WO2011030991A1 - 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법 - Google Patents

바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법 Download PDF

Info

Publication number
WO2011030991A1
WO2011030991A1 PCT/KR2010/002971 KR2010002971W WO2011030991A1 WO 2011030991 A1 WO2011030991 A1 WO 2011030991A1 KR 2010002971 W KR2010002971 W KR 2010002971W WO 2011030991 A1 WO2011030991 A1 WO 2011030991A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
furan
biomass
derived
formula
Prior art date
Application number
PCT/KR2010/002971
Other languages
English (en)
French (fr)
Inventor
조진구
김상용
이도훈
김보라
김백진
정재원
이상협
이재성
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US13/394,910 priority Critical patent/US9035018B2/en
Publication of WO2011030991A1 publication Critical patent/WO2011030991A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic

Definitions

  • the present invention relates to biomass-derived furan-based curable compounds, solvent-free curable compositions, and methods for their preparation, and more particularly, petroleum resources used as raw materials for adhesive or adhesive materials, sealants, coating agents, and the like. It is proposed to replace the derived material, and relates to a curable compound prepared using a furan-based compound derived from biomass instead of a petrochemical derived material, a solvent-free curable composition, and a method for preparing the same.
  • Adhesive materials such as adhesives, adhesives, sealants, coatings, paints, etc. are currently used in various fields such as packaging, bookbinding, automobiles, electronics, precision, optical products, woodworking, plywood, fiber, leather, etc. Its use is widespread, for example, for home use.
  • As a material to be bonded there are a wide variety of materials such as wood, metal, rubber, plastic, leather, ceramics, etc., and recently, it is also applied to concrete.
  • Such adhesives are manufactured in the form of a mixture of chemicals mainly composed of synthetic resins. Due to the organic solvents (solvents) used in the manufacturing process and various volatile additives added to improve physical properties, VOC (volatile organic compounds) And harmful chemicals such as dioxins and environmental hormones. In recent years, environmental regulations under international conventions have severely restricted the production and use of these hazardous substances. Furthermore, the EU is using these regulations as a means of new trade sanctions. In line with this trend, conventional solvent adhesives are being replaced by water-soluble, solvent-free, hot-melt, and the like.
  • curable, especially photocurable adhesive materials having functional groups such as acrylate or isocyanate type have fast curing characteristics at room temperature through radical polymerization reaction, but shrinkage phenomenon is very large due to such rapid curing rate. There is a problem. Due to this excessive shrinkage phenomenon, in the industrial field using the adhesive material, especially in the field requiring precise dimensional stability, such as electronic materials, the introduction of a material with a small shrinkage rate after curing is required.
  • the present invention is to solve the above problems, an object of the present invention is a carbohydrate-based biomass-derived furan-based compound that can replace the aromatic compound produced through the petrochemical process as a basic skeleton, and also to minimize the cure shrinkage
  • the present invention provides a novel curable compound and a method for producing the same in an excellent yield and economic synthetic route.
  • an object of the present invention is to utilize an environmentally friendly solvent-free curable composition containing such a curable compound as an adhesive material.
  • the biomass-derived furan-based curable compound according to an embodiment of the present invention is formed by combining two epoxide functional groups to at least one furan-based compound.
  • biomass-derived furan-based curable compound is characterized by the formula (I) or (II) below.
  • R 1 , R 2 is one of hydrogen, alkyl group, alkenyl, alkynyl, cycloalkyl, or aryl group.
  • the solvent-free curable composition which concerns on one Embodiment of this invention contains the said biomass derived furan type curable compound and an initiator.
  • the said initiator is a cation hardening initiator.
  • the method for producing a biomass-derived furan-based curable compound according to one embodiment of the present invention is obtained by oxidizing or using a furfural or furfural derivative converted from cellulose or hemicellulose extracted from a carbohydrate-based biomass as an intermediate.
  • Starting material manufacturing step of producing a furan-based compound obtainable through a reduction reaction;
  • the furan-based compound derived from the biomass is preferably 2,5-furandimethanol or a compound represented by the following Chemical Formula III.
  • R 1 , R 2 is one of hydrogen, alkyl group, alkenyl, alkynyl, cycloalkyl, or aryl group.
  • the reaction step the mixture containing the furan-based compound and epichlorohydrin, the phase transfer catalyst (Phase Transfer Catalyst, PTC) in a bi-phasic solvent system added with aqueous sodium hydroxide solution It is preferable to make it react as a catalyst.
  • the phase transfer catalyst Phase Transfer Catalyst, PTC
  • epichlorohydrin equivalent is preferably 5 to 20 equivalents.
  • the manufacturing method of the solvent-free curable composition which concerns on one Embodiment of this invention mixes the biomass derived furan type curable compound manufactured by the said biomass derived furan type curable compound manufacturing method, and a cation hardening initiator or a hardening
  • next-generation curable compound based on a novel furan-based compound derived from biomass that can replace a curable material derived from petroleum resources, and a composition comprising the same.
  • the biomass-derived furan-based curable compound according to the present invention has an oligomer monomer structure and is formed by combining two epoxide functional groups with at least one furan-based compound.
  • this invention provides the substance which can replace the aromatic compound derived from a petroleum resource by applying the furan type compound derived from a carbohydrate type biomass as a basic skeleton.
  • Carbohydrate-based biomass generally contains about 30 to 40% of cellulose (Cellulose) and about 10 to 20% of hemicellulose (Hemicellulose), which is extracted and hydrolyzed under an acid catalyst as shown in the following scheme. Saccharification by hydrolysis or enzymatic treatment can yield hexose or pentose compounds. These hexasaccharides or pentose compounds are again catalyzed by furural intermediate compounds such as 5-hydroxymethyl-2-furfural (HMF) or 2-furfural. It is possible to obtain an alcohol function such as 2,5-furan dimethanol through continuous reduction or oxidation reaction, or to obtain 2-furan carboxylic acid.
  • the furan type compound which has a carboxylic acid functional group can be obtained.
  • the furan-based compound thus produced is known to be used as an alternative to aromatic compounds because of its similar chemical and physical properties to aromatic compounds from petrochemical processes [Gandini, A .; Belgaem, MN Prog. Polym. Sci. 1997 , 22 , 1203-1379.
  • the furan-based compound used in the present invention is not particularly limited as long as it can form a furan ring in the center of the curable compound as a product.
  • the furan ring may be formed in a form in which one or more are connected to each other. This will be described later in the manufacturing method.
  • the epoxide (epoxide) bonded to the furan-based compound constituting the basic skeleton, the present invention for increasing the degree of freedom of the molecular structure due to the ring-opening reaction of the cyclic molecule and thereby reducing the cure shrinkage Applied to. That is, by introducing such an epoxide group, the ring-opening reaction of the functional group is induced in the compound (oligomeric monomer), thereby preventing the sudden shrinkage of the cured material, the curable compound and the adhesive containing the same for which the cure shrinkage is significantly reduced A curable composition can be obtained.
  • Cured materials with epoxide functional groups are characterized by a longer curing time compared to acrylic, vinyl, and styrene materials that follow the radical curing mechanism because they proceed along the ionic mechanism during curing. In other words, since the epoxide ring structure proceeds while the molecular structure is expanded, the curing shrinkage rate is relatively low.
  • Such epoxides are useful intermediates for steric controlled synthesis of complex organic compounds due to the variety of compounds that can be produced by ring-opening reactions.
  • ⁇ -amino alcohol can be obtained simply by ring opening the epoxide with an azide ion and reducing (eg, hydrogenating) the resulting ⁇ -azide alcohol.
  • the reaction of other nucleophiles yields functionalized compounds that can be converted to similar useful substances.
  • the addition of Lewis acid can act as an epoxide activator.
  • the epoxide has been used as an adhesive, an adhesive, a sealant, a coating agent, etc. as a functional group of the cured material, there is no known example of introducing an epoxide functional group into a furan compound derived from a renewable resource and using it as a cured material. .
  • the biomass-derived furan-based curable compound according to the present invention may be formed by binding one or more epoxide functional groups to the central ring of furan.
  • biomass-derived furan-based curable compound according to the present invention may be represented by the following general formula (I) or (II).
  • R 1 , R 2 is one of hydrogen, alkyl group, alkenyl, alkynyl, cycloalkyl, or aryl group.
  • 2,5-furan dimethanol (2,5-furan dimethanol) described above as a starting material of the compound represented by the formula (I) can be preferably used, starting material of the compound represented by the formula (II)
  • starting material of the compound represented by the formula (II) examples include compounds represented by the following general formula (III).
  • the compound of Formula III may be prepared through reduction of the compound represented by Formula IV obtained from 2-furan carboxylic acid described above.
  • R 1 and R 2 are one of hydrogen, an alkyl group, alkenyl, alkynyl, cycloalkyl, or an aryl group.
  • a method for producing a furan compound having two epoxide functional groups introduced therein using 2,5-furan dimethanol, a furan compound obtained from cellulose extracted from a carbohydrate-based biomass, as a starting material Method of converting the hydroxy group of the starting material with sodium hydride (NaH) in anhydrous organic solvent to alkoxide first and then replacing with epichlorohydrin and the same polarity as dimethylformamide (N, N-dimethylformamide, DMF) K under organic solvent 2 CO 3 Or Cs 2 CO 3
  • the reaction was carried out using anhydrous metal carbonate such as, but as a result, the target compound was not efficiently synthesized.
  • anhydrous metal carbonate such as, but as a result, the target compound was not efficiently synthesized.
  • the starting material manufacturing step (S10) is not particularly limited as long as it is a known method for producing a furan compound, and any method may be used to prepare a furan compound of any kind.
  • inorganic acid catalysts such as sulfuric acid and hydrochloric acid, or Lewis acid catalysts in which various ligands are coordinated with metals for the purpose of increasing activity and selectivity, have been used to prepare HMF intermediate products.
  • Heterogeneous solid acid catalysts or heterogeneous metal catalysts may be used that are easy to resolve and facilitate in reuse and continuous processing.
  • Reaction step (S20) 2,5-furandimethanol (2,5-furandimethanol) or a furan-based compound represented by the formula (III) prepared through the starting material production step (S10) as a starting material, Epoxy As a substance for introducing a side functional group, epichlorohydrin is added, followed by stirring with the furan compound.
  • the phase transfer catalyst of the mixture containing the furan-based compound and epichlorohydrin in a bi-phasic solvent system to which sodium hydroxide (NaOH) aqueous solution is added It is preferable to make it react with (Phase Transfer Catalyst, PTC) as a catalyst.
  • phase transfer catalysts examples include tetrabutylammonium bromide, tetrabutylammonium chloride, tetraoctylammonium chloride, tetrabutylammonium hydrogen sulfate, methyltrioctylammonium chloride, hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, benzyltrimethylammonium chloride , Benzyltriethylammonium chloride, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, benzyltributylammonium chloride, benzyltributylammonium bromide, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tributylhexadecyl Phosphonium bromide, butyltriphenylphospho
  • the equivalent amount of epichlorohydrin is used in an excess of 5 to 20 equivalents, more preferably 10 to 15 equivalents.
  • reaction step is to use the compound of formula III as starting material, the reaction mechanism is as shown in Scheme 5 below. That is, as 2,5-furan dimethanol is used as the starting material, epichlorohydrin and the compound of Formula III are reacted with two functional groups and two furan rings in a two-phase solvent system in the presence of a phase transfer catalyst. Compounds of the formula (II), which are epoxy monomers, may be synthesized.
  • a composition manufacturing step of preparing a curable adhesive composition by adding and mixing the biomass-derived furan-based curable compound prepared by the above method, an initiator and other additives such as other curable oligomeric compounds, photoinitiators or thermal initiators, etc.
  • a solvent-free curable composition can be obtained.
  • a photoinitiator is used, or a curing agent applied to a general epoxy resin composition is used.
  • the biomass-derived furan-based curable compound according to the present invention is a cation-curable (or polymerizable) compound having a property of being polymerized and cured by cation polymerization. It is preferable to use a (polymerization initiator).
  • the cationic curing initiator can be used without limitation as long as it can be activated by irradiation with light to generate a cationic polymerization initiator and cationic polymerization of the compound with relatively low energy.
  • An ion polymerization initiator may be used and the photocationic polymerization initiator of a nonionic photo-acid generation type may be used.
  • the amount of the cationic curing initiator to be added is not particularly limited and may be appropriately set depending on the reactivity, molecular weight of the biomass-derived compound, or the degree of viscoelasticity to be imparted to the curable composition prepared by using the same. Since the reactivity becomes too large and curing by light irradiation proceeds excessively quickly, it may cause trouble in subsequent operations. When too small, curing of the curable composition may not proceed sufficiently or the curing speed may be delayed. About 0.1 to 15% by weight relative to the composition is more preferably added to 0.2 to 12.5% by weight.
  • Onium salts such as aromatic sulfonium salts, such as an aryl diazonium salt, a diaryl halonium salt, and a triaryl sulfonium salt, and a triphenyl phosphonium salt;
  • Organometallic complexes such as iron-arene complex, titanocene complex, arylsilanol-aluminum complex, and the like.
  • photocationic polymerization initiator of the said nonionic photo-generation type mold, a nitrobenzyl ester, a sulfonic acid derivative, a phosphate ester, a phenol sulfonic acid ester, diazonaphthoquinone, N-hydroxyimide sulfonate, etc. are mentioned, for example, These are independent. Or it can mix and use.
  • the composition contains at least one free radical polymerizable group having at least one ethylenically unsaturated group, such as an acrylate (ie acrylate and / or methacrylate) functional group, to compensate for the rather slow cure rate of the compounds according to the invention. It may include a compound.
  • a free radically polymerizable compound is included in the composition, one or more free radical photoinitiators may be used as the photoinitiator, in addition to the above-mentioned cation curing initiator.
  • free radical photoinitiators include benzophenones (eg, benzophenones, alkyl-substituted benzophenones or alkoxy-substituted benzophenones); Benzoin such as benzoin, benzoin ether (eg benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether), benzoin phenyl ether and benzoin acetate; Acetophenones such as acetophenone, 2,2-dimethoxyacetophenone, 4- (phenylthio) acetophenone and 1,1-dichloroacetophenone; Benzyl, benzyl ketal (eg benzyldimethyl ketal and benzyl diethyl ketal); Anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-3-butylanthraquinone, 1-chloro
  • a curing agent contained in a general epoxy resin composition may be used instead of the photocuring agent, and in the case of using such a curing agent, an epoxy resin composition may be used instead of the photocuring method. Curing can be carried out in the usual manner used. Examples of such a curing agent include amines, acid anhydrides, amides, or phenol compounds.
  • curing agent examples include, but are not limited to, diaminodiphenylmethane, diethylenetriamine, triethylenetetraamine, diaminodiphenylsulphone, isophoronediamine, dicyandiamide, linolenic acid dimer and ethylenediamine.
  • Polyamide resin Polyamide resin, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol Novolacs and variants thereof, imidazoles, BF3-amine complexes and quinidine derivatives.
  • These curing agents may be used alone or in combination of two or more.
  • the content of the curing agent that can be used in the curable composition of the present invention is preferably added based on the content of the photoinitiator.
  • additives such as a hardening accelerator, an inorganic filler, a mold release agent, and a pigment, can be used suitably for the solvent-free curable composition which concerns on this invention.
  • a curing accelerator can be used in combination with the curing agent, and specific examples of the curing accelerator that can be used in the present invention include 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methyl- Imidazoles such as imidazoles; Tertiary amines such as 2- (dimethylaminomethyl) phenol and 1,8-diaza-bicyclo (5.4.0) -undecane-7; Phosphines such as triphenylphosphine; And metal compounds such as octylic acid tin.
  • the curing accelerator is added in an amount of 0.01 to 10 parts by weight, preferably 0.2 to 5 parts by weight, per 100 parts by weight of the biomass-derived furan-based curable compound.
  • Inorganic fillers may also be optionally incorporated into the solvent-free curable compositions according to the invention.
  • Specific examples of inorganic fillers that may be used include silica, alumina and talc.
  • the solvent-free curable composition according to the present invention may also contain various mixing additives including silane coupling agents, release agents such as stearic acid, palmitic acid, zinc stearate and calcium stearate and pigments.
  • composition preparation step can be carried out by sufficiently mixing and homogenizing the components of the composition thus obtained by means such as an extruder, kneader, roll or the like.
  • Tetrabutylamomnium bromide (TBABr) (0.644 g, 2 mmol) in a biphasic solvent of 22 mL epichlorohydrin and a 50% aqueous NaOH solution (19.2 g, 240 mmol) in a 100 mL round bottom flask as a phase transfer catalyst. Were added sequentially and vigorously stirred magnetically. Then, starting material 2,5-furandimethanol (2.56 g, 19.9 mmol) diluted in about 30 mL of tetrahydrofuran (THF) was slowly added dropwise at room temperature, and then vigorously heated at 50 ° C. for 2 hours. Stirred.
  • THF tetrahydrofuran
  • Photo-DSC is a device that can check photocuring behavior such as conversion ratio and curing rate by attaching photocuring accessories to existing DSCs and sinking them to see the heat of reaction.
  • Instrument Q-1000 DSC and Photocalorimetric accessory (Novacure 2100) were directly connected.
  • a medium pressure mercury lamp 100 W, Intensity: 50 mW / cm 2
  • IRGACURE 250 a cationic photocuring initiator
  • Samples containing 1 wt% photocuring initiator were placed in open type alumium pans at about 2 to 3 mg each and irradiated with light at 25 o C to measure the amount of heat generated from the samples.
  • the photocuring behavior measurement results by Photo-DSC are shown in FIGS. 1 and 2.
  • Photocuring shrinkage was measured using a Linear Variable Differential Transformer (LVDT) transducer and UV Spot curing equipment. This is a method of evaluating the curing shrinkage rate based on the principle of measuring the linear deformation using the non-contact linear variable differential converter while the photocuring with UV-Spot curing equipment.
  • Shrinkage was measured by R & B Linometer System RB308 Linometer TM , UV-Spot curing equipment was used Ushio SP-7.
  • the stainless disks are placed at regular intervals on a non-contact linear displacement sensor that can measure distances using electromagnetic fields, and then a certain thickness or amount of sample is loaded onto the stainless disks. After that, cover the resin with slide glass and fix it.
  • the curing shrinkage rate is 4.9%, which is superior to that of the acrylic photocuring material, which generally exhibits a curing shrinkage rate of about 10%. Indicated.
  • the furan-based compound prepared in Comparative Example was low in viscosity and fast in wetting, and thus it was impossible to measure shrinkage. Therefore, the biomass-derived furan-based curable compound according to the present invention is considered to be suitable for application to fields requiring precise dimensional stability such as the field of electronic materials.
  • Adhesion strength is the most basic physical property showing the function as an adhesive.
  • the lap shear strength was measured using a UTM device.
  • the instrument used for the physical property measurement was HUNKSFIELD's H100KS model, and the measured values were calculated using QMat (ver. 5.37) software.
  • both ends of the specimen grip was 1 inch, and the specimen was pulled at a speed of 0.5 inch / min to measure the shear strength.
  • the adhesive material was applied in a quantitative amount of 20 ⁇ L, and cured by irradiating UV with an intensity of 200 mW / cm 2 for a predetermined time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

