WO2011024477A1 - バッテリモジュール、バッテリシステムおよび電動車両 - Google Patents

バッテリモジュール、バッテリシステムおよび電動車両 Download PDF

Info

Publication number
WO2011024477A1
WO2011024477A1 PCT/JP2010/005309 JP2010005309W WO2011024477A1 WO 2011024477 A1 WO2011024477 A1 WO 2011024477A1 JP 2010005309 W JP2010005309 W JP 2010005309W WO 2011024477 A1 WO2011024477 A1 WO 2011024477A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
circuit board
connector
printed circuit
Prior art date
Application number
PCT/JP2010/005309
Other languages
English (en)
French (fr)
Inventor
智徳 國光
由知 西原
浩也 村尾
岸本 圭司
計美 大倉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2011528657A priority Critical patent/JPWO2011024477A1/ja
Priority to CN2010800380424A priority patent/CN102484385A/zh
Priority to EP10811532A priority patent/EP2475066A1/en
Priority to US13/393,527 priority patent/US20120161677A1/en
Publication of WO2011024477A1 publication Critical patent/WO2011024477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a battery module, a battery system provided with the same, and an electric vehicle.
  • a battery module capable of charging and discharging is used as a drive source of a mobile body such as an electric car.
  • a battery module has, for example, a configuration in which a plurality of batteries (battery cells) are connected in series.
  • the user of the mobile unit equipped with the battery module needs to know the remaining amount (charge amount) of the battery module.
  • Patent Document 1 describes a battery pack monitoring device.
  • the assembled battery is composed of a plurality of battery modules.
  • Each battery module is constituted by a series connection of a plurality of battery cells consisting of nickel hydrogen batteries.
  • the monitoring device includes a voltage measurement unit connected to each of the plurality of battery modules, and an electronic control unit (ECU).
  • Each voltage measurement unit detects and detects the voltage between both terminals of the corresponding battery module (voltage between the positive terminal of the battery cell on the highest potential side and the negative terminal of the battery cell on the lowest potential side).
  • the voltage is transmitted to the ECU through a serial transmission line. JP-A-8-162171
  • the ECU can grasp the voltage of each battery module. Thereby, charging / discharging of each battery module can be controlled based on the voltage of each battery module.
  • the ECU can not grasp the voltage of each battery cell included in each battery module. Therefore, charging / discharging of each battery cell can not be individually controlled based on the voltage of each battery cell.
  • An object of the present invention is to provide a battery module capable of centrally managing terminal voltages of battery cells included in a plurality of battery modules, and a battery system and an electric vehicle provided with the battery module.
  • a battery module (battery module 100, 100A to 100F) according to one aspect of the present invention is a battery module capable of communicating with an external device (battery module 100, 100A to 100F or battery ECU 101), and includes a plurality of battery cells (battery cells). 10), a detection unit (detection circuit 20) for detecting the voltage of each battery cell, a communication unit (communication circuit 24) connected to the detection unit and connectable to an external device, and a detection unit and a communication unit And the communication unit is operable to transmit the voltage of each of the battery cells detected by the detection unit to an external device. .
  • the detection unit detects the voltage of each battery cell, and the detected voltage of each battery cell is transmitted to the external device by the communication unit.
  • the detection unit and the communication unit are mounted on a common circuit board. Therefore, the wiring between the detection unit and the communication unit is short and simple. Thereby, the arrangement space of the detection unit and the communication unit is reduced.
  • the battery module is a first connecting member for connecting the electrodes (plus electrode 10a or minus electrode 10b) of adjacent battery cells to each other (the bus bars 40 and 40p and the voltage / current bus bar 40y) and the detecting portion and the connecting member.
  • the semiconductor device further includes a wire (conductor wire 52) and a second wire (conductor wires 54, 55 or communication wires 56, 58) for connecting the communication unit to another battery module, and the first wire and the second wire May be pulled out of the circuit board in the same direction.
  • the first wiring and the second wiring are arranged to be concentrated in one direction of the circuit board. This facilitates the handling of the circuit board and facilitates the assembly of the battery module. Moreover, since the first wiring and the second wiring do not exist around the circuit board except in one direction, the heat dissipation of the detection unit and the communication unit is improved.
  • a plurality of connection members are provided, a plurality of first wires are provided corresponding to the plurality of connection members, and at least a portion of the plurality of first wires and the second wire are drawn out from the circuit board in the same direction. Good.
  • At least a part of the plurality of first wires and the second wires are arranged to be concentrated in one direction of the circuit board.
  • the handling of the circuit board is facilitated, and the assembly of the battery module is facilitated.
  • the heat dissipation of the detection unit and the communication unit is improved even when the plurality of first wires are provided.
  • the battery module includes a temperature detection unit (thermistor 11) for detecting temperatures of a plurality of battery cells, a third wiring (conductor wire 53) for connecting the communication unit and the temperature detection unit, a first wiring, a second
  • the semiconductor device may further include a soft member (FPC substrate 50, 50a, 50b) on which the third wiring and the third wiring are provided.
  • the temperature detected by the temperature detection unit is transmitted to the external device by the communication unit. Since the first wiring, the second wiring, and the third wiring are provided in the soft member, the first wiring, the second wiring, and the third wiring can be handled integrally. This further facilitates assembly of the battery module. Further, since the first wiring, the second wiring and the third wiring are concentrated on the soft member, there is a space where the first wiring, the second wiring and the third wiring do not exist around the plurality of battery cells. It is secured large. Thereby, the heat dissipation of a plurality of battery cells is improved.
  • a detection unit is mounted, and a first region (first mounting region 10G) in which a plurality of first ground conductors (ground patterns GND1) for battery cells are formed, and a communication unit are mounted And a second region (second mounting region 12G) in which a second ground conductor (ground pattern GND2) for an external power supply (non-power battery 12) is formed, a first region, and a second region And a third region (insulation region 26) that electrically insulates from each other, and an insulation element (insulation element 25) that communicably connects the detection portion and the communication portion while electrically insulating the detection portion and the communication portion.
  • first mounting region 10G in which a plurality of first ground conductors (ground patterns GND1) for battery cells are formed
  • a communication unit are mounted
  • second region 12G in which a second ground conductor (ground pattern GND2) for an external power supply (non-power battery 12) is formed, a first region, and a second region
  • a third region that electrically
  • the first ground conductor formed in the first region of the circuit board and the second ground conductor formed in the second region are electrically insulated by the third region.
  • the detection unit mounted in the first area and the communication unit mounted in the second area are electrically reliably insulated by the insulation element.
  • a plurality of battery cells can be used as the power supply of the detection unit, and an external power supply can be used as the power supply of the communication unit.
  • the detection unit and the communication unit can be operated independently and stably.
  • a battery system (battery system 500) according to another aspect of the present invention controls charging and discharging of a battery module (battery modules 100, 100A to 100F) and a plurality of battery cells (battery cells 10) according to one aspect of the present invention
  • Control unit (battery ECU 101)
  • the communication unit (communication circuit 24) of each battery module is connected to the communication unit of another battery module, and the control unit is connected to the communication unit of any battery module It is a thing.
  • the voltage of each battery cell detected by the detection unit of each battery module is transmitted to the communication unit of the other battery module by the communication unit of the battery module. Further, the voltage of each battery cell of the plurality of battery modules is transmitted to the control unit by the communication unit of any of the battery modules.
  • the control unit can centrally manage the voltages of the battery cells of the plurality of battery modules.
  • control unit can obtain the voltage of each battery cell of the plurality of battery modules by being connected to any battery module without being connected to all the battery modules, the wiring is It is simplified.
  • An electric vehicle (electric vehicle 600) comprises a battery system (battery system 500) according to the other aspect of the present invention and power from battery modules of the battery system (battery modules 100, 100A to 100F). And a driving wheel (driving wheel 603) that is rotated by the rotational force of the motor.
  • the motor is driven by the power from the battery module.
  • the drive wheel is rotated by the rotational force of the motor to move the electric vehicle.
  • the control unit can centrally manage the voltage of each battery cell of the plurality of battery modules, and can prevent the deterioration of the battery cells. This makes it possible to improve the reliability and the life of the battery module. As a result, it is possible to improve the performance of the electric vehicle and to reduce the cost.
  • the battery module may further include a holding member (end surface frame 92) for holding the circuit board, and the holding member may have a notch (notch 92n) through which the first wiring and the second wiring pass.
  • a holding member end surface frame 92
  • the holding member may have a notch (notch 92n) through which the first wiring and the second wiring pass.
  • the first wiring and the second wiring are arranged to pass through the notch of the holding member. Thereby, the first wiring and the second wiring can be easily pulled out in one direction. As a result, assembly of the battery module is easier.
  • the battery module further includes a plurality of resistors (resistor R) connected between the electrodes of each battery cell, and the circuit board has the first and second surfaces, and the detection unit and the communication unit on the first surface Are mounted, and a plurality of resistors may be provided on the second surface and at positions different from the positions corresponding to the detection unit and the communication unit.
  • resistor R resistor
  • the resistor is provided on a second surface different from the first surface on which the detection unit and the communication unit of the circuit board are mounted, and at a position different from the position corresponding to the detection unit and the communication unit.
  • FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment.
  • FIG. 2 is a block diagram showing the configuration of the printed circuit board of FIG.
  • FIG. 3 is an external perspective view of the battery module.
  • FIG. 4 is a plan view of the battery module.
  • FIG. 5 is an end view of the battery module.
  • FIG. 6 is an external perspective view of the bus bar.
  • FIG. 7 is an external perspective view showing a state in which a plurality of bus bars and a plurality of PTC elements are attached to an FPC board.
  • FIG. 8 is a schematic plan view for describing connection between the bus bar and the detection circuit.
  • FIG. 9 is an enlarged plan view showing the voltage / current bus bar and the FPC board.
  • FIG. 10 is a schematic plan view showing one configuration example of the printed circuit board.
  • FIG. 11 is an external perspective view showing the arrangement of wires used to connect the communication circuit of the battery module.
  • FIG. 12 is a schematic plan view of the input / output harness used to connect the communication circuit of the battery module.
  • FIG. 13 is a schematic plan view showing one connection example of the communication circuit of the battery module.
  • FIG. 14 is a schematic plan view showing an example of a detailed configuration of the battery system.
  • FIG. 15 is an explanatory view showing a connection between a plurality of printed circuit boards and a battery ECU in the battery system according to the second embodiment.
  • FIG. 16 is a schematic plan view of the input / output harness used to connect the communication circuit of the battery module according to the second embodiment.
  • FIG. 17 is a schematic plan view showing an example of a detailed configuration of the battery system according to the second embodiment.
  • FIG. 18 is a schematic plan view of a printed circuit board provided in the battery module according to the third embodiment.
  • FIG. 19 is a schematic plan view of an FPC board connected to the printed circuit board of FIG.
  • FIG. 20 is a schematic plan view of a printed circuit board provided in the battery module according to the fourth embodiment.
  • FIG. 21 is an external perspective view showing a battery module according to the fifth embodiment.
  • FIG. 22 is an external perspective view showing a battery module according to the sixth embodiment.
  • FIG. 23 is one side view of the battery module of FIG.
  • FIG. 24 is another side view of the battery module of FIG.
  • FIG. 25 is a schematic plan view showing one configuration example of the printed circuit board in the sixth embodiment.
  • FIG. 26 is a side view showing a state where the printed circuit board is attached to the battery block of FIG.
  • FIG. 27 is an external perspective view of a battery module housed in a casing.
  • FIG. 28 is a schematic plan view showing an example of the detailed configuration of the battery system according to the sixth embodiment.
  • FIG. 29 is an external perspective view of one of the battery modules according to the seventh embodiment.
  • FIG. 30 is another external perspective view of the battery module of FIG.
  • FIG. 31 is an external perspective view of one of the battery modules according to the eighth embodiment.
  • FIG. 32 is a side view of the battery module according to the ninth embodiment.
  • FIG. 33 is another side view of the battery module of FIG. 32.
  • FIG. 34 is an external perspective view of a battery module according to a ninth embodiment.
  • FIG. 35 is a block diagram showing a configuration of an electric automobile provided with a battery system.
  • the battery module and the battery system according to the present embodiment are mounted on an electric vehicle (for example, an electric vehicle) which uses electric power as a drive source.
  • an electric vehicle for example, an electric vehicle
  • FIG. 1 is a block diagram showing a configuration of a battery system according to the first embodiment. Further, as shown in FIG. 1, battery system 500 includes a plurality of battery modules 100 (four in this example), battery ECU 101 and contactor 102, and is connected to main control unit 300 of the electric vehicle via bus 104. ing.
  • battery system 500 includes a plurality of battery modules 100 (four in this example), battery ECU 101 and contactor 102, and is connected to main control unit 300 of the electric vehicle via bus 104. ing.
  • the plurality of battery modules 100 of the battery system 500 are connected to one another through power supply lines 501.
  • Each battery module 100 has a plurality (18 in this example) of battery cells 10, a plurality (4 in this example) of thermistors 11, and a rigid printed circuit board (hereinafter abbreviated as a printed circuit board) 21.
  • each battery module 100 the plurality of battery cells 10 are integrally disposed adjacent to each other and connected in series by the plurality of bus bars 40.
  • Each battery cell 10 is a secondary battery such as a lithium ion battery or a nickel hydrogen battery, for example.
  • the battery cells 10 disposed at both ends are connected to the power supply line 501 via the bus bar 40a. Thereby, in battery system 500, all battery cells 10 of a plurality of battery modules 100 are connected in series.
  • the power supply line 501 drawn from the battery system 500 is connected to a load such as a motor of the electric vehicle. Details of the battery module 100 will be described later.
  • FIG. 2 is a block diagram showing the configuration of the printed circuit board 21 of FIG.
  • the printed circuit board 21 includes a detection circuit 20, a communication circuit 24, an insulation element 25, a plurality of resistors R, and a plurality of switching elements SW.
  • the detection circuit 20 also includes a multiplexer 20a, an A / D (analog / digital) converter 20b, and a plurality of differential amplifiers 20c.
  • a / D analog / digital converter
  • the detection circuit 20 is formed of, for example, an ASIC (Application Specific Integrated Circuit), and the plurality of battery cells 10 of the battery module 100 are used as a power supply of the detection circuit 20.
  • Each differential amplifier 20c of the detection circuit 20 has two input terminals and an output terminal. Each differential amplifier 20c differentially amplifies the voltage input to the two input terminals, and outputs the amplified voltage from the output terminal.
  • each differential amplifier 20c The two input terminals of each differential amplifier 20c are electrically connected to the two adjacent bus bars 40 and 40a via the conductor line 52 and the PTC (Positive Temperature Coefficient) element 60.
  • PTC Positive Temperature Coefficient
  • the PTC element 60 has a resistance temperature characteristic in which the resistance value rapidly increases when the temperature exceeds a certain value. Therefore, when a short circuit occurs in the detection circuit 20, the conductor wire 52, and the like, if the temperature of the PTC element 60 rises due to the current flowing through the short circuit path, the resistance value of the PTC element 60 becomes large. This suppresses the flow of a large current in the short circuit path including the PTC element 60.
  • the communication circuit 24 includes, for example, a CPU (central processing unit), a step-down unit, a memory, and an interface circuit, and has a communication function and an arithmetic function.
  • the non-driving battery 12 of the electric vehicle is connected to the step-down portion of the communication circuit 24.
  • the step-down unit steps down the power from the non-driving battery 12 and supplies it to the CPU, the memory and the interface circuit of the communication circuit 24.
  • the non-driving battery 12 is used as a power supply of the communication circuit 24.
  • the non-driving battery 12 is a lead storage battery.
  • the communication circuit 24 of each battery module 100 and the battery ECU 101 are connected in series via a harness 560.
  • the communication circuit 24 of each battery module 100 can communicate with the other battery modules 100 and the battery ECU 101.
  • a series circuit of a resistor R and a switching element SW is connected between two adjacent bus bars 40 and 40a.
  • the on / off of the switching element SW is controlled by the battery ECU 101 via the communication circuit 24. In the normal state, the switching element SW is off.
  • the detection circuit 20 and the communication circuit 24 are communicably connected while being electrically isolated from each other by the insulating element 25.
  • the voltages of two adjacent bus bars 40 and 40a are differentially amplified by each differential amplifier 20c.
  • the output voltage of each differential amplifier 20 c corresponds to the terminal voltage of each battery cell 10. Terminal voltages output from the plurality of differential amplifiers 20c are applied to the multiplexer 20a.
  • the multiplexer 20a sequentially outputs terminal voltages supplied from the plurality of differential amplifiers 20c to the A / D converter 20b.
  • the A / D converter 20 b converts the terminal voltage output from the multiplexer 20 a into a digital value, and supplies the digital value to the communication circuit 24 through the isolation element 25.
  • detection circuit 20 detects a voltage between two positions of one bus bar 40
  • communication circuit 24 detects the voltage of detection circuit 20.
  • the currents flowing through the plurality of battery cells 10 are calculated based on the voltage detected by the above and the resistance between the two positions of the bus bar 40. Details of the calculation of the current by the detection circuit 20 and the communication circuit 24 will be described later.
  • the communication circuit 24 is also connected to the plurality of thermistors 11 of FIG. Thus, the communication circuit 24 obtains the temperature of the battery module 100 based on the output signal of the thermistor 11.
  • the communication circuit 24 of each battery module 100 supplies the terminal voltage of each battery cell 10, the current flowing to the plurality of battery cells 10, and the temperature of the battery module 100 to another battery module 100 or the battery ECU 101. These terminal voltages, currents and temperatures are hereinafter referred to as cell information.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 based on, for example, the cell information given from the communication circuit 24 of each battery module 100, and performs charge / discharge control of each battery module 100 based on the charge amount. Further, the battery ECU 101 detects an abnormality of each battery module 100 based on cell information given from the communication circuit 24 of each battery module 100.
  • the abnormality of the battery module 100 is, for example, overdischarge, overcharge or temperature abnormality of the battery cell 10.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 and detects overdischarge, overcharge, abnormal temperature, and the like of the battery cell 10, but the present invention is not limited thereto.
  • the communication circuit 24 of each battery module 100 may calculate the charge amount of each battery cell 10 and detect overdischarge, overcharge, abnormal temperature or the like of the battery cell 10, and may provide the result to the battery ECU 101.
  • the contactor 102 is interposed in the power supply line 501 connected to the battery module 100 at one end.
  • the battery ECU 101 detects an abnormality in the battery module 100
  • the battery ECU 101 turns off the contactor 102.
  • no current flows in each battery module 100 so that abnormal heat generation of the battery module 100 is prevented.
  • Battery ECU 101 is connected to main control unit 300 via bus 104.
  • the charge amount of each battery module 100 (the charge amount of the battery cell 10) is given from the battery ECU 101 to the main control unit 300.
  • Main control unit 300 controls the power of the electric vehicle (for example, the rotational speed of the motor) based on the charge amount.
  • the main control unit 300 controls a power generation device (not shown) connected to the power supply line 501 to charge each battery module 100.
  • the power generation apparatus is, for example, a motor connected to the power supply line 501 described above.
  • the motor converts the electric power supplied from the battery system 500 at the time of acceleration of the electric vehicle into a motive power for driving a driving wheel (not shown).
  • the motor generates regenerative electric power when the electric powered vehicle decelerates. Each battery module 100 is charged by this regenerative power.
  • FIG. 3 is an external perspective view of the battery module 100
  • FIG. 4 is a plan view of the battery module 100
  • FIG. 5 is an end view of the battery module 100.
  • three directions orthogonal to one another are defined as an X direction, a Y direction, and a Z direction, as indicated by arrows X, Y, and Z.
  • the X direction and the Y direction are directions parallel to the horizontal plane
  • the Z direction is a direction perpendicular to the horizontal plane.
  • the upward direction is the direction in which the arrow Z is directed.
  • a plurality of flat battery cells 10 having a substantially rectangular parallelepiped shape are arranged in the X direction.
  • the plurality of battery cells 10 are integrally fixed by the pair of end surface frames 92, the pair of upper end frames 93, and the pair of lower end frames 94.
  • the plurality of battery cells 10, the pair of end surface frames 92, the pair of upper end frames 93, and the pair of lower end frames 94 form a substantially rectangular battery block 10BB.
  • Battery block 10BB has an upper surface parallel to the XY plane.
  • Battery block 10BB has one end surface and the other end surface parallel to the YZ plane. Furthermore, battery block 10BB has one side and the other side parallel to the XZ plane.
  • the pair of end face frames 92 has a substantially plate shape and is disposed in parallel to the YZ plane.
  • the pair of upper end frames 93 and the pair of lower end frames 94 are arranged to extend in the X direction.
  • connection portions for connecting the pair of upper end frames 93 and the pair of lower end frames 94 are formed.
  • the pair of upper end frames 93 is attached to the upper connection portion of the pair of end face frames 92, and the lower side connection of the pair of end face frames 92
  • a pair of lower end frames 94 are attached to the portion.
  • the plurality of battery cells 10 are integrally fixed in a state where they are arranged in the X direction.
  • the printed circuit board 21 is attached to the one end face frame 92 at an interval on the outer surface.
  • each battery cell 10 has a plus electrode 10 a and a minus electrode 10 b on the upper surface portion so as to be aligned along the Y direction.
  • Each of the electrodes 10a and 10b is provided to be inclined so as to protrude upward (see FIG. 5).
  • the battery cells 10 adjacent to the end face frame 92 to which the printed circuit board 21 is not attached are connected to the battery cells 10 adjacent to the end face frame 92 to which the printed circuit board 21 is attached.
  • the battery cells 10 are arranged such that the positional relationship between the plus electrode 10 a and the minus electrode 10 b in the Y direction is opposite to each other between the adjacent battery cells 10.
  • the plus electrode 10a of one battery cell 10 and the minus electrode 10b of the other battery cell 10 are in close proximity, and the minus electrode 10b of one battery cell 10 and the other The plus electrode 10 a of the battery cell 10 approaches.
  • the bus bar 40 is attached to the two adjacent electrodes. Thereby, a plurality of battery cells 10 are connected in series.
  • the common bus bar 40 is attached to the plus electrode 10 a of the first battery cell 10 and the minus electrode 10 b of the second battery cell 10. Further, the common bus bar 40 is attached to the plus electrode 10 a of the second battery cell 10 and the minus electrode 10 b of the third battery cell 10. Similarly, the common bus bar 40 is attached to the plus electrode 10 a of each odd-numbered battery cell 10 and the minus electrode 10 b of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the plus electrode 10 a of each even-numbered battery cell 10 and the minus electrode 10 b of the odd-numbered battery cell 10 adjacent thereto.
  • a bus bar 40a for connecting a power supply line 501 (see FIG. 1) from the outside is attached to the minus electrode 10b of the first battery cell 10 and the plus electrode 10a of the eighteenth battery cell 10.
  • a long flexible printed circuit board (hereinafter, abbreviated as an FPC board) 50 extending in the X direction is commonly connected to the plurality of bus bars 40 on one end side of the plurality of battery cells 10 in the Y direction. Similarly, on the other end side of the plurality of battery cells 10 in the Y direction, a long FPC board 50 extending in the X direction is commonly connected to the plurality of bus bars 40 and 40 a.
  • the FPC board 50 mainly has a configuration in which a plurality of conductor wires 51 and 52 (see FIG. 8 described later) are formed on the insulating layer, and has flexibility and flexibility.
  • polyimide is used as a material of the insulating layer constituting the FPC board 50
  • copper is used as a material of the conductor wires 51 and 52 (see FIG. 8 described later).
  • Each PTC element 60 is disposed on the FPC board 50 so as to be close to each of the bus bars 40 and 40 a.
  • Each FPC board 50 is folded back inward at a right angle at the upper end portion of the end face frame 92 (the end face frame 92 to which the printed circuit board 21 is attached), and further folded downward and connected to the printed circuit board 21 .
  • bus bar 40 for connecting the plus electrode 10a and the minus electrode 10b of two adjacent battery cells 10 is referred to as the two-electrode bus bar 40, and the plus electrode 10a or the minus electrode 10b of one battery cell 10
  • the bus bar 40a for connecting the power supply line 501 and the power supply line 501 is referred to as a bus bar 40a for one electrode.
  • FIG. 6 (a) is an external perspective view of the bus bar 40 for two electrodes
  • FIG. 6 (b) is an external perspective view of the bus bar 40a for one electrode.
  • the bus bar 40 for two electrodes includes a base portion 41 having a substantially rectangular shape and a pair of attachment pieces 42 bent and extended from one side of the base portion 41 to one side.
  • a pair of electrode connection holes 43 are formed in the base portion 41.
  • the bus bar 40a for one electrode includes a base portion 45 having a substantially square shape, and a mounting piece 46 bent and extended from one side of the base portion 45 to one side thereof.
  • An electrode connection hole 47 is formed in the base portion 45.
  • the bus bars 40 and 40a have a configuration in which, for example, the surface of tough pitch copper is plated with nickel.
  • FIG. 7 is an external perspective view showing a state in which the plurality of bus bars 40 and 40 a and the plurality of PTC elements 60 are attached to the FPC board 50.
  • FIG. 7 on the two FPC boards 50, mounting pieces 42, 46 of the plurality of bus bars 40, 40a are attached at predetermined intervals along the X direction.
  • the plurality of PTC elements 60 are attached to the two FPC boards 50 at the same intervals as the intervals between the plurality of bus bars 40 and 40a.
  • the plus electrode 10a and the minus electrode 10b of the adjacent battery cells 10 are fitted into the electrode connection holes 43, 47 formed in the respective bus bars 40, 40a.
  • Male screws are formed on the plus electrode 10a and the minus electrode 10b.
  • Nuts (not shown) are screwed onto male screws of the plus electrode 10a and the minus electrode 10b in a state where the bus bars 40 and 40a are fitted into the plus electrode 10a and the minus electrode 10b of the adjacent battery cells 10.
  • the plurality of bus bars 40, 40a are attached to the plurality of battery cells 10, and the FPC boards 50 are held in a substantially horizontal posture by the plurality of bus bars 40, 40a.
  • FIG. 8 is a schematic plan view for describing connection between bus bars 40 and 40a and detection circuit 20. Referring to FIG.
  • the FPC board 50 is provided with a plurality of conductor lines 51 and 52 so as to correspond to the plurality of bus bars 40 and 40 a respectively.
  • Each conductor wire 51 is provided to extend in parallel in the Y direction between attachment pieces 42 and 46 of bus bars 40 and 40 a and PTC elements 60 arranged in the vicinity of the bus bar 40, and each conductor wire 52 is It is provided to extend parallel to the X direction between the PTC element 60 and one end of the FPC board 50.
  • each conductor wire 51 is provided to be exposed to the lower surface side of the FPC board 50.
  • One end of each conductor wire 51 exposed to the lower surface side is electrically connected to the mounting pieces 42, 46 of the bus bars 40, 40a by, for example, soldering or welding. Thereby, the FPC board 50 is fixed to each of the bus bars 40, 40a.
  • each conductor wire 51 and one end portion of each conductor wire 52 are provided to be exposed on the upper surface side of the FPC board 50.
  • a pair of terminals (not shown) of PTC element 60 is connected to the other end of each conductor wire 51 and one end of each conductor wire 52 by soldering, for example.
  • Each PTC element 60 is preferably arranged in the region between both ends of the corresponding bus bar 40, 40a in the X direction.
  • the area of the FPC board 50 between the adjacent bus bars 40, 40a is easily bent, but the area of the FPC board 50 between both ends of each bus bar 40, 40 a is fixed to the bus bars 40, 40 a It is kept relatively flat because it Therefore, by arranging each PTC element 60 in the region of the FPC board 50 between both ends of each bus bar 40, 40a, the connectivity between the PTC element 60 and the conductor wires 51, 52 is sufficiently ensured. Further, the influence of the bending of the FPC board 50 on each of the PTC elements 60 (for example, the change in the resistance value of the PTC element 60) is suppressed.
  • the printed circuit board 21 is provided with a plurality of connection terminals 22 corresponding to the plurality of conductor lines 52 of the FPC board 50.
  • the plurality of connection terminals 22 and the detection circuit 20 are electrically connected on the printed circuit board 21.
  • the other end of each conductor wire 52 of the FPC board 50 is connected to the corresponding connection terminal 22 by, for example, soldering or welding.
  • the connection between the printed circuit board 21 and the FPC board 50 may be performed using a connector as well as soldering or welding.
  • each bus bar 40, 40a is electrically connected to detection circuit 20 via PTC element 60. Thereby, the terminal voltage of each battery cell 10 is detected.
  • FIG. 9 is an enlarged plan view showing the voltage / current bus bar 40y and the FPC board 50. As shown in FIG. As shown in FIG. 9, the printed circuit board 21 further includes an amplifier circuit 410.
  • solder patterns H1 and H2 are formed in parallel with each other at a constant interval.
  • the solder pattern H1 is disposed between two electrode connection holes 43 and in the vicinity of one electrode connection hole 43
  • the solder pattern H2 is disposed between the electrode connection holes 43 and in the vicinity of the other electrode connection hole 43.
  • the resistance formed between the solder patterns H1 and H2 in the voltage / current bus bar 40y is referred to as a shunt resistance RS for current detection.
  • Solder pattern H1 of voltage / current bus bar 40y is connected to one input terminal of amplifier circuit 410 on printed circuit board 21 through conductor wire 51, PTC element 60 and conductor wire 52.
  • the solder pattern H2 of the voltage / current bus bar 40y is connected to the other input terminal of the amplifier circuit 410 via the conductor wire 51, the PTC element 60, and the conductor wire 52.
  • the output terminal of the amplifier circuit 410 is connected to the connection terminal 22 by a conductor line.
  • the detection circuit 20 detects the voltage between the solder patterns H1 and H2 based on the output voltage of the amplification circuit 410. The voltage detected by the detection circuit 20 is applied to the communication circuit 24.
  • the value of the shunt resistance RS between the solder patterns H1 and H2 in the voltage / current bus bar 40y is stored in advance in the memory provided in the communication circuit 24.
  • Communication circuit 24 divides the voltage between solder patterns H1 and H2 given from detection circuit 20 by the value of shunt resistor RS stored in the memory to calculate the value of the current flowing through voltage / current bus bar 40y.
  • the value of the current flowing to the battery module 100 is detected.
  • FIG. 10 is a schematic plan view showing one configuration example of the printed circuit board 21. As shown in FIG. 10
  • the printed circuit board 21 has a substantially rectangular shape.
  • the detection circuit 20, the communication circuit 24 and the insulating element 25 are mounted on the printed circuit board 21. Further, a plurality of connection terminals 22 and connectors 23 are formed on the printed circuit board 21. The illustration of the resistor R and the switching element SW in FIG. 2 is omitted.
  • the printed circuit board 21 has a first mounting area 10G, a second mounting area 12G, and a strip-shaped insulating area 26.
  • the second mounting area 12G is formed at one corner of the printed circuit board 21.
  • the insulating region 26 is formed to extend along the second mounting region 12G.
  • the first mounting area 10G is formed on the remaining portion of the printed circuit board 21.
  • the first mounting area 10G and the second mounting area 12G are separated from each other by the insulating area 26.
