WO2011035993A1 - Verfahren zum betrieb einer koksofenanordnung - Google Patents

Verfahren zum betrieb einer koksofenanordnung Download PDF

Info

Publication number
WO2011035993A1
WO2011035993A1 PCT/EP2010/062024 EP2010062024W WO2011035993A1 WO 2011035993 A1 WO2011035993 A1 WO 2011035993A1 EP 2010062024 W EP2010062024 W EP 2010062024W WO 2011035993 A1 WO2011035993 A1 WO 2011035993A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coke oven
synthesis gas
synthesis
generated
Prior art date
Application number
PCT/EP2010/062024
Other languages
English (en)
French (fr)
Inventor
Johannes Menzel
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Priority to JP2012530196A priority Critical patent/JP2013505342A/ja
Priority to RU2012116149/05A priority patent/RU2533149C2/ru
Priority to AU2010297521A priority patent/AU2010297521A1/en
Priority to US13/497,361 priority patent/US20120217148A1/en
Priority to EP10742854A priority patent/EP2480631A1/de
Priority to CN2010800505839A priority patent/CN102639675A/zh
Priority to CA2774898A priority patent/CA2774898A1/en
Publication of WO2011035993A1 publication Critical patent/WO2011035993A1/de
Priority to IN3166DEN2012 priority patent/IN2012DN03166A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • C10B21/02Heating of coke ovens with combustible gases with lean gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a method for operating a coke oven arrangement, wherein the coke oven gas occurring in the coking process is supplied as useful gas to a material utilization.
  • the coke oven gas obtained in a coking process is usually burned and thus only used energetically, although coke oven gas contains large amounts of the valuable components hydrogen and methane. Reservations against use result from the fact that coke oven gas is no longer available as fuel gas in case of material use and the lack of heating energy has to be provided elsewhere.
  • the present invention has for its object to allow for the operation of a coke oven assembly, a flexible and efficient use of the resulting Koksofengases.
  • the object of the invention and solution of the problem is a method for operating a coke oven arrangement with the features described above, which is characterized in that for providing at least a portion of the required for the coking process thermal energy as fuel gas, a synthesis gas is supplied, which by means of a gasification process fossil fuel is generated.
  • a synthesis gas is supplied, which by means of a gasification process fossil fuel is generated.
  • the use of a fossil fuel to produce the synthesis gas results in a particularly high flexibility of the method for operating a coke oven arrangement.
  • the provision of the fossil fuel and the implementation of the gasification process for producing the synthesis gas are associated with additional investment and process costs, the recovery of the valuable components contained in the coke oven gas results in overall economic advantages. This is particularly the case when coal is used as the fossil fuel, which is comparatively cheap compared to other fossil fuels suitable for carrying out the gasification process, such as natural gas, and which is already available for carrying out the coking process.
  • inventive method can thus be used independently of other production cities such as coal mines or blast furnaces.
  • a blast furnace system is provided in the immediate vicinity, it is also possible to supply an additional portion of the generated synthesis gas for thermal utilization to a blast furnace.
  • the process for the coking process and possibly also a blast furnace missing amount of energy by means of Gasification from the fossil fuel produced synthesis gas is replaced.
  • the raw synthesis gas produced usually only needs to be desulphurized before it is supplied as a fuel gas to provide a portion of the thermal energy required for the coking process and used in particular for undercutting coke oven batteries.
  • the synthesis gas formed from the fossil fuel can be provided to use the synthesis gas formed from the fossil fuel exclusively for the provision of thermal energy as fuel gas. According to a preferred embodiment of the invention, however, more synthesis gas is generated than is necessary for the replacement of the inventively recycled Koksofengases. Thus, it can be provided that a first portion of the synthesis gas produced is used as fuel gas and that an additional portion of the synthesis gas generated is used for further conversion and material utilization.
