WO2011040397A1 - Method for manufacturing liquid crystal display device - Google Patents

Method for manufacturing liquid crystal display device Download PDF

Info

Publication number
WO2011040397A1
WO2011040397A1 PCT/JP2010/066800 JP2010066800W WO2011040397A1 WO 2011040397 A1 WO2011040397 A1 WO 2011040397A1 JP 2010066800 W JP2010066800 W JP 2010066800W WO 2011040397 A1 WO2011040397 A1 WO 2011040397A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
wavelength
light
sealing agent
meth
Prior art date
Application number
PCT/JP2010/066800
Other languages
French (fr)
Japanese (ja)
Inventor
山口真史
羽田博成
塩谷サユ
矢野一晃
Original Assignee
積水化学工業株式会社
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, ウシオ電機株式会社 filed Critical 積水化学工業株式会社
Priority to JP2010541614A priority Critical patent/JPWO2011040397A1/en
Publication of WO2011040397A1 publication Critical patent/WO2011040397A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present invention relates to a method of manufacturing a liquid crystal display device that can manufacture a liquid crystal display device that is low in cost and high in efficiency and has almost no liquid crystal contamination.
  • a PSA (Polymer Sustained Alignment) system that regulates the orientation direction of liquid crystal molecules by a polymer structure instead of a rib structure formed inside a cell for the purpose of improving contrast and response speed.
  • a PSA type liquid crystal display panel a liquid crystal material containing a photopolymerizable component is injected into a cell, and an ultraviolet ray is irradiated while applying a voltage to the injected liquid crystal material, whereby a polymer is formed in the cell. A structure is formed.
  • a frame-shaped seal is obtained by applying a photo-curable sealant to the surface of one light-transmitting substrate constituting the cell.
  • the agent layer is formed and the liquid crystal material containing the monomer is applied to the region surrounded by the sealant layer on the surface of the one light-transmitting substrate, the other light-transmitting substrate is overlaid.
  • the sealing agent layer is irradiated with light by a display panel laminating device, the sealing agent is cured, and two light-transmitting substrates are laminated.
  • a polymer structure is formed by irradiating the monomer contained in the liquid crystal material with ultraviolet rays, and a cell into which the liquid crystal material is injected is formed.
  • the sealing agent is cured with visible light, and then the liquid crystal is cured with ultraviolet rays to form a cell, which is common to the blue phase method.
  • a lamp that emits light in the light absorption wavelength region of a photocurable sealing agent as a light source for irradiating the sealing agent layer with light as disclosed in Patent Document 1 And a light irradiation device having a filter that blocks light on the short wavelength side is used.
  • a lamp used in such a light irradiation apparatus a metal halide lamp is generally used.
  • a metal halide lamp is generally used.
  • An object of the present invention is to provide a method of manufacturing a liquid crystal display device that can manufacture a liquid crystal display device that is low in cost and high in efficiency and has almost no liquid crystal contamination.
  • the present invention includes a step 1 of forming a frame-shaped sealant layer on one substrate using a photocurable sealant containing a curable resin and a photopolymerization initiator, and is surrounded by the sealant layer.
  • Step 2 of dropping a liquid crystal material containing a polymerizable material and a photopolymerization initiator in the region, and bonding the one substrate and the other substrate through the sealing agent, and bonding the bonded substrate to the bonded substrate Irradiating light having a wavelength for photocuring the sealing agent to photocure the sealing agent, and irradiating light having a wavelength for photopolymerizing the liquid crystal material to photopolymerize the liquid crystal material.
  • the wavelength of light for photocuring the sealing agent is longer than the wavelength of light for photopolymerizing the liquid crystal material, and the sealing agent is photocured in the step 3.
  • the light of the wavelength is the LED element and the filter
  • the LED element has an emission peak wavelength within a wavelength region for photocuring the sealing agent and outside a wavelength region for photopolymerizing the liquid crystal material, And the half value width of this peak is 30 nm or less, and the filter overlaps with the wavelength for photopolymerizing the liquid crystal material on the shorter wavelength side than the emission peak wavelength in the light irradiated from the LED element.
  • the present inventors first examined the cause of the occurrence of display unevenness when a PSA type liquid crystal display panel was manufactured by a general light irradiation device using a metal halide lamp. As a result, it has been found that the cause is that the metal halide lamp exhibits a broad emission spectrum over a wide range of 200 to 600 nm.
  • the sensitivity wavelength of the photocurable sealant is about 200 to 450 nm
  • the wavelength for photopolymerizing the liquid crystal material is about 200 to 400 nm, depending on the reactive monomer used.
  • a part of the liquid crystal material is cured at the same time, which is considered to cause display unevenness.
  • a filter having a dielectric multilayer film to shield the light on the short wavelength side that cures the liquid crystal material. It is conceivable that the sealing agent is cured by irradiating.
  • a filter having a dielectric multilayer film is extremely dependent on an incident angle, and may not sufficiently shield light in a target wavelength range depending on the incident angle of light.
  • a filter that shields light on a relatively long wavelength side is used.
  • a filter that blocks light in a wide wavelength range most of the light emitted from the metal halide lamp is blocked, and the light utilization efficiency is extremely reduced.
  • the light actually irradiated onto the sealant is only light in a long wavelength region with a low irradiation amount. Since the sealant cannot be cured sufficiently with such low-dose and long-wavelength light, the sealant component elutes into the liquid crystal before the sealant is completely cured, causing liquid crystal contamination. It will cause unevenness.
  • the irradiation intensity of the metal halide lamp is set extremely high in order to secure the irradiation amount of light to the sealing agent, the irradiation amount of light on the short wavelength side that cannot be sufficiently shielded by the filter also increases. It becomes impossible to prevent a part of the liquid crystal material from being cured. In this way, even if an attempt is made to manufacture a PSA type liquid crystal display panel with a general light irradiation device using a metal halide lamp, either a part of the liquid crystal material is cured or liquid crystal contamination is caused by poor curing of the sealant. It is considered that display unevenness has occurred.
  • Metal halide lamps also have a problem in terms of energy saving.
  • the metal halide lamp requires a considerable time from the start of lighting until it reaches a steady lighting state, that is, it is difficult to instantaneously turn on, so in the light irradiation device, the lamp is continuously lit by providing a shutter mechanism. In this state, the irradiation object is irradiated with light when necessary by opening and closing the shutter of the shutter mechanism. Therefore, although the actual use time is extremely short, continuous irradiation is unavoidable and energy efficiency is low. In addition, the movable parts in the shutter mechanism are liable to cause a failure and the reliability of the apparatus is lowered.
  • the present inventor uses a sealant that is cured with light having a wavelength longer than the wavelength of light that photopolymerizes the liquid crystal material, and as a light irradiation device for irradiating light that cures the sealant,
  • An LED element having a light emission peak wavelength within the wavelength region for photocuring the sealant and outside the wavelength region for photopolymerizing the liquid crystal material and having a narrow half-value width of the light emission peak, and the light emission peak of the LED device
  • Manufacturing a low-cost, high-efficiency liquid crystal display device that is almost free from liquid crystal contamination by using a device that has a filter that blocks light in a region overlapping with the wavelength for photopolymerizing the liquid crystal material on the shorter wavelength side than the wavelength.
  • the LED element has an excellent feature that the emission wavelength is extremely sharp compared to a metal halide lamp.
  • the LED element has a very short time from the start of lighting until it reaches a steady lighting state, that is, it can be lit instantaneously, it does not need to be constantly lit like a metal halide lamp, and it also saves energy. Excellent. There is no need to provide a complicated shutter mechanism, and high reliability can be obtained.
  • a frame-shaped sealant layer is formed on one substrate using a photocurable sealant containing a curable resin and a photopolymerization initiator. I do.
  • the sealing agent is cured by light having a wavelength longer than the wavelength of light for photopolymerizing a liquid crystal material described later.
  • the sealing agent contains a curable resin and a photopolymerization initiator.
  • the curable resin preferably has a (meth) acryl group and an epoxy group. By having such a functional group, the resulting sealant can undergo two-stage curing, photocuring and thermal curing.
  • the preferable upper limit of the ratio of the epoxy group with respect to the total amount of a (meth) acryl group and an epoxy group is 40 mol%.
  • the ratio of the epoxy group exceeds 40 mol%, the solubility in the liquid crystal becomes high and the panel may be contaminated with unevenness.
  • a more preferred upper limit is 30 mol%.
  • Such curable resin is not particularly limited, and can be obtained, for example, by reacting (meth) acrylic acid with an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid and an epoxy compound.
  • Examples include epoxy (meth) acrylate, urethane (meth) acrylate obtained by reacting isocyanate with a (meth) acrylic acid derivative having a hydroxyl group.
  • the ester compound obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group is not particularly limited, and examples of monofunctional compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, Lahydrofurfuryl (meth) acrylate, benzyl
  • the bifunctional one is not particularly limited.
  • 1,4-butanediol di (meth) acrylate, 1 3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate 2-n- Butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate , Diethylene glycol di (meth) acryl , Tetraethylene glycol di (meth) acryl
  • ester compounds obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group those having 3 or more functional groups are not particularly limited.
  • the epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid and the epoxy compound is not particularly limited.
  • an epoxy resin and (meth) acrylic acid are combined in the presence of a basic catalyst according to a conventional method. And the like obtained by reacting with.
  • the epoxy compound used as a raw material for synthesizing the above epoxy (meth) acrylate is not particularly limited, and is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy.
  • Resin hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene fe Runoborakku type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available resins among the bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
  • Examples of commercially available resins among the bisphenol F-type epoxy resins include Epicoat 806, Epicoat 4004 (all manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
  • Examples of the commercially available resin among the bisphenol S type epoxy resins include EPICLON EXA-1514 (manufactured by DIC).
  • Examples of the commercially available resin among the 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.). Examples of commercially available resins among the above hydrogenated bisphenol type epoxy resins include EPICLON EXA-7015 (manufactured by DIC). Examples of commercially available resins among the propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA). Among the resorcinol type epoxy resins, examples of commercially available resins include EX-201 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available resins among the above biphenyl type epoxy resins include Epicoat YX-4000H (manufactured by Japan Epoxy Resin Co., Ltd.). Examples of commercially available resins among the sulfide type epoxy resins include YSLV-50TE (manufactured by Toto Kasei Co., Ltd.). Examples of the commercially available resin among the ether type epoxy resins include YSLV-80DE (manufactured by Tohto Kasei Co., Ltd.). Among the above-mentioned dicyclopentadiene type epoxy resins, commercially available resins include, for example, EP-4088S (manufactured by ADEKA).
  • Examples of the naphthalene type epoxy resin include EPICLON HP4032, EPICLON EXA-4700 (both manufactured by DIC).
  • Examples of commercially available phenol novolac epoxy resins include EPICLON N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resins include, for example, EPICLON N-670-EXP-S (manufactured by DIC).
  • Examples of the commercially available resin among the dicyclopentadiene novolac type epoxy resins include EPICLON HP7200 (manufactured by DIC).
  • Examples of commercially available resins among the biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available resins include ESN-165S (manufactured by Tohto Kasei Co., Ltd.).
  • Examples of commercially available resins among the glycidylamine type epoxy resins include Epicoat 630 (manufactured by Japan Epoxy Resin), EPICLON 430 (manufactured by DIC), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company), and the like. .
  • alkyl polyol type epoxy resins commercially available resins include, for example, ZX-1542 (manufactured by Toto Kasei), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611, (Manufactured by Nagase ChemteX Corporation).
  • commercially available resins include, for example, YR-450, YR-207 (both manufactured by Tohto Kasei Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries), and the like.
  • Examples of commercially available compounds among the glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of the commercially available resin among the bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Japan Epoxy Resin Co., Ltd.).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032 ( Any of them may be Japan Epoxy Resin), EXA-7120 (DIC), TEPIC (Nissan Chemical).
  • the epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid with an epoxy compound is, for example, 360 parts by weight of resorcinol type epoxy resin (EX-201, manufactured by Nagase ChemteX Corporation), polymerization It can be obtained by reacting 2 parts by weight of p-methoxyphenol as an inhibitor, 2 parts by weight of triethylamine and 210 parts by weight of acrylic acid as a reaction catalyst for 5 hours while refluxing and stirring at 90 ° C.
  • resorcinol type epoxy resin EX-201, manufactured by Nagase ChemteX Corporation
  • epoxy (meth) acrylate for example, Evecryl 860, Evekril 3200, Evekrill 3201, Evekrill 3412, Evekrill 3700, Evekrill 3700, Evekrill 3702, Evekril 3703, Evekrill 3800, Evekril 6040, RDX63182 (all manufactured by Daicel Cytec), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MFA, Epoxy ester 3002M, Epoxy ester 3002A, D Xyester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.),
  • the urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group is, for example, a (meth) acrylic acid derivative 2 having a hydroxyl group with respect to 1 equivalent of a compound having two isocyanate groups.
  • the equivalent weight can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
  • Isocyanate that is a raw material for urethane (meth) acrylate obtained by reacting the above-mentioned isocyanate with a (meth) acrylic acid derivative having a hydroxyl group is not particularly limited.
  • the isocyanate used as the raw material of the urethane (meth) acrylate obtained by making the said isocyanate react with the (meth) acrylic acid derivative which has a hydroxyl group is not specifically limited, For example, ethylene glycol, glycerol, sorbitol, a trimethylol propane, Chain-extended isocyanate compounds obtained by reaction of polyols such as (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate can also be used.
  • the (meth) acrylic acid derivative having a hydroxyl group which is a raw material for the urethane (meth) acrylate obtained by reacting the isocyanate with a hydroxyl group-containing (meth) acrylic acid derivative, is not particularly limited.
  • 2-hydroxyethyl Commercial products such as (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1 Mono (meth) acrylates of dihydric alcohols such as 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc., mono (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin or the like (Meth) acrylates, epoxy acrylates such as bisphenol A-modified epoxy acrylate.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), Evecryl 230, Evekril 270, Evekril 4858, Evekril 8402, Evecryl 8804, Evecril 8803, Evecril 8807, Evecril 9260, Evecril 1290, Evecril 5129, Evecril 2102, Evecril 4827, Evecril 6700, Evecril 220, Evecryl 2220 (all manufactured by Daicel Cytec Co., Ltd.), Art Resin U 9 Art Resin UN-9000A, Art Resin UN-7100, Art Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Res UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-122P, U-108A, U-340P, U-4HA, U-6HA, U-324
  • the resin having a (meth) acryl group is preferably a resin having a hydrogen bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing adverse effects on the liquid crystal. From the above, epoxy (meth) acrylate is particularly preferable.
  • the resin having a (meth) acryl group preferably has 2 to 3 (meth) acryl groups in the molecule because of its high reactivity.
  • the preferable minimum of the light absorption coefficient in the wavelength of 405 nm measured in methanol or acetonitrile solvent is 50 mL / g * cm. If the extinction coefficient at a wavelength of 405 nm is less than 50 mL / g ⁇ cm, the sealing agent may be insufficiently cured and cause liquid crystal contamination.
  • a more preferable lower limit of the extinction coefficient is 70 mL / g ⁇ cm. The higher the extinction coefficient is, the higher the reactivity tends to be, so there is no particular upper limit.
  • the photopolymerization initiator used for the sealing agent is a wavelength region in which the absorption wavelength region when the concentration in methanol or acetonitrile solvent is 0.1% by weight is cut by a filter in the emission wavelength region of the LED element described later It is preferable to have an overlap of 50% or more with the emission wavelength region on the longer wavelength side.
  • the photopolymerization initiator used for the sealing agent is preferably one that does not generate radicals when heated at a temperature of 130 ° C. or lower.
  • the photopolymerization initiator used in the sealing agent generates radicals by heating at a temperature of 130 ° C. or lower, a decomposition product of the photopolymerization initiator is produced during the production of a liquid crystal display device, resulting in liquid crystal contamination. May cause.
  • the long wavelength side end of an absorption wavelength region is less than 450 nm.
  • the photopolymerization initiator used for the sealing agent absorbs light having a wavelength of 450 nm or more, it reacts even under a yellow lamp, and the handling property of the sealing agent may be deteriorated.
  • photopolymerization initiator used for the sealing agent for example, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, etc. are suitable. Can be used. These photoinitiators may be used independently and may use 2 or more types together. Examples of commercially available photopolymerization initiators include IRGACURE 379, IRGACURE 819, IRGACURE OXE01, IRGACURE OXE02, IRGACURE 907, DAROCUR TPO, ITX (all of which are manufactured by Ciba Japan). Is mentioned. In addition, when using together 2 or more types of photoinitiators, using IRGACURE907 and ITX together can be considered, for example.
