WO2011034090A1 - 音声品質解析装置、音声品質解析方法およびプログラム - Google Patents

音声品質解析装置、音声品質解析方法およびプログラム Download PDF

Info

Publication number
WO2011034090A1
WO2011034090A1 PCT/JP2010/065938 JP2010065938W WO2011034090A1 WO 2011034090 A1 WO2011034090 A1 WO 2011034090A1 JP 2010065938 W JP2010065938 W JP 2010065938W WO 2011034090 A1 WO2011034090 A1 WO 2011034090A1
Authority
WO
WIPO (PCT)
Prior art keywords
voice
packet
analysis
network
payload
Prior art date
Application number
PCT/JP2010/065938
Other languages
English (en)
French (fr)
Inventor
一範 小澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/394,796 priority Critical patent/US9112961B2/en
Priority to JP2011531946A priority patent/JP5668687B2/ja
Publication of WO2011034090A1 publication Critical patent/WO2011034090A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2236Quality of speech transmission monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2207/00Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place
    • H04M2207/18Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place wireless networks
    • H04M2207/185Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place wireless networks wireless packet-switched

Definitions

  • the present invention includes: Japanese patent application: Japanese Patent Application No. 2009-217753 (filed on September 18, 2009), Japanese Patent Application: Japanese Patent Application No. 2009-217754 (filed on September 18, 2009), Japanese Patent Application : Based on the priority claim of Japanese Patent Application No. 2009-217756 (filed on Sep. 18, 2009), the entire contents of this application are incorporated and incorporated herein by reference.
  • the present invention relates to a voice quality analysis apparatus, a voice quality analysis method, and a program, and more particularly, to a voice quality analysis apparatus, a voice quality analysis method, and a program for a voice communication service using voice packets storing voice.
  • voice packets that flow through a network are collected, voice quality is analyzed, voice quality is degraded, etc.
  • a network for example, IP (Internet Protocol) network, NGN (Next Generation Network), Internet network, mobile network, etc.
  • IP Internet Protocol
  • NGN Next Generation Network
  • voice quality is degraded, etc.
  • An apparatus capable of detecting the above is known. For example, packet loss rate, round trip delay or one-way delay, jitter, etc. can be detected by performing header analysis such as UDP header or RTP header or RTCP analysis. Furthermore, when at least one of these exceeds a predetermined threshold value, it is determined that the voice quality has deteriorated, and an alarm or the like can be output.
  • These analysis results or voice quality degradation can be notified to a higher-level monitoring device, and output or displayed on the monitoring terminal as it is or after being processed and edited.
  • Patent Document 1 An example of the sound quality analysis device is disclosed in Patent Document 1.
  • a function 11c for collecting and collecting a time stamp of a reception time to a voice / image packet received from a communication destination, a function 11h for collecting own performance data, and a time of the collected voice / image packet Functions 11e, 11f, and 11g that calculate information on transmission delay, packet loss rate, and fluctuation, which are quality degradation factors, based on the information on the stamp and sequence number and the time stamp on the transmission time from the communication destination and the information on the sequence number;
  • a multimedia Deterioration of the quality of A communication is to be able to notify prior to the user with high precision.
  • a voice quality adjustment apparatus in an IP network system having a plurality of VoIP gateway apparatuses that relay packet transfer in IP (Internet Protocol) and transmission of voice signals in an existing public network, An evaluation unit that immediately evaluates the quality of the call voice on the basis of information on the VoIP packet that has reached the VoIP gateway device via the IP network for each line in a call via a transmission path passing through the network; On the basis of the evaluation result, a configuration is disclosed in which the adjustment unit includes an adjustment unit that adjusts a process that the VoIP gateway device that is the transmission source of the VoIP packet sends to the IP network corresponding to each line on the call.
  • IP Internet Protocol
  • Patent Document 3 when packetized voice is multiplexed, error detection information is embedded in a gap between fixed-length cells packed with voice packets, and the voice packet is extracted and embedded in the error detection information.
  • the error condition of the communication channel is measured from a predetermined error occurrence condition, a transmission error excess is notified to the transmission side, and the transmission side communication device that has received this transmission error excess notification receives a voice code.
  • a communication apparatus having a function of suppressing deterioration of voice quality as much as possible by switching the coding method to a coding method having strong voice quality characteristics against code errors and controlling the multiplexing method.
  • Patent Document 4 discloses a configuration in which a media stream relay device that relays between a circuit switching network and a packet switching network has a buffer that absorbs fluctuations in the packet switching network, and can reduce packet congestion and loss. .
  • Patent Document 5 when a test is required during system operation, a test voice signal is transmitted from the media gateway to the IP network, and the voice signal returned via the network is collected.
  • a voice quality monitoring method is disclosed in which the difference is determined and the voice quality is monitored according to the degree of the difference. Further, in Patent Document 1, the test audio signal including the echo component is cut by the echo canceller, and the operation of the echo canceller is monitored using the audio signal after the cut. it is described that the performance monitoring of the echo canceller.
  • Patent Document 6 discloses a configuration in which a terminal connected to a packet network is provided with an echo amount measurement function.
  • the echo measurement method disclosed in Patent Document 2 is an analog acoustic technique for measuring the amount of echo by measuring the amount of voice return in each part of a VoP telephone, such as a handset (Patent Document). 2 paragraphs 0071-0073).
  • Patent Document 7 discloses a hybrid telephone system having a voice quality management function.
  • the hybrid PBX described in this document has a test signal transmission function and a test result analysis function. Based on the analysis results, the setting of various parameters for voice quality in the speech path is optimized for the echo canceller. Yes.
  • the voice quality analysis device described above sends a test voice signal to the network for analysis, collects the signal returned via the network, compares it with the original signal, or specifies a specific voice packet. Since it is necessary to embed a test audio signal in the field of, send it from the transmitting side device, receive it at the receiving side device, extract the test audio signal, and compare the original test audio signal. There is a problem in that unnecessary signals are sent to the network in operation.
  • the voice quality analyzing apparatus described above is configured to perform only the analysis of the packet header and the RTCP only in order to reduce the processing amount, the occurrence of packet loss, the packet loss rate, the jitter, the round trip There is a problem that only delay or one-way delay can be analyzed. Therefore, analysis other than these, for example, analysis of deterioration of sound quality due to bit errors when the mobile network includes wireless transmission sections, whether silence or one-way call due to abnormality occurs during voice call, etc. Is also impossible.
  • One call is a phenomenon in which one voice does not reach the other party during a call.
  • the object of the present invention is that it is not necessary to send a test voice signal to a network in operation like the voice quality analysis apparatus described above or to embed a test voice signal in a specific field of a voice packet.
  • An object of the present invention is to provide a voice quality analysis apparatus, a voice quality analysis method, and a program capable of realizing analysis and detection of sound quality degradation due to occurrence, silence and one-way conversation due to device abnormality, and the like.
  • a packet storing a bit stream obtained by compression-coding voice sent from at least one terminal is collected from the network, and the packet header is collected.
  • the voice that detects the deterioration of the voice communication service quality by performing at least one of the analysis of the payload header and the bit stream stored in the payload, and notifies the detection result to the host device voice quality analysis device is provided which is characterized by having a quality analysis unit.
  • voice quality analysis method comprising a step of notifying the detection result to the device, is provided. This method is linked to a specific machine called a voice quality analysis apparatus that collects packets from the network as described above.
  • a process of collecting a packet storing a bitstream obtained by compression-coding voice sent from at least one terminal from a network In addition to header analysis, processing for executing at least one of analysis of payload header and analysis of bit stream stored in payload, and deterioration of voice communication service quality is detected based on the analysis result,
  • a program for causing a computer constituting the voice quality analysis apparatus to execute a process of notifying the apparatus of a detection result and a process of notifying the apparatus may be computer recorded on a readable storage medium. That is, the present invention can be embodied as a computer program product.
  • the present invention it is possible to detect deterioration / abnormality of voice communication service quality without sending unnecessary signals and packets to the network during service operation.
  • FIG. 4 is a diagram illustrating a modified embodiment of the bitstream analysis unit of FIG. 3. It is a figure showing the structure of the 3rd Embodiment of this invention. It is a diagram showing a detailed configuration of a speech analysis apparatus according to the third embodiment of the present invention. It is a figure showing the structure of the 4th Embodiment of this invention.
  • FIG. 10 is a diagram illustrating a detailed configuration of a bitstream analysis unit in FIG. 9. It is a diagram showing a variant embodiment of a bit stream analyzing unit of FIG.
  • the voice quality analysis apparatus of the present invention collects a packet storing a bit stream obtained by compression-coding voice sent from a certain terminal that is performing voice communication (see FIG. 1). In addition to analyzing the header of the packet, the voice quality analyzing apparatus executes at least one of analysis of a payload header and analysis of a bit stream stored in the payload.
  • the voice quality analysis apparatus according to the present invention detects a deterioration in voice communication service quality based on the analysis, and notifies the host apparatus of the detection result.
  • test voice signal there is no need for a test voice signal to flow through the network in operation, or there is no need for a test voice signal to be embedded in a specific field of a voice packet. Etc. can be detected.
  • FIG. 1 is a diagram showing the configuration of the first exemplary embodiment of the present invention.
  • a mobile terminal 170 and a mobile terminal 171 performing voice communication (voice telephone) via a wireless network 190, a mobile core network 180, and a wireless network 191 are shown.
  • the mobile core network 180 is a CSIP network (Circuit Switched over-IP Network). That is, the circuit-switched voice signal is converted into an IP packet by the voice communication devices 150 and 151 arranged opposite to each other and transferred over the mobile core network 180.
  • CSIP network Circuit Switched over-IP Network
  • the portable terminal 170 (171) has a function of converting the input voice into a bit stream that has been compression-encoded by a predetermined audio compression encoding method and outputting the bit stream.
  • a bit rate of 12.2 kbps of AMR Adaptive Multi-Rate speech codec
  • AMR Adaptive Multi-Rate speech codec
  • 3GPP TS26.090 standard can be referred to, so detailed description thereof is omitted here.
  • the AMR bit stream is stored in an IuUP (Iu User Plane) protocol frame when it is transmitted from the wireless network 190 to the mobile core network 180 via the wireless network 190.
  • the IuUP protocol frame reaches the mobile core network 180 and is input to the voice communication device 150.
  • details of the IuUP protocol frame can be referred to 3GPP TS26.102 standard.
  • the voice communication device 150 stores the IuUP protocol frame in the payload portion of the RTP (Real-time Transport Protocol) packet and then uses the RTP / UDP / IP protocol toward the voice communication device 151 on the partner terminal side. , Send RTP packet.
  • the voice communication device 150 sends an RTCP (Real-time Transport Control Protocol) packet to the voice communication device 151 at regular time intervals (for example, 5 seconds).
  • the voice communication device 151 receives the RTP packet, extracts the IuUP protocol frame stored in the RTP payload portion, and outputs it to the wireless network 191.
  • the wireless network 191 the 12.2 kbps AMR bit stream stored in the IuUP protocol frame is extracted and sent to the mobile terminal 171.
  • the mobile terminal 171 receives the 12.2 kbps AMR bitstream, decodes the bitstream, and reproduces audio.
  • the voice communication in the direction from the mobile terminal 171 to the mobile terminal 170 is only the flow in the opposite direction to the above, and is the same, and thus the description thereof is omitted.
  • the voice quality analyzing apparatus 110 exchanges N channel (N ⁇ 1) uplink and downlink RTP packets and N channel uplink and downlink RTCP exchanged between the voice communication apparatus 150 and the voice communication apparatus 151. Collect packets.
  • N ⁇ 1 N channel uplink and downlink RTP packets
  • N channel uplink and downlink RTCP exchanged between the voice communication apparatus 150 and the voice communication apparatus 151. Collect packets.
  • separate voice quality analysis apparatuses are configured to handle the uplink direction and the downlink direction. However, the same voice quality analysis apparatus may be configured to perform both uplink and downlink.
  • the voice quality analyzer 110 analyzes the collected RTP packet and RTCP packet.
  • the host device 130 is a device that receives a report from the voice quality analysis device 110, such as degradation of voice communication service quality.
  • FIG. 2 is a block diagram showing a detailed configuration of the voice quality analysis apparatus according to the first embodiment of the present invention.
  • the packet receiver 111, the RTP header analyzer 112 to which the packet output from the packet receiver 111 is input, the RTCP analyzer 113, the RTP payload header analyzer 114, and each of these analyzers An output unit 115 to which an analysis result from is input is shown.
  • Each unit of the voice quality analysis apparatus can be realized not only by hardware but also by a program that causes a computer constituting the voice quality analysis apparatus to execute processing described later.
  • the packet receiving unit 111 collects the RTP packet storing the AMR IuUP protocol frame and outputs it to the RTP header analyzing unit 112 and the RTP payload header analyzing unit 114. Further, the packet reception unit 111 receives RTCP packets at regular intervals and outputs them to the RTCP analysis unit 113.
  • the RTP header analysis unit 112 performs packet loss analysis as header analysis, and outputs the result to the output unit 115.
  • the packet loss analysis refers to checking the continuity of the sequence number of the RTP header for a predetermined observation period (for example, 1 minute). If the continuity is lacking, the packet loss is determined. The packet loss rate is calculated for the continuous section and the entire observation period.
  • the RTCP analysis unit 113 performs at least one of the following analysis.
  • the RTCP analysis unit 113 outputs the value of the round-trip delay D within the observation period (for example, 1 minute) or the time change of the value of the round-trip delay D to the output unit 115. Further, when the value of the round-trip delay D is larger than a predetermined threshold value, the RTCP analysis unit 113 outputs warning information (alarm) to the output unit 115.
  • the RTCP analysis unit 113 copies the jitter amount stored in the RTCP RR and outputs the value of the jitter amount and the temporal change of the jitter amount to the output unit 115. Further, when the jitter value is larger than a predetermined threshold value, the RTCP analysis unit 113 outputs warning information to the output unit 115.