  • the coke oven gas obtained in the coking process is first freed in a manner known per se from impurities such as tar, naphthalene, aromatic hydrocarbons (BTX components), sulfur and ammonia, as in the prior art in a conventional coking process is provided.
  • the previously purified coke oven gas for the separation of hydrogen and / or hydrocarbons is compressed.
  • a pressure swing adsorption (PSA) can be provided in a PSA plant, wherein the hydrogen is recovered on the pressure side of the PSA plant in highly pure form.
  • PSA pressure swing adsorption
  • the pressure swing absorption can be carried out both in a conventional PSA plant or a vacuum PSA plant (VPSA plant).
  • a methane-rich gas is recovered, which is separated in further treatment steps of the remaining gas components, in particular carbon monoxide (CO), carbon dioxide (CO 2 ), nitrogen, acetylene and hydrogen still containing.
  • the removal of nitrogen, carbon monoxide and hydrogen still contained can be carried out for example by a cryogenic distillation, with previously carbon dioxide and steam with suitable methods, eg. B. by means of an Armin wash and / or a molecular sieve drying are to be removed.
  • the hydrocarbon components thus obtained as useful gas can be supplied to a natural gas network and / or kept ready for further synthesis.
  • the gas components obtained from the coking gas can be used as end products or in even higher quality products be converted, for further synthesis and conversion and a proportion of the synthesis gas formed in the gasification of the fossil fuel can be used.
  • Advantageous possibilities of use are explained below.
  • the separated hydrogen can generally be used as hydrogenating hydrogen in adjacent chemical plants, for example refineries. According to a preferred embodiment, it is provided to subject the hydrogen produced and a portion of the synthesis gas formed by the gasification of the fossil fuel to further conversion, the hydrogen being reacted with a portion of the carbon monoxide of the synthesis gas to give higher-value products.
  • a synthesis of methanol and beyond the production of fuel by an MTG process methanol to gasoline
  • the synthesis of diesel by a Fischer-Tropsch process or the synthesis of ammonia can be provided.
  • the use of the recovered hydrogen with the synthesis gas obtained from the fossil fuel, which essentially comprises carbon monoxide is provided for a further synthesis, there is the advantage that a specific hydrogen / carbon monoxide ratio is released by a corresponding inflow control in a wide range can be chosen.
  • a proportion of the synthesis gas produced to undergo CO conversion can be made for a proportion of the synthesis gas produced to undergo CO conversion.
  • the CO conversion can be carried out with the addition of water vapor, after a desulfurization of the converted synthesis gas carbon-
  • this thermally recovered off-gas is a proportion of the total required to provide the thermal energy fuel gas.
  • part of the thermal energy required for the coking process is provided by a synthesis gas as fuel gas, which is obtained by means of a gasification process from the fossil fuel, preferably by coal gasification.
  • a synthesis gas as fuel gas obtained by means of a gasification process from the fossil fuel, preferably by coal gasification.
  • the residual and exhaust gases produced in various subsequent process stages can also be used for combustion.
  • the off-gas of the preferably provided PSA plant usually still contains large amounts of combustible components that can be thermally recycled by combustion.
  • high-quality fuels with a higher calorific value, such as natural gas can also be admixed. Such admixture may be required to set a desired Wobbe number or to balance an energy requirement not yet covered by the other fuel gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Koksofenanordnung, wobei das in dem Kokereiprozess anfallende Koksofengas als Nutzgas einer stofflichen Verwertung zugeführt wird. Erfindungsgemäß wird zur Bereitstellung zumindest eines Teils der für den Kokereiprozess erforderlichen thermischen Energie als Brenngas ein Synthesegas zugeführt, welches mittels eines Vergasungsprozesses aus einem fossilen Brennstoff, vorzugsweise Kohle, erzeugt wird.