  • the first mounting area 10G and the second mounting area 12G are electrically isolated by the insulating area 26.
  • the detection circuit 20 is mounted and a plurality of connection terminals 22 are formed, and the detection circuit 20 and the plurality of connection terminals 22 are electrically connected by connection lines on the printed circuit board 21. Be done. Further, a plurality of battery cells 10 (see FIG. 1) of the battery module 100 are connected to the detection circuit 20 as a power supply of the detection circuit 20.
  • the ground pattern GND1 is formed in the first mounting area 10G except for the mounting area of the detection circuit 20, the formation area of the plurality of connection terminals 22, and the formation area of the connection lines. The ground pattern GND1 is held at the reference potential of the battery module 100.
  • the communication circuit 24 is mounted and the connector 23 is formed, and the communication circuit 24 and the connector 23 are electrically connected on the printed circuit board 21 by a plurality of connection lines. Further, as a power source of the communication circuit 24, a non-driving battery 12 (see FIG. 1) included in the electric vehicle is connected to the communication circuit 24.
  • the ground pattern GND2 is formed in the second mounting area 12G except for the mounting area of the communication circuit 24, the formation area of the connector 23, and the formation areas of the plurality of connection lines. The ground pattern GND2 is held at the reference potential of the non-motor battery 12.
  • the insulating element 25 is mounted to straddle the insulating region 26.
  • the insulating element 25 transmits a signal between the detection circuit 20 and the communication circuit 24 while electrically insulating the ground pattern GND1 and the ground pattern GND2 from each other.
  • a digital isolator or a photocoupler can be used as the insulating element 25.
  • a digital isolator is used as the insulating element 25.
  • the detection circuit 20 and the communication circuit 24 are communicably connected while being electrically isolated by the insulating element 25.
  • a plurality of battery cells 10 can be used as a power supply of the detection circuit 20, and the non-driving battery 12 (see FIG. 1) can be used as a power supply of the communication circuit 24.
  • the detection circuit 20 and the communication circuit 24 can be operated independently and stably.
  • FIG. 11 is an external perspective view showing the arrangement of the wiring used to connect the communication circuit 24 of the battery module 100.
  • FIG. 12 is a schematic plan view of an input / output harness used to connect the communication circuit 24 of the battery module 100.
  • the printed circuit board 21 of FIG. 10 is attached to one of the end face frames 92 of the battery module 100 with a space on the outer surface thereof. As described above, the connector 23 of the printed circuit board 21 is connected to the communication circuit 24.
  • the communication circuit 24 of the battery module 100 of FIG. 11 can be connected to the communication circuit 24 of the other battery module 100.
  • the communication circuit 24 of the battery module 100 of FIG. 11 can transmit the cell information of the battery module 100 to the communication circuit 24 of the other battery module 100 and receive the cell information from the other battery module 100. can do.
  • An input / output harness 23H shown in FIG. 12 is connected to the connector 23 of each battery module 100 in order to connect with the connector 23 of another battery module 100.
  • the input / output harness 23H includes an input connector 23a, a relay connector 23b, an output connector 23c, and harnesses 540 and 550.
  • the input connector 23a has a plurality of input terminals for signal reception.
  • the relay connector 23 b has a plurality of input terminals for signal reception and a plurality of output terminals for signal transmission.
  • the output connector 23c has a plurality of output terminals for signal transmission.
  • a plurality of input terminals of the input connector 23 a and a plurality of input terminals of the relay connector 23 b are connected by a harness 540. Further, a plurality of output terminals of the relay connector 23 b and a plurality of output terminals of the output connector 23 c are connected by a harness 550.
  • the harnesses 540 and 550 are indicated by solid lines and dotted lines, respectively, and in FIG. 12, the plurality of conductor lines 54 and 55 constituting the harnesses 540 and 550 are indicated by plural solid lines and plural dotted lines.
  • the relay connector 23 b is connected to the connector 23 on the printed circuit board 21, and the input connector 23 a and the output connector 23 c are connected to the other battery modules 100, respectively.
  • the communication circuit 24 is input to the communication circuit 24 through the input connector 23a and the relay connector 23b.
  • cell information output from the communication circuit 24 is transmitted to another battery module 100 through the relay connector 23 b and the output connector 23 c.
  • a harness 560 (see FIG. 13) is used for the connection between the input connector 23a and the other battery module 100 and the connection between the output connector 23c and the other battery module 100.
  • the relay connector 23 b is connected to the connector 23 of the printed circuit board 21.
  • both the input connector 23a and the output connector 23c of the input / output harness 23H are disposed on the top surface of the battery module 100.
  • the electrodes 10a and 10b on one side of each battery cell 10 see FIG. 3
  • the FPC board 50 on one side A terminal cover 70 is provided to cover 3).
  • the input connector 23a and the output connector 23c are fixed to the upper surface of the terminal cover 70 by an adhesive or the like.
  • the harnesses 540 and 550 for connecting the communication circuit 24 and the other battery module 100 are pulled upward from the printed circuit board 21.
  • the conductor lines 52 (see FIG. 8) connecting the detection circuit 20 of FIG. 1 and the plurality of bus bars 40 and 40a are printed. It is drawn upward from the circuit board 21.
  • the communication harnesses 540 and 550 and the conductor wires 52 for detecting the voltage are drawn out from the printed circuit board 21 in the same direction (Z direction).
  • the conductor wires 52 and the harnesses 540 and 550 are arranged to be concentrated in one direction of the printed circuit board 21, so that the printed circuit board 21 can be handled easily and the battery module 100 can be easily assembled.
  • the conductor wire 52 and the harnesses 540 and 550 do not exist around the printed circuit board 21 except in one direction, the heat dissipation of the detection circuit 20 and the communication circuit 24 is improved.
  • the upper end portion of the end face frame 92 holding the printed circuit board 21 is formed with a notch 92 n for passing the conductor wire 52 and the harnesses 540 and 550.
  • the conductor wire 52 and the harnesses 540 and 550 can be easily pulled upward by passing the cutout 92 n from the printed circuit board 21. In this case, assembly of the battery module 100 is easier.
  • FIG. 13 is a schematic plan view showing one connection example of the communication circuit 24 of the battery module 100. As shown in FIG.
  • communication circuits 24 of four battery modules 100 (four in this example) and a battery ECU 101 are connected in series.
  • illustration of power supply lines 501 (see FIG. 1) connecting the battery modules 100 is omitted.
  • the battery ECU 101 has an input connector 101a and an output connector 101c.
  • the battery modules 100 connected to the output connector 101c of the battery ECU 101 and the battery modules 100 connected to the input connector 101a of the battery ECU 101 will be referred to as the first to fourth battery modules 100 in order.
  • a harness 560 connects the output connector 101 c of the battery ECU 101 and the input connector 23 a of the first battery module 100. Further, the output connector 23 c of the first battery module 100 and the input connector 23 a of the second battery module 100 are connected by the harness 560. Similarly, the output connector 23 c of the second battery module 100 and the input connector 23 a of the third battery module 100 are connected by the harness 560. A harness 560 connects the output connector 23 c of the third battery module 100 and the input connector 23 a of the fourth battery module 100. A harness 560 connects the output connector 23 c of the fourth battery module 100 and the input connector 101 a of the battery ECU 101.
  • the cell information of the first battery module 100 is transmitted to the input connector 23a of the second battery module 100 via the output connector 23c and the harness 560. Will be sent.
  • the cell information received by the input connector 23a is given to the communication circuit 24 via the harness 540 (FIG. 12), the relay connector 23b (FIG. 12), and the connector 23 (FIG. 10). Further, the cell information output from the communication circuit 24 is input connector 23a of the second battery module 100 via connector 23, relay connector 23b (FIG. 12), harness 550 (FIG. 12), output connector 23c and harness 560. Given to
  • the cell information output from the communication circuit 24 is the battery ECU 101 via the connector 23, the relay connector 23b (FIG. 12), the harness 550 (FIG. 12), the output connector 23c and the harness 560. Is sent to the input connector 101a of
  • the battery ECU 101 can centrally manage cell information of a plurality of battery modules 100.
  • the battery ECU 101 is made up of two battery modules 100, the wiring for transmitting cell information of the plurality of battery modules 100 to the battery ECU 101 is simplified.
  • the communication circuits 24 of the plurality of battery modules 100 and the battery ECU 101 are connected in series, and the communication circuits 24 of each battery module 100 detect the detected cell information as adjacent batteries. While transmitting to the communication circuit 24 of the module 100 or the battery ECU 101, and receiving cell information from the communication circuit 24 or the battery ECU 101 of the adjacent battery module 100, the present invention is not limited thereto.
  • the communication circuit 24 of each battery module 100 may be connected to the battery ECU 101 via a bus.
  • the communication circuit 24 of each battery module 100 transmits the detected cell information to the battery ECU 101 via the bus. Therefore, the communication circuit 24 may not have a communication function for receiving cell information.
  • the communication circuit 24 of each battery module 100 may be individually connected in parallel to the battery ECU 101 via a harness. In this case, the communication circuit 24 of each battery module 100 transmits the detected cell information to the battery ECU 101 via the harness. Therefore, the communication circuit 24 may not have a communication function for receiving cell information.
  • the battery ECU 101 calculates the charge amount of each battery cell 10 from the cell information of each battery cell 10.
  • the switching element SW connected to the battery cell 10 with a large charge amount (FIG. 2) Turn on.
  • the charge stored in the battery cell 10 is discharged through the resistor R (FIG. 2).
  • the battery ECU 101 turns off the switching element SW connected to the battery cell 10. In this manner, the charge amounts of all the battery cells 10 can be maintained substantially uniformly. Thereby, overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
  • the battery ECU 101 calculates the charge amount of each of the battery cells 10, detects the battery cell 10 having a large charge amount, and controls the switching element SW.
  • the communication circuit 24 of each battery module 100 may perform calculation of the charge amount of each battery cell 10, detection of the battery cell 10 having a large charge amount, and control of the switching element SW.
  • FIG. 14 is a schematic plan view showing an example of the detailed configuration of the battery system 500.
  • the battery system 500 includes four battery modules 100, a battery ECU 101, a contactor 102, a high voltage (HV) connector 510, and a service plug 520.
  • HV high voltage
  • the four battery modules 100 will be referred to as battery modules 100A, 100B, 100C, and 100D, respectively.
  • the end face frame 92 to which the printed circuit board 21 (see FIG. 10) is attached is called an end face frame 92a, and the end face to which the printed circuit board 21 can not be attached.
  • the frame 92 is called an end face frame 92b.
  • the end face frame 92a is hatched.
  • the battery modules 100A to 100D, the battery ECU 101, the contactor 102, the HV connector 510, and the service plug 520 are housed in a box-shaped casing 530.
  • the casing 530 has side walls 530a, 530b, 530c, and 530d. Side walls 530a, 530c are parallel to one another, and side walls 530b, 530d are parallel to one another and perpendicular to side walls 530a, 530c.
  • the battery modules 100A and 100B are arranged at predetermined intervals.
  • the battery modules 100A and 100B are arranged such that the end surface frame 92b of the battery module 100A and the end surface frame 92a of the battery module 100B face each other.
  • the battery modules 100C and 100D are arranged at predetermined intervals.
  • the battery modules 100A and 100B are arranged such that the end surface frame 92a of the battery module 100C and the end surface frame 92b of the battery module 100D face each other.
  • the battery modules 100A and 100B arranged to line up with each other will be referred to as a module row T1
  • the battery modules 100C and 100D arranged to line up with each other will be referred to as a module row T2.
  • module row T1 is arranged along side wall 530a, and module row T2 is arranged in parallel with module row T1.
  • the end surface frame 92a of the battery module 100A of the module row T1 is directed to the side wall 530d, and the end surface frame 92b of the battery module 100B is directed to the side wall 530b.
  • the end surface frame 92b of the battery module 100C of the module row T2 is directed to the side wall 530d, and the end surface frame 92a of the battery module 100D is directed to the side wall 530b.
  • battery ECU 101, service plug 520, HV connector 510 and contactor 102 are arranged in this order from side wall 530d to side wall 530b.
  • the potential of the positive electrode 10a (see FIG. 4) of the battery cell 10 adjacent to the end face frame 92a is the highest
  • the negative electrode 10b of the battery cell 10 adjacent to the end face frame 92b (see FIG. 4) ) Is the lowest.
  • the plus electrode 10a having the highest potential in each of the battery modules 100A to 100D is referred to as a high potential electrode 10A
  • the minus electrode 10b having the lowest potential in each of the battery modules 100A to 100D is referred to as a low potential electrode 10B.
  • the low potential electrode 10B of the battery module 100A and the high potential electrode 10A of the battery module 100B are connected to each other via the strip-like bus bar 501a as the power supply line 501 of FIG.
  • the high potential electrode 10A of the battery module 100C and the low potential electrode 10B of the battery module 100D are connected to each other via the strip-like bus bar 501a as the power supply line 501 of FIG.
  • the high potential electrode 10A of the battery module 100A is connected to the service plug 520 through the power supply line Q1 as the power supply line 501 of FIG. 1, and the low potential electrode 10B of the battery module 100C is through the power supply line Q2 as the power supply line 501 of FIG. Are connected to the service plug 520.
  • the battery modules 100A to 100D are connected in series. In this case, the potential of the high potential electrode 10A of the battery module 100D is the highest, and the potential of the low potential electrode 10B of the battery module 100B is the lowest.
  • the service plug 520 is turned off by an operator, for example, at the time of maintenance of the battery system 500.
  • the series circuit of the battery modules 100A and 100B and the series circuit of the battery modules 100C and 100D are electrically separated.
  • the total voltage of the series circuit including the battery modules 100A and 100B is equal to the total voltage of the series circuit including the battery modules 100C and 100D. This prevents the generation of a high voltage in battery system 500 during maintenance.
  • the low potential electrode 10B of the battery module 100B is connected to the contactor 102 through the power supply line Q3 as the power supply line 501 of FIG. 1, and the high potential electrode 10A of the battery module 100D is through the power supply line Q4 as the power supply line 501 of FIG. It is connected to the contactor 102.
  • the contactor 102 is connected to the HV connector 510 via the power supply lines Q5 and Q6 as the power supply line 501 in FIG.
  • the HV connector 510 is connected to a load such as a motor of the electric vehicle.
  • the battery module 100B is connected to the HV connector 510 via the power supply lines Q3 and Q5, and the battery module 100D is connected to the HV connector 510 via the power supply lines Q4 and Q6.
  • the battery module 100A to 100D is supplied to the load.
  • the contactor 102 When the contactor 102 is turned off, the connection between the battery module 100B and the HV connector 510 and the connection between the battery module 100D and the HV connector 510 are cut off.
  • connection of the communication circuit 24 and the battery ECU 101 of the battery modules 100A to 100D is similar to the connection shown in FIG.
  • the detection circuit 20 and the communication circuit 24 are mounted on the common printed circuit board 21. Be done. Therefore, the wiring between the detection circuit 20 and the communication circuit 24 is short and simple. Thereby, the arrangement space of the detection circuit 20 and the communication circuit 24 is reduced.
  • charging / discharging of each battery cell 10 of the plurality of battery modules 100 can be individually controlled by the battery ECU 101. Therefore, the charge amount of the plurality of battery cells 10 of the plurality of battery modules 100 can be maintained substantially equally. Thereby, overcharge and overdischarge of some battery cells 10 can be prevented. As a result, deterioration of the battery cell 10 can be prevented.
  • the battery ECU 101 can acquire cell information of a plurality of battery modules 100 by being connected to two battery modules 100 without being connected to all the battery modules 100. Therefore, the wiring for transmitting the cell information of a plurality of battery modules 100 to battery ECU 101 is simplified.
  • the battery module 100 (100A to 100D) and the battery system 500 according to the second embodiment are different from the battery module 100 and the battery system 500 according to the first embodiment. explain.
  • FIG. 15 is an explanatory view showing a connection between the plurality of printed circuit boards 21 and the battery ECU 101 in the battery system 500 according to the second embodiment.
  • FIG. 16 is a schematic plan view of an input / output harness used to connect the communication circuit 24 of the battery module 100 according to the second embodiment.
  • FIG. 17 is a schematic plan view showing an example of a detailed configuration of a battery system 500 according to the second embodiment.
  • the connector 23 on each printed circuit board 21 is connected to two signal terminals and two power terminals.
  • the battery ECU 101 has a first input / output connector 101A and a second input / output connector 101C in place of the input connector 101a and the output connector 101c of FIG.
  • the battery ECU 101 further includes an MPU (microprocessor) 97 and a switch circuit 98.
  • the first input / output connector 101A is connected to the MPU 97 by two connection lines.
  • the second input / output connector 101C is connected to the non-driving battery 12 by two connection lines through the switch circuit 98.
  • the second input / output connector 101C is connected to the MPU 97 by two connection lines.
  • the MPU 97 is communicably connected to the main control unit 300 of the electrically powered vehicle via the bus 104. Power is supplied to the MPU 97 and the switch circuit 98 from the non-power battery 12. The on / off of the switch circuit 98 is controlled by the MPU 97. When the switch circuit 98 is on, the power from the non-power battery 12 is output from the second input / output connector 101C via the switch circuit 98.
  • the input / output harness 23I comprises a first input / output connector 23A, a relay connector 23B, a second input / output connector 23C, and harnesses 570, 580.
  • the first input / output connector 23A has a plurality of communication and power terminals.
  • the relay connector 23B has a plurality of terminals for communication and power.
  • the second input / output connector 23C has a plurality of communication and power terminals.
  • a plurality of terminals of the first input / output connector 23A and a plurality of terminals of the relay connector 23B are connected by a harness 570.
  • the plurality of terminals of the relay connector 23B and the plurality of terminals of the second input / output connector 23C are connected by the harness 580.
  • the harness 570 is constituted by two communication lines 56 and two power lines 57
  • the harness 580 is constituted by two communication lines 58 and two power lines 59.
  • the two communication lines 56 and the two communication lines 58 are electrically connected via the terminals of the relay connector 23B.
  • the differential signal input to the first input / output connector 23A is output from the relay connector 23B via the two communication lines 56, and the second input via the two communication lines 58. It is outputted from the output connector 23C.
  • the differential signal input to the second input / output connector 23C is output from the relay connector 23B via the two communication lines 58, and the first input via the two communication lines 56. It is output from the output connector 23A.
  • the two power supply lines 57 and the two power supply lines 59 are electrically connected via the terminals of the relay connector 23B.
  • the power input to the first input / output connector 23A is output from the relay connector 23B via the two power supply lines 57, and the second input / output connector via the two power supply lines 59. It is output from 23C.
  • a plurality of input / output harnesses 23I are used corresponding to the plurality of battery modules 100A to 100D.
  • the first and second input / output connectors 23A and 23C of each input / output harness 23I are each battery It is disposed on the top surface of the modules 100A to 100D.
  • a plurality of harnesses 590 including a plurality of connection lines are used to connect the plurality of input / output harnesses 23I.
  • Each harness 590 includes two connection lines for communication and two connection lines for power.
  • the relay connectors 23B of the input / output harness 23I corresponding to the battery modules 100A to 100D are connected to the connectors 23 of the battery modules 100A to 100D, respectively.
  • the first input / output connector 23A of the input / output harness 23I corresponding to the battery module 100A is connected to the second input / output connector 101C of the battery ECU 101 via the harness 590.
  • the second input / output connector 23C of the input / output harness 23I corresponding to the battery module 100A and the first input / output connector 23A of the input / output harness 23I corresponding to the battery module 100B are connected via the harness 590.
  • the second input / output connector 23C of the input / output harness 23I corresponding to the battery module 100B and the first input / output connector 23A of the input / output harness 23I corresponding to the battery module 100D are connected via the harness 590.
  • the second input / output connector 23C of the input / output harness 23I corresponding to the battery module 100D and the first input / output connector 23A of the input / output harness 23I corresponding to the battery module 100C are connected via the harness 590.
  • a termination resistor is connected to the second input / output connector 23C of the input / output harness 23I corresponding to the battery module 100C. Similarly, a termination resistor is connected to the first input / output connector 101A of the battery ECU 101.
  • a bus is configured by the communication lines 56 and 58 of the plurality of input / output harnesses 23I and the plurality of harnesses 590.
  • the MPU 97 of the battery ECU 101 can communicate with the communication circuit 24 of the battery modules 100A to 100D. Further, the power of the non-driving battery 12 can be supplied to the communication circuit 24 of the battery modules 100A to 100D through the switch circuit 98 of the battery ECU 101.
  • a battery module 100 and a battery system 500 according to a third embodiment will be described in terms of differences from the battery module 100 and the battery system 500 according to the first embodiment. Also in the battery system 500 of the present embodiment and the fourth and fifth embodiments described later, as shown in FIG. 13, the communication circuit 24 of the four battery modules 100 and the battery ECU 101 are connected in series. .
  • FIG. 18 is a schematic plan view of the printed circuit board 21a provided in the battery module 100 according to the third embodiment
  • FIG. 19 is a schematic plan view of the FPC board 50a connected to the printed circuit board 21a of FIG. It is.
  • the printed circuit board 21a has a substantially rectangular shape.
  • the detection circuit 20, the communication circuit 24, and the insulating element 25 are mounted on the printed circuit board 21a. Further, on the printed circuit board 21a, two sets of a plurality of connection terminals 22, 27, 28 and an input connector 23a are formed. The illustration of the resistor R and the switching element SW in FIG. 2 is omitted.
  • the printed circuit board 21a has a first mounting area 10G, a second mounting area 12G, and a strip-shaped insulating area 26.
  • the second mounting area 12G is formed substantially at the center of the upper portion of the printed circuit board 21a.
  • the insulating region 26 is formed to extend along the second mounting region 12G.
  • the first mounting area 10G is formed on the remaining portion of the printed circuit board 21a.
  • the first mounting area 10G and the second mounting area 12G are separated from each other by the insulating area 26.
  • the first mounting area 10G and the second mounting area 12G are electrically isolated by the insulating area 26.
  • the detection circuit 20 is mounted and two sets of connection terminals 22 are formed, and the detection circuit 20 and the connection terminals 22 are electrically connected by connection lines on the printed circuit board 21a. Ru. Further, a plurality of battery cells 10 (see FIG. 1) of the battery module 100 are connected to the detection circuit 20 as a power supply of the detection circuit 20.
  • the ground pattern GND1 is formed in the first mounting area 10G except for the mounting area of the detection circuit 20, the formation area of the connection terminal 22, and the formation area of the connection line. The ground pattern GND1 is held at the reference potential of the battery module 100.
  • the communication circuit 24 is mounted and the input connector 23a and the two sets of connection terminals 27 and 28 are formed.
  • the communication circuit 24 and the input connector 23a and the connection terminals 27 and 28 are printed circuits They are electrically connected by connection lines on the substrate 21a.
  • a non-driving battery 12 included in the electric vehicle is connected to the communication circuit 24.
  • a ground pattern GND2 is formed in the second mounting area 12G except for the mounting area of the communication circuit 24, the formation area of the input connector 23a, the formation areas of the connection terminals 27 and 28, and the formation areas of the connection lines.
  • the ground pattern GND2 is held at the reference potential of the non-motor battery 12.
  • the insulating element 25 is mounted to straddle the insulating region 26.
  • the insulating element 25 transmits a signal between the detection circuit 20 and the communication circuit 24 while electrically insulating the ground pattern GND1 and the ground pattern GND2 from each other.
  • Two FPC boards 50 a are connected to the two sets of connection terminals 22, 27, 28 of the printed circuit board 21 a.
  • the FPC board 50a is provided with a plurality of conductor lines 52, 53, 55.
  • nine conductor lines 52, two conductor lines 53 and three conductor lines 55 are provided on one FPC board 50a.
  • nine conductor wires 52, two conductor wires 53 and four conductor wires 55 are provided on the other FPC board 50a.
  • the widths of the two FPC boards 50a can be formed approximately equal by making the numbers of the conductor lines 52, 53, and 55 provided on the two FPC boards 50a substantially equal.
  • the conductor lines 52 connect the bus bars 40 and 40a and the connection terminals 22 of the printed circuit board 21a. Thereby, each voltage of the battery cell 10 (see FIG. 1) is detected by the detection circuit 20 through the bus bars 40 and 40 a, the conductor wire 52 and the connection terminal 22.
  • the communication circuit 24 calculates the terminal voltage of each battery cell 10 based on the voltage detected by the detection circuit 20, and calculates the current flowing through the battery module 100.
  • the conductor line 53 connects the thermistor 11 and the connection terminal 27 of the printed circuit board 21a. Thereby, the signal output from the thermistor 11 is given to the communication circuit 24 through the conductor wire 53 and the connection terminal 27. Thereby, the communication circuit 24 acquires the temperature of each battery module.
  • the conductor line 55 connects the output connector 23c and the connection terminal 28 of the printed circuit board 21a.
  • the input connector 23a of FIG. 18 and the output connector 23c of FIG. 19 are respectively connected to the adjacent battery modules 100 via a harness 560.
  • each battery module 100 can transmit cell information to another battery module 100 or battery ECU 101, and the other Cell information can be received from the battery module 100.
  • conductor wire 52 for detecting the voltage of each battery cell 10 and the temperature of battery cell 10 are obtained.
  • Conductor wires 53 and conductor wires 55 for communicating with other battery modules 100 are formed on the two FPC boards 50 a.
  • the conductor wires 52, 53, 55 can be handled integrally. Thereby, assembly of the battery module 100 is further facilitated.
  • the conductor lines 52, 53, 55 concentrate on the FPC board 50a, a large space where the conductor lines 52, 53, 55 do not exist around the plurality of battery cells 10 is secured. Thereby, the heat dissipation of a plurality of battery cells 10 is further improved.
  • a battery module 100 and a battery system 500 according to a fourth embodiment will be described in terms of differences from the battery module 100 and the battery system 500 according to the first embodiment.
  • FIG. 20 is a schematic plan view of the printed circuit board 21b provided in the battery module 100 according to the fourth embodiment.
  • the printed circuit board 21 has a substantially rectangular shape, and has one surface and the other surface.
  • 20 (a) and 20 (b) show one surface and the other surface of the printed circuit board 21b, respectively.
  • the detection circuit 20, the communication circuit 24, and the insulating element 25 are mounted and the connection terminal 22 and the connector 23 are formed on one surface of the printed circuit board 21b.
  • a plurality of resistors R are mounted, and a connection terminal 22 is formed.
  • the illustration of the switching element SW in FIG. 2 is omitted.
  • the printed circuit board 21b has a first mounting area 10G, a second mounting area 12G, and a strip-shaped insulating area 26 on one side.
  • the plurality of resistors R on the other surface of the printed circuit board 21 b are disposed above the positions corresponding to the detection circuit 20 and the communication circuit 24. Thereby, the heat generated from the resistor R can be efficiently dissipated. Further, the heat generated from the resistor R can be prevented from being conducted to the detection circuit 20 and the communication circuit 24. As a result, malfunction and deterioration due to the heat of the detection circuit 20 and the communication circuit 24 can be prevented.
  • FIG. 21 is an external perspective view showing a battery module 100 according to a fifth embodiment.
  • the battery module 100 of FIG. 21 will be described in terms of differences from the battery module 100 of FIG. 3.
  • each battery cell 10 has a plus electrode 10 a and a minus electrode 10 b on the upper surface portion so as to be aligned along the Y direction.
  • Each of the electrodes 10a and 10b is provided to protrude upward.
  • the flat bus bar 40p is fitted into the two adjacent electrodes 10a and 10b. In that state, the electrodes 10a and 10b are laser welded to the bus bar 40p. Thereby.
  • a plurality of battery cells 10 are connected in series.
  • a substantially rectangular battery block 10BB is formed by the plurality of battery cells 10, the pair of end face frames 92, the pair of upper end frames 93, and the pair of lower end frames 94.
  • the plurality of bus bars 40p are arranged in two rows along the X direction.
  • Two FPC boards 50 are disposed inside the two rows of bus bars 40p.
  • One FPC board 50 is disposed between the degassing valves 10v of the plurality of battery cells 10 and the plurality of bus bars 40p in one row so as not to overlap the degassing valves 10v of the plurality of battery cells 10 .
  • the degassing valves 10v of the plurality of battery cells 10 and the plurality of bus bars 40p of the other single row so that the other FPC board 50 does not overlap the degassing valves 10v of the plurality of battery cells 10 Be placed.
  • One FPC board 50 is connected in common to a plurality of bus bars 40p in one row.
  • the other FPC board 50 is commonly connected to the other one row of bus bars 40p.
  • Each FPC board 50 is folded downward at the upper end portion of one end face frame 92 and connected to the printed circuit board 21.
  • Each FPC board 50 has a configuration similar to that of the FPC board 50 of FIG. 7, and is double-folded at a fold line along the X direction. In this case, even if the width of each FPC board 50 is large, it is prevented that each FPC board 50 overlaps with the degassing valve 10 v by bending each FPC board 50. As a result, when the pressure inside the battery cell 10 rises to a predetermined value and the gas is discharged from the degassing valve 10v, each FPC board 50 is prevented from obstructing the discharge of the gas. In addition, damage to the FPC board 50 due to the discharge of gas can be prevented.
  • a protective member 95 having a pair of side portions and a bottom portion is attached to the end face frame 92 so as to protect both ends and the lower portion of the printed circuit board 21.
  • the printed circuit board 21 is protected by being covered with a protective member 95.
  • the protective member 95 may not be provided.
  • a detection circuit 20, a communication circuit 24, and a connector 23 are provided on the printed circuit board 21.
  • a cooling plate 96 is provided in contact with the lower surfaces of the plurality of battery cells 10.
  • the cooling plate 96 has a refrigerant inlet 96a and a refrigerant outlet 96b. Inside the cooling plate 96, a circulation path leading to the refrigerant inlet 96a and the refrigerant outlet 96b is formed.
  • a refrigerant such as cooling water flows into the refrigerant inlet 96a
  • the refrigerant passes through the circulation path inside the cooling plate 96 and flows out from the refrigerant outlet 96b.
  • the cooling plate 96 is thereby cooled. As a result, the plurality of battery cells 10 are cooled.
  • the communication circuit 24 of the battery module 100 is connected to the other battery by connecting the connector 23 of FIG. 21 to the connector 23 of the other battery module 100 using the input / output harness 23H of FIG. It can be connected to the communication circuit 24 of the module 100.
  • a harness 560 (see FIG. 13) is used for the connection between the input connector 23a and the other battery module 100 and for the connection between the output connector 23c and the other battery module 100.
  • the communication circuit 24 of the battery module 100 can transmit the cell information of the battery module 100 to the communication circuit 24 of the other battery module 100, and can receive the cell information from the other battery module 100. it can.
  • the harnesses 540 and 550 of the input / output harness 23H are respectively shown by a solid line and a dotted line.
  • the input connector 23a and the output connector 23c of the input / output harness 23H are both disposed on the top surface of the battery block 10BB.
  • the harnesses 540 and 550 for connecting the communication circuit 24 and the other battery module 100 are pulled upward from the printed circuit board 21.
  • the conductor wire 52 (see FIG. 8) connecting the detection circuit 20 and the plurality of bus bars 40 and 40a is drawn upward from the printed circuit board 21.
  • the communication harnesses 540 and 550 and the conductor wires 52 for detecting the voltage are drawn out from the printed circuit board 21 in the same direction (Z direction).