본 발명은 탄수화물계 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법에 관한 것으로서, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물은, 적어도 하나의 퓨란계 화합물에 두개의 에폭사이드 관능기가 결합되어 이루어진다. 본 발명에 의하면, 석유자원 유래의 경화성 소재를 대체할 수 있는 바이오매스 유래의 신규 퓨란계 화합물을 기본골격으로 하는 친환경의 차세대 경화성 화합물 및 이를 포함하는 조성물을 제공할 수 있다. 또한, 본 발명에 의하면, 종래의 라디칼형 경화소재와 비교하여, 경화 시에 발생하는 수축률이 적은 경화소재를 얻을 수 있으며, 이러한 신규 경화소재에 적용되는 화합물을 우수한 효율 및 경제적 합성경로를 통해 제조할 수 있다.

Description

바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법
본 발명은 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법에 관한 것으로서, 더욱 상세하게는, 접착용 또는 점착용 소재, 실란트(sealant), 코팅제 등의 원료로서 사용되는 석유자원 유래 물질을 대체하기 위하여 제안되는 것이며, 석유화학 유래 물질 대신 바이오매스(biomass)로부터 유래된 퓨란계 화합물을 이용하여 제조된 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법에 관한 것이다.
접착제를 비롯하여 점착제, 실란트, 코팅제, 도료 등의 접착소재는, 현재 토목, 건축분야로부터 포장, 제본, 자동차, 전자, 정밀, 광학제품, 목공, 합판, 섬유, 피혁 등 각종 산업분야는 물론, 일반 가정용으로 사용되는 등, 그 용도는 실로 광범위해지고 있다. 접착 대상이 되는 소재로서도 목재, 금속, 고무, 플라스틱, 피혁, 세라믹스 등으로 매우 다양하며, 최근에는 콘크리트에도 적용되고 있다.
이러한 접착제 등은 합성수지를 주재료로 하는 화학물질의 혼합물 형태로 제조되는 제품으로서, 제조 과정에서 사용되는 유기용매(용제) 및 물성을 향상시키기 위해 첨가되는 다양한 휘발성 첨가제들로 인해 VOC(휘발성 유기 화합물), 다이옥신 및 환경 호르몬 등 유해한 화학물질을 발생시킨다. 최근에는 국제협약에 의한 환경규제를 통해 이러한 유해물질의 생산 및 사용을 엄격히 제한하고 있으며, 더 나아가 EU 등에서는 이러한 규제를 새로운 무역제재의 수단으로 활용하고 있다. 이러한 추세에 발맞추어, 종래의 용제형 접착제는 수용성, 무용매형, 핫멜트형(hot-melt)형 등으로 대체되어 가고 있다.
나아가, 이러한 접착소재 뿐 아니라, 현재 우리가 사용하고 있는 대부분의 정밀화학소재들은 석유 분리정제공정 (Oil Refinery Process)으로부터 유래된 석유화학제품이나, 국제 유가는 매장량 감소와 BRICs를 중심으로 한 수요급증으로 인해 꾸준히 상승하고 있으며, 온실가스의 배출을 엄격히 규제하는 국제협약이 발효됨에 따라, 앞으로 석유와 같은 비가역 화석자원의 사용은 막대한 환경비용을 초래할 것으로 예상된다.
따라서 기존의 석유자원 유래 정밀화학제품을 새로운 자원으로부터 얻고자 하는 많은 노력이 이루어지고 있으며, 가장 대표적인 것이 탄수화물계 바이오매스(biomass)를 공급원으로 사용하는 것이다. [Ghheda, J. N.; Huber, G. W.; Dumesic, J. A. Angew. Chem. Int. Ed. 2007, 46, 7164-7183, Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411-2502.] 자연계는 광합성 작용을 통해 매년 약 1,700 억톤 정도의 막대한 양의 탄수화물을 생산하고 있으며, 인류는 이 중 약 3% 정도만을 식량, 종이, 가구, 건자재 등으로 사용하고 있다. 따라서 재생과 지속사용이 가능한 탄수화물계 바이오매스로부터 제조된 정밀화학제품은 석유화학제품을 대체할 수 있을 것으로 기대된다. 구체적으로, 기존의 석유자원 유래 경화형 접착소재를 대체하기 위하여 이러한 탄수화물계 바이오매스를 이용하여 소정의 접착 또는 점착 특성을 갖는 화합물을 합성하는 연구 역시 필요할 것이다.
한편, 일반적으로 아크릴레이트계 또는 이소시아네이트계 등의 관능기를 갖는 경화성, 특히 광경화성 접착소재는 라디칼 중합반응을 통해 상온에서 빠른 경화특성을 지니지만, 이러한 급격한 경화속도에 의하여 수축현상이 매우 크게 발생하는 문제점을 내포하고 있다. 이러한 과도한 수축현상으로 말미암아, 접착소재를 사용하는 산업분야, 특히 전자재료 등 정밀한 치수안정성을 요구하는 분야에서는 경화 후 수축률이 작은 소재의 도입이 요구되고 있는 실정이다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 석유화학 공정을 통하여 생산되는 방향족 화합물을 대체할 수 있는 탄수화물계 바이오매스 유래 퓨란계 화합물을 기본 골격으로 하며, 아울러 경화 수축률을 최소화시킬 수 있는 신규 경화성 화합물 및 이를 우수한 수율과 경제적인 합성경로로 제조할 수 있는 제조방법을 제공하는데 있다.
또한, 본 발명의 목적은 이러한 경화성 화합물을 포함하는 친환경적인 무용매 타입의 경화성 조성물을 접착소재 등으로 활용하는데 있다.
본 발명은 상기 과제를 해결하기 위한 것으로서, 본 발명의 일 실시형태에 의한 바이오매스 유래 퓨란계 경화성 화합물은, 적어도 하나의 퓨란계 화합물에 두개의 에폭사이드 관능기가 결합되어 이루어진다.
구체적으로, 상기 바이오매스 유래 퓨란계 경화성 화합물은, 아래 화학식 Ⅰ또는 화학식 Ⅱ로 표현되는 것을 특징으로 한다.
[화학식 Ⅰ]
Figure PCTKR2010002971-appb-I000001
[화학식 Ⅱ]
Figure PCTKR2010002971-appb-I000002
상기 화학식 Ⅱ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
또한, 본 발명의 일 실시형태에 의한 무용매형 경화성 조성물은, 상기 바이오매스 유래 퓨란계 경화성 화합물 및 개시제를 포함하여 이루어진다.
여기서, 상기 개시제는 양이온 경화 개시제인 것이 바람직하다.
또한, 본 발명의 일 실시형태에 의한 바이오매스 유래 퓨란계 경화성 화합물의 제조방법은, 탄수화물계 바이오매스(biomass)에서 추출된 셀룰로오스 또는 헤미셀룰로오스로부터 전환된 푸르푸랄 또는 푸르푸랄 유도체를 중간체로 하여 산화 또는 환원반응을 통해 얻을 수 있는 퓨란계 화합물을 제조하는 출발물질제조단계; 및 상기 바이오매스 유래의 퓨란계 화합물과, 에피클로로히드린(epichlorohydrin)을 혼합하여 교반함으로써, 반응시키는 반응단계를 포함한다.
여기서, 상기 바이오매스 유래의 퓨란계 화합물은, 바람직하게는 2,5-퓨란디메탄올(2,5-furandimethanol) 또는 아래 화학식 Ⅲ으로 표현되는 화합물이다.
[화학식 Ⅲ]
Figure PCTKR2010002971-appb-I000003
상기 화학식 Ⅲ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
또한, 상기 반응단계는, 상기 퓨란계 화합물 및 에피클로로히드린을 포함하는 혼합물을, 수산화나트륨 수용액을 첨가한 2상 용매(bi-phasic solvent system) 내에서 상전이촉매(Phase Transfer Catalyst, PTC)를 촉매로 하여 반응시키는 것이 바람직하다.
또한, 상기 에피클로로히드린의 당량은 5 내지 20당량인 것이 바람직하다.
또한, 본 발명의 일 실시형태에 의한 무용매형 경화성 조성물의 제조방법은, 상기 바이오매스 유래 퓨란계 경화성 화합물 제조방법에 의하여 제조된 바이오매스 유래 퓨란계 경화성 화합물과, 양이온 경화 개시제 또는 경화제를 혼합하여 경화가능한 접착성 조성물을 제조하는 조성물제조단계를 더 포함한다.
본 발명에 의하면, 석유자원 유래의 경화성 소재를 대체할 수 있는 바이오매스 유래의 신규 퓨란계 화합물을 기본골격으로 하는 친환경의 차세대 경화성 화합물 및 이를 포함하는 조성물을 제공할 수 있다.
또한, 본 발명에 의하면, 종래의 라디칼형 경화소재와 비교하여, 경화 시에 발생하는 수축률이 적은 경화소재를 얻을 수 있으며, 이러한 신규 경화소재에 적용되는 화합물을 우수한 효율 및 경제적 합성경로를 통해 제조할 수 있다.
도 1은 본 발명의 제조예 1에 의하여 제조된 경화성 화합물에 대한 Photo-DSC에 의한 광경화 거동 측정결과
도 2는 비교예에 의하여 제조된 경화성 화합물에 대한 Photo-DSC에 의한 광경화 거동 측정결과
도 3은 본 발명의 제조예 1에 의하여 제조된 경화성 화합물에 대한 접착강도 측정결과 (X축: UV 조사시간, Y축: 접착강도)
도 4는 본 발명의 제조예 4에 의하여 제조된 경화성 화합물에 대한 접착강도 측정결과 (X축: 경화방법, Y축: 접착강도)
본 발명은 이러한 과제를 해결하기 위한 것으로서, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물은, 올리고머 단량체 구조를 가지며, 적어도 하나의 퓨란계 화합물에 두개의 에폭사이드 관능기가 결합되어 이루어진다.
즉, 본 발명은, 탄수화물계 바이오매스 유래의 퓨란계 화합물을 기본 골격으로 적용함으로써, 석유자원 유래의 방향족 화합물을 대체할 수 있는 물질을 제공하는 것이다.
탄수화물계 바이오매스는 아래 반응식에 나타낸 바와 같이, 일반적으로 약 30 내지 40% 정도의 셀룰로오스 (Cellulose)와 약 10 내지 20% 정도의 헤미셀룰로오스 (Hemicellulose) 를 함유하고 있으며, 이를 추출하여 산촉매 하에서 가수분해 (Hydrolysis)하거나 효소로 처리하는 단당화 공정 (Saccharification)을 수행하면 6탄당 (Hexose) 또는 5탄당 (Pentose) 화합물을 얻을 수 있다. 이러한 6탄당 또는 5탄당 화합물은 다시 촉매반응을 통해 5-히드록시메틸-2-푸르푸랄 (5-hydroxymethyl-2-furfural, HMF) 또는 2-푸르푸랄 (2-furfural) 과 같은 푸르루랄 중간체 화합물을 얻을 수 있으며, 연속하여 환원 또는 산화반응을 통해 2,5-퓨란 디메탄올(2,5-furan dimethanol)과 같이 알코올 관능기를 갖거나 2-퓨란 카르복실산 (2-furan carboxylic acid)과 같이 카르복실산 관능기를 갖는 퓨란계 화합물을 얻을 수 있다.
[반응식 1]