  • the RTP payload header analysis unit 114 analyzes sound quality degradation due to the occurrence of bit errors. Specifically, the RTP payload header analysis unit 114 checks the value of the FQC (Frame Quality Classifier) field of the payload header part with respect to the IuUP protocol frame stored in the payload part of the RTP packet, and 0 during the observation period. The number of times other than (Good) and the duration are calculated. The RTP payload header analysis unit 114 outputs these numerical values to the output unit 115. Further, when at least one of the number of times and the duration time exceeds a predetermined threshold value, the RTP payload header analysis unit 114 determines that the quality is deteriorated and outputs warning information to the output unit 115.
  • FQC Full Quality Classifier
  • the output unit 115 outputs the analysis result, the numerical time change, and the warning information output from each analysis unit to the upper apparatus 130 for each observation period within the observation period.
  • the packet loss situation, the round trip, and the like without the need to flow the test voice signal to the network in operation and without embedding the test voice signal in a specific field of the voice packet.
  • the status and abnormality of the FQC value of the payload header can be detected and transmitted to the host device 130.
  • FIG. 3 is a block diagram illustrating a detailed configuration of the voice quality analysis apparatus according to the second embodiment.
  • the constituent elements having the same numbers as those in FIG. 2 are the same constituent elements as those in the first embodiment, and thus the description thereof will be omitted. Differences will be described below.
  • the voice quality analysis apparatus receives the packet output from the packet receiver 111 in addition to the configuration of the voice quality analysis apparatus according to the first embodiment (see FIG. 2).
  • the output unit 117 is configured to receive the analysis result output from the bit stream analysis unit 116.
  • the bit stream analysis unit 116 is added to analyze the bit stream when an RTP packet is received and detect the occurrence of a silent event due to an abnormality of the communication device or the like.
  • the silent event detection method will be described in detail below.
  • the RTP header analysis unit 112 is silent because the packet is not transferred due to an abnormality such as a router installed in the mobile core network 180.
  • the warning information is output to the output unit 117.
  • the RTP header analysis unit 112 When there is reception of an RTP packet during the observation period, the RTP header analysis unit 112 notifies the bit stream analysis unit 116 of reception of the RTP packet. The bit stream analysis unit 116 that has received the notification performs analysis.
  • FIG. 4 shows a configuration example of the bit stream analysis unit 116. Referring to FIG. 4, a configuration including a bitstream extraction unit 118, a gain parameter decoding unit 119, and a level estimation unit 120 is shown.
  • the bitstream extraction unit 118 extracts the IuUP protocol frame from the payload for the input RTP packet, and further stores it in the IuUP protocol frame. AMR bitstream is extracted.
  • the gain parameter decoding unit 119 decodes the gain parameter in the SID (Silence Insertion Descriptor) frame, and outputs the decoding result to the level estimation unit 120.
  • the level estimation unit 120 sets the input decoding result as a level estimation value, determines that the level estimation value is not zero, and determines that it is normal, and outputs the result (normal) to the output unit 117.
  • the level estimation unit 120 determines that there is silence due to an abnormality of the router or the communication device, and includes a warning including the number of times the SID frame level is zero within the observation period. Information is output to the output unit 117.
  • the gain parameter decoding unit 119 decodes the gain parameter related to the fixed codebook (Fixed Codebook) in the AMR bitstream, and outputs the decoding result to the level estimation unit 120.
  • the level estimation unit 120 performs a process of adding a predicted value of the gain parameter for the fixed codebook, sets this as a level estimation value, determines that the level estimation value is not zero, and determines that the level estimation value is normal, and outputs a result (normal) to the output unit 117 Is output.
  • the level estimate is zero, it is determined that there is no sound due to an abnormality in the router or communication device, and warning information including the number of times that the level estimate is zero within the observation period and its duration is displayed. Output to the output unit 117.
  • a silent event caused by an abnormality in a router or a communication device is detected and transmitted to the host device 130. Is possible.
  • voice codecs other voice codecs other than AMR, for example, ITU-T Recommendation G. used in VoIP. 729 or the like can also be used.
  • G. 729 the IuUP protocol is not used, and the payload type field of the RTP header is set to G.729.
  • bit stream analysis unit 116 of the second embodiment described above can be configured as follows.
  • FIG. 5 is a block diagram showing a configuration of a modified embodiment of the bitstream analysis unit 116.
  • the speech compression encoding method ITU-T Recommendation G. 7 illustrates a configuration in the case of H.711.
  • the bit stream decoding unit 121 is a G. 711 bit stream is divided into predetermined frame intervals (for example, 10 ms or 20 ms), all bit streams included in the frame interval are decoded, and a signal S (n) obtained by decoding is output to the level estimation unit 122 To do.
  • the level estimation unit 122 calculates the level estimation value L in the frame section based on the following equation [Equation 1].
  • the level estimation unit 122 determines that there is no sound due to an abnormality of the router or the communication device, and determines the number of times the level estimation value L is zero in the observation period and the duration thereof.
  • the included warning information is output to the output unit 117.
  • the audio compression encoding method other than AMR for example, G. 729 and G.G. Also in 711 etc., a silent event can be detected.
  • the voice quality analysis apparatus of the present invention collects a first packet storing a bit stream obtained by compressing and encoding voice sent from a certain terminal that performs voice communication from the network, In addition to the analysis of the header of the first packet, the first of detecting deterioration in voice communication service quality by performing at least one of analysis of a payload header and analysis of a bitstream stored in the payload A voice quality analysis unit (see “U-Plane analysis device” in FIG.
  • a second voice quality analysis unit that collects the second packet storing the control signal from the network and analyzes the second packet ( 6 (see “C-Plane analysis device”) and a higher-level device to which the analysis results output from the first and second voice quality analysis units are input (“high-level device in FIG. 6). Can be realized by reference).
  • the host device confirms whether or not the deterioration of the voice communication service quality detected by the first voice quality analysis unit is consistent with the analysis result of the second voice quality analysis unit.
  • the above configuration not only analyzes the user plane (U-Plane) packet but also analyzes the control signal of the control plane (C-Plane) to confirm and verify that the channel is busy. Thus, it becomes possible to detect silence due to abnormality with high accuracy.
  • the first and second audio quality analysis units can be provided in a form independent of the host device as shown in FIG. 6, but can also be incorporated in the host device.
  • the second voice quality analysis unit receives and verifies the voice communication service quality degradation notification from the first voice quality analysis unit, and the analysis result from the second voice quality analysis unit is the first result. configured to validate receiving the voice quality analysis unit can also be employed.
  • FIG. 6 is a diagram showing the configuration of the third exemplary embodiment of the present invention. Referring to FIG. 6, a mobile terminal 170 and a mobile terminal 171 that perform voice communication (voice telephone) via a wireless network 190, a mobile core network 180, and a wireless network 191 are shown.
  • voice communication voice telephone
  • the mobile core network 180 is a CSIP network (Circuit Switched over-IP Network). That is, the circuit-switched voice signal is converted into an IP packet by the voice communication apparatuses 150 and 151 arranged opposite to each other, and transferred through the mobile core network 180.
  • CSIP Circuit Switched over-IP Network
  • the portable terminal 170 (171) has a function of converting the input voice into a bit stream that has been compression-encoded by a predetermined audio compression encoding method and outputting the bit stream.
  • a bit rate of 12.2 kbps of AMR Adaptive Multi-Rate speech codec
  • AMR Adaptive Multi-Rate speech codec
  • 3GPP TS26.090 standard can be referred to, so detailed description thereof is omitted here.
  • the AMR bit stream is stored in an IuUP (Iu User Plane) protocol frame when it is transmitted from the wireless network 190 to the mobile core network 180 via the wireless network 190.
  • the IuUP protocol frame reaches the mobile core network 180 and is input to the voice communication device 150.
  • details of the IuUP protocol frame can be referred to 3GPP TS26.102 standard.
  • a U-Plane packet that is a first packet storing a bit stream obtained by compressing and encoding the voice between the voice communication device 150 and the voice communication device 151 is an RTP / UDP / IP protocol. Shall be transferred using. Similarly, it is assumed that the second packet storing the control signal is transferred by the UDP / IP protocol.
  • call control is performed using SIP (Session Initiation Protocol), but other call control methods may be used.
  • the voice communication device 150 stores the IuUP protocol frame in the payload portion of the RTP (Real-time Transport Protocol) packet and then uses the RTP / UDP / IP protocol toward the voice communication device 151 on the partner terminal side. , Send RTP packet.
  • the voice communication device 150 sends an RTCP (Real-time Transport Control Protocol) packet to the voice communication device 151 at regular time intervals (for example, 5 seconds).
  • the voice communication device 151 receives the UDP packet storing the control signal as described above, retrieves the control signal, performs call connection processing, and further performs a circuit switching call control signal (for example, ISUP (ISDN User Part)). ) And output to the wireless network 191. Also, the voice communication device 151 receives the RTP packet, extracts the IuUP protocol frame stored in the RTP payload portion, and outputs it to the wireless network 191. In the wireless network 191, the 12.2 kbps AMR bit stream stored in the IuUP protocol frame is extracted and sent to the mobile terminal 171.
  • a circuit switching call control signal for example, ISUP (ISDN User Part)
  • the mobile terminal 171 receives the 12.2 kbps AMR bitstream, decodes the bitstream, and reproduces audio.
  • the voice communication in the direction from the portable terminal 171 to the portable terminal 170 is only the flow in the reverse direction to the above and is the same, and thus the description is omitted.
  • the U-Plane analysis device 1110 includes N channel (N ⁇ 1) uplink and downlink RTP packets (first packet) and N channel exchanged between the voice communication device 150 and the voice communication device 151. Minute RTCP packets are collected.
  • N ⁇ 1 uplink and downlink RTP packets (first packet)
  • Minute RTCP packets are collected.
  • the same U-Plane analysis device 1110 performs analysis in the uplink direction and the downlink direction, but a configuration in which different U-Plane analysis devices are used for uplink and downlink may be used.
  • the U-Plane analysis apparatus 1110 corresponds to the voice quality analysis unit of the first embodiment, and analyzes the collected RTP packet (first packet) and RTCP packet.
  • the C-Plane analysis device 1130 corresponds to the second voice quality analysis unit described above, collects a UDP packet that is a second packet storing a control signal exchanged between the voice communication devices 150 and 151, Perform this analysis. For example, when call control is performed using SIP, it is assumed that the session establishment method “Invite” is transmitted from the voice communication device 150 and the response “200 OK” is received from the voice communication device 151 in the call control exchange using SIP. When the C-Plane analysis device 130 receives the response “200 OK”, the C-Plane analysis device 130 determines that the session is a voice call start, and places the session number, reception IP address, transmission source IP address, reception port number, etc. Notify device 140. Further, the C-Plane analysis device 1130 determines that the call is ended when the session end method “BYE” transmitted from the voice communication device 150 or the voice communication device 151 is collected, and notifies the higher-level device 140 of it.
  • FIG. 7 is a block diagram showing a detailed configuration of the U-Plane analysis apparatus according to the first embodiment of the present invention.
  • a packet receiver 111 an RTP header analyzer 112 to which a packet output from the packet receiver 111 is input, an RTCP analyzer 113, an RTP payload header analyzer 114, and a bitstream analyzer A configuration including 116 and an output unit 117 to which analysis results from these analysis units are input is shown.
  • the components of the U-Plane analysis device are the same as the components of the speech analysis device according to the first embodiment described above, and a description thereof will be omitted.
  • each unit of these U-Plane analysis devices performs not only hardware, but also U-Plane analysis device, or processing described later on a computer that constitutes a host device including U-Plane analysis device and C-Plane analysis device. It can also be realized by a program to be executed.
  • the host device 140 determines the occurrence of an abnormality in service quality based on the contents notified from the U-Plane analysis device 1110 and the C-Plane analysis device 1130 as described above. For example, the U-Plane analysis device 1110 receives a notification that there is a possibility of silence due to an abnormality, even though it is notified that a call is in progress from a C-Plane analysis device 1130 in a certain session. If it is, the higher-level device 140 determines that a silent event due to an abnormality has occurred in the session, and notifies the monitoring device 145 of an alarm.
  • the monitoring device 145 in FIG. 6 When the monitoring device 145 in FIG. 6 receives an alarm from the host device 140, the monitoring device 145 outputs, to a predetermined display device or the like, a message or the like indicating that silence due to abnormality has occurred in the session.
  • the third embodiment of the present invention it is necessary to send a test voice signal to a network in operation, and without embedding a test voice signal in a specific field of a voice packet, It is possible to detect the delay status, jitter status, FQC value status of the payload header, and the occurrence of a silent event, verify them using a control signal, and output them to the monitoring device 145.
  • the voice quality analysis apparatus described in Patent Documents 5 to 7 and the like described above sends a test voice signal to the network for analysis, collects the signal returned via the network, and compares it with the original signal.
  • a test voice signal is embedded in a specific field in a voice packet and transmitted from the transmission side device. After receiving the test voice signal, the test voice signal is extracted and compared with the original test voice signal. Therefore, there is a problem in that unnecessary signals are sent to the network during service operation.
  • the voice quality analyzing apparatus described above is configured to perform only the analysis of the packet header and the RTCP only in order to reduce the processing amount, the occurrence of packet loss, the packet loss rate, the jitter, the round trip There is a problem that only delay or one-way delay can be analyzed. Therefore, in other analyzes, for example, when there is a gateway interconnecting the PSTN network (public switched telephone network) and the IP network in the network, it is impossible to detect sound quality deterioration due to the remaining echo signal. There is a problem.
  • PSTN network public switched telephone network
  • the voice quality analysis apparatus collects uplink and downlink packets each storing a bit stream obtained by compression-coding voice sent from each terminal that performs voice communication (see FIG. 8).
  • the voice quality analysis apparatus decodes a spectrum parameter in a bit stream stored in a payload of each packet, and uses an uplink direction and a downlink direction decoding result to obtain an uplink spectrum and a downlink spectrum. To determine whether echo remains or not, and notifies the host device of the detection result.
