WO2011040266A1 - 樹脂積層板 - Google Patents

樹脂積層板 Download PDF

Info

Publication number
WO2011040266A1
WO2011040266A1 PCT/JP2010/066170 JP2010066170W WO2011040266A1 WO 2011040266 A1 WO2011040266 A1 WO 2011040266A1 JP 2010066170 W JP2010066170 W JP 2010066170W WO 2011040266 A1 WO2011040266 A1 WO 2011040266A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
resin laminate
gpa
laminate according
Prior art date
Application number
PCT/JP2010/066170
Other languages
English (en)
French (fr)
Inventor
高橋 克典
大輔 向畑
弥 鳴田
健輔 津村
和洋 沢
谷口 浩司
直之 永谷
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP10820385.2A priority Critical patent/EP2484518A4/en
Priority to CN2010800434212A priority patent/CN102548760A/zh
Priority to US13/388,376 priority patent/US20120128951A1/en
Publication of WO2011040266A1 publication Critical patent/WO2011040266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • E04C2/246Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20 combinations of materials fully covered by E04C2/16 and E04C2/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • the present invention relates to a resin laminate having a layer made of a thermoplastic resin or a thermosetting resin, and more particularly to a resin laminate capable of achieving both improvement in strength and weight reduction.
  • Patent Document 1 discloses a vehicle resin outer plate in which a skin film is laminated on one side of a resin base material made of a polypropylene resin foam in which glass fibers as reinforcing fibers are dispersed. Yes.
  • the surface layer of the polypropylene resin foam in which the glass fibers are dispersed is not foamed but is a skin layer, and the inner polypropylene resin foam portion is surrounded by the skin layer.
  • the resin base material is composed of a polypropylene resin foam portion in which the glass fiber is dispersed, so that the weight can be reduced and sufficient rigidity is provided.
  • the said skin film layer has the resin film layer bonded together to the resin base material, and the metal vapor deposition layer provided in the surface of the resin film layer. Since the surface has a metal texture due to the metal deposition layer, it is said that the appearance is enhanced.
  • the resin outer plate for a vehicle described above has been reduced in weight and strength, it has not yet had sufficient rigidity. Therefore, further improvement in strength is required.
  • the obtained resin outer plate for a vehicle has a problem that a dimensional variation due to a temperature change is relatively large.
  • An object of the present invention is to provide a resin laminate that can be reduced in weight and further improved in strength in view of the current state of the prior art described above, and is less likely to deteriorate in appearance.
  • the said 2nd layer is laminated
  • the second layer is located on both sides, the directionality in use can be eliminated when the appearance beauty is enhanced by the second layer. It is also possible to increase the degree of design freedom when selecting the materials and thicknesses constituting the first layer and the second layer so that the apparent flexural modulus is 2.5 GPa or more and 8.5 GPa or less. Become.
  • the thickness of the second layer is the plurality of second layers.
  • the thickness of the first layer refers to the total thickness of the plurality of first layers.
  • the ratio of the thickness of the first layer to the thickness of the second layer is in the range of 0.5 to 7.5, and the apparent bending elastic modulus of the resin laminate is 3.0 GPa or more. In this case, the strength of the laminate can be further increased. More preferably, the ratio between the thicknesses of the first layer and the second layer is in the range of 0.5 to 5, and the apparent flexural modulus is 3.5 GPa or more.
  • the ratio of the thickness of the first layer to the thickness of the second layer is in the range of 0.5 to 5, and the linear expansion coefficient is 5 ⁇ . 10 ⁇ 5 / K or less. In this case, dimensional fluctuation due to temperature change can be suppressed.
  • the thermoplastic resin is not particularly limited, but polyolefin or polyamide can be preferably used.
  • Polyolefin or polyamide is a general-purpose resin and can be obtained at a low cost, so that the cost of the resin laminate can be reduced.
  • the first layer has a foamed structure.
  • the resin laminate can be further reduced in weight.
  • the thermoplastic resin constituting the second layer may contain a graphite compound as a reinforcing filler.
  • the graphite compound has a graphene sheet structure.
  • the carbon compound having the graphene sheet structure include graphene, carbon nanotubes, graphite, and aggregates thereof.
  • the graphite compound is preferably exfoliated graphite made of a graphene laminate, the number of laminated layers is 150 layers or less, and the aspect ratio is 20 or more. In this case, since the graphite compound is extremely small, there is no risk of impairing the appearance, and the mechanical strength can be further increased.
  • thermoplastic resin constituting the second layer preferably does not include a filler for reinforcement. Accordingly, since the reinforcing filler does not appear on the surface of the second layer, the appearance can be further enhanced.
  • the second layer is made of a film having a tensile elastic modulus of 7.0 GPa or more and 11 GPa or less. In this case, the mechanical strength of the resin laminate can be further increased.
  • the linear expansion coefficient of the second layer is 2 ⁇ 10 ⁇ 5 / K or less. In this case, the dimensional stability when a temperature change is given can be further enhanced.
  • the second layer is made of a stretched polyethylene terephthalate film.
  • the mechanical strength and dimensional stability of the resin laminate can be further enhanced.
  • one of the second layers laminated on both surfaces of the first layer is made of a stretched film made of a thermoplastic resin, and the other is a thermoplastic resin. It consists of a network made of In this case, the mechanical strength of the resin laminate can be further increased.
  • a first flat yarn row composed of a plurality of first flat yarns extending in the stretching direction of the stretched film, and a direction intersecting with the extending direction of the first flat yarn.
  • a second flat yarn array composed of a plurality of second flat yarns extending in the direction. More preferably, the first and second flat yarn rows are made of a stretched thermoplastic resin. More preferably, the stretched film and the first and second flat yarn rows are made of stretched polyethylene terephthalate.
  • the resin laminate according to the present invention has a structure in which the second layer is laminated on both surfaces of the first layer made of the thermoplastic resin or the thermosetting resin.
  • the ratio of the thickness to the layer thickness is in the range of 0.5 to 10
  • the apparent bending elastic modulus obtained by JIS K7171 is 2.5 GPa or more, so that it has sufficient bending strength without increasing the thickness. Therefore, it becomes possible to achieve both improvement in mechanical strength and weight reduction of the resin laminate.
  • FIG. 1 is a front sectional view of a resin laminate according to the first embodiment of the present invention.
  • FIG. 2 is a front sectional view showing an example of a molded body made of the resin laminate of the first embodiment of the present invention.
  • FIG. 3 is a front cross-sectional view showing a resin laminate according to the second embodiment of the present invention.
  • FIG. 4 is a partially cutaway plan view showing an example of a mesh used as the second layer in the present invention.
  • FIG. 5 is a partially cutaway plan view showing another example of the mesh used as the second layer in the present invention.
  • the resin laminate according to the present invention has a first layer made of a thermoplastic resin or a thermosetting resin having a tensile elastic modulus of 0.8 to 2.0 GPa.
  • a second layer to be described later is laminated on both surfaces of the first layer.
  • the tensile elastic modulus of the first layer located in the center is in the range of 0.8 to 2.0 GPa, the overall tensile elastic modulus of the resin laminated plate can be sufficiently increased, and the machine of the resin laminated plate can be improved. Strength can be increased.
  • the tensile elastic modulus is less than 0.8 GPa, the tensile elastic modulus of the entire resin laminate cannot be sufficiently increased.
  • the preferable lower limit of the tensile elastic modulus is 1.0 GPa, and when it is 1.3 GPa or more, the mechanical strength of the resin laminate can be further increased. Resins having a tensile modulus exceeding 2.0 GPa are generally difficult to obtain except for those reinforced with glass fibers or the like.
  • thermoplastic resin having a tensile modulus of 0.8 to 2.0 GPa is not particularly limited, and an appropriate thermoplastic resin that satisfies this tensile modulus range can be used.
  • examples of such a thermoplastic resin include polyolefin, polyamide, polyester, polycarbonate, and the like.
  • polyolefins or polyamides are used.
  • the polyolefin is not particularly limited, and polypropylene, polyethylene and the like can be used.
  • polyamide polyamide 66, polyamide 6, polyamide 11 or the like can be used.
  • the thermoplastic resin constituting the first layer may contain components other than the thermoplastic resin, for example, additives such as plasticizers and inorganic fillers.
  • plasticizers such as carnauba wax and low molecular weight polyolefin can be used.
  • the inorganic filler include carbon black and talc.
  • the thermoplastic resin constituting the first layer may contain a reinforcing filler such as glass fiber, but preferably does not contain a reinforcing filler. It is desirable. When the reinforcing filler is included in the first layer, when the reinforcing filler protrudes from the surface of the first layer and reaches the second layer, the appearance properties of the resin laminate may be impaired. .
  • the first layer may have a foam structure or may not have a foam structure.
  • the 1st layer which has a foam structure it can obtain by foam-molding the thermoplastic resin which comprises the said 1st layer with a well-known foam molding method.
  • the specific gravity of the first layer having such a foam structure is not particularly limited, but is preferably in the range of 50 to 1000 kg / m 3 . If the specific gravity is within this range, further weight reduction can be achieved by levitation of the foam structure. In addition, the first layer becomes difficult to buckle, and it becomes even easier to make the apparent bending elastic modulus of the resin laminate satisfy the range of the present invention.