[규칙 제26조에 의한 보정 02.07.2010] 
Figure WO-DOC-43
이렇게 생성된 퓨란계 화합물은 석유화학공정으로부터 나오는 방향족 화합물과 화학적, 물리적 성질이 비슷하기 때문에 방향족 물질의 대체 화합물로 사용이 가능한 것으로 알려져 있다[Gandini, A.; Belgaem, M. N. Prog. Polym. Sci. 1997, 22, 1203-1379]. 본 발명에 사용되는 퓨란계 화합물은 생성물인 경화성 화합물 중심에 퓨란 고리를 형성할 수 있는 것이라면 특별히 제한되지 아니한다. 아울러, 이러한 퓨란 고리는 하나, 또는 그 이상이 서로 연결된 형태로 형성될 수 있다. 이에 대해서는 후술하는 제조방법에서 설명하기로 한다.
한편, 상기 기본 골격을 이루는 퓨란계 화합물에 결합되는 에폭사이드(epoxide)는, 고리형 분자의 개환 반응(Ring-opening reaction)으로 인한 분자구조의 자유도 증가와 이를 통한 경화 수축률 감소를 위하여 본 발명에 적용하였다. 즉, 이러한 에폭사이드기를 도입함으로써, 화합물(올리고머 단량체) 내에서 상기 관능기의 개환반응을 유도하고, 이로써 경화소재의 급격한 수축을 방지하여, 경화 수축률이 현저하게 감소된 경화성 화합물 및 이를 포함하는 접착제용 경화성 조성물을 얻을 수 있다. 에폭사이드 관능기를 갖고 있는 경화소재는 경화 시 이온 메커니즘을 따라 진행되기 때문에 라디컬 경화 메커니즘을 따르는 아크릴계, 비닐계, 스티렌계 물질과 비교하여 다소 긴 경화시간이 소요되는 특징이 있으며, 경화가 개환반응에 의하여, 즉 에폭사이드 고리구조가 열리면서 진행되기 때문에 분자구조가 확대되는 효과로 인해 경화수축률이 상대적으로 적은 장점이 있다.
이러한 에폭사이드는, 개환반응으로 생성시킬 수 있는 화합물의 다양성으로 인해 복잡한 유기 화합물의 입체 조절된 합성에 유용한 중간체이다. 예를 들어, α-아미노 알코올은 에폭사이드를 아지드 이온으로 개환시키고, 생성된 α-아지드 알코올을 환원(예, 수소화)시킴으로써 간단하게 수득할 수 있다. 다른 친핵체의 반응은 유사하게 유용한 물질로 전환될 수 있는 기능화된 화합물을 생성시킨다. 루이스산이 첨가되면 에폭사이드 활성화제로 작용할 수 있다. 상기 에폭사이드는, 경화소재의 관능기로서 접착제, 점착제, 실란트, 코팅제 등에 사용된 예가 있으나, 현재까지 에폭사이드 관능기를 재생자원에서 유래된 퓨란계 화합물에 도입하여 경화소재로 활용한 예는 알려져 있지 않다.
따라서 본 발명에 의하면, 경화소재의 관능기로서 에폭사이드를 재생자원 유래 퓨란계 화합물에 도입하여, 석유화학 유래 화학제품을 대체함으로써 석유자원 고갈에 따른 문제점을 해결할 수 있을 뿐 아니라, 수축률을 현저하게 감소시킨 경화소재를 얻을 수 있게 된다. 또한, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물은, 하나 또는 그 이상의 에폭사이드 관능기가 퓨란 중심고리에 결합되어 형성될 수 있다.
본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물의 구체적인 실시형태는, 아래 화학식 Ⅰ또는 화학식 Ⅱ로 표현될 수 있다.
[화학식 Ⅰ]
Figure PCTKR2010002971-appb-I000005
[화학식 Ⅱ]
Figure PCTKR2010002971-appb-I000006
상기 화학식 Ⅱ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
여기서, 상기 화학식 Ⅰ로 표현되는 화합물의 출발물질로는 앞서 합성방법을 설명한 2,5-퓨란디메탄올(2,5-furan dimethanol)을 바람직하게 사용할 수 있으며, 화학식 Ⅱ로 표현되는 화합물의 출발물질로는 아래 화학식 Ⅲ으로 표현되는 화합물을 들 수 있다. 이 때 화학식 Ⅲ의 화합물은 앞서 합성방법을 설명한 2-퓨란 카르복실산으로부터 얻어지는 화학식 Ⅳ로 표현되는 화합물의 환원반응을 통해 제조할 수 있다.
[화학식 Ⅲ]
Figure PCTKR2010002971-appb-I000007
[화학식 Ⅳ]
Figure PCTKR2010002971-appb-I000008
상기 화학식 Ⅲ 및 Ⅳ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
이하, 상술한 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물의 제조방법에대하여 설명하기로 한다.
먼저, 탄수화물계 바이오매스에서 추출된 셀룰로오스로부터 얻을 수 있는 퓨란계 화합물인 2,5-퓨란디메탄올을 출발물질로 하여 에폭사이드 관능기가 2개 도입된 퓨란계 화합물을 제조하기 위한 방법으로서, ① 무수 유기용매 하에서 출발물질의 히드록시기를 소듐 하이드라이드 (NaH)와 반응시켜 알콕사이드로 먼저 전환한 후 에피클로로히드린과 치환을 하는 방법 및 ② 디메틸포름아미드 (N,N-dimethylformamide, DMF)와 같은 극성 유기용매 하에서 K2CO3 혹은 Cs2CO3 와 같은 무수탄산금속염을 사용하여 반응시키는 방법 등을 사용하였으나, 수행 결과 목적화합물을 효율적으로 합성하지 못하였다. 이에, 새로운 제조방법으로서 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물의 제조방법을 도출하였으며, 본 발명에 따른 제조방법을 수행한 결과, 우수한 수율로 목적화합물을 합성할 수 있었다.
본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물의 제조방법은, 탄수화물계 바이오매스(biomass)에서 추출된 셀룰로오스로부터 퓨란계 화합물을 제조하는 출발물질제조단계(S10); 상기 바이오매스 유래의 퓨란계 화합물과, 에피클로로히드린(epichlorohydrin)을 혼합하여 교반함으로써, 반응시키는 반응단계(S20)를 포함하여 이루어진다.
여기서, 출발물질제조단계(S10)는, 공지된 퓨란계 화합물을 제조하는 방법이라면 특별히 제한되지 않고, 임의의 방법을 사용하여 임의의 종류의 퓨란계 화합물을 제조하는 방법을 사용할 수 있다.
예를 들어, 출발물질제조단계(S10)의 일 실시형태로서, 출발물질로서 2,5-퓨란디메탄올(2,5-furan dimethanol)을 제조하는 방법은 상술한 반응식 1에 나타낸 바와 같다. 또한, 상기 반응식에서는 중간 생성물인 HMF를 생성하기 위하여 셀룰로오스를 가수분해하여 생성된 6각형 고리구조의 6탄당 물질(피라노오스, Pyranose)-예를 들어, 글루코오스, 갈락토오스 등-을 사용하였으나, 아래 반응식 2와 같이 프룩토오스와 같이 5각 고리구조를 갖는 6탄당 물질(퓨라노오스, Furanose)을 사용하면, 중간 생성물인 HMF가 동일한 5각 구조를 갖기 때문에, 비교적 쉽게 HMF를 얻을 수 있다. 또한, HMF 중간 생성물 제조에는 황산, 염산과 같은 전통적인 무기산 촉매 또는 활성과 선택성 증대를 목적으로 금속에 다양한 리간드가 배위된 Lewis산 촉매가 사용되었으나, 이러한 균일촉매의 사용시에 발생하는 분리정제의 문제를 해결하고 재사용과 연속공정에서의 활용이 용이한 불균일 고체 산 촉매 또는 불균일 금속촉매를 사용할 수도 있다.
[반응식 2]
Figure PCTKR2010002971-appb-I000009
출발물질로서 2,5-퓨란디메탄올(2,5-furan dimethanol)을 제조하는 방법은 상술한 반응식 1에 나타낸 바와 같다.
한편, 출발물질로서, 상기 화학식 Ⅲ의 화합물을 생성하는 방법으로서는, 아래 반응식 3으로 표현되는 바와 같이, 2-퓨란카르복실산 (2-furan carboxylic acid)을 염산(HCl) 존재 하에 메탄올 용매 내에서 환류하여 2-퓨란 카르복실산 메틸 에스테르 (2-furan carboxylic acid methyl ester)로 전환하고, 이를 황산에서 알데히드(aldehyde) 또는 케톤(ketone)와 반응시켜 화학식 Ⅳ의 화합물을 합성한 후, 에스테르를 알코올로 환원하는 반응을 거친다. 그 결과, 화학식 Ⅲ으로 표현되는 화합물이 합성된다. 상기 화학식 Ⅲ의 화합물은 일반적인 고분자 합성에 있어서의 주요 중간체로 사용되는 에폭시계 화합물 비스페놀 A와 유사한 구조를 갖는 퓨란 골격의 화합물로서, 비스페놀 A와 유사한 거동 및 특성을 보일 것으로 기대된다.
[반응식 3]
Figure PCTKR2010002971-appb-I000010
반응단계(S20)는, 출발물질제조단계(S10)를 통하여 제조된 2,5-퓨란디메탄올(2,5-furandimethanol) 또는 화학식 Ⅲ으로 표현되는 퓨란계 화합물을 출발물질로 하여, 여기에 에폭사이드 관능기를 도입하기 위한 물질로서, 에피클로로히드린(epichlorohydrin)을 첨가한 후, 상기 퓨란계 화합물과 교반하여 반응시키는 단계이다.
여기서, 상기 반응단계의 구체적인 일 실시형태로서, 상기 퓨란계 화합물 및 에피클로로히드린을 포함하는 혼합물을, 수산화나트륨(NaOH) 수용액을 첨가한 2상 용매(bi-phasic solvent system) 내에서 상전이촉매(Phase Transfer Catalyst, PTC)를 촉매로 하여 반응시키는 것이 바람직하다.
이러한 상전이촉매의 예로는 테트라부틸암모늄 브로마이드, 테트라부틸암모늄 클로라이드, 테트라옥틸암모늄 클로라이드, 테트라부틸암모늄 하이드로겐 설페이트, 메틸트리옥틸암모늄 클로라이드, 헥사데실트리메틸암모늄 클로라이드, 헥사데실트리메틸암모늄 브로마이드, 벤질트리메틸암모늄 클로라이드, 벤질트리에틸암모늄 클로라이드, 벤질트리메틸암모늄 하이드록사이드, 벤질트리에틸암모늄 하이드록사이드, 벤질트리부틸암모늄 클로라이드, 벤질트리부틸암모늄 브로마이드, 테트라부틸포스포늄 브로마이드, 테트라부틸포스포늄 클로라이드, 트리부틸헥사데실포스포늄 브로마이드, 부틸트리페닐포스포늄 클로라이드, 에틸트리옥틸포스포늄 브로마이드, 테트라페닐포스포늄 브로마이드 등을 들 수 있으며, 이들 이외에도 사용가능한 상전이촉매는 특별히 제한되지 않는다.
또한, 여기서 상기 에피클로로히드린의 당량은 5 내지 20당량, 더욱 바람직하게는 10 내지 15당량의 과량을 사용하는 것이 바람직하다.
이러한 반응단계의 구체적인 일 실시형태는 아래 반응식 4에 나타낸 바와 같다. 즉, 에피클로로히드린 및 수산화나트륨(NaOH) 수용액의 2상 용매시스템에서, 테트라부틸암모늄 브로마이드(Tetrabutylamonium bromide, TBABr)를 상전이촉매로서 첨가하고, 별도로 출발물질로서 2,5-퓨란디메탄올을 테트라하이드로퓨란(THF) 용매에 용해시킨 후, 이를 2상 용매시스템 내에 상기 천천히 적가하여 반응시킴으로써 목적물질인 화학식 Ⅰ로 표현되는 2-관능기 에폭시 단량체를 얻을 수 있다.
