WO2011024514A1 - フレキシブル基板アンテナ及びアンテナ装置 - Google Patents

フレキシブル基板アンテナ及びアンテナ装置 Download PDF

Info

Publication number
WO2011024514A1
WO2011024514A1 PCT/JP2010/057208 JP2010057208W WO2011024514A1 WO 2011024514 A1 WO2011024514 A1 WO 2011024514A1 JP 2010057208 W JP2010057208 W JP 2010057208W WO 2011024514 A1 WO2011024514 A1 WO 2011024514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flexible substrate
parasitic radiation
radiation electrode
antenna
Prior art date
Application number
PCT/JP2010/057208
Other languages
English (en)
French (fr)
Inventor
田中宏弥
櫛比裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to GB1203342.9A priority Critical patent/GB2486362B/en
Priority to CN201080037726.2A priority patent/CN102484314B/zh
Priority to JP2011528680A priority patent/JP5403059B2/ja
Publication of WO2011024514A1 publication Critical patent/WO2011024514A1/ja
Priority to US13/402,791 priority patent/US9608319B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to a flexible substrate type antenna and an antenna device including the same, and more particularly to a flexible substrate antenna and an antenna device in which a radiation electrode is formed on a flexible substrate.
  • Patent Document 1 discloses an antenna in which two plate-shaped radiating conductor plates facing each other at a predetermined interval are formed on a flexible substrate.
  • FIG. 1 is a perspective view of an antenna disclosed in Patent Document 1.
  • FIG. 1 is a perspective view of an antenna disclosed in Patent Document 1.
  • the plate-like radiating conductor plate 1 is disposed opposite to one grounding conductor plate 3 together with another plate-like radiating conductor plate 2.
  • the two plate-like radiation conductor plates 1 and 2 are formed on the same flexible substrate 4, and in order to make the two plate-like radiation conductor plates 1 and 2 and the ground conductor plate 3 face each other, A solid dielectric 5 is disposed between the ground conductor plate 3 and the ground conductor plate 3 instead of the spacer.
  • the plate-like radiation conductor plate 1 is fed from a feeding point 6.
  • the two plate-like radiation conductor plates 1 and 2 are both connected to the ground conductor plate 3 by short-circuit conductor plates 7 and 8.
  • the width and length including the distance between the plate-like radiating conductor plates 1 and 2 are adjusted so as to cause appropriate double resonance by both antennas and to have wideband characteristics.
  • Patent Document 2 discloses a dielectric antenna provided with two radiation electrodes that are provided with a feeding electrode on the back surface of a dielectric substrate, capacitively feed the radiation electrode on the front surface (upper surface), and one end grounded to the ground. Yes.
  • Patent Document 3 discloses a dielectric antenna including a capacitively fed radiation element and two radiation electrodes having one end grounded.
  • Patent Documents 1, 2, and 3 are designed mainly for the purpose of making multiple resonances and broadening the band, and since they have parasitic electrodes, they generally tend to be large.
  • the ground electrode of the circuit board is close, or when an antenna element is mounted on the ground electrode of the circuit board, the relative permittivity of the dielectric or flexible board affects the gap between the radiation electrode and the ground. As a result, the antenna gain is degraded.
  • An object of the present invention is to provide a flexible substrate antenna and an antenna apparatus including the flexible substrate antenna, which eliminates the problem caused by capacitance between adjacent ground electrodes without increasing the overall size. .
  • the flexible substrate antenna of the present invention is configured as follows (1) to (7).
  • a conventional antenna using a dielectric block is mounted on a circuit board in a state close to the ground electrode of the circuit board, and a conventional antenna apparatus mounted on the ground electrode of the circuit board In contrast, since the radiation electrode can be moved away from the ground electrode of the substrate, the antenna gain does not deteriorate.
  • the antenna can be reduced in size.
  • an antenna having a lower resonance frequency can be made with the same antenna size.
  • the antenna size can be reduced, and the antenna can be downsized.
  • any of the capacitive power supply electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode may be formed on the first surface of the flexible substrate.
  • the capacitive power supply electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode are patterned substantially simultaneously, the accuracy of the capacitance generated between these electrodes can be easily increased. Can do.
  • a flexible substrate A first parasitic radiation electrode and a second parasitic radiation electrode formed on the flexible substrate and facing each other with a slit-like gap; A frequency adjusting electrode formed on the flexible substrate, facing the first parasitic radiation electrode and the second parasitic radiation electrode, and grounded; A capacitive power supply electrode formed on the flexible substrate and configured to supply power to the first parasitic radiation electrode opposite to the first parasitic radiation electrode; Is provided.
  • a conventional antenna using a dielectric block is mounted on a circuit board in a state close to the ground electrode of the circuit board, and a conventional antenna apparatus mounted on the ground electrode of the circuit board In contrast, since the radiation electrode can be moved away from the ground electrode of the substrate, the antenna gain does not deteriorate.
  • the antenna can be reduced in size.
  • the frequency adjusting electrode is provided as a ground electrode at two locations, an end on the side facing the first parasitic radiation electrode and an end on the side facing the second parasitic radiation electrode. It is desirable to provide a ground terminal that conducts electricity. With this structure, since the frequency adjustment electrode becomes a current path, the resonance frequency of the antenna can be lowered due to the influence of the inductance component of the frequency adjustment electrode. Therefore, the antenna can be reduced in size.
  • any of the frequency adjusting electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode may be formed on the first surface of the flexible substrate.
  • the capacitive power supply electrode may also be formed on the first surface of the flexible substrate in the same manner as the frequency adjustment electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode.
  • the capacitive feeding electrode, the frequency adjusting electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode are formed with relatively high dimensional accuracy, and the first parasitic radiation electrode and the capacitive feeding electrode are formed. Variation in capacitance between the two can be suppressed.
  • the capacitive feeding electrode, the first parasitic radiation electrode, and the second parasitic radiation electrode are formed on a first surface of the flexible substrate, and the frequency adjustment electrode is a second surface of the flexible substrate. Can be formed. With this structure, the capacitance generated between the first parasitic radiation electrode, the second parasitic radiation electrode, and the frequency adjustment electrode can be increased, and the effect of the frequency adjustment electrode can be easily increased.
  • the antenna device of the present invention is configured as the following (8) and (9).
  • (8) One of the flexible substrate antennas described above and a housing to which the flexible substrate antenna is attached are provided. With this structure, the flexible board antenna can be disposed away from the ground electrode of the circuit board, and no unnecessary capacitance is generated between the radiation electrode and the ground electrode of the flexible board antenna. Therefore, a high antenna gain can be maintained. In addition, since it is not necessary to mount an antenna on the circuit board, the entire electronic apparatus including the antenna device can be reduced in size.