  • a preferable minimum is 0.2 weight% and a preferable upper limit is 10 weight%. If the content of the photopolymerization initiator used in the sealing agent is less than 0.2% by weight, curing may be insufficient. If the content exceeds 10% by weight, liquid crystal contamination may occur or adhesion to the substrate may occur. May decrease.
  • the more preferable lower limit of the content of the photopolymerization initiator used in the sealing agent is 1.0% by weight, and the more preferable upper limit is 5.0% by weight.
  • the sealing agent preferably further contains a thermosetting agent.
  • the said thermosetting agent is not specifically limited, For example, organic acid hydrazide, an imidazole derivative, an amine compound, a polyhydric phenol type compound, an acid anhydride etc. are mentioned. Among these, solid organic acid hydrazide is preferably used.
  • the solid organic acid hydrazide is not particularly limited, and examples thereof include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and the like. Examples of commercially available products include Amicure VDH and Amicure UDH (both Ajinomoto Fine Techno Co.), ADH (Otsuka Chemical Co., Ltd.) and the like.
  • the sealing agent may contain a silane coupling agent.
  • the silane coupling agent mainly serves as an adhesion aid for improving the adhesion between the sealing agent and the substrate.
  • the silane coupling agent is not particularly limited, but is excellent in the effect of improving the adhesion to the substrate, and can be prevented from flowing into the liquid crystal material by being chemically bonded to the curable resin.
  • ⁇ -methacryloxy Propyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the sealing agent may contain a filler for the purpose of improving adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
  • the filler is not particularly limited, for example, talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, diatomaceous earth, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, Inorganic fillers such as magnesium hydroxide, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles Organic fillers such as
  • the sealing agent has an upper limit of viscosity of 600,000 mPa ⁇ s measured at 25 ° C. using an E-type viscometer.
  • the minimum with said preferable viscosity is 100,000 mPa * s, and a preferable upper limit is 450,000 mPa * s.
  • the E-type viscometer for measuring the viscosity of the sealant is not particularly limited, and examples thereof include “DV-III” manufactured by Brookfield.
  • the method for producing the sealing agent is not particularly limited, and a predetermined amount of the curable resin, the photopolymerization initiator, and the thermosetting agent, the silane coupling agent, etc., which are blended as necessary, is conventionally used.
  • the method of mixing by a well-known method is mentioned. At this time, in order to remove the ionic impurities contained, it may be brought into contact with an ion-adsorbing solid.
  • step 2 is performed in which a liquid crystal material containing a polymerizable material and a photopolymerization initiator is dropped into a region surrounded by the sealing agent layer.
  • the liquid crystal material contains a polymerizable material and a photopolymerization initiator.
  • a liquid crystal material for example, materials disclosed in Japanese Patent Laid-Open Nos. 2003-307720, 2009-104119, and 2009-132718 can be used.
  • Step 3 is performed to irradiate and photocur the sealing agent.
  • the preferable lower limit is 100 mJ / cm 2 of integrated amount of light at a wavelength of 405nm
  • a preferred upper limit is 5000 mJ / cm 2.
  • the integrated quantity of light is less than 100 mJ / cm 2, not cured sufficiently above sealant, to contaminate the liquid crystal may cause display unevenness, it exceeds 5000 mJ / cm 2, the liquid crystal material one The part may be superposed and cause display unevenness.
  • the minimum with said more preferable integrated light quantity is 1000 mJ / cm ⁇ 2 >, and a more preferable upper limit is 3000 mJ / cm ⁇ 2 >.
  • the light having a wavelength for photocuring the sealant in the step 3 is irradiated by a light irradiation device having an LED element and a filter.
  • the LED element is selected and used within the wavelength range for photocuring the sealant and having an emission peak wavelength outside the wavelength range for photopolymerizing the liquid crystal material. If the emission peak wavelength is outside the wavelength range for photocuring the sealant, the sealant cannot be sufficiently cured. If the emission peak wavelength is within the wavelength range for photopolymerizing the liquid crystal material, the light of the liquid crystal material may be caused by light that cannot be cured sufficiently or completely blocked by a filter. Polymerization proceeds.
  • the half-value width of the light emission peak of the LED element is preferably 30 nm or less. When the half width exceeds 30 nm, the light use efficiency may be lowered, or the photopolymerization of the liquid crystal material may proceed due to light that cannot be completely blocked by the filter. There is no particular lower limit on the half width, and a narrower one is preferable, but a substantial lower limit is about 10 nm.
  • the LED element for example, a conventionally known LED element such as an indium (In) LED element or a gallium nitride (GaN) LED element containing aluminum (Al) can be used.
  • the light emission peak of the said LED element can obtain the LED element which has the light emission peak wavelength from 200 nm to an infrared region by adjusting the composition ratio of In, AlGa, and N in LED.
  • the emission peak wavelength is within the wavelength region for photocuring the sealant and the liquid crystal material is photopolymerized, and the half-value width of the emission peak is narrow.
  • an LED element having an emission peak wavelength of 360 to 420 nm and a half-value width of the emission peak of 30 nm or less may be selected and used.
  • the LED element having an emission peak wavelength of 360 to 420 nm and a half-value width of the emission peak of 10 to 30 nm a commercially available LED element may be used. It may be used.
  • the said filter cuts the light of the area
  • FIG. 5 is a curve diagram schematically showing the relationship between the emission spectrum of the LED element and the spectral characteristics of the filter in the method for manufacturing a liquid crystal display device of the present invention.
  • the LED element has an emission spectrum indicated by a curve (L)
  • the filter has a spectral characteristic indicated by a curve (F), that is, from the LED element.
  • the irradiated light light in a region overlapping with the wavelength for photopolymerizing the liquid crystal material 2 on the shorter wavelength side than the emission peak wavelength of the LED element (light in the hatched portion in FIG. 5) is cut.
  • the light from the LED element having a narrow emission spectrum wavelength region overlaps with the wavelength at which the liquid crystal material is photopolymerized on the shorter wavelength side than the emission peak wavelength. Because the light is irradiated through a filter that cuts the light in the region to be irradiated, the wavelength distribution of the irradiated light becomes extremely narrow. Therefore, by selecting the LED element according to the wavelength region for photocuring the sealing agent and the wavelength region for photopolymerizing the liquid crystal material, the polymerization reaction of the photopolymerizable component in the liquid crystal material does not proceed.
  • the sealing agent layer can be cured with high light utilization efficiency.
  • the said filter will not be specifically limited if it has the said light cut characteristic, For example, what has a dielectric multilayer film can be used. A commercially available filter may be used, but a custom-made product may be used when there is no suitable commercially available filter.
  • the said light irradiation apparatus arrange
  • a light irradiation unit (hereinafter also referred to as a light source segment) having an LED element to be turned on and a filter is selected according to the form of the sealing agent layer, and the sealing agent layer is selected.
  • light can be selectively irradiated. Therefore, higher energy efficiency can be obtained, and it is not necessary to provide a mask for selectively irradiating the sealant layer with light, so that the manufacturing cost can be reduced.
  • one LED element in the light source segment is deteriorated, it is possible to irradiate with a stable amount of light over the entire light source segment by increasing the irradiation intensity of the other LED elements.
  • the said light irradiation apparatus may have an LED package in which the said LED element is accommodated, and the said filter may be provided in this LED package. Since the light irradiation apparatus has such a configuration, it is not necessary to provide a large-area filter, and thus the cost of the filter can be reduced and the productivity can be improved.
  • a step 4 of photopolymerizing the liquid crystal material by irradiating light having a wavelength for photopolymerizing the liquid crystal material is performed.
  • the initial formation angle of the liquid crystal molecules can be controlled by applying a voltage while irradiating light having a wavelength for photopolymerizing the liquid crystal material.
  • FIG. 1 is an explanatory diagram showing an outline of a configuration in an example of a display panel bonding apparatus having the light irradiation device.
  • the display panel bonding apparatus (hereinafter simply referred to as “bonding apparatus”), a stage 10 on which a processing object is placed is provided on a base 11 via a support base 12. Above the stage 10, the light irradiation device 15 is arranged.
  • the processing object 1 of the bonding apparatus includes a liquid crystal material 2 and a sealing agent layer 3 that surrounds the liquid crystal material 2 so as to surround the liquid crystal material 2.
  • the processing object 1 in this example is for manufacturing a total of four display panels. In the processing object 1, as shown in FIG. 2, four liquid crystal materials are arranged vertically and horizontally apart from each other. 2 and four sealant layers 3 each surrounding one liquid crystal material 2 are formed.
  • the light irradiation device 15 is configured such that a plurality of light source segments 20 are arranged vertically and horizontally on an appropriate support (not shown).
  • a plurality of LED elements 25 are arranged on the surface of the same rectangular substrate 21, and a filter 30 is connected to the LED 30 on each surface of the LED elements 25. It is provided so as to cover the element 25.
  • a rectangular cylindrical light guide member 26 whose inner surface is a light reflecting surface is disposed at the peripheral portion of the surface of the substrate 21, and heat generated by the LED elements 25 is radiated to the back surface of the substrate 21.
  • a heat dissipating fin 27 is provided.
  • the number of LED elements 25 in each of the light source segments 20 is, for example, 5 to 16.
  • said light irradiation apparatus 15 when the light source segment 20 selected according to the shape of the sealing agent layer 3 in the process target object 1 among all the light source segments 20 act
  • FIG. 6 is an explanatory diagram showing a configuration of a light source segment in another example of the light irradiation device.
  • a plurality of LED packages 35 are disposed on the surface of the same rectangular substrate 21, and a rectangular cylindrical guide whose inner surface is a light reflecting surface is provided on the peripheral portion of the surface of the substrate 21.
  • the light member 26 is disposed, and on the back surface of the substrate 21, heat radiation fins 27 for radiating the heat generated by the LED package 35 are provided.
  • each of the LED packages 35 has a package substrate 36 having a rectangular recess 37 formed at the center, and the LED element 25 is disposed in the recess 37 of the package substrate 36.
  • a plate-like filter 30 is provided so as to close the recess 37 of the package substrate 36.
  • Reference numeral 28 denotes a light emitting portion of the light guide member 26.
  • the characteristics of the LED element 25 and the filter 30 are the same as those in the light source segment 20 shown in FIG.
  • the light irradiation apparatus can be variously modified as described below.
  • the filter 30 may be hemispherical having a lens function, as shown in FIG. Further, instead of providing the filter 30 in each of the LED elements 25, as shown in FIG. 9, a configuration in which one filter 30 is provided at the center position in the cylindrical hole of the light guide member 26 may be employed. . Furthermore, as shown in FIG. 9, an integrator lens 29 may be disposed at the tip side position in the cylindrical hole of the light guide member 26.
  • the filter 30 provided in the LED package 35 may be a hemispherical lens having a lens function, as shown in FIG. Further, the LED package 35 may be provided with a lens 31 on the surface of the plate-like filter 30 as shown in FIG.
  • the manufacturing method of the liquid crystal display device which can manufacture the liquid crystal display device which is low-cost and highly efficient and hardly has liquid-crystal contamination can be provided.
  • the method for manufacturing a liquid crystal display device of the present invention is particularly suitable for manufacturing a liquid crystal display device of a PSA system or a blue phase system.
  • the modification rate was measured by a method in which the obtained bisphenol F-type epoxy partial acrylate was dissolved in a hydrochloric acid-dioxane solution, and then the amount of hydrochloric acid consumed by the epoxy group was titrated with KOH.
  • Example 1 (Production of sealant) 100 parts by weight of bisphenol A type epoxy acrylate synthesized as a curable resin and 100 parts by weight of a synthesized bisphenol F type epoxy partial acrylate, and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide ( “IRGACURE 819” manufactured by Ciba Japan, 3 parts by weight of an extinction coefficient of 899 ml / g ⁇ cm at a wavelength of 405 nm measured in a methanol solvent, and ⁇ -methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone) as a silane coupling agent 3 parts by weight, KBM-503), 32 parts by weight of thermosetting agent (Ajinomoto Fine Techno Co., “Amicure VDH”), and spherical silica as a filler (manufactured by Admatechs, “SO-C1”) 40 Combined with parts by weight, a planetary stirrer
  • the obtained sealing agent was applied to one of the alignment film and the substrate with a transparent electrode with a dispenser so as to draw a rectangular frame.
  • an LED element emission peak wavelength is 385 nm, emission peak half-value width is 11 nm
  • a filter 380 nm
  • a light irradiation device having the following light transmittance of 0
  • After irradiating light with an integrated light amount of 3000 mJ / cm 2 and photocuring the sealing agent at 120 ° C. Heat cured for 1 hour.
  • ultraviolet rays were applied while applying a voltage between the substrates, and the liquid crystal material was aligned to produce a liquid crystal display panel.
  • the photopolymerization initiator was 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (manufactured by Ciba Japan, “IRGACURE”). 379 ", an absorption coefficient of 280 ml / g ⁇ cm at a wavelength of 405 nm measured in a methanol solvent), and a sealant and a liquid crystal display panel were obtained in the same manner as in Example 1 except that the weight was changed to 3 parts by weight.
  • Example 3 The photopolymerization initiator was 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime) (Ciba Japan, “IRGACURE OXE01”, measured at 405 nm in acetonitrile solvent.
  • the sealing agent and the liquid crystal display panel were obtained in the same manner as in Example 1 except that the absorption coefficient was changed to 3 parts by weight.
  • Example 4 2,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by Ciba Japan, “DAROCUR TPO”, extinction coefficient 165 ml / g ⁇ cm at a wavelength of 405 nm measured in acetonitrile solvent) 3 weight
  • DAROCUR TPO extinction coefficient 165 ml / g ⁇ cm at a wavelength of 405 nm measured in acetonitrile solvent
  • Example 5 A sealing agent and a liquid crystal display panel were obtained in the same manner as in Example 4 except that the blending amount of the photopolymerization initiator was changed to 1 part by weight.
  • Example 6 A sealing agent and a liquid crystal display panel were obtained in the same manner as in Example 4 except that the blending amount of the photopolymerization initiator was changed to 9 parts by weight.
  • Example 7 Example 4 except that the curable resin was changed to 100 parts by weight of the synthesized bisphenol A type epoxy acrylate, 50 parts by weight of the synthesized bisphenol F type epoxy partial acrylate, and 50 parts by weight of the synthesized ether type epoxy partial acrylate. Similarly, a sealant and a liquid crystal display panel were obtained.
  • Example 1 A sealing agent was obtained in the same manner as in Example 1. Further, a liquid crystal display panel was obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source and the light with an integrated light amount of 3000 mJ / cm 2 was irradiated based on a wavelength of 405 nm.
  • Example 2 A sealing agent was obtained in the same manner as in Example 1.
  • a liquid crystal display panel was obtained in the same manner as in Example 2 except that a metal halide lamp was used as the irradiation light source and the light having an accumulated light amount of 500 mJ / cm 2 was irradiated based on the wavelength of 405 nm.
  • Example 3 A sealant was obtained in the same manner as in Example 2. Further, a liquid crystal display panel was obtained in the same manner as in Example 2 except that a metal halide lamp was used as the irradiation light source.
  • Example 4 A sealant was obtained in the same manner as in Example 3.
  • a liquid crystal display panel was obtained in the same manner as in Example 3 except that a metal halide lamp was used as the irradiation light source.
  • Example 5 A sealing agent was obtained in the same manner as in Example 4.
  • a liquid crystal display panel was obtained in the same manner as in Example 4 except that a metal halide lamp was used as the irradiation light source.
  • the photopolymerization initiator was 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by Ciba Japan, “IRGACURE 651”, extinction coefficient at a wavelength of 405 nm measured in a methanol solvent, 1 ml / g ⁇
  • the sealant and the liquid crystal display panel were obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source.
  • the photopolymerization initiator was 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (manufactured by Ciba Japan, “IRGACURE 2959”, methanol solvent)
  • the absorption coefficient at less than 1 ml / g ⁇ cm at a wavelength of 405 nm measured in the above was changed to 3 parts by weight, and a sealant and a liquid crystal display panel were obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source. It was.
  • Example 8 A sealant was obtained in the same manner as in Example 5.
  • a liquid crystal display panel was obtained in the same manner as in Example 5 except that a metal halide lamp was used as the irradiation light source.
  • Example 9 A sealant was obtained in the same manner as in Example 6.
  • a liquid crystal display panel was obtained in the same manner as in Example 6 except that a metal halide lamp was used as the irradiation light source.
  • Example 10 A sealant was obtained in the same manner as in Example 7. Further, a liquid crystal display panel was obtained in the same manner as in Example 7 except that a metal halide lamp was used as the irradiation light source.
  • the manufacturing method of the liquid crystal display device which can manufacture the liquid crystal display device which is low-cost and highly efficient and hardly has liquid-crystal contamination can be provided.