[반응식 4]
Figure PCTKR2010002971-appb-I000011
상기 반응단계의 다른 실시형태는, 출발물질로서 상기 화학식 Ⅲ의 화합물을사용하는 것으로서, 반응 메커니즘은 아래 반응식 5에 나타낸 바와 같다. 즉, 상기 출발물질로서 2,5-퓨란디메탄올을 사용한 것과 같이, 상전이촉매의 존재하에 2상 용매시스템에서 에피클로로히드린과 상기 화학식 Ⅲ의 화합물을 반응시켜 2개의 관능기, 2개의 퓨란고리로 이루어진 에폭시 단량체인 상기 화학식 Ⅱ의 화합물을 합성할 수 있다.
[반응식 5]
Figure PCTKR2010002971-appb-I000012
아울러, 상기 제조방법에 의하여 제조된 바이오매스 유래 퓨란계 경화성 화합물과, 기타 경화성 올리고머 화합물, 광개시제 또는 열개시제 등의 개시제 및 기타 첨가제 등을 첨가 및 혼합하여 경화가능한 접착성 조성물을 제조하는 조성물제조단계를 더 포함하여 수행함으로써, 무용매형 경화성 조성물을 얻을 수 있다. 바람직하게는 자외선 경화를 비롯한 광경화를 수행하기 위하여, 광개시제를 사용하거나, 일반적인 에폭시 수지 조성물에 적용되는 경화제를 사용한다.
광개시를 수행하는 경우, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물은 양이온 중합에 의하여 중합되어 경화되는 성질을 지닌 양이온 경화성(또는 중합성) 화합물이기 때문에, 상기 사용되는 경화 개시제로서는 양이온 경화 개시제(중합개시제)를 사용하는 것이 바람직하다. 상기 양이온 경화 개시제로서는 광을 조사함으로써 활성화됨으로써 양이온 중합개시물질을 발생시켜, 비교적 저에너지로 상기 화합물을 양이온 중합시킬 수 있는 것이라면 제한 없이 사용 가능하고, 이러한 양이온 경화 개시제로는 이온성 광산발생형의 광양이온 중합개시제를 사용하여도 좋고, 비이온성 광산발생형의 광양이온 중합개시제를 사용하여도 좋다. 또한, 양이온 경화 개시제의 첨가량은 특별히 한정되지는 아니하며, 상기 바이오매스 유래 화합물의 반응성이나 분자량, 혹은 이를 이용하여 제조되는 경화성 조성물에 부여하려는 점탄성의 정도에 따라서 적절히 설정되면 좋으나, 너무 많으면 경화성 조성물의 반응성이 너무 커져, 광조사에 의한 경화가 빨리 지나치게 진행되므로, 그 후의 작업에 지장을 초래할 수 있고, 또 지나치게 적으면 경화성 조성물의 경화가 충분히 진행되지 않거나 경화속도가 지연되는 일이 있으므로, 전체 경화성 조성물 대비 약 0.1 내지 15중량% 더욱 바람직하게는 0.2 내지 12.5중량%를 첨가한다.
상기 이온성 광산발생형의 광양이온 중합개시제로서는, 예컨대 아릴디아조늄염, 디아릴할로늄염, 트리아릴술포늄염 등의 방향족 술포늄염, 트리페닐포스포늄염 등의 오늄염류; 철-아렌 착체, 티타노센 착체, 아릴실라놀-알루미늄 착체 등의 유기금속 착체류 등을 들 수 있다. 또한, 상기 비이온성 광산발생형의 광양이온 중합개시제로서는, 예컨대 니트로벤질에스테르, 술폰산 유도체, 인산에스테르, 페놀술폰산 에스테르, 디아조나프토퀴논, N-히드록시이미드술포네이트 등을 들 수 있으며, 이들을 단독 또는 혼합하여 사용할 수 있다.
더불어, 상기 조성물에는 본 발명에 의한 화합물의 다소 늦은 경화속도를 보완하기 위하여, 아크릴레이트(즉, 아크릴레이트 및/또는 메타크릴레이트) 작용기와 같은 하나 이상의 에틸렌성 불포화기를 갖는 하나 이상의 자유 라디칼 중합성 화합물을 포함할 수 있다. 조성물에 이러한 자유 라디칼 중합성 화합물을 포함하는 경우에는, 광개시제로서, 상술한 양이온 경화 개시제와 더불어, 하나 이상의 자유 라디칼 광개시제를 사용할 수 있다.
이러한 자유 라디칼 광 개시제의 예로는 벤조페논(예컨대, 벤조페논, 알킬-치환된 벤조페논 또는 알콕시-치환된 벤조페논); 벤조인, 예를 들어 벤조인, 벤조인 에테르(예컨대, 벤조인 메틸에테르, 벤조인 에틸 에테르 및 벤조인 아이소프로필 에테르), 벤조인 페닐 에테르 및 벤조인 아세테이트; 아세토페논, 2,2-다이메톡시아세토페논, 4-(페닐티오)아세토페논 및 1,1-다이클로로아세토페논 같은 아세토페논; 벤질, 벤질 케탈(예컨대, 벤질다이메틸 케탈 및 벤질 다이에틸 케탈); 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-3급-뷰틸안트라퀴논, 1-클로로안트라퀴논 및 2-아밀안트라퀴논 같은 안트라퀴논; 트라이페닐포스핀; 예를 들어 2,4,6-트라이메틸벤조일다이페닐포스핀 옥사이드 같은 벤조일포스핀 옥사이드; 티오잔톤 및 잔톤, 아크리딘 유도체, 페나젠 유도체, 퀸옥살린 유도체 또는 l-페닐-1,2-프로페인다이온-2-O-벤조일옥심, l-아미노페닐 케톤 또는 l-하이드록시페닐 케톤(예컨대, l-하이드록시사이클로헥실 페닐 케톤, 페닐(1-하이드록시아이소프로필)케톤 및 4-아이소프로필페닐(1-하이드록시아이소프로필)케톤), 또는 트라이아진 화합물, 예컨대 4-메틸 티오페닐-1-다이(트라이클로로메틸)-3,5-S-트라이아진, S-트라이아진-2-(스틸벤)-4,6-비스트라이클로로메틸 및 파라메톡시 스타이릴 트라이아진 등을 들 수 있으며, 이들을 단독 또는 혼합하여 사용할 수 있다.
한편, 본 발명에 의한 무용매형 경화성 조성물을 제조하는데 있어, 상기 광경화제 대신에 일반적인 에폭시 수지 조성물에 함유되는 경화제를 사용할 수 있으며, 이렇게 경화제를 사용하는 경우에는, 광 경화방식 대신에 에폭시 수지 조성물을 사용하는 일반적인 방식으로 경화를 수행할 수 있다. 이러한 경화제의 종류로는 아민, 산 무수물, 아미드, 또는 페놀 화합물을 들 수 있다. 경화제의 구체적인 예는, 이들에 한정되는 것은 아니지만, 디아미노디페닐메탄, 디에틸렌트리아민, 트리에틸렌테트라아민, 디아미노디페닐술폰, 이소포론디아민, 디시안디아미드, 리놀렌산 이합체 및 에틸렌디아민으로부터 합성된 폴리아미드 수지, 프탈산 무수물, 트리멜리트산 무수물, 피로멜리트산 무수물, 말레산 무수물, 테트라히드로프탈산 무수물, 메틸테트라히드로프탈산 무수물, 메틸나드산 무수물, 헥사히드로프탈산 무수물, 메틸헥사히드로프탈산 무수물, 페놀 노볼락 및 이들의 변형물, 이미다졸, BF3-아민 착물 및 퀴니딘 유도체를 포함한다. 이들 경화제는 단독으로 또는 2이상 조합되어 사용될 수 있다. 또한, 본 발명의 경화성 조성물에 사용될 수 있는 경화제의 함량은 앞서 광 개시제의 함량에 준하여 첨가하는 것이 바람직하다.
본 발명에 의한 무용매형 경화성 조성물에는 이 밖에도, 경화 촉진제, 무기 충전제, 이형제 및 안료 등 다양한 첨가제를 적절히 혼합하여 사용할 수 있다.
예를 들어, 경화 촉진제는, 상기 경화제와 더불어 사용될 수 있으며, 본 발명에 사용될 수 있는 경화 촉진제의 구체적인 예로는 2-메틸이미다졸, 2-에틸이미다졸 및 2-에틸-4-메틸-이미다졸과 같은 이미다졸; 2-(디메틸아미노메틸)페놀 및 1,8-디아자-비시클로(5.4.0)-운데칸-7과 같은 삼차아민; 트리페닐포스핀과 같은 포스핀; 및 옥틸산 주석과 같은 금속 화합물을 포함한다. 경화 촉진제는 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물 100중량부당 0.01 내지 10중량부, 바람직하게는 0.2 내지 5중량부의 함량으로 첨가한다.
무기 충전제도 본 발명에 의한 무용매형 경화성 조성물에 경우에 따라 혼입될 수 있다. 사용될 수 있는 무기 충전제의 특정 예는 실리카, 알루미나 및 활석을 포함한다. 또한, 본 발명에 의한 무용매형 경화성 조성물은 실란 커플링제, 스테아르산, 팔미트산, 스테아르산 아연 및 스테아르산 칼슘과 같은 이형제 및 안료를 비롯한 다양한 혼합 첨가제를 함유할 수 있다.
바람직하게는 이렇게 얻어진 조성물의 구성성분들을 압출기, 혼련기, 롤 등과 같은 수단에 의하여 충분히 혼합 및 균질화시킴으로써 조성물제조단계를 수행할 수 있다.
이하, 제조예, 실험예 및 비교예를 참고하여, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물에 대하여 설명하기로 한다.
제조예 1 (화학식 Ⅰ 화합물의 제조)
100 mL 둥근바닥 플라스크에 에피클로로히드린 22 mL 및 50% NaOH 수용액 (19.2 g, 240 mmol)의 2상 용매 내에, 상전이촉매로서 테트라부틸암모늄 브로마이드(tetrabutylamomnium bromide, TBABr) (0.644 g, 2 mmol)를 차례로 가하고 격렬히 자력 교반하였다. 이후 약 30 mL의 테트라하이드로퓨란(THF)에 희석한 출발물질 2,5-퓨란디메탄올(2,5-furandimethanol)(2.56 g, 19.9 mmol)을 상온에서 천천히 적가한 후 50℃에서 2시간 격렬히 교반하였다. 이후 반응액을 분액 깔대기로 옮기고, 증류수 및 에틸아세테이트(EtOAc)를 각각 200 mL 첨가한 후 유기층을 2회 세척하고 포화 NaCl수용액으로 세척하고 MgSO4로 수분을 제거한 후, 여과, 감압 농축한 후 잔존물을 플래쉬 크로마토그래피(Flash chromatography) (hexanes: EtOAc = 7:4)로 분리하여 2개의 에폭사이드 관능기를 갖는 퓨란계 화합물 (화학식 Ⅰ)을 투명한 오일상으로 얻었다. (2.564 g, 10.6 mmol, 수율 54%) 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3) : δ 6.32-6.28 (m, 1H), 4.58-4.46 (m, 2H), 3.80-3.74 (m, 1H), 3.48-3.40 (m, 1H), 3.20-3.18 (m, 1H), 2.82-2.78 (m, 1H), 2.64-2.58 (m, 1H).
13C NMR (100 MHz, CDCl3): δ 152.0, 110.5, 110.4, 70.9, 65.3, 50.9, 44.4.
제조예 2(출발물질로서 화학식 Ⅲ 중 R 1 , R 2 가 수소인 화합물을 이용한 화학식 Ⅱ 중 R 1 , R 2 가 수소인 화합물의 제조)
(1) 2-퓨란 카르복실산 메틸 에스테르(제1중간체)의 제조
[반응식 6]
Figure PCTKR2010002971-appb-I000013