Description

Verfahren zum Betrieb einer Koksofenanordnung
Beschreibung:
Die Erfindung betrifft ein Verfahren zum Betrieb einer Koksofenanordnung, wobei das in dem Kokereiprozess anfallende Koksofengas als Nutzgas einer stofflichen Verwertung zugeführt wird. In der Praxis wird das bei einem Kokereiprozess anfallende Koksofengas üblicherweise verbrannt und somit nur energetisch genutzt, obwohl Koksofengas große Anteile der Wertstoffkomponenten Wasserstoff und Methan enthält. Vorbehalte gegen eine Nutzung ergeben sich daraus, dass bei einer stofflichen Nutzung das Koksofengas nicht mehr als Heizgas zur Verfügung steht und die fehlende Heizenergie anderweitig bereitgestellt werden muss.
Aus der DE 34 244 24 A1 ist ein Verfahren bekannt, bei dem das in dem Kokereiprozess anfallende Koksofengas als Nutzgas einer stofflichen Verwertung zugeführt wird . Dabei wird Wasserstoff abgetrennt und ein geeignetes H2-CO-Verhältnis eingestellt, um nachfolgend durch Methanisierung ein synthetisches Erdgas zu erzeugen. Da das Koksofengas bei einer stofflichen Nutzung nicht mehr zur Erzeugung der für den Kokereiprozess erforderlichen thermischen Energie zur Verfügung steht, wird als Ersatzgas für die Unterfeuerung der Koksofengasbatterie Gichtgas oder Grubengas vorgeschlagen. Der Einsatz von Gicht- oder Grubengas kommt dann in Frage, wenn sich in unmittelbarer Nähe der Kokerei ein Stahlwerk oder Kohlebergwerk befindet und der Einsatz dieser Ersatzgase sich als wirtschaftlich herausstellt. Da diese Vorgaben in der Praxis nur selten erfüllt sind, erfolgt, wie eingangs beschrieben , übl icherweise nur eine Verwertung des Koksofengases zu Heizzwecken.
Weitere Verfahren, bei denen Koksofengas einer stofflichen Nutzung zugeführt wird, sind aus der DE 35 15 250 A1 sowie der DE 38 05 397 A1 bekannt. Bei diesen Verfahren ist jeweils vorgesehen, dass das einen hohen Wasserstoffanteil aufweisende Koksofengas mit dem einen hohen Kohlenmonoxidanteil aufweisenden Hüttengas vermischt wird . Die bekannten Verfahren setzen voraus, dass Hüttengas, welches zunächst aufwendig gereinigt werden muss, in einem ausreichenden Maße zur Verfügung steht.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei dem Betrieb einer Koksofenanordnung eine flexible und effiziente Nutzung des anfallenden Koksofengases zu ermöglichen.
Gegenstand der Erfindung und Lösung der Aufgabe ist ein Verfahren zum Betrieb einer Koksofenanordnung mit den eingangs beschriebenen Merkmalen, welches dadurch gekennzeichnet ist, dass zur Bereitstellung zumindest eines Teils der für den Kokereiprozess erforderlichen thermischen Energie als Brenngas ein Synthesegas zugeführt wird, welches mittels eines Vergasungsprozesses aus fossilen Brennstoff erzeugt wird. Durch die Verwendung eines fossilen Brennstoffes zur Erzeugung des Synthesegases ergibt sich eine besonders hohe Flexibil ität des Verfahrens zum Betrieb einer Koksofenanordnung. Obwohl die Bereitstellung des fossilen Brennstoffes und die Durchführung des Vergasungsprozesses zur Erzeugung des Synthesegases mit zusätzlichen Investitions- und Prozesskosten verbunden sind, ergeben sich durch die Gewinnung der in dem Koksofengas enthaltenden Wertstoff- komponenten insgesamt wirtschaftliche Vorteile. Dies ist insbesondere dann der Fall, wenn als fossiler Brennstoff Kohle eingesetzt wird, die im Vergleich zu anderen für die Durchführung des Vergasungsprozesses geeigneten fossilen Brennstoffen wie beispielsweise Erdgas vergleichsweise günstig ist und für die Durchführung des Kokereiprozesses ohneh in bereitgehalten wird . Das
