
*柴油十六烷值桶=柴油十六烷值 X柴油产率
实施例 1 对比例 1 催化蜡油性质
密度, g/cm3 0.8517 0.8522
折光 1.4561 1 ,4565
凝固点, °C 42 42
镏程, °C
初憎点 300 301
5% 374 1
10% 384 387
30% 400 1
50% 416 417
70% 437
90% 466 464
终馏点 1 1
元素组成,%
C 86.07 86.08
H 13.76 13.75
实施例 2
本实施例说明采用本发明提供的方法进行选择性裂化反应生产高 品质轻柴油和低烯烃汽油的情况。
中型催化裂化装置流程图如附图 2所示, 原料油 VGO-D经管线 3 注入提升管反应器, 与由水蒸汽提升的催化剂 B在提升管反应器的下 部接触、 反应, 在提升管反应器内催化剂 B和原料油的重量比为 4: 1 , 原料油在提升管反应器内的停留时间为 1.6秒, 反应温度为 46(TC。 集 气室压力为 0.15兆帕, 油气从提升管出来后经旋风分离器分离后进入 后部的分镏***分离得到目的产品柴油和催化蜡油等。 而带炭的待生 催化剂进入汽提段, 汽提后的待生催化剂去再生器再生, 再生后的催 化剂返回提升管反应器循环使用。
将得到的催化蜡油直接送入变径提升管反应器内进行催化转化, 采用相同的催化剂 B , 在变径提升管反应器内催化剂 B和催化蜡油的 重量比为 6: 1 , 催化蜡油在提升管反应器内的停留时间为 5.5秒, 第一 反应区 (简称一反) 温度为 510 °C , 第一反应区 (简称二反) 温度为 490 °C , 油气从变径提升管出来后经旋风分离器分离后进入后部的分镏 ***分离得到目的产品柴油和汽油等。 试验条件、 试猃结果列于表 6 , 柴油性质与实施例 1柴油性质相当, 汽油性质列于表 7。
从表 6 可以看出, 实施例的干气产率仅为 0.96% , 焦炭产率仅为 2.78% , 重油产率仅为 2.24% , 总液体产率 (液化气产率 +汽油产率 +轻 柴油产率 +轻循环油产率)高达 93.63%; 从表 4和表 7可以看出, 在生 产高品质柴油的同时, 生产了低烯烃含量的汽油产品。
表 6
实施例 2
催化裂化单元
反应温度, V 460
反应时间, 秒 1 ,6
剂油比 4
注水量 (占进料量) , % 10
多产低碳烯烃汽油催化裂化单元
一反温度, 。c 510
二反温度, Ό 490
反应时间, 秒 5.5
剂油比 6
注水量 (占进料量) , % 5
产物分布, 重量%
干气 0.96
液化气 18.03
汽油 39.79
轻柴油 29,76
轻循环油 6.05
重油 2.24
焦炭 2.78
损失 0.39 表 7
实施例 2
汽油性质 汽油
密度, g/cm3 0.7358
折光 1.4174
诱导期, min >500
馏程, °C
初馏点 43
5% 61
10% 67
30% 86
50% 108
70% 134
90% 166
终馏点 194
组成,%
饱和烃 49.0
烯烃 34.9
芳烃 16.1
RON 89.0
实施例 3
本实施例说明釆用本发明提供的方法, 通过催化裂化与加氢裂化 工艺结合进行选择性裂化反应生产高品质柴油情况。
中型催化裂化装置流程图如附图 2所示, 原料油 (VGO-D ) 经管 线 3注入提升管反应器, 与由水蒸汽提升的催化剂 B在提升管反应器 的下部接触、 反应, 在提升管反应器内催化剂 B和原料油的重量比为 4: 1 ,原料油在提升管反应器内的停留时间为 1.6秒,反应温度为 460 °C。 集气室压力为 0.15 兆帕, 油气从提升管出来后经旋风分离器分离后进 入后部的分馏***分离得到目的产品柴油和催化蜡油。 而带炭的待生 催化剂进入汽提段, 汽提后的待生催化剂去再生器再生, 再生后的催 化剂返回提升管反应器循环使用。 催化蜡油进入后续的加氢裂化装置, 加氢裂化的反应条件为: 精制反应温度为 370 °C , 裂化反应温度为 380 °C , 氢分压为 12.0 MPa, 体积空速为 1.211-1。 试验条件、 试验结果列于 表 8 , 催化柴油性质与实施例 1轻柴油性质相当, 加氢裂化柴油性质列 于表 9 , 加氢裂化尾油性廣列于表 10。