상기 반응식 6을 참조하면, 1 L 둥근바닥 플라스크에 2-퓨란 카르복실산(2-Furan carboxylic acid) (20 g, 178 mmol), 0.5 M 염산(HCl) / 메탄올(400 mL)을 차례로 가하여 녹이고 80 ℃에서 2시간 동안 환류하여 반응하였다. 이후 감압건조하여 용매를 제거하고 잔존물을 에틸아세테이트(EtOAc)에 희석한 후 분액 깔대기로 옮기고, 얼음물, 5% 탄산수소나트륨(sodium bicarbonate NaHCO3) 수용액으로 차례로 세척하여 pH 가 7~8 임을 확인하였다. 유기층의 수분제거 (MgSO4) 및 여과, 감압 농축 후 플래쉬 크로마토그래피(hexanes: EtOAc = 10:1)로 분리하여 연한 황색의 오일로 2-퓨란 카르복실산 메틸 에스테르(20.53 g, 162 mmol, 수율 91%)를 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 7.60-7.58 (m, 1H), 7.19 (d, J = 3.6 Hz, 1H), 6.54-6.50 (m, 1H), 3.90 (s, 3H).
13C NMR (100 MHz, CDCl3): δ 159.4, 146.6, 146.5, 144.7, 118.2, 112.1, 112.0, 52.2, 32.1.
(2) 화학식 Ⅳ(R1=R2=H) 화합물 (제2중간체)의 제조
이후, 25 mL 둥근바닥 플라스크에 98% 황상(H2SO4)(15 ml)을 가하고 아르곤 분위기하에서 얼음-소금 중탕으로 반응액을 -5~0 ℃로 냉각하였다. 이후 계속 상기 온도를 유지하며 전 단계에서 합성한 화합물(1.5 g, 12 mmol)를 첨가한 후, 35% 포름알데히드(formaldehyde)(0.50 mL, 24 mmol)를 천천히 적가하였다. 이후 중탕을 제거하고 상온에서 1시간 동안 반응시켰다. 이때 반응액의 색깔은 군청색에서 적갈색으로 변화하였다. 이후 반응액을 충분한 양의 잘게 부순 얼음에 가하고, 물과 EtOAc를 사용하여 분액깔대기로 옮긴 후, 유기층을 증류수 및 5% 탄산수소나트륨(sodium bicarbonate, NaHCO3) 수용액으로 차례로 세척하였다. 유기층을 모아 수분제거 (MgSO4) 및 여과, 감압 농축한 후 플래쉬 크로마토그래피(hexanes: EtOAc = 6:1)로 분리하고 재결정 (EtOAc-hexane)하여 연황색 결정으로 화학식 Ⅳ(R1=R2=H) 화합물(1.358 g, 5.13 mmol, 수율 85%)을 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 7.13 (d, J = 3.6 Hz, 2H), 6.27 (d, J = 3.6 Hz, 2H), 4.16 (s, 2H), 3.89 (s, 6H)
13C NMR (100 MHz, CDCl3): δ 159.2, 154.8, 144.1, 119.4, 119.4, 110.0, 109.9, 52.2, 52.1, 28.2.
(3) 화학식 Ⅲ(R1=R2=H) 화합물(출발물질)의 제조
아르곤 분위기하에서 50mL 둥근바닥플라스크에 LiAlH4 (350 mg, 9 mmol) 및 무수 THF(10 mL)를 가한후 교반하였다. 생성된 진회색의 서스펜션을 얼음중탕을 사용하여 냉각한 후, 전단계에서 합성한 화합물(1.2g, 4.54mmol)을 무수 THF 10 mL에 희석시켜 천천히 적가하고, 이후 얼음 중탕을 제거하여 상온에서 24시간 동안 교반하여 반응시켰다. 반응 종결 후 다시 얼음 중탕 하에서 포화 황산나트륨(sodium sulfate) 수용액을 천천히 적가하여 과량 사용된 LiAlH4 를 제거하였다. 이때, 진회색의 서스펜션 상태의 반응액이 흰색의 슬러리 형태로 변하는 것을 확인할 수 있었다. 이후 셀라이트(Celite)를 적용한 필터를 통과시켜 반응액을 여과한 후 충분한 양의 CH2Cl2, 그리고 CH3CN-EtOAc (1:9) 로 차례로 세척하였다. 유기 여과액을 모두 모아 수분제거 (MgSO4) 및 여과, 감압 농축한 후 플래쉬 크로마토그래피(hexanes: EtOAc = 5:2)로 분리하고 재결정 (EtOAc-hexanes)하여 흰색 결정으로 화학식 Ⅲ(R1=R2=H)으로 표현되는 화합물 (726 mg, 2.59 mmol, 수율 57%)를 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 6.22 (d, J = 2.8 Hz, 2H), 6.05 (d, J = 2.8 Hz, 2H), 4.56 (d, J = 5.2 Hz, 4H), 3.98 (s, 2H), 1.73 (t, J = 5.6 Hz, 2H)
13C NMR (100 MHz, CDCl3): δ 153.3, 151.7, 109.1, 108.9, 107.6, 107.5, 57.7, 27.8.
(4) 화학식 Ⅱ(R1=R2=H) 화합물의 제조(반응단계)
화학식 Ⅲ(R1=R2=H) 화합물(500 mg, 2.4 mmol), 에피클로로히드린(3.7 mL, 47 mmol), 50% NaOH 수용액 (3.2 g, 40 mmol), 상전이촉매로서 테트라부틸암모늄 브로마이드(100 mg, 0.31 mmol)을 이용하여, 상기 제조예 1의 합성과 동일한 조건으로 반응 및 반응종결작업(work-up)을 수행하였다. 이후 플래쉬 크로마토그래피(hexanes: EtOAc = 6:5)로 분리 하여 연한 황색의 오일상으로 화학식 Ⅱ(R1=R2=H) 화합물(412 mg, 1.28 mmol, 수율 53%)을 합성하였다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 6.26 (d, J = 3.2 Hz, 2H), 6.04 (d, J = 3.2 Hz, 2H), 4.48 (q, J = 11.7 Hz, 4H), 3.99 (d, J = 2.8 Hz, 1H), 3.76 (d, J = 3.2 Hz, 1H), 3.73 (d, J = 2.8 Hz, 1H). 3.44 (dd, J = 11.4, 5.8 Hz, 2H), 3.17-3.14 (m, 2H), 2.79 (t, J = 4.6 Hz, 2H), 2.61 (dd, J = 4.8, 2.8 Hz, 2H)
13C NMR (100 MHz, CDCl3): δ 152.1, 150.5, 77.6, 77.3, 76.9, 65.34, 65.32, 50.4, 44.6
제조예 3(출발물질로서 화학식 Ⅲ 중 R 1 이 수소 R 2 가 메틸기인 화합물을 이용한 화학식 Ⅱ 중 R 1 이 수소 R 2 가 메틸기인 화합물의 제조)
(1) 화학식 IV (R1=Me, R2=H) 화합물의 제조
[반응식 7]
상기 반응식 7을 참조하면, 2-퓨란 카르복실산 메틸 에스테르(1.50 g, 12.0 mmol), acetaldehyde (1.06 g, 24.0 mmol), 98% H2SO4 (15 mL)을 사용하여 제조예 2와 같은 방법으로 반응 및 work-up 한 후 flash chromatography (hexanes: EtOAc = 5:1)로 분리하여 화학식 IV (R1=Me, R2=H) 화합물 (1.78 g, 6.40 mmol, 53%)을 연황색 의 오일로 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 7.11 (d, J = 3.2 Hz, 2H), 6.22 (d, J = 2.8 Hz, 2H), 4.36 (q, J = 7.2 Hz, 1H), 3.87 (s, 6H), 1.69 (d, J = 7.2 Hz, 3H)
13C NMR (130 MHz, CDCl3): δ 159.8, 159.3, 143.8, 119.2, 108.4, 52.0, 33.9, 18.1.
(2) 화학식 III (R1=Me, R2=H) 화합물의 제조
화학식 IV (R1=Me, R2=H) 화합물(1.20 g, 4.54 mmol), LiAlH4 (350 mg, 9 mmol), 무수 THF 25 mL를 사용하여 제조예 2와 같은 방법으로 반응 및 work-up 한 후 flash chromatography (hexanes: EtOAc = 1:1)로 분리하여 화학식 III (R1=Me, R2=H) 화합물 (780 mg, 3.51 mmol, 53%)를 연황색 의 오일로 얻었다. 이에 대한 lH-NMR의 데이터는 아래와 같다.
lH NMR (400 MHz, CDCl3): δ 6.24-6.15 (m, 2H), 6.05-5.90 (m, 4H), 4.60-4.46 (m, 4H), 4.22-4.10 (m, 1H), 1.63-1.54 (m, 3H).
(3) 화학식 II (R1=Me, R2=H) 화합물의 제조
화학식 IV (R1=Me, R2=H) 화합물(300 mg, 1.35 mmol), 에피클로로히드린 (1.10 mL, 13.5 mmol), 50% NaOH 수용액 (2.0 g, 250 mmol), TBABr (0.644 g, 0.20 mmol)을 사용하여 제조예 2와 같은 방법으로 반응 및 work-up 한 후 flash chromatography (hexanes: EtOAc = 2:1)로 분리하여 화학식 II (R1=Me, R2=H) 화합물 (293 mg, 0.88 mmol, 65%)를 투명한 오일로 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 6.32-6.12 (m, 2H), 6.04-5.86 (m, 2H), 4.54-4.32 (m, 4H), 4.24-4.12 (m, 1H), 3.82-3.60 (m, 2H), 3.48-3.32 (m, 2H), 3.20-3.02 (m, 2H), 2.84-2.68 (m, 2H), 2.64-2.48 (m, 2H), 1.59 (d, J = 7.2 Hz, 3H)
13C NMR (130 MHz, CDCl3): δ 157.1, 150.3, 110.6, 106.7, 70.7, 65.4, 50.9, 44.6, 33.5, 18.2.
제조예 4(출발물질로서 화학식 Ⅲ 중 R 1 , R 2 가 메틸기인 화합물을 이용한 화학식 Ⅱ 중 R 1 , R 2 가 메틸기인 화합물의 제조)
(1) 화학식 IV (R1=Me, R2=Me) 화합물의 제조
[반응식 8]
Figure PCTKR2010002971-appb-I000014
상기 반응식 8을 참조하면, 2-퓨란 카르복실산 메틸 에스테르(1.50 g, 12.0 mmol), acetone (1.4 g, 24.0 mmol), 98% H2SO4 (15 ml)을 사용하여 제조예 2와 같은 방법으로 24 시간 동안 반응 시키고 이후 1당량의 acetone을 추가로 적가하여 반응하였다. 동일한 조건에서 work-up 한 후 flash chromatography (hexanes: EtOAc = 5:1)로 분리하고 EtOAc-hexanes 조건으로 재결정하여 화학식 IV (R1=Me, R2=Me) 화합물 (1.23 mg, 4.21 mmol, 70%)을 연한 노란색의 결정으로 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 7.14-7.06 (m, 1H), 6.24-6.16 (m, 1H), 3.86 (s, 3H), 1.74 (s, 3H)