  • FIG. 8 is a diagram showing the configuration of the fourth exemplary embodiment of the present invention.
  • a mobile terminal 170 and a telephone terminal 2171 performing voice communication (voice telephone) via a wireless network 190, a mobile core network 180, and a PSTN network 2191 are shown.
  • the mobile core network 180 is a CSIP network (Circuit Switched over-IP Network). That is, the circuit-switched voice signal is converted into an IP packet by the voice communication device 150 and the gateway device 2151 arranged opposite to each other and transferred through the mobile core network 180.
  • CSIP network Circuit Switched over-IP Network
  • the mobile terminal 170 has a function of converting the input voice into a bit stream that is compression-encoded by a predetermined audio compression encoding method and outputting the bit stream.
  • a bit rate of 12.2 kbps of AMR Adaptive Multi-Rate speech codec
  • AMR Adaptive Multi-Rate speech codec
  • 3GPP TS26.090 standard can be referred to, so detailed description thereof is omitted here.
  • the AMR bit stream is stored in an IuUP (Iu User Plane) protocol frame when it is transmitted from the wireless network 190 to the mobile core network 180 via the wireless network 190.
  • the IuUP protocol frame reaches the mobile core network 180 and is input to the voice communication device 150.
  • details of the IuUP protocol frame can be referred to 3GPP TS26.102 standard.
  • the voice communication apparatus 150 extracts 12.2 kbps AMR-related header information and bitstream from the IuUP protocol frame and stores them in the payload portion of an RTP (Real-time Transport Protocol) packet.
  • RTP Real-time Transport Protocol
  • the voice communication device 150 copies the necessary information from the IuUP frame to the payload format according to RFC3267, and then transfers the RTP packet in which the 12.2 kbps AMR bitstream is stored in the payload portion, as RTP / UDP / IP.
  • the data is sent to the gateway device 2151 using a protocol.
  • the voice communication device 150 sends an RTCP (Real-time Transport Control Protocol) packet to the gateway device 2151 at a constant time interval (for example, 5 seconds).
  • RTCP Real-time Transport Control Protocol
  • the gateway device 2151 receives the RTP packet, confirms the RTP payload format, and then converts the 12.2 kbps AMR stream stored in the payload portion to the G. 711 stream.
  • the 711 stream is output to the PSTN network 2191 by STM (Synchronous Transfer Mode).
  • the telephone terminal 2171 receives an audio signal via the PSTN network 2191 to be connected.
  • Voice communication in the direction from the telephone terminal 2171 to the portable terminal 170 is only the flow in the reverse direction to that described above, and is the same, so the description thereof is omitted.
  • the voice quality analysis apparatus 2110 transmits and receives N-channel (N ⁇ 1) uplink and downlink RTP packets and N-channel uplink and downlink RTCP packets exchanged between the voice communication apparatus 150 and the gateway apparatus 2151. Collect.
  • the voice quality analyzer 2110 analyzes the collected RTP packet and RTCP packet.
  • FIG. 9 is a block diagram showing a detailed configuration of the voice quality analysis apparatus according to the fourth embodiment of the present invention.
  • a packet receiver 2111 an RTP header analyzer 2112 to which a packet output from the packet receiver 2111 is input, an RTCP analyzer 2113, an RTP payload header analyzer 2114, and a bitstream analyzer
  • a configuration including 2116 and an output unit 2117 to which analysis results from these analysis units are input is shown.
  • Each unit of the voice quality analysis apparatus can be realized not only by hardware but also by a program that causes a computer constituting the voice quality analysis apparatus to execute processing described later.
  • the packet reception unit 2111 collects RTP packets storing the RFC3267 payload format and 12.2 kbps AMR bitstream in the upstream and downstream directions, and RTP header analysis unit 2112, RTP payload header analysis unit 2114, and bitstream analysis Output to the unit 2116.
  • the packet receiving unit 2111 receives RTCP packets at regular intervals and outputs them to the RTCP analyzing unit 2113.
  • the RTP header analysis unit 2112 performs packet loss analysis as header analysis, and outputs the result to the output unit 2117.
  • the packet loss analysis refers to checking the continuity of the sequence number of the RTP header for a predetermined observation period (for example, 1 minute). If the continuity is lacking, the packet loss is determined. The packet loss rate is calculated for the continuous section and the entire observation period.
  • the RTCP analysis unit 2113 performs at least one of the following analysis.
  • D RTCP packet reception time ⁇ DLSR ⁇ LSR (3)
  • the RTCP analysis unit 2113 outputs the value of the round-trip delay D or the time change of the value of the round-trip delay D within the observation period (for example, 1 minute) to the output unit 2117. Furthermore, when the value of the round trip delay D is larger than a predetermined threshold value, the RTCP analysis unit 2113 outputs warning information (alarm) to the output unit 2117.
  • the RTCP analysis unit 2113 copies the jitter amount stored in the RTCP RR, and outputs the value of the jitter amount and the temporal change of the jitter amount to the output unit 2117. Further, when the jitter value is larger than a predetermined threshold value, the RTCP analysis unit 2113 outputs warning information to the output unit 2117.
  • the RTP payload header analysis unit 2114 analyzes sound quality degradation due to the occurrence of bit errors. Specifically, the RTP payload header analysis unit 2114 checks the value of the Q (Quality) field stored in the header part of the RFC3267 payload format of the RTP packet, and becomes a value other than 1 (Good) during the observation period. The number of times and duration are calculated. The RTP payload header analysis unit 2114 outputs these numerical values to the output unit 2117. Furthermore, when at least one of the number of times and the duration time exceeds a predetermined threshold, the RTP payload header analysis unit 2114 determines that the quality is degraded and outputs warning information to the output unit 2117.
  • FIG. 10 shows a configuration example of the bit stream analysis unit 2116. Referring to FIG. 10, a configuration including a bitstream extraction unit 2118, an LSP parameter decoding unit 2119, and a residual echo detection unit 2120 is shown.
  • the bitstream extraction unit 2118 When notified by the RTP header analysis unit 2112 that the RTP packet has been received, the bitstream extraction unit 2118 inputs the RTP packet in the uplink direction and the downlink direction, and stores them in the RFC3267 payload format unit.
  • the 12.2 kbps AMR bitstream is extracted.
  • 38 bits representing an LSP (Line Spectrum Pair) parameter are extracted and output from the 244 bits of the AMR bit stream per frame.
  • the LSP parameter decoding unit 2119 decodes only the 38-bit portion (LSP parameter) in both the upstream direction and the downstream direction, and outputs the result to the residual echo detection unit 2120.
  • Residual echo detector 2120 receives the decoded LSP parameters for both the upstream and downstream directions and converts them into LPC (linear prediction code) coefficients. Further, LPC spectrum P (n) (n is 1 or more and N Or the LPC cepstrum c (n) (n is 1 or more and M or less).
  • the LPC spectrum P (n) is used.
  • the LPC spectrum calculated from the uplink LSP parameter is represented as Pf (n)
  • the LPC spectrum calculated from the downlink LSP parameter is represented as Pb (n).
  • each n is 1 or more and N or less).
  • the residual echo detector 2120 further calculates the following equation (4).
  • CC ( ⁇ ) Max [ ⁇ Pb (n) Pf (n + ⁇ )] (4)
  • CC ( ⁇ ) represents the cross power spectrum between the upstream and downstream LPC spectra at the time of delay time ⁇ .
  • the residual echo detector 2120 changes the delay time ⁇ from 1 to an integer multiple of the frame length (for example, 100 ms) at a frame length interval (for example, 20 nms), and calculates the delay time ⁇ that maximizes CC ( ⁇ ).
  • the maximum value of CC ( ⁇ ) exceeds a predetermined threshold, the residual echo detector 2120 determines that there is a residual echo, and outputs a detection result, warning information, and the like to the output unit 2117.
  • the output unit 2117 collects detection results and alarm information from each analysis unit, and outputs them to the upper level apparatus 2130 at predetermined time intervals or whenever an alarm is detected.
  • the PSTN network and the test voice signal need not be embedded in the network in operation, and the test voice signal is not embedded in a specific field of the voice packet.
  • the test voice signal is not embedded in a specific field of the voice packet.
  • FIG. 1 where there is a gateway interconnecting the IP network, it is possible to detect sound quality deterioration due to the remaining echo signal.
  • the residual echo detection method includes a method of calculating a spectral parameter from a reproduction signal after decoding the entire bit stream and reproducing the signal, and obtaining a correlation between the reproduced signals. Compared with the method of calculating the cross-correlation, it is possible to detect the residual echo with a very small processing amount. The reason for this is that only the spectral parameters of the upstream and downstream bitstreams are decoded and the correlation between the upstream spectrum and downstream spectrum is obtained to detect the residual echo. is there.
  • bit stream analysis unit 2116 of the above-described fourth embodiment can be configured as follows.
  • FIG. 11 is a block diagram showing a configuration of a modified embodiment of the bitstream analysis unit.
  • the constituent elements having the same numbers as those in FIG. 10 are the same constituent elements as those in the fourth embodiment, and thus the description thereof will be omitted. Differences will be described below.
  • the gain parameter decoding unit 2125 decodes both the upstream and downstream directions of 7 bits which are the fixed codebook gain portion of the bit stream of 244 bits per AMR 12.2 kbps frame to obtain the gain. Next, the gain parameter decoding unit 2125 determines whether or not the gain exceeds a predetermined threshold value for each frame, determines that a frame below the threshold value is a silent frame, and determines this as a residual echo detection unit. 2128.
  • the residual echo detector 2128 calculates the cross-power spectrum of the LPC spectrum in the upstream direction and the downstream direction according to the equation (4).
  • the gain parameter decoding unit 2125 determines that the frame is a silent frame. The frame is not included in the cross power spectrum calculation. This is in order to prevent erroneous determination when the cross power spectrum is calculated between silent frames, resulting in a large correlation value.
  • the voice quality analysis device detects an abnormality of the device based on the estimated level by decoding a SID (Silience Insertion Descriptor) frame in a bitstream stored in a payload.
  • SID Session Insertion Descriptor
  • the voice quality analysis unit has an ITU-T Recommendation G. 711, an audio quality analysis apparatus that detects an abnormality of the apparatus based on a level estimated by decoding the entire bitstream stored in the payload.
  • a voice quality analysis apparatus including at least one of an IP (Internet Protocol) network, an NGN (Next Generation Network), an Internet network, or a mobile network as a network for collecting the packets.
  • IP Internet Protocol
  • NGN Next Generation Network
  • a first packet storing a bit stream obtained by compressing and encoding audio transmitted from at least one of at least two terminals is collected from the network, and in addition to analyzing the header of the first packet, A first voice quality analysis unit for detecting degradation of voice communication service quality by performing at least one of analysis and analysis of a bitstream stored in the payload; and a second packet storing a control signal A second voice quality analysis unit that collects from the network and analyzes the second packet, and the detection result of the first voice quality analysis unit is determined by the analysis result of the second voice quality analysis unit.
  • a voice quality analysis device characterized by verifying.
  • the first and second audio quality analysis units notify the host device of the detection result at predetermined time intervals
  • the higher-order apparatus is a voice quality analysis apparatus that verifies a detection result of the first voice quality analysis unit based on an analysis result of the second voice quality analysis unit.
  • the voice quality analysis apparatus of the tenth or eleventh aspect When the first voice quality analysis unit detects a deterioration in voice quality, the first voice quality analysis unit notifies the host device of the detection result;
  • the higher-order apparatus is a voice quality analysis apparatus that verifies a detection result of the first voice quality analysis unit based on an analysis result of the second voice quality analysis unit.
  • the first voice quality analysis unit is a voice quality analysis apparatus that detects an abnormality of the apparatus based on a level estimated by decoding a parameter related to a gain in a bitstream stored in a payload.
  • the first audio quality analysis unit is an audio quality analysis device that detects an abnormality of the device based on an estimated level by decoding a SID (Silience Insertion Descriptor) frame in a bitstream stored in a payload.
  • the first speech quality analysis unit has an ITU-T Recommendation G. 711, an audio quality analysis apparatus that detects an abnormality of the apparatus based on a level estimated by decoding the entire bitstream stored in the payload.
  • the control signal stored in the second packet is a voice quality analysis device that is a SIP (Session Initiation Protocol) message.
  • a voice quality analysis apparatus including at least one of an IP (Internet Protocol) network, an NGN (Next Generation Network), an Internet network, or a mobile network as a network for collecting the first and second packets.
  • IP Internet Protocol
  • NGN Next Generation Network
  • Internet network or a mobile network as a network for collecting the first and second packets.
  • [18th form] Collecting from the network a first packet storing a bitstream obtained by compressing and encoding audio transmitted from at least one of at least two terminals and a second packet storing a control signal;
  • the first of detecting deterioration in voice communication service quality by performing at least one of analysis of a payload header and analysis of a bitstream stored in the payload
  • a voice quality analysis step A voice quality analyzing step of analyzing the second packet
  • a speech quality analysis method wherein the detection result of the first speech quality analysis step is verified by the analysis result of the second speech quality analysis step.
  • the first of detecting deterioration in voice communication service quality by performing at least one of analysis of a payload header and analysis of a bitstream stored in the payload Voice quality analysis processing,
  • a second voice quality analysis process for analyzing the second packet Processing for verifying the detection result of the first voice quality analysis step based on the analysis result of the second voice quality analysis step; Is a program that causes a computer constituting the voice quality analysis apparatus to execute the program.
  • the uplink packet and the downlink packet storing a bit stream obtained by compressing and encoding the voice transmitted from each terminal are collected from the network, and the bits stored in the payload of each packet
  • Each spectrum parameter in the stream is decoded, and using the upstream and downstream decoding results, the correlation between the upstream spectrum and the downstream spectrum is obtained to detect whether echo remains.
  • a voice quality analysis device having a voice quality analysis unit for notifying the host device.
  • a voice quality analysis apparatus having a function of detecting packet loss, delay time, jitter amount, and bit error occurrence status in addition to the residual echo detection.
  • a voice quality analysis apparatus that notifies a detection result to the host apparatus at predetermined time intervals.
  • An audio quality analysis apparatus that notifies a detection result to the host apparatus when residual echo is detected.
  • a voice quality analysis apparatus including at least one of an IP (Internet Protocol) network, an NGN (Next Generation Network), an Internet network, or a mobile network as a network for collecting the packets.
  • IP Internet Protocol
  • NGN Next Generation Network
  • the speech quality analysis apparatus is configured to obtain a correlation between an uplink spectrum and a downlink spectrum by using the uplink and downlink decoding results and determine whether an echo remains or not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Abstract