  • the conductor wires 52 and the harnesses 540 and 550 are arranged to be concentrated in one direction of the printed circuit board 21, so that the printed circuit board 21 can be handled easily and the battery module 100 can be easily assembled.
  • the conductor wire 52 and the harnesses 540 and 550 do not exist around the printed circuit board 21 except in one direction, the heat dissipation of the detection circuit 20 and the communication circuit 24 is improved.
  • the terminal cover 70 is provided on the battery module 100 so as to cover the electrodes 10a and 10b on one side of each battery cell 10 and the FPC board 50 on one side.
  • the output connector 23c may be fixed to the upper surface of the terminal cover 70.
  • the input connector 23a and the output connector 23c are disposed on the top surface of the end face frame 92 to which the printed circuit board 21 is attached or the top surface of the battery cell 10 in the vicinity It is not limited. Input connector 23a and output connector 23c may be arranged at other positions on the top surface of battery block 10BB.
  • the input connector 23a is disposed on the top surface of the end face frame 92 to which the printed circuit board 21 is attached or in the vicinity of the top face of the battery cell 10
  • the output connector 23c is on the end face frame 92 to which the printed circuit board 21 is not attached. It may be disposed at a position on the top surface of the battery cell 10 at or near the top surface.
  • the harness 560 connecting between the input connector 23a and the other battery module 100 can be shortened. Further, the harness 560 connecting between the output connector 23c and the other battery module 100 can be shortened.
  • a battery module 100 and a battery system 500 according to a sixth embodiment will be described in terms of differences from the battery module 100 and the battery system 500 according to the first embodiment.
  • FIG. 22 is an external perspective view showing a battery module 100 according to the sixth embodiment
  • FIG. 23 is one side view of the battery module 100 of FIG. 22
  • FIG. FIG. 10 is another side view of the battery module 100 of FIG.
  • the battery module 100 includes a battery block 10BB, a printed circuit board 21c, a thermistor 11, and an FPC board 50b.
  • a detection circuit 20, a communication circuit 24, and a connector 23 are provided on the printed circuit board 21c.
  • the battery block 10BB mainly includes a plurality of cylindrical battery cells 10 and a pair of battery holders 90 for holding the plurality of battery cells 10.
  • Each battery cell 10 has a cylindrical outer shape (so-called cylindrical shape) having opposite end surfaces.
  • a positive electrode is formed on one end face of the battery cell 10. Further, a negative electrode is formed on the other end face of the battery cell 10.
  • the plurality of battery cells 10 are arranged in parallel such that their axes are parallel to one another. In the example of FIGS. 22 to 24, the axial centers of the battery cells 10 are parallel to the Y direction. Of the plurality of battery cells 10, half (6 in this example) of the battery cells 10 are disposed in the upper stage, and the other half (6 in this example) of the battery cells 10 are disposed in the lower stage.
  • the plurality of battery cells 10 are arranged such that the positional relationship between the plus electrode and the minus electrode between the two adjacent battery cells 10 is opposite to each other.
  • the plus electrode of one battery cell 10 of the two adjacent battery cells 10 and the minus electrode of the other battery cell 10 are adjacent to each other, and the minus electrode of one battery cell 10 and the other battery cell 10 And the plus electrode of the
  • the battery holder 90 is made of, for example, a substantially rectangular plate-like member made of resin.
  • the battery holder 90 has one side and the other side.
  • one surface and the other surface of the battery holder 90 will be referred to as an outer surface and an inner surface, respectively.
  • a pair of battery holders 90 are arranged to sandwich the plurality of battery cells 10. In this case, one battery holder 90 is disposed to face one end surface of each battery cell 10, and the other battery holder 90 is disposed to face the other end surface of each battery cell 10.
  • Holes are formed at four corners of the battery holder 90, and both ends of the rod-like fastening member 13 are inserted through the holes. Male screws are formed at both ends of the fastening member 13. In this state, by attaching the nuts N to both ends of the fastening member 13, the plurality of battery cells 10 and the pair of battery holders 90 are integrally fixed. Further, in the battery holder 90, three holes 99 are formed at equal intervals along the longitudinal direction. The conductor wire 53 a is inserted into the hole 99. In this example, the longitudinal direction of the battery holder 90 is parallel to the X direction.
  • a virtual rectangular solid surrounding battery block 10BB is considered.
  • the virtual surface opposite to the outer peripheral surface of the battery cell 10 located at the upper and lower ends at one end in the X direction is called side Ea of the battery block 10BB, and the upper end at the other end in the X direction
  • the virtual surface which opposes the outer peripheral surface of the battery cell 10 located in a lower stage is called side Eb of battery block 10BB.
  • the virtual surface facing one end surface of the plurality of battery cells 10 in the Y direction is referred to as the side surface Ec of the battery block 10BB, and the other end surface of the plurality of battery cells 10 in the Y direction
  • the virtual surface opposite to is referred to as the side surface Ed of the battery block 10BB.
  • the virtual surface facing the outer peripheral surface of the upper plurality of battery cells 10 is called the side surface Ee of the battery block 10BB, and the virtual surface facing the outer peripheral surfaces of the lower plurality of battery cells 10
  • the surface is referred to as a side surface Ef of the battery block 10BB.
  • the side surfaces Ea and Eb of the battery block 10BB are perpendicular to the alignment direction (X direction) of the plurality of upper and lower battery cells 10. That is, the side surfaces Ea and Eb of the battery block 10BB are surfaces parallel to the YZ plane and facing each other.
  • the side surfaces Ec and Ed of the battery block 10BB are perpendicular to the axial direction (Y direction) of each battery cell 10. That is, the side surfaces Ec and Ed of the battery block 10BB are surfaces parallel to the XZ plane and facing each other.
  • the side surfaces Ee and Ef of the battery block 10BB are parallel to the alignment direction (X direction) of the plurality of upper and lower battery cells 10 and the axial direction (Y direction) of each battery cell 10. That is, side surfaces Ee and Ef of battery block 10BB are surfaces parallel to the XY plane and facing each other.
  • One of the plus electrode and the minus electrode of each battery cell 10 is disposed on the side surface Ec of the battery block 10BB, and the other is disposed on the side surface Ed of the battery block 10BB.
  • a plurality of battery cells 10 are connected in series by a plurality of bus bars 40 and hexagonal bolts 14.
  • a plurality of holes are formed to correspond to the plurality of battery cells 10 in the upper and lower stages.
  • the plus electrode and the minus electrode of each battery cell 10 are respectively fitted into the corresponding holes of the pair of battery holders 90. Thereby, the plus electrode and the minus electrode of each battery cell 10 project from the outer surfaces of the pair of battery holders 90.
  • the battery cells 10 are arranged such that the positional relationship between the positive electrode and the negative electrode between the adjacent battery cells 10 is opposite to each other. Between 10, the plus electrode of one battery cell 10 and the minus electrode of the other battery cell 10 are adjacent, and the minus electrode of one battery cell 10 and the plus electrode of the other battery cell 10 are adjacent. In this state, the bus bar 40 is attached to the adjacent plus and minus electrodes such that the plurality of battery cells 10 are connected in series.
  • the battery cells 10 closest to the side surface Ea to the battery cells 10 closest to the side surface Eb are the first to sixth battery cells Call it 10
  • the battery cell 10 closest to side Eb to the battery cell 10 closest to side Ea will be referred to as the seventh to twelfth battery cells 10 .
  • the common bus bar 40 is attached to the minus electrode of the first battery cell 10 and the plus electrode of the second battery cell 10. Further, the common bus bar 40 is attached to the minus electrode of the second battery cell 10 and the plus electrode of the third battery cell 10. Similarly, a common bus bar 40 is attached to the negative electrode of each odd-numbered battery cell 10 and the positive electrode of the even-numbered battery cell 10 adjacent thereto. A common bus bar 40 is attached to the negative electrode of each even-numbered battery cell 10 and the positive electrode of the odd-numbered battery cell 10 adjacent thereto.
  • bus bar 501a for supplying power to the outside as the power supply line 501 of FIG. 1 is attached to the plus electrode of the first battery cell 10.
  • bus bar 501b for supplying power to the outside as the power supply line 501 of FIG. 1 is attached to the negative electrode of the twelfth battery cell 10.
  • the other ends of the bus bars 501a and 501b are drawn out in the alignment direction (X direction) of the plurality of battery cells 10.
  • the printed circuit board 21c including the detection circuit 20, the communication circuit 24, and the connector 23 is attached to the side surface Ea of the battery block 10BB.
  • a long FPC board 50b is provided to extend from the side surface Ec of the battery block 10BB to the side surface Ea.
  • a long FPC board 50b is provided so as to extend from the side surface Ed of the battery block 10BB to the side surface Ea.
  • the FPC board 50b has a conductor line 53 (see FIG. 19) for connecting the plurality of thermistors 11 and the connection terminal 27 (see FIG. 25 described later) of the printed circuit board 21c.
  • the configuration is the same as that of the FPC board 50.
  • the PTC element 60 is disposed on the FPC board 50b so as to approach each of the plurality of bus bars 40 and 40a.
  • one FPC board 50b is arranged to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the center on the side surface Ec of the battery block 10BB.
  • the FPC board 50 b is commonly connected to the plurality of bus bars 40.
  • the other FPC board 50b is arranged to extend in the alignment direction (X direction) of the plurality of battery cells 10 at the central portion on the side surface Ed of the battery block 10BB.
  • the FPC board 50b is commonly connected to the plurality of bus bars 40 and 40a.
  • the FPC board 50b on the side surface Ec is folded at a right angle toward the side surface Ea at one end of the side surface Ec of the battery block 10BB, and is connected to the printed circuit board 21c. Further, the FPC board 50b on the side face Ed is folded back at a right angle toward the side face Ea at one end of the side face Ed of the battery block 10BB, and is connected to the printed circuit board 21c.
  • the thermistor 11 is connected to a conductor line provided on the FPC board 50b via the conductor line 53a.
  • the bus bars 40 and 40a and the thermistor 11 of the battery module 100 are electrically connected to the printed circuit board 21c by the conductor lines formed on the FPC board 50b.
  • FIG. 25 is a schematic plan view showing one configuration example of a printed circuit board 21c in the sixth embodiment.
  • the printed circuit board 21c has a substantially rectangular shape, and has one surface and the other surface.
  • FIGS. 25 (a) and 25 (b) show one surface and the other surface of the printed circuit board 21c, respectively. Holes H are formed at the four corners of the printed circuit board 21c.
  • the printed circuit board 21c has a first mounting area 10G, a second mounting area 12G, and a strip-shaped insulating area 26 on one side.
  • the second mounting area 12G is formed on the top of the printed circuit board 21c.
  • the insulating region 26 is formed to extend along the second mounting region 12G.
  • the first mounting area 10G is formed on the remaining portion of the printed circuit board 21c.
  • the first mounting area 10G and the second mounting area 12G are separated from each other by the insulating area 26. Thus, the first mounting area 10G and the second mounting area 12G are electrically isolated by the insulating area 26.
  • the detection circuit 20 is mounted and two sets of connection terminals 22 are formed, and the detection circuit 20 and the connection terminals 22 are electrically connected by a connection line on the printed circuit board 21c. Ru. Further, as a power supply of the detection circuit 20, a plurality of battery cells 10 (see FIG. 22) of the battery module 100 are connected to the detection circuit 20.
  • the ground pattern GND1 is formed in the first mounting area 10G except for the mounting area of the detection circuit 20, the formation area of the connection terminal 22, and the formation area of the connection line. The ground pattern GND1 is held at the reference potential of the battery module 100.
  • the communication circuit 24 is mounted and the connector 23 and the two sets of connection terminals 27 are formed, and the communication circuit 24 and the connector 23 and the connection terminals 27 are connected on the printed circuit board 21c. Electrically connected.
  • the relay connector 23b of the input / output harness 23H of FIG. 12 is attached to the connector 23.
  • a non-driving battery 12 included in the electric vehicle is connected to the communication circuit 24.
  • a ground pattern GND2 is formed in the second mounting area 12G except for the mounting area of the communication circuit 24, the formation area of the connector 23, the formation area of the connection terminal 27, and the formation area of the connection line.
  • the ground pattern GND2 is held at the reference potential of the non-motor battery 12.
  • the insulating element 25 is mounted to straddle the insulating region 26.
  • the insulating element 25 transmits a signal between the detection circuit 20 and the communication circuit 24 while electrically insulating the ground pattern GND1 and the ground pattern GND2 from each other.
  • Two FPC boards 50b are connected to the two sets of connection terminals 22 and 27 of the printed circuit board 21c.
  • the FPC board 50b is provided with a plurality of conductor lines.
  • the bus bars 40 and 40a and the connection terminals 22 of the printed circuit board 21c are connected by a plurality of conductor lines provided on the FPC board 50b.
  • each voltage of the battery cell 10 is detected by the detection circuit 20 through the bus bars 40 and 40a, the conductor lines provided on the FPC board 50b, and the connection terminals 22.
  • the conductor lines 53a connected to the thermistor 11 and the connection terminals 27 of the printed circuit board 21c are connected by a plurality of conductor lines provided on the FPC board 50b.
  • the signal output from the thermistor 11 is given to the communication circuit 24 through the conductor wire 53a, the conductor wire 53 provided on the FPC board 50b, and the connection terminal 27.
  • the communication circuit 24 acquires the temperature of each battery module.
  • a plurality of resistors R and a plurality of switching elements SW are mounted on the other surface of the printed circuit board 21c.
  • the heat generated from the resistor R can be efficiently dissipated.
  • the heat generated from the resistor R can be prevented from being conducted to the detection circuit 20 and the communication circuit 24.
  • malfunction and deterioration due to the heat of the detection circuit 20 and the communication circuit 24 can be prevented.
  • FIG. 26 is a side view showing the printed circuit board 21c attached to the battery block 10BB of FIG. As shown in FIG. 26, the screw S is inserted through the hole H (see FIG. 25) of the printed circuit board 21c. In this state, the printed circuit board 21c is attached to the side surface Ea of the battery block 10BB by screwing the screw S into the screw hole formed in the battery holder.
  • FIG. 27 is an external perspective view of the battery module 100 housed in the casing. As shown in FIG. 27, each battery module 100 is housed in a casing 110. The casing 110 prevents the occurrence of a short circuit between the battery cells 10 when transporting and connecting the battery module 100.
  • the casing 110 has a rectangular parallelepiped shape composed of six side walls 110a, 110b, 110c, 110d, 110e and 110f.
  • the inner surfaces of the side walls 110a to 110f of the casing 110 respectively face the side surfaces Ea to Ef (see FIG. 22) of the battery block 10BB.
  • a rectangular opening 105 is formed in the vicinity of the side wall 110d so as to extend in the vertical direction.
  • the two bus bars 501 a and 501 b are drawn out of the casing 110 through the opening 105.
  • openings 106 and 107 into which the input connector 23a and the output connector 23c of the input / output harness 23H of FIG. 12 can be respectively formed are formed at substantially the center of the side wall 110a of the casing 110.
  • the input connector 23 a and the output connector 23 c are fixed to the outside of the casing 110 by being fitted into the openings 106 and 107 from the inside of the casing 110, respectively.
  • a plurality of rectangular slits 108 extending in the axial direction (Y direction) of the plurality of battery cells 10 are aligned in the alignment direction (X direction) of the plurality of battery cells 10 on the side wall 110 e of the casing 110 It is formed. Further, a plurality of rectangular slits 109 extending in the axial direction (Y direction) of the plurality of battery cells 10 are formed in the side wall 110 f of the casing 110 so as to be aligned in the alignment direction (X direction) of the plurality of battery cells 10 . Cooling air can flow into and out of the casing 110 through the slits 108 and 109.
  • FIG. 28 is a schematic plan view showing an example of the detailed configuration of a battery system 500 according to the sixth embodiment.
  • the battery system 500 includes a plurality of (six in this example) battery modules 100, a battery ECU 101, a contactor 102, an HV connector 510, a service plug 520, and two blowers 581.
  • battery modules 100A, 100B, 100C, 100D, 100E, 100F are referred to as battery modules 100A, 100B, 100C, 100D, 100E, 100F.
  • the battery modules 100A to 100F, the battery ECU 101, the contactor 102, the HV connector 510 and the service plug 520 are accommodated in a box-shaped casing 530.
  • the casing 530 has side walls 530a, 530b, 530c, and 530d. Side walls 530a, 530c are parallel to one another, and side walls 530b, 530d are parallel to one another and perpendicular to side walls 530a, 530c.
  • blower 581 is attached to the side wall 530a of the casing 530 so as to face the side wall 110f of the battery module 100C.
  • the other blower 581 is attached to the side wall 530 a of the casing 530 so as to face the side wall 110 e of the battery module 100 D.
  • an exhaust port 582 is formed in the side wall 530c of the casing 530 so as to face the side wall 110e of the battery module 100A and the side wall 110f of the battery module 100F.
  • the battery modules 100C, 100B and 100A are arranged in this order in a direction parallel to the side walls 530b and 530d at a predetermined interval.
  • battery modules 100D, 100E, and 100F are arranged in this order at predetermined intervals in the direction parallel to side walls 530b and 530d.
  • battery modules 100A to 100F are attached to casing 530 such that side wall 110d (see FIG. 27) of casing 110 faces upward.
  • the plurality of battery cells 10 of the battery block 10BB are arranged such that the axial centers are parallel in the vertical direction.
  • the work of connecting the wires between the battery modules 100 described later can be performed from the top surface of the casing 530. As a result, the work efficiency for connecting the wires between the battery modules 100 is improved.
  • the bus bar 501b of the battery module 100A and the bus bar 501a of the battery module 100B are connected via the connection bus bar 501c, and the bus bar 501b of the battery module 100B and the bus bar 501a of the battery module 100C are connected via the connection bus bar 501c. .
  • bus bar 501b of the battery module 100D and the bus bar 501a of the battery module 100E are connected via the connection bus bar 501c
  • bus bar 501b of the battery module 100E and the bus bar 501a of the battery module 100F are connected via the connection bus bar 501c Be done.
  • service plug 520 is interposed between bus bar 501b of battery module 100C and bus bar 501a of battery module 100D.
  • the bus bar 501a of the battery module 100A and the bus bar 501b of the battery module 100F are connected to the HV connector 510 via the contactor 102.
  • the HV connector 510 is connected to a load such as a motor of the electric vehicle. This makes it possible to supply the electric power of the battery modules 100A to 100F connected in series to the motor or the like.
  • the output connector 23c (see FIG. 27) of the battery module 100A is connected to the input connector 23a (see FIG. 27) of the battery module 100B via a harness 560.
  • the output connector 23c of the battery module 100B is connected to the input connector 23a of the battery module 100C via a harness 560.
  • the output connector 23c of the battery module 100C is connected to the input connector 23a of the battery module 100D via a harness 560.
  • the output connector 23c of the battery module 100D is connected to the input connector 23a of the battery module 100E via a harness 560.
  • the output connector 23c of the battery module 100E is connected to the input connector 23a of the battery module 100F via a harness 560.
  • the input connector 23a of the battery module 100A and the output connector 23c of the battery module 100F are connected to the battery ECU 101 via the harness 560, respectively. Thereby, cell information of the battery modules 100A to 100F is given to the battery ECU 101.
  • a battery module 100 according to a seventh embodiment will be described in terms of differences from the battery module 100 according to the sixth embodiment.
  • FIG. 29 is an external perspective view of one of the battery modules 100 according to the seventh embodiment
  • FIG. 30 is an external perspective view of the other of the battery modules 100 of FIG.
  • the battery module 100 As shown in FIGS. 29 and 30, the battery module 100 according to the present embodiment is not accommodated in the casing 110 of FIG. Further, in the battery module 100, a terminal cover 70 is provided to cover the electrodes 10a and 10b of the side surface Ed and the FPC board 50. Similarly, in the battery module 100, a terminal cover 70 is provided to cover the electrodes 10a and 10b of the side surface Ec and the FPC board 50.
  • the input / output harness 23H of FIG. 12 is used to connect the communication circuits 24 of the plurality of battery modules 100.
  • the harnesses 540 and 550 of the input / output harness 23H are shown by a solid line and a dotted line, respectively.
  • the relay connector 23b is connected to the connector 23 on the printed circuit board 21c, and the input connector 23a and the output connector 23c are connected to the other battery modules 100, so that cell information received from the other battery modules 100 can be input.
  • the signal is input to the communication circuit 24 through the connector 23a and the relay connector 23b. Also, cell information output from the communication circuit 24 is transmitted to another battery module 100 through the relay connector 23 b and the output connector 23 c.
  • the input connector 23a and the output connector 23c of the input / output harness 23H are fixed on the side surface Ed of the battery block 10BB.
  • the harnesses 540 and 550 for connecting the communication circuit 24 and the other battery module 100 are pulled out laterally from the printed circuit board 21c.
  • conductor wires 52 (see FIG. 8) connecting the detection circuit 20 and the plurality of bus bars 40, 40a are drawn laterally from the printed circuit board 21c.
  • the communication harnesses 540 and 550 and the conductor wire 52 for detecting a voltage are drawn out from the printed circuit board 21c in the same direction (Y direction).
  • the conductor wires 52 and the harnesses 540 and 550 are arranged to be concentrated in one direction of the printed circuit board 21c, so that the printed circuit board 21c can be easily handled, and the battery module 100 can be easily assembled.
  • the conductor wire 52 and the harnesses 540 and 550 do not exist around the printed circuit board 21c except in one direction, the heat dissipation of the detection circuit 20 and the communication circuit 24 is improved.
  • the input connector 23a and the output connector 23c are disposed on the side surface Ed of the battery block 10BB at a position near the end close to the side surface Ea.
  • bus bar 501a connected to the plus electrode of first battery cell 10 and bus bar 501b connected to the minus electrode of twelfth battery cell 10 are on side surface Ed of battery block 10BB. It is arrange
  • the bus bars 501a and 501b, the input connector 23a and the connector 23c in a concentrated manner the working efficiency for connecting the battery module 100 to another battery module 100 is improved.
  • FIG. 31 is an external perspective view of one of the battery modules 100 according to the eighth embodiment.
  • the input / output harness 23H of FIG. 12 is used to connect the communication circuits 24 of the plurality of battery modules 100.
  • the harnesses 540 and 550 of the input / output harness 23H are shown by a solid line and a dotted line, respectively.
  • the input connector 23a is disposed on the side surface Ed of the battery block 10BB at a position near the end close to the side surface Ea. Further, the output connector 23c is disposed on the side surface Ed of the battery block 10BB at a position near the end close to the side surface Eb.
  • FIG. 32 is one side view of the battery module 100 according to the ninth embodiment
  • FIG. 33 is the other side view of the battery module 100 of FIG.
  • battery cell 10 to side surface Eb closest to side surface Ea As in the sixth embodiment, of the six battery cells 10 arranged in the upper stage of battery block 10BB in FIGS. 32 and 33, battery cell 10 to side surface Eb closest to side surface Ea.
  • the battery cells 10 closest to are referred to as the first to sixth battery cells 10.
  • the battery cell 10 closest to side Eb to the battery cell 10 closest to side Ea will be referred to as the seventh to twelfth battery cells 10 .
  • the bus bar 40 is attached such that the plus electrode and the minus electrode between the battery cells 10 adjacent in the vertical direction (Z direction) are connected.
  • one end of a bus bar 501a for supplying power to the outside as the power supply line 501 of FIG. 1 is attached to the plus electrode of the first battery cell 10.
  • One end of a bus bar 501b for supplying power to the outside as the power supply line 501 of FIG. 1 is attached to the negative electrode of the sixth battery cell 10.
  • the bus bar 40 is attached so as to connect the positive electrode and the negative electrode between the battery cells 10 adjacent in the alignment direction (X direction) of the plurality of battery cells 10.
  • the plurality of battery cells 10 of the battery module 100 are connected in series.
  • the plus electrode of the first battery cell 10 has the highest potential
  • the minus electrode of the sixth battery cell 10 has the lowest potential.
  • FIG. 34 is an external perspective view of a battery module 100 according to the ninth embodiment.
  • the input / output harness 23H of FIG. 12 is used to connect the communication circuits 24 of the plurality of battery modules 100.
  • the harnesses 540 and 550 of the input / output harness 23H are shown by a solid line and a dotted line, respectively.
  • the relay connector 23b is connected to the connector 23 on the printed circuit board 21c, and the input connector 23a and the output connector 23c are connected to the other battery modules 100, so that cell information received from the other battery modules 100 can be input.
  • the signal is input to the communication circuit 24 through the connector 23a and the relay connector 23b. Also, cell information output from the communication circuit 24 is transmitted to another battery module 100 through the relay connector 23 b and the output connector 23 c.
  • the input connector 23a is disposed on the side surface Ed of the battery block 10BB at a position near the end close to the side surface Ea. Further, the output connector 23c is disposed on the side surface Ed of the battery block 10BB at a position near the end close to the side surface Eb.
  • the harness 560 connecting between the input connector 23a and the other battery module 100 can be shortened. Further, the harness 560 connecting between the output connector 23c and the other battery module 100 can be shortened.
  • bus bar 501a connected to the plus electrode of the first battery cell 10 and the input connector 23a of the input / output harness 23H are arranged in the vicinity of the end near the side Ea on the side Ed of the battery block 10BB. .
  • the bus bar 501a and the input connector 23a are arranged in a concentrated manner, the work efficiency for connecting the battery module 100 to another battery module 100 is improved.
  • bus bar 501b connected to the negative electrode of the sixth battery cell 10 and the output connector 23c of the input / output harness 23H are arranged in the vicinity of the end near the side Eb on the side Ed of the battery block 10BB. Ru. As described above, by arranging the bus bar 501b and the output connector 23c in a concentrated manner, the working efficiency for connecting the battery module 100 to another battery module 100 is improved.
  • the electrically powered vehicle according to the present embodiment includes the battery system 500 according to any one of the first to ninth embodiments.
  • an electric car will be described as an example of the electric vehicle.
  • FIG. 35 is a block diagram showing a configuration of an electric automobile provided with battery system 500.
  • the electric automobile 600 includes the non-motive power battery 12, the main control unit 300 and the battery system 500, the power conversion unit 601, the motor 602, the driving wheel 603, and the accelerator device in FIG. 604, a braking device 605, and a rotational speed sensor 606.
  • the motor 602 is an alternating current (AC) motor
  • the power conversion unit 601 includes an inverter circuit.
  • the non-driving battery 12 is connected to the battery system 500.
  • the battery system 500 is connected to the motor 602 via the power conversion unit 601 and to the main control unit 300.
  • the main control unit 300 is provided with the charge amounts of the plurality of battery modules 100 (FIG. 1) and the current values flowing to the battery modules 100 from the battery ECU 101 (FIG. 1) configuring the battery system 500.
  • an accelerator device 604, a brake device 605, and a rotational speed sensor 606 are connected to the main control unit 300.
  • the main control unit 300 includes, for example, a CPU and a memory or a microcomputer.
  • the accelerator device 604 includes an accelerator pedal 604 a included in the electric automobile 600 and an accelerator detection unit 604 b that detects an operation amount (depression amount) of the accelerator pedal 604 a.
  • the accelerator detection unit 604b detects the amount of operation of the accelerator pedal 604a on the basis of a state in which the driver is not operated. The detected operation amount of the accelerator pedal 604 a is given to the main control unit 300.
  • the brake device 605 includes a brake pedal 605a included in the electric automobile 600 and a brake detection unit 605b that detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • an operation amount depression amount
  • the brake detection unit 605b detects an operation amount (depression amount) of the brake pedal 605a by the driver.
  • the brake detection unit 605b detects an operation amount of the brake pedal 605a by the driver.
  • the detected operation amount of the brake pedal 605 a is given to the main control unit 300.
  • the rotational speed sensor 606 detects the rotational speed of the motor 602. The detected rotational speed is given to the main control unit 300.
  • main controller 300 is provided with the charge amount of battery module 100, the current value flowing through battery module 100, the operation amount of accelerator pedal 604a, the operation amount of brake pedal 605a, and the rotational speed of motor 602. .
  • Main control unit 300 performs charge / discharge control of battery module 100 and power conversion control of power conversion unit 601 based on the information.
  • the power of battery module 100 is supplied from battery system 500 to power conversion unit 601.
  • main control unit 300 calculates the rotational force (command torque) to be transmitted to drive wheel 603 based on the given operation amount of accelerator pedal 604a, and the control signal based on the command torque is converted into a power conversion unit 601. Give to.
  • the power conversion unit 601 that has received the above control signal converts the power supplied from the battery system 500 into the power (drive power) necessary to drive the drive wheel 603.
  • the drive power converted by the power conversion unit 601 is supplied to the motor 602, and the rotational force of the motor 602 based on the drive power is transmitted to the drive wheel 603.
  • the motor 602 functions as a power generation device.
  • power conversion unit 601 converts the regenerative power generated by motor 602 into power suitable for charging battery module 100, and supplies the power to battery module 100. Thereby, the battery module 100 is charged.
  • battery system 500 according to any one of the first to ninth embodiments is provided in electric motor vehicle 600 according to the present embodiment
  • cell information of a plurality of battery modules 100 is determined by battery ECU 101.
  • the detection circuit 20 and the communication circuit 24 which are separate from each other are provided on the printed circuit boards 21 and 21a to 21c, but are limited thereto I will not.
  • One circuit having the function of the detection circuit 20 and the function of the communication circuit 24 may be provided on the printed circuit boards 21, 21a to 21c. In this case, the circuits can be easily mounted on the printed circuit boards 21 and 21a to 21c, and the cost of the battery module 100 can be reduced.
  • the battery cell 10 which concerns on the said embodiment, although a lithium ion battery is used as the battery cell 10, it is not limited to this.
  • other secondary batteries such as nickel hydrogen batteries can also be used.
  • the battery cell 10 having a flat and substantially rectangular parallelepiped shape is used, but the present invention is not limited to this.
  • a laminate type battery cell 10 having a plus electrode and a minus electrode at one end may be used.
  • the cylindrical battery cell 10 is used, but the present invention is not limited to this.
  • a laminate type battery cell 10 having a plus electrode and a minus electrode at one end and the other end may be used.
  • the other battery modules 100 and 100A to 100F or the battery ECU 101 are an example of the external device
  • the battery cell 10 is an example of the battery cell
  • the detection circuit 20 is an example of a detection unit.
  • the circuit 24 is an example of the communication unit
  • the printed circuit boards 21 and 21a to 21c are examples of the circuit board.
  • the plus electrode 10a or the minus electrode 10b is an example of an electrode
  • the bus bars 40 and 40p and the voltage / current bus bar 40y are an example of a connecting member
  • the conductor line 52 is an example of a first wiring
  • the communication lines 56 and 58 are examples of the second wiring.
  • the thermistor 11 is an example of a temperature detection unit
  • the conductor wire 53 is an example of a third wiring
  • the FPC boards 50, 50a, 50b are examples of soft members
  • the ground pattern GND1 is an example of a first ground conductor
  • the first mounting area 10G is an example of the first area.
  • the non-driving battery 12 is an example of an external power supply
  • the ground pattern GND2 is an example of a second ground conductor
  • the second mounting area 12G is an example of a second area
  • the insulating area 26 is a third.
  • the insulating element 25 is an example of the insulating element.
  • the battery ECU 101 is an example of a control unit
  • the battery system 500 is an example of a battery system
  • the motor 602 is an example of a motor
  • the drive wheel 603 is an example of a drive wheel
  • the electric automobile 600 is an example of an electric vehicle. is there.
  • the present invention can be effectively used for various moving objects driven by electric power, storage devices for electric power, mobile devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 バッテリモジュールは、複数のバッテリセル、検出回路、通信回路およびプリント回路基板により構成される。検出回路および通信回路は共通のプリント回路基板に実装される。検出回路は、バッテリモジュールの各バッテリセルの電圧を検出し、通信回路に与える。通信回路は他のバッテリモジュールの通信回路またはバッテリECUに接続される。これにより、そのバッテリモジュールの通信回路と他のバッテリモジュールの通信回路またはバッテリECUとが通信可能になる。