erfindungsgemäße Verfahren kann damit unabhängig von weiteren Produktionsstädten wie Kohlebergwerken oder Hochöfen eingesetzt werden. Wenn in unmittelbarer Nähe jedoch eine Hochofenanlage vorgesehen ist, besteht auch die Möglichkeit einen zusätzlichen Anteil des erzeugten Synthesegases zur thermischen Nutzung einem Hochofen zuzuführen.
Erfindungsgemäß wird vorgeschlagen, die bei dem Kokereiprozess in dem Koksofengas anfallenden Gaskomponenten wie Wasserstoff und/oder Methan abzutrennen und entweder als Endprodukt zu verwenden oder in noch höherwertige Produkte umzuwandeln, wobei dann die für den Kokereiprozess und eventuell auch einen Hochofen prozess fehlende Energiemenge durch das mittels Vergasung aus dem fossilen Brennstoff erzeugte Synthesegas ersetzt wird. Das erzeugte Rohsynthesegas muss in der Regel nur entschwefelt werden, bevor es zur Bereitstellung eines Teils der für den Kokereiprozess erforderlichen thermischen Energie als Brenngas zugeführt und insbesondere zur Unterfeuerung von Koksofenbatterien eingesetzt wird. Eine aufwendige Aufbereitung des Synthesegases, die unter anderem auch die Entfernung von Kohlendioxid umfasst, ist bei dem als Brenngas genutzten Synthesegas nicht erforderlich.
Im Rahmen der Erfindung kann vorgesehen sein das aus dem fossilen Brennstoff gebildete Synthesegas ausschließlich zur Bereitstellung thermischer Energie als Brenngas zu nutzen. Gemäß einer bevorzugten Ausgestaltung der Erfindung wird jedoch mehr Synthesegas erzeugt als für den Ersatz des erfindungsgemäß stofflich verwerteten Koksofengases erforderlich ist. So kann vorgesehen sein, dass als Brenngas ein erster Anteil des erzeugten Synthesegases eingesetzt wird und dass ein zusätzlicher Anteil des erzeugten Synthesegases für eine weitere Umwandlung und stoffliche Nutzung verwendet wird.
Das bei dem Kokereiprozess anfallende Koksofengas wird im Rahmen des erfindungsgemäßen Verfahrens zunächst in an sich bekannter Weise von Verunreinigungen wie Teer, Naphthalin, aromatischen Kohlenwasserstoffen (BTX-Komponenten), Schwefel und Ammoniak befreit, wie dies auch gemäß dem Stand der Technik bei einem herkömmlichen Kokereiprozess vorgesehen ist. Gemäß einer bevorzugten Ausgestaltung der Erfindung wird das soweit gereinigte Koksofengas zur Abtrennung von Wasserstoff und/oder Kohlenwasserstoffen verdichtet. Zur Abtrennung des Wasserstoffs kann beispielsweise eine Druckwechseladsorption (PSA) in einer PSA-Anlage vorgesehen sein, wobei der Wasserstoff auf der Druckseite der PSA-Anlage in hochreiner Form gewonnen wird. Die Druckwechselabsorption kann sowohl in einer üblichen PSA-Anlage oder einer Vakuum-PSA-Anlage (VPSA-Anlage) durchgeführt werden.
Auf der Entspannungsseite der PSA-Anlage wird ein methanreiches Gas gewonnen, welches in weiteren Aufbereitungsschritten von den restlichen Gaskomponenten, insbesondere Kohlenmonoxid (CO), Kohlendioxid (CO2), Stickstoff, Acetylen und noch enthaltendem Wasserstoff getrennt wird . Die Entfernung von Stickstoff, Kohlenmonoxid sowie dem noch enthaltenden Wasserstoff kann beispielsweise durch eine Tieftemperaturdestillation erfolgen, wobei zuvor noch Kohlendioxid und Wasserdampf mit geeigneten Verfahren, z. B. mittels einer Armin-Wäsche und/oder einer Molekularsiebtrocknung zu entfernen sind. Die so als Nutzgas gewonnenen Kohlenwasserstoff- komponenten können einem Erdgasnetz zugeführt und/oder für eine weitere Synthese bereitgehalten werden.
