WO2011018853A1 - 燃焼器 - Google Patents

燃焼器 Download PDF

Info

Publication number
WO2011018853A1
WO2011018853A1 PCT/JP2009/064298 JP2009064298W WO2011018853A1 WO 2011018853 A1 WO2011018853 A1 WO 2011018853A1 JP 2009064298 W JP2009064298 W JP 2009064298W WO 2011018853 A1 WO2011018853 A1 WO 2011018853A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
combustor
peripheral side
compressed air
inner peripheral
Prior art date
Application number
PCT/JP2009/064298
Other languages
English (en)
French (fr)
Inventor
智志 瀧口
厚志 湯浅
谷村 聡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/266,652 priority Critical patent/US9863637B2/en
Priority to EP09848272.2A priority patent/EP2466205B1/en
Priority to CN200980159275.7A priority patent/CN102422083B/zh
Priority to KR1020117026370A priority patent/KR101318553B1/ko
Priority to PCT/JP2009/064298 priority patent/WO2011018853A1/ja
Publication of WO2011018853A1 publication Critical patent/WO2011018853A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • F23R3/32Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices being tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11402Airflow diaphragms at burner nozzle

Definitions

  • the present invention relates to a combustor of a gas turbine, and more particularly to a combustor having a structure that reduces the drift and turbulence of an air flow flowing inside the gas turbine.
  • a combustor in which mainstream air from a passenger compartment is turned 180 degrees to guide mainstream air to a main premixing nozzle (see, for example, Patent Document 1).
  • a rectifying plate is provided at the inlet, and two turning vanes are provided at the turning point, or from the combustion mixing point to the 180 degree turning point.
  • the conventional structure causes an increase in weight and cost as the length of the combustor increases, and the turning portion becomes complicated, so that it is not effective for making the combustor compact.
  • the distance from the turning part to the fuel mixing point is shortened, there is a problem that the amount of NOx generated due to the worsening of the uneven distribution of air increases as an exhaust event.
  • This invention is made
  • One aspect of the present invention is a pilot nozzle that is installed in the axial center of the combustor and performs diffusion combustion, a plurality of main nozzles that are installed at intervals in the circumferential direction on the outer peripheral side of the pilot nozzle and perform premix combustion,
  • One inner cylinder that surrounds the pilot nozzle and each main nozzle, and further, the inner cylinder is surrounded substantially coaxially from the outside, and a compressed air flow path is formed between the inner peripheral surface and the outer peripheral surface of the inner cylinder In an oven where the flow direction of the compressed air flowing through the compressed air channel is substantially reversed at the end of the inner tube and introduced into the pilot nozzle.
  • a combustor provided with a flow rate adjusting section for making the flow rate on the inner peripheral side of the combustor larger than the flow rate on the outer peripheral side.
  • the flow rate adjustment unit can make the flow rate in the radial direction uniform. Thereby, the flow velocity distribution is given in the radial direction, and the velocity of the mainstream air in the radial direction downstream is made uniform.
  • the compressed air flow path is provided with a flow rectifying plate as the flow rate adjusting unit by blocking the flow path, and the flow rectifying plate has an upstream side and a downstream side of the flow path with the flow rectifying plate interposed therebetween.
  • a plurality of holes communicating with each other may be provided, and the diameter of the hole on the inner peripheral side may be larger than the diameter of the hole on the outer peripheral side.
  • the large holes and the small holes in the rectifying plate by arranging the large holes and the small holes in the rectifying plate, local speed non-uniformity occurs, and turbulence increases on the downstream side of the large holes. As a result, momentum exchange is activated, and the tendency of separation at the time of channel inversion is suppressed.
  • the diameter of the hole located on the inner peripheral side of the combustor by configuring the diameter of the hole located on the inner peripheral side of the combustor to be larger than the diameter of the hole positioned on the outer peripheral side, the flow rate in the radial direction can be made uniform.
  • the rectifying plate is provided at a position at a distance of 15 times or less the diameter of the hole on the inner peripheral side, upstream of the position center where the flow path is substantially inverted. Also good.
  • the distance of the core portion of the jet that has passed through the current plate is the distance from the current plate in the two-dimensional jet 6B on the downstream side and about 10B on the downstream side from the current plate in the two-dimensional jet. Therefore, the Coanda effect of the jet can be expected by providing the rectifying plate at a position at a distance of 15 times or less of the diameter of the hole on the inner peripheral side upstream of the position center where the flow path is substantially inverted. In addition, it is possible to suppress the tendency of separation on the downstream side of the flow path reversal point.
  • the end portion of the inner cylinder is provided with a bulging portion that gradually bulges outward in the radial direction along the downstream side of the flow path, and the hole on the inner peripheral side has a radius of the bulging portion. It is good also as providing in the radial inside rather than the end surface of the direction outer side.
  • the jet flow from the hole on the inner peripheral side is pressed against the bulging part to increase the contact surface with the inner cylinder Can be made.
  • the Coanda effect of a jet can be improved and the peeling tendency in a flow path inversion location downstream can be suppressed.
  • the diameter of the hole on the inner peripheral side may be formed to be larger than the bulging height of the bulging portion.
  • the jet flow from the hole on the inner circumference side is pressed against the bulge part, and the contact surface with the inner cylinder is Can be increased.
  • the Coanda effect of a jet can be improved and the peeling tendency in a flow path inversion location downstream can be suppressed.
  • the distance between the centers of the adjacent inner peripheral holes may be 1.5 times or more the diameter of the inner peripheral hole.
  • the diameter of the hole on the inner peripheral side is B
  • the distance between the centers of the adjacent inner peripheral holes is 1.5 B or more, thereby reducing interference between jets from adjacent holes,
  • the Coanda effect of the jet can be maintained, and the separation tendency on the downstream side of the flow path reversal point can be suppressed. Further, it is possible to generate a strong shearing force of the jet and make the flow rate in the radial direction uniform.
  • the compressed air flow path is provided with a rectifying plate as the flow rate adjusting unit by blocking the flow path, and an upstream side and a downstream side of the rectifying plate are provided on an inner peripheral side of the rectifying plate. It is good also as providing the slit which connects these.
  • the flow rate increases, and the flow rate in the radial direction can be made uniform.
  • such slits cause local speed non-uniformity and increase turbulence downstream.
  • the exchange of momentum is activated, and the separation tendency on the downstream side of the flow path inversion portion is also suppressed.
  • a support rib that supports the inner cylinder to the outer cylinder is provided, and the rectifying plate is provided with a slit that communicates the upstream side and the downstream side of the rectifying plate in the vicinity of the support rib. Good.
  • slits may be provided not only on the inner peripheral side of the current plate but also on the outer peripheral side and on the left and right of the support rib. It may be set as appropriate according to the flow of the compressed air which part is specifically provided with the slit.
  • the compressed air flow path may be provided with a top hat nozzle at a position where the flow path is substantially reversed.
  • the mounting angle of the top hat nozzle is 0 degree or more and less than 90 degrees on the downstream side of the mainstream air on the basis of the direction perpendicular to the flow direction of the mainstream air.
  • a low speed region is formed by peeling or the like on the downstream side of the portion where the flow path is reversed. Therefore, when the combustor length is short, the rectification distance is shortened and the flow rate on the inner peripheral side tends to decrease.
  • compressed air is mixed by a top hat nozzle provided at a position where the flow path is substantially reversed, and flow separation is suppressed.
  • the momentum exchange is activated by the vortex generated downstream of the top hat nozzle, so that there is an effect of suppressing the separation region generated on the inner peripheral side when the flow path is reversed.
  • the compressed air flow path is provided with a turning vane for guiding the fluid in the reversing flow path facing the inner cylinder end edge, and the flow of the fluid is agitated on the back side of the turning vane.
  • a stirrer may be provided.
  • ⁇ Turning vanes reduce the pressure loss by bending the flow without separation.
  • the force for mixing the fuel is small.
  • the fuel concentration tends to locally increase downstream of the fuel mixing location, and the NOx concentration sometimes increases.
  • the turbulence is small compared to the ventral side of the turning vane, and the fuel mixing force is weak on the downstream side. According to this configuration, since the stirrer is provided on the back side of the turning vane, fuel mixing on the downstream side is promoted, and the fuel concentration is made uniform.
  • a slit that communicates the back side and the ventral side of the turning vane may be provided at the downstream end of the turning vane.
  • the ventilating side of the turning vane tends to flow toward the outer peripheral side due to centrifugal force, the flow from the inner peripheral side of the turning vane to the outer peripheral side is generated by providing the slit. As a result, mixing on the back side of the turning vane is promoted, and the fuel concentration is made uniform.