Description

バッテリモジュール、バッテリシステムおよび電動車両
 本発明は、バッテリモジュール、それを備えたバッテリシステムおよび電動車両に関する。
 電動自動車等の移動体の駆動源として、充放電が可能なバッテリモジュールが用いられる。このようなバッテリモジュールは、例えば複数の電池(バッテリセル)が直列に接続された構成を有する。
 バッテリモジュールを備える移動体の使用者はバッテリモジュールの残量(充電量)を把握する必要がある。
 特許文献1には、組電池の監視装置が記載されている。組電池は、複数のバッテリモジュールにより構成される。各バッテリモジュールは、ニッケル水素電池からなる複数のバッテリセルの直列接続体により構成される。
 監視装置は、複数のバッテリモジュールにそれぞれ接続される電圧計測ユニット、およびECU(Electronic Control Unit:電子制御ユニット)を備える。各電圧計測ユニットは、対応するバッテリモジュールの両端子間の電圧(最も高電位側のバッテリセルの正極端子と最も低電位側のバッテリセルの負極端子との間の電圧)を検出し、検出された電圧を、シリアル伝送線を通してECUに伝送する。
特開平8-162171号公報
 特許文献1に記載された監視装置では、ECUが各バッテリモジュールの電圧を把握することができる。それにより、各バッテリモジュールの電圧に基づいて各バッテリモジュールの充放電を制御することができる。
 近年、複数のバッテリセルとしてリチウムイオン電池を用いたバッテリモジュールが開発されている。リチウムイオン電池では、ニッケル水素電池に比べて過充電および過放電により特性の劣化が生じやすい。
 一方、複数のバッテリセルには充放電特性にばらつきがある。そのため、各バッテリセルの過充電および過放電を防止するためには、各バッテリセルの充放電を個々に制御することが望ましい。
 しかしながら、上記の特許文献1に記載された監視装置では、ECUは各バッテリモジュールに含まれる各バッテリセルの電圧を把握することができない。そのため、各バッテリセルの電圧に基づいて各バッテリセルの充放電を個々に制御することはできない。
 本発明の目的は、複数のバッテリモジュールに含まれる各バッテリセルの端子間電圧を集中的に管理することを可能にするバッテリモジュール、それを備えたバッテリシステムおよび電動車両を提供することである。
 本発明の一局面に従うバッテリモジュール(バッテリモジュール100,100A~100F)は、外部装置(バッテリモジュール100,100A~100FまたはバッテリECU101)と通信可能なバッテリモジュールであって、複数のバッテリセル(バッテリセル10)と、各バッテリセルの電圧を検出する検出部(検出回路20)と、検出部に接続されるとともに外部装置に接続可能な通信部(通信回路24)と、検出部および通信部が実装される共通の回路基板(プリント回路基板21,21a~21c)とを備え、通信部は、検出部により検出された各バッテリセルの電圧を外部装置に送信するように動作可能であるものである。
 本発明の一局面に従うバッテリモジュールにおいては、検出部により、各バッテリセルの電圧が検出され、検出された各バッテリセルの電圧は、通信部により外部装置に送信される。
 ここで、検出部および通信部は共通の回路基板に実装される。したがって、検出部と通信部との間の配線が短くかつ単純になる。それにより、検出部および通信部の配置スペースが小さくなる。
 これらの結果、バッテリモジュールを大型化することなく、バッテリセルの端子間電圧を集中的に管理することが可能となる。
 バッテリモジュールは、隣り合うバッテリセルの電極(プラス電極10aまたはマイナス電極10b)を互いに接続する接続部材(バスバー40,40pおよび電圧電流バスバー40y)と、検出部と接続部材とを接続する第1の配線(導体線52)と、通信部と他のバッテリモジュールとを接続する第2の配線(導体線54,55または通信線56,58)とをさらに備え、第1の配線および第2の配線が回路基板から同一方向に引き出されてもよい。
 この場合、第1の配線および第2の配線が回路基板の一方向に集中するように配置される。これにより、回路基板の取り扱いが容易になり、バッテリモジュールの組み立てが容易になる。また、一方向を除いて回路基板の周辺に第1の配線および第2の配線が存在しないので、検出部および通信部の放熱性が向上する。
 接続部材は複数設けられ、第1の配線は複数の接続部材に対応して複数設けられ、複数の第1の配線の少なくとも一部および第2の配線が回路基板から同一方向に引き出されてもよい。
 この場合、複数の第1の配線の少なくとも一部および第2の配線が回路基板の一方向に集中するように配置される。これにより、複数の第1の配線が設けられる場合でも、回路基板の取り扱いが容易になり、バッテリモジュールの組み立てが容易になる。また、複数の第1の配線の少なくとも一部および第2の配線が一方向に集中するので、複数の第1の配線が設けられる場合でも、検出部および通信部の放熱性が向上する。
 バッテリモジュールは、複数のバッテリセルの温度を検出する温度検出部(サーミスタ11)と、通信部と温度検出部とを接続する第3の配線(導体線53)と、第1の配線、第2の配線および第3の配線が設けられる軟部材(FPC基板50,50a,50b)とをさらに備えてもよい。
 この場合、温度検出部により検出された温度が通信部により外部装置に送信される。第1の配線、第2の配線および第3の配線が軟部材に設けられるので、第1の配線、第2の配線および第3の配線を一体的に取り扱うことができる。それにより、バッテリモジュールの組み立てがさらに容易になる。また、第1の配線、第2の配線および第3の配線が軟部材に集中するので、複数のバッテリセルの周囲において第1の配線、第2の配線および第3の配線が存在しないスペースが大きく確保される。それにより、複数のバッテリセルの放熱性が向上する。
 回路基板は、検出部が実装されるとともに、複数のバッテリセル用の第1のグランド導体(グランドパターンGND1)が形成される第1の領域(第1の実装領域10G)と、通信部が実装されるとともに、外部電源(非動力用バッテリ12)用の第2のグランド導体(グランドパターンGND2)が形成される第2の領域(第2の実装領域12G)と、第1の領域と第2の領域とを互いに電気的に絶縁する第3の領域(絶縁領域26)と、検出部と通信部とを電気的に絶縁しつつ通信可能に接続する絶縁素子(絶縁素子25)とを含んでもよい。
 この場合、回路基板の第1の領域に形成される第1のグランド導体と第2の領域に形成される第2のグランド導体とが第3の領域により電気的に確実に絶縁されるとともに、第1の領域に実装される検出部と第2の領域に実装される通信部とが絶縁素子により電気的に確実に絶縁される。それにより、検出部の電源として複数のバッテリセルを用いることができ、通信部の電源として外部電源を用いることができる。その結果、検出部および通信部をそれぞれ独立に安定して動作させることができる。
 本発明の他の局面に従うバッテリシステム(バッテリシステム500)は、本発明の一局面に従うバッテリモジュール(バッテリモジュール100,100A~100F)と、複数のバッテリセル(バッテリセル10)の充電および放電を制御する制御部(バッテリECU101)とを備え、各バッテリモジュールの通信部(通信回路24)は他のバッテリモジュールの通信部に接続され、制御部は、いずれかのバッテリモジュールの通信部に接続されるものである。
 本発明の他の局面に従うバッテリシステムにおいては、各バッテリモジュールの検出部により検出された各バッテリセルの電圧がそのバッテリモジュールの通信部により他のバッテリモジュールの通信部に送信される。また、いずれかのバッテリモジュールの通信部により複数のバッテリモジュールの各バッテリセルの電圧が制御部に送信される。それにより、制御部により複数のバッテリモジュールの各バッテリセルの電圧を集中的に管理することができる。
 また、複数のバッテリモジュールの各バッテリセルの電圧に基づいて制御部により複数のバッテリモジュールの各バッテリセルの充放電を個別に制御することが可能となる。そのため、複数のバッテリモジュールの複数のバッテリセルの充電量を略均等に保つことができる。これにより、一部のバッテリセルの過充電および過放電を防止することができる。その結果、バッテリセルの劣化を防止することができる。
 この場合、制御部は、全てのバッテリモジュールに接続されることなく、いずれかのバッテリモジュールに接続されることにより、複数のバッテリモジュールの各バッテリセルの電圧を取得することができるので、配線が単純化される。
 本発明のさらに他の局面に従う電動車両(電動自動車600)は、本発明の他の局面に従うバッテリシステム(バッテリシステム500)と、バッテリシステムのバッテリモジュール(バッテリモジュール100,100A~100F)からの電力により駆動されるモータ(モータ602)と、モータの回転力により回転する駆動輪(駆動輪603)とを備えるものである。
 本発明のさらに他の局面に従う電動車両においては、バッテリモジュールからの電力によりモータが駆動される。そのモータの回転力によって駆動輪が回転することにより、電動車両が移動する。
 また、本発明の他の局面に従うバッテリシステムが用いられるので、制御部により複数のバッテリモジュールの各バッテリセルの電圧を集中的に管理することができるとともにバッテリセルの劣化を防止することができる。これにより、バッテリモジュールの信頼性の向上および長寿命化が可能となる。その結果、電動車両の性能を向上させることが可能になるとともに、低コスト化が可能となる。
 バッテリモジュールは、回路基板を保持する保持部材(端面枠92)をさらに備え、保持部材は、第1の配線および第2の配線が通過する切欠部(切欠部92n)を有してもよい。
 この場合、第1の配線および第2の配線は、保持部材の切欠部を通過するように配置される。これにより、第1の配線および第2の配線が容易に一方向に引き出される。その結果、バッテリモジュールの組み立てがより容易になる。
 バッテリモジュールは、各バッテリセルの電極間に接続される複数の抵抗(抵抗R)をさらに備え、回路基板は第1および第2の面を有し、第1の面上に検出部および通信部が実装され、第2の面上でかつ検出部および通信部に対応する位置とは異なる位置に複数の抵抗が設けられてもよい。
 この場合、複数の抵抗に流れる電流を制御することにより各バッテリセルの放電状態を制御することが可能となる。抵抗は、回路基板の検出部および通信部が実装される第1の面と異なる第2の面上でかつ検出部および通信部に対応する位置とは異なる位置に設けられる。これにより、抵抗から発生する熱を効率よく放散させることができる。また、抵抗から発生する熱が検出部および通信部に伝導することを防止することができる。その結果、検出部および通信部の熱による誤動作および劣化を防止することができる。
 本発明によれば、バッテリモジュールを大型化することなく、バッテリセルの端子間電圧を集中的に管理することが可能となる。
図1は第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。 図2は図1のプリント回路基板の構成を示すブロック図である。 図3はバッテリモジュールの外観斜視図である。 図4はバッテリモジュールの平面図である。 図5はバッテリモジュールの端面図である。 図6はバスバーの外観斜視図である。 図7はFPC基板に複数のバスバーおよび複数のPTC素子が取り付けられた状態を示す外観斜視図である。 図8はバスバーと検出回路との接続について説明するための模式的平面図である。 図9は電圧電流バスバーおよびFPC基板を示す拡大平面図である。 図10はプリント回路基板の一構成例を示す模式的平面図である。 図11はバッテリモジュールの通信回路の接続に用いられる配線の配置を示す外観斜視図である。 図12はバッテリモジュールの通信回路の接続に用いられる入出力用ハーネスの模式的平面図である。 図13はバッテリモジュールの通信回路の一接続例を示す模式的平面図である。 図14はバッテリシステムの詳細な構成の一例を示す模式的平面図である。 図15は第2の実施の形態に係るバッテリシステムにおける複数のプリント回路基板およびバッテリECUの間の接続を示す説明図である。 図16は第2の実施の形態に係るバッテリモジュールの通信回路の接続に用いられる入出力用ハーネスの模式的平面図である。 図17は第2の実施の形態に係るバッテリシステムの詳細な構成の一例を示す模式的平面図である。 図18は第3の実施の形態に係るバッテリモジュールが備えるプリント回路基板の模式的平面図である。 図19は図18のプリント回路基板に接続されるFPC基板の模式的平面図である。 図20は第4の実施の形態に係るバッテリモジュールが備えるプリント回路基板の模式的平面図である。 図21は第5の実施の形態に係るバッテリモジュールを示す外観斜視図である。 図22は第6の実施の形態に係るバッテリモジュールを示す外観斜視図である。 図23は図22のバッテリモジュールの一方側面図である。 図24は図22のバッテリモジュールの他方側面図である。 図25は第6の実施の形態におけるプリント回路基板の一構成例を示す模式的平面図である。 図26は図22のバッテリブロックにプリント回路基板が取り付けられた状態を示す側面図である。 図27はケーシングに収容されたバッテリモジュールの外観斜視図である。 図28は第6の実施の形態に係るバッテリシステムの詳細な構成の一例を示す模式的平面図である。 図29は第7の実施の形態に係るバッテリモジュールの一方の外観斜視図である。 図30は図29のバッテリモジュールの他方の外観斜視図である。 図31は第8の実施の形態に係るバッテリモジュールの一方の外観斜視図である。 図32は第9の実施の形態に係るバッテリモジュールの一方側面図である。 図33は図32のバッテリモジュールの他方側面図である。 図34は第9の実施の形態に係るバッテリモジュールの外観斜視図である。 図35はバッテリシステムを備える電動自動車の構成を示すブロック図である。
 [1]第1の実施の形態
 以下、第1の実施の形態に係るバッテリモジュールおよびそれを備えたバッテリシステムについて図面を参照しながら説明する。なお、本実施の形態に係るバッテリモジュールおよびバッテリシステムは、電力を駆動源とする電動車両(例えば電動自動車)に搭載される。
 (1)バッテリシステムの構成
 図1は、第1の実施の形態に係るバッテリシステムの構成を示すブロック図である。また、図1に示すように、バッテリシステム500は、複数のバッテリモジュール100(本例では4個)、バッテリECU101およびコンタクタ102を含み、バス104を介して電動車両の主制御部300に接続されている。
 バッテリシステム500の複数のバッテリモジュール100は、電源線501を通して互いに接続されている。各バッテリモジュール100は、複数(本例では18個)のバッテリセル10、複数(本例では4個)のサーミスタ11およびリジッドプリント回路基板(以下、プリント回路基板と略記する)21を有する。
 各バッテリモジュール100において、複数のバッテリセル10は互いに隣り合うように一体的に配置され、複数のバスバー40により直列接続されている。各バッテリセル10は、例えばリチウムイオン電池またはニッケル水素電池等の二次電池である。
 両端部に配置されるバッテリセル10は、バスバー40aを介して電源線501に接続されている。これにより、バッテリシステム500においては、複数のバッテリモジュール100の全てのバッテリセル10が直列接続されている。バッテリシステム500から引き出される電源線501は、電動車両のモータ等の負荷に接続される。バッテリモジュール100の詳細は後述する。
 図2は、図1のプリント回路基板21の構成を示すブロック図である。プリント回路基板21は、検出回路20、通信回路24、絶縁素子25、複数の抵抗Rおよび複数のスイッチング素子SWを含む。また、検出回路20は、マルチプレクサ20a、A/D(アナログ/デジタル)変換器20bおよび複数の差動増幅器20cを含む。以降、図1および図2を参照してプリント回路基板21の構成を説明する。
 検出回路20は、例えばASIC(Application Specific Integrated Circuit:特定用途向け集積回路)からなり、バッテリモジュール100の複数のバッテリセル10は検出回路20の電源として用いられる。検出回路20の各差動増幅器20cは2つの入力端子および出力端子を有する。各差動増幅器20cは、2つの入力端子に入力された電圧を差動増幅し、増幅された電圧を出力端子から出力する。
 各差動増幅器20cの2つの入力端子は、導体線52およびPTC(Positive Temperature Coefficient:正温度係数)素子60を介して隣り合う2つのバスバー40,40aに電気的に接続される。
 ここで、PTC素子60は、温度がある値を超えると抵抗値が急激に増加する抵抗温度特性を有する。そのため、検出回路20および導体線52等で短絡が生じた場合に、その短絡経路を流れる電流によりPTC素子60の温度が上昇すると、PTC素子60の抵抗値が大きくなる。これにより、PTC素子60を含む短絡経路に大電流が流れることが抑制される。
 通信回路24は、例えばCPU(中央演算処理装置)、降圧部、メモリおよびインタフェース回路を含み、通信機能を有するとともに演算機能を有する。通信回路24の降圧部には、電動車両の非動力用バッテリ12が接続される。降圧部は、非動力用バッテリ12からの電力を降圧して通信回路24のCPU、メモリおよびインタフェース回路に与える。このように、非動力用バッテリ12は、通信回路24の電源として用いられる。なお、本実施の形態において、非動力用バッテリ12は鉛蓄電池である。
 図1に示すように、各バッテリモジュール100の通信回路24およびバッテリECU101は、ハーネス560を介して直列に接続される。これにより、各バッテリモジュール100の通信回路24は、他のバッテリモジュール100およびバッテリECU101と通信を行うことができる。
 隣り合う各2つのバスバー40,40a間には、抵抗Rおよびスイッチング素子SWの直列回路が接続される。スイッチング素子SWのオンおよびオフは、通信回路24を介してバッテリECU101により制御される。なお、通常状態では、スイッチング素子SWはオフになっている。
 検出回路20と通信回路24とが、絶縁素子25により互いに電気的に絶縁されつつ通信可能に接続される。隣り合う2つのバスバー40,40aの電圧が各差動増幅器20cにより差動増幅される。各差動増幅器20cの出力電圧は各バッテリセル10の端子電圧に相当する。複数の差動増幅器20cから出力される端子電圧はマルチプレクサ20aに与えられる。マルチプレクサ20aは、複数の差動増幅器20cから与えられる端子電圧を順次A/D変換器20bに出力する。A/D変換器20bは、マルチプレクサ20aから出力される端子電圧をデジタル値に変換し、絶縁素子25を介して通信回路24に与える。
 また、本実施の形態では、複数のバッテリモジュール100のうちの少なくとも1つのバッテリモジュール100において、検出回路20は1つのバスバー40の2つの位置間の電圧を検出し、通信回路24は検出回路20により検出された電圧およびバスバー40の2つの位置間の抵抗に基づいて複数のバッテリセル10に流れる電流を算出する。検出回路20および通信回路24による電流の算出の詳細は後述する。
 また、通信回路24は図1の複数のサーミスタ11に接続される。これにより、通信回路24は、サーミスタ11の出力信号に基づいてバッテリモジュール100の温度を取得する。
 各バッテリモジュール100の通信回路24は、各バッテリセル10の端子電圧、複数のバッテリセル10に流れる電流およびバッテリモジュール100の温度を他のバッテリモジュール100またはバッテリECU101に与える。以下、これらの端子電圧、電流および温度をセル情報と呼ぶ。
 バッテリECU101は、例えば各バッテリモジュール100の通信回路24から与えられたセル情報に基づいて各バッテリセル10の充電量を算出し、その充電量に基づいて各バッテリモジュール100の充放電制御を行う。また、バッテリECU101は、各バッテリモジュール100の通信回路24から与えられたセル情報に基づいて各バッテリモジュール100の異常を検出する。バッテリモジュール100の異常とは、例えば、バッテリセル10の過放電、過充電または温度異常等である。
 なお、本実施の形態では、バッテリECU101が上記の各バッテリセル10の充電量の算出ならびにバッテリセル10の過放電、過充電および温度異常等の検出を行うが、これに限定されない。各バッテリモジュール100の通信回路24が、各バッテリセル10の充電量の算出およびバッテリセル10の過放電、過充電または温度異常等の検出を行い、その結果をバッテリECU101に与えてもよい。
 図1に戻り、一端部のバッテリモジュール100に接続された電源線501には、コンタクタ102が介挿されている。バッテリECU101は、バッテリモジュール100の異常を検出した場合、コンタクタ102をオフする。これにより、異常時には、各バッテリモジュール100に電流が流れないので、バッテリモジュール100の異常発熱が防止される。
 バッテリECU101は、バス104を介して主制御部300に接続される。バッテリECU101から主制御部300に各バッテリモジュール100の充電量(バッテリセル10の充電量)が与えられる。主制御部300は、その充電量に基づいて電動車両の動力(例えばモータの回転速度)を制御する。また、各バッテリモジュール100の充電量が少なくなると、主制御部300は、電源線501に接続された図示しない発電装置を制御して各バッテリモジュール100を充電する。
 なお、本実施の形態において、発電装置は例えば上記の電源線501に接続されたモータである。この場合、モータは、電動車両の加速時にバッテリシステム500から供給された電力を、図示しない駆動輪を駆動するための動力に変換する。また、モータは、電動車両の減速時に回生電力を発生する。この回生電力により各バッテリモジュール100が充電される。
 (2)バッテリモジュールの詳細
 バッテリモジュール100の詳細について説明する。図3はバッテリモジュール100の外観斜視図であり、図4はバッテリモジュール100の平面図であり、図5はバッテリモジュール100の端面図である。
 なお、図3~図5および後述する図7~図9、図11においては、矢印X,Y,Zで示すように、互いに直交する三方向をX方向、Y方向およびZ方向と定義する。なお、本例では、X方向およびY方向が水平面に平行な方向であり、Z方向が水平面に直交する方向である。また、上方向は矢印Zが向く方向である。
 図3~図5に示すように、バッテリモジュール100においては、扁平な略直方体形状を有する複数のバッテリセル10がX方向に並ぶように配置される。この状態で、複数のバッテリセル10は、一対の端面枠92、一対の上端枠93および一対の下端枠94により一体的に固定される。複数のバッテリセル10、一対の端面枠92、一対の上端枠93および一対の下端枠94により略直方体形状のバッテリブロック10BBが形成される。
 バッテリブロック10BBは、XY平面に平行な上面を有する。また、バッテリブロック10BBは、YZ平面に平行な一端面および他端面を有する。さらに、バッテリブロック10BBは、XZ平面に平行な一側面および他側面を有する。
 一対の端面枠92は略板形状を有し、YZ平面に平行に配置される。一対の上端枠93および一対の下端枠94は、X方向に延びるように配置される。
 一対の端面枠92の四隅には、一対の上端枠93および一対の下端枠94を接続するための接続部が形成される。一対の端面枠92の間に複数のバッテリセル10が配置された状態で、一対の端面枠92の上側の接続部に一対の上端枠93が取り付けられ、一対の端面枠92の下側の接続部に一対の下端枠94が取り付けられる。これにより、複数のバッテリセル10が、X方向に並ぶように配置された状態で一体的に固定される。
 一方の端面枠92には、外側の面に間隔を隔ててプリント回路基板21が取り付けられる。
 ここで、各バッテリセル10は、Y方向に沿って並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。各電極10a,10bは、上方に向かって突出するように傾斜して設けられる(図5参照)。
 以下の説明においては、プリント回路基板21が取り付けられない端面枠92に隣接するバッテリセル10からプリント回路基板21が取り付けられる端面枠92に隣接するバッテリセル10までを1番目~18番目のバッテリセル10と呼ぶ。
 図4に示すように、バッテリモジュール100において、各バッテリセル10は、隣り合うバッテリセル10間でY方向におけるプラス電極10aおよびマイナス電極10bの位置関係が互いに逆になるように配置される。
 それにより、隣り合う2個のバッテリセル10間では、一方のバッテリセル10のプラス電極10aと他方のバッテリセル10のマイナス電極10bとが近接し、一方のバッテリセル10のマイナス電極10bと他方のバッテリセル10のプラス電極10aとが近接する。この状態で、近接する2個の電極にバスバー40が取り付けられる。これにより、複数のバッテリセル10が直列接続される。
 具体的には、1番目のバッテリセル10のプラス電極10aと2番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のプラス電極10aと3番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のプラス電極10aとそれに隣り合う偶数番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のプラス電極10aとそれに隣り合う奇数番目のバッテリセル10のマイナス電極10bとに共通のバスバー40が取り付けられる。
 また、1番目のバッテリセル10のマイナス電極10bおよび18番目のバッテリセル10のプラス電極10aには、外部から電源線501(図1参照)を接続するためのバスバー40aがそれぞれ取り付けられる。
 Y方向における複数のバッテリセル10の一端部側には、X方向に延びる長尺状のフレキシブルプリント回路基板(以下、FPC基板と略記する。)50が複数のバスバー40に共通して接続される。同様に、Y方向における複数のバッテリセル10の他端部側には、X方向に延びる長尺状のFPC基板50が複数のバスバー40,40aに共通して接続される。
 FPC基板50は、主として絶縁層上に複数の導体線51,52(後述する図8参照)が形成された構成を有し、屈曲性および可撓性を有する。FPC基板50を構成する絶縁層の材料としては例えばポリイミドが用いられ、導体線51,52(後述する図8参照)の材料としては例えば銅が用いられる。FPC基板50上において、各バスバー40,40aに近接するように各PTC素子60が配置される。
 各FPC基板50は、端面枠92(プリント回路基板21が取り付けられる端面枠92)の上端部分で内側に向かって直角に折り返され、さらに下方に向かって折り返され、プリント回路基板21に接続される。
 (3)バスバーおよびFPC基板の構造
 次に、バスバー40,40aおよびFPC基板50の構造の詳細を説明する。以下、隣り合う2個のバッテリセル10のプラス電極10aとマイナス電極10bとを接続するためのバスバー40を2電極用のバスバー40と呼び、1個のバッテリセル10のプラス電極10aまたはマイナス電極10bと電源線501とを接続するためのバスバー40aを1電極用のバスバー40aと呼ぶ。
 図6(a)は2電極用のバスバー40の外観斜視図であり、図6(b)は1電極用のバスバー40aの外観斜視図である。
 図6(a)に示すように、2電極用のバスバー40は、略長方形状を有するベース部41およびそのベース部41の一辺からその一面側に屈曲して延びる一対の取付片42を備える。ベース部41には、一対の電極接続孔43が形成される。