13C NMR (130 MHz, CDCl3): δ 163.4, 159.4, 143.7, 119.1, 107.6, 52.0, 38.5, 26.2
(2) 화학식 III (R1=Me, R2=Me) 화합물의 제조
화학식 IV (R1=Me, R2=Me) 화합물(1.50 g, 5.20 mmol), LiAlH4 (395 mg, 10.4 mmol), 무수 THF 50 mL를 사용하여 제조예 2와 같은 방법으로 반응 및 work-up 한 후 flash chromatography (hexanes: EtOAc = 1:1)로 분리하여 화학식 III (R1=Me, R2=Me) 화합물 (884 mg, 3.74 mmol, 72%)를 황색 오일로 얻었다. 이에 대한 lH-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 6.18 (d, J = 3.2 Hz, 2H), 5.98 (d, J = 2.8 Hz, 2H), 4.54 (s, 4H), 1.68-1.60 (m, 8H).
(3) 화학식 II (R1=Me, R2=Me) 화합물의 제조
화학식 IV (R1=Me, R2=H) 화합물(1.40 g, 5.92 mmol), 에피클로로히드린 (1.85 mL, 23.7 mmol), 50% NaOH 수용액 (8.0 g, 100 mmol), TBABr (270 mg, 0.84 mmol)을 사용하여 제조예 2와 같은 방법으로 반응 및 work-up 한 후 flash chromatography (hexanes: EtOAc = 2:1)로 분리하여 화학식 II (R1=Me, R2=Me) 화합물(1.78 g, 5.10 mmol, 86%)을 투명한 오일로 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 6.28-6.20 (m, 2H), 6.00-5.92 (m, 2H), 4.52-4.40 (m, 4H), 3.75-3.65 (m, 2H), 3.48-3.38 (m, 2H), 3.18-3.06 (m, 2H), 2.82-2.74 (m, 2H), 2.64-2.56 (m, 2H), 1.63 (s, 6H).
13C NMR (130 MHz, CDCl3): δ 160.5, 150.3, 110.4, 105.2, 70.5, 65.4, 50.9, 44.6, 37.7, 26.4.
비교예
[반응식 9]
Figure PCTKR2010002971-appb-I000015
상기 반응식 7을 참조하면, 100 mL 둥근바닥 플라스크에 에피클로로히드린(23.5 mL, 300 mmol), 50% NaOH 수용액 (22.0 g, 275 mmol), 그리고 촉매로서 TBABr (0.644 g, 2 mmol)을 차례로 가하고 격렬히 자력교반하였다. 이후 약 30 mL의 THF에 희석한 2-퓨란메탄올 (9.81 g, 100 mmol)을 상온에서 천천히 적가한 후 상온에서 2시간 격렬히 교반하였다. 이후 반응액을 분액깔대기로 옮기고, 증류수 및 EtOAc 각 200 mL를 가한 후 유기층을 2회 세척하고 포화 NaCl수용액으로 세척한 후 MgSO4로 수분을 제거하고, 여과, 감압 농축한 후 잔존물을 플래쉬 크로마토그래피(hexanes: EtOAc = 1:1→1:2)로 분리하여 무색의 투명한 오일상으로 푸르푸릴 글리시딜 에테르(furfuryl glycidyl ether) (13.3 g, 86.3 mmol, 수율 86%)을 얻었다. 이에 대한 lH 및 13C-NMR의 데이터는 아래와 같다.
1H NMR (400 MHz, CDCl3): δ 7.42-7.40 (m, 1H), 6.35 (s, 2H), 4.58-4.48 (m, 2H), 3.76 (dd, J = 11.2, 2.8 Hz, 1H), 3.44 (dd, J = 11.2, 5.6 Hz, 1H), 3.20-3.12 (m, 1H), 2.28-2.77 (m, 1H), 2.64-2.59 (m, 1H).
13C NMR (100 MHz, CDCl3): δ 151.6, 143.2, 143.1, 110.5, 110.4, 109.9, 109.8, 70.8, 65.2, 50.9, 44.5.
경화거동의 관찰(광경화시간 및 경화 수축률 측정)
상기 제조예 1 및 비교예로서 합성된, 에폭사이드 관능기를 갖는 퓨란계 경화성 화합물의 경화소재로서의 활용 가능성을 살펴보기 위하여 각각의 화합물을 포함한 조성물에 대한 광경화 거동을 살펴보고, 경화 시 발생하는 수축률을 측정하였다.
광경화 거동 측정
Photo-DSC는 기존의 DSC에 광경화 악세사리를 장착하고 이 둘을 싱크시켜 반응열을 알아봄으로써 경화율 (conversion ratio), 광경화 속도(curing rate)등과 같은 광경화 거동을 확인할 수 있는 기기로서 TA Instrument사의 Q-1000 DSC와 Photocalorimetric accessory(Novacure 2100)를 직접 연결하여 사용하였다. 광원은 중압수은 램프 (100W, Intensity: 50mW/cm2)를 사용하였고, 경화개시제로는 양이온 광경화개시제인 IRGACURE 250을 사용하였다. 1 wt% 광경화개시제를 포함한 시료를 약 2~3 mg 씩 open type alumium pan에 넣고 25 oC에서 광을 조사하며 시료로부터 유발되는 반응열량을 측정하였다. Photo-DSC에 의한 광경화 거동 측정결과는 도 1및 도 2에 나타내었다.
Photo-DSC 분석 결과, 도 1 및 도 2에 나타낸 바와 같이, 도 1의 실시예로 제조된 본 발명에 의한 퓨란계 경화성 화합물의 경우, 약 1분 후에 경화가 시작되었으며, 경화시간은 10분 이상 소요되어 다소 경화시간이 길게 나타났다. 그러나, 도 2의 비교예로 제조된 1개의 에폭사이드 관능기를 갖는 퓨란계 화합물인 푸르푸릴 글리시딜 에테르 (Furfuryl glycidyl ether) 보다는 약 30% 빠른 경화속도를 보였다.
광경화 수축률 측정
광경화수축률은 선형가변 미분변환기(Linear Variable Differential Transformer(LVDT) transducer)와 UV Spot curing 장비를 이용하였다. 이는 UV-Spot curing 장비로 광경화를 시키면서 이때 발생되는 수축률을 비접촉식 선형가변 미분변환기를 이용하여 선형 변형을 측정하는 원리로 경화수축률을 평가하는 방법이다. 수축률 측정기는 R&B사의 Linometer System인 RB308 LinometerTM 를 사용하였으며, UV-Spot curing 장비는 Ushio사의 SP-7을 사용하였다. 전자기장을 이용하여 거리를 측정할 수 있는 비접촉식 선형 변위 센서 위에 일정한 간격을 두고 스테인리스 디스크를 올려놓은 뒤, 스테인리스 디스크 위에 일정한 두께 혹은 일정량의 시료를 로딩한다. 그 뒤 수지 위를 슬라이드 글라스로 덮은 뒤에 고정시킨다. 슬라이드 글라스에서 일정 높이에 광원을 고정시킨 후, UV를 조사시킴과 동시에 센서를 작동시키면 스테인리스 디스크가 슬라이드 글라스 방향으로 상승하며, 센서와 스테인리스 디스크 간격이 멀어지게 되는데 이 간격을 기록하여 수축 정도를 측정하였다. 그 결과는 아래 표에 나타낸 바와 같다.
표 1
중심화합물의 화학식 경화수축률(%)
제조예 1
Figure PCTKR2010002971-appb-I000016
4.9%
비교예
Figure PCTKR2010002971-appb-I000017
측정불가
본 발명의 제조예 1에 의한 바이오매스 유래 퓨란계 경화성 화합물의 경우, 상기 표에 나타낸 바와 같이, 경화수축률이 4.9%로 일반적으로 약 10%의 경화수축률을 보이는 아크릴계 광경화소재에 비해 우수한 성능을 나타내었다. 반면, 비교예로 제조된 퓨란계 화합물은 점도가 낮고 젖음(wetting)이 빨라, 수축률 측정이 불가능하였다. 따라서, 본 발명에 의한 바이오매스 유래 퓨란계 경화성 화합물은 전자재료 분야 등의 정밀한 치수안정성을 요구하는 분야에 적용되기 적합한 것으로 판단된다.
접착강도 측정
접착강도는 접착제로서의 기능을 나타내는 가장 기본적인 물성으로서, 본 실험에서는 UTM기기를 이용하여 lap shear strength를 측정하였다. 물성 측정에 사용된 기기는 HOUNSFIELD사의 H100KS 모델을 사용하였으며, QMat (ver. 5.37) 소프트웨어를 사용하여 측정값을 계산하였다. 피착재로는 광투과성을 고려하여 투명한 폴리카보네이트를 사용하였으며, 시편은 ASTM D 5868-01규격에 근거하여 일정한 크기(1 inch × 4 inch × 0.2 inch = 가로×세로×두께)의 피착재 2개를 1 inch × 1 inch 면적만큼 겹치게 한 후 겹쳐진 면 사이에 접착소재를 도포하여 사용하였다. 각 시편을 UTM에 고정할 때, 시편 양 끝 grip을 1 inch로 하였고, 시편은 0.5 inch/min 속도로 잡아당겨 shear strength를 측정하였다. 접착소재는 20 μL의 정량을 도포하였으며, 일정한 시간 동안 200 mW/cm2의 세기로 UV를 조사하여 경화하였다.
접착강도 측정 결과, 도 3 및 도 4에 나타낸 바와 같이, 화학식 I의 화합물의 경우 5 wt%의 개시제를 넣고 5분간 UV를 조사하여 경화시켰을 경우 접착강도가 약 4 MPa까지 이르렀으며, 화학식 II (R1=Me, R2=Me) 화합물에 경우는 약 1 MPa 내외의 접착강도를 나타냈다. 이것은 상대적으로 소수성이 적고, 입체장애효과가 적은 화학식 I 화합물이 화학식 II (R1=Me, R2=Me) 화합물보다 피착제인 폴리카보네이트와의 상용성이 우수한 것으로 판단되며, 화학식 II (R1=Me, R2=Me) 화합물은 경화 시 접착 (Adhesion) 보다는 자체 응집 (Cohesion)이 주로 발생한 것으로 여겨진다. 한편, 광원경화 후 추가의 열경화를 수행한 듀얼경화는 접착강도의 향상에 별다른 영향을 주지 못하였는데, 이것은 상기의 광원경화 조건에서 경화가 거의 종결되었기 때문인 것으로 판단된다.
이상, 본 발명의 제조예 및 비교예를 중심으로 상세하게 설명하였다. 그러나 본 발명의 권리범위는 상기 제조예 및 비교예에 한정되는 것은 아니라 첨부된 특허청구범위내에서 용이하게 변환 또는 삭제 가능한 범위까지 포함하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 가능한 다양한 변형 가능한 범위까지 본 발명의 청구 범위 기재의 범위 내에 있는 것으로 본다.