  • the flexible substrate antenna of the present invention can be kept away from the ground electrode of the circuit board by attaching it to the housing of the electronic device to be assembled or the carrier mounted on the circuit board, the antenna gain Does not deteriorate.
  • the antenna can be reduced in size.
  • FIG. 1 is a perspective view of a flexible substrate antenna 101 according to a first embodiment.
  • FIG. 6 is a six-sided view of the flexible substrate antenna 101 according to the first embodiment.
  • 1 is an equivalent circuit diagram of a flexible substrate antenna 101 according to a first embodiment. It is a six-face view of the flexible substrate antenna 102 according to the second embodiment. It is a perspective view of the flexible substrate antenna 103 which concerns on 3rd Embodiment. It is a six-face view of the flexible substrate antenna 103 according to the third embodiment. It is an equivalent circuit diagram of the flexible substrate antenna 103 according to the third embodiment. It is a 6th page figure of flexible substrate antenna 104 concerning a 4th embodiment.
  • FIG. 3 is a six-sided view of the flexible substrate antenna 101
  • FIG. 4 is an equivalent circuit diagram of the flexible substrate antenna 101.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 11 is formed from the lower surface of the flexible substrate 10 to the upper surface (first surface) via the third side surface.
  • a second parasitic radiation electrode 12 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 are opposed to each other by slits 13 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a capacitive power supply electrode 14 is formed on the lower surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 11.
  • the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connection to the ground electrode at the mounting destination.
  • both ends of the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 are grounded. Since a capacitance exists between the first parasitic radiation electrode 11 and the feeding circuit 20, capacitive power feeding is performed on the first parasitic radiation electrode 11.
  • This structure has the following effects.
  • FIG. 5 is a six-sided view of the flexible substrate antenna 102 according to the second embodiment.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 21 is formed from the lower surface of the flexible substrate 10 to the upper surface via the third side surface.
  • a second parasitic radiation electrode 22 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 are opposed to each other by slits 23 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a capacitive power supply electrode 24 is formed on the upper surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 21 in a plane.
  • the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connection to the ground electrode at the mounting destination.
  • the equivalent circuit diagram of the flexible substrate antenna 102 is the same as that shown in FIG.
  • the operational effects are also as described in the first embodiment.
  • the capacitive power supply electrode 24, the first parasitic radiation electrode 21, and the second parasitic radiation electrode 22 are patterned substantially simultaneously, high dimensional accuracy is achieved. As a result, it is possible to suppress variation in capacitance that occurs between the first parasitic radiation electrode 21 and the capacitive feeding electrode 24.
  • FIG. 6 is a perspective view of the flexible substrate antenna 103 according to the third embodiment
  • FIG. 7 is a hexahedral view of the flexible substrate antenna 103
  • FIG. 8 is an equivalent circuit diagram of the flexible substrate antenna 103.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 11 is formed from the lower surface of the flexible substrate 10 to the upper surface (first surface) via the third side surface.
  • a second parasitic radiation electrode 12 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 are opposed to each other by slits 13 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a frequency adjustment electrode 15 is formed on the lower surface (second surface) of the flexible substrate 10.
  • the frequency adjusting electrode 15 faces the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 with the base material of the flexible substrate 10 interposed therebetween. Therefore, predetermined capacitances are generated between the first parasitic radiation electrode 11 and the frequency adjustment electrode 15 and between the second parasitic radiation electrode 12 and the frequency adjustment electrode 15, respectively.
  • ground terminals 16 and 17 are led out to be connected to the ground electrode at the mounting destination.
  • a capacitive power supply electrode 14 is formed on the lower surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 11.
  • the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connection to a mounting destination ground electrode.
  • both ends of the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 are grounded. Since a capacitance exists between the first parasitic radiation electrode 11 and the feeding circuit 20, capacitive power feeding is performed on the first parasitic radiation electrode 11.
  • the frequency adjusting electrode 15 connected to the ground electrode is close to the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12.
  • the capacitance between the first parasitic radiation electrode 11 and the frequency adjustment electrode 15 and the capacitance between the second parasitic radiation electrode 12 and the frequency adjustment electrode 15 are set.
  • Capacitances are generated between the first parasitic radiation electrode 11 and the frequency adjustment electrode 15 and between the second parasitic radiation electrode 12 and the frequency adjustment electrode 15, respectively. 12 flows into the frequency adjustment electrode 15 through the ground, and the frequency adjustment electrode 15 becomes a current path. Therefore, an inductance component of the frequency adjustment electrode 15 is added, and the resonance frequency of the antenna can be lowered. Therefore, the antenna can be reduced in size.
  • the capacitance generated between the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12 and the ground electrode of the mounting destination varies.
  • the resonance frequency of the antenna can be set without changing the capacitance generated between the radiation electrode 11 and the second parasitic radiation electrode 12 and the ground electrode of the mounting destination.
  • the frequency adjustment electrode 15 having a relatively small area is used.
  • a predetermined capacitance can be generated between the first parasitic radiation electrode 11 and the frequency adjustment electrode 15 and between the second parasitic radiation electrode 12 and the frequency adjustment electrode 15.
  • FIG. 9 is a six-sided view of the flexible substrate antenna 104 according to the fourth embodiment.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 21 is formed from the lower surface of the flexible substrate 10 to the upper surface via the third side surface.
  • a second parasitic radiation electrode 22 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 are opposed to each other by slits 23 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a frequency adjustment electrode 25 is formed on the upper surface of the flexible substrate 10.
  • the frequency adjustment electrode 25 faces the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 in a plane. Therefore, a predetermined capacitance is generated between the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 and the frequency adjustment electrode 25.
  • ground terminals 26 and 27 that are connected to the mounting ground electrode are drawn out.