Abstract

Disclosed is a method for manufacturing, with low cost and high efficiency, a liquid crystal display device having almost no liquid crystal contamination. The method has: a step (1) wherein a frame-shaped sealing agent layer is formed on one substrate using a photo-curable sealing agent containing a curable resin and a photopolymerization initiator; a step (2) wherein a liquid crystal material containing a polymerizable material and a photopolymerization initiator is dropped to a region surrounded by the sealing agent layer; a step (3) wherein said substrate and the other substrate are bonded to each other with the sealing agent therebetween, and the sealing agent is photocured by radiating light having a wavelength that photocures the sealing agent to the bonded substrates; a step (4) wherein the liquid crystal material is photopolymerized by radiating light having a wavelength that photopolymerizes the liquid crystal material. The wavelength of the light that photocures the sealing agent is further on the long wavelength side than the wavelength of the light that photopolymerizes the liquid crystal material, and the light having the wavelength that photocures the sealing agent in the step (3) is radiated by means of a light radiation apparatus having an LED element and a filter. The LED element has an emission peak wavelength in a wavelength region wherein the sealing agent is photocured, and is outside of the wavelength region wherein the liquid crystal material is photopolymerized. The filter cuts, among the light radiated from the LED element, the light, which is in a region further on the short wavelength side than the emission peak wavelength and overlaps the wavelength that photopolymerizes the liquid crystal material.