  • the bubble diameter in a foam structure is not specifically limited, It is preferable that it is 500 micrometers or less. By setting the thickness to 500 ⁇ m or less, a locally weak portion is hardly generated in the foam structure, and the first layer is hardly buckled. Therefore, it becomes easy to configure the first layer so that the apparent bending elastic modulus of the resin laminate meets the scope of the present invention.
  • the first layer may not have a foam structure.
  • the strength of the first layer can be increased and the first layer is unlikely to buckle, the apparent bending elastic modulus of the resin laminate is configured to satisfy the scope of the present invention. Is easy.
  • the second layer in the resin laminate according to the present invention is laminated on the first layer, and is made of a resin different from the thermoplastic resin constituting the first layer, and is a film, a woven fabric, or a non-woven fabric. And having a form selected from the group consisting of reticulate bodies.
  • the resin constituting the second layer is not particularly limited as long as the resin is different from the thermoplastic resin constituting the first layer.
  • the resin constituting the second layer has an apparent bending elastic modulus described later of the resin laminated plate of the present invention in which the second layer is laminated on both sides of the first layer and a specific range described later. It is necessary to be a resin that achieves this. That is, the thermoplastic resin constituting the first layer and the second layer are configured so that the first layer and the second layer jointly realize a specific apparent bending elastic modulus range. A combination of resins may be selected.
  • the resin that can form the second layer examples include polyester, polyolefin, polyamide, and polyimide.
  • a stretched polyethylene terephthalate film is preferably used. In this case, the orientation is enhanced by stretching, and therefore the mechanical strength is further increased. be able to.
  • an appropriate plasticizer or inorganic filler may be contained within a range not impairing the object of the present invention.
  • the second layer has a form selected from the group consisting of a film, a woven fabric, a non-woven fabric, and a net-like body. It is necessary that at least one surface of the outer surface of the resin laminate of the present invention is the second layer. Therefore, when the outer surface of the resin laminate is the second layer, the outer surface of the resin laminate becomes a film surface, a woven fabric surface, and a nonwoven fabric surface, and the appearance beauty of the resin laminate can be enhanced.
  • a film, a cloth and a non-woven fabric having no opening are desirable because the appearance is further improved.
  • thermoplastic resin constituting such a network an appropriate thermoplastic resin constituting the second layer can be used.
  • the network has a plurality of first flat yarns composed of a plurality of first flat yarns extending in a stretching direction of the stretched film, and a plurality extending in a direction intersecting with the extending direction of the first flat yarns. It is desirable to have a structure in which a second flat yarn array composed of a second flat yarn of a book is laminated. In this case, since the extending direction of the plurality of first flat yarns intersects with the extending direction of the plurality of second flat yarns, the anisotropy of the mechanical strength is more reliably reduced. be able to. More desirably, the first and second flat yarn arrays are made of stretched thermoplastic resin, more preferably stretched polyethylene terephthalate. In that case, the anisotropy of the mechanical strength can be reduced more effectively.
  • the second layer laminated on one side of the first layer is made of a stretched polyethylene terephthalate film, and the second layer laminated on the other side of the first layer is first, It has a structure in which a second flat yarn row is laminated, and the first and second flat yarn rows are made of drawn polyethylene terephthalate.
  • the mechanical strength of the resin laminate can be further increased, and the anisotropy of the mechanical strength can be more effectively reduced.
  • the tensile elastic modulus of the second layer is preferably 7.0 GPa or more and 11 GPa or less. If it is less than 7.0 GPa, the mechanical strength of the entire resin laminate may not be increased, and if it exceeds 11 GPa, the laminate may peel off, resulting in poor molding. Further, the linear expansion coefficient of the second layer is preferably 2 ⁇ 10 ⁇ 5 / K or less, and in this case, the dimensional stability of the resin laminate can be improved when a temperature change is given. .
  • a resin laminate 1 according to the first embodiment shown in FIG. 1 is a laminate having a three-layer structure in which a second layer 3 is laminated on both surfaces of the first layer 2.
  • the second layer may be laminated only on one side of the first layer, and in that case, a third layer made of another material may be further laminated outside the first layer.
  • the resin laminated plate 11 of 2nd Embodiment shown in FIG. 3 the 2nd layer 12, the 1st layer 13, the 2nd layer 14, the 1st layer 15, and the 2nd in order from the top. Layers 16 are stacked in this order.
  • the resin laminate of the present invention may be a laminate having a five-layer structure.
  • the laminate is not limited to a laminate of three layers and five layers, and may be a laminate in which more first and second layers are laminated.
  • one layer is made of a stretched film made of a thermoplastic resin, and the other is made of a network made of a thermoplastic resin.
  • a stretched film made of a thermoplastic resin
  • the other is made of a network made of a thermoplastic resin.
  • the second flat yarn row 21B is laminated on the first flat yarn row 21A.
  • the first flat yarn row 21A has a plurality of first flat yarns 21a.
  • the plurality of first flat yarns 21a are arranged in parallel with each other at a predetermined pitch.
  • the second flat yarn row 21B has a plurality of second flat yarns 21b arranged in parallel with each other at a predetermined pitch.
  • first flat yarn 21a and the second flat yarn 21b intersect with each other in directions orthogonal to each other.
  • the direction in which the flat yarn 21a extends and the direction in which the flat yarn 21b extend are different, and are particularly perpendicular to each other. Anisotropy can be effectively reduced.
  • the extending direction of the first flat yarn 21a and the extending direction of the second flat yarn 21b are not orthogonal to each other, and the two may intersect in an oblique direction.
  • the method of laminating and integrating the first flat yarn row 21A and the second flat yarn row 21B is not particularly limited, but the first flat yarn row 21A made of a thermoplastic resin and the first flat yarn row 21A made of a thermoplastic resin.
  • a suitable method such as a method of fusing the two flat yarn rows 21B or a method of forming the first and second flat yarn rows 21A and 21B from thermoplastic resin and stacking them together before solidification. Can be used.
  • the network is not limited to the one shown in FIGS. 4 and 5, and a network having an appropriate structure can be used as long as the mechanical strength anisotropy can be relaxed.
  • the present invention is not limited to the stacked first and second flat yarn rows 21A and 21B, and a net formed by knitting a plurality of first flat yarns and second flat yarns may be used. good.
  • the resin laminate according to the present invention, the first layer and the thickness t 1, the ratio t 1 / t 2 and the thickness t 2 of the second layer is located and the resin laminate in the range of 0.5 to 10
  • the apparent bending elastic modulus obtained by the bending test of JIS K7171 is 2.5 GPa or more and 8.5 GPa or less.
  • the total thickness of the plurality of first layers is defined as a thickness t 1 of the first layer.
  • the second layer is provided with a plurality of thickness t 2 of the second layer, the total thickness of the plurality of second layers.
  • the thickness ratio t 1 / t 2 is less than 0.5, the thickness t 1 of the first layer becomes too thin, and sufficient moldability and shapeability cannot be obtained. becomes too thin thickness of layer t 2, the mechanical strength of the resin laminate is lowered. Moreover, since the apparent bending elastic modulus is 2.5 GPa or more, the resin laminate according to the present invention has a sufficient mechanical strength and is suitable for applications requiring mechanical strength, such as a vehicle exterior plate. Can be used.
  • the upper limit of the apparent bending elastic modulus is not particularly limited in terms of increasing mechanical strength, but the apparent bending elastic modulus of this type of resin laminate is usually not more than 8.5 GPa as long as an existing material is used. Therefore, it is 8.5 GPa or less.
  • the thickness t 1 of the first layer is in the ratio t 1 / t 2 ranges from 0.5 to 7.5 and the thickness t 2 of the second layer, apparently bending elastic modulus of the resin laminate 3.0 GPa or more, in which case the mechanical strength of the resin laminate can be further increased, and more preferably the thickness ratio is in the range of 0.5 to 5 and the apparent flexural modulus is It is 3.0 GPa or more, whereby the mechanical strength can be further increased.
  • the thickness ratio is in the range of 0.5 to 5, and the linear expansion coefficient is 5 ⁇ 10 ⁇ 5 / K or less. In this case, the dimensional stability when a temperature change is given can be improved.
  • the resin laminate according to the present invention is not particularly limited as long as a laminated structure in which the second layer is laminated on the first layer can be obtained.
  • a method of thermally fusing a film, woven fabric, or nonwoven fabric constituting the second layer to the resin layer constituting the first layer can be suitably used.
  • a resin laminate may be obtained by co-extrusion of the first layer and the second layer.
  • thermoplastic resin molded products, thermoplastic resin laminates, etc. contain fibrous reinforcing materials such as glass fibers and carbon fibers, and other reinforcing fillers such as calcium carbonate in order to increase mechanical strength. It is generally done. However, when the reinforcing filler is used, irregularities derived from the reinforcing filler may occur on the outer surface, and the appearance may be impaired. Therefore, in the resin laminate according to the present invention, it is preferable that the second layer located on the surface does not contain the reinforcing filler. More preferably, the first layer also does not contain a reinforcing filler.