  • a capacitive power supply electrode 24 is formed on the lower surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 21.
  • the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connecting to the mounting ground electrode.
  • the equivalent circuit diagram of the flexible substrate antenna 104 is the same as that shown in FIG.
  • the operational effects are also as described in the third embodiment.
  • the frequency adjustment electrode 25, the first parasitic radiation electrode 21, and the second parasitic radiation electrode 22 are patterned at substantially the same time, so that high dimensional accuracy is achieved.
  • the accuracy of the capacitance generated between the first parasitic radiation electrode 21 and the second parasitic radiation electrode 22 and the frequency adjustment electrode 25 can be easily increased.
  • FIG. 10 is a hexahedral view of the flexible substrate antenna 105 according to the fifth embodiment.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 31 is formed from the lower surface of the flexible substrate 10 to the upper surface via the third side surface.
  • a second parasitic radiation electrode 32 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 31 and the second parasitic radiation electrode 32 are opposed to each other by slits 33 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a frequency adjustment electrode 35 is formed on the upper surface of the flexible substrate 10.
  • the frequency adjustment electrode 35 faces the first parasitic radiation electrode 31 and the second parasitic radiation electrode 32 in a plane. Therefore, a predetermined capacitance is generated between the first parasitic radiation electrode 31 and the second parasitic radiation electrode 32 and the frequency adjustment electrode 35.
  • ground terminals 36 and 37 that are connected to the ground electrode at the mounting destination are drawn out.
  • a capacitive power supply electrode 34 is formed on the upper surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 31 in a plane.
  • the first parasitic radiation electrode 31 and the second parasitic radiation electrode 32 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connection to the ground electrode at the mounting destination.
  • the equivalent circuit diagram of the flexible substrate antenna 105 is the same as that shown in FIG.
  • the operational effects are also as described in the third embodiment.
  • the capacitive power supply electrode 34, the frequency adjustment electrode 35, the first parasitic radiation electrode 31, and the second parasitic radiation electrode 32 are patterned substantially simultaneously. High dimensional accuracy can be obtained, and variation in capacitance that occurs between the first parasitic radiation electrode 31 and the capacitive feeding electrode 34 can also be suppressed.
  • FIG. 11 is a six-sided view of the flexible substrate antenna 106 according to the sixth embodiment.
  • the rectangular plate-like flexible substrate 10 has a lower surface (a mounting surface in contact with an inner surface of a mounting destination housing), an upper surface, first and second side surfaces facing each other, and third and fourth side surfaces facing each other. I have.
  • a first parasitic radiation electrode 41 is formed from the lower surface of the flexible substrate 10 to the upper surface via the third side surface.
  • a second parasitic radiation electrode 42 is formed from the lower surface of the flexible substrate 10 to the upper surface via the fourth side surface.
  • the tips (open ends) of the first parasitic radiation electrode 41 and the second parasitic radiation electrode 42 are opposed to each other by slits 43 having a predetermined interval on the upper surface of the flexible substrate 10.
  • a frequency adjustment electrode 45 is formed on the lower surface of the flexible substrate 10.
  • the frequency adjusting electrode 45 faces the first parasitic radiation electrode 41 and the second parasitic radiation electrode 42 with the base material of the flexible substrate 10 interposed therebetween. Therefore, a predetermined capacitance is generated between the first parasitic radiation electrode 41 and the second parasitic radiation electrode 42 and the frequency adjustment electrode 45.
  • ground terminals 46 and 47 that are connected to the mounting ground electrode are drawn out.
  • a capacitive power supply electrode 44 is formed on the upper surface of the flexible substrate 10 at a position facing the first parasitic radiation electrode 41 in a plane.
  • the first parasitic radiation electrode 41 and the second parasitic radiation electrode 42 formed on the lower surface of the flexible substrate 10 are used as ground terminals for connection to a mounting destination ground electrode.
  • the equivalent circuit diagram of the flexible substrate antenna 106 is the same as that shown in FIG.
  • the operational effects are also as described in the third embodiment.
  • a U-shaped frequency adjustment electrode is formed, but the frequency adjustment electrode may be rectangular.
  • the ground terminals that are electrically connected to the ground electrode are provided at two locations, that is, an end portion on the side facing the first parasitic radiation electrode and an end portion on the side facing the second parasitic radiation electrode. This is because the frequency adjusting electrode serves as the above-described current path.
  • FIG. 12 is an equivalent circuit diagram of the flexible substrate antenna 107 according to the seventh embodiment. What is different from the equivalent circuit shown in FIG. 8 in the third embodiment is a circuit at the ground terminal of the frequency adjustment electrode 15. That is, the first ground terminal 16 of the frequency adjustment electrode 15 is directly grounded, and the impedance element 51 is inserted into the second ground end 17 of the frequency adjustment electrode 15.
  • an impedance element is inserted into a current path (frequency adjusting electrode 15) that flows capacitively coupled to the first parasitic radiation electrode 11 and the second parasitic radiation electrode 12.
  • the resonance frequency of the antenna can also be controlled by reactance of the impedance element. For example, if the impedance element 51 is an inductor, the resonance frequency of the antenna decreases as the inductance component increases.
  • FIG. 13 is a cross-sectional view of an antenna device 208 according to the eighth embodiment.
  • the flexible substrate antenna 101 is affixed to the inner surface of the housing 200 of the electronic device that is the assembly destination.
  • the flexible board antenna 101 is connected to the end of the circuit board 90.
  • the power feeding circuit 20 is configured on the circuit board 90.
  • the flexible board antenna 101 is connected to the end of the circuit board 90, the circuit board 90 is disposed along the plane part of the housing 200, and the flexible board antenna 101 is attached along the curved surface of the housing 200. .
  • the flexible substrate antenna 101 can be disposed away from the ground electrode formed on the circuit substrate 90, a decrease in antenna gain can be suppressed.
  • FIG. 14 is a cross-sectional view of an antenna device 209 according to the ninth embodiment.
  • the flexible board antenna 101 is attached to a carrier (base) 91 mounted on a circuit board.
  • the power feeding circuit 20 is configured on the circuit board 90.
  • the flexible substrate antenna 101 can be disposed away from the ground electrode formed on the circuit substrate 90, a decrease in antenna gain can be suppressed.
  • the flexible substrate antenna 101 shown in the first embodiment is provided as the flexible substrate antenna, but the flexible substrate antennas 102 to 102 shown in the second to seventh embodiments are provided. Any one of 107 may be provided.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