  • FIG. 2 shows a rectifying plate of the combustor and is a partially enlarged view of FIG. 1. It is sectional drawing which showed the flow of the mainstream air at the time of using the same baffle plate. It is a partial top view of the baffle plate used for the combustor which concerns on 2nd Embodiment of this invention. It is sectional drawing which showed the flow of the mainstream air at the time of using the same baffle plate.
  • the combustor 1 which concerns on 1st Embodiment is demonstrated using FIG.
  • the combustor 1 according to the present embodiment is installed along the axial center of the combustor 1 and performs diffusion combustion so that the combustor 1 is equally spaced in the circumferential direction on the outer peripheral side of the pilot nozzle 21.
  • a pilot swirler 25 installed between the outer wall of the pilot nozzle 21 and the inner wall of the pilot cone 23, and a main swirler 26 installed between the outer wall of the main nozzle 22 and the inner wall of the main burner 24.
  • the combustor shown in FIG. 1 is fitted to the inner cylinder 2a and an inner cylinder 2a that is substantially coaxial with the pilot nozzle 21 and is formed so as to cover the pilot nozzle 21 and the main nozzle 22 as a whole. And a tail cylinder 2b that guides combustion gas from the pilot nozzle 21 and the main nozzle 22 to a turbine side (not shown), and an outer cylinder 2c that is substantially coaxial with the inner cylinder 2a and surrounds the inner cylinder 2a substantially coaxially from the outside. A rear wall 2d for closing the downstream of the outer cylinder 2c.
  • a compressed air flow path 6 is formed between the inner cylinder 2a and the outer cylinder 2c.
  • the inner cylinder 2a includes a 180-degree turning portion (bulging portion) 8 that substantially reverses the flow direction of the compressed air flow path 6 so as to go around the inner cylinder 2a at the end of the inner cylinder 2a.
  • the radially outer wall portion of the 180-degree turning portion 8 bulges radially outward, and the portion corresponding to the edge of the inner tube 2a is shown in FIG. It is a smooth curve connecting the outer peripheral surface and the inner peripheral surface of 2a. More specifically, as shown in FIG.
  • the tapered portion 53a that is closer to the inner wall of the outer cylinder 2c from the upstream tip toward the downstream side, and the outer cylinder 2c on the downstream side of the tapered portion.
  • a flat portion 53b having a constant distance from the inner wall and a semicircular portion 53c having a substantially semicircular cross section at the downstream end are provided.
  • the part where the inclination of the upstream of the taper-shaped part 53a starts, and the connection part of the taper-shaped part 53a and the flat part 53b are made into the rounded shape smoothly.
  • the 180-degree turning portion 8 since the 180-degree turning portion 8 is configured, the outer wall of the 180-degree turning portion 8 is configured to approach the inner peripheral surface of the outer cylinder 2c toward the downstream side.
  • the cross-sectional area of the compressed air channel formed between the peripheral surface and the outer peripheral surface of the 180-degree turning portion 8 is gradually narrowed toward the downstream. Thereby, the flow of compressed air is restrict
  • the back wall 2 d is an arc-shaped portion whose outer peripheral side is a curved surface with respect to the 180-degree turning portion 8, and the inner peripheral side is flat with respect to the 180-degree turning portion 8.
  • the inner wall surface is a mortar-shaped concave curved surface.
  • the curvature of the arc-shaped portion is a curvature corresponding to the outer peripheral surface side of the semicircular portion 53c of the 180-degree turning portion 8, and the inner wall surface of the arc-shaped portion of the back wall 2d and the semicircle of the 180-degree turning portion 8
  • the distance from the outer wall surface of the shape portion 53c is constant.
  • a connecting portion between the arc-shaped portion and the flat portion in the back wall 2d is formed on an extension line in the axial direction from the downstream end of the semicircular portion 53c in the 180-degree turning portion 8.
  • the cross-sectional area between the inner wall surface of the arc-shaped portion of the back wall 2d and the outer wall surface of the semicircular portion 53c of the 180-degree turning portion 8 is set to the inner wall of the outer tube 2c. It can be made constant with an area equal to the cross-sectional area of the flat portion 53b of the 180 degree turning portion 8.
  • a rectifying plate (flow rate adjusting unit) 51 is provided in the vicinity of the inlet of the compressed air passage 6.
  • the rectifying plate 51 is a ring-shaped member that covers the upstream side of the outer cylinder 2 c in the compressed air flow path 6, and is a hole that communicates the upstream side and the downstream side of the compressed air flow path 6 with the rectifying plate 51 interposed therebetween. Is a perforated plate formed in large numbers. Adjacent to the downstream side of the rectifying plate 51, a plurality of ribs 52 for fixing the rectifying plate 51 are provided at equal intervals in the circumferential direction.
  • the inner cylinder 2a is fixed inside the outer cylinder 2c.
  • the ribs 52 are provided radially with respect to the axis of the combustor so that both ends are in contact with the outer wall of the inner cylinder 2a and the inner wall of the outer cylinder 2c.
  • a plurality of ribs 52 are provided, and the plurality of ribs 52 are arranged at equal intervals in the circumferential direction of the combustor and are connected to the outer cylinder 2c to support the inner cylinder 2a.
  • the rib 52 is formed so as to protrude from the fixing member 52a to the inner cylinder 2a so as to protrude from the fixing member 52a to the inner cylinder 2a.
  • a plate-like member 52b in contact therewith.
  • the fixing member 52a has a columnar structure with a semicircular cross section protruding on the upstream side and the downstream side of the rectifying plate 51, and internally includes a threaded hole through which the bolt 52c is inserted.
  • a recess 52d is provided on the upstream side of the fixing member 52a so that the head portion of the bolt 52c is buried. After the bolt 52c is inserted, the recess 52d is embedded with a metal part to form a flat end surface.
  • the outer cylinder 2c includes, on its inner wall, a rib connecting member 52e that is connected to the fixing member 52a of the rib 52 and has a substantially columnar shape in the axial direction.
  • the rib connecting member 52e includes a screw hole into which the bolt 52c is inserted. Thereby, the bolt 52c that penetrates the screw hole of the fixing member 52a is inserted into the screw hole of the rib connecting member 52e, and the fixing member 52a is fixed to the rib connecting member 52e.
  • the rib 52 is fixed to the outer cylinder 2c.
  • the downstream end face a substantially 1 ⁇ 4 spherical curved surface, the flow of compressed air can be prevented from being disturbed as much as possible.
  • the inner cylinder 2a can be restrained and fixed by the ribs 52 in the circumferential direction.
  • the downstream end of the main nozzle 22 can be supported by the main swirler 26 in the main burner 24 connected to the inner cylinder 2a.
  • the length of the pilot nozzle 21 and the main nozzle 22 in the axial direction is made uniform by uniformizing the compressed air flowing through the inner cylinder 2a by the configuration of the back wall 2d, the 180-degree turning portion 8, and the turning vane 54 described later. Since the length can be shortened, a support column connected to the pilot nozzle 21 that supports the downstream side of the main nozzle 22 is not required. Further, since the compressed air is made to flow uniformly, the resistance by the rectifying plate 51 can be reduced as compared with the conventional case, and the pressure loss in the rectifying plate 51 can be suppressed.
  • a ring-shaped turning vane 54 is provided near the upstream end of the inner cylinder 2a so as to cover the space between the main nozzles 22.
  • the turning vane 54 is disposed inside the inner cylinder 2a and in the vicinity of the 180-degree turning portion 8, and the axial position of the main nozzle 22 from the radially outer side to the downstream side from the upstream side toward the downstream side. It is formed of a single plate bent up to.
  • the curvature of the turning vane 54 is formed to be equal to the inner wall surface of the semicircular portion 53c of the 180 degree turning portion 8.
  • the turning vane 54 is an arc-shaped plate that connects the side surfaces of the main nozzle 22.
  • the back wall 2d, the 180-degree turning portion 8, and the turning vane 54 are configured as described above, so that the compressed air flowing between the outer cylinder 2c and the 180-degree turning portion 8 is converted into the 180-degree turning portion. After being rectified by the taper-shaped part 53 a of 8, it is turned 180 degrees by the 180-degree turning part 8. Then, it is rectified by the turning vane 54 and guided to the pilot cone 23 and the main burner 24.
  • the rectifying plate 51 As shown in the front view seen from the downstream side of the outer cylinder 2c in FIG. 3A, the rectifying plate 51 has a ring shape that covers the inlet of the compressed air flow path 6 between the outer wall of the inner cylinder 2a and the inner wall of the outer cylinder 2c. In addition to the configuration, a large number of holes are formed penetrating in the axial direction. As shown in FIG. 3A, the diameter of the hole 55 on the inner peripheral side is larger than the diameter of the hole 56 formed on the outer peripheral side. That is, the mainstream air flow rate on the inner peripheral side is configured to be larger than that on the outer peripheral side.
  • FIG. 4 shows the flow of mainstream air when the rectifying plate 51 according to the present embodiment is used. If the holes provided in the rectifying plate are uniform as in the prior art, the flow has no distribution in the radial direction of the combustor 1. In such a state, the flow that bends through the 180 ° turning portion 8 forms a low speed region by peeling or the like, as indicated by reference numeral 100 in FIG. Therefore, when the combustor length is short, the rectification distance is shortened and the flow rate on the inner peripheral side tends to decrease.