 図6(b)に示すように、1電極用のバスバー40aは、略正方形状を有するベース部45およびそのベース部45の一辺からその一面側に屈曲して延びる取付片46を備える。ベース部45には、電極接続孔47が形成される。
 本実施の形態において、バスバー40,40aは、例えばタフピッチ銅の表面にニッケルめっきが施された構成を有する。
 図7は、FPC基板50に複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた状態を示す外観斜視図である。図7に示すように、2枚のFPC基板50には、X方向に沿って所定の間隔で複数のバスバー40,40aの取付片42,46が取り付けられる。また、複数のPTC素子60は、複数のバスバー40,40aの間隔と同じ間隔で2枚のFPC基板50にそれぞれ取り付けられる。
 バッテリモジュール100を作製する際には、端面枠92(図3参照)、上端枠93(図3参照)および下端枠94(図3参照)により一体的に固定された複数のバッテリセル10上に、上記のように複数のバスバー40,40aおよび複数のPTC素子60が取り付けられた2枚のFPC基板50が取り付けられる。
 この取り付け時においては、隣り合うバッテリセル10のプラス電極10aおよびマイナス電極10bが各バスバー40,40aに形成された電極接続孔43,47に嵌め込まれる。プラス電極10aおよびマイナス電極10bには雄ねじが形成される。各バスバー40,40aが隣り合うバッテリセル10のプラス電極10aおよびマイナス電極10bに嵌め込まれた状態で図示しないナットがプラス電極10aおよびマイナス電極10bの雄ねじに螺合される。
 このようにして、複数のバッテリセル10に複数のバスバー40,40aが取り付けられるとともに、複数のバスバー40,40aによりFPC基板50が略水平姿勢で保持される。
 (4)バスバーと検出回路との接続
 次に、バスバー40,40aと検出回路20との接続について説明する。図8は、バスバー40,40aと検出回路20との接続について説明するための模式的平面図である。
 図8に示すように、FPC基板50には、複数のバスバー40,40aの各々に対応するように複数の導体線51,52が設けられる。各導体線51は、バスバー40,40aの取付片42,46とそのバスバー40の近傍に配置されたPTC素子60との間でY方向に平行に延びるように設けられ、各導体線52は、PTC素子60とFPC基板50の一端部との間でX方向に平行に延びるように設けられる。
 各導体線51の一端部は、FPC基板50の下面側に露出するように設けられる。下面側に露出する各導体線51の一端部が、例えば半田付けまたは溶接により各バスバー40、40aの取付片42,46に電気的に接続される。それにより、FPC基板50が各バスバー40,40aに固定される。
 各導体線51の他端部および各導体線52の一端部は、FPC基板50の上面側に露出するように設けられる。PTC素子60の一対の端子(図示せず)が、例えば半田付けにより各導体線51の他端部および各導体線52の一端部に接続される。
 各PTC素子60は、X方向において、対応するバスバー40,40aの両端間の領域に配置されることが好ましい。FPC基板50に応力が加わった場合、隣り合うバスバー40,40a間におけるFPC基板50の領域は撓みやすいが、各バスバー40,40aの両端部間におけるFPC基板50の領域はバスバー40,40aに固定されているため、比較的平坦に維持される。そのため、各PTC素子60が各バスバー40,40aの両端部間におけるFPC基板50の領域内に配置されることにより、PTC素子60と導体線51,52との接続性が十分に確保される。また、FPC基板50の撓みによる各PTC素子60への影響(例えば、PTC素子60の抵抗値の変化)が抑制される。
 プリント回路基板21には、FPC基板50の複数の導体線52に対応した複数の接続端子22が設けられる。複数の接続端子22と検出回路20とはプリント回路基板21上で電気的に接続されている。FPC基板50の各導体線52の他端部は、例えば半田付けまたは溶接により対応する接続端子22に接続される。なお、プリント回路基板21とFPC基板50との接続は、半田付けまたは溶接に限らずコネクタを用いて行われてもよい。
 このようにして、各バスバー40,40aがPTC素子60を介して検出回路20に電気的に接続される。これにより、各バッテリセル10の端子電圧が検出される。
 少なくとも1つのバッテリモジュール100における複数のバスバー40のうちの1つは、電流検出用のシャント抵抗として用いられる。シャント抵抗として用いられるバスバー40を電圧電流バスバー40yと呼ぶ。図9は、電圧電流バスバー40yおよびFPC基板50を示す拡大平面図である。図9に示すように、プリント回路基板21は増幅回路410をさらに有する。
 電圧電流バスバー40yのベース部41上には、一対のはんだパターンH1,H2が一定間隔で互いに平行に形成されている。はんだパターンH1は2つの電極接続孔43間で一方の電極接続孔43の近傍に配置され、はんだパターンH2は電極接続孔43間で他方の電極接続孔43の近傍に配置される。電圧電流バスバー40yにおけるはんだパターンH1,H2間に形成される抵抗を電流検出用のシャント抵抗RSと呼ぶ。
 電圧電流バスバー40yのはんだパターンH1は、導体線51、PTC素子60および導体線52を介してプリント回路基板21上の増幅回路410の一方の入力端子に接続される。同様に、電圧電流バスバー40yのはんだパターンH2は、導体線51、PTC素子60および導体線52を介して増幅回路410の他方の入力端子に接続される。増幅回路410の出力端子は、導体線により接続端子22に接続される。これにより、検出回路20は、増幅回路410の出力電圧に基づいてはんだパターンH1,H2間の電圧を検出する。検出回路20により検出された電圧は通信回路24に与えられる。
 本実施の形態において、通信回路24が備えるメモリには、予め電圧電流バスバー40yにおけるはんだパターンH1,H2間のシャント抵抗RSの値が記憶されている。通信回路24は、検出回路20から与えられたはんだパターンH1,H2間の電圧をメモリに記憶されたシャント抵抗RSの値で除算することにより電圧電流バスバー40yに流れる電流の値を算出する。このようにして、バッテリモジュール100に流れる電流の値が検出される。
 (5)プリント回路基板の一構成例
 次に、プリント回路基板21の一構成例について説明する。図10は、プリント回路基板21の一構成例を示す模式的平面図である。
 図10に示すように、プリント回路基板21は略矩形状を有する。プリント回路基板21上には、検出回路20、通信回路24および絶縁素子25が実装される。また、プリント回路基板21には、複数の接続端子22およびコネクタ23が形成される。なお、図2の抵抗Rおよびスイッチング素子SWの図示については省略する。
 プリント回路基板21は、第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。
 第2の実装領域12Gは、プリント回路基板21の1つの角部に形成される。絶縁領域26は、第2の実装領域12Gに沿って延びるように形成される。第1の実装領域10Gは、プリント回路基板21の残りの部分に形成される。第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により互いに分離される。それにより、第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により電気的に絶縁される。
 第1の実装領域10Gには、検出回路20が実装されるとともに複数の接続端子22が形成され、検出回路20と複数の接続端子22とはプリント回路基板21上で接続線により電気的に接続される。また、検出回路20の電源として、バッテリモジュール100の複数のバッテリセル10(図1参照)が検出回路20に接続される。検出回路20の実装領域、複数の接続端子22の形成領域および接続線の形成領域を除いて、第1の実装領域10GにグランドパターンGND1が形成される。グランドパターンGND1はバッテリモジュール100の基準電位に保持される。
 第2の実装領域12Gには、通信回路24が実装されるとともにコネクタ23が形成され、通信回路24とコネクタ23とはプリント回路基板21上で複数の接続線により電気的に接続される。また、通信回路24の電源として、電動車両が備える非動力用バッテリ12(図1参照)が通信回路24に接続される。通信回路24の実装領域、コネクタ23の形成領域および複数の接続線の形成領域を除いて、第2の実装領域12GにグランドパターンGND2が形成される。グランドパターンGND2は非動力用バッテリ12の基準電位に保持される。
 絶縁素子25は、絶縁領域26をまたぐように実装される。絶縁素子25は、グランドパターンGND1とグランドパターンGND2とを互いに電気的に絶縁しつつ検出回路20と通信回路24との間で信号を伝送する。絶縁素子25としては、例えばデジタルアイソレータまたはフォトカプラなどを用いることができる。本実施の形態においては、絶縁素子25としてデジタルアイソレータを用いる。
 このように、検出回路20と通信回路24とは、絶縁素子25により電気的に絶縁されつつ通信可能に接続される。これにより、検出回路20の電源として複数のバッテリセル10を用いることができ、通信回路24の電源として非動力用バッテリ12(図1参照)を用いることができる。その結果、検出回路20および通信回路24をそれぞれ独立に安定して動作させることができる。
 (6)通信回路の接続
 次に、通信回路24の接続について説明する。図11は、バッテリモジュール100の通信回路24の接続に用いられる配線の配置を示す外観斜視図である。図12は、バッテリモジュール100の通信回路24の接続に用いられる入出力用ハーネスの模式的平面図である。
 図11に示すように、バッテリモジュール100の一方の端面枠92には、その外側の面に間隔を隔てて図10のプリント回路基板21が取り付けられる。上記のように、プリント回路基板21のコネクタ23は通信回路24と接続されている。
 コネクタ23を他のバッテリモジュール100のコネクタ23と接続することにより、図11のバッテリモジュール100の通信回路24を他のバッテリモジュール100の通信回路24に接続することができる。それにより、図11のバッテリモジュール100の通信回路24は、そのバッテリモジュール100のセル情報を他のバッテリモジュール100の通信回路24に送信することができるとともに、他のバッテリモジュール100からセル情報を受信することができる。
 各バッテリモジュール100のコネクタ23には、他のバッテリモジュール100のコネクタ23と接続するために図12に示す入出力用ハーネス23Hが接続される。図11および図12に示すように、入出力用ハーネス23Hは、入力コネクタ23a、中継コネクタ23b、出力コネクタ23cおよびハーネス540,550からなる。
 入力コネクタ23aは信号受信用の複数の入力端子を有する。中継コネクタ23bは、信号受信用の複数の入力端子および信号送信用の複数の出力端子を有する。出力コネクタ23cは、信号送信用の複数の出力端子を有する。
 入力コネクタ23aの複数の入力端子と中継コネクタ23bの複数の入力端子とがハーネス540により接続される。また、中継コネクタ23bの複数の出力端子と出力コネクタ23cの複数の出力端子とがハーネス550により接続される。なお、図11ではハーネス540,550をそれぞれ実線および点線で示し、図12ではハーネス540,550を構成する複数の導体線54,55をそれぞれ複数の実線および複数の点線で示している。
 これにより、中継コネクタ23bがプリント回路基板21上のコネクタ23に接続され、入力コネクタ23aおよび出力コネクタ23cがそれぞれ他のバッテリモジュール100に接続されることにより、他のバッテリモジュール100から受信したセル情報が、入力コネクタ23aおよび中継コネクタ23bを通して通信回路24に入力される。また、通信回路24から出力されるセル情報が、中継コネクタ23bおよび出力コネクタ23cを通して他のバッテリモジュール100に送信される。
 なお、入力コネクタ23aと他のバッテリモジュール100との間の接続、および出力コネクタ23cと他のバッテリモジュール100との間の接続にはハーネス560(図13参照)が用いられる。
 上述のように、中継コネクタ23bは、プリント回路基板21のコネクタ23に接続される。この状態で、本例では、入出力用ハーネス23Hの入力コネクタ23aおよび出力コネクタ23cがともにバッテリモジュール100の上面に配置される。
 図11のバッテリブロック10BBの上面には、入力コネクタ23aおよび出力コネクタ23cを配置するために、各バッテリセル10(図3参照)の一方側の電極10a,10bおよび一方側のFPC基板50(図3参照)を覆うように端子カバー70が設けられる。入力コネクタ23aおよび出力コネクタ23cは接着剤等により端子カバー70上面に固定される。
 これにより、通信回路24と他のバッテリモジュール100とを接続するためのハーネス540,550が、プリント回路基板21から上方に引き出される。ここで、上記のようにFPC基板50がプリント回路基板21に接続された状態で、図1の検出回路20と複数のバスバー40,40aとを接続する導体線52(図8参照)が、プリント回路基板21から上方に引き出される。
 このように、本実施の形態のバッテリモジュール100においては、通信用のハーネス540,550と電圧の検出用の導体線52とが、プリント回路基板21から同一方向(Z方向)に引き出される。これにより、導体線52およびハーネス540,550がプリント回路基板21の一方向に集中するように配置されるので、プリント回路基板21の取り扱いが容易になり、バッテリモジュール100の組み立てが容易になる。また、一方向を除いてプリント回路基板21の周辺に導体線52およびハーネス540,550が存在しないので、検出回路20および通信回路24の放熱性が向上する。
 図11に示すように、プリント回路基板21を保持する端面枠92の上端部には上記の導体線52およびハーネス540,550を通すための切欠部92nが形成されている。これにより、導体線52およびハーネス540,550をプリント回路基板21から切欠部92nを通過させることにより容易に上方へ引き出すことができる。この場合、バッテリモジュール100の組み立てがより容易になる。
 図13は、バッテリモジュール100の通信回路24の一接続例を示す模式的平面図である。
 図13に示すように、本実施の形態では、4個のバッテリモジュール100(本例では4個)の通信回路24とバッテリECU101とが直列に接続される。なお、図13では、バッテリモジュール100間を接続する電源線501(図1参照)の図示は省略する。
 バッテリECU101は入力コネクタ101aおよび出力コネクタ101cを有する。以下の説明においては、バッテリECU101の出力コネクタ101cに接続されるバッテリモジュール100から、バッテリECU101の入力コネクタ101aに接続されるバッテリモジュール100までを順に1番目~4番目のバッテリモジュール100と呼ぶ。
 バッテリECU101の出力コネクタ101cと1番目のバッテリモジュール100の入力コネクタ23aとがハーネス560により接続される。また、1番目のバッテリモジュール100の出力コネクタ23cと2番目のバッテリモジュール100の入力コネクタ23aとがハーネス560により接続される。同様に、2番目のバッテリモジュール100の出力コネクタ23cと3番目のバッテリモジュール100の入力コネクタ23aとがハーネス560により接続される。3番目のバッテリモジュール100の出力コネクタ23cと4番目のバッテリモジュール100の入力コネクタ23aとがハーネス560により接続される。4番目のバッテリモジュール100の出力コネクタ23cとバッテリECU101の入力コネクタ101aとがハーネス560により接続される。
 4個のバッテリモジュール100およびバッテリECU101を上記のように接続することにより、1番目のバッテリモジュール100のセル情報が、出力コネクタ23cおよびハーネス560を介して2番目のバッテリモジュール100の入力コネクタ23aに送信される。
 2番目のバッテリモジュール100において、入力コネクタ23aで受信されたセル情報は、ハーネス540(図12)、中継コネクタ23b(図12)、コネクタ23(図10)を介して通信回路24に与えられる。また、通信回路24から出力されたセル情報は、コネクタ23、中継コネクタ23b(図12)、ハーネス550(図12)、出力コネクタ23cおよびハーネス560を介して2番目のバッテリモジュール100の入力コネクタ23aに与えられる。
 以降、上記と同様にして、2番目~4番目のバッテリモジュール100間でセル情報の通信が行われる。なお、4番目のバッテリモジュール100において、通信回路24から出力されたセル情報は、コネクタ23、中継コネクタ23b(図12)、ハーネス550(図12)、出力コネクタ23cおよびハーネス560を介してバッテリECU101の入力コネクタ101aに送信される。
 このようにして、バッテリECU101は、複数のバッテリモジュール100のセル情報を集中的に管理することができる。この場合、バッテリECU101は、2つバッテリモジュール100にされるので、複数のバッテリモジュール100のセル情報をバッテリECU101に送信するための配線が単純化される。
 なお、上記のように本実施の形態では、複数のバッテリモジュール100の通信回路24とバッテリECU101とが直列に接続され、各バッテリモジュール100の通信回路24は、検出されたセル情報を隣り合うバッテリモジュール100の通信回路24またはバッテリECU101に送信するとともに、隣り合うバッテリモジュール100の通信回路24またはバッテリECU101からセル情報を受信するが、これに限定されない。
 例えば、各バッテリモジュール100の通信回路24はバッテリECU101にバスを介して接続されてもよい。この場合、各バッテリモジュール100の通信回路24は、検出されたセル情報をバスを介してバッテリECU101に送信する。そのため、通信回路24はセル情報を受信するための通信機能を有しなくてもよい。
 また、各バッテリモジュール100の通信回路24は、バッテリECU101にハーネスを介して個別に並列接続されてもよい。この場合、各バッテリモジュール100の通信回路24は、検出されたセル情報をハーネスを介してバッテリECU101に送信する。そのため、通信回路24はセル情報を受信するための通信機能を有しなくてもよい。
 (7)バッテリセルの電圧の均等化
 バッテリECU101は、各バッテリセル10のセル情報から各バッテリセル10の充電量を算出する。ここで、バッテリECU101は、あるバッテリセル10の充電量が他のバッテリセル10の充電量よりも大きいことを検出した場合、充電量の大きいバッテリセル10に接続されたスイッチング素子SW(図2)をオンにする。これにより、そのバッテリセル10に充電された電荷が抵抗R(図2)を通して放電される。そのバッテリセル10の充電量が他のバッテリセル10の充電量と略等しくなるまで低下すると、バッテリECU101はそのバッテリセル10に接続されたスイッチング素子SWをオフにする。このようにして、全てのバッテリセル10の充電量が略均等に保たれる。これにより、一部のバッテリセル10の過充電および過放電を防止することができる。その結果、バッテリセル10の劣化を防止することができる。
 なお、本実施の形態では、バッテリECU101が上記の各バッテリセル10の充電量の算出、大きい充電量を有するバッテリセル10の検出およびスイッチング素子SWの制御を行うが、これに限定されない。各バッテリモジュール100の通信回路24が、各バッテリセル10の充電量の算出、大きい充電量を有するバッテリセル10の検出およびスイッチング素子SWの制御を行ってもよい。
 (8)バッテリシステムの詳細な構成の一例
 図14は、バッテリシステム500の詳細な構成の一例を示す模式的平面図である。図14に示すように、バッテリシステム500は、4個のバッテリモジュール100、バッテリECU101、コンタクタ102、HV(High Voltage;高圧)コネクタ510およびサービスプラグ520を備える。
 以下の説明において、4個のバッテリモジュール100をそれぞれバッテリモジュール100A,100B,100C,100Dと呼ぶ。また、バッテリモジュール100A~100Dにそれぞれ設けられる一対の端面枠92のうち、プリント回路基板21(図10参照)が取り付けられる端面枠92を端面枠92aと呼び、プリント回路基板21が取り付けられない端面枠92を端面枠92bと呼ぶ。図21においては、端面枠92aにハッチングが付されている。
 バッテリモジュール100A~100D、バッテリECU101、コンタクタ102、HVコネクタ510およびサービスプラグ520は、箱型のケーシング530内に収容される。
 ケーシング530は、側壁530a,530b,530c,530dを有する。側壁530a,530cは互いに平行であり、側壁530b,530dは互いに平行でありかつ側壁530a,530cに対して垂直である。
 ケーシング530内において、バッテリモジュール100A,100Bは、所定の間隔で並ぶように配置される。この場合、バッテリモジュール100Aの端面枠92bとバッテリモジュール100Bの端面枠92aとが互いに向き合うように、バッテリモジュール100A,100Bが配置される。バッテリモジュール100C,100Dは、所定の間隔で並ぶように配置される。この場合、バッテリモジュール100Cの端面枠92aとバッテリモジュール100Dの端面枠92bとが互いに向き合うように、バッテリモジュール100A,100Bが配置される。以下、互いに並ぶように配置されたバッテリモジュール100A,100Bをモジュール列T1と呼び、互いに並ぶように配置されたバッテリモジュール100C,100Dをモジュール列T2と呼ぶ。
 ケーシング530内において、側壁530aに沿ってモジュール列T1が配置され、モジュール列T1と並列にモジュール列T2が配置される。モジュール列T1のバッテリモジュール100Aの端面枠92aが側壁530dに向けられ、バッテリモジュール100Bの端面枠92bが側壁530bに向けられる。また、モジュール列T2のバッテリモジュール100Cの端面枠92bが側壁530dに向けられ、バッテリモジュール100Dの端面枠92aが側壁530bに向けられる。
 モジュール列T2と側壁530cとの間の領域に、バッテリECU101、サービスプラグ520、HVコネクタ510およびコンタクタ102がこの順で側壁530dから側壁530bへ並ぶように配置される。
 バッテリモジュール100A~100Dの各々において、端面枠92aに隣り合うバッテリセル10のプラス電極10a(図4参照)の電位が最も高く、端面枠92bに隣り合うバッテリセル10のマイナス電極10b(図4参照)の電位が最も低い。以下、各バッテリモジュール100A~100Dにおいて最も電位が高いプラス電極10aを高電位電極10Aと呼び、各バッテリモジュール100A~100Dにおいて最も電位が低いマイナス電極10bを低電位電極10Bと呼ぶ。
 バッテリモジュール100Aの低電位電極10Bとバッテリモジュール100Bの高電位電極10Aとは、図1の電源線501として帯状のバスバー501aを介して互いに接続される。バッテリモジュール100Cの高電位電極10Aとバッテリモジュール100Dの低電位電極10Bとは、図1の電源線501として帯状のバスバー501aを介して互いに接続される。
 バッテリモジュール100Aの高電位電極10Aは図1の電源線501として電源線Q1を介してサービスプラグ520に接続され、バッテリモジュール100Cの低電位電極10Bは図1の電源線501として電源線Q2を介してサービスプラグ520に接続される。サービスプラグ520がオンされた状態では、バッテリモジュール100A~100Dが直列接続される。この場合、バッテリモジュール100Dの高電位電極10Aの電位が最も高く、バッテリモジュール100Bの低電位電極10Bの電位が最も低い。
 サービスプラグ520は、例えばバッテリシステム500のメンテナンス時に作業者によりオフされる。サービスプラグ520がオフされた場合には、バッテリモジュール100A,100Bからなる直列回路とバッテリモジュール100C,100Dからなる直列回路とが電気的に分離される。この場合、バッテリモジュール100A,100Bからなる直列回路の総電圧とバッテリモジュール100C,100Dからなる直列回路の総電圧とが等しくなる。これにより、メンテナンス時にバッテリシステム500内に高い電圧が発生することが防止される。
 バッテリモジュール100Bの低電位電極10Bは図1の電源線501として電源線Q3を介してコンタクタ102に接続され、バッテリモジュール100Dの高電位電極10Aは図1の電源線501として電源線Q4を介してコンタクタ102に接続される。コンタクタ102は、図1の電源線501として電源線Q5,Q6を介してHVコネクタ510に接続される。HVコネクタ510は、電動車両のモータ等の負荷に接続される。
 コンタクタ102がオンされた状態では、バッテリモジュール100Bが電源線Q3,Q5を介してHVコネクタ510に接続されるとともに、バッテリモジュール100Dが電源線Q4,Q6を介してHVコネクタ510に接続される。それにより、バッテリモジュール100A~100Dから負荷に電力が供給される。
 コンタクタ102がオフされると、バッテリモジュール100BとHVコネクタ510との接続およびバッテリモジュール100DとHVコネクタ510との接続が遮断される。
 バッテリモジュール100A~100Dの通信回路24およびバッテリECU101の接続は、図13に示した接続と同様である。
 (9)第1の実施の形態の効果
 上記のように、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500においては、検出回路20および通信回路24は共通のプリント回路基板21に実装される。したがって、検出回路20と通信回路24との間の配線が短くかつ単純になる。それにより、検出回路20および通信回路24の配置スペースが小さくなる。
 その結果、バッテリモジュール100を大型化することなく、複数のバッテリモジュール100のセル情報を集中的に管理することが可能となる。
 また、複数のバッテリモジュール100のセル情報に基づいて、バッテリECU101により複数のバッテリモジュール100の各バッテリセル10の充放電を個別に制御することが可能となる。そのため、複数のバッテリモジュール100の複数のバッテリセル10の充電量を略均等に保つことができる。これにより、一部のバッテリセル10の過充電および過放電を防止することができる。その結果、バッテリセル10の劣化を防止することができる。
 さらに、バッテリECU101は、全てのバッテリモジュール100に接続されることなく、2つのバッテリモジュール100に接続されることにより、複数のバッテリモジュール100のセル情報を取得することができる。したがって、複数のバッテリモジュール100のセル情報をバッテリECU101に送信するための配線が単純化される。
 [2]第2の実施の形態
 第2の実施の形態に係るバッテリモジュール100(100A~100D)およびバッテリシステム500について、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。
 図15は、第2の実施の形態に係るバッテリシステム500における複数のプリント回路基板21およびバッテリECU101の間の接続を示す説明図である。図16は、第2の実施の形態に係るバッテリモジュール100の通信回路24の接続に用いられる入出力用ハーネスの模式的平面図である。図17は、第2の実施の形態に係るバッテリシステム500の詳細な構成の一例を示す模式的平面図である。