 フレキシブル基板(10)の下面から第3側面を経由して上面にかけて第1の無給電放射電極(11)が形成されている。またフレキシブル基板(10)の下面から第4側面を経由して上面にかけて第2の無給電放射電極(12)が形成されている。第1の無給電放射電極(11)と第2の無給電放射電極(12)の先端(開放端)はフレキシブル基板(10)の上面において所定間隔のスリット(13)で対向している。フレキシブル基板(10)の下面には周波数調整電極(15)が形成されている。この周波数調整電極(15)は、フレキシブル基板(10)の基材を間に挟んで第1の無給電放射電極(11)及び第2の無給電放射電極(12)と対向している。さらに、フレキシブル基板(10)の下面には、第1の無給電放射電極(11)と対向する位置に容量給電電極(14)が形成されている。

Description

フレキシブル基板アンテナ及びアンテナ装置
 この発明は、フレキシブル基板型のアンテナ及びそれを備えたアンテナ装置に関するものであり、特にフレキシブル基板に放射電極が形成されたフレキシブル基板アンテナ及びアンテナ装置に関するものである。
 所定間隔で対向する二つの板状放射導体板がフレキシブル基板に形成されたアンテナが特許文献1に示されている。図1は特許文献1に示されているアンテナの斜視図である。
 図1に示すように、板状放射導体板1はもう一つの板状放射導体板2とともに、1枚の接地導体板3上に対向配置されている。二つの板状放射導体板1,2は同一のフレキシブル基板4上に形成され、二つの板状放射導体板1,2と接地導体板3とを対向させるために、板状放射導体板1,2と接地導体板3との間に、固体誘電体5がスペーサ代わりに配されている。そして板状放射導体板1には給電点6から給電される。
 二つの板状放射導体板1,2は、短絡導体板7,8により、ともに接地導体板3に接続されている。そして、板状放射導体板1,2の間隔を含めて上記幅、長さが両アンテナにより適当な複共振を起こし、広帯域特性となるように調整されている。
 また、誘電体基板の裏面に給電電極を設け、表面(上面)の放射電極に容量給電し、一端がグランドに接地された2つの放射電極を備えた誘電体アンテナが特許文献2に開示されている。
 また、容量給電型放射素子と、一端がグランドに接地された2つの放射電極とを備えた誘電体アンテナが特許文献3に開示されている。
特開平7-131234号公報 特開2003-110346号公報 特開平11-127014号公報
 特許文献1,2,3に示されているアンテナの構造では複共振化や広帯域化を主たる目的として設計されていて、無給電電極を備えているため、一般的に大型化する傾向がある。また、回路基板のグランド電極が近接する場合や、回路基板のグランド電極上にアンテナ素子が搭載される場合に、誘電体やフレキシブル基板の比誘電率が影響して、放射電極とグランドとの間に生じる容量が大きくなるので、アンテナ利得が劣化する、という問題があった。
 そこで、この発明の目的は、全体に大型化することなく、近接するグランド電極との間に容量が生じることによる問題を解消したフレキシブル基板アンテナ及び、それを備えたアンテナ装置を提供することにある。
 前記課題を解決するために、この発明のフレキシブル基板アンテナは次の(1)~(7)のように構成する。
(1)フレキシブル基板と、
 前記フレキシブル基板に形成され、スリット状の間隙で対向する第1の無給電放射電極及び第2の無給電放射電極と、
 前記フレキシブル基板に形成され、前記第1の無給電放射電極に対向して前記第1の無給電放射電極に対して容量給電する容量給電電極と、
 を備える。
 この構成により、誘電体ブロックを用いた従来のアンテナを、回路基板のグランド電極に近接した状態で回路基板に実装した従来のアンテナ装置や、回路基板のグランド電極上に搭載した従来のアンテナ装置とは異なり、放射電極を基板のグランド電極から遠ざけることができるので、アンテナ利得が劣化しない。
 また、第1の無給電放射電極と第2の無給電放射電極とを近接させることで、その二つの無給電放射電極間で容量が生じて、共振周波数を下げることができる。したがってアンテナが小型化できる。この結果、同じアンテナサイズでより低い共振周波数を有するアンテナを作ることができ、共振周波数を基準とした場合、アンテナサイズを小さくでき、したがって、アンテナの小型化がなされる。
(2)前記容量給電電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極のいずれをも前記フレキシブル基板の第1面に形成してもよい。
 この構造により、容量給電電極、第1の無給電放射電極、及び第2の無給電放射電極は実質的に同時にパターン化されるので、これらの各電極間に生じる容量の精度を容易に高めることができる。
(3)フレキシブル基板と、
 前記フレキシブル基板に形成され、スリット状の間隙で対向する第1の無給電放射電極及び第2の無給電放射電極と、
 前記フレキシブル基板に形成され、前記第1の無給電放射電極及び第2の無給電放射電極に対向し、接地される周波数調整電極と、
 前記フレキシブル基板に形成され、前記第1の無給電放射電極に対向して前記第1の無給電放射電極に対して容量給電する容量給電電極と、
 を備える。
 この構成により、誘電体ブロックを用いた従来のアンテナを、回路基板のグランド電極に近接した状態で回路基板に実装した従来のアンテナ装置や、回路基板のグランド電極上に搭載した従来のアンテナ装置とは異なり、放射電極を基板のグランド電極から遠ざけることができるので、アンテナ利得が劣化しない。
 また、二つの無給電放射電極を近接させることで、二つの無給電放射電極間で容量が生じて、共振周波数を下げることができる。また、接地された周波数調整電極を二つの無給電放射電極に近接させることで、周波数調整電極と二つの無給電放射電極との間で容量が生じるので、アンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
(4)前記周波数調整電極は、前記第1の無給電放射電極に対向する側の端部と、前記第2の無給電放射電極に対向する側の端部との二箇所に、グランド電極に導通するグランド端子が設けられていることが望ましい。この構造により、前記周波数調整電極が電流経路になるので、前記周波数調整電極のインダクタンス成分の影響でアンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
(5)前記周波数調整電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極のいずれをも前記フレキシブル基板の第1面に形成してもよい。この構造により、周波数調整電極、第1の無給電放射電極、及び第2の無給電放射電極は実質的に同時にパターン化されるので、高い寸法精度が得られ、第1の無給電放射電極及び第2の無給電放射電極と周波数調整電極との間に生じる容量の精度を容易に高めることができる。
(6)前記容量給電電極も、前記周波数調整電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極と同じく、前記フレキシブル基板の第1面に形成してもよい。この構造により、容量給電電極、周波数調整電極、第1の無給電放射電極、及び第2の無給電放射電極は相対的に高い寸法精度で形成され、第1の無給電放射電極と容量給電電極との間に生じる容量のばらつきを抑えることができる。
(7)前記容量給電電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極は前記フレキシブル基板の第1面に形成し、前記周波数調整電極は前記フレキシブル基板の第2面に形成することができる。この構造により、第1の無給電放射電極及び第2の無給電放射電極と周波数調整電極との間に生じる容量を大きくでき、周波数調整電極による作用効果を容易に高めることができる。
 この発明のアンテナ装置は次の(8)(9)のように構成する。
(8)前述のいずれかのフレキシブル基板アンテナと、そのフレキシブル基板アンテナが貼付された筐体と、を備える。
 この構造により、フレキシブル基板アンテナは回路基板のグランド電極から遠ざけて配置することができ、フレキシブル基板アンテナの放射電極とグランド電極との間に不要な容量が生じない。そのため、高いアンテナ利得が維持できる。
 また、回路基板上にアンテナを実装する必要がないので、アンテナ装置を備える電子機器全体の小型化が図れる。
(9)前述のいずれかのフレキシブル基板アンテナと、そのフレキシブル基板アンテナが貼付され回路基板に搭載されたキャリアと、を備える。
 この構造により、フレキシブル基板アンテナは回路基板のグランド電極から遠ざけて配置することができ、フレキシブル基板アンテナの放射電極とグランド電極との間に不要な容量が生じない。そのため、高いアンテナ利得が維持できる。