 サービス運用中のネットワークへの不要な信号、パケットの送出を行わずに、音声通信サービス品質の異常を検出する。音声品質解析装置は、端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットを、ネットワークから採取する。音声品質解析装置は、前記採取したパケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行って、音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する音声品質解析部を有する。

Description

音声品質解析装置、音声品質解析方法およびプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2009-217753号(2009年9月18日出願)、日本国特許出願:特願2009-217754号(2009年9月18日出願)、日本国特許出願:特願2009-217756号(2009年9月18日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、音声品質解析装置、音声品質解析方法およびプログラムに関し、特に、音声を格納した音声パケットによる音声通信サービスの音声品質解析装置、音声品質解析方法およびプログラムに関する。
 音声通信サービス中に、ネットワーク(例えば、IP(Internet Protocol)ネットワーク、NGN(Next Generation Network)、インターネット網、モバイルネットワークなど)を流れる音声パケットを採取し、音声品質を解析し、音声品質の劣化等を検出することのできる装置が知られている。例えば、UDPヘッダやRTPヘッダなどのヘッダ解析やRTCPの解析などを行うことで、パケットロス率、往復遅延または片方向遅延、ジッタなどを検出することができる。さらに、これらの少なくとも一つがあらかじめ定められたしきい値を超える場合に音声品質の劣化と判定し、アラーム等を出力させることもできる。これら解析結果または音声品質の劣化を、上位の監視装置に通知し、そのまま、あるいは加工・編集した上で監視端末に出力・表示させることもできる。
 上記音声品質解析装置の一例が特許文献1に開示されている。特許文献1によると、通信先から受信した音声/画像パケットに受信時刻のタイムスタンプを付与して収集する機能11cと、自身のパフォーマンスデータを収集する機能11hと、収集した音声/画像パケットのタイムスタンプ及びシーケンス番号の情報並びに通信先からの送信時刻のタイムスタンプ及びシーケンス番号の情報に基づいて、品質劣化要因たる伝送遅延、パケットロス率及びゆらぎの情報を算出する機能11e、11f、11gと、これら算出した品質劣化要因及び前記収集したパフォーマンスデータの情報が閾値を超過しているか否か判定する機能11iと、この判定により閾値を超過している場合に品質劣化発生の可能性があることをモニタ上に通知する機能11jとを設けた通信端末を用いることにより、マルチメディア通信の品質劣化を高精度にユーザに先駆けて通知できるとされている。
 その他特許文献2に、IP(Internet Protocol)におけるパケット転送と既存公衆網における音声信号の伝達とを中継する複数のVoIPゲートウェイ装置を備えたIPネットワークシステムにおける音声品質調整装置において、評価手段は、IPネットワークを経由する伝送経路を介して通話中の回線それぞれについて、IPネットワークを介してVoIPゲートウェイ装置に到達したVoIPパケットに関する情報に基づいて、即時的に通話音声の品質を評価する評価手段と、この評価結果に基づいて、調整手段は、VoIPパケットの送信元のVoIPゲートウェイ装置が通話中の回線それぞれに対応してIPネットワークに送出する処理を調整する調整手段を備える構成が開示されている。
 また、特許文献3に、パケット化した音声を多重化する際に、音声パケットを詰め込んだ固定長セルの隙間に誤り検出情報を埋め込み、受信側において音声パケットを抽出すると共に埋め込まれた誤り検出情報から通信路の誤り状態を計測し、予め設定した誤り発生の条件を超えた場合には送信側に対して伝送エラー過多を通知し、この伝送エラー過多通知を受信した送信側通信装置において音声符号化方式を符号誤りに対して音声品質特性が強い符号化方式に切り替え、また多重化方法を制御することにより、音声品質の劣化を極力抑える機能を備えた通信装置が開示されている。
 特許文献4に回線交換網とパケット交換網とを中継するメディアストリーム中継装置においてパケット交換網のゆらぎを吸収するバッファを有し、パケットの輻輳やロスを低減できるようにした構成が開示されている。
 特許文献5には、システム運用中に試験が必要な場合にメディアゲートウェイからIP網に試験用音声信号を送出し、ネットワークを経由して戻ってきた音声信号を採取し、前記試験用音声信号との差分を求め、差分の程度により音声品質の監視を行う音声品質監視方法が開示されている。また、特許文献1には、エコー成分を盛り込ませた試験用音声信号に対し、エコーキャンセラでエコー成分をカットさせ、カットさせた後の音声信号を用いてエコーキャンセラの動作を監視することにより、エコーキャンセラの性能監視を行うことが記載されている。
 特許文献6には、パケット網に接続される端末において、エコー量の測定機能を具備させた構成が開示されている。特許文献2に開示されているエコーの測定方法は、具体的には、ハンドセット等、VoP電話機各部における音声の折り返し量を測定することでエコー量を測定するアナログ音響的な手法である(特許文献2の段落0071-0073参照)。
 特許文献7には、音声品質管理機能を有するハイブリッド電話システムが開示されている。同文献記載のハイブリッドPBXは、試験信号送出機能および試験結果解析機能を有し、その解析結果に基づいて、通話路における音声品質に対する各種パラメータの設定をエコーキャンセラに対して最適化するようにしている。
特開2004-289748号公報 特開2005-57331号公報 特開2003-87321号公報 特開2007-288342号公報 特開2004-328345号公報 特開2003-244235号公報 特開2005-176071号公報
 以下の分析は、本発明によって与えられたものである。なお、上記特許文献の全開示内容はその引用をもって本書に繰込み記載する。
 しかしながら、上記した音声品質解析装置は、解析のために試験用音声信号をネットワークに流しネットワークを経由して戻ってくる信号を採取し、もとの信号と比較したり、または音声パケット中の特定のフィールドに試験用音声信号を埋め込んで送信側装置から送出し、これを受信側装置で受信した上で前記試験用音声信号を抽出し元の試験用音声信号を比較する必要があるため、サービス運用中のネットワークに不要な信号を流してしまうという問題点がある。
 さらに、上記した音声品質解析装置は、処理量の削減のために、パケットのヘッダのみの解析やRTCPの解析のみを行う構成であるため、パケットロスの発生の有無、パケットロス率、ジッタ、往復遅延または片道遅延の解析しかできないという問題点がある。従って、これら以外の解析、例えば、モバイル網で無線転伝送区間を含む場合にビット誤りの発生による音質の劣化や、音声通話中に異常による無音や片通話が発生しているのかどうか等の解析も不可能である。なお、片通話とは、通話中に、一方の声が相手方に届かなくなる現象のことである。
 本発明の目的は、上記した音声品質解析装置のように運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込む必要がなく、上記したビット誤りの発生による音質劣化や、装置の異常などによる無音や片通話などの解析や検出を実現することのできる音声品質解析装置、音声品質解析方法およびプログラムを提供することにある。
 本発明の第1の視点によれば、端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットを、ネットワークから採取し、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する音声品質解析部を有することを特徴とする音声品質解析装置が提供される。
 本発明の第2の視点によれば、端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取するステップと、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行するステップと、前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知するステップと、を含む音声品質解析方法が提供される。本方法は、上記のようにネットワークからパケットを採取する音声品質解析装置という、特定の機械に結びつけられている。
 本発明の第3の視点によれば、端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取する処理と、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行する処理と、前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する処理と、を音声品質解析装置を構成するコンピュータに実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。
 本発明によれば、サービス運用中のネットワークへの不要な信号、パケットの送出を行わずに、音声通信サービス品質の劣化・異常を検出することが可能になる。また本発明によれば、ビット誤りに起因する音質の劣化や、無音や片通話の発生なども検出することが可能になる。
本発明の第1の実施形態の構成を表した図である。 本発明の第1の実施形態の音声解析装置の詳細構成を表した図である。 本発明の第2の実施形態の音声解析装置の詳細構成を表した図である。 図3のビットストリーム解析部の詳細構成を表した図である。 図3のビットストリーム解析部の変形実施形態を表した図である。 本発明の第3の実施形態の構成を表した図である。 本発明の第3の実施形態の音声解析装置の詳細構成を表した図である。 本発明の第4の実施形態の構成を表した図である。 本発明の第4の実施形態の音声解析装置の詳細構成を表した図である。 図9のビットストリーム解析部の詳細構成を表した図である。 図9のビットストリーム解析部の変形実施形態を表した図である。
 はじめに本発明の概要を説明する。本発明の音声品質解析装置は、音声通信をしている、ある端末から送出された音声を圧縮符号化したビットストリームを格納したパケットを採取する(図1参照)。前記音声品質解析装置は、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行する。本発明の音声品質解析装置は、前記解析により音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する。
 以上により、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、ビット誤りの発生による音質劣化や、装置の異常などによる無音や片通話などを検出することが可能になる。
[第1の実施形態]
 続いて、本発明をモバイルネットワークでの音声通信サービスに対して音声品質解析を行う第1の実施形態について図面を参照して詳細に説明する。図1は、本発明の第1の実施形態の構成を表した図である。
 図1を参照すると、無線網190およびモバイルコアネットワーク180および無線網191を介して、音声通信(音声電話)を行っている携帯端末170および携帯端末171が示されている。
 モバイルコアネットワーク180は、CSIP網(Circuit Switched over -IP NetWork)であると想定する。つまり回線交換の音声信号は対向して配置された音声通信装置150、151によりIPパケットに変換されてモバイルコアネットワーク180上を転送される。
 携帯端末170(171)は、入力した音声を、所定の音声圧縮符号化方式により圧縮符号化されたビットストリームに変換し、該ビットストリームを出力する機能を備えている。ここで音声圧縮符号化方式としては、AMR(Adaptive Multi-Rate speech codec)の12.2kbpsのビットレートを用いるものとする。AMRの詳細は、例えば、3GPP TS26.090規格を参照できるのでここでは詳細な説明は省略する。
 本実施形態では、AMRビットストリームは、無線網190を経由し、無線網190からモバイルコアネットワーク180に送出される際に、IuUP(Iu User Plane)プロトコルフレームに格納される。IuUPプロトコルフレームはモバイルコアネットワーク180に達し、音声通信装置150に入力される。ここでIuUPプロトコルフレームの詳細は、3GPP TS26.102規格を参照することができる。
 ここで、携帯端末170および携帯端末171は音声コーデックをバイパスするTrFO(Transcoder Free Operation)で通信するものと想定する。従って、音声通信装置150は、IuUPプロトコルフレームをRTP(Real-time Transport Protocol)パケットのペイロード部に格納した上で、相手端末側の音声通信装置151に向け、RTP/UDP/IPプロトコルを用いて、RTPパケットを送出する。また、音声通信装置150は、一定時間間隔(例えば5秒)でRTCP(Real-time Transport Control Protocol)パケットを音声通信装置151に送出する。
 音声通信装置151は、前記RTPパケットを入力し、RTPペイロード部分に格納されたIuUPプロトコルフレームを取り出して、無線網191に出力する。無線網191においては、IuUPプロトコルフレームに格納された12.2kbps AMRビットストリームが取り出されて携帯端末171に送出される。
 携帯端末171は、12.2 kbps AMRビットストリームを受信して、ビットストリームを復号し音声を再生する。
 携帯端末171から携帯端末170の方向の音声通信は、上記と逆方向の流れとなるだけであり、同様であるので、説明は省略する。
 音声品質解析装置110は、音声通信装置150と音声通信装置151間でやりとりされる、Nチャネル分(N≧1)の、上りおよび下りのRTPパケット、ならびに、Nチャネル分の上りおよび下りのRTCPパケットを採取する。なお、図1の例では、上り方向と下り方向を別々の音声品質解析装置が担う構成としているが、同一の音声品質解析装置が上りと下りの両方を担う構成とすることもできる。
 音声品質解析装置110は、前記採取したRTPパケットおよびRTCPパケットの解析を行う。上位装置130は、音声品質解析装置110から音声通信サービス品質の劣化等の報告を受ける装置である。
 図2は、本発明の第1の実施形態の音声品質解析装置の詳細構成を示すブロック図である。図2を参照すると、パケット受信部111と、パケット受信部111から出力されたパケットが入力されるRTPヘッダ解析部112と、RTCP解析部113と、RTPペイロードヘッダ解析部114と、これら各解析部からの解析結果が入力される出力部115と、を備えた構成が示されている。なお、これら音声品質解析装置の各部は、ハードウェアのみならず、音声品質解析装置を構成するコンピュータに後記する処理を実行させるプログラムにより実現することもできる。
 パケット受信部111は、AMR IuUPプロトコルフレームを格納したRTPパケットを採取して、RTPヘッダ解析部112とRTPペイロードヘッダ解析部114に出力する。また、パケット受信部111は、RTCPパケットを一定時間毎に受信してRTCP解析部113に出力する。
[RTPヘッダ解析]
 RTPヘッダ解析部112は、ヘッダ解析として、パケットロス解析を実施し、その結果を出力部115に出力する。ここで、パケットロス解析とは、あらかじめ定められた観測期間(例えば、1分間)に対し、RTPヘッダのシーケンス番号の連続性を調べ、連続性を欠く場合はパケットロスと判断し、パケットロスが継続する区間や、観測期間全体でのパケットロス率を算出する。
[RTCP解析]
 RTCP解析部113は、次に記載する解析のうち、少なくとも一つの解析を行う。
(1)遅延時間の解析:RTCP解析部113は、RTCPパケットを受信した時刻(NTPタイムスタンプ表示)と、RTCPの中のRR(Receiver Report)に格納されたLSRおよびDLSRを用いて、次式により往復遅延Dを算出する。
 D=RTCPパケット受信時刻-DLSR-LSR ・・・(1)
 RTCP解析部113は、観測期間(例えば、1分間)内での往復遅延Dの値または往復遅延Dの値の時間変化を、出力部115に出力する。さらに、往復遅延Dの値が予め定められたしきい値より大きい場合、RTCP解析部113は、警告情報(アラーム)を出力部115に出力する。
(2)ジッタ量の解析:RTCP解析部113は、RTCP RRに格納されているジッタ量をコピーしてジッタ量の値ならびにジッタ量の時間変化を出力部115に出力する。さらに、ジッタの値が予め定められたしきい値より大きい場合、RTCP解析部113は、警告情報を出力部115に出力する。
[RTPペイロードヘッダ解析]
 RTPペイロードヘッダ解析部114は、ビット誤りの発生による音質劣化の解析を行う。具体的には、RTPペイロードヘッダ解析部114は、RTPパケットのペイロード部に格納されたIuUPプロトコルフレームに対し、ペイロードヘッダ部のFQC(Frame Quality Classifier)フィールドの値をチェックし、観測期間中に0(Good)以外の値になっている回数と継続時間を算出する。RTPペイロードヘッダ解析部114は、これらの数値を出力部115に出力する。さらに、RTPペイロードヘッダ解析部114は、回数と継続時間の少なくとも一方が予め定められたしきい値を超える場合、品質劣化であると判断し、警告情報を出力部115に出力する。
 出力部115は、観測期間内に、上記各解析部から出力された解析結果、数値の時間変化、警告情報を、観測期間毎に、上位装置130に出力する。
 以上のとおり、本発明の第1の実施形態によれば、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、パケットロス状況、往復遅延の状況、ジッタの状況に加えて、ペイロードヘッダのFQC値の状況や異常を検出し、上位装置130に伝えることが可能になる。
[第2の実施形態]
 続いて、ビットストリーム解析を実施するようにした本発明の第2の実施形態について図面を参照して詳細に説明する。
 図3は、第2の実施形態の音声品質解析装置の詳細構成を示すブロック図である。図3において、図2と同一の番号を付した構成要素は、第1の実施形態と同等の構成要素であるので説明を省略し、以下、相違点を説明する。
 図3を参照すると、第2の実施形態の音声品質解析装置は、第1の実施形態の音声品質解析装置の構成(図2参照)に加えて、パケット受信部111から出力されたパケットが入力されるビットストリーム解析部116を備えるとともに、出力部117にはビットストリーム解析部116から出力される解析結果が入力される構成となっている。
 ビットストリーム解析部116は、RTPパケットの受信がある場合において、ビットストリームを解析し、通信装置等の異常に起因する無音事象の発生を検出するために追加されたものである。以下、無音事象の検出方法について詳細に説明する。
 無音事象の検出:観測期間内で以下のいずれか(RTPパケットの受信なし/レベル推定値=0)を検出した場合に、ルータや通信装置などの異常に起因する無音と判断する。
 まず、観測期間中にRTPパケットの受信が全くなくシーケンス番号がカウントアップされない場合、RTPヘッダ解析部112が、モバイルコアネットワーク180に設置されたルータなどの異常でパケットが転送されないことに起因する無音と判断し、出力部117に警告情報を出力する。