  • the ratio of the thickness t 2 of the thickness t 1 of the first layer and the second layer is in the above specific range, and an elastic bending apparent of the resin laminate Since the rate is 2.5 GPa or more and 8.5 GPa or less, the strength can be improved without impairing the appearance.
  • the second layer may contain glass fiber, graphite compound, or the like as a reinforcing filler.
  • the mechanical strength of the resin laminate can be further increased. Since it is difficult to cause unevenness on the outer surface, for example, a graphite compound having a graphene sheet structure is suitably used as the reinforcing filler contained in the second layer.
  • Examples of the graphite compound having the graphene sheet structure include graphene, carbon nanotubes, graphite, and aggregates thereof.
  • the graphite compound is preferably flaky graphite composed of a laminate of the graphene sheets. If the graphite compound is a sufficiently small flake, the outer surface of the second layer is more difficult to be uneven. Specifically, a flaky graphite compound having a laminate number of 150 or less and an aspect ratio of 20 or more is desirable. If the number of laminated layers exceeds 150, the outer surface of the second layer may be uneven. In addition, if the aspect ratio of the laminate is less than 20, irregularities may occur on the outer surface of the second layer.
  • the content of the graphite compound in the second layer is preferably 1% by weight to 16% by weight, and more preferably 5% by weight to 40% by weight. If the content of the graphite compound is too small, the mechanical strength of the resin laminate may not be increased, and if the content of the graphite compound is too large, the laminate may peel off, resulting in poor molding. There is.
  • Example 1 The second layer was thermally fused on both sides of the first layer to obtain a three-layered resin laminate.
  • a polypropylene resin layer having a thickness of 1.0 mm (polypropylene manufactured by Prime Polymer Co., Ltd., product number: J-721GR, tensile elastic modulus: 1.2 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K)
  • a layer 2 0.2 mm super-stretched polyethylene terephthalate film (manufactured by Sekisui Chemical Co., Ltd., tensile elastic modulus: 9 GPa, linear expansion coefficient: 0.5 ⁇ 10 ⁇ 5 / K) was thermally fused at a temperature of 270 ° C.
  • a resin laminate was obtained.
  • Tensile elastic modulus of the first layer in the resin laminate showing a thickness t 1 of the first layer the ratio t 1 / t 2 and the thickness t 2 of the second layer in Table 1 below.
  • required by the bending test of JISK7171 of the obtained resin laminated board are combined with following Table 1, and are shown.
  • the bending elastic modulus of the resin laminate in the extending direction of the second layer and the bending elastic modulus in the direction perpendicular to the extending direction were obtained, and the average of these was taken as the bending elastic modulus.
  • Table 1 shows the apparent bending elastic modulus, the bending elastic modulus in the stretching direction, the bending elastic modulus in the direction perpendicular to the stretching direction, the bending elastic modulus in the stretching direction / vertical bending elastic modulus, and the linear expansion coefficient. .
  • Example 2 A resin laminate was obtained in the same manner as in Example 1 except that the thickness ratio between the first layer and the second layer was changed from 2.5 to 4. This resin laminate had an apparent flexural modulus of 4.1 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • Example 3 A resin laminate was obtained in the same manner as in Example 1 except that the thickness ratio between the first layer and the second layer was changed from 2.5 to 6. This resin laminate had an apparent flexural modulus of 3.6 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • Example 4 A resin laminate was prepared in the same manner as in Example 1 except that polypropylene (manufactured by Prime Polymer Co., Ltd., product number: J-2003GP, tensile elastic modulus: 1.8 GPa) was used as the resin constituting the first layer. Obtained.
  • This resin laminate had an apparent flexural modulus of 4.6 GPa and a linear expansion coefficient of 2 ⁇ 10 ⁇ 5 / K.
  • Example 5 A resin laminate was obtained in the same manner as in Example 4 except that the thickness ratio between the first layer and the second layer was changed from 2.5 to 4. The resulting resin laminate had an apparent flexural modulus of 4.4 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • Example 6 A resin laminate was obtained in the same manner as in Example 4 except that the thickness ratio between the first layer and the second layer was changed from 2.5 to 6. The resulting resin laminate had an apparent flexural modulus of 4 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • Example 7 Using the same first layer as in Example 1, heat was applied to the second layer made of the 0.2 mm super-stretched polyethylene terephthalate film used in Example 1 on one side of the first layer in the same manner as in Example 1. While fusing, the following reticulate was similarly heat-sealed at a temperature of 270 ° C. on the opposite surface to obtain a resin laminate.
  • a mesh body in which the first and second flat yarn rows made of the ultra-stretched polyethylene terephthalate film used in Example 1 were laminated was prepared.
  • the shapes of the first flat yarn and the second flat yarn were elongated strips, the length direction was the stretching direction, the width direction dimension was 3 mm, and the thickness was 0.2 mm.
  • each pitch of the 1st flat yarn and the 2nd flat yarn was 6 mm.
  • the resulting resin laminate had an apparent flexural modulus of 4.5 GPa and a linear expansion coefficient of 2 ⁇ 10 ⁇ 5 / K.
  • Example 8 Two ultra-stretched polyethylene terephthalate films used in Example 1 were laid in the mold. Between these two ultra-stretched polyethylene terephthalate films, as a thermosetting resin, a main component (product number: X-2422AS) of a urethane resin for column type (manufactured by Nissin Resin Co., product number: ADAPT X-2422) and a curing agent (product number: X-2422B) was injected at a weight ratio of 100: 150 and heated at a temperature of 70 ° C. to form a resin laminate.
  • a main component product number: X-2422AS
  • a urethane resin for column type manufactured by Nissin Resin Co., product number: ADAPT X-2422
  • a curing agent product number: X-2422B
  • Example 8 tensile modulus of the first layer of the obtained resin laminate, the ratio t 1 / t 2 of the thickness t 1 of the first layer and the thickness t 2 of the second layer, the apparent flexural modulus
  • the rates and linear expansion coefficients are shown in Table 1 below.
  • Example 9 instead of using the two super-stretched polyethylene terephthalate films of Example 8, the network used in Example 7 was laid on one super-stretched polyethylene terephthalate film, and in the same manner as in Example 8 below. A resin laminate was molded.
  • the resulting resin laminate had an apparent flexural modulus of 3.5 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • Example 10 By foam molding glass fiber reinforced polypropylene (manufactured by Prime Polymer Co., Ltd., trade name: Mostron L-4040P, tensile elastic modulus: 9.0 GPa, linear expansion coefficient: 5 ⁇ 10 ⁇ 5 / K, specific gravity 1200 kg / m 3 ) A foamed resin sheet having a thickness of 1.0 mm, a specific gravity of 400 kg / m 3 and a foaming ratio of 3 times was prepared. A resin laminate was obtained in the same manner as in Example 1 except that this foamed sheet was used as the first layer. The resulting resin laminate had an apparent flexural modulus of 5.7 GPa and a linear expansion coefficient of 2 ⁇ 10 ⁇ 5 / K.
  • Example 11 As the second layer, instead of the super-stretched PET film used in Example 1, a flaky graphite compound comprising a laminate of graphene sheets (manufactured by XG-Science, product number: XGnP-5, number of layers: 180, aspect ratio) Ratio: 100) polypropylene resin (EA-9; manufactured by Nippon Polypro Co., Ltd., tensile elastic modulus: 1.6 GPa, linear expansion coefficient: 11 ⁇ 10 ⁇ 5 / K) A resin laminate was obtained in the same manner as in Example 1 except that the film was used. The resulting resin laminate had an apparent flexural modulus of 5.8 GPa and a linear expansion coefficient of 3 ⁇ 10 ⁇ 5 / K.
  • EA-9 polypropylene resin
  • Example 1 As the second layer, a film made of a polypropylene resin (product number: Mostron L-2040P manufactured by Prime Polymer Co., Ltd.) containing 20% by weight of glass fiber is used in place of the ultra-stretched PET film used in Example 1.
  • a resin laminate was obtained in the same manner as in Example 1 except that. This resin laminate had an apparent flexural modulus of 2.3 GPa and a linear expansion coefficient of 9 ⁇ 10 ⁇ 5 / K.
  • This resin plate had an apparent flexural modulus of 0.7 GPa and a linear expansion coefficient of 10 ⁇ 10 ⁇ 5 / K.
  • Comparative Example 1 since the second layer contains glass fiber, irregularities derived from glass fiber were observed on the surface.
  • Comparative Example 2 since the second layer did not exist, the surface of the resin plate had dents and irregularities in a considerable proportion. Therefore, the appearance beauty was inferior. On the other hand, in Examples 1 to 11, such irregularities were not seen. Therefore, in Examples 1 to 11, it can be seen that since the second layer exists in the outermost layer, the surface smoothness is excellent, and thus the appearance of the resin laminate can be enhanced.
  • Example 7 and 9 the above unevenness was not seen on the surface opposite to the side where the mesh body was arranged. Accordingly, in the resin laminates obtained in Examples 7 and 9, the appearance beauty can be enhanced by using the surface opposite to the side on which the mesh is laminated as the side exposed to the outside. In addition, since the net-like body is provided, it is possible to reduce the stretching bending modulus / vertical bending modulus. That is, the anisotropy of mechanical strength can be relaxed.
  • FIG. 2 is a cross-sectional view of the vehicle exterior board 1A obtained by bending the resin laminate 1 shown in FIG. Since the resin laminated board 1 has the structure which laminated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