 本発明によれば、本発明のフレキシブル基板アンテナを組み込み先の電子機器の筐体や、回路基板に実装されるキャリアに貼り付けることで、回路基板のグランド電極から遠ざけることができるので、アンテナ利得が劣化しない。
 また、二つの無給電放射電極間で容量が生じて、周波数を下げることができる。さらに、周波数調整電極と二つの無給電放射電極との間で容量が生じるので、アンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
特許文献1に示されているアンテナの斜視図である。 第1の実施形態に係るフレキシブル基板アンテナ101の斜視図である。 第1の実施形態に係るフレキシブル基板アンテナ101の六面図である。 第1の実施形態に係るフレキシブル基板アンテナ101の等価回路図である。 第2の実施形態に係るフレキシブル基板アンテナ102の六面図である。 第3の実施形態に係るフレキシブル基板アンテナ103の斜視図である。 第3の実施形態に係るフレキシブル基板アンテナ103の六面図である。 第3の実施形態に係るフレキシブル基板アンテナ103の等価回路図である。 第4の実施形態に係るフレキシブル基板アンテナ104の六面図である。 第5の実施形態に係るフレキシブル基板アンテナ105の六面図である。 第6の実施形態に係るフレキシブル基板アンテナ106の六面図である。 第7の実施形態に係るフレキシブル基板アンテナ107の等価回路図である。 第8の実施形態に係るアンテナ装置208の断面図である。 第9の実施形態に係るアンテナ装置209の断面図である。
《第1の実施形態》
 図2は第1の実施形態に係るフレキシブル基板アンテナ101の斜視図、図3は前記フレキシブル基板アンテナ101の六面図、図4は前記フレキシブル基板アンテナ101の等価回路図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面(第1面)にかけて第1の無給電放射電極11が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極12が形成されている。第1の無給電放射電極11と第2の無給電放射電極12の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット13で対向している。
 フレキシブル基板10の下面には第1の無給電放射電極11と対向する位置に容量給電電極14が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極11及び第2の無給電放射電極12は実装先のグランド電極に接続するためのグランド端子として用いられる。
 前記フレキシブル基板アンテナ101は、図4に示すとおり、第1の無給電放射電極11及び第2の無給電放射電極12の両端がグランドに接地される。そして、第1の無給電放射電極11と給電回路20との間に容量が存在するので、第1の無給電放射電極11に対して容量給電される。
 この構造により、次に述べる作用効果を奏する。
 第1の無給電放射電極11と第2の無給電放射電極12との開放端同士を近接させることで、第1の無給電放射電極11と第2の無給電放射電極12との間で容量が生じて、アンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
《第2の実施形態》
 図5は第2の実施形態に係るフレキシブル基板アンテナ102の六面図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面にかけて第1の無給電放射電極21が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極22が形成されている。第1の無給電放射電極21と第2の無給電放射電極22の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット23で対向している。
 フレキシブル基板10の上面には第1の無給電放射電極21と平面内で対向する位置に容量給電電極24が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極21及び第2の無給電放射電極22は実装先のグランド電極に接続するためのグランド端子として用いられる。
 このフレキシブル基板アンテナ102の等価回路図は図4に示したものと同様である。作用効果についても第1の実施形態で述べたとおりである。
 なお、図5に示した構造によれば、容量給電電極24、第1の無給電放射電極21、及び第2の無給電放射電極22は実質的に同時にパターン化されるので、高い寸法精度が得られ、第1の無給電放射電極21と容量給電電極24との間に生じる容量のばらつきをも抑えることができる。
《第3の実施形態》
 図6は第3の実施形態に係るフレキシブル基板アンテナ103の斜視図、図7は前記フレキシブル基板アンテナ103の六面図、図8は前記フレキシブル基板アンテナ103の等価回路図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面(第1面)にかけて第1の無給電放射電極11が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極12が形成されている。第1の無給電放射電極11と第2の無給電放射電極12の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット13で対向している。
 フレキシブル基板10の下面(第2面)には周波数調整電極15が形成されている。この周波数調整電極15は、フレキシブル基板10の基材を間に挟んで第1の無給電放射電極11及び第2の無給電放射電極12と対向している。そのため、第1の無給電放射電極11と周波数調整電極15との間、及び第2の無給電放射電極12と周波数調整電極15との間にそれぞれ所定の容量が生じる。
 前記周波数調整電極15の両端には実装先のグランド電極に導通するグランド端子16,17が引き出されている。
 さらに、フレキシブル基板10の下面には第1の無給電放射電極11と対向する位置に容量給電電極14が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極11及び第2の無給電放射電極12は、実装先のグランド電極に接続するためのグランド端子として用いられる。
 前記フレキシブル基板アンテナ103は、図8に示すとおり、第1の無給電放射電極11及び第2の無給電放射電極12の両端がグランドに接地される。そして、第1の無給電放射電極11と給電回路20との間に容量が存在するので、第1の無給電放射電極11に対して容量給電される。
 また、図8に示すとおり、グランド電極に接続された周波数調整電極15が第1の無給電放射電極11及び第2の無給電放射電極12に沿って近接する。このことにより、第1の無給電放射電極11と周波数調整電極15との間、及び第2の無給電放射電極12と周波数調整電極15との間の容量がそれぞれ設定されることになる。
 この構造により、次に述べる作用効果を奏する。
 第1の無給電放射電極11と第2の無給電放射電極12との開放端同士を近接させることで、第1の無給電放射電極11と第2の無給電放射電極12との間で容量が生じて、アンテナの共振周波数を下げることができる。また、接地された周波数調整電極15と第1の無給電放射電極11との間、及び第2の無給電放射電極12との間でそれぞれ容量が生じるので、アンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
 第1の無給電放射電極11と周波数調整電極15との間、及び第2の無給電放射電極12と周波数調整電極15との間にそれぞれ容量が生じ、無給電放射電極11及び無給電放射電極12に流れる電流がグランドを介して周波数調整電極15に流れ込み、周波数調整電極15が電流経路となる。そのため、周波数調整電極15のインダクタンス成分が付加されることになり、アンテナの共振周波数を下げることができる。したがってアンテナが小型化できる。
 また、実装先の環境によっては、第1の無給電放射電極11及び第2の無給電放射電極12と実装先のグランド電極との間に生じる容量は様々であるが、この第1の無給電放射電極11及び第2の無給電放射電極12と実装先のグランド電極との間に生じる容量を変えることなくアンテナの共振周波数を設定することができる。
 第1の無給電放射電極11及び第2の無給電放射電極12は、フレキシブル基板の基材を介して周波数調整電極15と面で対向するので、比較的小面積の周波数調整電極15で、第1の無給電放射電極11と周波数調整電極15との間、及び第2の無給電放射電極12と周波数調整電極15との間に所定の容量を生じさせることができる。
《第4の実施形態》