从表 8可以看出, 该实施例的催化柴油产率高达 29.76重量%, 加 氢裂化柴油产率高达 18.63重量。 /。, 干气产率仅为 0.48重量%, 焦炭产 率仅为 1.78重量%; 从表 4和表 9可以看出, 该实施例的所产催化柴 油十六烷值高达 53 , 加氢裂化柴油十六烷值高达 68.2 , 柴油十六烷值 桶高达 2847.846 (即 29.76 χ 53+18.63 χ 68.2 )副产加氢裂化尾油 BMCI 值达到 15.6 , 是性盾较好的催化裂化等反应器原料。
表 8
实施例 3
催化裂化单元
反应温度, V 460
反应时间, 秒 1.6
剂油比 4
注水量 (占进料量) , % 10
加氢裂化单元
精制反应温度, °C 370
裂化反应温度, °C 380
氢分压, MPa 12.0
体积空速, h— 1 1.2
产物分布, 重量%
干气 0.48
液化气 7.01
汽油 20.76
石月 油 15.93
催化柴油 29.76
加氢裂化柴油 18.62
加氢裂化尾油 6.77
焦炭 1.78
损失 0.38
合计 101.49 表 9
Figure imgf000035_0001
实施例 4
本实施例说明采用本发明提供的方法, 通过催化裂化与加氢处理 工艺结合进行选择性裂化反应生产高品质柴油情况。
中型催化裂化装置流程图如附图 2 所示, 常压渣油(AR)经管线 3 注入提升管反应器, 与由水蒸汽提升的催化剂 A在提升管反应器的下 部接触、 反应, 在提升管反应器内催化剂 B和原料油的重量比为 3 : 1, 原料油在提升管反应器内的停留时间为 1.6秒, 反应温度为 450°C。 集 气室压力为 0.2兆帕,油气从提升管出来后经旋风分离器分离后进入后 部的分馏***分离得到目的产品柴油和催化蜡油。 而带炭的待生催化 剂进入汽提段, 汽提后的待生催化剂去再生器再生, 再生后的催化剂 返回提升管反应器循环使用。 催化蜡油进入后续的加氢处理装置, 加 氢的反应条件为: 氢分压为 14 MPa, 反应温度为 385 C, 体积空速为 0.235 小时人 该装置的加氢处理催化蜡油返回到催化裂化装置。 试验 条件、 试验结果列于表 10 , 柴油性质列于表 11。
从表 10 可以看出, 该实施例的柴油产率高达 46.51 重%; 从表 4 可以看出, 该实施例的柴油十六烷值高达 52.5 , 柴油十六烷值桶高达 2441.78。 实施例 5
采用同上述实施例 4相同的提升管反应器进行试猃, 所用原料油 与上述实施例相同, 试验步骤及方法与实施例完全相同, 只是采用的 催化剂由实施例 4的粗粒径催化剂 B改为常规粒径催化剂 A。 试猃条 件、 试验结果列于表 10 , 柴油性质列于表 11。
从表 10可以看出, 该实施例的柴油产率高达 45.88重%; 从表 11 可以看出, 该实施例的柴油十六烷值高达 51.4 , 柴油十六烷值桶高达 2358.23。
从表 10可以还看出, 实施例 5的干气和焦炭产率明显高于实施例 4 ,说明粗粒径的裂化催化剂 B较常规粒径的裂化催化剂 A更能降低干 气和焦炭产率。
表 10
Figure imgf000037_0001
*以常压渣油和氢气的总重量为计算基准 表 1 1
Figure imgf000037_0002
*柴油十六烷值桶=柴油十六烷值 X柴油产率 要认识到, 为清楚起见描述在分开的实施方案中的本发明的某些 方面和特征也可以在单个实施方案中联合提供。 相反, 为简要起见在 单个实施方案中描述的本发明的各种方面和特征也可以分开提供或以 任何合适的子组合方式提供。
本说明书中提到的所有出版物、 专利和专利申请均全文经此引用 并入本说明书, 就像各个出版物、 专利或专利申请专门且逐一被指出 经此引用并入本文。
尽管已经联系具体实施方案及其实施例描述了本发明, 但明显的 是, 本领域技术人员能够看出许多替代方案、 修改和变动。 相应地, 旨在涵盖落在所附权利要求的精神和宽范围内的所有这样的替代方 案、 修改和变动。