 軽量化及びより一層の強度の向上を図ることができ、しかも外観性が悪化しがたい、樹脂積層板を得る。 熱可塑性樹脂または熱硬化性樹脂からなる層を積層構造中に有する樹脂積層板であって、引っ張り弾性率が0.8~2.0GPaである熱可塑性樹脂または熱硬化性樹脂からなる第1の層2と、前記第1の層2に積層されており、第1の層2を構成している前記熱可塑性樹脂または熱硬化性樹脂とは異なる樹脂からなり、フィルム、織布、不織布及び網状体からなる群から選択された形態を有する第2の層3とを備え、前記第1の層2の厚みと第2の層3の厚みとの比が0.5~10の範囲にあり、かつ前記樹脂積層板のJIS K7171の曲げ試験により求められた見かけ曲げ弾性率が2.5GPa以上、8.5GPa以下である、樹脂積層板1。

Description

樹脂積層板
 本発明は、熱可塑性樹脂または熱硬化性樹脂からなる層を有する樹脂積層板に関し、より詳細には、強度の向上と軽量化とを両立し得る樹脂積層板に関する。
 車両の外装などには、軽量化を図るために、樹脂からなる外装板が用いられつつある。もっとも、金属に比べて、樹脂は強度が低いという問題があった。
 一般に、樹脂積層板において充分な強度を得るには、厚みを厚くする必要がある。しかしながら、厚くなると、重くなり、軽量化を図ることができない。そこで、熱可塑性樹脂に機械的強度を高めるための補強充填材としてガラス繊維を分散した構造などが多用されている。もっとも、ガラス繊維等を分散させた場合、表面性状が悪化するという問題がある。
 そこで、下記の特許文献1には、補強繊維としてのガラス繊維が分散されたポリプロピレン系樹脂発泡体からなる樹脂基材の片面に表皮フィルムを積層してなる車両用樹脂製外板が開示されている。この車両用樹脂製外板では、ガラス繊維が分散されたポリプロピレン系樹脂発泡体の表面層は発泡しておらずスキン層とされており、スキン層により内部のポリプロピレン系樹脂発泡体部分が取り囲まれている。上記樹脂基材の大部分が上記ガラス繊維が分散されたポリプロピレン系樹脂発泡体部分からなるため、軽量化を図ることができ、しかも充分な剛性を有すると記載されている。また、上記表皮フィルム層は、樹脂基材に貼り合わされる樹脂フィルム層と、樹脂フィルム層の表面に設けられた金属蒸着層とを有している。金属蒸着層により、表面が金属の質感を有するため、外観性を高めるとされている。
特許第4028699号
 特許文献1に記載の車両用樹脂製外板では、表皮フィルム層が上記樹脂基材に貼り合わされて表面が形成されているので、ガラス繊維が表面に現れがたいため外観性が高められている。
 しかしながら、上記車両用樹脂製外板では、一応の軽量化及び強度の向上は図られているものの、なお充分な剛性を有するものではなかった。従ってより一層の強度の向上が求められている。加えて、得られた車両用樹脂製外板では、温度変化による寸法ばらつきが比較的大きいという問題があった。
 本発明の目的は、上述した従来技術の現状に鑑み、軽量化及びより一層の強度の向上を図ることができ、しかも外観性が悪化しがたい、樹脂積層板を提供することにある。
 熱可塑性樹脂または熱硬化性樹脂からなる層を積層構造中に有する樹脂積層板であって、引っ張り弾性率が0.8~2.0GPaである熱可塑性樹脂または熱硬化性樹脂からなる第1の層と、前記第1の層に積層されており、第1の層を構成している前記熱可塑性樹脂または熱硬化性樹脂とは異なる樹脂からなり、フィルム、織布、不織布及び網状体からなる群から選択された形態を有する第2の層とを備え、前記第1の層の厚みと第2の層の厚みとの比が0.5~10の範囲にあり、かつ前記樹脂積層板のJIS K7171の曲げ試験により求められた見かけ曲げ弾性率が2.5GPa以上、8.5GPa以下である、樹脂積層板が提供される。
 本発明に係る樹脂積層板のある特定の局面では、前記第1の層の両面に前記第2の層が積層されており、前記第2の層の厚みが両面の第2の層の厚みの合計である。この場合には、両面に第2の層が位置するので、第2の層により外観美を高める場合、使用に際しての方向性をなくすことができる。また、見かけ曲げ弾性率を2.5GPa以上、8.5GPa以下とするように第1の層及び第2の層を構成する材料や厚みを選択するに際しての設計の自由度を高めることも可能となる。
 なお、第1の層の厚みと第2の層の厚みとの比に関し、上記のように複数の第2の層が設けられている場合には、第2層の厚みは複数の第2の層の厚みの合計とする。同様に、本発明の樹脂積層板が第1の層を複数有する場合には、上記第1の層の厚みとは、複数の第1の層の厚みの合計をいうものとする。
 本発明の他の特定の局面では、前記第1の層の厚みと第2の層の厚みとの比が0.5~7.5の範囲にあり、前記樹脂積層板の見かけ曲げ弾性率が3.0GPa以上である。この場合には、積層板の強度をより一層高めることができる。より好ましくは、前記第1の層と前記第2の層の厚みとの比が0.5~5の範囲にあり、前記見かけ曲げ弾性率が3.5GPa以上である。
 本発明に係る樹脂積層板のさらに他の特定の局面では、前記第1の層の厚みと第2の層の厚みとの比が0.5~5の範囲にあり、線膨張係数が5×10-5/K以下である。この場合には、温度変化による寸法の変動を抑制することができる。
 本発明における樹脂積層板において、上記熱可塑性樹脂としては特に限定されないが、好ましくは、ポリオレフィンまたはポリアミドを用いることができる。ポリオレフィンまたはポリアミドは汎用の樹脂であり、安価に入手することができるため、樹脂積層板のコストを低減することができる。
 本発明における樹脂積層板のさらに別の局面では、上記第1の層は発泡構造を有している。この場合には、樹脂積層板のさらなる軽量化を図ることができる。
 また、第2の層を構成している熱可塑性樹脂は、補強用充填剤として黒鉛化合物を含んでいてもよい。好ましくは、上記黒鉛化合物はグラフェンシート構造を有していることが望ましい。このグラフェンシート構造を有する炭素化合物としては、グラフェン、カーボンナノチューブ、グラファイト、及びそれらの集合体等が挙げられる。上記黒鉛化合物は、好ましくは、グラフェンの積層体からなる薄片化した黒鉛であり、積層数が150層以下であり、且つアスペクト比が20以上である。この場合には、上記黒鉛化合物が極めて小さいために、外観性を損なうおそれがなく、機械的強度をより一層高めることができる。
 もっとも、第2の層を構成している熱可塑性樹脂は、好ましくは、補強のための充填材を含まない。従って、第2の層の表面に補強用充填材が現れないため、外観性をより一層高めることができる。
 本発明の樹脂積層板のさらに他の特定の局面では、前記第2の層が引っ張り弾性率7.0GPa以上、11GPa以下のフィルムからなる。この場合には、樹脂積層板の機械的強度をより一層高めることができる。
 本発明に係る樹脂積層板のさらに他の特定の局面では、前記第2の層の線膨張係数が2×10-5/K以下である。この場合には、温度変化が与えられた際の寸法安定性をより一層高めることができる。
 本発明に係る樹脂積層板のさらに別の特定の局面では、前記第2の層が、延伸ポリエチレンテレフタレートフィルムからなる。この場合には、樹脂積層板の機械的強度及び寸法安定性をより一層高めることができる。
 本発明に係る樹脂積層板のさらに他の特定の局面では、前記第1の層の両面に積層された前記第2の層の一方が熱可塑性樹脂よりなる延伸フィルムからなり、他方が熱可塑性樹脂からなる網状体からなる。この場合には、樹脂積層板の機械的強度をより一層高めることができる。このような網状体としては、好ましくは、前記延伸フィルムの延伸方向に延びる複数本の第1のフラットヤーンからなる第1のフラットヤーン列と、前記第1のフラットヤーンの延びる方向と交差する方向に延びる複数本の第2のフラットヤーンからなる第2のフラットヤーン列とが積層されている熱可塑性樹脂網状体である。より好ましくは、前記第1,第2のフラットヤーン列が、延伸熱可塑性樹脂からなる。さらに好ましくは、前記延伸フィルム及び前記第1,第2のフラットヤーン列が、延伸ポリエチレンテレフタレートからなる。
 本発明に係る樹脂積層板は、上記熱可塑性樹脂または熱硬化性樹脂からなる第1の層の両面に上記第2の層が積層された構造を有し、第1の層の厚みと第2の層の厚みとの比が0.5~10の範囲内において、JIS K7171により求められた見かけ曲げ弾性率が2.5GPa以上であるため、厚みをさほど厚くせずとも充分な曲げ強度を有することとなるため、樹脂積層板の機械的強度の向上と軽量化とを両立することが可能となる。
図1は、本発明の第1の実施形態に係る樹脂積層板の正面断面図である。 図2は、本発明の第1の実施形態の樹脂積層板からなる成形体の実施例を示す正面断面図である。 図3は、本発明の第2の実施形態に係る樹脂積層板を示す正面断面図である。 図4は、本発明において第2の層として用いられる網状体の一例を示す部分切欠平面図である。 図5は、本発明において第2の層として用いられる網状体の他の例を示す部分切欠平面図である。
 以下、本発明の樹脂積層板の詳細及び本発明の具体的な実施形態に係る樹脂積層板を図面を参照しつつ説明する。
 (第1の層)
 本発明に係る樹脂積層板は、引っ張り弾性率が0.8~2.0GPaである熱可塑性樹脂または熱硬化性樹脂からなる第1の層を有する。第1の層の両面に後述の第2の層が積層されている。この構造において、中央に位置する第1の層の引っ張り弾性率が0.8~2.0GPaの範囲にあるため、樹脂積層板の全体の引っ張り弾性率が充分に高められ、樹脂積層板の機械的強度を高めることができる。引っ張り弾性率が0.8GPa未満である場合、樹脂積層板全体の引っ張り弾性率を充分に高めることができない。引っ張り弾性率の好ましい下限は1.0GPaであり、1.3GPa以上である場合には、樹脂積層板の機械的強度をより一層高めることができる。引っ張り弾性率が2.0GPaを超える樹脂は、ガラス繊維などにより補強されているものを除いて、一般的に入手困難である。
 上記引っ張り弾性率が0.8~2.0GPaである熱可塑性樹脂は特に限定されず、この引っ張り弾性率範囲を満たす適宜の熱可塑性樹脂を用いることができる。このような熱可塑性樹脂としては、ポリオレフィン、ポリアミド、ポリエステル、ポリカーボネートなどを挙げることができる。好ましくは、上記引っ張り弾性率範囲を満たす樹脂が多く、汎用されているため入手が容易であり、安価であるため、ポリオレフィンまたはポリアミドが用いられる。ポリオレフィンとしては、特に限定されず、ポリプロピレン、ポリエチレンなどを用いることができる。ポリアミドとしては、ポリアミド66、ポリアミド6、ポリアミド11などを用いることができる。