Claims (9)

  1. 적어도 하나의 퓨란계 화합물에 두개의 에폭사이드 관능기가 결합되어 이루어진 바이오매스 유래 퓨란계 경화성 화합물.
  2. 제1항에 있어서,
    상기 바이오매스 유래 퓨란계 경화성 화합물은,
    아래 화학식 Ⅰ또는 화학식 Ⅱ로 표현되는 것을 특징으로 하는 바이오매스 유래 퓨란계 경화성 화합물.
    [화학식 Ⅰ]
    Figure PCTKR2010002971-appb-I000018
    [화학식 Ⅱ]
    Figure PCTKR2010002971-appb-I000019
    상기 화학식 Ⅱ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
  3. 제1항 또는 제2항에 의한 화합물 및
    개시제를 포함하는 무용매형 경화성 조성물.
  4. 제3항에 있어서,
    상기 개시제는 양이온 경화 개시제인 것을 특징으로 하는 무용매형 경화성 조성물.
  5. 탄수화물계 바이오매스(biomass)에서 추출된 셀룰로오스로부터 퓨란계 화합물을 제조하는 출발물질제조단계;
    상기 바이오매스 유래의 퓨란계 화합물과, 에피클로로히드린(epichlorohydrin)을 혼합하여 교반함으로써, 반응시키는 반응단계;를 포함하여 이루어진 바이오매스 유래 퓨란계 경화성 화합물의 제조방법.
  6. 제5항에 있어서,
    상기 바이오매스 유래의 퓨란계 화합물은,
    2,5-퓨란디메탄올(2,5-furandimethanol) 또는 아래 화학식 Ⅲ으로 표현되는 화합물인 것을 특징으로 하는 바이오매스 유래 퓨란계 경화성 화합물의 제조방법.
    [화학식 Ⅲ]
    Figure PCTKR2010002971-appb-I000020
    상기 화학식 Ⅲ에서, R1, R2는 수소, 알킬기, 알케닐, 알키닐, 시클로알킬, 또는 아릴기 중 하나이다.
  7. 제5항에 있어서,
    상기 반응단계는, 상기 퓨란계 화합물 및 에피클로로히드린을 포함하는 혼합물을, 수산화나트륨 수용액을 첨가한 2상 용매(bi-phasic solvent system) 내에서 상전이촉매(Phase Transfer Catalyst, PTC)를 촉매로 하여 반응시키는 것을 특징으로 하는 바이오매스 유래 퓨란계 경화성 화합물의 제조방법.
  8. 제7항에 있어서,
    상기 에피클로로히드린의 당량은 5 내지 20당량인 것을 특징으로 하는 바이오매스 유래 퓨란계 경화성 화합물의 제조방법.
  9. 제5항 내지 제8항 중 어느 한 항에 의하여 제조된 바이오매스 유래 퓨란계 경화성 화합물과, 양이온 경화 개시제 또는 경화제를 혼합하여 경화가능한 접착성 조성물을 제조하는 조성물제조단계를 더 포함하는 것을 특징으로 하는 무용매형 경화성 조성물의 제조방법.
PCT/KR2010/002971 2009-09-08 2010-05-11 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법 WO2011030991A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/394,910 US9035018B2 (en) 2009-09-08 2010-05-11 Furan-based curable compound derived from biomass, solvent-free curable composition, and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090084416A KR101116450B1 (ko) 2009-09-08 2009-09-08 바이오매스 유래 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법
KR10-2009-0084416 2009-09-08