 図9は第4の実施形態に係るフレキシブル基板アンテナ104の六面図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面にかけて第1の無給電放射電極21が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極22が形成されている。第1の無給電放射電極21と第2の無給電放射電極22の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット23で対向している。
 フレキシブル基板10の上面には周波数調整電極25が形成されている。この周波数調整電極25は、第1の無給電放射電極21及び第2の無給電放射電極22と平面内で対向している。そのため、第1の無給電放射電極21及び第2の無給電放射電極22と周波数調整電極25との間に所定の容量が生じる。
 前記周波数調整電極25の両端には実装先のグランド電極に導通するグランド端子26,27が引き出されている。
 さらに、フレキシブル基板10の下面には第1の無給電放射電極21と対向する位置に容量給電電極24が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極21及び第2の無給電放射電極22は実装先のグランド電極に接続するためのグランド端子として用いられる。
 このフレキシブル基板アンテナ104の等価回路図は図8に示したものと同様である。作用効果についても第3の実施形態で述べたとおりである。
 なお、図9に示した構造によれば、周波数調整電極25、第1の無給電放射電極21、及び第2の無給電放射電極22は実質的に同時にパターン化されるので、高い寸法精度が得られ、第1の無給電放射電極21及び第2の無給電放射電極22と周波数調整電極25との間に生じる容量の精度を容易に高めることができる。
《第5の実施形態》
 図10は第5の実施形態に係るフレキシブル基板アンテナ105の六面図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面にかけて第1の無給電放射電極31が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極32が形成されている。第1の無給電放射電極31と第2の無給電放射電極32の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット33で対向している。
 フレキシブル基板10の上面には周波数調整電極35が形成されている。この周波数調整電極35は、第1の無給電放射電極31及び第2の無給電放射電極32と平面内で対向している。そのため、第1の無給電放射電極31及び第2の無給電放射電極32と周波数調整電極35との間に所定の容量が生じる。
 前記周波数調整電極35の両端には実装先のグランド電極に導通するグランド端子36,37が引き出されている。
 さらに、フレキシブル基板10の上面には第1の無給電放射電極31と平面内で対向する位置に容量給電電極34が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極31及び第2の無給電放射電極32は実装先のグランド電極に接続するためのグランド端子として用いられる。
 このフレキシブル基板アンテナ105の等価回路図は図8に示したものと同様である。作用効果についても第3の実施形態で述べたとおりである。
 なお、図10に示した構造によれば、容量給電電極34、周波数調整電極35、第1の無給電放射電極31、及び第2の無給電放射電極32は実質的に同時にパターン化されるので、高い寸法精度が得られ、第1の無給電放射電極31と容量給電電極34との間に生じる容量のばらつきをも抑えることができる。
《第6の実施形態》
 図11は第6の実施形態に係るフレキシブル基板アンテナ106の六面図である。
 矩形板状のフレキシブル基板10は、下面(実装先の筐体などの内面に接する実装面)、上面、互いに対向する第1側面・第2側面、及び互いに対向する第3側面・第4側面を備えている。
 フレキシブル基板10の下面から第3側面を経由して上面にかけて第1の無給電放射電極41が形成されている。またフレキシブル基板10の下面から第4側面を経由して上面にかけて第2の無給電放射電極42が形成されている。第1の無給電放射電極41と第2の無給電放射電極42の先端(開放端)はフレキシブル基板10の上面において所定間隔のスリット43で対向している。
 フレキシブル基板10の下面には周波数調整電極45が形成されている。この周波数調整電極45は、フレキシブル基板10の基材を間に挟んで第1の無給電放射電極41及び第2の無給電放射電極42と対向している。そのため、第1の無給電放射電極41及び第2の無給電放射電極42と周波数調整電極45との間に所定の容量が生じる。
 前記周波数調整電極45の両端には実装先のグランド電極に導通するグランド端子46,47が引き出されている。
 フレキシブル基板10の上面には第1の無給電放射電極41と平面内で対向する位置に容量給電電極44が形成されている。
 フレキシブル基板10の下面に形成されている第1の無給電放射電極41及び第2の無給電放射電極42は実装先のグランド電極に接続するためのグランド端子として用いられる。
 このフレキシブル基板アンテナ106の等価回路図は図8に示したものと同様である。作用効果についても第3の実施形態で述べたとおりである。
 なお、第3~第6の実施形態では、コ字状の周波数調整電極を形成した例を示したが、周波数調整電極は矩形状であってもよい。但し、グランド電極に導通するグランド端子は第1の無給電放射電極に対向する側の端部と、第2の無給電放射電極に対向する側の端部との二箇所に設けることが望ましい。周波数調整電極が前述した電流経路となるからである。
《第7の実施形態》
 図12は第7の実施形態に係るフレキシブル基板アンテナ107の等価回路図である。第3の実施形態で図8に示した等価回路と異なるのは、周波数調整電極15の接地端の回路である。すなわち、周波数調整電極15の第1のグランド端子16は直接接地し、周波数調整電極15の第2の接地端17にはインピーダンス素子51を挿入している。
 このような回路構成によって、第1の無給電放射電極11及び第2の無給電放射電極12と容量結合して流れる電流の経路(周波数調整電極15)にインピーダンス素子が挿入されることになるので、前記インピーダンス素子のリアクタンスによってもアンテナの共振周波数を制御可能となる。例えばインピーダンス素子51がインダクタであれば、インダクタンス成分の増大に応じてアンテナの共振周波数が低下する。
 なお、給電側の無給電放射電極11には、給電側とは反対側の無給電放射電極12よりも電流が強く流れる。そのため、周波数調整電極15にも給電側の接地端17付近に強い電流が流れる。したがって、周波数調整電極15の給電側寄りにインピーダンス素子51を挿入することで、周波数を容易に調整することができる。
《第8の実施形態》
 図13は第8の実施形態に係るアンテナ装置208の断面図である。フレキシブル基板アンテナ101は組み込み先である電子機器の筐体200の内面に貼付されている。また、この例では、回路基板90の端部にフレキシブル基板アンテナ101が接続されている。給電回路20は回路基板90上に構成されている。
 フレキシブル基板アンテナ101は回路基板90の端部に接続されていて、回路基板90は筐体200の平面部に沿って配置され、フレキシブル基板アンテナ101は筐体200の曲面に沿って貼付されている。
 このような構造によれば、フレキシブル基板アンテナ101は回路基板90に形成されているグランド電極から遠ざけて配置できるので、アンテナ利得の低下を抑制できる。
《第9の実施形態》
 図14は第9の実施形態に係るアンテナ装置209の断面図である。フレキシブル基板アンテナ101は回路基板に実装されたキャリア(土台)91に貼付されている。給電回路20は回路基板90上に構成されている。
 このような構造によれば、フレキシブル基板アンテナ101は回路基板90に形成されているグランド電極から遠ざけて配置できるので、アンテナ利得の低下を抑制できる。
 なお、図13・図14に示した例では、フレキシブル基板アンテナとして第1の実施形態で示したフレキシブル基板アンテナ101を設けたが、第2~第7の実施形態で示したフレキシブル基板アンテナ102~107のいずれかを設けてもよい。
10…フレキシブル基板
11,21,31,41…第1の無給電放射電極
12,22,32,42…第2の無給電放射電極
13,23,33,43…スリット
14,24,34,44…容量給電電極
15,25,35,45…周波数調整電極
16,17…グランド端子
26,27…グランド端子
36,37…グランド端子
46,47…グランド端子
20…給電回路
51…インピーダンス素子
90…回路基板
91…キャリア
101~107…フレキシブル基板アンテナ
200…筐体
208,209…アンテナ装置