 図15には、バッテリモジュール100A~100Dに対応する4つのプリント回路基板21が示される。各プリント回路基板21上のコネクタ23は、2つの信号端子および2つの電源端子に接続される。一方、バッテリECU101は、図14の入力コネクタ101aおよび出力コネクタ101cに代えて、第1の入出力コネクタ101Aおよび第2の入出力コネクタ101Cを有する。また、バッテリECU101は、MPU(マイクロプロセッサ)97およびスイッチ回路98をさらに有する。第1の入出力コネクタ101Aは、2本の接続線によりMPU97に接続される。第2の入出力コネクタ101Cは、スイッチ回路98を介して2本の接続線により非動力用バッテリ12に接続される。また、第2の入出力コネクタ101Cは、2本の接続線によりMPU97に接続される。
 MPU97は、バス104を介して電動車両の主制御部300に通信可能に接続される。MPU97およびスイッチ回路98には、非動力用バッテリ12により電力が供給される。スイッチ回路98のオンおよびオフは、MPU97により制御される。スイッチ回路98がオンである場合、非動力用バッテリ12による電力は、スイッチ回路98を介して第2の入出力コネクタ101Cから出力される。
 図16に示すように、入出力用ハーネス23Iは、第1の入出力コネクタ23A、中継コネクタ23B、第2の入出力コネクタ23Cおよびハーネス570,580からなる。第1の入出力コネクタ23Aは通信用および電力用の複数の端子を有する。中継コネクタ23Bは通信用および電力用の複数の端子を有する。第2の入出力コネクタ23Cは通信用および電力用の複数の端子を有する。第1の入出力コネクタ23Aの複数の端子と中継コネクタ23Bの複数の端子とがハーネス570により接続される。また、中継コネクタ23Bの複数の端子と第2の入出力コネクタ23Cの複数の端子とがハーネス580により接続される。ハーネス570は2本の通信線56および2本の電源線57により構成され、ハーネス580は2本の通信線58および2本の電源線59により構成される。
 2本の通信線56と2本の通信線58とは、中継コネクタ23Bの端子を介して電気的に接続されている。これにより、第1の入出力コネクタ23Aに入力された差動信号は、2本の通信線56を介して中継コネクタ23Bから出力されるとともに、2本の通信線58を介して第2の入出力コネクタ23Cから出力される。同様に、第2の入出力コネクタ23Cに入力された差動信号は、2本の通信線58を介して中継コネクタ23Bから出力されるとともに、2本の通信線56を介して第1の入出力コネクタ23Aから出力される。
 また、2本の電源線57と2本の電源線59とは、中継コネクタ23Bの端子を介して電気的に接続されている。これにより、第1の入出力コネクタ23Aに入力された電力は、2本の電源線57を介して中継コネクタ23Bから出力されるとともに、2本の電源線59を介して第2の入出力コネクタ23Cから出力される。
 複数のバッテリモジュール100A~100Dに対応して複数の入出力用ハーネス23Iが用いられる。第1の実施の形態の入出力用ハーネス23H(図11参照)と同様に、本実施の形態においても、各入出力用ハーネス23Iの第1および第2の入出力コネクタ23A,23Cは各バッテリモジュール100A~100Dの上面に配置される。
 図15および図17に示すように、複数の入出力用ハーネス23I間の接続には、複数の接続線を含む複数のハーネス590が用いられる。各ハーネス590は、通信用の2本の接続線および電力用の2本の接続線を含む。バッテリモジュール100A~100Dに対応する入出力用ハーネス23Iの中継コネクタ23Bは、それぞれバッテリモジュール100A~100Dのコネクタ23に接続される。バッテリモジュール100Aに対応する入出力用ハーネス23Iの第1の入出力コネクタ23Aはハーネス590を介してバッテリECU101の第2の入出力コネクタ101Cに接続される。
 バッテリモジュール100Aに対応する入出力用ハーネス23Iの第2の入出力コネクタ23Cとバッテリモジュール100Bに対応する入出力用ハーネス23Iの第1の入出力コネクタ23Aとがハーネス590を介して接続される。バッテリモジュール100Bに対応する入出力用ハーネス23Iの第2の入出力コネクタ23Cとバッテリモジュール100Dに対応する入出力用ハーネス23Iの第1の入出力コネクタ23Aとがハーネス590を介して接続される。バッテリモジュール100Dに対応する入出力用ハーネス23Iの第2の入出力コネクタ23Cとバッテリモジュール100Cに対応する入出力用ハーネス23Iの第1の入出力コネクタ23Aとがハーネス590を介して接続される。
 なお、バッテリモジュール100Cに対応する入出力用ハーネス23Iの第2の入出力コネクタ23Cには終端抵抗が接続される。同様に、バッテリECU101の第1の入出力コネクタ101Aには終端抵抗が接続される。このようにして、複数の入出力用ハーネス23Iの通信線56,58および複数のハーネス590によりバスが構成される。
 これにより、バッテリECU101のMPU97とバッテリモジュール100A~100Dの通信回路24とが通信可能となる。また、非動力用バッテリ12の電力がバッテリECU101のスイッチ回路98を通してバッテリモジュール100A~100Dの通信回路24に供給可能となる。
 [3]第3の実施の形態
 第3の実施の形態に係るバッテリモジュール100およびバッテリシステム500について、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。なお、本実施の形態ならびに後述する第4および第5の実施の形態のバッテリシステム500においても、図13のように、4個のバッテリモジュール100の通信回路24およびバッテリECU101が直列に接続される。
 図18は第3の実施の形態に係るバッテリモジュール100が備えるプリント回路基板21aの模式的平面図であり、図19は図18のプリント回路基板21aに接続されるFPC基板50aの模式的平面図である。
 図18に示すように、プリント回路基板21aは略矩形状を有する。プリント回路基板21a上には、検出回路20、通信回路24および絶縁素子25が実装される。また、プリント回路基板21aには、2組の複数の接続端子22,27,28および入力コネクタ23aが形成される。なお、図2の抵抗Rおよびスイッチング素子SWの図示については省略する。
 プリント回路基板21aは、第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。
 第2の実装領域12Gは、プリント回路基板21aの上部の略中央部に形成される。絶縁領域26は、第2の実装領域12Gに沿って延びるように形成される。第1の実装領域10Gは、プリント回路基板21aの残りの部分に形成される。第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により互いに分離される。それにより、第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により電気的に絶縁される。
 第1の実装領域10Gには、検出回路20が実装されるとともに2組の接続端子22が形成され、検出回路20と接続端子22とはプリント回路基板21a上で接続線により電気的に接続される。また、検出回路20の電源として、バッテリモジュール100の複数のバッテリセル10(図1参照)が検出回路20に接続される。検出回路20の実装領域、接続端子22の形成領域および接続線の形成領域を除いて、第1の実装領域10GにグランドパターンGND1が形成される。グランドパターンGND1はバッテリモジュール100の基準電位に保持される。
 第2の実装領域12Gには、通信回路24が実装されるとともに入力コネクタ23aおよび2組の接続端子27,28が形成され、通信回路24と入力コネクタ23aおよび接続端子27,28とはプリント回路基板21a上で接続線により電気的に接続される。また、通信回路24の電源として、電動車両が備える非動力用バッテリ12(図1参照)が通信回路24に接続される。通信回路24の実装領域、入力コネクタ23aの形成領域、接続端子27,28の形成領域および接続線の形成領域を除いて、第2の実装領域12GにグランドパターンGND2が形成される。グランドパターンGND2は非動力用バッテリ12の基準電位に保持される。
 絶縁素子25は、絶縁領域26をまたぐように実装される。絶縁素子25は、グランドパターンGND1とグランドパターンGND2とを互いに電気的に絶縁しつつ検出回路20と通信回路24との間で信号を伝送する。
 プリント回路基板21aの2組の接続端子22,27,28には、2枚のFPC基板50aが接続される。図19に示すように、FPC基板50aには、複数の導体線52,53,55が設けられる。本実施の形態では、一方のFPC基板50aには9本の導体線52、2本の導体線53および3本の導体線55が設けられる。また、他方のFPC基板50aには9本の導体線52、2本の導体線53および4本の導体線55が設けられる。このように、2枚のFPC基板50aに設けられる導体線52,53,55の数を略等しくすることにより、2枚のFPC基板50aの幅を略等しく形成することができる。
 導体線52は、バスバー40,40aとプリント回路基板21aの接続端子22とを接続する。これにより、バッテリセル10(図1参照)の各電圧が、バスバー40,40a、導体線52および接続端子22を介して検出回路20により検出される。通信回路24は、検出回路20により検出された電圧に基づいて各バッテリセル10の端子電圧を算出するとともに、バッテリモジュール100に流れる電流を算出する。
 導体線53は、サーミスタ11とプリント回路基板21aの接続端子27とを接続する。これにより、サーミスタ11から出力される信号が、導体線53および接続端子27を介して通信回路24に与えられる。これにより、通信回路24は、各バッテリモジュールの温度を取得する。
 導体線55は、出力コネクタ23cとプリント回路基板21aの接続端子28とを接続する。ここで、図18の入力コネクタ23aおよび図19の出力コネクタ23cは、図13に示すように、ハーネス560を介して隣り合うバッテリモジュール100にそれぞれ接続される。
 4個のバッテリモジュール100の通信回路24およびバッテリECU101を図13のように接続することにより、各バッテリモジュール100はセル情報を他のバッテリモジュール100またはバッテリECU101に送信することができるとともに、他のバッテリモジュール100からセル情報を受信することができる。
 上記のように、本実施の形態に係るバッテリモジュール100およびそれを備えたバッテリシステム500においては、各バッテリセル10の電圧を検出するための導体線52、バッテリセル10の温度を取得するための導体線53および他のバッテリモジュール100と通信するための導体線55が2枚のFPC基板50aに形成される。この場合、導体線52,53,55を一体的に取り扱うことができる。それにより、バッテリモジュール100の組み立てがさらに容易になる。また、導体線52,53,55がFPC基板50aに集中するので、複数のバッテリセル10の周囲において導体線52,53,55が存在しないスペースが大きく確保される。それにより、複数のバッテリセル10の放熱性がさらに向上する。
 [4]第4の実施の形態
 第4の実施の形態に係るバッテリモジュール100およびバッテリシステム500について、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。
 図20は、第4の実施の形態に係るバッテリモジュール100が備えるプリント回路基板21bの模式的平面図である。プリント回路基板21は略矩形状を有し、一面および他面を有する。図20(a)および図20(b)は、それぞれプリント回路基板21bの一面および他面を示す。
 図20(a)に示すように、プリント回路基板21b上の一面には、検出回路20、通信回路24および絶縁素子25が実装されるとともに接続端子22およびコネクタ23が形成される。図20(b)に示すように、プリント回路基板21bの他面には、複数の抵抗Rが実装されるとともに、接続端子22が形成される。なお、図2のスイッチング素子SWの図示については省略する。
 第1の実施の形態と同様に、プリント回路基板21bは、一面に第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。
 プリント回路基板21bの他面の複数の抵抗Rは、検出回路20および通信回路24に対応する位置よりも上方の位置に配置される。これにより、抵抗Rから発生する熱を効率よく放散させることができる。また、抵抗Rから発生する熱が検出回路20および通信回路24に伝導することを防止することができる。その結果、検出回路20および通信回路24の熱による誤動作および劣化を防止することができる。
 [5]第5の実施の形態
 図21は、第5の実施の形態に係るバッテリモジュール100を示す外観斜視図である。図21のバッテリモジュール100について、図3のバッテリモジュール100と異なる点を説明する。
 図21のバッテリモジュール100においては、各バッテリセル10は、Y方向に沿って並ぶように上面部分にプラス電極10aおよびマイナス電極10bを有する。各電極10a,10bは、上方に向かって突出するように設けられる。隣り合う各2個の電極10a,10bに、平板状のバスバー40pが嵌め込まれる。その状態で、電極10a,10bがバスバー40pにレーザ溶接される。それにより。複数のバッテリセル10が直列接続される。
 本実施の形態に係るバッテリモジュール100においても、複数のバッテリセル10、一対の端面枠92、一対の上端枠93および一対の下端枠94により略直方体形状のバッテリブロック10BBが形成される。
 複数のバスバー40pは、X方向に沿って2列に配列される。2列のバスバー40pの内側に、2枚のFPC基板50が配置される。一方のFPC基板50は、複数のバッテリセル10のガス抜き弁10vに重ならないように、複数のバッテリセル10のガス抜き弁10vと一方の1列の複数のバスバー40pとの間に配置される。同様に、他方のFPC基板50は、複数のバッテリセル10のガス抜き弁10vに重ならないように、複数のバッテリセル10のガス抜き弁10vと他方の1列の複数のバスバー40pとの間に配置される。
 一方のFPC基板50は、一方の1列の複数のバスバー40pに共通して接続されている。他方のFPC基板50は、他方の1列の複数のバスバー40pに共通して接続されている。各FPC基板50は、一方の端面枠92の上端部分で下方に向かって折り返され、プリント回路基板21に接続されている。
 各FPC基板50は、図7のFPC基板50と同様の構成を有し、X方向に沿った折曲線において2重に折り重ねられる。この場合、各FPC基板50の幅が大きくても、各FPC基板50が折曲されることにより、各FPC基板50がガス抜き弁10vに重なることが防止される。それにより、バッテリセル10内部の圧力が所定の値まで上昇してガス抜き弁10vからガスが排出される場合に、各FPC基板50がガスの排出の妨げとなることが防止される。また、ガスの排出によるFPC基板50の損傷を防止することができる。
 プリント回路基板21の両端部および下部を保護するように、一対の側面部および底面部を有する保護部材95が端面枠92に取り付けられている。プリント回路基板21は、保護部材95で覆われることにより保護される。なお、保護部材95が設けられなくてもよい。プリント回路基板21上には、検出回路20、通信回路24およびコネクタ23が設けられている。
 複数のバッテリセル10の下面に接するように冷却板96が設けられる。冷却板96は冷媒流入口96aおよび冷媒流出口96bを有する。冷却板96の内部には冷媒流入口96aおよび冷媒流出口96bにつながる循環経路が形成されている。冷媒流入口96aに冷却水等の冷媒が流入すると、冷媒は冷却板96内部の循環経路を通過して冷媒流出口96bから流出する。これにより冷却板96が冷却される。その結果、複数のバッテリセル10が冷却される。
 図13の接続と同様に、図12の入出力用ハーネス23Hを用いて図21のコネクタ23を他のバッテリモジュール100のコネクタ23と接続することにより、バッテリモジュール100の通信回路24を他のバッテリモジュール100の通信回路24に接続することができる。この場合、入力コネクタ23aと他のバッテリモジュール100との間の接続、および出力コネクタ23cと他のバッテリモジュール100との間の接続にはハーネス560(図13参照)が用いられる。それにより、バッテリモジュール100の通信回路24は、そのバッテリモジュール100のセル情報を他のバッテリモジュール100の通信回路24に送信することができるとともに、他のバッテリモジュール100からセル情報を受信することができる。図21では、入出力用ハーネス23Hのハーネス540,550をそれぞれ実線および点線で示している。
 本例では、入出力用ハーネス23Hの入力コネクタ23aおよび出力コネクタ23cはともにバッテリブロック10BBの上面に配置される。これにより、通信回路24と他のバッテリモジュール100とを接続するためのハーネス540,550が、プリント回路基板21から上方に引き出される。ここで、FPC基板50がプリント回路基板21に接続された状態で、検出回路20と複数のバスバー40,40aとを接続する導体線52(図8参照)が、プリント回路基板21から上方に引き出される。
 このように、本実施の形態のバッテリモジュール100においては、通信用のハーネス540,550と電圧の検出用の導体線52とが、プリント回路基板21から同一方向(Z方向)に引き出される。これにより、導体線52およびハーネス540,550がプリント回路基板21の一方向に集中するように配置されるので、プリント回路基板21の取り扱いが容易になり、バッテリモジュール100の組み立てが容易になる。また、一方向を除いてプリント回路基板21の周辺に導体線52およびハーネス540,550が存在しないので、検出回路20および通信回路24の放熱性が向上する。
 図21の例においても、図11と同様に、各バッテリセル10の一方側の電極10a,10bおよび一方側のFPC基板50を覆うようにバッテリモジュール100に端子カバー70を設け、入力コネクタ23aおよび出力コネクタ23cを端子カバー70上面に固定してもよい。
 また、図21の例においては、入力コネクタ23aおよび出力コネクタ23cは、プリント回路基板21が取り付けられた端面枠92の上面またはその近傍のバッテリセル10の上面の位置に配置されるが、これに限定されない。入力コネクタ23aおよび出力コネクタ23cがバッテリブロック10BBの上面の他の位置に配置されてもよい。例えば、入力コネクタ23aがプリント回路基板21が取り付けられた端面枠92の上面またはその近傍のバッテリセル10の上面の位置に配置され、出力コネクタ23cがプリント回路基板21が取り付けられない端面枠92の上面またはその近傍のバッテリセル10の上面の位置に配置されてもよい。
 この場合、図13に示すように、入力コネクタ23aと他のバッテリモジュール100との間を接続するハーネス560を短くすることができる。また、出力コネクタ23cと他のバッテリモジュール100との間を接続するハーネス560を短くすることができる。
 [6]第6の実施の形態
 第6の実施の形態に係るバッテリモジュール100およびバッテリシステム500について、第1の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。
 (1)バッテリモジュールの構成
 図22は第6の実施の形態に係るバッテリモジュール100を示す外観斜視図であり、図23は図22のバッテリモジュール100の一方側面図であり、図24は図22のバッテリモジュール100の他方側面図である。
 図22~図24に示すように、バッテリモジュール100は、バッテリブロック10BB、プリント回路基板21c、サーミスタ11およびFPC基板50bを有する。プリント回路基板21cには検出回路20、通信回路24およびコネクタ23が設けられている。
 バッテリブロック10BBは、主として複数の円筒型のバッテリセル10、および複数のバッテリセル10を保持する一対のバッテリホルダ90により構成される。各バッテリセル10は、対向する端面を有する円筒型の外形(いわゆる円柱形状)を有する。バッテリセル10の一方の端面には、プラス電極が形成される。また、バッテリセル10の他方の端面には、マイナス電極が形成される。
 複数のバッテリセル10は、それぞれの軸心が互いに平行になるように並列に配列される。図22~図24の例では、各バッテリセル10の軸心がY方向に平行となっている。複数のバッテリセル10のうち、半数(本例では6個)のバッテリセル10が上段に配置され、残りの半数(本例では6個)のバッテリセル10が下段に配置される。
 また、上段および下段の各々において、複数のバッテリセル10は、隣り合う各2個のバッテリセル10間でプラス電極およびマイナス電極の位置関係が互いに逆になるように配置される。それにより、隣り合う各2個のバッテリセル10のうち一方のバッテリセル10のプラス電極と他方のバッテリセル10のマイナス電極とが隣り合い、一方のバッテリセル10のマイナス電極と他方のバッテリセル10のプラス電極とが隣り合う。
 バッテリホルダ90は、例えば樹脂により形成される略長方形状の板状部材からなる。バッテリホルダ90は一面および他面を有する。以下、バッテリホルダ90の一面および他面をそれぞれ外面および内面と呼ぶ。複数のバッテリセル10を挟むように、一対のバッテリホルダ90が配置される。この場合、各バッテリセル10の一端面に対向するように一方のバッテリホルダ90が配置され、各バッテリセル10の他端面に対向するように他方のバッテリホルダ90が配置される。
 バッテリホルダ90の四隅には孔部が形成され、その孔部に棒状の締結部材13の両端が挿通される。締結部材13の両端には雄ねじが形成されている。この状態で、締結部材13の両端にナットNが取り付けられることにより、複数のバッテリセル10と一対のバッテリホルダ90とが一体的に固定される。また、バッテリホルダ90には、長手方向に沿って3個の孔部99が等間隔に形成される。孔部99には導体線53aが挿通される。本例では、バッテリホルダ90の長手方向がX方向に平行である。
 ここで、バッテリブロック10BBを取り囲む仮想的な直方体を考える。直方体の6つの仮想面のうち、X方向における一端部で上段および下段に位置するバッテリセル10の外周面に対向する仮想面をバッテリブロック10BBの側面Eaと呼び、X方向における他端部で上段および下段に位置するバッテリセル10の外周面に対向する仮想面をバッテリブロック10BBの側面Ebと呼ぶ。
 また、直方体の6つの仮想面のうち、複数のバッテリセル10のY方向における一方の端面に対向する仮想面をバッテリブロック10BBの側面Ecと呼び、複数のバッテリセル10のY方向における他方の端面に対向する仮想面をバッテリブロック10BBの側面Edと呼ぶ。
 さらに、直方体の6つの仮想面のうち、上段の複数のバッテリセル10の外周面に対向する仮想面をバッテリブロック10BBの側面Eeと呼び、下段の複数のバッテリセル10の外周面に対向する仮想面をバッテリブロック10BBの側面Efと呼ぶ。
 バッテリブロック10BBの側面Ea,Ebは、上段または下段の複数のバッテリセル10の整列方向(X方向)に垂直である。すなわち、バッテリブロック10BBの側面Ea,Ebは、それぞれYZ平面に平行でありかつ互いに対向する面である。バッテリブロック10BBの側面Ec,Edは、各バッテリセル10の軸方向(Y方向)に垂直である。すなわち、バッテリブロック10BBの側面Ec,Edは、それぞれXZ平面に平行でありかつ互いに対向する面である。バッテリブロック10BBの側面Ee,Efは、上段または下段の複数のバッテリセル10の整列方向(X方向)および各バッテリセル10の軸方向(Y方向)に平行である。すなわち、バッテリブロック10BBの側面Ee,Efは、それぞれXY平面に平行でありかつ互いに対向する面である。
 各バッテリセル10のプラス電極およびマイナス電極の一方はバッテリブロック10BBの側面Ecに配置され、他方はバッテリブロック10BBの側面Edに配置される。
 バッテリブロック10BBにおいて、複数のバッテリセル10は、複数のバスバー40および六角ボルト14により直列接続される。具体的には、各バッテリホルダ90には、上段および下段の複数のバッテリセル10に対応するように複数の孔部が形成される。各バッテリセル10のプラス電極およびマイナス電極が一対のバッテリホルダ90の対応する孔部にそれぞれ嵌め込まれる。それにより、各バッテリセル10のプラス電極およびマイナス電極は、一対のバッテリホルダ90の外面から突出する。
 上記のように、バッテリブロック10BBにおいて、各バッテリセル10は、隣り合うバッテリセル10間でプラス電極およびマイナス電極の位置関係が互いに逆になるように配置されるので、隣り合う2個のバッテリセル10間では、一方のバッテリセル10のプラス電極と他方のバッテリセル10のマイナス電極とが隣り合い、一方のバッテリセル10のマイナス電極と他方のバッテリセル10のプラス電極とが隣り合う。この状態で、複数のバッテリセル10が直列接続されるように近接するプラス電極およびマイナス電極にバスバー40が取り付けられる。
 以下の説明では、バッテリブロック10BBの上段に配置される6個のバッテリセル10のうち、側面Eaに最も近いバッテリセル10から側面Ebに最も近いバッテリセル10までを1番目~6番目のバッテリセル10と呼ぶ。また、バッテリブロック10BBの下段に配置される6個のバッテリセル10のうち、側面Ebに最も近いバッテリセル10から側面Eaに最も近いバッテリセル10までを7番目~12番目のバッテリセル10と呼ぶ。
 この場合、1番目のバッテリセル10のマイナス電極と2番目のバッテリセル10のプラス電極とに共通のバスバー40が取り付けられる。また、2番目のバッテリセル10のマイナス電極と3番目のバッテリセル10のプラス電極とに共通のバスバー40が取り付けられる。同様にして、各奇数番目のバッテリセル10のマイナス電極とそれに隣り合う偶数番目のバッテリセル10のプラス電極とに共通のバスバー40が取り付けられる。各偶数番目のバッテリセル10のマイナス電極とそれに隣り合う奇数番目のバッテリセル10のプラス電極とに共通のバスバー40が取り付けられる。
 また、1番目のバッテリセル10のプラス電極には、図1の電源線501として外部に電力を供給するためのバスバー501aの一端部が取り付けられる。12番目のバッテリセル10のマイナス電極には、図1の電源線501として外部に電力を供給するためのバスバー501bの一端部が取り付けられる。バスバー501a,501bの他端部は複数のバッテリセル10の整列方向(X方向)に引き出される。
 検出回路20、通信回路24およびコネクタ23を含むプリント回路基板21cはバッテリブロック10BBの側面Eaに取り付けられる。バッテリブロック10BBの側面Ec上から側面Ea上に延びるように長尺状のFPC基板50bが設けられる。また、バッテリブロック10BBの側面Ed上から側面Ea上に延びるように長尺状のFPC基板50bが設けられる。FPC基板50bは、複数のサーミスタ11とプリント回路基板21cの接続端子27(後述する図25参照)とを接続するための導体線53(図19参照)をさらに有する点を除いて、図8のFPC基板50と同様の構成を有する。FPC基板50b上において、複数のバスバー40,40aにそれぞれ近接するようにPTC素子60が配置されている。
 図23に示すように、一方のFPC基板50bは、バッテリブロック10BBの側面Ec上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このFPC基板50bは複数のバスバー40に共通して接続される。図24に示すように、他方のFPC基板50bは、バッテリブロック10BBの側面Ed上の中央部で複数のバッテリセル10の整列方向(X方向)に延びるように配置される。このFPC基板50bは複数のバスバー40,40aに共通して接続される。