Claims

权 利 要 求
1、 一种提高柴油十六烷值桶的催化转化方法, 其特征在于所述方 法包括使原料油在催化转化反应器内与主要含大孔沸石的活性相对均 匀的催化剂接触进行反应, 其中反应温度、 油气停留时间、 催化剂与 原料油重量比足以使反应得到包含柴油、 占原料油约 12 ~约 60重量% 催化蜡油的反应产物, 其中所迷反应温度约 420 ~约 550°C , 所述油气 停留时间约 0. 1 ~约 5秒, 所述催化剂与原料油重量比约 1 ~约 10。
2、 一种提高柴油十六烷值桶的催化转化方法 , 其特征在于所述方 法包括使原料油在催化转化反应器内与主要含大孔沸石的活性相对均 匀的催化剂接触进行反应, 其中反应温度、 油气停留时间、 催化剂与 原料油重量比足以使反应得到包含柴油、 占原料油约 12 ~约 60重量% 催化蜡油的反应产物, 其中所述反应温度约 420〜约 550 °C , 所迷油气 停留时间约 0. 1 ~约 5秒, 所述催化剂与原料油重量比约 1〜约 10; 以 及使所述催化蜡油全部或部分进入常规催化裂化或变径提升管反应器 进一步生产包括柴油和汽油的产品, 或 /和所述催化蜡油返回原催化转 化反应器或进料至另一催化转化反应器。
3、 一种提高柴油十六烷值桶的催化转化方法, 其特征在于所述方 法包括使原料油在催化转化反应器内与主要含大孔沸石的活性相对均 匀的催化剂接触进行反应, 其中反应温度、 油气停留时间、 催化剂与 原料油重量比足以使反应得到包含柴油、 占原料油约 12 ~约60重量% 催化蜡油的反应产物, 其中所述反应温度约 420〜约 550°C , 所述油气 停留时间约 0. 1〜约 5秒, 所述催化剂与原料油重量比约 1 约 10; 其 特征在于所述催化蜡油全部或部分进入加氢裂化装置进一步生产高十 六烷值柴油。
4、 一种提高柴油十六烷值桶的催化转化方法, 其特征在于所述方 法包括使原料油在催化转化反应器内与主要含大孔沸石的活性相对均 匀的催化剂接触进行反应, 其中反应温度、 油气停留时间、 催化剂与 原料油重量比足以使反应得到包含柴油、 占原料油约 12〜 约 60重量% 催化蜡油的反应产物, 其中所述反应温度约 420〜约 550°C, 所述油气 停留时间约 0. 1 ~约 5秒, 所述催化剂与原料油重量比约 1〜约 10; 以 及所述催化蜡油全部或部分进入加氢处理装置进一步处理以生产包括 柴油和汽油的产品。
5、 按照权利要求 3的方法, 其特征在于加氢裂化尾油再进入常规 催化裂化或变径提升管反应器进一步生产包括柴油和汽油的产品。
6、 按照权利要求 4的方法, 其特征在于加氢催化蜡油全部或部分 进入常规催化裂化或变径提升管反应器进一步生产包括柴油和汽油的 产品, 或 /和返回催化转化反应器。
7、 按照权利要求 1 - 4任一项的方法, 其特征在于所述原料油选 自或包括石油烃和 /或其它矿物油, 其中石油烃选自减压瓦斯油、 常压 瓦斯油、 焦化瓦斯油、 脱沥青油、 减压渣油、 常压渣油中的一种或两 种以上的混合物, 其它矿物油为煤液化油、 油 、油、 页岩油中的一种 或两种以上的混合物。
8、 按照权利要求 1 - 4任一项的方法, 其特征在于所述催化剂包 括沸石、 无机氧化物、 粘土, 以干基计, 各组分分别占催化剂总重量: 沸石约 5重量〜约 35重量%, 优选约 10重量 ~约 30重量%; 无机氧 化物约 0.5重量 ~约 50重量%; 粘土约 0重量 ~约 70重量%, 其中沸 石作为活性活分, 选自大孔沸石, 所述的大孔沸石是指由稀土 Y、 稀 土氢 Υ、 不同方法得到的超稳 Υ、 高硅 Υ构成的这组沸石中的一种或 两种以上的混合物。
9、 按照权利要求 1 - 4任一项的方法, 其特征在于所述催化剂的 粒径分布是常规催化裂化催化剂的粒径分布, 或者是粗粒径分布。
10、 按照权利要求 9 的方法, 其特征在于所述粗粒径分布的催化 剂的筛分组成为小于约 40 微米的颗粒占所有颗粒的体积比例低于约 10% ,优选低于约 5%; 大于约 8C 敫米的颗粒占所有颗粒的体积比例 4氐 于约 15% , 优选低于约 10%; 其余均约 40 ~约 80 4敖米的颗粒。
11、 按照权利要求 1 - 4任一项的方法, 其特征在于所述催化转化 反应器选自提升管、 等线速的流化床、 等直径的流化床、 上行式输送 线、 下行式输送线中的一种或一种以上的组合, 或同一种反应器两个 或两个以上的组合, 所述组合包括串联或 /和并联, 其中提升管是常规 的等直径的提升管或者各种形式变径的提升管。