 上記第1の層を構成している熱可塑性樹脂は、上記熱可塑性樹脂以外の他の成分、例えば可塑剤、無機充填材などの添加剤を、含んでいてもよい。このような可塑剤としては、カルナバ蝋、低分子量ポリオレフィンなどの公知の可塑剤を用いることができる。また、上記無機充填材としては、カーボンブラック、タルクなどを挙げることができる。また、機械的強度を高めるうえで、第1の層を構成している熱可塑性樹脂は、ガラスファイバーなどの補強用充填材を含んでいてもよいが、好ましくは、補強用充填材を含まないことが望ましい。第1の層に補強用充填材が含まれている場合、該補強用充填材が第1の層の表面から突出し、第2の層に至る場合、樹脂積層板の外観性状を損なうおそれがある。
 本発明においては、第1の層は発泡構造をしていてもよく、発泡構造を有しておらずともよい。発泡構造を有する第1の層については、上記第1の層を構成する熱可塑性樹脂を公知の発泡成形方法により発泡成形することにより得ることができる。このような発泡構造を有する第1の層の比重は特に限定されないが、50~1000kg/mの範囲が好ましい。比重がこの範囲内であれば、発泡構造の浮揚により、より一層の軽量化を図ることができる。また、第1の層が座屈し難くなり、樹脂積層板の見かけの曲げ弾性率を本発明の範囲を満たすようにすることがより一層容易となる。発泡構造における気泡径は、特に限定されないが、500μm以下であることが好ましい。500μm以下とすることにより、発泡構造中に局所的に弱い部分が生じ難く、第1の層が座屈し難くなる。従って、樹脂積層板の見かけの曲げ弾性率を本発明の範囲を満たすように第1の層を構成することが容易となる。
 上記のとおり、第1の層は発泡構造を有しておらずともよい。その場合には第1の層の強度を高めることができ、かつ第1の層の座屈が生じ難いので、樹脂積層板の見かけの曲げ弾性率を本発明の範囲を満たすようにする構成することが容易である。
 (第2の層)
 本発明に係る樹脂積層板における第2の層は、第1の層に積層されており、第1の層を構成している前記熱可塑性樹脂とは異なる樹脂からなり、フィルム、織布、不織布及び網状体からなる群から選択される形態を有する。第2の層を構成している樹脂は、第1の層を構成している前記熱可塑性樹脂とは異なる樹脂からなる限り、その樹脂は特に限定される訳ではない。もっとも、第2の層を構成している樹脂は、第1の層の両面に第2の層を積層してなる本発明の樹脂積層板の後述の見かけ曲げ弾性率が後述の特定の範囲となることを実現する樹脂であることが必要である。すなわち、第1の層と第2の層とが共同して特定の見かけ曲げ弾性率範囲を実現するように、第1の層を構成している熱可塑性樹脂と第2の層を構成している樹脂の組み合わせを選択すればよい。
 第2の層を構成し得る樹脂としては、ポリエステル、ポリオレフィン、ポリアミド、ポリイミドなどを挙げることができる。上記第2の層を構成している熱可塑性樹脂としては、好ましくは、延伸ポリエチレンテレフタレートフィルムが用いられ、その場合には、延伸により配向性が高められているため、機械的強度をより一層高めることができる。
 第2の層を構成している樹脂においても、本発明の目的を阻害しない範囲で、適宜の可塑剤や無機充填材等が含有されていてもよい。
 上記第2の層は、フィルム、織布、不織布及び網状体からなる群から選択された形態を有する。本発明の樹脂積層板の外表面の少なくとも一方面が第の2層となることが必要である。そのため、樹脂積層板外表面が、第2の層となることにより、樹脂積層板の外表面がフィルム面、織布面及び不織布面となり、樹脂積層板の外観美を高めることができる。好ましくは、開口部を有しないフィルム、布及び不織布が、外観性をより一層高めるため、望ましい。
 このような網状体を構成する熱可塑性樹脂についても、上記第2の層を構成する適宜の熱可塑性樹脂を用いることができる。
 好ましくは、上記網状体は、前記延伸フィルムの延伸方向に延びる複数本の第1のフラットヤーンからなる第1のフラットヤーン列と、前記第1のフラットヤーンの延びる方向と交差する方向に延びる複数本の第2のフラットヤーンからなる第2のフラットヤーン列とが積層されている構造を有することが望ましい。この場合には、複数本の第1のフラットヤーンの延びる方向と複数本の第2のフラットヤーンの延びる方向とが交差しているため、上記機械的強度の異方性をより確実に緩和することができる。より望ましくは、第1,第2のフラットヤーン列が、延伸熱可塑性樹脂、さらに好ましくは延伸ポリエチレンテレフタレートからなる。その場合には、上記機械的強度の異方性をより効果的に緩和することができる。
 最も好ましくは、上記第1の層の一方面に積層されている第2の層が延伸ポリエチレンテレフタレートフィルムからなり、上記第1の層の他方面に積層されている第2の層が第1,第2のフラットヤーン列を積層した構造を有し、該第1,第2のフラットヤーン列が延伸ポリエチレンテレフタレートからなる。この場合には、樹脂積層板の機械的強度をより一層高め、かつ該機械的強度の異方性をより効果的に緩和することができる。
 第2の層の引っ張り弾性率は、好ましくは、7.0GPa以上、11GPa以下である。7.0GPa未満の場合には、樹脂積層板全体の機械的強度を高め得ないことがあり、11GPaを超えると積層体が剥離するなどして成形不良となることがある。また、第2の層の線膨張係数が、好ましくは2×10-5/K以下であり、その場合には、温度変化が与えられた際の樹脂積層板の寸法安定性を高めることができる。
 (樹脂積層板の実施形態)
 図1に示す第1の実施形態の樹脂積層板1は、上記第1の層2の両面に第2の層3が積層されている、3層構造の積層体である。もっとも、本発明においては、樹脂積層板における積層構造において、第1の層に第2の層が積層されている限りこれに限定されるものではない。従って、第2の層は第1の層の片面にのみ積層されていてもよく、その場合、さらに第1の層の外側に他の材料からなる第3の層が積層されていてもよい。
 また、図3に示す第2の実施形態の樹脂積層板11では、上から順番に、第2の層12、第1の層13、第2の層14、第1の層15及び第2の層16がこの順序で積層されている。このように、本発明の樹脂積層板は5層構造の積層体であってもよい。
 また、3層及び5層の積層体に限らず、より多くの第1,第2の層が積層されている積層体であってもよい。
 前述したように、第1の層の両面に第2の層が積層されている構造において、一方の層が熱可塑性樹脂よりなる延伸フィルムからなり、他方が熱可塑性樹脂からなる網状体からなることが望ましいが、このような網状体の形状例を図4及び図5を参照して説明する。
 図4に示す網状体21では、第1のフラットヤーン列21Aに、第2のフラットヤーン列21Bが積層されている。第1のフラットヤーン列21Aは、複数本の第1のフラットヤーン21aを有する。複数本の第1のフラットヤーン21aは、所定のピッチを隔てて互いに平行に配置されている。同様に、第2のフラットヤーン列21Bは、互いに平行にかつ所定のピッチで配置された複数本の第2のフラットヤーン21bを有する。
 第1のフラットヤーン21aと第2のフラットヤーン21bは、本構造例では、互いに直交する方向に交差している。
 上記網状体21を、第2の層として用いた場合、フラットヤーン21aの延びる方向とフラットヤーン21bの延びる方向とが異なっているため、特に直交しているため、樹脂積層板の機械的強度の異方性を効果的に緩和することができる。
 なお、図5に示す構造例のように、第1のフラットヤーン21aの延びる方向と第2のフラットヤーン21bの延びる方向は直交する方向ではなく、両者が斜め方向に交差していてもよい。
 上記第1のフラットヤーン列21Aと第2のフラットヤーン列21Bを積層し一体化する方法については特に限定されないが、熱可塑性樹脂よりなる第1のフラットヤーン列21Aと、熱可塑性樹脂よりなる第2のフラットヤーン列21Bとを融着する方法、あるいは第1,第2のフラットヤーン列21A,21Bを熱可塑性樹脂より成形しつつ固化に至る前に積層し結合する方法などの適宜の方法を用いることができる。
 なお、上記網状体は、図4及び図5に示した構造のものに限られず、機械的強度の異方性を緩和し得る限り、適宜の構造の網状体を用いることができる。すなわち、第1,第2のフラットヤーン列21A,21Bを積層したものに限らず、複数本の第1のフラットヤーンと第2のフラットヤーンとを編むことにより形成された網状体を用いても良い。
 (厚みの比及び見かけ曲げ弾性率)
 本発明に係る樹脂積層板では、第1の層の厚みtと、第2の層の厚みtとの比t/tが0.5~10の範囲にありかつ樹脂積層板のJIS K7171の曲げ試験により求められた見かけ曲げ弾性率が2.5GPa以上、8.5GPa以下である。ここで、第1の層が複数層設けられている場合には、複数の第1の層の厚みの合計を第1の層の厚みtとする。同様に、樹脂積層板において、第2の層が複数設けられている場合上記第2の層の厚みtは、複数の第2の層の厚みの合計とする。厚みの比t/tが0.5未満では、第1の層の厚みtが薄くなりすぎ、充分な成形性や賦形性を得ることができず、10を超えると、第2の層tの厚みが薄くなりすぎ、樹脂積層板の機械的強度が低くなる。また、上記見かけ曲げ弾性率が2.5GPa以上であるため、本発明に係る樹脂積層板は、充分な機械的強度を有し、機械的強度が求められる用途、例えば車両用外装板に好適に用いることができる。
 上記見かけ曲げ弾性率の上限は、機械的強度を高めるうえでは特に限定されないが、この種の樹脂積層板の上記見かけ曲げ弾性率は、既存の材料を用いる限り8.5GPaを超えることは通常ないため、8.5GPa以下である。
 好ましくは、第1の層の厚みtと第2の層の厚みtとの比t/tが0.5~7.5の範囲にあり、樹脂積層板の見かけ曲げ弾性率が3.0GPa以上であり、その場合には樹脂積層板の機械的強度をより一層高めることかでき、より好ましくは上記厚みの比が0.5~5の範囲にありかつ上記見かけ曲げ弾性率が3.0GPa以上であり、それによって機械的強度をより一層高めることかできる。また、好ましくは、上記厚みの比が0.5~5の範囲にありかつ線膨張係数が5×10-5/K以下である。この場合には、温度変化が与えられた場合の寸法安定性を高めることができる。
 (製造方法)
 本発明に係る樹脂積層板は、第1の層に第2の層を積層した積層構造を得ることができる限り特に限定されない。例えば、第1の層を構成する樹脂層に、第2の層を構成するフィルム、織布または不織布を熱融着する方法を好適に用いることができる。あるいは、第1の層と第2の層とを共押出しすることにより樹脂積層板を得てもよい。
 (補強用充填材)