 側面Ec上のFPC基板50bは、バッテリブロック10BBの側面Ecの一方の端部で側面Ea上に向かって直角に折り返され、プリント回路基板21cに接続される。また、側面Ed上のFPC基板50bは、バッテリブロック10BBの側面Edの一方の端部で側面Ea上に向かって直角に折り返され、プリント回路基板21cに接続される。
 サーミスタ11は、導体線53aを介してFPC基板50bに設けられた導体線に接続される。バッテリモジュール100のバスバー40,40aおよびサーミスタ11は、FPC基板50bに形成された導体線により、それぞれプリント回路基板21cに電気的に接続される。
 (2)プリント回路基板の一構成例
 図25は、第6の実施の形態におけるプリント回路基板21cの一構成例を示す模式的平面図である。プリント回路基板21cは略矩形状を有し、一面および他面を有する。図25(a)および図25(b)は、それぞれプリント回路基板21cの一面および他面を示す。プリント回路基板21cの四隅には孔部Hが形成される。
 図25(a)に示すように、プリント回路基板21cは、一面に第1の実装領域10G、第2の実装領域12Gおよび帯状の絶縁領域26を有する。
 第2の実装領域12Gは、プリント回路基板21cの上部に形成される。絶縁領域26は、第2の実装領域12Gに沿って延びるように形成される。第1の実装領域10Gは、プリント回路基板21cの残りの部分に形成される。第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により互いに分離される。それにより、第1の実装領域10Gと第2の実装領域12Gとは絶縁領域26により電気的に絶縁される。
 第1の実装領域10Gには、検出回路20が実装されるとともに2組の接続端子22が形成され、検出回路20と接続端子22とはプリント回路基板21c上で接続線により電気的に接続される。また、検出回路20の電源として、バッテリモジュール100の複数のバッテリセル10(図22参照)が検出回路20に接続される。検出回路20の実装領域、接続端子22の形成領域および接続線の形成領域を除いて、第1の実装領域10GにグランドパターンGND1が形成される。グランドパターンGND1はバッテリモジュール100の基準電位に保持される。
 第2の実装領域12Gには、通信回路24が実装されるとともにコネクタ23および2組の接続端子27が形成され、通信回路24とコネクタ23および接続端子27とはプリント回路基板21c上で接続線により電気的に接続される。コネクタ23には、図12の入出力用ハーネス23Hの中継コネクタ23bが取り付けられる。また、通信回路24の電源として、電動車両が備える非動力用バッテリ12(図1参照)が通信回路24に接続される。通信回路24の実装領域、コネクタ23の形成領域、接続端子27の形成領域および接続線の形成領域を除いて、第2の実装領域12GにグランドパターンGND2が形成される。グランドパターンGND2は非動力用バッテリ12の基準電位に保持される。
 絶縁素子25は、絶縁領域26をまたぐように実装される。絶縁素子25は、グランドパターンGND1とグランドパターンGND2とを互いに電気的に絶縁しつつ検出回路20と通信回路24との間で信号を伝送する。
 プリント回路基板21cの2組の接続端子22,27には、2枚のFPC基板50b(図22参照)が接続される。FPC基板50bには、複数の導体線が設けられる。FPC基板50bに設けられた複数の導体線により、バスバー40,40aとプリント回路基板21cの接続端子22とが接続される。これにより、バッテリセル10(図22参照)の各電圧が、バスバー40,40a、FPC基板50bに設けられた導体線および接続端子22を介して検出回路20により検出される。
 同様に、FPC基板50bに設けられた複数の導体線により、サーミスタ11に接続された導体線53aとプリント回路基板21cの接続端子27とが接続される。これにより、サーミスタ11から出力される信号が、導体線53a、FPC基板50bに設けられた導体線53および接続端子27を介して通信回路24に与えられる。これにより、通信回路24は各バッテリモジュールの温度を取得する。
 図25(b)に示すように、プリント回路基板21cの他面には、複数の抵抗Rおよび複数のスイッチング素子SWが実装される。これにより、抵抗Rから発生する熱を効率よく放散させることができる。また、抵抗Rから発生する熱が検出回路20および通信回路24に伝導することを防止することができる。その結果、検出回路20および通信回路24の熱による誤動作および劣化を防止することができる。
 図26は、図22のバッテリブロック10BBにプリント回路基板21cが取り付けられた状態を示す側面図である。図26に示すように、プリント回路基板21cの孔部H(図25参照)には、ねじSが挿通される。この状態で、ねじSがバッテリホルダに形成されたねじ穴に螺合されることにより、プリント回路基板21cがバッテリブロック10BBの側面Eaに取り付けられる。
 図27は、ケーシングに収容されたバッテリモジュール100の外観斜視図である。図27に示すように、各バッテリモジュール100はケーシング110に収容される。ケーシング110により、バッテリモジュール100の搬送時および接続作業時にバッテリセル10間の短絡の発生が防止される。
 ケーシング110は6つの側壁110a,110b,110c,110d,110e,110fからなる直方体形状を有する。ケーシング110の側壁110a~110fの内面は、バッテリブロック10BBの側面Ea~Ef(図22参照)にそれぞれ対向する。
 ケーシング110の側壁110aにおいては、側壁110dの近傍に上下方向に延びるように長方形状の開口部105が形成される。2つのバスバー501a,501bは、開口部105を通してケーシング110の外部に引き出される。
 また、ケーシング110の側壁110aの略中央部には、図12の入出力用ハーネス23Hの入力コネクタ23aおよび出力コネクタ23cをそれぞれ嵌め込み可能な開口部106,107が形成される。入力コネクタ23aおよび出力コネクタ23cは、ケーシング110の内部からそれぞれ開口部106,107に嵌め込まれることにより、ケーシング110の外部に突出した状態で固定される。
 このように、バスバー501a,501b、入力コネクタ23aおよび出力コネクタ23cがケーシング110の1つの側壁(本例では側壁110a)に集中して配置されることにより、バッテリモジュール100間の配線を接続するための作業効率が向上する。
 ケーシング110の側壁110eには、複数のバッテリセル10(図22参照)の軸方向(Y方向)に延びる複数の矩形のスリット108が複数のバッテリセル10の整列方向(X方向)に並ぶように形成される。また、ケーシング110の側壁110fには、複数のバッテリセル10の軸方向(Y方向)に延びる複数の矩形のスリット109が複数のバッテリセル10の整列方向(X方向)に並ぶように形成される。スリット108,109を通して冷却用空気がケーシング110の内部へ流入可能でかつ外部に流出可能である。
 (3)バッテリシステムの詳細な構成の一例
 図28は、第6の実施の形態に係るバッテリシステム500の詳細な構成の一例を示す模式的平面図である。図28に示すように、バッテリシステム500は、複数(本例では6個)のバッテリモジュール100、バッテリECU101、コンタクタ102、HVコネクタ510、サービスプラグ520および2個の送風機581を含む。
 図28では、バッテリシステム500の6個のバッテリモジュール100を互いに区別するためにそれぞれのバッテリモジュール100をバッテリモジュール100A,100B,100C,100D,100E,100Fと呼ぶ。
 バッテリモジュール100A~100F、バッテリECU101、コンタクタ102、HVコネクタ510およびサービスプラグ520は、箱型のケーシング530内に収容される。
 ケーシング530は、側壁530a,530b,530c,530dを有する。側壁530a,530cは互いに平行であり、側壁530b,530dは互いに平行でありかつ側壁530a,530cに対して垂直である。
 一方の送風機581は、バッテリモジュール100Cの側壁110fに対向するようにケーシング530の側壁530aに取り付けられる。他方の送風機581は、バッテリモジュール100Dの側壁110eに対向するようにケーシング530の側壁530aに取り付けられる。また、バッテリモジュール100Aの側壁110eおよびバッテリモジュール100Fの側壁110fに対向するように、ケーシング530の側壁530cに排気口582がそれぞれ形成される。
 ケーシング530内において、バッテリモジュール100C,100B,100Aは、この順で側壁530b,530dに平行な方向に所定の間隔で並ぶように配置される。また、バッテリモジュール100D,100E,100Fは、この順で側壁530b,530dに平行な方向に所定の間隔で並ぶように配置される。この場合、バッテリモジュール100A~100Fは、ケーシング110の側壁110d(図27参照)が上方を向くようにケーシング530に取り付けられる。それにより、バッテリブロック10BBの複数のバッテリセル10は、軸心が上下方向に平行となるように配置される。この場合、後述するバッテリモジュール100間の配線を接続する作業をケーシング530の上面から行うことができる。その結果、バッテリモジュール100間の配線を接続するための作業効率が向上する。
 バッテリモジュール100Aのバスバー501bとバッテリモジュール100Bのバスバー501aとが連結バスバー501cを介して接続されるとともに、バッテリモジュール100Bのバスバー501bとバッテリモジュール100Cのバスバー501aとが連結バスバー501cを介して接続される。
 また、バッテリモジュール100Dのバスバー501bとバッテリモジュール100Eのバスバー501aとが連結バスバー501cを介して接続されるとともに、バッテリモジュール100Eのバスバー501bとバッテリモジュール100Fのバスバー501aとが連結バスバー501cを介して接続される。さらに、バッテリモジュール100Cのバスバー501bとバッテリモジュール100Dのバスバー501aとの間にサービスプラグ520が介挿される。
 バッテリモジュール100Aのバスバー501aおよびバッテリモジュール100Fのバスバー501bは、コンタクタ102を介してHVコネクタ510に接続される。HVコネクタ510は、電動車両のモータ等の負荷に接続される。これにより、直列接続されたバッテリモジュール100A~100Fの電力をモータ等に供給することが可能になる。
 また、ケーシング530内において、バッテリモジュール100Aの出力コネクタ23c(図27参照)は、バッテリモジュール100Bの入力コネクタ23a(図27参照)にハーネス560を介して接続される。バッテリモジュール100Bの出力コネクタ23cは、バッテリモジュール100Cの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Cの出力コネクタ23cは、バッテリモジュール100Dの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Dの出力コネクタ23cは、バッテリモジュール100Eの入力コネクタ23aにハーネス560を介して接続される。バッテリモジュール100Eの出力コネクタ23cは、バッテリモジュール100Fの入力コネクタ23aにハーネス560を介して接続される。
 さらに、バッテリモジュール100Aの入力コネクタ23aおよびバッテリモジュール100Fの出力コネクタ23cは、それぞれハーネス560を介してバッテリECU101に接続される。これにより、バッテリモジュール100A~100Fのセル情報がバッテリECU101に与えられる。
 [7]第7の実施の形態
 第7の実施の形態に係るバッテリモジュール100について、第6の実施の形態に係るバッテリモジュール100と異なる点を説明する。
 図29は第7の実施の形態に係るバッテリモジュール100の一方の外観斜視図であり、図30は図29のバッテリモジュール100の他方の外観斜視図である。
 図29および図30に示すように、本実施の形態に係るバッテリモジュール100は、図27のケーシング110に収容されない。また、バッテリモジュール100には、側面Edの電極10a,10bおよびFPC基板50を覆うように端子カバー70が設けられる。同様に、バッテリモジュール100には、側面Ecの電極10a,10bおよびFPC基板50を覆うように端子カバー70が設けられる。
 複数のバッテリモジュール100の通信回路24の接続には図12の入出力用ハーネス23Hが用いられる。図29および図30では、入出力用ハーネス23Hのハーネス540,550をそれぞれ実線および点線で示している。
 中継コネクタ23bがプリント回路基板21c上のコネクタ23に接続され、入力コネクタ23aおよび出力コネクタ23cがそれぞれ他のバッテリモジュール100に接続されることにより、他のバッテリモジュール100から受信したセル情報が、入力コネクタ23aおよび中継コネクタ23bを通して通信回路24に入力される。また、通信回路24から出力されるセル情報が、中継コネクタ23bおよび出力コネクタ23cを通して他のバッテリモジュール100に送信される。
 本例では、入出力用ハーネス23Hの入力コネクタ23aおよび出力コネクタ23cがバッテリブロック10BBの側面Ed上に固定される。これにより、通信回路24と他のバッテリモジュール100とを接続するためのハーネス540,550が、プリント回路基板21cから側方に引き出される。また、FPC基板50がプリント回路基板21cに接続された状態で、検出回路20と複数のバスバー40,40aとを接続する導体線52(図8参照)が、プリント回路基板21cから側方に引き出される。
 このように、本実施の形態のバッテリモジュール100においては、通信用のハーネス540,550と電圧の検出用の導体線52とが、プリント回路基板21cから同一方向(Y方向)に引き出される。これにより、導体線52およびハーネス540,550がプリント回路基板21cの一方向に集中するように配置されるので、プリント回路基板21cの取り扱いが容易になり、バッテリモジュール100の組み立てが容易になる。また、一方向を除いてプリント回路基板21cの周辺に導体線52およびハーネス540,550が存在しないので、検出回路20および通信回路24の放熱性が向上する。
 また、本例では、入力コネクタ23aおよび出力コネクタ23cがバッテリブロック10BBの側面Ed上において側面Eaに近い端部近傍の位置に配置される。さらに、図22に示すように、1番目のバッテリセル10のプラス電極に接続されるバスバー501aおよび12番目のバッテリセル10のマイナス電極に接続されるバスバー501bは、バッテリブロック10BBの側面Ed上において側面Eaに近い端部近傍の位置から突出するように配置される。このように、バスバー501a,501b、入力コネクタ23aおよびコネクタ23cが集中して配置されることにより、バッテリモジュール100を他のバッテリモジュール100に接続するための作業効率が向上する。
 [8]第8の実施の形態
 第8の実施の形態に係るバッテリモジュール100およびバッテリシステム500について、第7の実施の形態に係るバッテリモジュール100およびバッテリシステム500と異なる点を説明する。
 図31は、第8の実施の形態に係るバッテリモジュール100の一方の外観斜視図である。図31に示すように、複数のバッテリモジュール100の通信回路24の接続には図12の入出力用ハーネス23Hが用いられる。図31では、入出力用ハーネス23Hのハーネス540,550をそれぞれ実線および点線で示している。
 本例では、入力コネクタ23aがバッテリブロック10BBの側面Ed上において側面Eaに近い端部近傍の位置に配置される。また、出力コネクタ23cがバッテリブロック10BBの側面Ed上において側面Ebに近い端部近傍の位置に配置される。
 これにより、複数のバッテリモジュール100をX方向に沿って配置する場合、入力コネクタ23aと隣り合う他のバッテリモジュール100との間を接続するハーネス560(図28参照)を短くすることができる。また、出力コネクタ23cと隣り合うさらに他のバッテリモジュール100との間を接続するハーネス560を短くすることができる。
 [9]第9の実施の形態
 第9の実施の形態に係るバッテリモジュール100について、第6の実施の形態に係るバッテリモジュール100と異なる点を説明する。
 バッテリモジュール100の詳細について説明する。図32は第9の実施の形態に係るバッテリモジュール100の一方側面図であり、図33は図32のバッテリモジュール100の他方側面図である。
 以下の説明では、第6の実施の形態と同様に、図32および図33のバッテリブロック10BBの上段に配置される6個のバッテリセル10のうち、側面Eaに最も近いバッテリセル10から側面Ebに最も近いバッテリセル10までを1番目~6番目のバッテリセル10と呼ぶ。また、バッテリブロック10BBの下段に配置される6個のバッテリセル10のうち、側面Ebに最も近いバッテリセル10から側面Eaに最も近いバッテリセル10までを7番目~12番目のバッテリセル10と呼ぶ。
 図32に示すように、バッテリモジュール100の側面Ecにおいて、上下方向(Z方向)に隣り合うバッテリセル10間のプラス電極とマイナス電極とが接続されるようにバスバー40が取り付けられる。
 図33に示すように、バッテリモジュール100の側面Ecにおいて、1番目のバッテリセル10のプラス電極には、図1の電源線501として外部に電力を供給するためのバスバー501aの一端部が取り付けられる。6番目のバッテリセル10のマイナス電極には、図1の電源線501として外部に電力を供給するためのバスバー501bの一端部が取り付けられる。1番目および6番目のバッテリセル10を除いて、複数のバッテリセル10の整列方向(X方向)に隣り合うバッテリセル10間のプラス電極とマイナス電極とを接続するようにバスバー40が取り付けられる。
 これにより、バッテリモジュール100の複数のバッテリセル10が直列接続される。このバッテリモジュール100においては、1番目のバッテリセル10のプラス電極が最高電位を有し、6番目のバッテリセル10のマイナス電極が最低電位を有する。
 図34は、第9の実施の形態に係るバッテリモジュール100の外観斜視図である。図34に示すように、複数のバッテリモジュール100の通信回路24の接続には図12の入出力用ハーネス23Hが用いられる。図34では、入出力用ハーネス23Hのハーネス540,550をそれぞれ実線および点線で示している。
 中継コネクタ23bがプリント回路基板21c上のコネクタ23に接続され、入力コネクタ23aおよび出力コネクタ23cがそれぞれ他のバッテリモジュール100に接続されることにより、他のバッテリモジュール100から受信したセル情報が、入力コネクタ23aおよび中継コネクタ23bを通して通信回路24に入力される。また、通信回路24から出力されるセル情報が、中継コネクタ23bおよび出力コネクタ23cを通して他のバッテリモジュール100に送信される。
 本例では、入力コネクタ23aがバッテリブロック10BBの側面Ed上において側面Eaに近い端部近傍の位置に配置される。また、出力コネクタ23cがバッテリブロック10BBの側面Ed上において側面Ebに近い端部近傍の位置に配置される。
 これにより、入力コネクタ23aと他のバッテリモジュール100との間を接続するハーネス560を短くすることができる。また、出力コネクタ23cと他のバッテリモジュール100との間を接続するハーネス560を短くすることができる。
 また、1番目のバッテリセル10のプラス電極に接続されるバスバー501aおよび入出力用ハーネス23Hの入力コネクタ23aが、バッテリブロック10BBの側面Ed上において側面Eaに近い端部近傍の位置に配置される。このように、バスバー501aおよび入力コネクタ23aが集中して配置されることにより、バッテリモジュール100を他のバッテリモジュール100に接続するための作業効率が向上する。
 同様に、6番目のバッテリセル10のマイナス電極に接続されるバスバー501bおよび入出力用ハーネス23Hの出力コネクタ23cが、バッテリブロック10BBの側面Ed上において側面Ebに近い端部近傍の位置に配置される。このように、バスバー501bおよび出力コネクタ23cが集中して配置されることにより、バッテリモジュール100を他のバッテリモジュール100に接続するための作業効率が向上する。
 [10]第10の実施の形態
 以下、第10の実施の形態に係る電動車両について説明する。本実施の形態に係る電動車両は、第1~第9のいずれかの実施の形態に係るバッテリシステム500を備える。なお、以下では、電動車両の一例として電動自動車を説明する。
 図35は、バッテリシステム500を備える電動自動車の構成を示すブロック図である。図35に示すように、本実施の形態に係る電動自動車600は、図1の非動力用バッテリ12、主制御部300およびバッテリシステム500、電力変換部601、モータ602、駆動輪603、アクセル装置604、ブレーキ装置605、ならびに回転速度センサ606を含む。モータ602が交流(AC)モータである場合には、電力変換部601はインバータ回路を含む。
 本実施の形態において、上記のように、バッテリシステム500には、非動力用バッテリ12が接続される。また、バッテリシステム500は、電力変換部601を介してモータ602に接続されるとともに、主制御部300に接続される。上述のように、主制御部300には、バッテリシステム500を構成するバッテリECU101(図1)から複数組のバッテリモジュール100(図1)の充電量およびバッテリモジュール100に流れる電流値が与えられる。また、主制御部300には、アクセル装置604、ブレーキ装置605および回転速度センサ606が接続される。主制御部300は、例えばCPUおよびメモリ、またはマイクロコンピュータからなる。
 アクセル装置604は、電動自動車600が備えるアクセルペダル604aと、アクセルペダル604aの操作量(踏み込み量)を検出するアクセル検出部604bとを含む。運転者によりアクセルペダル604aが操作されると、アクセル検出部604bは、運転者により操作されていない状態を基準としてアクセルペダル604aの操作量を検出する。検出されたアクセルペダル604aの操作量が主制御部300に与えられる。
 ブレーキ装置605は、電動自動車600が備えるブレーキペダル605aと、運転者によるブレーキペダル605aの操作量(踏み込み量)を検出するブレーキ検出部605bとを含む。運転者によりブレーキペダル605aが操作されると、ブレーキ検出部605bによりその操作量が検出される。検出されたブレーキペダル605aの操作量が主制御部300に与えられる。
 回転速度センサ606は、モータ602の回転速度を検出する。検出された回転速度は、主制御部300に与えられる。
 上記のように、主制御部300には、バッテリモジュール100の充電量、バッテリモジュール100を流れる電流値、アクセルペダル604aの操作量、ブレーキペダル605aの操作量、およびモータ602の回転速度が与えられる。主制御部300は、これらの情報に基づいて、バッテリモジュール100の充放電制御および電力変換部601の電力変換制御を行う。
 例えば、アクセル操作に基づく電動自動車600の発進時および加速時には、バッテリシステム500から電力変換部601にバッテリモジュール100の電力が供給される。
 さらに、主制御部300は、与えられたアクセルペダル604aの操作量に基づいて、駆動輪603に伝達すべき回転力(指令トルク)を算出し、その指令トルクに基づく制御信号を電力変換部601に与える。
 上記の制御信号を受けた電力変換部601は、バッテリシステム500から供給された電力を、駆動輪603を駆動するために必要な電力(駆動電力)に変換する。これにより、電力変換部601により変換された駆動電力がモータ602に供給され、その駆動電力に基づくモータ602の回転力が駆動輪603に伝達される。
 一方、ブレーキ操作に基づく電動自動車600の減速時には、モータ602は発電装置として機能する。この場合、電力変換部601は、モータ602により発生された回生電力をバッテリモジュール100の充電に適した電力に変換し、バッテリモジュール100に与える。それにより、バッテリモジュール100が充電される。
 上記のように、本実施の形態に係る電動自動車600には、第1~第9のいずれかの実施の形態に係るバッテリシステム500が設けられるので、バッテリECU101により複数のバッテリモジュール100のセル情報を集中的に管理することができるとともにバッテリセル10の劣化を防止することができる。これにより、バッテリモジュール100の信頼性の向上および長寿命化が可能となる。その結果、電動自動車600の性能を向上させることが可能になるとともに、低コスト化が可能になる。
 [11]他の実施の形態
 (1)上記実施の形態に係るバッテリモジュール100では、プリント回路基板21,21a~21c上に互いに別個の検出回路20および通信回路24が設けられるが、これに限定されない。プリント回路基板21,21a~21c上に検出回路20の機能のおよび通信回路24の機能を有する1つの回路が設けられてもよい。この場合、プリント回路基板21,21a~21cへの回路の実装が容易になるとともに、バッテリモジュール100のコストを低減することができる。
 また、上記実施の形態に係るバッテリモジュール100では、バッテリセル10としてリチウムイオン電池が使用されるが、これに限定されない。例えば、ニッケル水素電池等の他の二次電池を使用することもできる。
 (2)第1~第5の実施の形態において、扁平な略直方体形状を有するバッテリセル10が用いられるが、これに限定されない。例えば、一端部にプラス電極およびマイナス電極を有するラミネート型のバッテリセル10が用いられてもよい。
 (3)第6~第9の実施の形態において、円筒型のバッテリセル10が用いられるが、これに限定されない。例えば、一端部および他端部にそれぞれプラス電極およびマイナス電極を有するラミネート型のバッテリセル10が用いられてもよい。
 [12]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態においては、他のバッテリモジュール100,100A~100FまたはバッテリECU101が外部装置の例であり、バッテリセル10がバッテリセルの例であり、検出回路20が検出部の例であり、通信回路24が通信部の例であり、プリント回路基板21,21a~21cが回路基板の例である。プラス電極10aまたはマイナス電極10bが電極の例であり、バスバー40,40pおよび電圧電流バスバー40yが接続部材の例であり、導体線52が第1の配線の例であり、導体線54,55および通信線56,58が第2の配線の例である。サーミスタ11が温度検出部の例であり、導体線53が第3の配線の例であり、FPC基板50,50a,50bが軟部材の例であり、グランドパターンGND1が第1のグランド導体の例であり、第1の実装領域10Gが第1の領域の例である。非動力用バッテリ12が外部電源の例であり、グランドパターンGND2が第2のグランド導体の例であり、第2の実装領域12Gが第2の領域の例であり、絶縁領域26が第3の領域の例であり、絶縁素子25が絶縁素子の例である。バッテリECU101が制御部の例であり、バッテリシステム500がバッテリシステムの例であり、モータ602がモータの例であり、駆動輪603が駆動輪の例であり、電動自動車600が電動車両の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、電力を駆動源とする種々の移動体、電力の貯蔵装置またはモバイル機器等に有効に利用することができる。