  • the rectifying plate 51 by providing the hole 55 having a large diameter on the inner peripheral side, the flow rate on the inner peripheral side increases, and the flow rate in the radial direction becomes uniform. That is, the current plate 51 of the present embodiment functions as a flow rate adjustment unit.
  • the large holes and the small holes in a mixed manner, local uneven speed occurs, and the disturbance increases on the downstream side of the large holes. As a result, the momentum exchange is activated and the peeling tendency in the 180 degree turning portion 8 is also suppressed.
  • the flow velocity distribution is given in the radial direction, and the separation is suppressed by promoting the turbulence.
  • the velocity of the mainstream air in the radial direction and the mixing property can be improved downstream of the 180-degree turning portion 8 (upstream of the main premixing nozzle). Thereby, NOx reduction can be performed.
  • the rectifying plate 51 is provided at a position where the distance L is located upstream from the center of the position where the compressed air flow path 6 is substantially inverted, that is, the center of the semicircular portion 53. It is good.
  • the distance L is, for example, a distance of 5B or more and 15B or less, where B is the diameter of the inner peripheral hole 55 (large hole).
  • the distance that the core portion of the jet that has passed through the rectifying plate 51, that is, the region where the jet flow does not decrease due to the influence of outside air, is 6B downstream from the rectifying plate 51 in the two-dimensional jet, and the rectifying plate 51 in the two-dimensional jet. It is about 10B on the downstream side.
  • the Coanda effect of the jet flow can be expected by providing the rectifying plate 51 at a position at the above-mentioned distance L on the upstream side from the position center where the compressed air flow path 6 is substantially reversed.
  • the tendency of peeling on the downstream side can be suppressed.
  • the hole 55 (large hole) on the inner peripheral side is provided radially inward from the end surface on the radially outer side of the 180-degree turning portion 8 (end surface of the flat portion 53b). It is good as well.
  • the jet flow from the hole 55 on the inner peripheral side is pressed against the turning portion 8 by 180 degrees, and the contact surface with the inner cylinder 2a is formed. Can be increased. Thereby, the Coanda effect of a jet can be improved and the peeling tendency in a flow path inversion location downstream can be suppressed.
  • the diameter B of the hole 55 (large hole) on the inner peripheral side may be formed to be larger than the bulging height H of the 180 degree turning portion 8.
  • the diameter B of the hole 55 on the inner peripheral side may be equal to or larger than the bulging height H of the 180 degree turning part 8.
  • the distance C between the centers of adjacent inner peripheral holes 55 may be 1.5 times or more the diameter B of the inner peripheral hole 55.
  • the distance C between the centers of the adjacent inner peripheral holes 55 may be 1.5 B or more, that is, the gap between the adjacent inner peripheral holes 55 to 0.5 B or more, the jets from the adjacent holes 55 Interference can be reduced, the Coanda effect of the jet can be maintained, and the separation tendency on the downstream side of the flow path reversal point can be suppressed. Further, it is possible to generate a strong shearing force of the jet and make the flow rate in the radial direction uniform.
  • the inner peripheral side hole diameter of the rectifying plate 51 is configured to be larger than the outer peripheral hole diameter, but the outer peripheral side may be changed to the inner peripheral side or the outer peripheral side with the inner peripheral side. Further, the pressure loss adjustment may be performed by changing the thickness of the rectifying plate 51.
  • FIG. 5 shows a partial front view of the current plate 152 according to the present embodiment.
  • the rectifying plate 152 of the present embodiment is annular, and an outer slit 153 is formed as a gap between the outer cylinder 2c along the outer peripheral edge, and as a gap between the inner cylinder 2a along the inner peripheral edge.
  • An inner slit 154 is formed.
  • the outer slit 153 and the inner slit 154 are flow paths that penetrate the rectifying plate 152 in the axial direction of the flow path.
  • rib vicinity slits 155 are respectively provided on the left and right sides of the rib 52.
  • the rib vicinity slit 155 is a flow path that penetrates the rectifying plate 152 in the axial direction of the flow path, and is provided over the entire length in the radial direction.
  • FIG. 6 shows the flow of mainstream air when the rectifying plate 152 according to the present embodiment is used. If the holes provided in the rectifying plate 152 are uniform as in the prior art, the momentum supply to the low speed region near the wall surface and the velocity deficit region formed downstream of the structure such as the rib 52 is not sufficient. For this reason, the flow that bends through the 180 degree turning portion 8 with the velocity deficit in the vicinity of the wall surface or the rib 52 in this way causes unevenness in the flow, and induces fuel density, thereby improving combustion stability and exhaust gas characteristics. make worse.
  • the slits are provided on the inner peripheral side, the outer peripheral side, and the vicinity of the rib 52 of the rectifying plate 152 where the speed deficiency occurs, the flow rate increases, and the above-described problems are solved.
  • such slits cause local speed non-uniformity and increase turbulence downstream. As a result, momentum exchange is activated, and the tendency to peel off at the 180 ° turning portion 8 is also suppressed.
  • the rectifying plate 152 according to the present embodiment is provided with the slit, thereby eliminating the speed deficit that occurs in the vicinity of the wall surface and the support in the rectifying plate 152. As a result, it is possible to realize the uniform velocity of the mainstream air and the improvement of the mixing property downstream of the 180 degree turning portion (upstream of the main premixing nozzle).
  • the inner slit 154 may be provided only on the inner peripheral side of the current plate. It may be set as appropriate according to the flow of the compressed air which part is specifically provided with the slit.
  • the top hat nozzle 160 is provided in the middle of the 180 degree turning part.
  • the top hat nozzle 160 is a fuel nozzle for premixed combustion that burns after mixing the top hat fuel gas and compressed air further upstream than the case of the main nozzle 22 for the purpose of reducing NOx and the like.
  • a plurality of nozzles are provided on the outer peripheral side of the main nozzle 22.
  • the inner peripheral part of the 180 degree turning part 8 has a partial circular shape in the cross-sectional shape along the axis of the combustor as shown in the figure, and smoothly changes the direction of the flow path by 180 degrees.
  • the top hat nozzle 160 is a cylinder having a diameter of 10 mm, and is provided along the radial direction of the circular shape of the semicircular portion 53c.
  • a gap 161 is formed between the periphery.
  • the nozzle installation position needs to be upstream of the peeling point, which will be described later, and the attachment angle with respect to the 180-degree turning portion 8, that is, the turn angle, is based on the direction perpendicular to the flow direction of the mainstream air. It is ⁇ (0 degree or more and less than 90 degree) on the downstream side of.
  • the size of the gap 161 is about 0.5 to 2.0 times the thickness Dp of the top hat nozzle.
  • the top hat nozzle was provided in the middle region between the current plate and the 180-degree turning portion 8.
  • the flow that bends through the 180-degree turning portion 8 forms a low speed region by peeling or the like, as indicated by reference numeral 100 in FIG. Therefore, when the combustor length is short, the rectification distance is shortened and the flow rate on the inner peripheral side tends to decrease.
  • the separation of the flow is suppressed by the mixing effect by the top hat nozzle 160. That is, the momentum exchange is activated by the vortex generated downstream of the top hat nozzle 160, so that there is an effect of suppressing the separation region generated in the inner periphery of the turn of the 180-degree turning portion 8 whose direction is greatly changed.
  • the gap 161 between the top hat nozzle 160 and the turn inner periphery within the above-described range, a separation region in which disturbance from the gap occurs downstream of the turn inner periphery can be more effectively suppressed. .
  • the distance between the current plate and the 180 degree turning portion 8 can be shortened, and the functions of the top hat nozzle 160 and the 180 degree turning portion 8 are integrated. This makes it possible to reduce the size of the combustor.
  • the turning vane 54 has a pin-like stirrer 170 projecting radially inward on the back side (that is, radially outward of the compressed air flow path 6 that turns 180 degrees). Is provided. A plurality of stirrers 170 are provided in a substantially uniform manner along the circumferential direction.
  • the turning vane 54 reduces the pressure loss by bending the flow without separation as its role. Although such a clean flow is ideal, since the occurrence of turbulence is small, the force for mixing the fuel is small. For this reason, in the conventional combustor, the fuel concentration tends to locally increase downstream of the fuel mixing location, and the NOx concentration sometimes increases. In particular, since it is considered that the flow on the back side of the turning vane 54 is gently bent without separation, the turbulence is smaller than that on the abdominal side of the turning vane 54 and the fuel mixing force is weak on the downstream side. In this embodiment, the pin-shaped stirrer 170 is provided on the back side of the turning vane 54, so that fuel mixing on the downstream side is promoted and the fuel concentration is made uniform. As a result, NOx reduction can be realized.
  • the notches 172 communicate the abdominal side and the back side of the turning vane 171, and a plurality of notches 172 are provided at intervals along the circumferential direction of the turning vane 171.
  • the other structure of the turning vane 171 is the same as that of the turning vane 54 of the first embodiment, and a description thereof is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