Claims (9)

  1.  フレキシブル基板と、
     前記フレキシブル基板に形成され、スリット状の間隙で対向する第1の無給電放射電極及び第2の無給電放射電極と、
     前記フレキシブル基板に形成され、前記第1の無給電放射電極に対向して前記第1の無給電放射電極に対して容量給電する容量給電電極と、
     を備えたフレキシブル基板アンテナ。
  2.  前記容量給電電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極は前記フレキシブル基板の第1面に形成された、請求項1に記載のフレキシブル基板アンテナ。
  3.  フレキシブル基板と、
     前記フレキシブル基板に形成され、スリット状の間隙で対向する第1の無給電放射電極及び第2の無給電放射電極と、
     前記フレキシブル基板に形成され、前記第1の無給電放射電極及び第2の無給電放射電極に対向し、接地される周波数調整電極と、
     前記フレキシブル基板に形成され、前記第1の無給電放射電極に対向して前記第1の無給電放射電極に対して容量給電する容量給電電極と、
     を備えたフレキシブル基板アンテナ。
  4.  前記周波数調整電極は、前記第1の無給電放射電極に対向する側の端部と、前記第2の無給電放射電極に対向する側の端部との二箇所に、グランド電極に導通するグランド端子が設けられた、請求項3に記載のフレキシブル基板アンテナ。
  5.  前記周波数調整電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極は前記フレキシブル基板の第1面に形成された、請求項3又は4に記載のフレキシブル基板アンテナ。
  6.  前記容量給電電極が前記フレキシブル基板の第1面に形成された、請求項5に記載のフレキシブル基板アンテナ。
  7.  前記容量給電電極、前記第1の無給電放射電極、及び前記第2の無給電放射電極は前記フレキシブル基板の第1面に形成され、前記周波数調整電極は前記フレキシブル基板の第2面に形成された、請求項3又は4に記載のフレキシブル基板アンテナ。
  8.  請求項1~7のいずれかに記載のフレキシブル基板アンテナと、前記フレキシブル基板アンテナが貼付された筐体と、を備えるアンテナ装置。
  9.  請求項1~7のいずれかに記載のフレキシブル基板アンテナと、前記フレキシブル基板アンテナが貼付され回路基板に搭載されたキャリアと、を備えるアンテナ装置。
PCT/JP2010/057208 2009-08-27 2010-04-23 フレキシブル基板アンテナ及びアンテナ装置 WO2011024514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1203342.9A GB2486362B (en) 2009-08-27 2010-04-23 Flexible substrate antenna and antenna device
CN201080037726.2A CN102484314B (zh) 2009-08-27 2010-04-23 柔性基板天线以及天线装置
JP2011528680A JP5403059B2 (ja) 2009-08-27 2010-04-23 フレキシブル基板アンテナ及びアンテナ装置
US13/402,791 US9608319B2 (en) 2009-08-27 2012-02-22 Flexible substrate antenna and antenna device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-196504 2009-08-27
JP2009196504 2009-08-27
JP2009196521 2009-08-27
JP2009-196521 2009-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/402,791 Continuation US9608319B2 (en) 2009-08-27 2012-02-22 Flexible substrate antenna and antenna device

Publications (1)

Publication Number Publication Date
WO2011024514A1 true WO2011024514A1 (ja) 2011-03-03

Family

ID=43627628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057208 WO2011024514A1 (ja) 2009-08-27 2010-04-23 フレキシブル基板アンテナ及びアンテナ装置

Country Status (5)