12、 按照权利要求 1 - 4任一项的方法, 其特征在于在一个位置将 所述原料油引入催化转化反应器内, 或在一个以上相同或不同高度的 位置将所述原料油引入催化转化反应器内。
13、 按照权利要求 1 -4任一项的方法, 其特征在于催化转化反应 温度约 430~约 500°C, 优选约 430〜约 480Ό; 油气停留时间约 0.5 ~ 约 4秒, 优选约 0.8 ~约 3秒; 催化剂与原料油重量比约 2〜约 8, 优 选约 3 ~约 6;反应在压力约 0.10 MPa ~约 1.0 MPa,优选约 0.15MPa~ 约 0.6MPa。
14、 按照权利要求 1 -4任一项的方法, 其特征在于所述催化蜡油 为初馏点不小于约 350°C的馏分, 氢含量不低于约 11.5重量%, 优选不 低于约 12,0重量%。
15、 按照权利要求 1 -4任一项的方法, 其特征在于所述活性相对 均匀的催化转化催化剂是指其初始活性不超过约 80,优选不超过约 75, 更优选不超过约 70; 该催化剂的自平衡时间约 0.1小时 ~约 50小时, 优选约 0.2〜约 30小时, 更优选约 0.5 ~约 10小时; 平衡活性约 35 ~ 约 60, 优选约 40 ~约 55。
16、 按照权利要求 1 -4任一项的方法, 其特征在于所迷催化转化 反应器中的所述催化转化催化剂经下述处理方法而得到:
( 1)、 将新鲜催化剂装入流化床, 优选密相流化床, 与水蒸汽接 触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂;
( 2 ), 将所述活性相对均匀的催化剂加入到相应的反应装置内; 和
其中所述一定的水热环境包括: 老化温度约 400°C ~约 850°C, 优 选约 500°C -约 750°C, 优选约 600 °C ~约 700 °C, 流化床的表观线速 约 0.1米 /秒 ~约 0.6米 /秒, 优选约 0.15秒 ~约 0.5米 /秒, 老化约 1小 时 ~约 720小时, 优选约 5小时 ~约 360小时。
17、 按照权利要求 1 -4任一项的方法, 其特征在于所述催化转化 反应器中的所述催化转化催化剂经下述处理方法而得到:
( 1)、 将新鲜催化剂装入流化床, 优选密相流化床, 与含水蒸汽 的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均匀 的催化剂;
( 2 )、 将所迷活性相对均匀的催化剂加入到相应的反应装置内; 其中所述一定的水热环境包括: 老化温度约 400°C〜约 850°C, 优 选约 500V ~约 750°C, 优选约 600°。~约 700°C, 流化床的表观线速 约 0.1米 /秒〜约 0.6米 /秒, 优选约 0.15秒〜约 0.5米 /秒, 水蒸汽与老 化介质的重量比约 0.20 ~约 0.9 ,优选约 0.40 ~约 0.60 ,老化约 1小时 ~ 约 720小时, 优选约 5小时〜约 360小时。
18、 按照权利要求 1 - 4任一项的方法, 其特征在于所述催化转化 反应器中的所述催化转化催化剂经下述处理方法而得到:
( 1 )、 将新鲜催化剂输入到流化床, 优选密相流化床, 同时将再 生器的热再生催化剂输送到所述流化床, 在所述流化床内进行换热;
( 2 )、 换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触, 在一定的水热环境下进行老化后得到活性相对均勾的催化剂; 和
( 3 )、 将所述活性相对均匀的催化剂加入到相应的反应装置内; 其中所述一定的水热环境包括: 老化温度约 400°C ~约 850°C, 优 选约 500 °C ~约 750 °C , 优选约 600 °C ~约 70CTC , 流化床的表观线速 约 0.1米 /秒 ~约 0.6米 /秒, 优选约 0.15秒 ~约 0.5米 /秒, 老化约 1小 时〜约 720小时, 优选约 5小时〜约 360小时, 所述水蒸气与老化介 质 (如果有的话) 的重量比为大于约 0 ~约 4 , 优选约 0.5〜约 1.5'。
19、 按照权利要求 4 的方法, 其特征在于加氢的工艺条件为: 氢 分压约 3.0 ~约 20.0 MPa,反应温度约 300 ~约 450 Ό ,体积空速约 0.1 - 约 3 h- 1 , 氢油比约 300 ~约 2000v/v。