 コンパクトであると共に、NOx低減を実現する燃焼器を提供すること。燃焼器(1)の軸心に設置されて拡散燃焼を行うパイロットノズル(21)と、パイロットノズル(21)の外周側で周方向に間隔を隔てて複数設置され予混合燃焼を行うメインノズル(22)と、パイロットノズル(21)と各メインノズル(22)とを取り囲む一つの内筒(2a)と、さらに内筒(2a)を外側から略同軸に取り囲み、その内周面と内筒の外周面との間に圧縮空気流路(6)が形成される外筒とを備え、圧縮空気流路(6)を流れる圧縮空気が、内筒(2a)の端部で流動方向が略反転されてパイロットノズル(21)に導入される燃焼器において、圧縮空気流路(6)には、同流路の燃焼器(1)内周側の流量を、同外周側の流量よりも大きくする流量調整部が設けられている。流量調整部としては、孔(55,56)が形成された整流板(51)を挙げることができる。

Description

燃焼器
 本発明は、ガスタービンの燃焼器に関するもので、特に、その内部を流れる空気流の偏流及び乱れを減少させる構造とされる燃焼器に関する。
 ガスタービン燃焼器の低NOx化課題に対しては、燃料分布をコントロールすることで局所的な高燃料濃度を生じさせないことが重要であり、燃料濃度の均一化が必要である。そのためには燃料の大部分が通過するメイン空気量の増加とその均一化が重要である。
 従来、車室からの主流空気を180度ターンさせてメイン予混合ノズルに主流空気を導く燃焼器が開示されている(例えば、特許文献1参照。)。このような燃焼器では、流れの剥離等に伴う流れの偏在を解消するために、入口に整流板を設け、ターニング箇所のターニングベーンを2枚にしたり、燃焼混合箇所から180度ターニング箇所への整流距離を十分に長く取ることで燃焼領域における流れ、および濃度の均一化を達成している。
特開2007-232348号公報
 しかしながら、従来のような構造は、燃焼器の長さの増加に伴って重量およびコストの増加を招き、また、ターニング部が複雑化するために燃焼器のコンパクト化に有効ではない。一方、ターニング部から燃料混合箇所までの距離を短くすると、排反事象として空気分布の偏り悪化に伴うNOx発生量が増加するという課題があった。
 本発明は上記事情に鑑みてなされたものであり、コンパクトであると共に、NOx低減を実現する燃焼器を提供することを目的とする。
 本発明の一態様は、燃焼器の軸心に設置されて拡散燃焼を行うパイロットノズルと、前記パイロットノズルの外周側で周方向に間隔を隔てて複数設置され予混合燃焼を行うメインノズルと、前記パイロットノズルと前記各メインノズルとを取り囲む一つの内筒と、さらに前記内筒を外側から略同軸に取り囲み、その内周面と前記内筒の外周面との間に圧縮空気流路が形成される外筒とを備え、前記圧縮空気流路を流れる圧縮空気が、前記内筒の端部で流動方向が略反転されて前記パイロットノズルに導入される焼器において、前記圧縮空気流路には、同流路の燃焼器内周側の流量を、同外周側の流量よりも大きくする流量調整部が設けられている燃焼器である。
 整流板に設けられた孔が均一であると、燃焼器の半径方向へ分布を持たない流れとなる。このような状態では流動方向が略反転される際に、流路反転箇所下流側の内側で剥離等により低速域が形成される。したがって、燃焼器長さが短い構成である場合、整流距離が短くなり、内周側の流量が低下傾向を示す。
 本態様の構成によれば、流量調整部によって、径方向における流量を均一化することが可能となる。これにより、半径方向へ流速分布が与えられ、下流における半径方向への主流空気の速度の均一化が実現される。
 上記態様において、前記圧縮空気流路には、該流路を遮って前記流量調整部としての整流板が設けられ、該整流板には該整流板を挟んで流路の上流側と下流側とを連通する孔が複数設けられ、内周側の孔の直径が、外周側の孔の直径よりも大きくされていることとしてもよい。
 このように、整流板に大孔と小孔とが混成した配置とすることで、局所的な速度の不均一が発生し、大孔の下流側で乱れが増加する。その結果、運動量交換が活発化し、流路反転時の剥離傾向も抑えられる。特に、燃焼器内周側に位置する前記孔の直径を、同外周側に位置する孔の直径よりも大きく構成することで、径方向における流量を均一化することが可能となる。
 上記態様において、前記整流板は、前記流路が略反転される位置中心よりも上流側に、前記内周側の孔の直径の15倍以下の距離をあけた位置に設けられていることとしてもよい。
 内周側の孔の直径をBとした場合に、整流板を通過した噴流のコア部分、すなわち、噴流が外気の影響で流速が低下しない領域が残存する距離は、2次元噴流では整流板から下流側に6B、2次元噴流では整流板から下流側に10B程度である。したがって、整流板を、流路が略反転される位置中心よりも上流側に、内周側の孔の直径の15倍以下の距離をあけた位置に設けることで、噴流のコアンダ効果が期待でき、流路反転箇所下流側における剥離傾向を抑制することができる。
 上記態様において、前記内筒の端部には、前記流路の下流側にしたがって半径方向外側に次第に膨出する膨出部が設けられ、前記内周側の孔が、前記膨出部の半径方向外側の端面よりも半径方向内側に設けられていることとしてもよい。
 内周側の孔を、膨出部の半径方向外側の端面よりも半径方向内側に設けることで、内周側の孔からの噴流を膨出部に押し付けて、内筒との接触面を増加させることができる。これにより、噴流のコアンダ効果を向上させ、流路反転箇所下流側における剥離傾向を抑制することができる。
 上記態様において、前記内周側の孔の直径が、前記膨出部の膨出高さ以上の大きさに形成されていることとしてもよい。
 内周側の孔の直径を、膨出部の膨出高さ以上の大きさに形成することで、内周側の孔からの噴流を膨出部に押し付けて、内筒との接触面を増加させることができる。これにより、噴流のコアンダ効果を向上させ、流路反転箇所下流側における剥離傾向を抑制することができる。
 上記態様において、隣接する前記内周側の孔の中心間の距離が、前記内周側の孔の直径の1.5倍以上とされていることとしてもよい。
 内周側の孔の直径をBとした場合に、隣接する内周側の孔の中心間の距離を1.5B以上とすることで、隣接する孔からの噴流同士の干渉を低減して、噴流のコアンダ効果を維持することができ、流路反転箇所下流側における剥離傾向を抑制することができる。また、噴流の強いせん断力を発生させ、径方向における流量を均一化することが可能となる。
 上記態様において、前記圧縮空気流路には、該流路を遮って前記流量調整部としての整流板が設けられ、該整流板の内周側には、該整流板の上流側と下流側とを連通するスリットが設けられていることとしてもよい。
 速度欠損が生じる整流板にスリットが設けられていることにより、流量が増加し、径方向における流量を均一化することが可能となる。また、このようなスリットにより局所的な速度の不均一を発生させ、下流側で乱れが増加する。この結果、運動量交換が活発化し、流路反転箇所下流側における剥離傾向も抑えられる。
 前記内筒を前記外筒に支持するサポートリブが設けられ、前記整流板には、該サポートリブの近傍に該整流板の上流側と下流側とを連通するスリットが設けられていることとしてもよい。特に整流板の内周側だけではなく、外周側やサポートリブの左右にスリットを設けても良い。これら具体的にどの箇所にスリットを設けるかは、圧縮空気の流れに応じて適宜設定して良い。
 上記態様において、前記圧縮空気流路には、該流路が略反転する位置にトップハットノズルが設けられたこととしてもよい。