Wie bereits beschrieben, können die aus dem Kokereigas gewonnenen Gaskomponenten als Endprodukte verwendet oder in noch hochwertigere Produkte umgewandelt werden, wobei zur weiteren Synthese und Umwandlung auch ein Anteil des bei der Vergasung des fossilen Brennstoffs gebildeten Synthesegases genutzt werden kann. Vorteilhafte Möglichkeiten der Nutzung werden nachfolgend erläutert.
Der abgetrennte Wasserstoff kann in benachbarten Chemieanlagen, beispielsweise Raffinerien, allgemein als Hydrierwasserstoff eingesetzt werden. Gemäß einer bevorzugten Ausgestaltung ist vorgesehen den erzeugten Wasserstoff und einen Anteil des durch die Vergasung des fossilen Brennstoffes gebildeten Synthesegases einer weiteren Umwandlung zu unterziehen, wobei der Wasserstoff mit einem Teil des Kohlenmonoxids des Synthesegases zu höherwertigen Produkten umgesetzt wird. So kann beispielsweise eine Synthese von Methanol sowie darüber hinausgehend die Erzeugung von Treibstoff durch ein MTG-Verfahren (Methanol to gasoline), die Synthese von Diesel nach einem Fischer-Tropsch-Verfahren oder auch die Synthese von Ammoniak vorgesehen sein.
Wenn für eine weitere Synthese die Nutzung des gewonnenen Wasserstoffs mit dem aus dem fossilenen Brennstoff gewonnenen Synthesegas, welches im Wesentlichen Kohlenmonoxid enthält, vorgesehen ist, ergibt sich der Vorteil, dass ein spezifisches Wasserstoff/Kohlenmonoxid-Verhältnis durch eine entsprechende Zuflusssteuerung in einem weiten Bereich frei gewählt werden kann. Insbesondere um in Bezug auf das gesamte Verfahren die Wasserstoffausbeute noch weiter zu erhöhen, kann vorgesehen sein einen Anteil des erzeugten Synthesegases einer CO-Konvertierung zu unterziehen. Zu diesem Zweck kann die CO-Konvertierung unter Zusatz von Wasserdampf erfolgen, wobei nach einer Entschwefelung des konvertierten Synthesegases Kohlen-
dioxid zumindest teilweise entfernt wird, wobei nachfolgend der verbleibende Gasstrom zur Entfernung von Wasserstoff einer Druckwechseladsorption unterzogen wird und wobei das dabei anfallende um Wasserstoff abgereicherte Off-Gas als Brenngas für den Kokereiprozess eingesetzt wird. Üblicherweise stellt dieses thermisch verwertete Off-Gas einen Anteil des insgesamt zur Bereitstellung der thermischen Energie erforderlichen Brenngases dar.
Als weitere Nutzung des aus dem fossilen Brennstoff gebildeten Synthesegases kann auch die Erzeugung von Strom mit einem kombinierten Gas- und Dampfkraftwerk (GUD-Prozess) vorgesehen sein.
Erfindungsgemäß wird ein Teil der für den Kokereiprozess erforderlichen thermischen Energie von einem Synthesegas als Brenngas bereitgestellt, welches mittels eines Vergasungsprozesses aus dem fossilen Brennstoff, vorzugsweise mittels Kohlevergasung, gewonnen wird. Um einen weiteren Teil der thermischen Energie bereitzustellen, können auch die in verschiedenen nachfolgenden Verfahrensstufen anfallenden Rest- und Abgase zur Verbrennung genutzt werden. Insbesondere das Off-Gas der bevorzugt vorgesehenen PSA-Anlage enthält in der Regel noch große Anteile brennbarer Komponenten, die durch eine Verbrennung thermisch verwertete werden können. Des Weiteren können auch hochwertige Brennstoffe mit einem höheren Heizwert, wie beispielsweise Erdgas zugemischt werden. Eine solche Zumischung kann erforderlich sein, um eine gewünschte Wobbe-Zahl einzustellen oder einen noch nicht durch die weiteren Brenngase gedeckten Energiebedarf auszugleichen.