Description

液晶表示装置の製造方法Manufacturing method of liquid crystal display device
本発明は、低コストかつ高効率で液晶汚染のほとんどない液晶表示装置を製造することができる液晶表示装置の製造方法に関する。 The present invention relates to a method of manufacturing a liquid crystal display device that can manufacture a liquid crystal display device that is low in cost and high in efficiency and has almost no liquid crystal contamination.
近年、液晶表示パネルにおいては、コントラストの向上や応答速度の改善を目的として、セル内部に形成されたリブ構造の代わりにポリマー構造物によって液晶分子の配向方向を規制するPSA(Polymer Sustained Alignment)方式が開発されている。
PSA方式の液晶表示パネルの製造プロセスにおいては、光重合性成分を含有する液晶材料をセル内に注入し、注入された液晶材料に電圧を印加しながら紫外線を照射することにより、セル内にポリマー構造物を形成することが行われる。液晶材料を液晶表示パネルに留める手法の一つである液晶滴下工法においては、セルを構成する一方の透光性基板の表面に、光硬化性のシール剤を塗布することにより、枠状のシール剤層を形成し、当該一方の透光性基板の表面におけるシール剤層に包囲された領域に、モノマーを含有する液晶材料を塗布した後、他方の透光性基板を重ね合わせた状態で、ディスプレイパネルの貼り合わせ装置によってシール剤層に光を照射し、該シール剤を硬化させて2枚の透光性基板を貼り合わせる。その後、液晶材料に含まれるモノマーを、紫外線を照射することによりポリマー構造物を形成し、液晶材料が注入されたセルが形成される。
このようなモノマーを含有する液晶材料を用い、シール剤を可視光で硬化し、その後に紫外線で液晶を硬化しセルを構成することは、ブルーフェイズ方式にも共通している。
In recent years, in a liquid crystal display panel, a PSA (Polymer Sustained Alignment) system that regulates the orientation direction of liquid crystal molecules by a polymer structure instead of a rib structure formed inside a cell for the purpose of improving contrast and response speed. Has been developed.
In the manufacturing process of a PSA type liquid crystal display panel, a liquid crystal material containing a photopolymerizable component is injected into a cell, and an ultraviolet ray is irradiated while applying a voltage to the injected liquid crystal material, whereby a polymer is formed in the cell. A structure is formed. In the liquid crystal dropping method, which is one of the methods for fastening the liquid crystal material to the liquid crystal display panel, a frame-shaped seal is obtained by applying a photo-curable sealant to the surface of one light-transmitting substrate constituting the cell. In the state where the agent layer is formed and the liquid crystal material containing the monomer is applied to the region surrounded by the sealant layer on the surface of the one light-transmitting substrate, the other light-transmitting substrate is overlaid. The sealing agent layer is irradiated with light by a display panel laminating device, the sealing agent is cured, and two light-transmitting substrates are laminated. Thereafter, a polymer structure is formed by irradiating the monomer contained in the liquid crystal material with ultraviolet rays, and a cell into which the liquid crystal material is injected is formed.
Using a liquid crystal material containing such a monomer, the sealing agent is cured with visible light, and then the liquid crystal is cured with ultraviolet rays to form a cell, which is common to the blue phase method.
ディスプレイパネルの貼り合わせ装置としては、例えば、特許文献1に開示されているような、シール剤層に光を照射するための光源として、光硬化型シール剤の吸光波長領域の光を放射するランプと、短波長側の光を遮蔽するフィルタとを有する光照射装置が用いられている。このような光照射装置に用いられるランプとしては、メタルハライドランプが一般的である。しかしながら、メタルハライドランプを用いた従来の一般的な光照射装置によりPSA方式やブルーフェイズ方式の液晶表示パネルを製造しようとすると、表示ムラ不良が発生することがあるという問題があった。 As a display panel bonding apparatus, for example, a lamp that emits light in the light absorption wavelength region of a photocurable sealing agent as a light source for irradiating the sealing agent layer with light as disclosed in Patent Document 1 And a light irradiation device having a filter that blocks light on the short wavelength side is used. As a lamp used in such a light irradiation apparatus, a metal halide lamp is generally used. However, when an attempt is made to manufacture a liquid crystal display panel of the PSA method or the blue phase method using a conventional general light irradiation device using a metal halide lamp, there is a problem that display unevenness may occur.
特開2003-149647号公報JP 2003-149647 A
本発明は、低コストかつ高効率で液晶汚染のほとんどない液晶表示装置を製造することができる液晶表示装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a method of manufacturing a liquid crystal display device that can manufacture a liquid crystal display device that is low in cost and high in efficiency and has almost no liquid crystal contamination.
本発明は、硬化性樹脂と光重合開始剤とを含有する光硬化性のシール剤を用いて一方の基板上に枠状のシール剤層を形成する工程1と、該シール剤層に包囲された領域に重合性材料と光重合開始剤とを含有する液晶材料を滴下する工程2と、上記シール剤を介して上記一方の基板と他方の基板とを貼り合わせ、当該貼り合わせた基板に上記シール剤を光硬化させる波長の光を照射して上記シール剤を光硬化させる工程3と、上記液晶材料を光重合させる波長の光を照射して上記液晶材料を光重合させる工程4とを有する液晶表示装置の製造方法であって、上記シール剤を光硬化させる光の波長は、上記液晶材料を光重合させる光の波長よりも長波長側にあり、上記工程3においてシール剤を光硬化させる波長の光は、LED素子とフィルタとを有する光照射装置により照射されるものであり、上記LED素子は、上記シール剤を光硬化させる波長の領域内であって上記液晶材料を光重合させる波長の領域外に発光ピーク波長を有し、かつ、該ピークの半値幅が30nm以下であり、上記フィルタは、上記LED素子から照射される光のうち、上記発光ピーク波長よりも短波長側で、上記液晶材料を光重合させる波長と重複する領域の光をカットするものである液晶表示装置の製造方法である。
以下に本発明を詳述する。
The present invention includes a step 1 of forming a frame-shaped sealant layer on one substrate using a photocurable sealant containing a curable resin and a photopolymerization initiator, and is surrounded by the sealant layer. Step 2 of dropping a liquid crystal material containing a polymerizable material and a photopolymerization initiator in the region, and bonding the one substrate and the other substrate through the sealing agent, and bonding the bonded substrate to the bonded substrate Irradiating light having a wavelength for photocuring the sealing agent to photocure the sealing agent, and irradiating light having a wavelength for photopolymerizing the liquid crystal material to photopolymerize the liquid crystal material. In the method for manufacturing a liquid crystal display device, the wavelength of light for photocuring the sealing agent is longer than the wavelength of light for photopolymerizing the liquid crystal material, and the sealing agent is photocured in the step 3. The light of the wavelength is the LED element and the filter The LED element has an emission peak wavelength within a wavelength region for photocuring the sealing agent and outside a wavelength region for photopolymerizing the liquid crystal material, And the half value width of this peak is 30 nm or less, and the filter overlaps with the wavelength for photopolymerizing the liquid crystal material on the shorter wavelength side than the emission peak wavelength in the light irradiated from the LED element. This is a method of manufacturing a liquid crystal display device that cuts off light in a region.
The present invention is described in detail below.
本発明者らは、まず、メタルハライドランプを用いた一般的な光照射装置によりPSA方式の液晶表示パネルを製造したときに、表示ムラ不良が発生する原因を検討した。その結果、メタルハライドランプが200~600nmもの広い範囲に渡るブロードな発光スペクトルを示すことに原因があることを突き止めた。
一般に、光硬化性のシール剤の感度波長は200~450nm程度であり、液晶材料を光重合させる波長は、使用する反応性モノマーにもよるが200~400nm程度である。従って、シール剤を硬化させる目的でメタルハライドランプを照射すると、同時に液晶材料の一部が硬化してしまい、これが表示ムラの原因となるものと考えられる。
このような液晶材料の一部が硬化を防止するためには、誘電体多層膜を有するフィルタ等を利用して液晶材料を硬化させる短波長側の光を遮蔽して、長波長側の光のみを照射してシール剤を硬化させることが考えられる。しかし、誘電体多層膜を有するフィルタは、入射角依存性が著しく、光の入射角度によっては目的とする波長域の光を充分に遮蔽できないことがある。従って、確実に液晶材料の一部が硬化を防止するためには比較的長波長側の光まで遮蔽するようなフィルタを用いることになる。しかしながら、このような広い波長域の光を遮蔽するフィルタを用いると、メタルハライドランプから照射される光の大部分が遮蔽されてしまい、光の利用効率が極端に低下する。実際にシール剤に照射される光は、照射量が低く、かつ、長波長域の光のみとなる。このような低照射量かつ長波長の光ではシール剤を充分に硬化させることができないことから、シール剤が完全に硬化する前にシール剤成分が液晶中へ溶出し、液晶汚染を引き起こして表示ムラの原因となってしまう。シール剤への光の照射量を確保するために、メタルハライドランプの照射強度を極端に高く設定してしまうと、フィルタでは充分に遮蔽できなかった短波長側の光の照射量も増大することから、液晶材料の一部が硬化を防止するのを防止できなくなる。
このように、メタルハライドランプを用いた一般的な光照射装置によりPSA方式の液晶表示パネルを製造しようとしても、液晶材料の一部が硬化か、シール剤の硬化不良による液晶汚染かのいずれかが発生してしまい、表示ムラ不良が発生していたものと考えられる。
The present inventors first examined the cause of the occurrence of display unevenness when a PSA type liquid crystal display panel was manufactured by a general light irradiation device using a metal halide lamp. As a result, it has been found that the cause is that the metal halide lamp exhibits a broad emission spectrum over a wide range of 200 to 600 nm.
In general, the sensitivity wavelength of the photocurable sealant is about 200 to 450 nm, and the wavelength for photopolymerizing the liquid crystal material is about 200 to 400 nm, depending on the reactive monomer used. Therefore, when a metal halide lamp is irradiated for the purpose of curing the sealing agent, a part of the liquid crystal material is cured at the same time, which is considered to cause display unevenness.
In order to prevent such a part of the liquid crystal material from being cured, only light on the long wavelength side is shielded by using a filter having a dielectric multilayer film to shield the light on the short wavelength side that cures the liquid crystal material. It is conceivable that the sealing agent is cured by irradiating. However, a filter having a dielectric multilayer film is extremely dependent on an incident angle, and may not sufficiently shield light in a target wavelength range depending on the incident angle of light. Therefore, in order to surely prevent a part of the liquid crystal material from being cured, a filter that shields light on a relatively long wavelength side is used. However, when such a filter that blocks light in a wide wavelength range is used, most of the light emitted from the metal halide lamp is blocked, and the light utilization efficiency is extremely reduced. The light actually irradiated onto the sealant is only light in a long wavelength region with a low irradiation amount. Since the sealant cannot be cured sufficiently with such low-dose and long-wavelength light, the sealant component elutes into the liquid crystal before the sealant is completely cured, causing liquid crystal contamination. It will cause unevenness. If the irradiation intensity of the metal halide lamp is set extremely high in order to secure the irradiation amount of light to the sealing agent, the irradiation amount of light on the short wavelength side that cannot be sufficiently shielded by the filter also increases. It becomes impossible to prevent a part of the liquid crystal material from being cured.
In this way, even if an attempt is made to manufacture a PSA type liquid crystal display panel with a general light irradiation device using a metal halide lamp, either a part of the liquid crystal material is cured or liquid crystal contamination is caused by poor curing of the sealant. It is considered that display unevenness has occurred.
また、メタルハライドランプは、省エネルギーの点でも問題がある。メタルハライドランプは、点灯を開始してから定常点灯状態に達するまで相当な時間を要する、即ち、瞬時点灯が困難であるため、光照射装置においては、シャッター機構を設けることにより、ランプを連続点灯した状態で、シャッター機構のシャッターの開閉によって必要なときに照射対象物に対して光が照射される。従って、実際の利用時間は極短時間であるにもかかわらず、連続照射を行わざるを得ず、エネルギー効率が低い。しかも、シャッター機構における可動部品は故障の原因となりやすく、装置の信頼性が低くなるというも問題あった。 Metal halide lamps also have a problem in terms of energy saving. The metal halide lamp requires a considerable time from the start of lighting until it reaches a steady lighting state, that is, it is difficult to instantaneously turn on, so in the light irradiation device, the lamp is continuously lit by providing a shutter mechanism. In this state, the irradiation object is irradiated with light when necessary by opening and closing the shutter of the shutter mechanism. Therefore, although the actual use time is extremely short, continuous irradiation is unavoidable and energy efficiency is low. In addition, the movable parts in the shutter mechanism are liable to cause a failure and the reliability of the apparatus is lowered.
これに対して本発明者は、液晶材料を光重合させる光の波長よりも長波長側の光で硬化するシール剤を用い、該シール剤を硬化させる光を照射するための光照射装置として、シール剤を光硬化させる波長の領域内であって液晶材料を光重合させる波長の領域外に発光ピーク波長を有し、かつ、該発光ピークの半値幅の狭いLED素子と、LED素子の発光ピーク波長よりも短波長側で、液晶材料を光重合させる波長と重複する領域の光を遮蔽するフィルタとを有する装置を用いることにより、低コストかつ高効率で液晶汚染のほとんどない液晶表示装置を製造することができることを見出し、本発明を完成させるに至った。
LED素子は、メタルハライドランプに比べて発光波長が極めてシャープであるという優れた特徴を有する。このようなシャープな発光ピークを有するLED素子に、LED素子の発光ピーク波長よりも短波長側で、液晶材料を光重合させる波長と重複する領域の光をカットするフィルタを組み合わせることにより、液晶材料の一部硬化による表示ムラの発生を確実に防止できるととにも、投入する光の大部分は遮蔽されずに高効率に利用されてシール剤に到達できることから、シール剤を確実に硬化させて、液晶汚染による表示ムラの発生をも確実に防止できる。
更に、LED素子は、点灯を開始してから定常点灯状態に達するまでの時間が極めて短い、即ち、瞬時点灯が可能であるため、メタルハライドランプのように常時点灯する必要もなく、省エネルギー性にも優れる。複雑なシャッター機構を設ける必要もなく、高い信頼性が得られる。
On the other hand, the present inventor uses a sealant that is cured with light having a wavelength longer than the wavelength of light that photopolymerizes the liquid crystal material, and as a light irradiation device for irradiating light that cures the sealant, An LED element having a light emission peak wavelength within the wavelength region for photocuring the sealant and outside the wavelength region for photopolymerizing the liquid crystal material and having a narrow half-value width of the light emission peak, and the light emission peak of the LED device Manufacturing a low-cost, high-efficiency liquid crystal display device that is almost free from liquid crystal contamination by using a device that has a filter that blocks light in a region overlapping with the wavelength for photopolymerizing the liquid crystal material on the shorter wavelength side than the wavelength. As a result, the present invention has been completed.
The LED element has an excellent feature that the emission wavelength is extremely sharp compared to a metal halide lamp. By combining such an LED element having a sharp emission peak with a filter that cuts light in a region overlapping the wavelength for photopolymerizing the liquid crystal material on the shorter wavelength side than the emission peak wavelength of the LED element, It is possible to surely prevent the occurrence of display unevenness due to partial curing of the material, and since most of the input light can be used efficiently and reach the sealing agent without being blocked, the sealing agent is reliably cured. Thus, display unevenness due to liquid crystal contamination can be reliably prevented.
Furthermore, since the LED element has a very short time from the start of lighting until it reaches a steady lighting state, that is, it can be lit instantaneously, it does not need to be constantly lit like a metal halide lamp, and it also saves energy. Excellent. There is no need to provide a complicated shutter mechanism, and high reliability can be obtained.
本発明の液晶表示装置の製造方法では、まず、硬化性樹脂と光重合開始剤とを含有する光硬化性のシール剤を用いて一方の基板上に枠状のシール剤層を形成する工程1を行う。
上記シール剤は、後述する液晶材料を光重合させる光の波長よりも長波長側の光で硬化するものである。
In the method for producing a liquid crystal display device of the present invention, first, a frame-shaped sealant layer is formed on one substrate using a photocurable sealant containing a curable resin and a photopolymerization initiator. I do.
The sealing agent is cured by light having a wavelength longer than the wavelength of light for photopolymerizing a liquid crystal material described later.
上記シール剤は、硬化性樹脂と光重合開始剤とを含有する。
上記硬化性樹脂としては、(メタ)アクリル基とエポキシ基とを有することが好ましい。このような官能基を有することで、得られるシール剤は、光硬化、熱硬化の二段階硬化を経ることができる。
The sealing agent contains a curable resin and a photopolymerization initiator.
The curable resin preferably has a (meth) acryl group and an epoxy group. By having such a functional group, the resulting sealant can undergo two-stage curing, photocuring and thermal curing.
また、上記硬化性樹脂において、(メタ)アクリル基とエポキシ基とを有する場合、(メタ)アクリル基とエポキシ基との合計量に対するエポキシ基の比率の好ましい上限は40モル%である。上記エポキシ基の比率が40モル%を超えると、液晶に対する溶解性が高くなりパネルにムラを生じる汚染を引き起こす場合がある。より好ましい上限は30モル%である。 Moreover, in the said curable resin, when it has a (meth) acryl group and an epoxy group, the preferable upper limit of the ratio of the epoxy group with respect to the total amount of a (meth) acryl group and an epoxy group is 40 mol%. When the ratio of the epoxy group exceeds 40 mol%, the solubility in the liquid crystal becomes high and the panel may be contaminated with unevenness. A more preferred upper limit is 30 mol%.
このような硬化性樹脂は特に限定されず、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。 Such curable resin is not particularly limited, and can be obtained, for example, by reacting (meth) acrylic acid with an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid and an epoxy compound. Examples include epoxy (meth) acrylate, urethane (meth) acrylate obtained by reacting isocyanate with a (meth) acrylic acid derivative having a hydroxyl group.
上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物は特に限定されず、単官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルホスフェート等が挙げられる。 The ester compound obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group is not particularly limited, and examples of monofunctional compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, Lahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, methoxy polyethylene glycol (meta ) Acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) ) Acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, cyclo Xyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (meth) acrylate, isomyristyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) ) Acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl Hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate, etc. Can be mentioned.
また、上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物のうち、2官能のものは特に限定されず、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Further, among the ester compounds obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group, the bifunctional one is not particularly limited. For example, 1,4-butanediol di (meth) acrylate, 1 , 3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate 2-n- Butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate , Diethylene glycol di (meth) acryl , Tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate , Dimethylol dicyclopentadienyl di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3 -(Meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol di (meth) acrylate, polyester Terujioruji (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene di (meth) acrylate.
また、上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物のうち、3官能以上のものは特に限定されず、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルホスフェート等が挙げられる。 Further, among the ester compounds obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group, those having 3 or more functional groups are not particularly limited. For example, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (Meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, di Pentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythris Tall tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide addition glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, and the like.