20、 按照权利要求 4 的方法, 其特征在于加氢催化剂含有一种载 体和负载在该载体上的钼和 /或钨及镍和 /或钴, 所述载体由氧化铝和沸 石组成, 氧化铝与沸石的重量比约 90: 10〜约 50:50, 所述氧化铝是由 小孔氧化铝和大孔氧化铝按照约 75:25 ~约 50:50的重量比复合而成的 氧化铝, 其中小孔氧化铝为直径小于约 80A孔的孔体积占总孔体积约 95 %以上的氧化铝, 大孔氧化铝为直径约 60〜约 600A孔的孔体积占 总孔体积约 70 %以上的氧化铝。
21、 根据权利要求 20所述的方法, 其特征在于以氧化物计并以催 化剂总量为基准, 钼和 /或鸽的含量约 10 ~约 35重量% , 镍和 /或钴的 含量约 1〜约 15重量%。
22、 根据权利要求 20所述的方法, 其特征在于所述氧化铝与沸石 的重量比约 90: 10 ~约 60:40。
23、根据权利要求 20所述的方法, 其特征在于所述沸石为 Y型沸 石。
24、 按照权利要求 2 的方法, 其特征在于所述催化蜡油在另一转 化反应器内进行裂化反应, 生成的油气在一定的反应环境下进行氢转 移反应和异构化反应, 分离得到包括低烯烃汽油的反应产物。
25、 按照权利要求 24的方法, 其特征在于所述裂化反应的反应条 件为: 反应温度约 480°C ~约 600°C、 优选约 485 ~约 580°C, 反应时 间约 0.1 -约 3秒、 优选约 0.5〜约 2秒, 转化催化剂与催化蜡油的重 量比约 0.5〜约 25:1、 优选约 1〜约 15:1; 预提升介质与催化蜡油的重 量比约 0.01 ~约 2:1、 优选约 0,05 ~约 1:1。
26、 按照权利要求 24的方法, 其特征在于所述氢转移反应和异构 化反应的反应条件为: 反应温度约 45CTC〜约 550°C、 优选约 460~约 530°C; 重时空速约 1 ~约 50小时— 优选约 1 ~约 40小时—
PCT/CN2010/001645 2009-10-22 2010-10-20 一种提高柴油十六烷值桶的催化转化方法 WO2011047540A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/503,529 US8932457B2 (en) 2009-10-22 2010-10-20 Catalytic conversion method for increasing cetane number barrel of diesel
KR1020127012515A KR101816668B1 (ko) 2009-10-22 2010-10-20 디젤의 세탄가 베럴을 증가시키기 위한 촉매 전환 방법
RU2012119926/04A RU2547152C2 (ru) 2009-10-22 2010-10-20 Способ каталитической конверсии с увеличенным выходом дизельного топлива с высоким цетановым числом
JP2012534520A JP5988875B2 (ja) 2009-10-22 2010-10-20 ディーゼル燃料のセタン価バレルを増加するための触媒転換方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN 200910180775 CN102041093B (zh) 2009-10-22 2009-10-22 一种提高柴油十六烷值桶的催化转化方法
CN200910180775.0 2009-10-22
CN200910180776.5 2009-10-22
CN200910180776.5A CN102041094B (zh) 2009-10-22 2009-10-22 一种多产高十六烷值柴油的催化转化方法
CN200910224272.9 2009-11-26
CN200910224271.4 2009-11-26
CN200910224272.9A CN102079985B (zh) 2009-11-26 2009-11-26 一种生产高十六烷值轻柴油的催化转化方法
CN 200910224271 CN102079992B (zh) 2009-11-26 2009-11-26 一种生产高十六烷值轻柴油和低烯烃汽油的催化转化方法