 一般に、熱可塑性樹脂成形品や、熱可塑性樹脂積層体等においては、機械的強度を高めるためにガラスファイバーやカーボンファイバーなどの繊維状補強材や、炭酸カルシウムなどの他の補強用充填材を含有させることが一般に行われている。しかしながら、補強用充填材を用いた場合、外表面に補強用充填材に由来する凹凸が生じ、外観美が損なわれることがある。従って、本発明に係る樹脂積層板では、表面に位置する第2の層が、上記補強用充填材を含まないことが好ましい。より好ましくは、第1の層も補強用充填材を含まないことが好ましい。本発明では、補強用充填材を用いずとも、第1の層の厚みtと第2の層の厚みtとの比が上記特定の範囲にあり、かつ上記樹脂積層板の見かけ曲げ弾性率が2.5GPa以上、8.5GPa以下とされているため、外観性を損なうことなく、強度の向上が図られる。
 しかし、場合によっては、第2の層はガラスファイバーや黒鉛化合物等を補強用充填材として含んでいてもよい。上記第2の層が補強用充填剤を含む場合、より一層、樹脂積層体の機械的強度を高めることができる。外表面に凸凹を生じさせ難いため、第2の層に含まれる補強用充填材としては、例えば、グラフェンシート構造を有する黒鉛化合物が好適に用いられる。
 上記グラフェンシート構造を有する黒鉛化合物としては、例えば、グラフェン、カーボンナノチューブ、グラファイト、及びそれらの集合体等が挙げられる。
 また、上記黒鉛化合物は上記グラフェンシートの積層体からなる薄片状黒鉛であることが望ましい。上記黒鉛化合物が充分に小さい薄片になっていれば、第2の層の外表面に凹凸がさらに生じ難くなる。具体的には、上記積層体の積層数が150以下で、且つ上記積層体のアスペクト比が20以上である薄片状黒鉛化合物が望ましい。上記積層体の積層数が150を超えると、第2の層の外表面に凸凹が生ずるおそれがある。また、上記積層体のアスペクト比が20未満だと、第2の層の外表面に凹凸が生ずるおそれがある。
 第2の層における上記黒鉛化合物の含有量は1重量%~16重量%であることが好ましく、5重量%~40重量%であることがより好ましい。上記黒鉛化合物の含有量が少なすぎると、樹脂積層体の機械的強度を高め得ないことがあり、上記黒鉛化合物の含有量が多すぎると、積層体が剥離するなどして成形不良となることがある。
 (実施例及び比較例)
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明の効果を明らかにする。
 (実施例1)
 第1の層の両面に第2の層を熱融着し、3層構造の樹脂積層板を得た。具体的には、厚み1.0mmのポリプロピレン樹脂層(プライムポリマー社製ポリプロピレン、品番:J-721GR、引っ張り弾性率:1.2GPa、線膨張係数:11×10-5/K)の両面に第2の層として0.2mmの超延伸ポリエチレンテレフタレートフィルム(積水化学工業社製、引っ張り弾性率:9GPa、線膨張係数:0.5×10-5/K)を270℃の温度で熱融着し、樹脂積層板を得た。
 この樹脂積層板における第1の層の引っ張り弾性率、第1の層の厚みtと第2の層の厚みtとの比t/tを下記の表1に示す。また、得られた樹脂積層板のJIS K7171の曲げ試験により求められた見かけ曲げ弾性率及び線膨張係数を下記の表1に併せて示す。なお、第2の層の延伸方向における樹脂積層板の曲げ弾性率と、延伸方向と垂直方向の曲げ弾性率を求め、これらの平均を見かけ曲げ弾性率とした。求められた見かけ曲げ弾性率、延伸方向曲げ弾性率、延伸方向と垂直方向の曲げ弾性率、及び延伸方向曲げ弾性率/垂直方向曲げ弾性率、並びに線膨張係数を下記の表1に併せて示す。
 (実施例2)
 第1の層と第2の層との厚みの比を2.5から4に変更したことを除いては、実施例1と同様にして樹脂積層板を得た。この樹脂積層板の見かけ曲げ弾性率は4.1GPaであり、線膨張係数は3×10-5/Kであった。
 (実施例3)
 第1の層と第2の層との厚みの比を2.5から6に変更したことを除いては、実施例1と同様にして樹脂積層板を得た。この樹脂積層板の見かけ曲げ弾性率は3.6GPaであり、線膨張係数は3×10-5/Kであった。
 (実施例4)
 第1の層を構成する樹脂をポリプロピレン(プライムポリマー社製、品番:J-2003GP、引っ張り弾性率:1.8GPa)を用いたことを除いては、実施例1と同様にして樹脂積層板を得た。この樹脂積層板の見かけ曲げ弾性率は4.6GPaであり、線膨張係数は2×10-5/Kであった。
 (実施例5)
 第1の層と第2の層との厚みの比を2.5から4に変更したことを除いては、実施例4と同様にして樹脂積層板を得た。得られた樹脂積層板の見かけ曲げ弾性率は4.4GPaであり、線膨張係数は3×10-5/Kであった。
 (実施例6)
 第1の層と第2の層との厚みの比を2.5から6に変更したことを除いては、実施例4と同様にして樹脂積層板を得た。得られた樹脂積層板の見かけ曲げ弾性率は4GPaであり、線膨張係数は3×10-5/Kであった。
 (実施例7)
 実施例1と同じ第1の層を用い、該第1の層の片面に実施例1で用いた0.2mmの超延伸ポリエチレンテレフタレートフィルムからなる第2の層を実施例1と同様にして熱融着するとともに、反対側の面に以下の網状体を同様に270℃の温度で熱融着し、樹脂積層板を得た。
 網状体として、実施例1で用いた超延伸ポリエチレンテレフタレートフィルムからなる第1,第2のフラットヤーン列を積層した網状体を用意した。第1のフラットヤーン及び第2のフラットヤーンの形状は、細長いストリップ状とし、長さ方向は延伸方向であり、幅方向寸法は3mmとし、厚みは0.2mmとした。また、第1のフラットヤーン及び第2のフラットヤーンの各ピッチを6mmとした。
 得られた樹脂積層板の見かけ曲げ弾性率は4.5GPaであり、線膨張係数は2×10-5/Kであった。
 (実施例8)
 成形型内に、実施例1で用いた超延伸ポリエチレンテレフタレートフィルム2枚を敷設した。この2枚の超延伸ポリエチレンテレフタレートフィルム間に熱硬化性樹脂として柱型用ウレタン樹脂(日新レジン社製、品番:ADAPT X-2422)の主剤(品番:X-2422AS)と硬化剤(品番:X-2422B)とを重量比で100対150の割合で注入し、70℃の温度で加熱し、樹脂積層板を成形した。
 実施例8では、得られた樹脂積層板の第1の層の引っ張り弾性率、第1の層の厚みtと第2の層の厚みtとの比t/t、見かけ曲げ弾性率及び線膨張係数を下記の表1に示す。
 (実施例9)
 実施例8の超延伸ポリエチレンテレフタレートフィルムを2枚用いたことに代えて、1枚の該超延伸ポリエチレンテレフタレートフィルム上に実施例7で用いた網状体を敷設し、以下実施例8と同様にして樹脂積層板を成形した。
 得られた樹脂積層板の見かけ曲げ弾性率は3.5GPaであり、線膨張係数は3×10-5/Kであった。
 (実施例10)
 ガラス繊維強化ポリプロピレン(プライムポリマー社製、商品名:モストロンL-4040P、引張弾性率:9.0GPa、線膨張係数:5×10-5/K、比重1200kg/m)を発泡成形することにより得られた厚み1.0mm及び比重400kg/m、発泡倍率3倍の発泡樹脂シートを用意した。この発泡シートを第1の層として用いたこと以外は実施例1と同様にして樹脂積層版を得た。得られた樹脂積層板の見かけの曲げ弾性率は5.7GPaであり、線膨張係数は2×10-5/Kであった。
 (実施例11)
 第2の層として、実施例1に用いた超延伸PETフィルムに代えて、グラフェンシートの積層体からなる薄片状黒鉛化合物(XG-Science社製、品番;XGnP-5、積層数;180、アスペクト比;100)を全体の20重量%含むポリプロピレン系樹脂(EA-9;日本ポリプロ社製、引張弾性率:1.6GPa、線膨張係数:11×10
/K)からなるフィルムを用いたことを除いては、実施例1と同様にして樹脂積層板を得た。得られた樹脂積層板の見かけ曲げ弾性率は5.8GPaであり、線膨張係数は3×10-5/Kであった。
 (比較例1)
 第2の層として、実施例1で用いた超延伸PETフィルムに代えて、ガラスファイバーを全体の20重量%含むポリプロピレン系樹脂(プライムポリマー社製、品番:モストロンL-2040P)からなるフィルムを用いたことを除いては、実施例1と同様にして樹脂積層板を得た。この樹脂積層板の見かけ曲げ弾性率は2.3GPaであり、線膨張係数は9×10-5/Kであった。
 (比較例2)
 第2の層を用いなかったことを除いては、実施例8と同様にしてウレタン樹脂からなる樹脂板を得た。
 この樹脂板の見かけ曲げ弾性率は0.7GPaであり、線膨張係数は10×10-5/Kであった。
 (機械的強度及び外観美の評価)
 上記各実施例及び比較例で得られた樹脂積層板の見かけ曲げ弾性率は下記の表1に示す通りであり、いずれも充分な曲げ剛性を有するため、機械的強度に優れていることが分かる。加えて、線膨張係数は実施例1~11では、3×10-5/K以下であり、温度変化による寸法安定性に優れていることも分かる。
 比較例1では、第2の層がガラスファイバーを含有しているため、表面にガラスファイバー由来の凹凸がみられた。比較例2では第2の層が存在しないため、樹脂板の表面にくぼみや凹凸がかなりの割合で存在していた。従って、外観美において劣っていた。これに対して実施例1~11では、このような凹凸は見られなかった。従って、実施例1~11では、第2の層が最外層に存在するため表面平滑性が優れており、よって樹脂積層板の外観美を高め得ることがわかる。
 また、実施例7,9では、網状体が配置されている側とは反対側の面において上記のような凹凸は見られなかった。従って、実施例7,9で得られた樹脂積層板では網状体が積層されている側とは反対側の面を外部に露出する側として用いることにより、外観美を高めることができる。加えて、網状体が設けられているので、延伸方向曲げ弾性率/垂直方向曲げ弾性率を小さくすることができる。すなわち、機械的強度の異方性を緩和することができる。
 図2は、図1に示した樹脂積層板1を曲げ加工することにより得られた車両用外装板1Aの断面図である。樹脂積層板1は、上記第1,第2の層2,3を積層した構成を有するため、加熱化においてブレス加工を行うことなどによりこのような様々な形状を賦型することができる。しかも、得られた製品では、樹脂積層板の見かけ曲げ弾性率が2.5×10Pa以上であるため、充分な機械的強度を有するので、厚みをさほど厚くせずとも充分な機械的強度を得ることができる。また、金属板を用いる必要がないため、軽量化も果たすことができる。
Figure JPOXMLDOC01-appb-T000001
 1 …樹脂積層板
 1A…車両用外装板
 2 …第1の層
 3 …第2の層
 11 …樹脂積層板
 12 …第2の層
 13 …第1の層
 14 …第2の層
 15 …第1の層
 16 …第2の層