上記(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレートは特に限定されず、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 The epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid and the epoxy compound is not particularly limited. For example, an epoxy resin and (meth) acrylic acid are combined in the presence of a basic catalyst according to a conventional method. And the like obtained by reacting with.
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物は特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、エーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。 The epoxy compound used as a raw material for synthesizing the above epoxy (meth) acrylate is not particularly limited, and is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy. Resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, Phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalene fe Runoborakku type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
上記ビスフェノールA型エポキシ樹脂のうち市販されている樹脂としては、例えば、エピコート828EL、エピコート1004(いずれもジャパンエポキシレジン社製)、EPICLON EXA-850CRP(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されている樹脂としては、例えば、エピコート806、エピコート4004(いずれもジャパンエポキシレジン社製)、EPICLON EXA-830CRP(DIC社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されている樹脂としては、例えば、EPICLON EXA-1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されている樹脂としては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されている樹脂としては、例えば、EPICLON EXA-7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されている樹脂としては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されている樹脂としては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されている樹脂としては、例えば、エピコートYX-4000H(ジャパンエポキシレジン社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されている樹脂としては、例えば、YSLV-50TE(東都化成社製)等が挙げられる。
上記エーテル型エポキシ樹脂のうち市販されている樹脂としては、例えば、YSLV-80DE(東都化成社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されている樹脂としては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂としては、例えば、EPICLON HP4032、EPICLON EXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されている樹脂としては、例えば、EPICLON N-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されている樹脂としては、例えば、EPICLON N-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されている樹脂としては、例えば、EPICLON HP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されている樹脂としては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されている樹脂としては、例えば、ESN-165S(東都化成社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されている樹脂としては、例えば、エピコート630(ジャパンエポキシレジン社製)、EPICLON 430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されている樹脂としては、例えば、ZX-1542(東都化成社製)、EPICLON 726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611、(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されている樹脂としては、例えば、YR-450、YR-207(いずれも東都化成社製)、エポリードPB(ダイセル化学社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されている化合物としては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されている樹脂としては、例えば、エピコートYL-7000(ジャパンエポキシレジン社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されている樹脂としては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも東都化成社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれもジャパンエポキシレジン社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available resins among the bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON EXA-850CRP (manufactured by DIC Corporation), and the like.
Examples of commercially available resins among the bisphenol F-type epoxy resins include Epicoat 806, Epicoat 4004 (all manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON EXA-830CRP (manufactured by DIC Corporation), and the like.
Examples of the commercially available resin among the bisphenol S type epoxy resins include EPICLON EXA-1514 (manufactured by DIC).
Examples of the commercially available resin among the 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available resins among the above hydrogenated bisphenol type epoxy resins include EPICLON EXA-7015 (manufactured by DIC).
Examples of commercially available resins among the propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Among the resorcinol type epoxy resins, examples of commercially available resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available resins among the above biphenyl type epoxy resins include Epicoat YX-4000H (manufactured by Japan Epoxy Resin Co., Ltd.).
Examples of commercially available resins among the sulfide type epoxy resins include YSLV-50TE (manufactured by Toto Kasei Co., Ltd.).
Examples of the commercially available resin among the ether type epoxy resins include YSLV-80DE (manufactured by Tohto Kasei Co., Ltd.).
Among the above-mentioned dicyclopentadiene type epoxy resins, commercially available resins include, for example, EP-4088S (manufactured by ADEKA).
Examples of the naphthalene type epoxy resin include EPICLON HP4032, EPICLON EXA-4700 (both manufactured by DIC).
Examples of commercially available phenol novolac epoxy resins include EPICLON N-770 (manufactured by DIC).
Among the ortho-cresol novolac type epoxy resins, commercially available resins include, for example, EPICLON N-670-EXP-S (manufactured by DIC).
Examples of the commercially available resin among the dicyclopentadiene novolac type epoxy resins include EPICLON HP7200 (manufactured by DIC).
Examples of commercially available resins among the biphenyl novolac type epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Among the naphthalenephenol novolac type epoxy resins, examples of commercially available resins include ESN-165S (manufactured by Tohto Kasei Co., Ltd.).
Examples of commercially available resins among the glycidylamine type epoxy resins include Epicoat 630 (manufactured by Japan Epoxy Resin), EPICLON 430 (manufactured by DIC), TETRAD-X (manufactured by Mitsubishi Gas Chemical Company), and the like. .
Among the above-mentioned alkyl polyol type epoxy resins, commercially available resins include, for example, ZX-1542 (manufactured by Toto Kasei), EPICLON 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611, (Manufactured by Nagase ChemteX Corporation).
Among the rubber-modified epoxy resins, commercially available resins include, for example, YR-450, YR-207 (both manufactured by Tohto Kasei Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries), and the like.
Examples of commercially available compounds among the glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Examples of the commercially available resin among the bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Japan Epoxy Resin Co., Ltd.).
Among the above epoxy resins, other commercially available resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032 ( Any of them may be Japan Epoxy Resin), EXA-7120 (DIC), TEPIC (Nissan Chemical).
上記(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレートは、具体的には例えば、レゾルシノール型エポキシ樹脂(EX-201、ナガセケムテックス社製)360重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、アクリル酸210重量部を空気を送り込みながら、90℃で還流攪拌しながら5時間反応させることによって得ることができる。 Specifically, the epoxy (meth) acrylate obtained by reacting the (meth) acrylic acid with an epoxy compound is, for example, 360 parts by weight of resorcinol type epoxy resin (EX-201, manufactured by Nagase ChemteX Corporation), polymerization It can be obtained by reacting 2 parts by weight of p-methoxyphenol as an inhibitor, 2 parts by weight of triethylamine and 210 parts by weight of acrylic acid as a reaction catalyst for 5 hours while refluxing and stirring at 90 ° C.
また、上記エポキシ(メタ)アクリレートの市販品としては、例えば、エベクリル860、エベクリル3200、エベクリル3201、エベクリル3412、エベクリル3600、エベクリル3700、エベクリル3701、エベクリル3702、エベクリル3703、エベクリル3800、エベクリル6040、エベクリルRDX63182(いずれもダイセルサイテック社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Moreover, as a commercial item of the said epoxy (meth) acrylate, for example, Evecryl 860, Evekril 3200, Evekrill 3201, Evekrill 3412, Evekrill 3700, Evekrill 3700, Evekrill 3702, Evekril 3703, Evekrill 3800, Evekril 6040, RDX63182 (all manufactured by Daicel Cytec), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MFA, Epoxy ester 3002M, Epoxy ester 3002A, D Xyester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (any Also manufactured by Nagase ChemteX Corporation).
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有する化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group is, for example, a (meth) acrylic acid derivative 2 having a hydroxyl group with respect to 1 equivalent of a compound having two isocyanate groups. The equivalent weight can be obtained by reacting in the presence of a catalytic amount of a tin-based compound.
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートは特に限定されず、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイオシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。 Isocyanate that is a raw material for urethane (meth) acrylate obtained by reacting the above-mentioned isocyanate with a (meth) acrylic acid derivative having a hydroxyl group is not particularly limited. For example, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2, 6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene Range Iocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanatophenyl) thiophor Feto, tetramethyl xylene diisocyanate, 1,6,10- undecene country isocyanate.
また、上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートは特に限定されず、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 Moreover, the isocyanate used as the raw material of the urethane (meth) acrylate obtained by making the said isocyanate react with the (meth) acrylic acid derivative which has a hydroxyl group is not specifically limited, For example, ethylene glycol, glycerol, sorbitol, a trimethylol propane, Chain-extended isocyanate compounds obtained by reaction of polyols such as (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and excess isocyanate can also be used.
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体は特に限定されず、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の市販品やエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA変性エポキシアクリレート等のエポキシアクリレート等が挙げられる。 The (meth) acrylic acid derivative having a hydroxyl group, which is a raw material for the urethane (meth) acrylate obtained by reacting the isocyanate with a hydroxyl group-containing (meth) acrylic acid derivative, is not particularly limited. For example, 2-hydroxyethyl Commercial products such as (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1 Mono (meth) acrylates of dihydric alcohols such as 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc., mono (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin or the like (Meth) acrylates, epoxy acrylates such as bisphenol A-modified epoxy acrylate.
上記ウレタン(メタ)アクリレートの市販品としては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、エベクリル230、エベクリル270、エベクリル4858、エベクリル8402、エベクリル8804、エベクリル8803、エベクリル8807、エベクリル9260、エベクリル1290、エベクリル5129、エベクリル4842、エベクリル210、エベクリル4827、エベクリル6700、エベクリル220、エベクリル2220(いずれもダイセルサイテック社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), Evecryl 230, Evekril 270, Evekril 4858, Evekril 8402, Evecryl 8804, Evecril 8803, Evecril 8807, Evecril 9260, Evecril 1290, Evecril 5129, Evecril 2102, Evecril 4827, Evecril 6700, Evecril 220, Evecryl 2220 (all manufactured by Daicel Cytec Co., Ltd.), Art Resin U 9 Art Resin UN-9000A, Art Resin UN-7100, Art Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Res UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-122P, U-108A, U-340P, U-4HA, U-6HA, U-324A, U-15HA, UA-5201P , UA-W2A, U-1084A, U-6LPA, U-2HA, U-2PHA, UA-4100, UA-7100, UA-4200, UA-4400, UA-340P, U-3HA, UA-7200, U -2061BA, U-10H, U-122A, U-340A, U-108, U-6H, UA-4000 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), AH-600, AT-600, UA-306H, AI -600, UA-101T, UA-101I, UA-306T, UA-306I and the like.
上記(メタ)アクリル基を有する樹脂は、液晶への悪影響を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましく、合成の容易さ等からエポキシ(メタ)アクリレートが特に好ましい。
また、上記(メタ)アクリル基を有する樹脂は、反応性の高さから分子中に(メタ)アクリル基を2~3個有するものが好ましい。
The resin having a (meth) acryl group is preferably a resin having a hydrogen bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing adverse effects on the liquid crystal. From the above, epoxy (meth) acrylate is particularly preferable.
The resin having a (meth) acryl group preferably has 2 to 3 (meth) acryl groups in the molecule because of its high reactivity.
上記シール剤に用いられる光重合開始剤は、メタノール又はアセトニトリル溶媒中で測定した405nmの波長における吸光係数の好ましい下限が50mL/g・cmである。上記405nmの波長における吸光係数が50mL/g・cm未満であると、シール剤の硬化が不充分になり、液晶汚染の原因となることがある。上記吸光係数のより好ましい下限は70mL/g・cmである。
上記吸光係数は、高ければ高いほど反応性が高くなる傾向があることから、特に上限はない。
As for the photoinitiator used for the said sealing agent, the preferable minimum of the light absorption coefficient in the wavelength of 405 nm measured in methanol or acetonitrile solvent is 50 mL / g * cm. If the extinction coefficient at a wavelength of 405 nm is less than 50 mL / g · cm, the sealing agent may be insufficiently cured and cause liquid crystal contamination. A more preferable lower limit of the extinction coefficient is 70 mL / g · cm.
The higher the extinction coefficient is, the higher the reactivity tends to be, so there is no particular upper limit.
上記シール剤に用いられる光重合開始剤は、メタノール又はアセトニトリル溶媒中における濃度を0.1重量%とした際の吸光波長領域が、後述するLED素子の発光波長領域におけるフィルタでカットされた波長領域よりも長波長側の発光波長領域と50%以上の重なりを有するものであることが好ましい。このような光重合開始剤を用いることにより、シール剤層を効率よく硬化させることができる。 The photopolymerization initiator used for the sealing agent is a wavelength region in which the absorption wavelength region when the concentration in methanol or acetonitrile solvent is 0.1% by weight is cut by a filter in the emission wavelength region of the LED element described later It is preferable to have an overlap of 50% or more with the emission wavelength region on the longer wavelength side. By using such a photopolymerization initiator, the sealing agent layer can be efficiently cured.
上記シール剤に用いられる光重合開始剤は、130℃以下の温度での加熱によってはラジカルを発生させないものであることが好ましい。上記シール剤に用いられる光重合開始剤が、130℃以下の温度での加熱によってラジカルを発生するものであると、液晶表示装置を製造する際に光重合開始剤の分解物が生じ、液晶汚染を引き起こすことがある。 The photopolymerization initiator used for the sealing agent is preferably one that does not generate radicals when heated at a temperature of 130 ° C. or lower. When the photopolymerization initiator used in the sealing agent generates radicals by heating at a temperature of 130 ° C. or lower, a decomposition product of the photopolymerization initiator is produced during the production of a liquid crystal display device, resulting in liquid crystal contamination. May cause.
上記シール剤に用いられる光重合開始剤は、吸光波長領域の長波長側端が450nm未満であることが好ましい。上記シール剤に用いられる光重合開始剤が450nm以上の波長の光を吸収すると、イエローランプ下でも反応するようになり、シール剤の取扱い性が劣ることがある。 As for the photoinitiator used for the said sealing agent, it is preferable that the long wavelength side end of an absorption wavelength region is less than 450 nm. When the photopolymerization initiator used for the sealing agent absorbs light having a wavelength of 450 nm or more, it reacts even under a yellow lamp, and the handling property of the sealing agent may be deteriorated.
上記シール剤に用いられる光重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン等を好適に用いることができる。これらの光重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
また、上記光重合開始剤のうち市販されているものとしては、例えば、IRGACURE 379、IRGACURE 819、IRGACURE OXE01、IRGACURE OXE02、IRGACURE 907、DAROCUR TPO、ITX(以上、いずれもチバ・ジャパン社製)等が挙げられる。なお、2種以上の光重合開始剤を併用する場合には、例えば、IRGACURE907とITXとを併用すること等が考えられる。
As the photopolymerization initiator used for the sealing agent, for example, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone, etc. are suitable. Can be used. These photoinitiators may be used independently and may use 2 or more types together.
Examples of commercially available photopolymerization initiators include IRGACURE 379, IRGACURE 819, IRGACURE OXE01, IRGACURE OXE02, IRGACURE 907, DAROCUR TPO, ITX (all of which are manufactured by Ciba Japan). Is mentioned. In addition, when using together 2 or more types of photoinitiators, using IRGACURE907 and ITX together can be considered, for example.
上記シール剤に用いられる光重合開始剤の含有量としては特に限定されないが、好ましい下限は0.2重量%、好ましい上限は10重量%である。上記シール剤に用いられる光重合開始剤の含有量が0.2重量%未満であると、硬化不充分であることがあり、10重量%を超えると、液晶汚染を生じたり、基板に対する接着力が低下したりすることがある。上記シール剤に用いられる光重合開始剤の含有量のより好ましい下限は1.0重量%、より好ましい上限は5.0重量%である。 Although it does not specifically limit as content of the photoinitiator used for the said sealing agent, A preferable minimum is 0.2 weight% and a preferable upper limit is 10 weight%. If the content of the photopolymerization initiator used in the sealing agent is less than 0.2% by weight, curing may be insufficient. If the content exceeds 10% by weight, liquid crystal contamination may occur or adhesion to the substrate may occur. May decrease. The more preferable lower limit of the content of the photopolymerization initiator used in the sealing agent is 1.0% by weight, and the more preferable upper limit is 5.0% by weight.
上記硬化性樹脂がエポキシ基を有する樹脂を含有する場合、上記シール剤は、更に、熱硬化剤を含有することが好ましい。上記熱硬化剤は特に限定されず、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。
上記固形の有機酸ヒドラジドは特に限定されず、例えば、セバチン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも、味の素ファインテクノ社製)、ADH(大塚化学社製)等が挙げられる。
When the curable resin contains a resin having an epoxy group, the sealing agent preferably further contains a thermosetting agent. The said thermosetting agent is not specifically limited, For example, organic acid hydrazide, an imidazole derivative, an amine compound, a polyhydric phenol type compound, an acid anhydride etc. are mentioned. Among these, solid organic acid hydrazide is preferably used.
The solid organic acid hydrazide is not particularly limited, and examples thereof include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, and the like. Examples of commercially available products include Amicure VDH and Amicure UDH (both Ajinomoto Fine Techno Co.), ADH (Otsuka Chemical Co., Ltd.) and the like.
上記シール剤は、シランカップリング剤を含有していてもよい。上記シランカップリング剤は、主に上記シール剤と基板との接着性を向上させる接着助剤としての役割を有する。
上記シランカップリング剤は特に限定されないが、基板との接着性向上効果に優れ、硬化性樹脂と化学結合することにより液晶材料中への流出を防止することができることから、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよく、2種以上を併用してもよい。
The sealing agent may contain a silane coupling agent. The silane coupling agent mainly serves as an adhesion aid for improving the adhesion between the sealing agent and the substrate.
The silane coupling agent is not particularly limited, but is excellent in the effect of improving the adhesion to the substrate, and can be prevented from flowing into the liquid crystal material by being chemically bonded to the curable resin. For example, γ-methacryloxy Propyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.
上記シール剤は、応力分散効果による接着性の改善、線膨張率の改善等を目的として、充填剤を含有してもよい。