Publications (1)

Publication Number Publication Date
WO2011047540A1 true WO2011047540A1 (zh) 2011-04-28

Family

ID=43899792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001645 WO2011047540A1 (zh) 2009-10-22 2010-10-20 一种提高柴油十六烷值桶的催化转化方法

Country Status (5)

Country Link
US (1) US8932457B2 (zh)
JP (1) JP5988875B2 (zh)
KR (1) KR101816668B1 (zh)
RU (1) RU2547152C2 (zh)
WO (1) WO2011047540A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104312623B (zh) * 2014-10-30 2016-06-08 辽宁石油化工大学 一种页岩油非加氢催化转化络合精制的加工方法
CN104607255B (zh) * 2015-01-29 2017-05-17 中国石油天然气集团公司 低l酸高b酸催化裂化催化剂及其制备方法
TWI804511B (zh) * 2017-09-26 2023-06-11 大陸商中國石油化工科技開發有限公司 一種增產低烯烴和高辛烷值汽油的催化裂解方法
TWI810212B (zh) * 2017-10-25 2023-08-01 大陸商中國石油化工科技開發有限公司 生產高辛烷值的催化裂解汽油的方法
CN110724553B (zh) 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用稀相输送床与快速流化床进行催化裂解的方法和***
CN110724550B (zh) * 2018-07-16 2021-04-06 中国石油化工股份有限公司 一种采用快速流化床进行催化裂解的方法和***
CN111718754B (zh) * 2019-03-22 2021-11-16 中国石油化工股份有限公司 一种生产汽油和丙烯的方法和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788834A (en) * 1996-07-19 1998-08-04 Exxon Research And Engineering Company Catalytic cracking process with Y zeolite catalyst comprising silica binder containing silica gel
WO2000040676A1 (en) * 1998-12-30 2000-07-13 Mobil Oil Corporation Process for producing diesel fuel with increased cetane number
CN1566278A (zh) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种多产柴油和液化气的烃油裂化方法
CN1965059A (zh) * 2004-05-26 2007-05-16 国际壳牌研究有限公司 通过催化裂化费-托产品生产瓦斯油的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871444A (en) 1987-12-02 1989-10-03 Mobil Oil Corporation Distillate fuel quality of FCC cycle oils
US5171916A (en) 1991-06-14 1992-12-15 Mobil Oil Corp. Light cycle oil conversion
US5543036A (en) 1993-07-22 1996-08-06 Mobil Oil Corporation Process for hydrotreating
JP3737155B2 (ja) * 1995-02-27 2006-01-18 触媒化成工業株式会社 炭化水素接触分解用触媒組成物
CN1078094C (zh) 1999-04-23 2002-01-23 中国石油化工集团公司 一种用于流化催化转化的提升管反应器
CN1119396C (zh) 1999-09-29 2003-08-27 中国石油化工集团公司 一种催化裂化柴油的改质方法