 より具体的には、トップハットノズルの取り付け角度すなわちターン角度は、主流空気の流路方向に対して垂直な方向を基準として、主流空気の下流側に0度以上90度未満である。従来技術においては、流路が反転された箇所の下流側で、剥離等により低速域を形成する。したがって、燃焼器長さが短い構成である場合、整流距離が短くなり、内周側の流量が低下傾向を示す。本構成においては、流路が略反転する位置に設けられたトップハットノズルによって圧縮空気が混合され、流れの剥離が抑制される。すなわち、トップハットノズル下流に発生する渦により運動量交換を活発化させることで、流路が反転される際に内周側に発生する剥離領域を抑える効果がある。
 上記態様において、前記圧縮空気流路には、反転する流路内の流体をガイドするターニングベーンが前記内筒端縁に対向して設けられ、前記ターニングベーンの背側に流体の流れを撹拌する攪拌器が設けられていることとしてもよい。
 ターニングベーンは、その役目として、剥離無く流れを曲げることにより圧力損失を低減している。このようにきれいな流れは理想的ではあるものの、乱れの発生が小さいために燃料を混合する力は小さい。このため、従来の燃焼器においては、燃料混合箇所下流で局所的に燃料濃度が高くなる傾向があり、NOx濃度が高くなる場合があった。特に、ターニングベーンの背側は流れが緩やかに剥離無く曲がると考えられるため、ターニングベーンの腹側に比べて乱れが小さく、その下流側では燃料混合する力が弱い。本構成によれば、ターニングベーンの背側に攪拌器が設けられていることにより、その下流側での燃料混合が促進され、燃料濃度が均一化される。
 上記態様において、前記ターニングベーンの下流側先端部に、該ターニングベーンの背側と腹側とを連通するスリットが設けられていることとしてもよい。
 ターニングベーン腹側は遠心力により外周側へ向かって流れる傾向があるため、スリットを設けることにより、ターニングベーン内周側から外周側へ向かう流れが生じる。その結果、ターニングベーン背側での混合が促進され、燃料濃度が均一化される。
 本発明によれば、圧縮空気の剥離抑制と燃料濃度の均一化により、燃焼器の軸方向長さをコンパクトにしつつ、NOxの低減を実現することができる。
本発明の第1実施形態に係る燃焼器の軸に沿った平面における断面図である。 図1の180度ターニング部近傍を示した部分拡大図である。 同燃焼器の整流板を示しており、軸方向から見た図である。 同燃焼器の整流板を示しており、図1の部分拡大図である。 同整流板を使用した場合の主流空気の流れを示した断面図である。 本発明の第2実施形態に係る燃焼器に使用される整流板の部分平面図である。 同整流板を使用した場合の主流空気の流れを示した断面図である。 本発明の第3実施形態に係る燃焼器に使用されるトップハットノズル近傍を示した断面図である。 本発明の第4実施形態に係る燃焼器に使用される攪拌器近傍を示した断面図である。 本発明の第5実施形態に係る燃焼器に使用されるターニングベーンを示した縦断面図である。 本発明の第5実施形態に係る燃焼器に使用されるターニングベーンを示した横断面図である。
〔第1の実施形態〕
 次に、本発明の実施形態について図面を参照して説明する。
 まず、第1の実施形態に係る燃焼器を図1を用いて説明する。本実施形態における燃焼器1は、図1に示すように、その軸心に沿って設置されるとともに拡散燃焼を行うパイロットノズル21と、パイロットノズル21の外周側の周方向に等間隔となるように複数配置されるとともに予混合燃焼を行うメインノズル22と、パイロットノズル21の先端側を覆うように設置されるパイロットコーン23と、メインノズル22の先端側を覆うように設置されるメインバーナ24と、パイロットノズル21の外壁とパイロットコーン23の内壁との間に設置されるパイロットスワラ25と、メインノズル22の外壁とメインバーナ24の内壁との間に設置されるメインスワラ26と、を備える。
 そして、この図1に示す燃焼器は、パイロットノズル21と略同軸であるとともに該パイロットノズル21及びメインノズル22を全体的に覆うように形成される内筒2aと、内筒2aに嵌合されるとともにパイロットノズル21及びメインノズル22による燃焼ガスを不図示のタービン側に誘導する尾筒2bと、内筒2aと略同軸であって同内筒2aを外側から略同軸に取り囲む外筒2cと、外筒2cの下流を閉じる背面壁2dと、を備える。
 内筒2aと外筒2cとにより、これらの間に圧縮空気流路6が形成される。内筒2aは、内筒2aの端部で内筒2aの内側に回り込むように圧縮空気流路6の流路方向を略反転させる、180度ターニング部(膨出部)8を備えている。180度ターニング部8の径方向外側壁部は径方向外側に膨出していると共に、内筒2aの端縁に相当する部位が、図1に示すように軸心を含む平面における断面において内筒2aの外周面と内周面とをつなぐ滑らかな曲線となっている。より詳細には、図2に示したように、上流側先端から下流側に向かって外筒2cの内壁との距離が近くなるテーパ形状部53aと、テーパ形状部の下流側において外筒2cの内壁との距離が一定となる平坦部分53bと、下流側先端において略半円状の断面となる半円形状部分53cと、を備える。そして、テーパ形状部53aの上流側の傾きの始まる部分と、テーパ形状部53aと平坦部分53bとの接続部分とを、滑らかな丸みを帯びた形状とする。
 このように、180度ターニング部8が構成されることにより、180度ターニング部8の外壁が下流側に向かって外筒2cの内周面に近づくように構成されるため、外筒2cの内周面と180度ターニング部8の外周面の間に構成される圧縮空気の流路断面積が下流に向かって、緩やかに狭められる。これにより、圧縮空気の流れを絞り、180度ターニング部8の下流側での流れに対して燃焼器の周方向の均一性を与えることとなる。
 また、背面壁2dは、図1の断面図に示すように、180度ターニング部8よりも外周側が曲面で構成される円弧形状部分とされるとともに、180度ターニング部8より内周側が平坦となる平坦部分とされることで、その内壁面がすり鉢形状の凹曲面とされる。このとき、円弧形状部分の曲率は、180度ターニング部8の半円形状部分53cの外周面側に応じた曲率となり、背面壁2dの円弧形状部分の内壁面と180度ターニング部8の半円形状部分53cの外壁面との距離が一定とされる。又、背面壁2dにおける円弧形状部分と平坦部分との接続部分が、180度ターニング部8における半円形状部分53cの下流側先端からの軸方向の延長線上に形成される。
 このように、背面壁2dを構成することによって、背面壁2dの円弧形状部分の内壁面と180度ターニング部8の半円形状部分53cの外壁面とにおける断面積を、外筒2cの内壁と180度ターニング部8の平坦部分53bとにおける断面積に等しい面積で、一定とすることができる。これにより、180度ターニング部8の外壁と外筒2cの内壁との間を流れる圧縮空気を、180度ターニング部8の内側になめらかに誘導させることができる。
 圧縮空気流路6の入口近傍内部には、整流板(流量調整部)51が設けられている。整流板51は圧縮空気流路6内において外筒2cの上流側を覆うリング状の部材であって、該整流板51を挟んで圧縮空気流路6の上流側と下流側とを連通する孔が多数形成された多孔板である。整流板51の下流側に隣接して、整流板51を固定する複数のリブ52が周方向に等間隔に設置されている。このリブ52が、内筒2aの外壁面と外筒2cの内壁面とに接続されることで、外筒2cの内側に内筒2aが固定される。図3Aの正面図に示すように、リブ52は、内筒2aの外壁と外筒2cの内壁とに両端が接するように、燃焼器の軸に対して放射状に設けられる。又、リブ52は複数設けられ、この複数のリブ52が燃焼器の周方向に対して等間隔となるように配置されるとともに外筒2cに接続されることで、内筒2aを支持する。