上記充填剤は特に限定されず、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、珪藻土、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機フィラーが挙げられる。
The sealing agent may contain a filler for the purpose of improving adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and the like.
The filler is not particularly limited, for example, talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, diatomaceous earth, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, Inorganic fillers such as magnesium hydroxide, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles Organic fillers such as
上記シール剤は、E型粘度計を用いて25℃で測定した粘度の上限が60万mPa・sである。上記シール剤の粘度が60万mPa・sを超えると、描画性が充分でなく、滴下工法による液晶表示素子の製造ができなくなる。上記粘度の好ましい下限は10万mPa・sであり、好ましい上限は45万mPa・sである。
なお、上記シール剤の粘度を測定するE型粘度計は特に限定されず、例えば、ブルックフィールド社製の「DV-III」等が挙げられる。
The sealing agent has an upper limit of viscosity of 600,000 mPa · s measured at 25 ° C. using an E-type viscometer. When the viscosity of the sealing agent exceeds 600,000 mPa · s, the drawing property is not sufficient, and it becomes impossible to produce a liquid crystal display element by a dropping method. The minimum with said preferable viscosity is 100,000 mPa * s, and a preferable upper limit is 450,000 mPa * s.
The E-type viscometer for measuring the viscosity of the sealant is not particularly limited, and examples thereof include “DV-III” manufactured by Brookfield.
上記シール剤を製造する方法は特に限定されず、上記硬化性樹脂、上記光重合開始剤、及び、必要に応じて配合される上記熱硬化剤、上記シランカップリング剤等の所定量を、従来公知の方法により混合する方法等が挙げられる。この際、含有するイオン性不純物を除去するために、イオン吸着性固体と接触させてもよい。 The method for producing the sealing agent is not particularly limited, and a predetermined amount of the curable resin, the photopolymerization initiator, and the thermosetting agent, the silane coupling agent, etc., which are blended as necessary, is conventionally used. The method of mixing by a well-known method is mentioned. At this time, in order to remove the ionic impurities contained, it may be brought into contact with an ion-adsorbing solid.
本発明の液晶表示装置の製造方法では、次に、上記シール剤層に包囲された領域に重合性材料と光重合開始剤とを含有する液晶材料を滴下する工程2を行う。 Next, in the method for manufacturing a liquid crystal display device of the present invention, step 2 is performed in which a liquid crystal material containing a polymerizable material and a photopolymerization initiator is dropped into a region surrounded by the sealing agent layer.
上記液晶材料は、重合性材料と光重合開始剤とを含有する。
このような液晶材料としては、例えば、特開2003-307720号公報、特開2009-104119号公報、特開2009-132718号公報に開示されている材料を用いることができる。
The liquid crystal material contains a polymerizable material and a photopolymerization initiator.
As such a liquid crystal material, for example, materials disclosed in Japanese Patent Laid-Open Nos. 2003-307720, 2009-104119, and 2009-132718 can be used.
本発明の液晶表示装置の製造方法では、次に、上記シール剤を介して上記一方の基板と他方の基板とを貼り合わせ、当該貼り合わせた基板に上記シール剤を光硬化させる波長の光を照射して上記シール剤を光硬化させる工程3を行う。
上記工程3において照射する光の照射量は、上記シール剤の種類にもよるが、405nmの波長における積算光量の好ましい下限が100mJ/cm、好ましい上限が5000mJ/cmである。上記積算光量が100mJ/cm未満であると、上記シール剤が充分に硬化せず、液晶を汚染して表示ムラの原因となることがあり、5000mJ/cmを超えると、液晶材料の一部が重合してしまい、表示ムラの原因となることがある。上記積算光量のより好ましい下限は1000mJ/cm、より好ましい上限は3000mJ/cmである。
In the method for manufacturing a liquid crystal display device of the present invention, next, the one substrate and the other substrate are bonded to each other via the sealing agent, and light having a wavelength for photocuring the sealing agent on the bonded substrate is applied. Step 3 is performed to irradiate and photocur the sealing agent.
Dose of light irradiation in the step 3, depending on the kind of the sealing agent, the preferable lower limit is 100 mJ / cm 2 of integrated amount of light at a wavelength of 405nm, a preferred upper limit is 5000 mJ / cm 2. When the integrated quantity of light is less than 100 mJ / cm 2, not cured sufficiently above sealant, to contaminate the liquid crystal may cause display unevenness, it exceeds 5000 mJ / cm 2, the liquid crystal material one The part may be superposed and cause display unevenness. The minimum with said more preferable integrated light quantity is 1000 mJ / cm < 2 >, and a more preferable upper limit is 3000 mJ / cm < 2 >.
上記工程3においてシール剤を光硬化させる波長の光は、LED素子とフィルタとを有する光照射装置により照射される。
上記LED素子は、上記シール剤を光硬化させる波長の領域内であって上記液晶材料を光重合させる波長の領域外に発光ピーク波長を有するものを選択して用いる。
上記発光ピーク波長が上記シール剤を光硬化させる波長の領域外にあると、上記シール剤を充分に硬化させることができない。上記発光ピーク波長が上記液晶材料を光重合させる波長の領域内にあると、上記シール剤を充分に硬化させることができなかったり、フィルタによって完全に遮断できなかった光により、上記液晶材料の光重合が進行したりする。
The light having a wavelength for photocuring the sealant in the step 3 is irradiated by a light irradiation device having an LED element and a filter.
The LED element is selected and used within the wavelength range for photocuring the sealant and having an emission peak wavelength outside the wavelength range for photopolymerizing the liquid crystal material.
If the emission peak wavelength is outside the wavelength range for photocuring the sealant, the sealant cannot be sufficiently cured. If the emission peak wavelength is within the wavelength range for photopolymerizing the liquid crystal material, the light of the liquid crystal material may be caused by light that cannot be cured sufficiently or completely blocked by a filter. Polymerization proceeds.
上記LED素子の発光ピークの半値幅は、30nm以下であることが好ましい。上記半値幅が30nmを超えると、光の利用効率が低くなったり、フィルタによって完全に遮断できなかった光により、上記液晶材料の光重合が進行したりすることがある。上記半値幅の下限は特になく、狭い方が好ましいが、実質的な下限は10nm程度である。 The half-value width of the light emission peak of the LED element is preferably 30 nm or less. When the half width exceeds 30 nm, the light use efficiency may be lowered, or the photopolymerization of the liquid crystal material may proceed due to light that cannot be completely blocked by the filter. There is no particular lower limit on the half width, and a narrower one is preferable, but a substantial lower limit is about 10 nm.
上記LED素子は、例えば、インジウム(In)系LED素子や、アルミニウム(Al)を含む窒化ガリウム(GaN)系LED素子等の従来公知のLED素子を用いることができる。上記LED素子の発光ピークは、LED中のIn、AlGa、Nの組成比を調整することにより、200nmから赤外域までの発光ピーク波長を有するLED素子を得ることができる。これらのLED素子の中から、上記シール剤を光硬化させる波長の領域内であって上記液晶材料を光重合させる波長の領域外に発光ピーク波長を有し、かつ、発光ピークの半値幅の狭いLED素子、具体的には例えば、360~420nmの発光ピーク波長を有し、発光ピークの半値幅が30nm以下であるLED素子を選択して用いればよい。 As the LED element, for example, a conventionally known LED element such as an indium (In) LED element or a gallium nitride (GaN) LED element containing aluminum (Al) can be used. The light emission peak of the said LED element can obtain the LED element which has the light emission peak wavelength from 200 nm to an infrared region by adjusting the composition ratio of In, AlGa, and N in LED. Among these LED elements, the emission peak wavelength is within the wavelength region for photocuring the sealant and the liquid crystal material is photopolymerized, and the half-value width of the emission peak is narrow. For example, an LED element having an emission peak wavelength of 360 to 420 nm and a half-value width of the emission peak of 30 nm or less may be selected and used.
上記360~420nmの発光ピーク波長を有し、発光ピークの半値幅が10~30nmであるLED素子は、市販されているものを用いればよいが、適当な市販品がない場合には特注品を用いてもよい。 As the LED element having an emission peak wavelength of 360 to 420 nm and a half-value width of the emission peak of 10 to 30 nm, a commercially available LED element may be used. It may be used.
上記フィルタは、上記LED素子から照射される光のうち、上記発光ピーク波長よりも短波長側で、上記液晶材料を光重合させる波長と重複する領域の光をカットするものである。より具体的には、カットオフ波長(光透過率が50%となる波長)が上記LED素子の発光ピーク波長よりも短波長側で、かつ、上記液晶材料を光重合させる波長と重複する領域よりも長波長側であるフィルタを選択して用いる。なかでも、380nm以下の光の透過率を0とすることができるフィルタが好適である。 The said filter cuts the light of the area | region which overlaps the wavelength which photopolymerizes the said liquid-crystal material in the short wavelength side from the said light emission peak wavelength among the lights irradiated from the said LED element. More specifically, the cutoff wavelength (the wavelength at which the light transmittance is 50%) is shorter than the emission peak wavelength of the LED element, and the region overlaps with the wavelength for photopolymerizing the liquid crystal material. Also, a filter on the long wavelength side is selected and used. Among these, a filter that can reduce the transmittance of light of 380 nm or less to 0 is preferable.
図5に、本発明の液晶表示装置の製造方法において、上記LED素子の発光スペクトルと上記フィルタの分光特性との関係を模式的に示す曲線図を示した。
上記LED素子は、図5に模式的に示すように、曲線(L)に示す発光スペクトルを有するものであり、上記フィルタは、曲線(F)に示す分光特性を有するもの、即ち、LED素子から照射される光のうち、LED素子の発光ピーク波長よりも短波長側で、液晶材料2を光重合させる波長と重複する領域の光(図5において斜線部分の光)をカットするものである。
FIG. 5 is a curve diagram schematically showing the relationship between the emission spectrum of the LED element and the spectral characteristics of the filter in the method for manufacturing a liquid crystal display device of the present invention.
As schematically shown in FIG. 5, the LED element has an emission spectrum indicated by a curve (L), and the filter has a spectral characteristic indicated by a curve (F), that is, from the LED element. In the irradiated light, light in a region overlapping with the wavelength for photopolymerizing the liquid crystal material 2 on the shorter wavelength side than the emission peak wavelength of the LED element (light in the hatched portion in FIG. 5) is cut.
上記LED素子とフィルタとを有する光照射装置によれば、発光スペクトルの波長域が狭いLED素子からの光を、上記発光ピーク波長よりも短波長側で、上記液晶材料を光重合させる波長と重複する領域の光をカットするフィルタを介して照射するため、照射される光の波長分布が極めて狭いものとなる。従って、上記シール剤を光硬化させる波長の領域及び上記液晶材料を光重合させる波長の領域に応じてLED素子を選択することにより、液晶材料中の光重合性成分の重合反応を進行させることなく、高い光の利用効率で、上記シール剤層を硬化させることができる。 According to the light irradiation device having the LED element and the filter, the light from the LED element having a narrow emission spectrum wavelength region overlaps with the wavelength at which the liquid crystal material is photopolymerized on the shorter wavelength side than the emission peak wavelength. Because the light is irradiated through a filter that cuts the light in the region to be irradiated, the wavelength distribution of the irradiated light becomes extremely narrow. Therefore, by selecting the LED element according to the wavelength region for photocuring the sealing agent and the wavelength region for photopolymerizing the liquid crystal material, the polymerization reaction of the photopolymerizable component in the liquid crystal material does not proceed. The sealing agent layer can be cured with high light utilization efficiency.
上記フィルタは、上記光カット特性を有するものであれば特に限定されないが、例えば、誘電体多層膜を有するものを用いることができる。
上記フィルタは、市販されているものを用いればよいが、適当な市販品がない場合には特注品を用いてもよい。
Although the said filter will not be specifically limited if it has the said light cut characteristic, For example, what has a dielectric multilayer film can be used.
A commercially available filter may be used, but a custom-made product may be used when there is no suitable commercially available filter.
また、上記光照射装置は、複数のLED素子とフィルタとを任意の面上に配置したものであることが好ましい。上記光照射装置がこのような構成を有することにより、点灯するLED素子とフィルタとを有する光照射部(以下、光源セグメントともいう)をシール剤層の形態に応じて選択し、シール剤層に対して選択的に光を照射することができる。そのため、一層高いエネルギー効率が得られ、かつ、上記シール剤層に選択的に光を照射するためにマスクを設けることが不要となるため、製造コストを低減化することができる。また、上記光源セグメントにおける一のLED素子が劣化したときには、他のLED素子の照射強度を上げることにより、光源セグメント全体で安定した光量の光を照射することができる。 Moreover, it is preferable that the said light irradiation apparatus arrange | positions several LED element and a filter on arbitrary surfaces. When the light irradiation device has such a configuration, a light irradiation unit (hereinafter also referred to as a light source segment) having an LED element to be turned on and a filter is selected according to the form of the sealing agent layer, and the sealing agent layer is selected. On the other hand, light can be selectively irradiated. Therefore, higher energy efficiency can be obtained, and it is not necessary to provide a mask for selectively irradiating the sealant layer with light, so that the manufacturing cost can be reduced. Further, when one LED element in the light source segment is deteriorated, it is possible to irradiate with a stable amount of light over the entire light source segment by increasing the irradiation intensity of the other LED elements.
更に、上記光照射装置は、上記LED素子が収納されてなるLEDパッケージを有し、かつ、該LEDパッケージに上記フィルタが設けられていてもよい。上記光照射装置がこのような構成を有することにより、大面積のフィルタを設けることが不要となるため、フィルタのコストの低減化及び生産性を向上させることができる。 Furthermore, the said light irradiation apparatus may have an LED package in which the said LED element is accommodated, and the said filter may be provided in this LED package. Since the light irradiation apparatus has such a configuration, it is not necessary to provide a large-area filter, and thus the cost of the filter can be reduced and the productivity can be improved.
本発明の液晶表示装置の製造方法では、次に、液晶材料を光重合させる波長の光を照射して前記液晶材料を光重合させる工程4を行う。
なお、上記液晶材料を光重合させる波長の光を照射する間、電圧を印加することによって、液晶分子の初期形成角度の制御を行うことができる。
In the method for manufacturing a liquid crystal display device of the present invention, next, a step 4 of photopolymerizing the liquid crystal material by irradiating light having a wavelength for photopolymerizing the liquid crystal material is performed.
The initial formation angle of the liquid crystal molecules can be controlled by applying a voltage while irradiating light having a wavelength for photopolymerizing the liquid crystal material.
以下に、本発明の液晶表示装置の製造方法を、図を用いて説明する。
図1は、上記光照射装置を有するディスプレイパネルの貼り合わせ装置の一例における構成の概略を示す説明図である。上記ディスプレイパネルの貼り合わせ装置(以下、単に「貼り合わせ装置」という。)においては、基台11上に、支持台12を介して、処理対象物が載置されるステージ10が設けられ、このステージ10の上方には、上記光照射装置15が配置されている。
上記貼り合わせ装置の処理対象物1は、液晶材料2と、この液晶材料2の周りを囲むように包囲するシール剤層3とが、2枚の透光性基板4の間に形成されてなるものである。この例における処理対象物1は、合計で4つのディスプレイパネルを製造するためのものであり、当該処理対象物1においては、図2に示すように、互いに離間して縦横に並ぶ4つの液晶材料2と、それぞれ一つの液晶材料2を包囲する4つのシール剤層3とが形成されている。
Below, the manufacturing method of the liquid crystal display device of this invention is demonstrated using figures.
FIG. 1 is an explanatory diagram showing an outline of a configuration in an example of a display panel bonding apparatus having the light irradiation device. In the display panel bonding apparatus (hereinafter simply referred to as “bonding apparatus”), a stage 10 on which a processing object is placed is provided on a base 11 via a support base 12. Above the stage 10, the light irradiation device 15 is arranged.
The processing object 1 of the bonding apparatus includes a liquid crystal material 2 and a sealing agent layer 3 that surrounds the liquid crystal material 2 so as to surround the liquid crystal material 2. Is. The processing object 1 in this example is for manufacturing a total of four display panels. In the processing object 1, as shown in FIG. 2, four liquid crystal materials are arranged vertically and horizontally apart from each other. 2 and four sealant layers 3 each surrounding one liquid crystal material 2 are formed.
光照射装置15は、図3にも示すように、適宜の支持体(図示省略)上に複数の光源セグメント20が縦横に並ぶよう配置されて構成されている。
光源セグメント20の各々においては、図4に示すように、同一の矩形の基板21の表面に複数のLED素子25が配置され、これらのLED素子25の各々の表面には、フィルタ30が当該LED素子25を覆うよう設けられている。
また、基板21の表面における周縁部には、内面が光反射面とされた矩形の筒状の導光部材26が配置され、当該基板21の裏面には、LED素子25が発する熱を放熱する放熱用フィン27が設けられている。
光源セグメント20の各々におけるLED素子25の数は、例えば、5~16個である。
As shown in FIG. 3, the light irradiation device 15 is configured such that a plurality of light source segments 20 are arranged vertically and horizontally on an appropriate support (not shown).
In each of the light source segments 20, as shown in FIG. 4, a plurality of LED elements 25 are arranged on the surface of the same rectangular substrate 21, and a filter 30 is connected to the LED 30 on each surface of the LED elements 25. It is provided so as to cover the element 25.
In addition, a rectangular cylindrical light guide member 26 whose inner surface is a light reflecting surface is disposed at the peripheral portion of the surface of the substrate 21, and heat generated by the LED elements 25 is radiated to the back surface of the substrate 21. A heat dissipating fin 27 is provided.
The number of LED elements 25 in each of the light source segments 20 is, for example, 5 to 16.
上記の光照射装置15においては、全ての光源セグメント20のうち、処理対象物1におけるシール剤層3の形状に応じて選択された光源セグメント20が作動することにより、当該光源セグメント20におけるLED素子25からの光が、フィルタ30を介して導光部材26の光出射部28から出射され、貼り合わせ装置のステージ10上に配置された処理対象物1におけるシール剤層3に照射され、これにより、シール剤層3が硬化される。 In said light irradiation apparatus 15, when the light source segment 20 selected according to the shape of the sealing agent layer 3 in the process target object 1 among all the light source segments 20 act | operates, the LED element in the said light source segment 20 25 is emitted from the light emitting portion 28 of the light guide member 26 through the filter 30 and irradiated to the sealing agent layer 3 in the processing object 1 disposed on the stage 10 of the bonding apparatus, thereby The sealing agent layer 3 is cured.
図6は、上記光照射装置の他の例における光源セグメントの構成を示す説明図である。
この光源セグメント20においては、同一の矩形の基板21の表面に複数のLEDパッケージ35が配置され、当該基板21の表面における周縁部には、内面が光反射面とされた矩形の筒状の導光部材26が配置され、当該基板21の裏面には、LEDパッケージ35が発する熱を放熱する放熱用フィン27が設けられている。
LEDパッケージ35の各々は、図7に示すように、中央に矩形の凹所37が形成されたパッケージ基板36を有し、このパッケージ基板36の凹所37内には、LED素子25が配置され、当該パッケージ基板36の凹所37を塞ぐよう板状のフィルタ30が設けられている。また、28は、導光部材26の光出射部である。LED素子25及びフィルタ30の特性は、図4に示す光源セグメント20におけるものと同様である。
FIG. 6 is an explanatory diagram showing a configuration of a light source segment in another example of the light irradiation device.
In the light source segment 20, a plurality of LED packages 35 are disposed on the surface of the same rectangular substrate 21, and a rectangular cylindrical guide whose inner surface is a light reflecting surface is provided on the peripheral portion of the surface of the substrate 21. The light member 26 is disposed, and on the back surface of the substrate 21, heat radiation fins 27 for radiating the heat generated by the LED package 35 are provided.
As shown in FIG. 7, each of the LED packages 35 has a package substrate 36 having a rectangular recess 37 formed at the center, and the LED element 25 is disposed in the recess 37 of the package substrate 36. A plate-like filter 30 is provided so as to close the recess 37 of the package substrate 36. Reference numeral 28 denotes a light emitting portion of the light guide member 26. The characteristics of the LED element 25 and the filter 30 are the same as those in the light source segment 20 shown in FIG.
上記光照射装置は、以下に示すように、種々の変更を加えることが可能である。
(1)図4に示す光源セグメント20において、フィルタ30は、図8に示すように、レンズ機能を有する半球状のものであってもよい。
また、フィルタ30がLED素子25の各々に設けられる代わりに、図9に示すように、導光部材26の筒孔内における中央位置に、1つのフィルタ30が設けられた構成であってもよい。
更に、図9に示すように、導光部材26の筒孔内における先端側位置に、インテグレータレンズ29が配置されていてもよい。
(2)図6に示す光学セグメント20において、LEDパッケージ35に設けられたフィルタ30は、図10(a)に示すように、レンズ機能を有する半球状のものであってもよい。
また、LEDパッケージ35には、図10(b)に示すように、板状のフィルタ30の表面にレンズ31が設けられていてもよい。