Publications (1)

Publication Number Publication Date
WO2011030991A1 true WO2011030991A1 (ko) 2011-03-17

Family

ID=43732630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002971 WO2011030991A1 (ko) 2009-09-08 2010-05-11 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법

Country Status (3)

Country Link
US (1) US9035018B2 (ko)
KR (1) KR101116450B1 (ko)
WO (1) WO2011030991A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181470A1 (fr) 2014-05-28 2015-12-03 Roquette Freres Procédé de fabrication de compositions de glycidyl ethers furaniques, compositions obtenues et leurs utilisations

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310302B1 (ko) * 2011-04-08 2013-09-23 한국생산기술연구원 바이오매스 유래 퓨란계 광경화성 화합물 및 이를 포함하는 무용매형 광경화성 조성물 및 그 제조방법
CN107001582A (zh) * 2015-02-05 2017-08-01 积水化学工业株式会社 酯型环氧呋喃树脂和其制造方法、树脂组合物以及树脂固化物
KR101692987B1 (ko) 2015-04-01 2017-01-05 한국과학기술연구원 점도가 향상된 퓨란계 코폴리아미드 화합물 및 이의 제조방법
CN105906644B (zh) * 2016-05-24 2018-02-23 中国科学院宁波材料技术与工程研究所 一种呋喃基缩水甘油醚及其合成方法和应用
US9840485B1 (en) * 2016-09-27 2017-12-12 Sekisui Chemical Co., Ltd. Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
CN108358876A (zh) * 2018-04-23 2018-08-03 南京工业大学 一种生物基呋喃型单体及其制备方法与应用
CN108341925A (zh) * 2018-04-23 2018-07-31 南京工业大学 一种基于双呋喃型二醇或者双呋喃型二酸制备聚酯或者聚酰胺类的高分子化合物与应用
KR101966878B1 (ko) * 2018-06-22 2019-04-08 국도화학 주식회사 퍼퓨릴 알코올 유래 2 관능성 퓨란 에폭시 및 이의 제조방법
US11691956B2 (en) * 2019-07-08 2023-07-04 Ndsu Research Foundation Bio-based diols from sustainable raw materials, uses thereof to make diglycidyl ethers, and their coatings
CN111285827A (zh) * 2019-12-08 2020-06-16 南京工业大学 一种新型双呋喃类化合物的制备方法
KR102291469B1 (ko) * 2019-12-12 2021-08-20 국도화학 주식회사 신규한 퓨란계 화합물, 신규한 에폭시 화합물 및 이들을 제조하는 방법
KR102369948B1 (ko) * 2020-04-23 2022-03-03 한국생산기술연구원 퓨란 기반 난연 에폭시 화합물, 그를 포함하는 에폭시 수지 조성물 및 그의 제조방법
US20230002363A1 (en) * 2021-06-16 2023-01-05 Braskem S.A. Furanic diglycidyl ethers and esters and use thereof
CN114315814B (zh) * 2021-12-29 2022-10-21 南京工业大学 一种和厚朴酚/糖基呋喃双生物基环氧树脂单体及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283951A1 (en) * 1987-03-19 1988-09-28 National Starch and Chemical Investment Holding Corporation Polysaccharide derivatives containing aldehyde groups, their preparation from the corresponding acetals and use in paper
US5512613A (en) * 1991-09-05 1996-04-30 International Business Machines Corporation Cleavable diepoxide for removable epoxy compositions
US6825315B2 (en) * 2001-12-21 2004-11-30 Sandia Corporation Method of making thermally removable adhesives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193629A (ja) * 2005-01-14 2006-07-27 Yokohama Rubber Co Ltd:The 硬化性組成物およびその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283951A1 (en) * 1987-03-19 1988-09-28 National Starch and Chemical Investment Holding Corporation Polysaccharide derivatives containing aldehyde groups, their preparation from the corresponding acetals and use in paper
US5512613A (en) * 1991-09-05 1996-04-30 International Business Machines Corporation Cleavable diepoxide for removable epoxy compositions
US6825315B2 (en) * 2001-12-21 2004-11-30 Sandia Corporation Method of making thermally removable adhesives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOCHERGIN, YU. S. ET AL.: "Special-Purpose Epoxy Adhesives.", POLYMER SCIENCE, SER. C., vol. 49, no. 1, 2007, pages 17 - 21 *
MCELHANON, JAMES R. ET AL.: "Romovable Foams Based on an Epoxy Resin Incorporating Reversible Diels-Alder Adducts.", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 85, 2002, pages 1496 - 1502 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181470A1 (fr) 2014-05-28 2015-12-03 Roquette Freres Procédé de fabrication de compositions de glycidyl ethers furaniques, compositions obtenues et leurs utilisations

Also Published As

Publication number Publication date
KR101116450B1 (ko) 2012-03-07
US9035018B2 (en) 2015-05-19
US20120220742A1 (en) 2012-08-30
KR20110026664A (ko) 2011-03-16

Similar Documents

Publication Publication Date Title
WO2011030991A1 (ko) 바이오매스 유래 퓨란계 경화성 화합물, 무용매형 경화성 조성물 및 이들의 제조방법
WO2012157832A1 (ko) 광경화성 디안히드로헥산헥솔 유도체, 이의 제조방법 및 이를 포함하는 광경화성 조성물
CN114276298A (zh) 硫醇化合物、其合成方法和该硫醇化合物的利用
US6015914A (en) Compound having oxetanyl group, process for producing same, and curing composition
KR101768732B1 (ko) 옥세탄 환 함유 (메트)아크릴산에스테르 화합물
WO2011030992A1 (ko) 바이오매스 유래 경화성 이중고리 화합물, 무용매형 경화성 조성물 및 이들의 제조방법
US5198509A (en) Lactone-modified alicyclic composition and an epoxidized composition thereof
KR102531269B1 (ko) 에폭시·옥세탄 화합물, 그의 합성 방법 및 당해 화합물의 이용
JPH0717917A (ja) 三官能性不飽和化合物及びその誘導体
WO2017195927A1 (ko) 신규한 2,4,6-트리아미노트리아진계 우레탄아크릴레이트 화합물 및 그 제조방법
WO2016093581A2 (en) Aliphatic polycarbonates and production methods from cyclic carbonates thereof
US20230331688A1 (en) Diepoxy compound, curable composition, cured product, and optical member
JP6719310B2 (ja) (メタ)アクリレート化合物、その合成方法および該(メタ)アクリレート化合物の利用
US6066746A (en) Radiation curing of dihydrofuran derivatives
KR101113548B1 (ko) 바이오매스 유래 경화성 화합물 및 이를 이용한 무용매형 경화성 조성물
WO2019082717A1 (ja) エポキシ・オキセタン化合物、その合成方法および該化合物の利用
WO2014034628A1 (ja) 脂環式エポキシ化合物及びその製造方法
KR101310302B1 (ko) 바이오매스 유래 퓨란계 광경화성 화합물 및 이를 포함하는 무용매형 광경화성 조성물 및 그 제조방법
JP6541585B2 (ja) (メタ)アクリルエポキシイソシアヌレート化合物、その合成方法および該イソシアヌレート化合物の利用
CN112745344B (zh) 一种多官能度苯乙烯基硅烷及其制备方法和应用
JP2023030729A (ja) エポキシ・オキセタン化合物、その合成方法および該化合物の利用
WO2006038605A1 (ja) シクロヘキシル基または長鎖アルキル基を有するシクロヘキセンオキサイド化合物とその用途
WO2023167513A1 (ko) 무수당 알코올 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물
JP4643295B2 (ja) 1つのオキセタニル基及び2つのカルボキシル基を有する化合物、重合物、放射線硬化性化合物、並びに、硬化物
EP0481476A2 (en) Trifunctional unsaturated compounds and derivatives thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13394910

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10815536

Country of ref document: EP

Kind code of ref document: A1