 リブ52は、図3Bの断面図に示すように、整流板51の外周側に接続される固定用部材52aと、固定用部材52aから内筒2aに突起するように形成されて内筒2aと接する板状部材52bと、を備える。そして、固定用部材52aは、整流板51の上流側及び下流側それぞれに突起した、断面が半円形状の柱状の構造となり、ボルト52cが挿入される貫通したねじ穴を内部に備える。この固定用部材52aの上流側は、ボルト52cのヘッド部分が埋まるような凹部52dが設けられ、ボルト52cが挿入された後、この凹部52dを金属部品で埋め込むことにより平坦な端面を形成する。
 また、外筒2cは、図3Bの断面図に示すように、その内壁に、リブ52の固定用部材52aと接続する、軸方向に略柱状となるリブ接続用部材52eを備える。このリブ接続用部材52eは、ボルト52cが挿入されるねじ穴を備える。これにより、固定用部材52aのねじ穴を貫通するボルト52cがリブ接続用部材52eのねじ穴に挿入されて、固定用部材52aがリブ接続用部材52eに固定されることで、整流板51及びリブ52が外筒2cに固定される。又、下流側端面が略1/4球状の曲面とすることにより、圧縮空気の流れに乱れをできるだけ与えないようにすることができる。
 このように、外筒2cに固定されたリブ52を放射状に設けることによって、内筒2aをリブ52によって、周方向に抑えて固定することができる。これにより、メインノズル22の下流側先端を、内筒2aに接続されたメインバーナ24におけるメインスワラ26によって支持することができる。よって、上述の背面壁2d、180度ターニング部8、及び、後述のターニングベーン54の構成により内筒2aを流れる圧縮空気を均一化させることで、パイロットノズル21及びメインノズル22の軸方向の長さを短くすることができることから、メインノズル22の下流側を支持するパイロットノズル21に接続された支柱が不要となる。更に、圧縮空気が均一な流れとされるため、従来と比べて、整流板51による抵抗を小さくすることができ、整流板51における圧損を抑制することができる。
 メインノズル22の間を覆うように内筒2aの上流側端部近傍にリング状のターニングベーン54が設けられている。ターニングベーン54は、内筒2aの内部であって180度ターニング部8近傍に位置して配置され、上流側から下流側に向かって、メインノズル22よりも径方向外側からメインノズル22の軸位置まで屈曲した一枚の板で形成される。そして、ターニングベーン54の曲率が、180度ターニング部8の半円形状部分53cの内壁面と同等となるように形成される。更に、このターニングベーン54は、メインノズル22側面を接続する円弧状の板とされる。このように構成されるターニングベーン54により、180度ターニング部8及び背面壁2dに沿って180度転回された圧縮空気が、パイロットコーン23及びメインバーナ24に誘導される。
 この背面壁2d、180度ターニング部8、及びターニングベーン54それぞれが、上述のように構成されることによって、外筒2cと180度ターニング部8との間に流れ込む圧縮空気が、180度ターニング部8のテーパ形状部53aで整流された後、180度ターニング部8で180度転回される。そして、ターニングベーン54によって整流されて、パイロットコーン23及びメインバーナ24に誘導される。
 次に、本実施形態における特徴的な構成である、整流板51について説明する。図3Aの外筒2cの下流側から見た正面図に示すように、整流板51は、内筒2aの外壁と外筒2cの内壁との間の圧縮空気流路6入口を覆うリング状の構成とされるとともに、軸方向に貫通して多数の孔が形成されている。図3Aに示したように、内周側の孔55の直径は、外周側に形成された孔56の直径よりも大きい。すなわち、内周側の主流空気流量が外周側よりも大きくなるように構成されている。
 図4に、本実施形態に係る整流板51を使用した場合の主流空気の流れを示した。従来のように整流板に設けられた孔が均一であると、燃焼器1の半径方向へ分布を持たない流れとなる。このような状態で180度ターニング部8を曲がった流れは、図4の符号100で示したように、剥離等により低速域を形成する。したがって、燃焼器長さが短い構成である場合、整流距離が短くなり、内周側の流量が低下傾向を示す。
 本実施形態に係る整流板51では、内周側に径の大きい孔55が設けられていることで、内周側の流量が増加し、径方向における流量が均一化する。すなわち、本実施形態の整流板51は、流量調整部として作用する。
 また、大孔と小孔とが混成した配置とすることで、局所的な速度の不均一が発生し、大孔の下流側で乱れが増加する。その結果、運動量交換が活発化し、180度ターニング部8における剥離傾向も抑えられる。
 このように、本実施形態の燃焼器によれば、半径方向へ流速分布が与えられ、また、乱れの促進による剥離抑制が行なわれる。その結果、180度ターニング部8の下流(メイン予混合ノズルの上流)における半径方向への主流空気の速度の均一化と混合性を向上させることができる。これによりNOx低減を行なうことができる。
 また、図2に示すように、整流板51を、圧縮空気流路6が略反転される位置中心、すなわち半円形状部分53の中心よりも、上流側に距離Lをあけた位置に設けることとしてもよい。ここで、この距離Lは、内周側の孔55(大孔)の直径をBとした場合に、例えば5B以上、且つ15B以下の距離である。
 整流板51を通過した噴流のコア部分、すなわち、噴流が外気の影響で流速が低下しない領域が残存する距離は、2次元噴流では整流板51から下流側に6B、2次元噴流では整流板51から下流側に10B程度である。したがって、整流板51を、圧縮空気流路6が略反転される位置中心よりも上流側に、前述の距離Lをあけた位置に設けることで、噴流のコアンダ効果が期待でき、流路反転箇所下流側における剥離傾向を抑制することができる。
 また、図3Bに示すように、内周側の孔55(大孔)の少なくとも一部を、180度ターニング部8の半径方向外側の端面(平坦部分53bの端面)よりも半径方向内側に設けることとしてもよい。
 内周側の孔55を、平坦部分53bの端面よりも半径方向内側に設けることで、内周側の孔55からの噴流を180度ターニング部8に押し付けて、内筒2aとの接触面を増加させることができる。これにより、噴流のコアンダ効果を向上させ、流路反転箇所下流側における剥離傾向を抑制することができる。
 また、図3Bに示すように、内周側の孔55(大孔)の直径Bを、180度ターニング部8の膨出高さH以上の大きさに形成することとしてもよい。
 内周側の孔55の直径Bを、180度ターニング部8の膨出高さH以上の大きさに形成することで、内周側の孔55からの噴流を180度ターニング部8に押し付けて、内筒2aとの接触面を増加させることができる。これにより、噴流のコアンダ効果を向上させ、流路反転箇所下流側における剥離傾向を抑制することができる。
 また、図3Aに示すように、隣接する内周側の孔55(大孔)の中心間の距離Cを、内周側の孔55の直径Bの1.5倍以上としてもよい。
 隣接する内周側の孔55の中心間の距離Cを1.5B以上、すなわち、隣接する内周側の孔55の隙間を0.5B以上とすることで、隣接する孔55からの噴流同士の干渉を低減して、噴流のコアンダ効果を維持することができ、流路反転箇所下流側における剥離傾向を抑制することができる。また、噴流の強いせん断力を発生させ、径方向における流量を均一化することが可能となる。
 なお、上記実施形態では、整流板51の内周側の孔径を外周側の孔径よりも大きく構成したが、内周側にかえて、または内周側と共に外周側を大径としても良い。また、整流板51の板厚を変更することにより圧損調節を行なっても良い。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。なお、全体構成は上記第1の実施形態と同様であり、同様の構成については同一の符号を用い、その説明を省略する。