 観測期間中にRTPパケットの受信がある場合、RTPヘッダ解析部112は、ビットストリーム解析部116に対しRTPパケットの受信を通知する。前記通知を受けたビットストリーム解析部116が解析を行う。
 図4は、ビットストリーム解析部116の構成例を示している。図4を参照すると、ビットストリーム抽出部118と、ゲインパラメータ復号部119と、レベル推定部120とを備えた構成が示されている。
 ビットストリーム抽出部118は、RTPヘッダ解析部112からRTPパケットの受信があることを通知されると、入力したRTPパケットに対し、ペイロード部からIuUPプロトコルフレームを取り出し、さらにIuUPプロトコルフレームに格納されているAMRのビットストリームを抽出する。
 ここで、AMRが無音圧縮モードの場合、ゲインパラメータ復号部119は、SID(Silence Insertion Descriptor)フレームでのゲインパラメータを復号し、レベル推定部120に復号結果を出力する。レベル推定部120は、前記入力された復号結果をレベル推定値とし、レベル推定値がゼロでなければ正常と判断し、出力部117に結果(正常)を出力する。一方、レベル推定値がゼロの場合、レベル推定部120は、ルータや通信装置の異常に起因する無音であると判断し、観測期間内にSIDフレームのレベルがゼロである回数等を含んだ警告情報を出力部117に出力する。
 一方、AMRが無音圧縮モードでない場合、ゲインパラメータ復号部119は、AMRビットストリームのうちの固定コードブック(Fixed Codebook)に関するゲインパラメータを復号し、レベル推定部120に復号結果を出力する。レベル推定部120は、固定コードブックに対するゲインパラメータの予測値を加算する処理を行い、これをレベル推定値とし、レベル推定値がゼロでなければ正常と判断し、出力部117に結果(正常)を出力する。一方、レベル推定値がゼロの場合は、ルータや通信装置の異常に起因する無音であると判断し、観測期間内でのレベル推定値がゼロの回数とその継続時間等を含んだ警告情報を出力部117に出力する。
 以上のとおり、本発明の第2の実施形態によれば、上記した第1の実施形態の効果に加えてルータや通信装置等の異常に起因する無音事象を検出し、上位装置130に伝えることが可能になる。
 なお、音声圧縮符号化方式としては、AMR以外の他の音声コーデック、例えば、VoIPで使われるITU-T Recommendation G.729等を用いることもできる。G.729の場合、IuUPプロトコルは使われずに、RTPヘッダのペイロードタイプフィールドがG.729であることを示す番号(具体的には18)となっている。
 また、上記した第2の実施形態のビットストリーム解析部116は、下記のような構成とすることもできる。
 図5は、ビットストリーム解析部116の変形実施形態の構成を示すブロック図である。図5の構成は、音声圧縮符号化方式がITU-T Recommendation G.711である場合の構成を示している。G.711の場合も、上記したG.729と同様に、IuUPプロトコルは使われずに、RTPヘッダのペイロードタイプフィールドがG.711であることを示す番号(具体的には0)となっている。
 図5において、図4と同一の番号を付した構成要素は、第2の実施形態と同等の構成要素であるので説明を省略し、以下、相違点を説明する。ビットストリーム復号部121は、G.711のビットストリームを予め定められたフレーム間隔(例えば、10msまたは20ms)に区切り、フレーム間隔に含まれるビットストリームをすべて復号し、復号して得た信号S(n)をレベル推定部122に出力する。
 レベル推定部122は、次式[数1]に基づき、フレーム区間でのレベル推定値Lを算出する。
Figure JPOXMLDOC01-appb-M000001
 上記[数1]中、Nはフレーム区間に含まれる信号のサンプル数を示す。例えば、20ms区間の場合は、N=160である。レベル推定値Lがゼロの場合、レベル推定部122は、ルータや通信装置の異常に起因する無音であると判断し、観測期間内におけるレベル推定値Lがゼロであった回数とその継続時間を含む警告情報を出力部117に出力する。
 以上のように、AMR以外の音声圧縮符号化方式、例えば、G.729やG.711等においても、無音事象の検出を行うことができる。
[第3の実施形態]
 続いて、第2の音声品質解析部を追加した本発明の第3の実施形態について図面を参照して詳細に説明する。
 はじめに本実施形態の概要を説明する。図6に示すように、本発明の音声品質解析装置は、音声通信をしている、ある端末から送出された音声を圧縮符号化したビットストリームを格納した第1のパケットをネットワークから採取し、前記第1のパケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出する第1の音声品質解析部(図6の「U-Plane解析装置」参照)と、制御信号を格納した第2のパケットをネットワークから採取し、前記第2のパケットを解析する第2の音声品質解析部(図6の「C-Plane解析装置」参照)と、前記第1、第2の音声品質解析部から出力された解析結果が入力される上位装置(図6の「上位装置」参照)により実現できる。
 上位装置は、前記第1の音声品質解析部より検出された音声通信サービス品質の劣化が、第2の音声品質解析部の解析結果と整合するか否かを確認する。
 以上により、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、ビット誤りの発生による音質劣化や、装置の異常などによる無音や片通話などの解析や検出を行うことが可能になる。また上記構成により、ユーザプレーン(U-Plane)のパケットの解析のみでなく、コントロールプレーン(C-Plane)の制御信号の解析を行ない当該チャネルが通話中であることを確認・検証する構成としたため、異常による無音を精度よく検出することが可能になる。なお、第1、第2の音声品質解析部は、図6のように、上位装置と独立した形態で設けることができるが、上位装置に組み込んだ形態とすることもできる。また、第1の音声品質解析部からの音声通信サービス品質の劣化通知を、第2の音声品質解析部が受け取って検証する構成や、第2の音声品質解析部からの解析結果を、第1の音声品質解析部が受け取って検証する構成も採用可能である。
 図6は、本発明の第3の実施形態の構成を表した図である。
 図6を参照すると、無線網190およびモバイルコアネットワーク180および無線網191を介して、音声通信(音声電話)を行っている携帯端末170および携帯端末171が示されている。
 モバイルコアネットワーク180は、CSIP網(Circuit Switched over -IP NetWork)であると想定する。つまり回線交換の音声信号は対向して配置された音声通信装置150、151によりIPパケットに変換されてモバイルコアネットワーク180を転送される。
 携帯端末170(171)は、入力した音声を、所定の音声圧縮符号化方式により圧縮符号化されたビットストリームに変換し、該ビットストリームを出力する機能を備えている。ここで音声圧縮符号化方式としては、AMR(Adaptive Multi-Rate speech codec)の12.2kbpsのビットレートを用いるものとする。AMRの詳細は、例えば、3GPP TS26.090規格を参照できるのでここでは詳細な説明は省略する。
 上記AMRビットストリームは、無線網190を経由し、無線網190からモバイルコアネットワーク180に送出される際に、IuUP(Iu User Plane)プロトコルフレームに格納される。IuUPプロトコルフレームはモバイルコアネットワーク180に達し、音声通信装置150に入力される。ここでIuUPプロトコルフレームの詳細は、3GPP TS26.102規格を参照することができる。
 本実施形態では、音声通信装置150と音声通信装置151との間で、前記音声を圧縮符号化したビットストリームを格納した第1のパケットであるU-Planeのパケットは、RTP/UDP/IPプロトコルを用いて転送されるものとする。同様に、制御信号を格納した第2のパケットは、UDP/IPプロトコルにより転送されるものとする。以下、本実施形態では、SIP(Session Initiation Protocol)を用いて呼制御が行われているものとして説明するが、他の呼制御方式であってもよい。
 ここで、携帯端末170および携帯端末171の間の音声通信は音声コーデックをバイパスするTrFO(Transcoder Free Operation)で通信するものと想定する。従って、音声通信装置150は、IuUPプロトコルフレームをRTP(Real-time Transport Protocol)パケットのペイロード部に格納した上で、相手端末側の音声通信装置151に向け、RTP/UDP/IPプロトコルを用いて、RTPパケットを送出する。また、音声通信装置150は、一定時間間隔(例えば5秒)でRTCP(Real-time Transport Control Protocol)パケットを音声通信装置151に送出する。
 音声通信装置151は、上記のように制御信号が格納されたUDPパケットを入力し、制御信号を取り出して呼接続処理を行ない、さらに、回線交換の呼制御信号(例えば、ISUP(ISDN User Part))に変換し、無線網191に出力する。また、音声通信装置151は、前記RTPパケットを入力し、RTPペイロード部分に格納されたIuUPプロトコルフレームを取り出して、無線網191に出力する。無線網191においては、IuUPプロトコルフレームに格納された12.2kbps AMRビットストリームが取り出されて携帯端末171に送出される。
 携帯端末171は、12.2 kbps AMRビットストリームを受信して、ビットストリームを復号し音声を再生する。
 携帯端末171から携帯端末170の方向の音声通信は、上記と逆方向の流れとなるだけであり、同様であるので、説明は省略する。
 U-Plane解析装置1110は、音声通信装置150と音声通信装置151間でやりとりされる、Nチャネル分(N≧1)の、上りおよび下りのRTPパケット(第1のパケット)、ならびに、Nチャネル分の上りおよび下りのRTCPパケットを採取する。なお、図1の例では、上り方向と下り方向の解析を同一のU-Plane解析装置1110が担う構成としているが、上り、下りで異なるU-Plane解析装置を用いる構成とすることもできる。
 U-Plane解析装置1110は、第1の実施形態の音声品質解析部に相当し、前記採取したRTPパケット(第1のパケット)およびRTCPパケットの解析を行う。
 C-Plane解析装置1130は、上記した第2の音声品質解析部に相当し、音声通信装置150と151の間でやりとりされる制御信号を格納した第2のパケットであるUDPパケットを採取し、この解析を行う。例えば、SIPを用いて呼制御を行う場合、SIPによる呼制御のやりとりのうち、音声通信装置150からセッション確立メソッド「Invite」を送り、音声通信装置151から応答「200 OK」が来たとする。C-Plane解析装置130は、応答「200 OK」を受信した時点で当該セッションは音声通話開始であると判断し、当該セッションの番号、受信IPアドレス、送信元IPアドレス、受信ポート番号等を上位装置140に通知する。さらに、C-Plane解析装置1130は、音声通信装置150または音声通信装置151から送信されたセッション終了メソッド「BYE」を採取した時点で、通話終了と判断し、上位装置140に通知する。
 続いて、採取した第1のパケットによりサービス品質の異常検出を行うU-Plane解析装置1110の詳細構成について説明する。
 図7は、本発明の第1の実施形態のU-Plane解析装置の詳細構成を示すブロック図である。図7を参照すると、パケット受信部111と、パケット受信部111から出力されたパケットが入力されるRTPヘッダ解析部112と、RTCP解析部113と、RTPペイロードヘッダ解析部114と、ビットストリーム解析部116と、これら各解析部からの解析結果が入力される出力部117と、を備えた構成が示されている。なお、これらU-Plane解析装置の各部は、上記した第1の実施形態の音声解析装置の各部と同等であるので説明を省略する。また、これらU-Plane解析装置の各部は、ハードウェアのみならず、U-Plane解析装置、あるいは、U-Plane解析装置やC-Plane解析装置を含む上位装置を構成するコンピュータに後記する処理を実行させるプログラムにより実現することもできる。
 以上の構成にて、U-Plane解析装置1110からは、パケットロス、遅延時間、ジッタ量、ビット誤り、無音事象の発生状況が検出され、C-Plane解析装置1130からは、制御信号に基づく解析結果(通話状態)が出力される。
 図6を参照すると、上位装置140は、上記のように、U-Plane解析装置1110およびC-Plane解析装置1130から通知された内容に基づいて、サービス品質の異常発生を判定する。例えば、あるセッションで、C-Plane解析装置1130から通話中であるとの通知を受けているにも拘らず、U-Plane解析装置1110からは、異常による無音の可能性ありとの通知を受けている場合、上位装置140は、当該セッションは異常による無音事象が発生していると判断し、監視装置145にアラームを通知する。
 図6の監視装置145は、上位装置140からアラームを受けると、所定の表示装置等に、当該セッションにおいて異常による無音が発生している旨のメッセージ等を出力する。
 以上のとおり、本発明の第3の実施形態によれば、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、パケットロス状況、往復遅延の状況、ジッタの状況、ペイロードヘッダのFQC値の状況、無音事象の発生を検出し、これを制御信号を用いて検証してから、監視装置145に出力させることが可能になる。
[第4の実施形態]
 続いて、上記した特許文献5~7等に記載の音声品質解析装置の問題点を考慮した本発明の第4の実施形態について説明する。
 上記した特許文献5~7等に記載の音声品質解析装置は、解析のために試験用音声信号をネットワークに流しネットワークを経由して戻ってくる信号を採取し、もとの信号と比較したり、または音声パケット中の特定のフィールドに試験用音声信号を埋め込んで送信側装置から送出し、これを受信側装置で受信した上で前記試験用音声信号を抽出し元の試験用音声信号を比較する必要があるため、サービス運用中のネットワークに不要な信号を流してしまうという問題点がある。
 さらに、上記した音声品質解析装置は、処理量の削減のために、パケットのヘッダのみの解析やRTCPの解析のみを行う構成であるため、パケットロスの発生の有無、パケットロス率、ジッタ、往復遅延または片道遅延の解析しかできないという問題点がある。従って、これら以外の解析、例えば、ネットワーク内にPSTN網(公衆交換電話網)とIP網とを相互接続するゲートウェイが存在するような場合に、エコー信号が残留することによる音質劣化を検出できないという問題点がある。
 そこで、本実施形態では、上記した音声品質解析装置のように運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込む必要がなく、エコー信号の残留による音質劣化を検出することのできるようにする。
 はじめに本実施形態の概要を説明する。本実施形態の音声品質解析装置は、音声通信をしている各端末から送出された音声を圧縮符号化したビットストリームを格納した上り下りのパケットをそれぞれ採取する(図8参照)。前記音声品質解析装置は、前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号し、前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めることでエコーが残留しているか否かを検出し、上位装置に検出結果を通知する。
 以上により、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、エコー信号の残留を検出することが可能になる。
 続いて、本発明をモバイルネットワークとPSTN網2191間の音声通信サービスに対して音声品質解析を行う第4の実施形態について図面を参照して詳細に説明する。図8は、本発明の第4の実施形態の構成を表した図である。
 図8を参照すると、無線網190およびモバイルコアネットワーク180およびPSTN網2191を介して、音声通信(音声電話)を行っている携帯端末170および電話端末2171が示されている。
 モバイルコアネットワーク180は、CSIP網(Circuit Switched over -IP NetWork)であると想定する。つまり回線交換の音声信号は対向して配置された音声通信装置150およびゲートウェイ装置2151によりIPパケットに変換されてモバイルコアネットワーク180を転送される。
 携帯端末170は、入力した音声を、所定の音声圧縮符号化方式により圧縮符号化されたビットストリームに変換し、該ビットストリームを出力する機能を備えている。ここで音声圧縮符号化方式としては、AMR(Adaptive Multi-Rate speech codec)の12.2kbpsのビットレートを用いるものとする。AMRの詳細は、例えば、3GPP TS26.090規格を参照できるのでここでは詳細な説明は省略する。
 上記AMRビットストリームは、無線網190を経由し、無線網190からモバイルコアネットワーク180に送出される際に、IuUP(Iu User Plane)プロトコルフレームに格納される。IuUPプロトコルフレームはモバイルコアネットワーク180に達し、音声通信装置150に入力される。ここでIuUPプロトコルフレームの詳細は、3GPP TS26.102規格を参照することができる。
 音声通信装置150は、IuUPプロトコルフレームの中から12.2kbps AMRに関するヘッダ情報やビットストリームを取り出し、RTP(Real-time Transport Protocol)パケットのペイロード部に格納する。ここで、RTPペイロード部に格納する際に、AMRについてはRFC3267で規格化されたRTPペイロードフォーマットを使用するものとする(3GPP TS29.163参照)。従って、音声通信装置150は、RFC3267によるペイロードフォーマットに、IuUPフレームから必要な情報をコピーして移した上で、ペイロード部分に12.2kbps AMRビットストリームを格納したRTPパケットを、RTP/UDP/IPプロトコルを用いてゲートウェイ装置2151に送出する。また、音声通信装置150は、一定時間間隔(例えば5秒)でRTCP(Real-time Transport Control Protocol)パケットをゲートウェイ装置2151に送出する。
 ゲートウェイ装置2151は、前記RTPパケットを入力し、RTPペイロードフォーマットを確認した上で、ペイロード部分に格納された12.2kbps AMRストリームを、G.711ストリームに変換し、変換したG.711ストリームをSTM(Synchronous Transfer Mode)によりPSTN網2191に出力する。
 電話端末2171は、接続するPSTN網2191を介して音声信号を受信する。
 電話端末2171から携帯端末170の方向の音声通信は、上記と逆方向の流れとなるだけであり、同様であるので、説明は省略する。
 音声品質解析装置2110は、音声通信装置150とゲートウェイ装置2151間でやりとりされる、Nチャネル分(N≧1)の、上りおよび下りのRTPパケット、ならびに、Nチャネル分の上りおよび下りのRTCPパケットを採取する。
 音声品質解析装置2110は、前記採取したRTPパケットおよびRTCPパケットの解析を行う。
 図9は、本発明の第4の実施形態の音声品質解析装置の詳細構成を示すブロック図である。図9を参照すると、パケット受信部2111と、パケット受信部2111から出力されたパケットが入力されるRTPヘッダ解析部2112と、RTCP解析部2113と、RTPペイロードヘッダ解析部2114と、ビットストリーム解析部2116と、これら各解析部からの解析結果が入力される出力部2117と、を備えた構成が示されている。なお、これら音声品質解析装置の各部は、ハードウェアのみならず、音声品質解析装置を構成するコンピュータに後記する処理を実行させるプログラムにより実現することもできる。