Country Link
US (1) US9608319B2 (ja)
JP (1) JP5403059B2 (ja)
CN (1) CN102484314B (ja)
GB (1) GB2486362B (ja)
WO (1) WO2011024514A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236323A (ja) * 2013-05-31 2014-12-15 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
CN111509380A (zh) * 2020-04-22 2020-08-07 京东方科技集团股份有限公司 天线及制备方法、天线阵列、电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20105519A0 (fi) * 2010-05-12 2010-05-12 Pulse Finland Oy Laptop-laitteen antenni
WO2013000069A1 (en) * 2011-06-30 2013-01-03 Sierra Wireless, Inc. Compact antenna system having folded dipole and/or monopole
CN102769170A (zh) * 2012-07-24 2012-11-07 上海安费诺永亿通讯电子有限公司 一种宽带低sar无线终端天线***
KR101637123B1 (ko) * 2015-04-10 2016-07-06 한양대학교 산학협력단 표면 지향 방사 패턴을 가지는 다이폴 안테나
KR101637124B1 (ko) * 2015-04-27 2016-07-06 한양대학교 산학협력단 표면 지향 방사 패턴을 가지는 평면 안테나
KR101801734B1 (ko) * 2016-04-15 2017-11-28 주식회사 센서뷰 인체통신망을 위한 안테나
CN108258414B (zh) * 2017-12-21 2021-06-15 惠州Tcl移动通信有限公司 一种印制电路板及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013139A (ja) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
JP2000068726A (ja) * 1998-08-24 2000-03-03 Murata Mfg Co Ltd 表面実装型アンテナおよびそれを用いたアンテナ装置およびそれを用いた通信機
JP2003133844A (ja) * 2001-10-22 2003-05-09 Murata Mfg Co Ltd 表面実装型アンテナおよびそれを備えた通信機
JP2007235215A (ja) * 2006-02-27 2007-09-13 Furukawa Electric Co Ltd:The 無線通信回路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131234A (ja) * 1993-11-02 1995-05-19 Nippon Mektron Ltd 複共振アンテナ
JP3319268B2 (ja) 1996-02-13 2002-08-26 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
JP3246365B2 (ja) * 1996-12-06 2002-01-15 株式会社村田製作所 表面実装型アンテナ、アンテナ装置および通信機
JP3307248B2 (ja) * 1996-12-09 2002-07-24 株式会社村田製作所 表面実装型アンテナおよび表面実装型アンテナ装置
JP3279205B2 (ja) * 1996-12-10 2002-04-30 株式会社村田製作所 表面実装型アンテナおよび通信機
JP3606005B2 (ja) * 1997-07-04 2005-01-05 株式会社村田製作所 アンテナ装置
JPH11127014A (ja) * 1997-10-23 1999-05-11 Mitsubishi Materials Corp アンテナ装置
JP3656470B2 (ja) * 1999-08-12 2005-06-08 株式会社村田製作所 表面実装型アンテナの周波数切り換え構造およびその構造を備えた通信装置
JP3646782B2 (ja) 1999-12-14 2005-05-11 株式会社村田製作所 アンテナ装置およびそれを用いた通信機
JP3658639B2 (ja) 2000-04-11 2005-06-08 株式会社村田製作所 表面実装型アンテナおよびそのアンテナを備えた無線機
JP2002299933A (ja) 2001-04-02 2002-10-11 Murata Mfg Co Ltd アンテナの電極構造およびそれを備えた通信機
JP3678167B2 (ja) * 2001-05-02 2005-08-03 株式会社村田製作所 アンテナ装置及びこのアンテナ装置を備えた無線通信機
JP2002335117A (ja) * 2001-05-08 2002-11-22 Murata Mfg Co Ltd アンテナ構造およびそれを備えた通信機
JP2003069330A (ja) 2001-06-15 2003-03-07 Hitachi Metals Ltd 表面実装型アンテナ及びそれを搭載した通信機器
JP4431852B2 (ja) * 2001-09-27 2010-03-17 株式会社村田製作所 表面実装型アンテナおよびそれを備えた通信機
GB2381664B (en) 2001-10-12 2003-11-19 Murata Manufacturing Co Loop antenna, surface-mounted antenna and communication equipment having the same
JP2003313844A (ja) 2002-04-19 2003-11-06 Ishikawajima Harima Heavy Ind Co Ltd 防波堤ケーソン及び該防波堤ケーソンの設置方法
DE60329793D1 (de) * 2002-06-21 2009-12-03 Research In Motion Ltd Mehrfachelement-Antenne mit Parasitärkoppler
US6882338B2 (en) * 2002-08-16 2005-04-19 Leapfrog Enterprises, Inc. Electrographic position location apparatus
JP3794360B2 (ja) * 2002-08-23 2006-07-05 株式会社村田製作所 アンテナ構造およびそれを備えた通信機
JP2004201278A (ja) * 2002-12-06 2004-07-15 Sharp Corp パターンアンテナ
EP1878087A1 (en) * 2005-04-25 2008-01-16 Koninklijke Philips Electronics N.V. Wireless link module comprising two antennas
US7330155B2 (en) * 2005-06-28 2008-02-12 Motorola Inc. Antenna system
JPWO2008035526A1 (ja) 2006-09-20 2010-01-28 株式会社村田製作所 アンテナ構造およびそれを用いた無線通信装置
JP4378378B2 (ja) 2006-12-12 2009-12-02 アルプス電気株式会社 アンテナ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013139A (ja) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
JP2000068726A (ja) * 1998-08-24 2000-03-03 Murata Mfg Co Ltd 表面実装型アンテナおよびそれを用いたアンテナ装置およびそれを用いた通信機
JP2003133844A (ja) * 2001-10-22 2003-05-09 Murata Mfg Co Ltd 表面実装型アンテナおよびそれを備えた通信機
JP2007235215A (ja) * 2006-02-27 2007-09-13 Furukawa Electric Co Ltd:The 無線通信回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236323A (ja) * 2013-05-31 2014-12-15 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
CN111509380A (zh) * 2020-04-22 2020-08-07 京东方科技集团股份有限公司 天线及制备方法、天线阵列、电子设备

Also Published As

Publication number Publication date
GB2486362B (en) 2015-02-25
JPWO2011024514A1 (ja) 2013-01-24
CN102484314A (zh) 2012-05-30
GB2486362A (en) 2012-06-13
JP5403059B2 (ja) 2014-01-29
US9608319B2 (en) 2017-03-28
CN102484314B (zh) 2014-10-22
US20120146856A1 (en) 2012-06-14
GB201203342D0 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5403059B2 (ja) フレキシブル基板アンテナ及びアンテナ装置
JP4297164B2 (ja) アンテナ構造およびそれを備えた無線通信機
US9190721B2 (en) Antenna device
CN101171721B (zh) 天线结构及包含该天线结构的无线通信装置
US8525732B2 (en) Antenna device
JP5056846B2 (ja) アンテナおよび無線通信機
WO2011086723A1 (ja) アンテナ及び無線通信装置
US9142884B2 (en) Antenna device
KR100874394B1 (ko) 표면 실장형 안테나 및 그것을 탑재한 휴대형 무선 장치
JP5035323B2 (ja) アンテナ
JP2010268183A (ja) アンテナ及び無線通信装置
JP2013211797A (ja) 通信端末
KR101970861B1 (ko) 안테나 장치
JP5862948B2 (ja) アンテナ装置
JP6960588B2 (ja) マルチバンド対応アンテナ及び無線通信装置
JP5263302B2 (ja) チップアンテナ及びアンテナ装置
JP5995059B2 (ja) アンテナ装置
WO2010095300A1 (ja) チップアンテナ及びアンテナ装置
JP6057163B2 (ja) アンテナ装置
KR101992517B1 (ko) 안테나 장치용 기판 및 안테나 장치
TWI578614B (zh) Antenna device substrate and antenna device
JP2003158413A (ja) 表面実装型アンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037726.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528680

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 1203342

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20100423

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1203342.9

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10811567

Country of ref document: EP

Kind code of ref document: A1