 図5に本実施形態に係る整流板152の部分正面図を示した。本実施形態の整流板152は環状であり、外周縁に沿って外筒2cとの間のギャップとして外側スリット153が形成され、また、内周縁に沿って内筒2aとの間のギャップとしての内側スリット154が形成されている。外側スリット153及び内側スリット154は、整流板152を流路の軸方向に貫通する流路である。また、リブ52の左右に位置して、リブ近傍スリット155がそれぞれ設けられている。リブ近傍スリット155は、整流板152を流路の軸方向に貫通する流路であり、径方向全長に渡って設けられている。
 図6に、本実施形態に係る整流板152を使用した場合の主流空気の流れを示した。従来のように整流板152に設けられた孔が均一であると、壁面近傍の低速領域やリブ52のような構造体下流に形成される速度欠損域に対する運動量供給は十分ではない。このため、このように壁面近傍やリブ52の近傍に速度欠損を持った状態で180度ターニング部8を曲がった流れは、流れが不均一となり燃料の濃淡を誘発し燃焼安定性、排ガス特性を悪化させる。
 本実施形態においては、速度欠損が生じる整流板152の内周側、外周側、及びリブ52の近傍にスリットが設けられていることにより、流量が増加し、上記の問題点が解消される。また、このようなスリットにより局所的な速度の不均一を発生させ、下流側で乱れが増加する。この結果、運動量交換が活発化し、180度ターニング部8における剥離傾向も抑えられる。
 このように、本実施形態の燃焼器によれば、本実施形態に係る整流板152では、スリットが設けられていることで、整流板152における壁面近傍、サポート近傍に生じる速度欠損の解消が実現し、その結果180度ターニング部の下流(メイン予混合ノズルの上流)における主流空気の速度の均一化と混合性の向上を実現することができる。
 なお、特に整流板の内周側のみに内側スリット154を設けても良い。これら具体的にどの箇所にスリットを設けるかは、圧縮空気の流れに応じて適宜設定して良い。
〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。なお、全体構成は上記第1実施形態と同様であり、同様の構成については同一の符号を用い、その説明を省略する。
 図7に示したように、トップハットノズル160が180度ターニング部の途中に設けられている。トップハットノズル160はNOx低減を図ることなどを目的としてトップハット燃料ガスと圧縮空気とを、メインノズル22の場合よりも更に上流側で混合した後に燃焼させる予混合燃焼用の燃料ノズルであり、メインノズル22よりも更に外周側に複数本設けられている。
 180度ターニング部8の内周部は、図のように燃焼器の軸に沿った断面形状において部分的に円形形状を有し、流路を滑らかに180度方向転換させている。トップハットノズル160は、本実施形態においては直径10mmの円筒であり、半円形状部分53cの円形形状の径方向に沿って設けられ、トップハットノズル160の内側(吐出側)端部とターン内周部との間には隙間161が形成されている。
 ノズル設置位置は、後述する剥離ポイントよりも上流側である必要があり、180度ターニング部8に対する取り付け角度すなわちターン角度は、主流空気の流路方向に対して垂直な方向を基準として、主流空気の下流側にθ(0度以上90度未満)である。隙間161の寸法は、トップハットノズルの太さDpの0.5~2.0倍程度である。
 従来技術において、トップハットノズルは整流板と180度ターニング部8の中間領域に設けられていた。従来技術において、180度ターニング部8を曲がった流れは、図7の符号100で示したように、剥離等により低速域を形成する。したがって、燃焼器長さが短い構成である場合、整流距離が短くなり、内周側の流量が低下傾向を示す。
 本実施形態においては、トップハットノズル160による混合効果により、流れの剥離が抑制される。すなわち、トップハットノズル160下流に発生する渦により運動量交換を活発化させることで、大きく向きを変える180度ターニング部8のターン内周部に発生する剥離領域を抑える効果がある。また、トップハットノズル160とターン内周部との隙間161を上述の範囲にて適切に確保することで、隙間からの乱れがターン内周部下流に発生する剥離領域がより効果的に抑えられる。また、トップハットノズル160を180度ターニング部8の途中に設けることにより、整流板と180度ターニング部8との距離を短くすることができ、トップハットノズル160と180度ターニング部8の機能一体化による燃焼器の小型化が可能となる。
〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。なお、全体構成は上記第1実施形態と同様であり、同様の構成については同一の符号を用い、その説明を省略する。
 図8に示したように、ターニングベーン54には、その背側(すなわち、180度方向転換する圧縮空気流路6の径方向外側)に、径方向内側に突出するピン状の攪拌器170が設けられている。攪拌器170は周方向に沿って複数個略均等に分散して設けられている。
 ターニングベーン54は、その役目として、剥離無く流れを曲げることにより圧力損失を低減している。このようにきれいな流れは理想的ではあるものの、乱れの発生が小さいために燃料を混合する力は小さい。このため、従来の燃焼器においては、燃料混合箇所下流で局所的に燃料濃度が高くなる傾向があり、NOx濃度が高くなる場合があった。特に、ターニングベーン54の背側は流れが緩やかに剥離無く曲がると考えられるため、ターニングベーン54の腹側に比べて乱れが小さく、その下流側では燃料混合する力が弱い。
 本実施形態では、ターニングベーン54の背側にピン状の攪拌器170が設けられていることにより、その下流側での燃料混合が促進され、燃料濃度が均一化される。その結果、NOxの低減を実現することができる。
〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。なお、全体構成は上記第1実施形態と同様であり、同様の構成については同一の符号を用い、その説明を省略する。
 本実施形態は、上記第4実施形態と同様に、ターニングベーン背側における乱れを増加させることにより、ターニングベーン背側の流れについて燃料混合を促進させるものである。
 すなわち、図9A,図9Bに示したように、本実施形態のターニングベーン171の下流側端部には、流路方向に沿って切り欠き(スリット)172が設けられている。切り欠き172は、ターニングベーン171の腹側と背側とを連通させるものであり、ターニングベーン171の周方向に沿って間隔を隔てて複数設けられている。ターニングベーン171の他の構成は上記第1実施形態のターニングベーン54と同様であり、説明を省略する。
 ターニングベーン171腹側は遠心力により外周側へ向かって流れる傾向があるため、切り欠き172を設けることにより、ターニングベーン内周側から外周側へ向かう流れが生じる。その結果、図9A,図9Bに矢印で示した流れのように、ターニングベーン背側での混合が促進され、燃料濃度が均一化される。その結果、NOxの低減を実現することができる。
1…燃焼器、2a…内筒、2c…外筒、6…圧縮空気流路、8…180度ターニング部(膨出部)、51…整流板(流量調整部)、52…リブ、54…ターニングベーン、55…孔、56…孔、152…整流板、153…外側スリット、154…内側スリット、155…リブ近傍スリット、160…トップハットノズル、170…攪拌器、171…ターニングベーン、172…切り欠き(スリット)