The light irradiation apparatus can be variously modified as described below.
(1) In the light source segment 20 shown in FIG. 4, the filter 30 may be hemispherical having a lens function, as shown in FIG.
Further, instead of providing the filter 30 in each of the LED elements 25, as shown in FIG. 9, a configuration in which one filter 30 is provided at the center position in the cylindrical hole of the light guide member 26 may be employed. .
Furthermore, as shown in FIG. 9, an integrator lens 29 may be disposed at the tip side position in the cylindrical hole of the light guide member 26.
(2) In the optical segment 20 shown in FIG. 6, the filter 30 provided in the LED package 35 may be a hemispherical lens having a lens function, as shown in FIG.
Further, the LED package 35 may be provided with a lens 31 on the surface of the plate-like filter 30 as shown in FIG.
本発明によれば、低コストかつ高効率で液晶汚染のほとんどない液晶表示装置を製造することができる液晶表示装置の製造方法を提供することができる。本発明の液晶表示装置の製造方法は、PSA方式やブルーフェイズ方式の液晶表示装置の製造に特に好適である。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the liquid crystal display device which can manufacture the liquid crystal display device which is low-cost and highly efficient and hardly has liquid-crystal contamination can be provided. The method for manufacturing a liquid crystal display device of the present invention is particularly suitable for manufacturing a liquid crystal display device of a PSA system or a blue phase system.
光照射装置を有するディスプレイパネルの貼り合わせ装置の一例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in an example of the bonding apparatus of the display panel which has a light irradiation apparatus. ディスプレイパネルの貼り合わせ装置の処理対象物を示す平面図である。It is a top view which shows the process target object of the bonding apparatus of a display panel. 光照射装置の一例における構成を示す平面図である。It is a top view which shows the structure in an example of a light irradiation apparatus. 光照射装置における光源セグメントの構成を示す説明図である。It is explanatory drawing which shows the structure of the light source segment in a light irradiation apparatus. LED素子の発光スペクトルとフィルタの分光特性との関係を模式的に示す曲線図である。It is a curve figure which shows typically the relationship between the emission spectrum of an LED element, and the spectral characteristic of a filter. 光照射装置の他の例における光源セグメントの構成を示す説明図である。It is explanatory drawing which shows the structure of the light source segment in the other example of a light irradiation apparatus. 光源セグメントにおけるLEDパッケージの構成を示す説明図である。It is explanatory drawing which shows the structure of the LED package in a light source segment. 光源セグメントの変形例の要部の構成を示す説明図である。It is explanatory drawing which shows the structure of the principal part of the modification of a light source segment. 光源セグメントの他の変形例の構成を示す説明図である。It is explanatory drawing which shows the structure of the other modification of a light source segment. LEDパッケージの変形例の構成を示す説明図である。It is explanatory drawing which shows the structure of the modification of an LED package.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
<硬化性樹脂の合成>
(ビスフェノールA型エポキシアクリレートの合成)
ビスフェノールA型エポキシ樹脂(DIC社製、「EPICLON EXA-850CRP」)170gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸72gを還流撹拌下にて2時間かけて滴下した後、更に、還流撹拌を8時間行った。
次に、トルエンを除去することによって、全てのエポキシ基をアクリロイル基に変成したビスフェノールA型エポキシアクリレートを得た。
<Synthesis of curable resin>
(Synthesis of bisphenol A type epoxy acrylate)
170 g of bisphenol A type epoxy resin (manufactured by DIC, “EPICLON EXA-850CRP”) was dissolved in 500 mL of toluene, and 0.1 g of triphenylphosphine was added to the solution to obtain a uniform solution. After 72 g of acrylic acid was added dropwise to the obtained solution with stirring under reflux over 2 hours, the mixture was further stirred under reflux for 8 hours.
Next, by removing toluene, a bisphenol A type epoxy acrylate in which all epoxy groups were converted to acryloyl groups was obtained.
(ビスフェノールF型エポキシ部分アクリレートの合成)
ビスフェノールF型エポキシ樹脂(DIC社製、「EPICLON EXA-830CRP」)156gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸72gを還流撹拌下にて2時間かけて滴下した後、更に還流撹拌を8時間行った。
次に、トルエンを除去することによって、50モル%のエポキシ基がアクリル酸と反応したビスフェノールF型エポキシ部分アクリレートを得た。
なお、変性率は、得られたビスフェノールF型エポキシ部分アクリレートを塩酸-ジオキサン溶液に溶解させた後、エポキシ基によって消費された塩酸量をKOHを用いて滴定する方法によって測定した。
(Synthesis of bisphenol F type epoxy partial acrylate)
156 g of bisphenol F type epoxy resin (manufactured by DIC, “EPICLON EXA-830CRP”) was dissolved in 500 mL of toluene, and 0.1 g of triphenylphosphine was added to the solution to obtain a uniform solution. To the obtained solution, 72 g of acrylic acid was added dropwise over 2 hours with stirring under reflux, and further stirring under reflux was performed for 8 hours.
Next, toluene was removed to obtain a bisphenol F type epoxy partial acrylate in which 50 mol% of the epoxy group reacted with acrylic acid.
The modification rate was measured by a method in which the obtained bisphenol F-type epoxy partial acrylate was dissolved in a hydrochloric acid-dioxane solution, and then the amount of hydrochloric acid consumed by the epoxy group was titrated with KOH.
(エーテル型エポキシ部分アクリレートの合成)
エーテル型エポキシ樹脂(東都化成社製、「YSLV-80DE」)164gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸72gを還流撹拌下にて2時間かけて滴下した後、更に還流撹拌を8時間行った。
次に、トルエンを除去することによって、50モル%のエポキシ基がアクリル酸と反応したエーテル型エポキシ部分アクリレートを得た。
なお、変性率は、得られたエーテル型エポキシ部分アクリレートを塩酸-ジオキサン溶液に溶解させた後、エポキシ基によって消費された塩酸量をKOHを用いて滴定する方法によって測定した。
(Synthesis of ether type epoxy partial acrylate)
164 g of an ether type epoxy resin (manufactured by Toto Kasei Co., Ltd., “YSLV-80DE”) was dissolved in 500 mL of toluene, and 0.1 g of triphenylphosphine was added to this solution to obtain a uniform solution. To the obtained solution, 72 g of acrylic acid was added dropwise over 2 hours with stirring under reflux, and further stirring under reflux was performed for 8 hours.
Next, by removing toluene, an ether type epoxy partial acrylate in which 50 mol% of the epoxy groups reacted with acrylic acid was obtained.
The modification rate was measured by dissolving the obtained ether type epoxy partial acrylate in a hydrochloric acid-dioxane solution and titrating the amount of hydrochloric acid consumed by the epoxy group using KOH.
(実施例1)
(シール剤の作製)
硬化性樹脂として合成したビスフェノールA型エポキシアクリレート100重量部及び合成したビスフェノールF型エポキシ部分アクリレート100重量部と、光重合開始剤としてビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(チバ・ジャパン社製、「IRGACURE 819」、メタノール溶媒中で測定した405nmの波長における吸光係数899ml/g・cm)3重量部と、シランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-503)3重量部と、熱硬化剤(味の素ファインテクノ社製、「アミキュアVDH」)32重量部と、充填剤として球状シリカ(アドマテックス社製、「SO-C1」)40重量部とを配合し、遊星式攪拌装置(シンキー社製、「あわとり練太郎」)にて攪拌した後、セラミック3本ロールにて均一に混合させてシール剤を得た。
Example 1
(Production of sealant)
100 parts by weight of bisphenol A type epoxy acrylate synthesized as a curable resin and 100 parts by weight of a synthesized bisphenol F type epoxy partial acrylate, and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide ( “IRGACURE 819” manufactured by Ciba Japan, 3 parts by weight of an extinction coefficient of 899 ml / g · cm at a wavelength of 405 nm measured in a methanol solvent, and γ-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone) as a silane coupling agent 3 parts by weight, KBM-503), 32 parts by weight of thermosetting agent (Ajinomoto Fine Techno Co., “Amicure VDH”), and spherical silica as a filler (manufactured by Admatechs, “SO-C1”) 40 Combined with parts by weight, a planetary stirrer ( Nki Co., was stirred at "Awatori Rentaro"), to give a sealant uniformly mixed with the ceramic three roll.
(液晶表示パネルの作製)
配向膜及び透明電極付き基板の一方に、得られたシール剤を、長方形の枠を描く様にディスペンサーで塗布した。次に、液晶材料を滴下し、他方の基板を貼り合わせた後、当該貼り合わせた基板のシール剤部に、LED素子(発光ピーク波長が385nm、発光ピークの半値幅が11nm)とフィルタ(380nm以下の光の透過率が0)とを有する光照射装置を用い、405nmの波長に基づいて、3000mJ/cmの積算光量の光を照射してシール剤を光硬化させたのち、120℃で1時間熱硬化させた。
次に、基板間に電圧を印加しながら紫外線を照射し、液晶材料を配向させて液晶表示パネルを作製した。 
(Production of liquid crystal display panel)
The obtained sealing agent was applied to one of the alignment film and the substrate with a transparent electrode with a dispenser so as to draw a rectangular frame. Next, after dropping the liquid crystal material and bonding the other substrate, an LED element (emission peak wavelength is 385 nm, emission peak half-value width is 11 nm) and a filter (380 nm) are bonded to the sealing agent portion of the bonded substrate. Using a light irradiation device having the following light transmittance of 0), based on the wavelength of 405 nm, after irradiating light with an integrated light amount of 3000 mJ / cm 2 and photocuring the sealing agent, at 120 ° C. Heat cured for 1 hour.
Next, ultraviolet rays were applied while applying a voltage between the substrates, and the liquid crystal material was aligned to produce a liquid crystal display panel.
(実施例2)
光重合開始剤を、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(チバ・ジャパン社製、「IRGACURE 379」、メタノール溶媒中で測定した405nmの波長における吸光係数280ml/g・cm)3重量部に変更したこと以外は実施例1と同様にしてシール剤及び液晶表示パネルを得た。
(Example 2)
The photopolymerization initiator was 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (manufactured by Ciba Japan, “IRGACURE”). 379 ", an absorption coefficient of 280 ml / g · cm at a wavelength of 405 nm measured in a methanol solvent), and a sealant and a liquid crystal display panel were obtained in the same manner as in Example 1 except that the weight was changed to 3 parts by weight.
(実施例3)
光重合開始剤を、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)(チバ・ジャパン社製、「IRGACURE OXE01」、アセトニトリル溶媒中で測定した405nmの波長における吸光係数102ml/g・cm)3重量部に変更したこと以外は実施例1と同様にしてシール剤及び液晶表示パネルを得た。
(Example 3)
The photopolymerization initiator was 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime) (Ciba Japan, “IRGACURE OXE01”, measured at 405 nm in acetonitrile solvent. The sealing agent and the liquid crystal display panel were obtained in the same manner as in Example 1 except that the absorption coefficient was changed to 3 parts by weight.
(実施例4)
光重合開始剤を、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、「DAROCUR TPO」、アセトニトリル溶媒中で測定した405nmの波長における吸光係数165ml/g・cm)3重量部に変更したこと以外は実施例1と同様にしてシール剤及び液晶表示パネルを得た。
Example 4
2,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by Ciba Japan, “DAROCUR TPO”, extinction coefficient 165 ml / g · cm at a wavelength of 405 nm measured in acetonitrile solvent) 3 weight A sealant and a liquid crystal display panel were obtained in the same manner as in Example 1 except that the part was changed to the part.
(実施例5)
光重合開始剤の配合量を1重量部に変更したこと以外は実施例4と同様にしてシール剤及び液晶表示パネルを得た。
(Example 5)
A sealing agent and a liquid crystal display panel were obtained in the same manner as in Example 4 except that the blending amount of the photopolymerization initiator was changed to 1 part by weight.
(実施例6)
光重合開始剤の配合量を9重量部に変更したこと以外は実施例4と同様にしてシール剤及び液晶表示パネルを得た。
(Example 6)
A sealing agent and a liquid crystal display panel were obtained in the same manner as in Example 4 except that the blending amount of the photopolymerization initiator was changed to 9 parts by weight.
(実施例7)
硬化性樹脂を、合成したビスフェノールA型エポキシアクリレート100重量部、合成したビスフェノールF型エポキシ部分アクリレート50重量部、及び、合成したエーテル型エポキシ部分アクリレート50重量部に変更したこと以外は実施例4と同様にしてシール剤及び液晶表示パネルを得た。
(Example 7)
Example 4 except that the curable resin was changed to 100 parts by weight of the synthesized bisphenol A type epoxy acrylate, 50 parts by weight of the synthesized bisphenol F type epoxy partial acrylate, and 50 parts by weight of the synthesized ether type epoxy partial acrylate. Similarly, a sealant and a liquid crystal display panel were obtained.
(比較例1)
実施例1と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用い405nmの波長に基づいて、3000mJ/cmの積算光量の光を照射したこと以外は実施例1と同様にして液晶表示パネルを得た。
(Comparative Example 1)
A sealing agent was obtained in the same manner as in Example 1. Further, a liquid crystal display panel was obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source and the light with an integrated light amount of 3000 mJ / cm 2 was irradiated based on a wavelength of 405 nm.
(比較例2)
実施例1と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用い、405nmの波長に基づいて、500mJ/cmの積算光量の光を照射したこと以外は実施例2と同様にして液晶表示パネルを得た。
(Comparative Example 2)
A sealing agent was obtained in the same manner as in Example 1. In addition, a liquid crystal display panel was obtained in the same manner as in Example 2 except that a metal halide lamp was used as the irradiation light source and the light having an accumulated light amount of 500 mJ / cm 2 was irradiated based on the wavelength of 405 nm.
(比較例3)
実施例2と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例2と同様にして液晶表示パネルを得た。
(Comparative Example 3)
A sealant was obtained in the same manner as in Example 2. Further, a liquid crystal display panel was obtained in the same manner as in Example 2 except that a metal halide lamp was used as the irradiation light source.
(比較例4)
実施例3と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例3と同様にして液晶表示パネルを得た。
(Comparative Example 4)
A sealant was obtained in the same manner as in Example 3. A liquid crystal display panel was obtained in the same manner as in Example 3 except that a metal halide lamp was used as the irradiation light source.
(比較例5)
実施例4と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例4と同様にして液晶表示パネルを得た。
(Comparative Example 5)
A sealing agent was obtained in the same manner as in Example 4. A liquid crystal display panel was obtained in the same manner as in Example 4 except that a metal halide lamp was used as the irradiation light source.
(比較例6)
光重合開始剤を、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(チバ・ジャパン社製、「IRGACURE 651」、メタノール溶媒中で測定した405nmの波長における吸光係数1ml/g・cm未満)3重量部に変更し、照射光源としてメタルハライドランプを用いたこと以外は実施例1と同様にしてシール剤及び液晶表示パネルを得た。
(Comparative Example 6)
The photopolymerization initiator was 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by Ciba Japan, “IRGACURE 651”, extinction coefficient at a wavelength of 405 nm measured in a methanol solvent, 1 ml / g · The sealant and the liquid crystal display panel were obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source.
(比較例7)
光重合開始剤を、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(チバ・ジャパン社製、「IRGACURE 2959」、メタノール溶媒中で測定した405nmの波長における吸光係数1ml/g・cm未満)3重量部に変更し、照射光源としてメタルハライドランプを用いたこと以外は実施例1と同様にしてシール剤及び液晶表示パネルを得た。
(Comparative Example 7)
The photopolymerization initiator was 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (manufactured by Ciba Japan, “IRGACURE 2959”, methanol solvent) The absorption coefficient at less than 1 ml / g · cm at a wavelength of 405 nm measured in the above was changed to 3 parts by weight, and a sealant and a liquid crystal display panel were obtained in the same manner as in Example 1 except that a metal halide lamp was used as the irradiation light source. It was.
(比較例8)
実施例5と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例5と同様にして液晶表示パネルを得た。
(Comparative Example 8)
A sealant was obtained in the same manner as in Example 5. A liquid crystal display panel was obtained in the same manner as in Example 5 except that a metal halide lamp was used as the irradiation light source.
(比較例9)
実施例6と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例6と同様にして液晶表示パネルを得た。
(Comparative Example 9)
A sealant was obtained in the same manner as in Example 6. A liquid crystal display panel was obtained in the same manner as in Example 6 except that a metal halide lamp was used as the irradiation light source.
(比較例10)
実施例7と同様にしてシール剤を得た。また、照射光源としてメタルハライドランプを用いたこと以外は実施例7と同様にして液晶表示パネルを得た。
(Comparative Example 10)
A sealant was obtained in the same manner as in Example 7. Further, a liquid crystal display panel was obtained in the same manner as in Example 7 except that a metal halide lamp was used as the irradiation light source.
<評価>
実施例及び比較例で得られた液晶表示パネルについて以下の評価を行った。結果を表1及び表2に示した。
<Evaluation>
The following evaluation was performed about the liquid crystal display panel obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)表示ムラ(液晶配向乱れ)
得られた液晶表示パネル(サンプル数5個)について、液晶表示パネルを作製した直後におけるシール剤付近の液晶配向乱れを目視によって確認した。配向乱れは表示部の色ムラにより判断し、色ムラの程度に応じて、色ムラがない場合を「◎」、色ムラが少しある場合を「○」、色ムラが少しある場合を「△」、色ムラがかなりある場合を「×」とする4段階で評価した。また、光を照射してシール剤を硬化させる際に液晶保護マスクがある場合とない場合とについて評価を行った。
(1) Display unevenness (liquid crystal alignment disorder)
About the obtained liquid crystal display panel (sample number 5 pieces), the liquid crystal orientation disorder of sealant vicinity immediately after producing a liquid crystal display panel was confirmed by visual observation. Orientation disturbance is determined by the color unevenness of the display unit. According to the degree of color unevenness, “◎” indicates that there is no color unevenness, “○” indicates that there is a little color unevenness, and “△” indicates that there is a little color unevenness. ”, A case where there was considerable color unevenness was evaluated in four stages,“ X ”. In addition, evaluation was performed with and without a liquid crystal protective mask when the sealing agent was cured by irradiating light.
(2)光の利用効率
得られたシール剤1gをメタノール又はアセトニトリル10mLに溶解させて開始剤を抽出し、該抽出液を分光光度計にて測定した結果より、開始剤の吸収波長領域を求めて、これを使用波長領域とした。一方、光源の発光波長領域をUVスペクトロメーターで測定し、これを発光波長領域とした。得られた使用波長領域及び発光波長領域の値より、使用波長領域/発光波長領域を求めた。光の利用効率を以下の基準で評価した。
○:使用波長領域/発光波長領域が50%以上
×:使用波長領域/発光波長領域が50%未満
(2) Utilization efficiency of light 1 g of the obtained sealing agent was dissolved in 10 mL of methanol or acetonitrile to extract the initiator, and the absorption wavelength region of the initiator was obtained from the result of measuring the extract with a spectrophotometer. This was used as a wavelength region for use. On the other hand, the emission wavelength region of the light source was measured with a UV spectrometer, and this was used as the emission wavelength region. From the values of the obtained use wavelength region and emission wavelength region, the use wavelength region / emission wavelength region was determined. The light utilization efficiency was evaluated according to the following criteria.
○: Use wavelength region / emission wavelength region is 50% or more ×: Use wavelength region / emission wavelength region is less than 50%
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、低コストかつ高効率で液晶汚染のほとんどない液晶表示装置を製造することができる液晶表示装置の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the liquid crystal display device which can manufacture the liquid crystal display device which is low-cost and highly efficient and hardly has liquid-crystal contamination can be provided.
 1 処理対象物
 2 液晶材料
 3 シール剤層
 4 透光性基板
10 ステージ
11 基台
12 支持台
15 光照射装置
20 光源セグメント
21 基板
25 LED素子
26 導光部材
27 放熱用フィン
28 光出射部
29 インテグレータレンズ
30 フィルタ
31 レンズ
35 LEDパッケージ
36 パッケージ基板
37 凹所
 