 パケット受信部2111は、上り方向および下り方向について、RFC3267ペイロードフォーマットおよび12.2 kbps AMRビットストリームを格納したRTPパケットを採取して、RTPヘッダ解析部2112とRTPペイロードヘッダ解析部2114とビットストリーム解析部2116とに出力する。また、パケット受信部2111は、RTCPパケットを一定時間毎に受信してRTCP解析部2113に出力する。
[RTPヘッダ解析]
 RTPヘッダ解析部2112は、ヘッダ解析として、パケットロス解析を実施し、その結果を出力部2117に出力する。ここで、パケットロス解析とは、あらかじめ定められた観測期間(例えば、1分間)に対し、RTPヘッダのシーケンス番号の連続性を調べ、連続性を欠く場合はパケットロスと判断し、パケットロスが継続する区間や、観測期間全体でのパケットロス率を算出する。
[RTCP解析]
 RTCP解析部2113は、次に記載する解析のうち、少なくとも一つの解析を行う。
(1)遅延時間の解析:RTCPパケットを受信した時刻(NTPタイムスタンプ表示)と、RTCPの中のRR(Receiver Report)に格納されたLSRおよびDLSRを用いて、次式(3)により往復遅延Dを算出する。
 D=RTCPパケット受信時刻-DLSR-LSR ・・・(3)
 RTCP解析部2113は、観測期間(例えば、1分間)内での往復遅延Dの値または往復遅延Dの値の時間変化を、出力部2117に出力する。さらに、往復遅延Dの値が予め定められたしきい値より大きい場合、RTCP解析部2113は、警告情報(アラーム)を出力部2117に出力する。
(2)ジッタ量の解析:RTCP解析部2113は、RTCP RRに格納されているジッタ量をコピーしてジッタ量の値ならびにジッタ量の時間変化を出力部2117に出力する。さらに、ジッタの値が予め定められたしきい値より大きい場合、RTCP解析部2113は、警告情報を出力部2117に出力する。
[RTPペイロードヘッダ解析]
 RTPペイロードヘッダ解析部2114は、ビット誤りの発生による音質劣化の解析を行う。具体的には、RTPペイロードヘッダ解析部2114は、RTPパケットのRFC3267ペイロードフォーマットのヘッダ部に格納されたQ(Quality)フィールドの値をチェックし、観測期間中に1(Good)以外の値になっている回数と継続時間を算出する。RTPペイロードヘッダ解析部2114は、これらの数値を出力部2117に出力する。さらに、RTPペイロードヘッダ解析部2114は、回数と継続時間の少なくとも一方が予め定められたしきい値を超える場合、品質劣化であると判断し、警告情報を出力部2117に出力する。
[ビットストリーム解析(残留エコーの検出)]
 続いて、残留エコーの検出方法について詳細に説明する。
 図10は、ビットストリーム解析部2116の構成例を示している。図10を参照すると、ビットストリーム抽出部2118と、LSPパラメータ復号部2119と、残留エコー検出部2120とを備えた構成が示されている。
 ビットストリーム抽出部2118は、RTPヘッダ解析部2112からRTPパケットの受信があることを通知されると、上り方向と下り方向のRTPパケットを入力し、それぞれに対して、RFC3267ペイロードフォーマット部に格納されている12.2kbps AMRのビットストリームを抽出する。ここでは、フレーム当たりのAMRビットストリーム244ビットのうち、LSP(線スペクトル対)パラメータをあらわす38ビットを抽出して出力するものとする。
 LSPパラメータ復号部2119は、上り方向ならびに下り方向の両方について、前記38ビットの部分(LSPパラメータ)のみを復号し、残留エコー検出部2120に出力する。
 残留エコー検出部2120は、上り方向ならびに下り方向の両方について、復号したLSPパラメータを入力してLPC(線形予測符号)係数に変換し、さらに、LPCスペクトルP(n) (nは1以上でN以下)、または、LPCケプストラムc(n) (nは1以上でM以下)に変換する。
 なお以下では、LPCスペクトルP(n)を用いるものとして説明する。ここで、上り方向のLSPパラメータから計算したLPCスペクトルをPf(n)と表し、下り方向のLSPパラメータから計算したLPCスペクトルをPb(n)と表す。(但し、それぞれのnは1以上でN以下)とする。
 残留エコー検出部2120は、さらに次式(4)の計算を行う。
 CC(τ)=Max[ΣPb(n)Pf(n+τ)] ・・・(4)
 式(4)で、CC(τ)は遅れ時刻τの場合の、上りならびに下りのLPCスペクトル同士のクロスパワスペクトルを表す。残留エコー検出部2120は、遅れ時刻τを1からフレーム長の整数倍(例えば100ms)まで、フレーム長間隔(例えば20nms)で変化させ、CC(τ)を最大にする遅れ時刻τを算出する。CC(τ)の最大値があらかじめ定められた閾値を超える場合、残留エコー検出部2120は、残留エコーが存在すると判定し、検出結果や警告情報等を出力部2117に出力する。
 出力部2117は、各解析部からの検出結果やアラーム情報を収集し、これらを、あらかじめ定められた時間毎に、またはアラームを検出する毎に、上位装置2130に出力する。
 以上のとおり、本発明の第4の実施形態によれば、運用中のネットワークに試験用音声信号を流す必要や音声パケットの特定のフィールドに試験用音声信号を埋め込むことなく、ネットワークにPSTN網とIP網とを相互接続するゲートウェイが存在するような図1に示した構成においてエコー信号が残留することによる音質劣化を検出することが可能になる。
 また、本発明の第4の実施形態における残留エコーの検出方法は、ビットストリーム全体を復号して信号を再生した上で再生信号からスペクトルパラメータを計算し相関をとる方法や、前記再生信号同士の相互相関を計算する方法に比べ、極めて少ない処理量でエコーの残留を検出することができる。その理由は、上り方向ならびに下り方向のビットストリームのうちのスペクトルパラメータのみを復号し、上り方向のスペクトルと下り方向のスペクトルの相関を求めることにより、エコーの残留を検出する手法を採用したことにある。
 また、上記した第4の実施形態のビットストリーム解析部2116は、下記のような構成とすることもできる。
 図11は、ビットストリーム解析部の変形実施形態の構成を示すブロック図である。図11において、図10と同一の番号を付した構成要素は、第4の実施形態と同等の構成要素であるので説明を省略し、以下、相違点を説明する。
 ゲインパラメータ復号部2125は、AMR 12.2kbps フレームあたり244ビットのビットストリームのうちの固定コードブックゲインの部分である7ビットについて、上りならびに下りの両方向を復号し、ゲインを求める。次に、ゲインパラメータ復号部2125は、フレーム毎にゲインが予め定められたしきい値を超えているかどうかを判別し、しきい値以下のフレームは無音フレームと判断し、これを残留エコー検出部2128に出力する。
 残留エコー検出部2128は、上り方向ならびに下り方向のLPCスペクトルのクロスパワスペクトルを式(4)に従い、計算するが、この計算のときに、前記ゲインパラメータ復号部2125にて無音フレームと判断されたフレームはクロスパワスペクトル計算には含めない。これは、無音フレーム同士でクロスパワスペクトルを計算すると、相関値が大きくなり、誤判断してしまうことを防止するためである。
 以上のように、図11に示した変形実施形態によれば、図10の構成と比較して、より精度よく残留エコーを検出することが可能になる。
 以上、本発明の好適な実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、上記した実施形態では、モバイルネットワークの音声品質の解析に適用する例を挙げて説明したが、ブロードバンドネットワーク、NGNやインターネット等における音声品質解析にも適用することができる。ただし、この場合は、AMRが用いられる場合であっても、RTPペイロードとして、モバイル特有のIuUPプロトコルは用いられず、RFC3267プロトコルが用いられるので、IuUPの代わりにRFRC3267に置き換えればよい。また、G.729やG.711が用いられる場合は、上記のとおり、IuUPは使われていないが上記と同様に音声品質解析を行うことが可能である。
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による音声品質解析装置参照)
[第2の形態]
 第1の形態の音声品質解析装置において、
 予め定められた時間毎に前記上位装置に対し検出結果を通知する音声品質解析装置。
[第3の形態]
 第1または第2の形態の音声品質解析装置において、
 音声品質の劣化を検出したときに、前記上位装置に対し検出結果を通知する音声品質解析装置。
[第4の形態]
 第1から第3いずれか一の形態の音声品質解析装置において、
 前記音声品質解析部は、ペイロードに格納されたビットストリーム中のゲインに関するパラメータを復号することにより推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第5の形態]
 第1から第4いずれか一の形態の音声品質解析装置において、
 前記音声品質解析部は、ペイロードに格納されたビットストリーム中のSID(Silence Insertion Descriptor)フレームを復号することにより、推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第6の形態]
 第1から第5いずれか一の形態の音声品質解析装置において、
 前記音声品質解析部は、音声圧縮符号化方式がITU-T Recommendation G.711である場合、ペイロードに格納されたビットストリーム全体を復号することにより推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第7の形態]
 第1から第6いずれか一の形態の音声品質解析装置において、
 前記パケットを採取するネットワークとして、IP(Internet Protocol)ネットワーク、NGN(Next Generation Network)、インターネット網またはモバイルネットワークの少なくとも一つを含む音声品質解析装置。
[第8の形態]
 (上記第2の視点による音声品質解析方法参照)
[第9の形態]
 (上記第3の視点によるプログラム参照)
[第10の形態]
 少なくとも2つの端末の少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納した第1のパケットをネットワークから採取し、前記第1のパケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出する第1の音声品質解析部と、制御信号を格納した第2のパケットをネットワークから採取し、前記第2のパケットを解析する第2の音声品質解析部とを有し、前記第1の音声品質解析部の検出結果を、前記第2の音声品質解析部の解析結果により検証することを特徴とする音声品質解析装置。
[第11の形態]
 第10の形態の音声品質解析装置において、
 前記第1、第2の音声品質解析部は、予め定められた時間毎に上位装置に対し検出結果を通知し、
 前記上位装置は、前記第1の音声品質解析部の検出結果を、前記第2の音声品質解析部の解析結果により検証する音声品質解析装置。
[第12の形態]
 第10または第11の形態の音声品質解析装置において、
 前記第1の音声品質解析部は、音声品質の劣化を検出したときに、前記上位装置に対し検出結果を通知し、
 前記上位装置は、前記第1の音声品質解析部の検出結果を、前記第2の音声品質解析部の解析結果により検証する音声品質解析装置。
[第13の形態]
 第10から第12いずれか一の形態の音声品質解析装置において、
 前記第1の音声品質解析部は、ペイロードに格納されたビットストリーム中のゲインに関するパラメータを復号することにより推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第14の形態]
 第10から第13いずれか一の形態の音声品質解析装置において、
 前記第1の音声品質解析部は、ペイロードに格納されたビットストリーム中のSID(Silence Insertion Descriptor)フレームを復号することにより、推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第15の形態]
 第10から第14いずれか一の形態の音声品質解析装置において、
 前記第1の音声品質解析部は、音声圧縮符号化方式がITU-T Recommendation G.711である場合、ペイロードに格納されたビットストリーム全体を復号することにより推定したレベルに基づいて装置の異常を検出する音声品質解析装置。
[第16の形態]
 第10から第15いずれか一の形態の音声品質解析装置において、
 前記第2のパケットに格納される制御信号は、SIP(Session Initiation Protocol)のメッセージである音声品質解析装置。
[第17の形態]
 第10から第16いずれか一の形態の音声品質解析装置において、
 前記第1、第2のパケットを採取するネットワークとして、IP(Internet Protocol)ネットワーク、NGN(Next Generation Network)、インターネット網またはモバイルネットワークの少なくとも一つを含む音声品質解析装置。
[第18の形態]
 少なくとも2つの端末の少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納した第1のパケットと制御信号を格納した第2のパケットとをネットワークから採取するステップと、
 前記第1のパケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出する第1の音声品質解析ステップと、
 前記第2のパケットを解析する第2の音声品質解析ステップと、含み、
 前記第1の音声品質解析ステップの検出結果を、前記第2の音声品質解析ステップの解析結果により検証することを特徴とする音声品質解析方法。
[第19の形態]
 少なくとも2つの端末の少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納した第1のパケットと制御信号を格納した第2のパケットとをネットワークから採取する処理と、
 前記第1のパケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出する第1の音声品質解析処理と、
 前記第2のパケットを解析する第2の音声品質解析処理と、
 前記第1の音声品質解析ステップの検出結果を、前記第2の音声品質解析ステップの解析結果により検証する処理と、
 を音声品質解析装置を構成するコンピュータに実行させるプログラム。
[第20の形態]
 端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取し、前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号し、前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めることでエコーが残留しているか否かを検出し、上位装置に通知する音声品質解析部を有することを特徴とする音声品質解析装置。
[第21の形態]
 第20の形態の音声品質解析装置において、
 さらに、前記各パケットのペイロードに格納されたビットストリームのうちのゲインに関するパラメータを復号し、
 前記上り方向のスペクトルと下り方向のスペクトルとの相関を求める際に、前記ゲインにより特定した無音フレームを除外すること、
 を特徴とする音声品質解析装置。
[第22の形態]
 第20または21の形態の音声品質解析装置において、
 前記スペクトルパラメータとして、ビットストリームに含まれる線スペクトル対(LSP)パラメータを用いる音声品質解析装置。
[第23の形態]
 第20から第22いずれか一の形態の音声品質解析装置において、
 前記スペクトルパラメータの復号結果を、線形予測符号係数に変換し、さらに、線形予測符号スペクトルまたは線形予測符号ケプストラムに変換し、
 遅れ時間を所定の範囲で変化させながら、上り方向と下り方向の線形予測符号スペクトルまたは線形予測符号ケプストラム同士の相関値を求め、
 前記遅れ時間を変化させて求めた複数の相関値のうちの最大値が、所定のしきい値より大きい場合に、エコーが残留していると判定する音声品質解析装置。
[第24の形態]
 第20から第23いずれか一の形態の音声品質解析装置において、
 前記残留エコーの検出に加えて、パケットロス、遅延時間、ジッタ量、ビット誤りの発生状況を検出する機能を備える音声品質解析装置。
[第25の形態]
 第20から第24いずれか一の形態の音声品質解析装置において、
 予め定められた時間毎に前記上位装置に対し検出結果を通知する音声品質解析装置。
[第26の形態]
 第20から第25いずれか一の形態の音声品質解析装置において、
 エコーの残留を検出したときに、前記上位装置に対し検出結果を通知する音声品質解析装置。
[第27の形態]
 第20から第26いずれか一の形態の音声品質解析装置において、
 前記パケットを採取するネットワークとして、IP(Internet Protocol)ネットワーク、NGN(Next Generation Network)、インターネット網またはモバイルネットワークの少なくとも一つを含む音声品質解析装置。
[第28の形態]
 端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取するステップと、
 前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号するステップと、
 前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めて、エコーが残留しているか否かを判定するステップと、を含み、
 前記相関値が所定のしきい値より大きい場合に、エコーが残留していると判定する音声品質解析方法。
[第29の形態]
 端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取する処理と、
 前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号する処理と、
 前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めて、エコーが残留しているか否かを判定する処理と、を音声品質解析装置を構成するコンピュータに実行させ、
 前記コンピュータに、前記相関値が所定のしきい値より大きい場合に、エコーが残留していると判定させるプログラム。
110、110A、2110 音声品質解析装置
111 パケット受信部
112 RTPヘッダ解析部
113 RTCP解析部
114 RTPペイロードヘッダ解析部
115、117 出力部
116 ビットストリーム解析部
118 ビットストリーム抽出部
119 ゲインパラメータ復号部
120、122 レベル推定部
121 ビットストリーム復号部
130、140 上位装置
145 監視装置
150、151 音声通信装置
170、171 携帯端末
180 モバイルコアネットワーク
190、191 無線網
1110 U-Plane解析装置
1130 C-Plane解析装置
2111 パケット受信部
2112 RTPヘッダ解析部
2113 RTCP解析部
2114 RTPペイロードヘッダ解析部
2117 出力部
2116、2116A ビットストリーム解析部
2118 ビットストリーム抽出部
2119 LSPパラメータ復号部
2120、2128 残留エコー検出部
2125 ゲインパラメータ復号部
2151 ゲートウェイ装置
2171 電話端末
2191 PSTN網