FR2802211B1 (fr) * 1999-12-14 2002-02-01 Inst Francais Du Petrole Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
CN1160441C (zh) 2000-10-26 2004-08-04 中国石油化工股份有限公司 一种含硫原油的加工流程
CN1205315C (zh) 2001-07-31 2005-06-08 中国石油化工股份有限公司 一种柴油加氢处理催化剂及其制备方法
CN1473908A (zh) 2002-05-23 2004-02-11 健 黄 重油及渣油催化裂化法生产柴油
WO2004106462A1 (en) 2003-05-27 2004-12-09 Shell Internationale Research Maatschappij B.V. Process to prepare a gasoline
CN1333044C (zh) * 2003-09-28 2007-08-22 中国石油化工股份有限公司 一种烃油裂化方法
CN1683474A (zh) 2004-04-14 2005-10-19 中国石油天然气股份有限公司 一种多产柴油的催化裂化助催化剂及其制备方法
US20060231459A1 (en) 2005-03-28 2006-10-19 Swan George A Iii FCC process combining molecular separation with staged conversion
CN100434496C (zh) 2005-07-15 2008-11-19 中国石油化工股份有限公司 一种蜡油加氢处理和催化裂化双向组合工艺方法
CN100413941C (zh) 2005-07-19 2008-08-27 中国石油天然气股份有限公司 一种多产柴油的催化裂化助催化剂及其制备方法
CN101362959B (zh) 2007-08-09 2012-09-05 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
RU2342423C1 (ru) * 2007-09-20 2008-12-27 ООО "Компания Катахим" Способ получения высокооктановых моторных топлив
JP5879038B2 (ja) * 2008-03-13 2016-03-08 中国石油化工股▲ふん▼有限公司 低品質の原料から軽質燃料を得るための方法
CN101531924B (zh) 2008-03-13 2013-03-06 中国石油化工股份有限公司 一种从劣质原料油制取轻质燃料油和丙烯的方法
CN101724431B (zh) 2008-10-31 2012-12-12 中国石油化工股份有限公司 一种制取轻质燃料油和丙烯的催化转化方法
US8529754B2 (en) * 2009-09-28 2013-09-10 China Petroleum & Chemical Corporation Catalytic conversion process for producing more diesel and propylene
CN102041093B (zh) 2009-10-22 2013-09-04 中国石油化工股份有限公司 一种提高柴油十六烷值桶的催化转化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788834A (en) * 1996-07-19 1998-08-04 Exxon Research And Engineering Company Catalytic cracking process with Y zeolite catalyst comprising silica binder containing silica gel
WO2000040676A1 (en) * 1998-12-30 2000-07-13 Mobil Oil Corporation Process for producing diesel fuel with increased cetane number
CN1566278A (zh) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种多产柴油和液化气的烃油裂化方法
CN1965059A (zh) * 2004-05-26 2007-05-16 国际壳牌研究有限公司 通过催化裂化费-托产品生产瓦斯油的方法