Claims

Patentansprüche:
1 . Verfahren zum Betrieb einer Koksofenanordnung , wobei das in dem Kokereiprozess anfallende Koksofengas als Nutzgas einer stofflichen Verwertung zugeführt wird, d a d u r c h g e k e n n z e i c h n e t, dass zur Bereitstellung zumindest eines Teils der für den Kokereiprozess erforderlichen ther- mischen Energie als Brenngas ein Synthesegas zugeführt wird, welches mittels eines Vergasungsprozesses aus einem fossilen Brennstoff erzeugt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als fossiler Brennstoff Kohle eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Koksofengas verdichtet und entschwefelt wird, bevor daraus Wasserstoff entfernt und nachfolgend Kohlenwasserstoffe von Restgaskomponenten getrennt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass aus dem Koksofengas Wasserstoff durch Druckwechseladsorption abgetrennt wird, wobei nachfolgend Kohlenwasserstoffe mittels einer Tieftemperaturdestillation abgetrennt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Brenngas ein erster Anteil des erzeugten Synthesegases eingesetzt wird und dass ein zusätzlicher Anteil des erzeugten Synthesegases für eine weitere Synthese mit dem aus dem Koksofengas abgetrennten Wasserstoff genutzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Brenngas ein erster Anteil des erzeugten Synthesegases eingesetzt wird und dass ein zusätzlicher Anteil des erzeugten Synthesegases einer CO- Konvertierung unterzogen wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die CO- Konvertierung unter Zusatz von Wasserdampf erfolgt, wobei nach einer Entschwefelung des konvertierten Synthesegases Kohlendioxid zumindest teilweise entfernt wird, wobei nachfolgend der verbleibende Gasstrom zur Entfernung von Wasserstoff einer Druckwechseladsorption unterzogen wird und wobei das dabei anfallende, um Wasserstoff abgereicherte Off-Gas als Brenngas für den Kokereiprozess eingesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Brenngas ein erster Anteil des erzeugten Synthesegases eingesetzt wird und dass ein zusätzlicher Anteil des erzeugten Synthesegases in einem Gas- und Dampfkraftwerk zur Stromerzeugung genutzt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zur Bereitstel lung der für den Kokereiprozess erforderlichen thermischen
Energie zusätzlich zu dem Synthesegas ein weiteres Heizgas zugeführt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein zusätzlicher Anteil des erzeugten Synthesegases zur thermischen Nutzung einem Hochofen zugeführt wird.
PCT/EP2010/062024 2009-09-22 2010-08-18 Verfahren zum betrieb einer koksofenanordnung WO2011035993A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012530196A JP2013505342A (ja) 2009-09-22 2010-08-18 コークス炉装置の運転方法
RU2012116149/05A RU2533149C2 (ru) 2009-09-22 2010-08-18 Способ эксплуатации коксовой печи
AU2010297521A AU2010297521A1 (en) 2009-09-22 2010-08-18 Method for operating a coke oven arrangement
US13/497,361 US20120217148A1 (en) 2009-09-22 2010-08-18 Method for operating a coke oven arrangement
EP10742854A EP2480631A1 (de) 2009-09-22 2010-08-18 Verfahren zum betrieb einer koksofenanordnung
CN2010800505839A CN102639675A (zh) 2009-09-22 2010-08-18 运行炼焦炉***的方法
CA2774898A CA2774898A1 (en) 2009-09-22 2010-08-18 Method for operating a coke oven arrangement
IN3166DEN2012 IN2012DN03166A (de) 2009-09-22 2012-04-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042520.9 2009-09-22
DE102009042520A DE102009042520A1 (de) 2009-09-22 2009-09-22 Verfahren zum Betrieb einer Koksofenanordnung

Publications (1)

Publication Number Publication Date
WO2011035993A1 true WO2011035993A1 (de) 2011-03-31

Family

ID=43027473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062024 WO2011035993A1 (de) 2009-09-22 2010-08-18 Verfahren zum betrieb einer koksofenanordnung

Country Status (12)

Country Link
US (1) US20120217148A1 (de)
EP (1) EP2480631A1 (de)
JP (1) JP2013505342A (de)
KR (1) KR20120074294A (de)
CN (1) CN102639675A (de)
AU (1) AU2010297521A1 (de)
CA (1) CA2774898A1 (de)
DE (1) DE102009042520A1 (de)
IN (1) IN2012DN03166A (de)
RU (1) RU2533149C2 (de)
TW (1) TW201118161A (de)
WO (1) WO2011035993A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012019528A2 (pt) * 2010-02-05 2018-06-12 Texas A & M Univ Sys sistema de pirólise e gaseificação para produzir um gás de síntese e bio-carvão a partir de uma carga de alimentação de biomassa e método para gaseificação e pirólise de uma carga de alimentação de biomassa em um reator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR350020A (fr) * 1904-06-25 1905-08-24 Paul Leon Hulin Récupération de gaz de houille dans la fabrication du coke métallurgique
US1375477A (en) * 1919-08-25 1921-04-19 Koppers Co Inc Ammonia and tar recovery process
US1838294A (en) * 1926-06-12 1931-12-29 Koppers Co Inc Coke oven battery
DE3308304A1 (de) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Verfahren zur erzeugung von erdgasersatzgas
DE3308305A1 (de) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Verfahren zur erzeugung von wasserstoff
DE3424424A1 (de) 1984-07-03 1986-01-16 Didier Engineering Gmbh, 4300 Essen Verfahren zur nutzung von koksofengas
DE3515250A1 (de) 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen
DE3805397A1 (de) 1988-02-20 1989-08-24 Ruhrkohle Ag Verfahren zur herstellung von fuel-methanol (treibstoff) aus koksofengas und huettengas
WO2006133576A1 (en) * 2005-06-15 2006-12-21 Questair Technologies Inc. Adsorptive bulk separation for upgrading gas streams