Claims (17)

  1.  端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットを、ネットワークから採取し、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析および前記ペイロードに格納されたビットストリームの解析のうちの少なくとも一つを行うことで音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する音声品質解析部を有することを特徴とする音声品質解析装置。
  2.  さらに、制御信号を格納した第2のパケットをネットワークから採取し、前記第2のパケットを解析する第2の音声品質解析部を有し、前記音声品質解析部の検出結果を、前記第2の音声品質解析部の解析結果により検証する請求項1の音声品質解析装置。
  3.  前記音声品質解析部は、ペイロードに格納されたビットストリーム中のゲインに関するパラメータを復号することにより推定したレベルに基づいて装置の異常を検出する請求項1または2の音声品質解析装置。
  4.  前記音声品質解析部は、ペイロードに格納されたビットストリーム中のSID(Silence Insertion Descriptor)フレームを復号することにより推定したレベルに基づいて装置の異常を検出する請求項1または2の音声品質解析装置。
  5.  前記音声品質解析部は、音声圧縮符号化方式がITU-T Recommendation G.711である場合、ペイロードに格納されたビットストリーム全体を復号することにより推定したレベルに基づいて装置の異常を検出する請求項1または2の音声品質解析装置。
  6.  前記音声品質解析部に代えて、
     端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取し、前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号し、前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めることでエコーが残留しているか否かを検出し、上位装置に通知する第3の音声品質解析部を有する請求項1から5いずれか一の音声品質解析装置。
  7.  さらに、前記各パケットのペイロードに格納されたビットストリームのうちのゲインに関するパラメータを復号し、
     前記上り方向のスペクトルと下り方向のスペクトルとの相関を求める際に、前記ゲインにより特定した無音フレームを除外すること、
     を特徴とする請求項6の音声品質解析装置。
  8.  前記スペクトルパラメータとして、ビットストリームに含まれる線スペクトル対(LSP)パラメータを用いる請求項6または7の音声品質解析装置。
  9.  前記スペクトルパラメータの復号結果を、線形予測符号係数に変換し、さらに、線形予測符号スペクトルまたは線形予測符号ケプストラムに変換し、
     遅れ時間を所定の範囲で変化させながら、上り方向と下り方向の線形予測符号スペクトルまたは線形予測符号ケプストラム同士の相関値を求め、
     前記遅れ時間を変化させて求めた複数の相関値のうちの最大値が、所定のしきい値より大きい場合に、エコーが残留していると判定する請求項6から8いずれか一記載の音声品質解析装置。
  10.  前記残留エコーの検出に加えて、パケットロス、遅延時間、ジッタ量、ビット誤りの発生状況を検出する機能を備える請求項5から8いずれか一記載の音声品質解析装置。
  11.  予め定められた時間毎に前記上位装置に対し検出結果を通知する請求項1から10いずれか一の音声品質解析装置。
  12.  音声品質の劣化またはエコーの残留を検出したときに、前記上位装置に対し検出結果を通知する請求項1から11いずれか一の音声品質解析装置。
  13.  前記パケットを採取するネットワークとして、IP(Internet Protocol)ネットワーク、NGN(Next Generation Network)、インターネット網またはモバイルネットワークの少なくとも一つを含む請求項1から12いずれか一の音声品質解析装置。
  14.  端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取するステップと、
     前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行するステップと、
     前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知するステップと、
     を含む音声品質解析方法。
  15.  前記端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取するステップと、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行するステップと、前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知するステップと、に代えて、
     端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取するステップと、
     前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号するステップと、
     前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めて、エコーが残留しているか否かを判定するステップと、を含み、
     前記相関値が所定のしきい値より大きい場合に、エコーが残留していると判定する請求項14の音声品質解析方法。
  16.  端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取する処理と、
     前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行する処理と、
     前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する処理と、
     を音声品質解析装置を構成するコンピュータに実行させるプログラム。
  17.  前記端末同士の音声通信中に、少なくとも一方の端末から送出された音声を圧縮符号化したビットストリームを格納したパケットをネットワークから採取する処理と、前記パケットのヘッダの解析に加えて、ペイロードヘッダの解析およびペイロードに格納されたビットストリームの解析のうちの少なくとも一つを実行する処理と、前記解析結果に基づいて音声通信サービス品質の劣化を検出し、上位装置に検出結果を通知する処理と、に代えて、
     端末同士の音声通信中に、各端末から送出された音声を圧縮符号化したビットストリームを格納した上り方向パケットと下り方向パケットとをそれぞれネットワークから採取する処理と、
     前記各パケットのペイロードに格納されたビットストリームのうちのスペクトルパラメータをそれぞれ復号する処理と、
     前記上り方向および下り方向の復号結果を用いて、上り方向のスペクトルと下り方向のスペクトルとの相関を求めて、エコーが残留しているか否かを判定する処理と、を音声品質解析装置を構成するコンピュータに実行させ、
     前記コンピュータに、前記相関値が所定のしきい値より大きい場合に、エコーが残留していると判定させる請求項16のプログラム。
PCT/JP2010/065938 2009-09-18 2010-09-15 音声品質解析装置、音声品質解析方法およびプログラム WO2011034090A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/394,796 US9112961B2 (en) 2009-09-18 2010-09-15 Audio quality analyzing device, audio quality analyzing method, and program
JP2011531946A JP5668687B2 (ja) 2009-09-18 2010-09-15 音声品質解析装置、音声品質解析方法およびプログラム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-217756 2009-09-18
JP2009-217754 2009-09-18
JP2009217754 2009-09-18
JP2009-217753 2009-09-18
JP2009217753 2009-09-18
JP2009217756 2009-09-18