Also Published As

Publication number Publication date
US20130001129A1 (en) 2013-01-03
KR20120099037A (ko) 2012-09-06
RU2547152C2 (ru) 2015-04-10
RU2012119926A (ru) 2013-11-27
US8932457B2 (en) 2015-01-13
KR101816668B1 (ko) 2018-01-09
JP5988875B2 (ja) 2016-09-07
JP2013508479A (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
KR100253887B1 (ko) 탄화수소의 촉매적 전환에 의한 저급 올레핀의 생산방법
RU2464298C2 (ru) Способ каталитической конверсии (варианты)
RU2562238C2 (ru) Способ каталитической конверсии для производства дополнительного количества дизельного топлива и пропилена
US11332680B2 (en) Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
WO2005085391A1 (en) A process of production of lower olefins and aromaticas
WO2011047540A1 (zh) 一种提高柴油十六烷值桶的催化转化方法
US11230673B1 (en) Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
CA2103230C (en) Fluid catalytic cracking process for producing light olefins
EP4182414A1 (en) Methods for processing crude oils to form light olefins
CN101362964B (zh) 一种降低汽油苯含量的催化转化方法
CN112745926A (zh) 处理催化裂解汽油的方法和***、多产低碳烯烃和轻质芳烃的工艺和装置
CN112745924A (zh) 一种处理催化裂解汽油的方法和***、催化裂解的工艺和装置
CN116601268A (zh) 含烃原料油催化裂解生产低碳烯烃和btx的方法及装置
CN112745945A (zh) 一种处理催化裂解汽油的方法和***、多产二甲苯的催化裂解工艺和装置
CN112934253B (zh) 用于生产高辛烷值清洁组分汽油的催化剂、方法和装置
TWI516585B (zh) A Method for Improving Catalytic Conversion of Diesel Cetane Number
CN115678603B (zh) 一种使用双流化床反应器生产三烯、btx和二甲基萘的方法
TWI486434B (zh) A Catalytic Conversion Method for Producing Diesel Oil and Propylene
RU2776179C2 (ru) Способ каталитического крекинга для получения изобутана и/или легких ароматических соединений с высоким выходом
US20220064543A1 (en) Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
CN115873622A (zh) 一种生产丙烯和轻芳烃的方法
CN115895710A (zh) 一种生产低碳烯烃的催化转化方法及装置
CN116064164A (zh) 一种用于催化裂解生产低碳烯烃和船用燃料油的方法和***
JP2022554216A (ja) プロピレンおよび低硫黄燃料油成分の製造法
CN117942874A (zh) 一种生产低碳烯烃和降低汽油芳烃含量的催化转化方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127012515

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012119926

Country of ref document: RU

Ref document number: 1253/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13503529

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-08-2012 )

122 Ep: pct application non-entry in european phase

Ref document number: 10824381

Country of ref document: EP

Kind code of ref document: A1