Claims (19)

  1.  熱可塑性樹脂または熱硬化性樹脂からなる層を積層構造中に有する樹脂積層板であって、
     引っ張り弾性率が0.8~2.0GPaである熱可塑性樹脂または熱硬化性樹脂からなる第1の層と、
     前記第1の層に積層されており、第1の層を構成している前記熱可塑性樹脂または熱硬化性樹脂とは異なる樹脂からなり、フィルム、織布、不織布及び網状体からなる群から選択された形態を有する第2の層とを備え、
     前記第1の層の厚みと第2の層の厚みとの比が0.5~10の範囲にあり、かつ前記樹脂積層板のJIS K7171の曲げ試験により求められた見かけ曲げ弾性率が2.5GPa以上、8.5GPa以下である、樹脂積層板。
  2.  前記第1の層の両面に前記第2の層が積層されており、前記第2の層の厚みが両面の第2の層の厚みの合計である、請求項1に記載の樹脂積層板。
  3.  前記第1の層の厚みと第2の層の厚みとの比が0.5~7.5の範囲にあり、前記樹脂積層板の見かけ曲げ弾性率が3.0GPa以上である、請求項1または2に記載の樹脂積層板。
  4.  前記第1の層の例と前記第2の層の厚みとの比が0.5~5の範囲にあり、前記見かけ曲げ弾性率が3.5GPa以上である、請求項3に記載の樹脂積層板。
  5.  前記第1の層の例と前記第2の層の厚みとの比が0.5~5の範囲にあり、線膨張係数が5×10-5/K以下である、請求項1~4のいずれか1項に記載の樹脂積層板。
  6.  前記第1の層を構成している熱可塑性樹脂が、ポリオレフィンまたはポリアミドである、請求項1~5のいずれか1項に記載の樹脂積層板。
  7.  前記第1の層が発泡構造を有している、請求項1~6のいずれか1項に記載の樹脂積層板。
  8.  前記第2の層を構成している熱可塑性樹脂が、黒鉛化合物を含有している、請求項1~7のいずれか1項に記載の樹脂積層板。
  9.  前記黒鉛化合物がグラフェンシート構造を有する、請求項8に記載の樹脂積層板。
  10.  前記グラフェンシート構造を有する前記黒鉛化合物が、グラフェン、カーボンナノチューブ、グラファイト、及びそれらの集合体からなる、請求項8または請求項9に記載の樹脂積層板。
  11.  前記黒鉛化合物が、前記グラフェンシートの積層体からなる薄片状黒鉛であり、積層数が150層以下であり且つアスペクト比が20以上である、請求項8~10のいずれか1項に記載の樹脂積層板。
  12.  前記第2の層を構成している熱可塑性樹脂が、補強用充填材を含まない、請求項1~7のいずれか1項に記載の樹脂積層板。
  13.  前記第2の層が引っ張り弾性率7.0GPa以上、11GPa以下のフィルムからなる請求項1~12のいずれか1項に記載の樹脂積層板。
  14.  前記第2の層の線膨張係数が2×10-5/K以下である、請求項1~13のいずれか1項に記載の樹脂積層板。
  15.  前記第2の層が、延伸ポリエチレンテレフタレートフィルムからなる、請求項1~14のいずれか1項に記載の樹脂積層板。
  16.  前記第1の層の両面に積層された前記第2の層の一方が熱可塑性樹脂よりなる延伸フィルムからなり、他方が熱可塑性樹脂からなる網状体からなる、請求項2に記載の樹脂積層板。
  17.  前記網状体が、前記延伸フィルムの延伸方向に延びる複数本の第1のフラットヤーンからなる第1のフラットヤーン列と、前記第1のフラットヤーンの延びる方向と交差する方向に延びる複数本の第2のフラットヤーンからなる第2のフラットヤーン列とが積層されている熱可塑性樹脂網状体である、請求項16に記載の樹脂積層板。
  18.  前記第1,第2のフラットヤーン列が、延伸熱可塑性樹脂からなる、請求項17に記載の樹脂積層板。
  19.  前記延伸フィルム及び前記第1,第2のフラットヤーン列が、延伸ポリエチレンテレフタレートからなる、請求項18に記載の樹脂積層板。
PCT/JP2010/066170 2009-09-29 2010-09-17 樹脂積層板 WO2011040266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10820385.2A EP2484518A4 (en) 2009-09-29 2010-09-17 RESIN LAMINATED PLATE
CN2010800434212A CN102548760A (zh) 2009-09-29 2010-09-17 树脂叠层板
US13/388,376 US20120128951A1 (en) 2009-09-29 2010-09-17 Resin laminated plate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-224785 2009-09-29
JP2009224785 2009-09-29
JP2009250036 2009-10-30
JP2009-250036 2009-10-30
JP2010-064190 2010-03-19
JP2010064190 2010-03-19
JP2010-200950 2010-09-08
JP2010200950A JP2011213090A (ja) 2009-09-29 2010-09-08 樹脂積層板