 
DESCRIPTION OF SYMBOLS 1 Processing target object 2 Liquid crystal material 3 Sealant layer 4 Translucent board | substrate 10 Stage 11 Base 12 Support stand 15 Light irradiation apparatus 20 Light source segment 21 Substrate 25 LED element 26 Light guide member 27 Radiation fin 28 Light emitting part 29 Integrator Lens 30 Filter 31 Lens 35 LED package 36 Package substrate 37 Recess

Claims (6)

  1. 硬化性樹脂と光重合開始剤とを含有する光硬化性のシール剤を用いて一方の基板上に枠状のシール剤層を形成する工程1と、該シール剤層に包囲された領域に重合性材料と光重合開始剤とを含有する液晶材料を滴下する工程2と、前記シール剤を介して前記一方の基板と他方の基板とを貼り合わせ、当該貼り合わせた基板に前記シール剤を光硬化させる波長の光を照射して前記シール剤を光硬化させる工程3と、前記液晶材料を光重合させる波長の光を照射して前記液晶材料を光重合させる工程4とを有する液晶表示装置の製造方法であって、
    前記シール剤を光硬化させる光の波長は、前記液晶材料を光重合させる光の波長よりも長波長側にあり、
    前記工程3においてシール剤を光硬化させる波長の光は、LED素子とフィルタとを有する光照射装置により照射されるものであり、前記LED素子は、前記シール剤を光硬化させる波長の領域内であって前記液晶材料を光重合させる波長の領域外に発光ピーク波長を有し、前記フィルタは、前記LED素子から照射される光のうち、前記発光ピーク波長よりも短波長側で、前記液晶材料を光重合させる波長と重複する領域の光をカットするものである
    ことを特徴とする液晶表示装置の製造方法。
    Step 1 of forming a frame-like sealant layer on one substrate using a photocurable sealant containing a curable resin and a photopolymerization initiator, and polymerization in a region surrounded by the sealant layer Step 2 of dropping a liquid crystal material containing an adhesive material and a photopolymerization initiator, and bonding the one substrate and the other substrate through the sealing agent, and light-transmitting the sealing agent to the bonded substrate A liquid crystal display device comprising: a step 3 of irradiating light of a wavelength to be cured to photocure the sealing agent; and a step 4 of irradiating light of a wavelength to photopolymerize the liquid crystal material to photopolymerize the liquid crystal material. A manufacturing method comprising:
    The wavelength of light for photocuring the sealant is longer than the wavelength of light for photopolymerizing the liquid crystal material,
    The light having a wavelength for photocuring the sealant in the step 3 is irradiated by a light irradiation device having an LED element and a filter, and the LED element is within a wavelength region for photocuring the sealant. The liquid crystal material has a light emission peak wavelength outside a wavelength region for photopolymerizing the liquid crystal material, and the filter has a light wavelength shorter than the light emission peak wavelength in the light emitted from the LED element. A method for producing a liquid crystal display device, which cuts light in a region overlapping with a wavelength for photopolymerizing the liquid crystal.
  2. LED素子は、発光ピーク波長の半値幅が30nm以下であることを特徴とする請求項1記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 1, wherein the LED element has a half-value width of an emission peak wavelength of 30 nm or less.
  3. LED素子とフィルタとを有する光照射装置は、複数のLED素子とフィルタとを任意の面上に配置したものであることを特徴とする請求項1又は2記載の液晶表示装置の製造方法。 The method of manufacturing a liquid crystal display device according to claim 1, wherein the light irradiation device having the LED elements and the filter includes a plurality of LED elements and filters arranged on an arbitrary surface.
  4. シール剤に用いられる光重合開始剤は、メタノール又はアセトニトリル溶媒中で測定した405nmの波長における吸光係数が50ml/g・cm以上であることを特徴とする請求項1、2又は3記載の液晶表示装置の製造方法。 4. The liquid crystal display according to claim 1, wherein the photopolymerization initiator used for the sealant has an absorption coefficient of 50 ml / g · cm or more at a wavelength of 405 nm measured in methanol or acetonitrile solvent. Device manufacturing method.
  5. シール剤に用いられる光重合開始剤は、メタノール又はアセトニトリル溶媒中における濃度を0.1重量%とした際の吸光波長領域が、LED素子の発光波長領域におけるフィルタでカットされた波長領域よりも長波長側の発光波長領域と50%以上の重なりを有するものであることを特徴とする請求項1、2、3又は4記載の液晶表示装置の製造方法。 The photopolymerization initiator used for the sealant has a longer absorption wavelength region when the concentration in methanol or acetonitrile solvent is 0.1% by weight than the wavelength region cut by the filter in the emission wavelength region of the LED element. 5. The method for manufacturing a liquid crystal display device according to claim 1, wherein the method has an overlap of 50% or more with the light emission wavelength region on the wavelength side.
  6. シール剤に用いられる光重合開始剤は、130℃以下の温度での加熱によってはラジカルを発生させず、かつ、吸光波長領域の長波長側端が450nm未満であることを特徴とする請求項1、2、3、4又は5記載の液晶表示装置の製造方法。
     
     
    2. The photopolymerization initiator used for the sealant does not generate radicals when heated at a temperature of 130 ° C. or lower, and the long wavelength side end of the absorption wavelength region is less than 450 nm. 2. A method for producing a liquid crystal display device according to 2, 3, 4 or 5.

PCT/JP2010/066800 2009-10-02 2010-09-28 Method for manufacturing liquid crystal display device WO2011040397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541614A JPWO2011040397A1 (en) 2009-10-02 2010-09-28 Manufacturing method of liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009230300 2009-10-02
JP2009-230300 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011040397A1 true WO2011040397A1 (en) 2011-04-07

Family

ID=43826212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066800 WO2011040397A1 (en) 2009-10-02 2010-09-28 Method for manufacturing liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2011040397A1 (en)
TW (1) TW201124783A (en)
WO (1) WO2011040397A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133889A (en) * 2009-12-24 2011-07-07 Lg Display Co Ltd Method of manufacturing liquid crystal display
WO2013027548A1 (en) * 2011-08-25 2013-02-28 シャープ株式会社 Method for manufacturing liquid crystal display device
JP2013041063A (en) * 2011-08-12 2013-02-28 Sekisui Chem Co Ltd Sealant for liquid crystal display element, vertical conducting material and liquid crystal display element
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
JP2013218169A (en) * 2012-04-10 2013-10-24 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2014038340A (en) * 2013-09-11 2014-02-27 Sekisui Chem Co Ltd Sealing material for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
TWI502259B (en) * 2012-10-11 2015-10-01
JP2016099506A (en) * 2014-11-21 2016-05-30 東芝ライテック株式会社 Light irradiation system and optical sensor
WO2017119406A1 (en) * 2016-01-07 2017-07-13 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017173604A (en) * 2016-03-24 2017-09-28 東芝ライテック株式会社 Manufacturing apparatus of liquid crystal panel
CN111338110A (en) * 2020-04-13 2020-06-26 Tcl华星光电技术有限公司 Frame glue curing device and curing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149647A (en) * 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp Liquid crystal display device and manufacturing method therefor
JP2007316624A (en) * 2006-04-25 2007-12-06 Sekisui Chem Co Ltd Sealing material for liquid crystal dispensing method, vertically conducting material, and liquid crystal display device
JP2007334039A (en) * 2006-06-15 2007-12-27 Ulvac Japan Ltd Light source device and method of panel alignment using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149647A (en) * 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp Liquid crystal display device and manufacturing method therefor
JP2007316624A (en) * 2006-04-25 2007-12-06 Sekisui Chem Co Ltd Sealing material for liquid crystal dispensing method, vertically conducting material, and liquid crystal display device
JP2007334039A (en) * 2006-06-15 2007-12-27 Ulvac Japan Ltd Light source device and method of panel alignment using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133889A (en) * 2009-12-24 2011-07-07 Lg Display Co Ltd Method of manufacturing liquid crystal display
US8848159B2 (en) 2009-12-24 2014-09-30 Lg Display Co., Ltd. Method of fabricating liquid crystal display device
JP2013041063A (en) * 2011-08-12 2013-02-28 Sekisui Chem Co Ltd Sealant for liquid crystal display element, vertical conducting material and liquid crystal display element
JP5620006B2 (en) * 2011-08-25 2014-11-05 シャープ株式会社 Manufacturing method of liquid crystal display device
WO2013027548A1 (en) * 2011-08-25 2013-02-28 シャープ株式会社 Method for manufacturing liquid crystal display device
US9405153B2 (en) 2011-08-25 2016-08-02 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display device
JPWO2013027548A1 (en) * 2011-08-25 2015-03-19 シャープ株式会社 Manufacturing method of liquid crystal display device
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
JP2013218169A (en) * 2012-04-10 2013-10-24 Sekisui Chem Co Ltd Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
TWI502259B (en) * 2012-10-11 2015-10-01
JP2014038340A (en) * 2013-09-11 2014-02-27 Sekisui Chem Co Ltd Sealing material for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2016099506A (en) * 2014-11-21 2016-05-30 東芝ライテック株式会社 Light irradiation system and optical sensor
WO2017119406A1 (en) * 2016-01-07 2017-07-13 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017173604A (en) * 2016-03-24 2017-09-28 東芝ライテック株式会社 Manufacturing apparatus of liquid crystal panel
CN111338110A (en) * 2020-04-13 2020-06-26 Tcl华星光电技术有限公司 Frame glue curing device and curing method thereof

Also Published As

Publication number Publication date
JPWO2011040397A1 (en) 2013-02-28
TW201124783A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
WO2011040397A1 (en) Method for manufacturing liquid crystal display device
JP5091534B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display device
JP5735704B2 (en) Sealant for liquid crystal dropping method
JP6798978B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5759638B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN111372952A (en) Photopolymerization initiator, sealing agent for display element, vertical conduction material, display element, and compound
WO2015152030A1 (en) Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
JP5340502B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP4528358B2 (en) Sealant for liquid crystal dropping method and liquid crystal display element
JP7048314B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2012173488A (en) Sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display
CN107710061B (en) Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2015072416A1 (en) Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element
WO2016194871A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP5369242B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2017061255A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2016186127A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6046533B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7253117B1 (en) Sealant for liquid crystal display element and liquid crystal display element
JP5400917B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7295798B2 (en) liquid crystal display element
JP4977166B2 (en) Sealing agent for liquid crystal dropping method, sealing agent for liquid crystal panel, vertical conduction material, and liquid crystal display element
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019188814A1 (en) Composition for electronic material, sealing agent for liquid crystal display element, vertically conducting material and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010541614

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820512

Country of ref document: EP

Kind code of ref document: A1