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU23906A1 (ru) * 1927-08-27 1931-10-31 Коппе и Ко Эванс Регенеративна коксовальна печь
DE2659782B2 (de) * 1976-12-31 1979-06-21 Didier Engineering Gmbh, 4300 Essen Verfahren zur Weiterverarbeitung von Koksofengas
DE2733785A1 (de) * 1977-07-27 1979-02-08 Didier Eng Verfahren zur weiterverarbeitung von koksofengas
US5423891A (en) * 1993-05-06 1995-06-13 Taylor; Robert A. Method for direct gasification of solid waste materials
JP4224240B2 (ja) * 2002-02-07 2009-02-12 株式会社荏原製作所 液体燃料合成システム
JP4337354B2 (ja) * 2003-01-23 2009-09-30 Jfeスチール株式会社 製鉄所副生ガスの利用方法
CN1791686A (zh) * 2003-05-15 2006-06-21 海尔萨可变资产股份有限公司 改善钢铁联合工厂一次能源利用率的方法及设备
CN101023023B (zh) * 2004-08-03 2012-12-26 海尔萨可变资产股份有限公司 由焦炉气制备清洁的还原性气体的方法和设备
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
CN1974732A (zh) * 2006-12-13 2007-06-06 太原理工大学 气化煤气和热解煤气共制合成气工艺
DE102007042502B4 (de) * 2007-09-07 2012-12-06 Uhde Gmbh Vorrichtung zur Zuführung von Verbrennungsluft oder verkokungsbeeinflussenden Gasen in den oberen Bereich von Verkokungsöfen
DE102008012735B4 (de) * 2008-03-05 2013-05-08 Thyssenkrupp Uhde Gmbh Verfahren und Vorrichtung zur Abscheidung von Fremdgasen aus einem reduzierenden Nutzgas durch dampfbetriebene Druckwechseladsorption
CN101343580A (zh) * 2008-08-22 2009-01-14 四川天一科技股份有限公司 一种以焦炉气和高炉气制取甲醇合成气的方法
US8287696B2 (en) * 2008-09-05 2012-10-16 Purdue Research Foundation Multipurpose coke plant for synthetic fuel production
CN101538483B (zh) * 2009-04-03 2013-04-17 中国科学院山西煤炭化学研究所 一种利用煤制气和焦炉气为原料多联产的工艺
DE102009022509B4 (de) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur Herstellung von Synthesegas
DE102010013279B3 (de) * 2010-03-29 2011-07-28 Uhde GmbH, 44141 Verfahren und Vorrichtung zur Verarbeitung eines kohlendioxidreichen Sauergases in einem Claus-Prozess

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR350020A (fr) * 1904-06-25 1905-08-24 Paul Leon Hulin Récupération de gaz de houille dans la fabrication du coke métallurgique
US1375477A (en) * 1919-08-25 1921-04-19 Koppers Co Inc Ammonia and tar recovery process
US1838294A (en) * 1926-06-12 1931-12-29 Koppers Co Inc Coke oven battery
DE3308304A1 (de) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Verfahren zur erzeugung von erdgasersatzgas
DE3308305A1 (de) * 1983-03-09 1984-09-13 Didier Engineering Gmbh, 4300 Essen Verfahren zur erzeugung von wasserstoff
DE3424424A1 (de) 1984-07-03 1986-01-16 Didier Engineering Gmbh, 4300 Essen Verfahren zur nutzung von koksofengas
DE3515250A1 (de) 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen
DE3805397A1 (de) 1988-02-20 1989-08-24 Ruhrkohle Ag Verfahren zur herstellung von fuel-methanol (treibstoff) aus koksofengas und huettengas
WO2006133576A1 (en) * 2005-06-15 2006-12-21 Questair Technologies Inc. Adsorptive bulk separation for upgrading gas streams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANEY WALTER: "Coke ovens and town's gas supply", GAS ENGINEER, LONDON : HEYWOOD, GB, vol. 39, no. 564, 1 April 1923 (1923-04-01), pages 79 - 81, XP008127901 *