Claims (7)

  1. 外部装置と通信可能なバッテリモジュールであって、
     複数のバッテリセルと、
     各バッテリセルの電圧を検出する検出部と、
     前記検出部に接続されるとともに前記外部装置に接続可能な通信部と、
     前記検出部および前記通信部が実装される共通の回路基板とを備え、
     前記通信部は、前記検出部により検出された各バッテリセルの電圧を前記外部装置に送信するように動作可能である、バッテリモジュール。
  2. 隣り合うバッテリセルの電極を互いに接続する接続部材と、
     前記検出部と前記接続部材とを接続する第1の配線と、
     前記通信部と前記外部装置とを接続する第2の配線とを備え、
     前記第1の配線および前記第2の配線が前記回路基板から同一方向に引き出される、請求項1記載のバッテリモジュール。
  3. 前記接続部材は複数設けられ、前記第1の配線は前記複数の接続部材に対応して複数設けられ、複数の前記第1の配線の少なくとも一部および前記第2の配線が前記回路基板から同一方向に引き出される、請求項2記載のバッテリモジュール。
  4. 前記複数のバッテリセルの温度を検出する温度検出部と、
     前記通信部と前記温度検出部とを接続する第3の配線と、
     前記第1の配線、前記第2の配線および前記第3の配線が設けられる軟部材とを備える、請求項2記載のバッテリモジュール。
  5. 前記回路基板は、
     前記検出部が実装されるとともに、前記複数のバッテリセル用の第1のグランド導体が形成される第1の領域と、
     前記通信部が実装されるとともに、外部電源用の第2のグランド導体が形成される第2の領域と、
     前記第1の領域と前記第2の領域とを互いに電気的に絶縁する第3の領域と、
     前記検出部と前記通信部とを電気的に絶縁しつつ通信可能に接続する絶縁素子とを含む、請求項1記載のバッテリモジュール。
  6. 請求項1記載の複数のバッテリモジュールと、
     前記複数のバッテリモジュールの各バッテリセルの充電および放電を制御する制御部とを備え、
     各バッテリモジュールの通信部は他のバッテリモジュールの通信部に接続され、前記制御部は、いずれかのバッテリモジュールの通信部に接続される、バッテリシステム。
  7. 請求項6に記載のバッテリシステムと、
     前記バッテリシステムの前記バッテリモジュールからの電力により駆動されるモータと、
     前記モータの回転力により回転する駆動輪とを備える、電動車両。
PCT/JP2010/005309 2009-08-31 2010-08-27 バッテリモジュール、バッテリシステムおよび電動車両 WO2011024477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011528657A JPWO2011024477A1 (ja) 2009-08-31 2010-08-27 バッテリモジュール、バッテリシステムおよび電動車両
CN2010800380424A CN102484385A (zh) 2009-08-31 2010-08-27 电池模块、电池***及电动车辆
EP10811532A EP2475066A1 (en) 2009-08-31 2010-08-27 Battery module, battery system and electrically driven vehicle
US13/393,527 US20120161677A1 (en) 2009-08-31 2010-08-27 Battery module, battery system and electrically driven vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-199301 2009-08-31
JP2009199301 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011024477A1 true WO2011024477A1 (ja) 2011-03-03

Family

ID=43627593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005309 WO2011024477A1 (ja) 2009-08-31 2010-08-27 バッテリモジュール、バッテリシステムおよび電動車両

Country Status (6)

Country Link
US (1) US20120161677A1 (ja)
EP (1) EP2475066A1 (ja)
JP (1) JPWO2011024477A1 (ja)
KR (1) KR20120073195A (ja)
CN (1) CN102484385A (ja)
WO (1) WO2011024477A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042912A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器
EP2362463A3 (en) * 2010-02-23 2012-06-27 Sanyo Electric Co., Ltd. Power source apparatus with electrical components disposed in the battery blocks
JP2012210031A (ja) * 2011-03-29 2012-10-25 Kayaba Ind Co Ltd 蓄電装置
JP2013017373A (ja) * 2011-06-30 2013-01-24 Hyundai Motor Co Ltd 環境に優しい車両のバッテリセル保護装置
WO2013099499A1 (ja) * 2011-12-28 2013-07-04 三洋電機株式会社 電源装置、回路基板、及び電源装置を備える車両並びに蓄電装置
CN103208599A (zh) * 2012-01-16 2013-07-17 锂能源日本有限公司 电源装置
DE102012204966A1 (de) * 2012-03-28 2013-10-02 Robert Bosch Gmbh Batteriesystem mit Balancing-Schaltung
WO2013187280A1 (ja) * 2012-06-11 2013-12-19 三洋電機株式会社 車載用の電装用バッテリ
WO2014156580A1 (ja) * 2013-03-27 2014-10-02 株式会社オートネットワーク技術研究所 配線モジュール
US20150349389A1 (en) * 2013-02-18 2015-12-03 Takashi Kobune Battery Block and Secondary Battery Module
WO2016194545A1 (ja) * 2015-06-03 2016-12-08 株式会社豊田自動織機 電池パック
JP2017503306A (ja) * 2013-10-28 2017-01-26 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH セルの形態である少なくとも1つの電圧ソースおよび/または電圧シンクを外部電気構成要素に接続するための接続構成、ならびに接続構成を備える電気的構成
JP2019178885A (ja) * 2018-03-30 2019-10-17 株式会社ケーヒン 電圧検出装置
WO2020105402A1 (ja) * 2018-11-22 2020-05-28 株式会社オートネットワーク技術研究所 接続モジュール
JP2020524371A (ja) * 2017-08-29 2020-08-13 エルジー・ケム・リミテッド バッテリーモジュール及びその製造方法
WO2021075165A1 (ja) * 2019-10-17 2021-04-22 株式会社オートネットワーク技術研究所 配線モジュール
JP2021068696A (ja) * 2020-06-12 2021-04-30 株式会社オートネットワーク技術研究所 配線モジュール及び蓄電モジュール
JP2021068695A (ja) * 2019-10-17 2021-04-30 株式会社オートネットワーク技術研究所 配線モジュール
JP2022501816A (ja) * 2019-04-25 2022-01-06 エルジー・ケム・リミテッド バッテリ管理システム回路

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652268A (zh) * 2010-08-31 2012-08-29 松下电器产业株式会社 电池电源装置以及电池电源***
JP2013238472A (ja) * 2012-05-15 2013-11-28 Renesas Electronics Corp 半導体装置および電圧測定装置
KR101882007B1 (ko) * 2012-07-18 2018-07-25 에스케이이노베이션 주식회사 전지팩
US20140078632A1 (en) * 2012-09-18 2014-03-20 Samsung Sdi Co., Ltd. Battery pack, controlling method of the same, and energy storage system including the battery pack
JP6257889B2 (ja) * 2012-10-23 2018-01-10 日本メクトロン株式会社 バスバー付きフレキシブルプリント配線板およびその製造方法、並びにバッテリシステム
DE102012222866A1 (de) * 2012-12-12 2014-06-26 Robert Bosch Gmbh Abdeckung für ein Batteriemodul
US9140759B2 (en) 2013-11-12 2015-09-22 Ford Global Technologies, Llc Electric vehicle battery pack voltage monitoring
KR101516237B1 (ko) * 2013-12-30 2015-05-19 (주)케이씨에스 노이즈방지수단을 구비한 대용량 에너지저장장치
FR3017001B1 (fr) * 2014-01-30 2016-02-05 Renault Sas Systeme et procede correspondant de gestion d'une batterie comprenant une pluralite de cellules de batterie
PL3128599T3 (pl) * 2014-04-01 2019-07-31 Shenzhen Zhilun Driving Technology for Electric Vehicle Co., Ltd. Akumulator zasilający i jego urządzenie do zbierania informacji o stanie ogniwa
US11112463B2 (en) * 2014-04-11 2021-09-07 Cps Technology Holdings Llc Integrated battery sensor for multiple battery modules
ES2555672B1 (es) * 2014-06-03 2016-11-03 Dachs Electrónica, S. A. Elemento de batería que comprende una pluralidad de celdas de batería dispuestas en línea
ITUB20152010A1 (it) * 2015-07-09 2017-01-09 Magneti Marelli Spa Dispositivo elettronico di controllo di pacco batteria per veicolo e sistema impiegante tale dispositivo
CN108713274B (zh) * 2016-03-03 2021-11-19 株式会社东芝 电池模块、电池***以及电池***的控制方法
CN107346903A (zh) * 2016-05-05 2017-11-14 东风农业装备(襄阳)有限公司 用于农机的电动装置
CN105957263B (zh) * 2016-06-17 2019-01-25 浙江右边数字科技有限公司 车载终端、充电桩、电动自行车以及其租用***及方法
JP6790102B2 (ja) * 2016-08-30 2020-11-25 三洋電機株式会社 管理装置、及び蓄電システム
DE102016216660A1 (de) * 2016-09-02 2018-03-08 Volkswagen Aktiengesellschaft Batterieeinheit und Verdrahtungseinheit für eine Batterieeinheit
JP6930745B2 (ja) * 2016-09-13 2021-09-01 三洋電機株式会社 管理装置および電源システム
JP6763729B2 (ja) * 2016-09-26 2020-09-30 矢崎総業株式会社 電池状態検出装置
GB2554747A (en) * 2016-10-07 2018-04-11 Univ Of The Western Cape Battery balancing component
JP6570568B2 (ja) * 2017-03-14 2019-09-04 株式会社オートネットワーク技術研究所 配線モジュール
JP6760203B2 (ja) * 2017-06-05 2020-09-23 株式会社オートネットワーク技術研究所 リレーユニット
JP6470804B1 (ja) * 2017-08-31 2019-02-13 株式会社ソフトエナジーコントロールズ コンタクト機能付きマルチチャンネル充放電電源
FR3071671B1 (fr) * 2017-09-22 2022-02-18 Tyva Energie Batterie electrique
CN107732127A (zh) * 2017-10-24 2018-02-23 刘永红 一种具有电量监控的可拆卸式电池组
TWI649915B (zh) * 2018-01-02 2019-02-01 車王電子股份有限公司 Battery pack
CN110034344A (zh) * 2018-01-12 2019-07-19 车王电子股份有限公司 电池包
JP6837033B2 (ja) * 2018-06-27 2021-03-03 矢崎総業株式会社 電池モジュール
EP3595037B1 (en) * 2018-07-10 2023-04-19 Yazaki Corporation Structure of connection among circuit body, bus bar and electronic element
JP7025297B2 (ja) * 2018-07-13 2022-02-24 矢崎総業株式会社 回路体及び電池モジュール
DE102018212710A1 (de) * 2018-07-31 2020-02-06 Robert Bosch Gmbh Elektrischer Energiespeicher, Vorrichtung und/oder Fahrzeug und Verfahren zur Herstellung eines elektrischen Energiespeichers
WO2020074790A1 (fr) * 2018-10-09 2020-04-16 Tyva Energie Batterie électrique
KR102250193B1 (ko) * 2018-10-10 2021-05-07 주식회사 엘지화학 공간 절약형 icb 조립체를 적용한 배터리 모듈
KR102369355B1 (ko) * 2018-12-21 2022-02-28 주식회사 엘지에너지솔루션 이차전지용 이동형 온도측정기구 및 냉각팬을 포함하는 충방전 장치
DE102019112372A1 (de) * 2019-05-13 2020-11-19 Bayerische Motoren Werke Aktiengesellschaft Hochvoltbatterie für ein Kraftfahrzeug mit Modulverbindern sowie Kraftfahrzeug
KR20210046331A (ko) 2019-10-18 2021-04-28 주식회사 엘지화학 차량 배터리 화재 감지 장치 및 감지 방법
EP4095980A4 (en) * 2020-01-23 2023-11-22 SANYO Electric Co., Ltd. POWER SUPPLY DEVICE, ELECTRIC VEHICLE EQUIPPED WITH POWER SUPPLY DEVICE AND POWER STORAGE DEVICE
US20230226929A1 (en) * 2020-01-23 2023-07-20 Sanyo Electric Co., Ltd. Battery module, power supply device comprising battery module, and electric vehicle and power storage device comprising power supply device
US20230202345A1 (en) * 2020-01-23 2023-06-29 Sanyo Electric Co., Ltd. Power supply device, and electric vehicle and power storage device equipped with this power supply device
KR102519444B1 (ko) * 2020-11-02 2023-04-07 삼성에스디아이 주식회사 배터리 팩
US20240106095A1 (en) * 2022-09-23 2024-03-28 Ford Global Technologies, Llc Bridged battery pack sensing module for multiple arrays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287990A (ja) * 2007-05-16 2008-11-27 Sony Corp バッテリパック
JP2008287991A (ja) * 2007-05-16 2008-11-27 Sony Corp バッテリパック
JP2009183025A (ja) * 2008-01-29 2009-08-13 Hitachi Ltd 車両用電池システム、車載用電池モジュールおよびセルコントローラ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146548B2 (ja) * 1998-09-11 2008-09-10 松下電器産業株式会社 電池電圧の検出装置
JP4800901B2 (ja) * 2005-12-12 2011-10-26 矢崎総業株式会社 電圧検出装置及び絶縁インタフェース

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287990A (ja) * 2007-05-16 2008-11-27 Sony Corp バッテリパック
JP2008287991A (ja) * 2007-05-16 2008-11-27 Sony Corp バッテリパック
JP2009183025A (ja) * 2008-01-29 2009-08-13 Hitachi Ltd 車両用電池システム、車載用電池モジュールおよびセルコントローラ

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362463A3 (en) * 2010-02-23 2012-06-27 Sanyo Electric Co., Ltd. Power source apparatus with electrical components disposed in the battery blocks
WO2012042912A1 (ja) * 2010-09-30 2012-04-05 三洋電機株式会社 バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器
JP2012210031A (ja) * 2011-03-29 2012-10-25 Kayaba Ind Co Ltd 蓄電装置
JP2013017373A (ja) * 2011-06-30 2013-01-24 Hyundai Motor Co Ltd 環境に優しい車両のバッテリセル保護装置
US9761916B2 (en) 2011-12-28 2017-09-12 Sanyo Electric Co., Ltd. Power supply device, circuit board, and vehicle and storage battery device equipped with power supply device
WO2013099499A1 (ja) * 2011-12-28 2013-07-04 三洋電機株式会社 電源装置、回路基板、及び電源装置を備える車両並びに蓄電装置
JPWO2013099499A1 (ja) * 2011-12-28 2015-04-30 三洋電機株式会社 電源装置、回路基板、及び電源装置を備える車両並びに蓄電装置
EP2615662A1 (en) * 2012-01-16 2013-07-17 Lithium Energy Japan Power source unit comprising an electric device
US10181620B2 (en) 2012-01-16 2019-01-15 Gs Yuasa International Ltd. Power source unit
CN103208599A (zh) * 2012-01-16 2013-07-17 锂能源日本有限公司 电源装置
EP3089237A1 (en) * 2012-01-16 2016-11-02 GS Yuasa International Ltd. Power source unit comprising a circuit board
DE102012204966A1 (de) * 2012-03-28 2013-10-02 Robert Bosch Gmbh Batteriesystem mit Balancing-Schaltung
WO2013187280A1 (ja) * 2012-06-11 2013-12-19 三洋電機株式会社 車載用の電装用バッテリ
US20150349389A1 (en) * 2013-02-18 2015-12-03 Takashi Kobune Battery Block and Secondary Battery Module
US9543711B2 (en) 2013-03-27 2017-01-10 Autonetworks Technologies, Ltd. Wiring module
JP2014191953A (ja) * 2013-03-27 2014-10-06 Auto Network Gijutsu Kenkyusho:Kk 配線モジュール
WO2014156580A1 (ja) * 2013-03-27 2014-10-02 株式会社オートネットワーク技術研究所 配線モジュール
JP2017503306A (ja) * 2013-10-28 2017-01-26 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH セルの形態である少なくとも1つの電圧ソースおよび/または電圧シンクを外部電気構成要素に接続するための接続構成、ならびに接続構成を備える電気的構成
JP2016225231A (ja) * 2015-06-03 2016-12-28 株式会社豊田自動織機 電池パック
WO2016194545A1 (ja) * 2015-06-03 2016-12-08 株式会社豊田自動織機 電池パック
JP2020524371A (ja) * 2017-08-29 2020-08-13 エルジー・ケム・リミテッド バッテリーモジュール及びその製造方法
JP7086112B2 (ja) 2017-08-29 2022-06-17 エルジー エナジー ソリューション リミテッド バッテリーモジュール及びその製造方法
JP2019178885A (ja) * 2018-03-30 2019-10-17 株式会社ケーヒン 電圧検出装置
US10877078B2 (en) 2018-03-30 2020-12-29 Keihin Corporation Voltage determination device
WO2020105402A1 (ja) * 2018-11-22 2020-05-28 株式会社オートネットワーク技術研究所 接続モジュール
JP2020087667A (ja) * 2018-11-22 2020-06-04 株式会社オートネットワーク技術研究所 接続モジュール
JP2022501816A (ja) * 2019-04-25 2022-01-06 エルジー・ケム・リミテッド バッテリ管理システム回路
JP7200469B2 (ja) 2019-04-25 2023-01-10 エルジー エナジー ソリューション リミテッド バッテリ管理システム回路
US11950353B2 (en) 2019-04-25 2024-04-02 Lg Energy Solution, Ltd. Battery management system circuit
WO2021075165A1 (ja) * 2019-10-17 2021-04-22 株式会社オートネットワーク技術研究所 配線モジュール
JP2021068695A (ja) * 2019-10-17 2021-04-30 株式会社オートネットワーク技術研究所 配線モジュール
JP2021068696A (ja) * 2020-06-12 2021-04-30 株式会社オートネットワーク技術研究所 配線モジュール及び蓄電モジュール

Also Published As

Publication number Publication date
CN102484385A (zh) 2012-05-30
JPWO2011024477A1 (ja) 2013-01-24
US20120161677A1 (en) 2012-06-28
EP2475066A1 (en) 2012-07-11
KR20120073195A (ko) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2011024477A1 (ja) バッテリモジュール、バッテリシステムおよび電動車両
WO2011105095A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
US9024572B2 (en) Battery module, battery system and electric vehicle
US9705161B2 (en) Battery module, battery system, electric vehicle, mobile unit, electric power storage device, power supply device, and electric device
WO2012042913A1 (ja) バッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
KR20110076752A (ko) 배터리 시스템 및 그것을 구비한 전동 차량
WO2011093105A1 (ja) バッテリモジュール、それを備えたバッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
US11682797B2 (en) Systems and methods for providing individual battery cell circuit protection
JP2011119240A (ja) バッテリシステムおよびそれを備えた電動車両
US8994300B2 (en) Battery module, and electric vehicle, movable body, battery system, power storage device, and power supply device including the same
US20120298433A1 (en) Battery module, battery system, electric vehicle, movable body, power storage device, and power supply device
WO2012011237A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
KR20110013324A (ko) 배터리 시스템 및 이를 구비한 전동 차량
JP2012028186A (ja) バッテリモジュール、バッテリシステムおよび電動車両
WO2012023249A1 (ja) バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置および電源装置
WO2012026093A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
WO2012029319A1 (ja) バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
WO2012029317A1 (ja) バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器
EP2325919A2 (en) Battery system and electric vehicle including the same
JP2011119235A (ja) バッテリシステムおよびそれを備えた電動車両
WO2012042912A1 (ja) バッテリシステム、それを備えた電動車両、移動体、電力貯蔵装置、電源装置および電気機器
KR20110048001A (ko) 배터리 모듈, 배터리 시스템 및 그를 구비한 전동 차량

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038042.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011528657

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010811532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13393527

Country of ref document: US