Publications (1)

Publication Number Publication Date
WO2011034090A1 true WO2011034090A1 (ja) 2011-03-24

Family

ID=43758691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065938 WO2011034090A1 (ja) 2009-09-18 2010-09-15 音声品質解析装置、音声品質解析方法およびプログラム

Country Status (3)

Country Link
US (1) US9112961B2 (ja)
JP (1) JP5668687B2 (ja)
WO (1) WO2011034090A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599704B2 (en) * 2007-01-23 2013-12-03 Microsoft Corporation Assessing gateway quality using audio systems
WO2016045693A1 (en) * 2014-09-22 2016-03-31 Nokia Solutions And Networks Oy Mute call detection in a communication network system
US9363365B1 (en) * 2015-04-27 2016-06-07 Ringcentral, Inc. System and method for evaluating the quality of a communication session
CN106230611B (zh) * 2015-06-02 2021-07-30 杜比实验室特许公司 具有智能重传和插值的服务中质量监视***
US10333996B2 (en) * 2016-10-14 2019-06-25 CALLSTATS I/O Oy Methods and systems for analyzing streaming media sessions
US10979480B2 (en) 2016-10-14 2021-04-13 8X8, Inc. Methods and systems for communicating information concerning streaming media sessions
US10798145B1 (en) * 2017-04-25 2020-10-06 Benjamin J. Garney Analyzing data streams
US10972516B1 (en) 2018-08-24 2021-04-06 Amdocs Development Limited System, method, and computer program for probabilistic estimation and prevention of muting occurrences in voice over LTE (VoLTE)
US10805191B2 (en) 2018-12-14 2020-10-13 At&T Intellectual Property I, L.P. Systems and methods for analyzing performance silence packets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036400A (ja) * 2005-07-22 2007-02-08 Pioneer Electronic Corp 電子会議システムおよびその会議端末
WO2007078008A1 (ja) * 2006-01-06 2007-07-12 Nec Corporation 伝送路の品質計測装置、通信システム、品質計測方法および品質計測プログラム
JP2008160711A (ja) * 2006-12-26 2008-07-10 Fujitsu Fsas Inc 通信装置及び通信制御方法
JP2009105620A (ja) * 2007-10-23 2009-05-14 Oki Semiconductor Co Ltd エコーキャンセラ
JP2009206767A (ja) * 2008-02-27 2009-09-10 Fujitsu Ltd 通信品質測定システム、通信品質測定装置、管理サーバおよび通信品質管理方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333153A (en) * 1992-01-21 1994-07-26 Motorola, Inc. Signal quality detection method and apparatus for optimum audio muting
EP0708536B8 (en) 1994-05-07 2006-09-13 Ntt Mobile Communications Network Inc. Echo canceler and its learning method
JP3303524B2 (ja) 1994-05-07 2002-07-22 株式会社エヌ・ティ・ティ・ドコモ エコーキャンセラ学習方法
US7142506B1 (en) * 1999-02-02 2006-11-28 Vocaltec Communications Ltd. Method and apparatus for transmitting packets
GB9915327D0 (en) * 1999-06-30 1999-09-01 Nortel Networks Corp Packet interface and method of packetizing information
US6876734B1 (en) * 2000-02-29 2005-04-05 Emeeting.Net, Inc. Internet-enabled conferencing system and method accommodating PSTN and IP traffic
US20020015387A1 (en) * 2000-08-02 2002-02-07 Henry Houh Voice traffic packet capture and analysis tool for a data network
US7006489B2 (en) * 2001-02-23 2006-02-28 Santera Systems, Inc. Voice packet switching system and method
JP3653026B2 (ja) 2001-09-13 2005-05-25 日本電気株式会社 音声多重化方法、音声分離方法及び通信装置
US7027982B2 (en) * 2001-12-14 2006-04-11 Microsoft Corporation Quality and rate control strategy for digital audio
JP2003244235A (ja) 2002-02-13 2003-08-29 Fujitsu I-Network Systems Ltd 品質監視方式およびそれに用いるVoP電話機
US8176154B2 (en) * 2002-09-30 2012-05-08 Avaya Inc. Instantaneous user initiation voice quality feedback
JP3809164B2 (ja) * 2002-12-25 2006-08-16 日本電信電話株式会社 総合通話品質推定方法及び装置、その方法を実行するプログラム、及びその記録媒体
JP2004289748A (ja) 2003-03-25 2004-10-14 Hitachi Information Systems Ltd マルチメディア通信の品質監視システム及びその品質監視方法
JP4102699B2 (ja) 2003-04-24 2008-06-18 日本電気株式会社 メディアゲートウェイにおけるシステム運用中の音声品質監視方法および方式
US7430179B2 (en) * 2003-06-28 2008-09-30 Geopacket Corporation Quality determination for packetized information
JP4217121B2 (ja) 2003-08-04 2009-01-28 富士通株式会社 Ipネットワークシステムにおける音声品質評価方法および音声品質調整装置
JP2005123688A (ja) 2003-10-14 2005-05-12 Tamura Seisakusho Co Ltd Ip電話用端末装置、ip電話システム、ip電話制御方法、ip電話用プログラム及び管理システム
US8270585B2 (en) * 2003-11-04 2012-09-18 Stmicroelectronics, Inc. System and method for an endpoint participating in and managing multipoint audio conferencing in a packet network
TWI230531B (en) * 2003-11-04 2005-04-01 Benq Corp Local area network of controlling signal transmission and a method thereof
JP2005176071A (ja) 2003-12-12 2005-06-30 Fujitsu I-Network Systems Ltd 音声品質管理機能付きハイブリッド電話システムおよびそれに用いるハイブリッドpbx
KR100595202B1 (ko) * 2003-12-27 2006-06-30 엘지전자 주식회사 디지털 오디오 워터마크 삽입/검출 장치 및 방법
US20060149536A1 (en) * 2004-12-30 2006-07-06 Dunling Li SID frame update using SID prediction error
EP1705799A1 (en) * 2005-03-22 2006-09-27 Fondazione Torino Wireless A method and system for information processing
US7983922B2 (en) * 2005-04-15 2011-07-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating multi-channel synthesizer control signal and apparatus and method for multi-channel synthesizing
JP2007104167A (ja) 2005-10-03 2007-04-19 Oki Electric Ind Co Ltd 送話状態判定方法
US20070189411A1 (en) * 2006-02-14 2007-08-16 Viewcast.Com, Inc. Audio encoding and transmission method
EP1841137B1 (en) * 2006-03-29 2011-12-14 Yamaha Corporation Audio network system
JP2007288342A (ja) 2006-04-13 2007-11-01 Nec Corp メディアストリーム中継装置および方法
JP4761391B2 (ja) 2007-01-09 2011-08-31 Kddi株式会社 受聴品質評価方法および装置
KR20080092222A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
CN101689370B (zh) * 2007-07-09 2012-08-22 日本电气株式会社 音频分组接收器、音频分组接收方法
JP5123384B2 (ja) * 2008-06-11 2013-01-23 日本電信電話株式会社 オーディオ品質推定方法、オーディオ品質推定装置およびプログラム
US8489950B2 (en) * 2008-08-06 2013-07-16 Nokia Siemens Networks Oy Discontinuous reception retransmission timer and method
KR20110040672A (ko) * 2009-10-12 2011-04-20 주식회사 팬택 무선통신 시스템에서 제어정보 송수신방법 및 장치
US8553520B2 (en) * 2010-02-25 2013-10-08 Tokbox, Inc. System and method for echo suppression in web browser-based communication
KR101867311B1 (ko) * 2010-12-21 2018-07-19 주식회사 골드피크이노베이션즈 Ack/nack 자원 할당 방법 및 장치와 이를 이용한 ack/nack 신호 전송 방법
KR101498846B1 (ko) * 2011-06-22 2015-03-04 엘지전자 주식회사 랜덤 액세스 과정 수행 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036400A (ja) * 2005-07-22 2007-02-08 Pioneer Electronic Corp 電子会議システムおよびその会議端末
WO2007078008A1 (ja) * 2006-01-06 2007-07-12 Nec Corporation 伝送路の品質計測装置、通信システム、品質計測方法および品質計測プログラム
JP2008160711A (ja) * 2006-12-26 2008-07-10 Fujitsu Fsas Inc 通信装置及び通信制御方法
JP2009105620A (ja) * 2007-10-23 2009-05-14 Oki Semiconductor Co Ltd エコーキャンセラ
JP2009206767A (ja) * 2008-02-27 2009-09-10 Fujitsu Ltd 通信品質測定システム、通信品質測定装置、管理サーバおよび通信品質管理方法

Also Published As

Publication number Publication date
US9112961B2 (en) 2015-08-18
US20120170761A1 (en) 2012-07-05
JPWO2011034090A1 (ja) 2013-02-14
JP5668687B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5668687B2 (ja) 音声品質解析装置、音声品質解析方法およびプログラム
EP2119204B1 (en) Method and arrangement for video telephony quality assessment
US9210419B2 (en) System and method for diagnostic modeling of audio and video quality of service
WO2011090185A1 (ja) 音声品質計測装置、音声品質計測方法およびプログラム
EP1267555A2 (en) Measuring speech quality
EP1983688A1 (en) Method for detecting qos
US8184529B2 (en) Communication apparatus, method, and program for transmitting and receiving packet data
CN101292459A (zh) 用于估计语音质量的方法和设备
US7986634B2 (en) Apparatus and method for measuring quality of sound encoded with a variable band multi-codec
EP2241065B1 (en) Method and device for transport delay analysis
Sanneck et al. Intra-flow loss recovery and control for VoIP
CA2682153C (en) Method of transmitting data in a communication system
JP4217121B2 (ja) Ipネットワークシステムにおける音声品質評価方法および音声品質調整装置
US7433358B1 (en) Characterization of impaired intervals in a voice over packet session using audio frame loss concealment
Zhang et al. Perceived QoS assessment for Voip networks
Bhebhe et al. VoIP performance over HSPA with different VoIP clients
Fitzpatrick An E-Model based adaptation algorithm for AMR voice calls
JP5680430B2 (ja) 音声パケット通信システム
Meddahi et al. " Packet-e-model": e-model for wireless VoIP quality evaluation
Matousek et al. On-line monitoring of VoIP quality using IPFIX
Sun et al. Voip quality of experience (QoE)
US20050201369A1 (en) Speech transmitter
Pibiri et al. Expected Quality of Service (eQoS) A network metric for capturing end-user experience
JP4529883B2 (ja) パケット伝送装置
JP2007181167A (ja) VoIPシステムのための音声品質試験方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13394796

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011531946

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817203

Country of ref document: EP

Kind code of ref document: A1