Also Published As

Publication number Publication date
EP2480631A1 (de) 2012-08-01
TW201118161A (en) 2011-06-01
KR20120074294A (ko) 2012-07-05
IN2012DN03166A (de) 2015-09-18
CA2774898A1 (en) 2011-03-31
JP2013505342A (ja) 2013-02-14
US20120217148A1 (en) 2012-08-30
RU2012116149A (ru) 2013-10-27
AU2010297521A1 (en) 2012-05-03
DE102009042520A1 (de) 2011-03-24
RU2533149C2 (ru) 2014-11-20
CN102639675A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
EP2435362B1 (de) Verfahren zur herstellung von synthesegas
DE10334590B4 (de) Verfahren zur Gewinnung von Wasserstoff aus einem methanhaltigen Gas, insbesondere Erdgas und Anlage zur Durchführung des Verfahrens
AT504863B1 (de) Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
EP1836125B1 (de) Verfahren zum erzeugen von wasserstoff und energie aus synthesegas
EP3080307B1 (de) Verfahren zur erzeugung von synthesegas im verbund mit einem hüttenwerk
EP2356067A1 (de) Verfahren und vorrichtung zur erzeugung eines syntheserohgases
DE102012112705A1 (de) Verfahren zur Herstellung von Methanol aus Kohlendioxid
WO2015086149A1 (de) Verfahren zur herstellung von ammoniakgas und co2 für eine harnstoffsynthese
EP3176152A1 (de) Verfahren zur erzeugung von harnstoff
EP2435669A2 (de) Verfahren zur nutzung des aus einem vergaser stammenden synthesegases
DE102009022510B4 (de) Verfahren zur gleichzeitigen Herstellung von Eisen und eines CO und H2 enthaltenden Rohsynthesegases
DE102011112093A1 (de) Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
DE202011105262U1 (de) Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
EP2126006A1 (de) Verfahren und vorrichtung zur herstellung von energie, treibstoffen oder chemischen rohstoffen unter einsatz von co2-neutralen biogenen einsatzstoffen
WO2011035993A1 (de) Verfahren zum betrieb einer koksofenanordnung
DE102012013816A1 (de) Verfahren und Anlage zur Reinigung von Synthesegas, insbesondere für die Ammoniaksynthese
DE2735829A1 (de) Verfahren zur erzeugung von kohlenwasserstoffen aus kohle
DE3308305A1 (de) Verfahren zur erzeugung von wasserstoff
WO2018007205A1 (de) Verfahren zur parallelen erzeugung von synthesegas, kohlenstoff und schadstoffarmer restkohle aus braunkohle
EP4253572A1 (de) Reduktion metalloxidhaltigen materials auf basis von ammoniak nh3
DE102015004214A1 (de) Verfahren zur Erzeugung von Synthesegas aus einem CO2-reichen, kohlenwasserstoffhaltigen Einsatzgas
WO2015051908A1 (de) Verfahren zur kombinierten herstellung von roheisen und eines auf synthesegas basierenden organischen chemieprodukts
EP4066921A1 (de) Verfahren und anlage zum herstellen von methanol und ammoniak
WO2023186967A1 (de) Reduktion metalloxidhaltigen materials auf basis von ammoniak nh3
WO2023143870A1 (de) Eisendirektreduktion mit reduzierter kohlendioxidfreisetzung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050583.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10742854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2774898

Country of ref document: CA

Ref document number: 13497361

Country of ref document: US

Ref document number: 2012530196

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010742854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010742854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010297521

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3166/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010109

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012116149

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010297521

Country of ref document: AU

Date of ref document: 20100818

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012006320

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012006320

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120321