Publications (1)

Publication Number Publication Date
WO2011040266A1 true WO2011040266A1 (ja) 2011-04-07

Family

ID=43826090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066170 WO2011040266A1 (ja) 2009-09-29 2010-09-17 樹脂積層板

Country Status (7)

Country Link
US (1) US20120128951A1 (ja)
EP (1) EP2484518A4 (ja)
JP (1) JP2011213090A (ja)
KR (1) KR20120081976A (ja)
CN (1) CN102548760A (ja)
TW (1) TW201127625A (ja)
WO (1) WO2011040266A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144421A (ja) * 2010-12-21 2012-08-02 Meijo Univ グラフェン配線構造
WO2013031883A1 (ja) * 2011-08-31 2013-03-07 積水化学工業株式会社 樹脂多層成形体及びその製造方法
JP2013049237A (ja) * 2011-08-31 2013-03-14 Sekisui Chem Co Ltd 多層構造体及び多層構造体の製造方法
JP5167427B1 (ja) * 2011-08-31 2013-03-21 積水化学工業株式会社 樹脂多層成形体及びその製造方法
US20150337105A1 (en) * 2012-12-03 2015-11-26 Sekisui Chemical Co., Ltd. Electromagnetic wave shielding material and layered body for electromagnetic wave shielding

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803392B (zh) * 2010-03-25 2013-10-30 积水化学工业株式会社 树脂组合物、合成树脂片、合成树脂成形品及合成树脂叠层体
JP2013202920A (ja) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd 多層フィルム及びその製造方法
JP2013202919A (ja) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd 多層フィルム
CA2877943A1 (en) * 2012-06-29 2014-01-03 Flexcon Company, Inc. Protective covering for electronic devices having improved elasticity and impact resistance properties
KR20150079497A (ko) * 2012-10-31 2015-07-08 세키스이가가쿠 고교가부시키가이샤 수지 적층체의 제조 방법 및 제조 장치
AT514829A1 (de) * 2013-09-30 2015-04-15 Teufelberger Gmbh Mit einem Verstärkungselement versehenes Objekt, sowie Verfahren zur Herstellung eines derartigen Objektes
JP6313579B2 (ja) * 2013-11-29 2018-04-18 積水化学工業株式会社 外板用樹脂積層板
JP2017010933A (ja) * 2015-06-19 2017-01-12 株式会社半導体エネルギー研究所 蓄電装置の充電方法及び蓄電装置の製造方法、並びにバッテリーモジュール及び車両
JP6574669B2 (ja) * 2015-10-06 2019-09-11 積水化学工業株式会社 樹脂積層体
WO2018084318A1 (ja) * 2016-11-07 2018-05-11 積水化学工業株式会社 多層発泡シート、多層発泡シートの製造方法、及び粘着テープ
US20190153876A1 (en) * 2017-11-21 2019-05-23 General Electric Company Nanostructure between plies of high temperature polymer matrix composite
JP7222989B2 (ja) * 2018-05-31 2023-02-15 リンテック株式会社 炭素樹脂複合材料の製造方法、および炭素樹脂複合材料の製造用複合構造体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428699B2 (ja) 1981-10-02 1992-05-15 Nativelle Sa Ets
JP2001293829A (ja) * 2000-02-10 2001-10-23 Sekisui Chem Co Ltd ポリオレフィン系樹脂複合積層体
JP2004238073A (ja) * 2003-02-10 2004-08-26 Keiyo Apollo Kk 運搬用袋
JP2007145280A (ja) * 2005-11-30 2007-06-14 Teijin Dupont Films Japan Ltd 車両用内装材
JP2007154041A (ja) * 2005-12-05 2007-06-21 Nissan Motor Co Ltd 熱硬化性樹脂組成物およびこれを発泡、硬化させた熱硬化性樹脂発泡体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596736A (en) * 1984-06-04 1986-06-24 The Dow Chemical Company Fiber-reinforced resinous sheet
US5143778A (en) * 1990-10-31 1992-09-01 Shuert Lyle H Laminate structural plastic material
CA2162446C (en) * 1994-11-09 2001-03-13 Toshio Kobayashi Automotive molded roof material and process for producing the same
EP1027977B1 (en) * 1997-10-29 2007-09-12 Sekisui Kagaku Kogyo Kabushiki Kaisha Process for producing foamable composite polyolefin resin sheet and composite foam
CA2366506A1 (en) * 2000-02-10 2001-08-16 Sekisui Chemical Co., Ltd. Polyolefin resin composite laminates
EP1561568A1 (en) * 2001-04-23 2005-08-10 Sekisui Chemical Co., Ltd. Method and apparatus for producing laminated composite
EP1403038A1 (en) * 2002-09-27 2004-03-31 Lankhorst Indutech B.V. Method for reinforcing an article and reinforced article
WO2006082902A1 (ja) * 2005-02-03 2006-08-10 Asahi Kasei Chemicals Corporation 高周波用途電子電気部品用樹脂組成物、およびその成形体
US7344575B2 (en) * 2005-06-27 2008-03-18 3M Innovative Properties Company Composition, treated backing, and abrasive articles containing the same
CN102803392B (zh) * 2010-03-25 2013-10-30 积水化学工业株式会社 树脂组合物、合成树脂片、合成树脂成形品及合成树脂叠层体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428699B2 (ja) 1981-10-02 1992-05-15 Nativelle Sa Ets
JP2001293829A (ja) * 2000-02-10 2001-10-23 Sekisui Chem Co Ltd ポリオレフィン系樹脂複合積層体
JP2004238073A (ja) * 2003-02-10 2004-08-26 Keiyo Apollo Kk 運搬用袋
JP2007145280A (ja) * 2005-11-30 2007-06-14 Teijin Dupont Films Japan Ltd 車両用内装材
JP2007154041A (ja) * 2005-12-05 2007-06-21 Nissan Motor Co Ltd 熱硬化性樹脂組成物およびこれを発泡、硬化させた熱硬化性樹脂発泡体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484518A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144421A (ja) * 2010-12-21 2012-08-02 Meijo Univ グラフェン配線構造
WO2013031883A1 (ja) * 2011-08-31 2013-03-07 積水化学工業株式会社 樹脂多層成形体及びその製造方法
JP2013049237A (ja) * 2011-08-31 2013-03-14 Sekisui Chem Co Ltd 多層構造体及び多層構造体の製造方法
JP5167427B1 (ja) * 2011-08-31 2013-03-21 積水化学工業株式会社 樹脂多層成形体及びその製造方法
US20150337105A1 (en) * 2012-12-03 2015-11-26 Sekisui Chemical Co., Ltd. Electromagnetic wave shielding material and layered body for electromagnetic wave shielding
US10597508B2 (en) * 2012-12-03 2020-03-24 Sekisui Chemical Co., Ltd. Electromagnetic wave shielding material and layered body for electromagnetic wave shielding

Also Published As

Publication number Publication date
EP2484518A4 (en) 2014-04-09
KR20120081976A (ko) 2012-07-20
CN102548760A (zh) 2012-07-04
JP2011213090A (ja) 2011-10-27
EP2484518A1 (en) 2012-08-08
US20120128951A1 (en) 2012-05-24
TW201127625A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
WO2011040266A1 (ja) 樹脂積層板
JP5926947B2 (ja) 繊維強化樹脂成形体及びそれを用いた車両用内装材
JP5844967B2 (ja) 繊維強化熱可塑性樹脂成形品とその製造方法
US20120302118A1 (en) Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using the same
US20160185395A1 (en) Composite panel
CN110641085A (zh) 包括高熔体流动指数树脂的制品
CN102803392A (zh) 树脂组合物、合成树脂片、合成树脂成形品及合成树脂叠层体
JP2009504455A5 (ja)
JP5896048B2 (ja) 熱可塑性基材およびそれを用いた繊維強化成形体の製造方法
KR101938847B1 (ko) 고강도 경량 복합소재 및 이의 제조방법
JPWO2017222024A1 (ja) シート
JP2013099936A (ja) 繊維基材及びこれを用いた内装材
KR20170026866A (ko) 고강성 경량의 자동차용 헤드 라이닝의 제조방법
JP6152000B2 (ja) 車両用樹脂製中空積層板
JP2016199994A (ja) 畳用芯材及び畳
JPH0999511A (ja) 合成樹脂複合材およびその製造方法
US10981351B2 (en) Composite cloth
JP6731875B2 (ja) 繊維強化複合体
KR20180035565A (ko) 샌드위치 패널 및 샌드위치 패널의 제조방법
JP2012051151A (ja) 繊維強化成形体
KR101543598B1 (ko) 천연섬유 직조물 다층 구조물 및 그 제조방법
JP6721430B2 (ja) シート
JP6966187B2 (ja) コンクリート用粘着シート
KR20190132179A (ko) 적층시트
JP3079007B2 (ja) 積層材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043421.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010820385

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1247/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127005391

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000474

Country of ref document: TH