Claims (10)

  1.  燃焼器の軸心に設置されて拡散燃焼を行うパイロットノズルと、前記パイロットノズルの外周側で周方向に間隔を隔てて複数設置され予混合燃焼を行うメインノズルと、前記パイロットノズルと各前記メインノズルとを取り囲む一つの内筒と、さらに前記内筒を外側から略同軸に取り囲み、その内周面と前記内筒の外周面との間に圧縮空気流路が形成される外筒とを備え、前記圧縮空気流路を流れる圧縮空気が、前記内筒の端部で流動方向が略反転されて前記パイロットノズルに導入される燃焼器において、
     前記圧縮空気流路には、内周側の流量を外周側の流量よりも大きくする流量調整部が設けられている、燃焼器。
  2.  前記圧縮空気流路には、該流路を遮って前記流量調整部としての整流板が設けられ、
     該整流板には該整流板を挟んで通路の上流側と下流側とを連通する孔が複数設けられ、内周側の孔の直径が、外周側の孔の直径よりも大きくされている、請求項1に記載の燃焼器。
  3.  前記整流板は、前記流路が略反転される位置中心よりも上流側に、前記内周側の孔の直径の15倍以下の距離をあけた位置に設けられている、請求項2に記載の燃焼器。
  4.  前記内筒の端部には、前記流路の下流側にしたがって半径方向外側に次第に膨出する膨出部が設けられ、
     前記内周側の孔が、前記膨出部の半径方向外側の端面よりも半径方向内側に設けられている、請求項2または請求項3に記載の燃焼器。
  5.  前記内周側の孔の直径が、前記膨出部の膨出高さ以上の大きさに形成されている、請求項4に記載の燃焼器。
  6.  隣接する前記内周側の孔の中心間の距離が、前記内周側の孔の直径の1.5倍以上とされている、請求項2から請求項5のいずれかに記載の燃焼器。
  7.  前記圧縮空気流路には、該流路を遮って前記流量調整部としての整流板が設けられ、
     該整流板の内周側には、該整流板の上流側と下流側とを連通するスリットが設けられている、請求項1に記載の燃焼器。
  8.  前記圧縮空気流路には、該流路が略反転する位置にトップハットノズルが設けられた、請求項1から請求項7のいずれかに記載の燃焼器。
  9.  前記圧縮空気流路には、反転する流路内の流体をガイドするターニングベーンが前記内筒端縁に対向して設けられ、
     前記ターニングベーンの背側に流体の流れを撹拌する攪拌器が設けられている、請求項1から請求項8のいずれかに記載の燃焼器。
  10.  前記ターニングベーンの下流側先端部に、該ターニングベーンの背側と腹側とを連通するスリットが設けられている、請求項9に記載の燃焼器。
     
PCT/JP2009/064298 2009-08-13 2009-08-13 燃焼器 WO2011018853A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/266,652 US9863637B2 (en) 2009-08-13 2009-08-13 Combustor
EP09848272.2A EP2466205B1 (en) 2009-08-13 2009-08-13 Combustor
CN200980159275.7A CN102422083B (zh) 2009-08-13 2009-08-13 燃烧器
KR1020117026370A KR101318553B1 (ko) 2009-08-13 2009-08-13 연소기
PCT/JP2009/064298 WO2011018853A1 (ja) 2009-08-13 2009-08-13 燃焼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064298 WO2011018853A1 (ja) 2009-08-13 2009-08-13 燃焼器

Publications (1)

Publication Number Publication Date
WO2011018853A1 true WO2011018853A1 (ja) 2011-02-17

Family

ID=43586039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064298 WO2011018853A1 (ja) 2009-08-13 2009-08-13 燃焼器

Country Status (5)

Country Link
US (1) US9863637B2 (ja)
EP (1) EP2466205B1 (ja)
KR (1) KR101318553B1 (ja)
CN (1) CN102422083B (ja)
WO (1) WO2011018853A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534037A (ja) * 2012-11-07 2015-11-26 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンの燃焼器のための音響減衰システム
JP2016042014A (ja) * 2014-08-14 2016-03-31 ゼネラル・エレクトリック・カンパニイ ガスタービン燃焼器に関連するシステム及び装置
JP2017053276A (ja) * 2015-09-10 2017-03-16 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP2017161109A (ja) * 2016-03-07 2017-09-14 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
EP3425280A4 (en) * 2016-02-29 2019-07-31 Mitsubishi Hitachi Power Systems, Ltd. COMBUSTION CHAMBER AND GAS TURBINE
JP2020101306A (ja) * 2018-12-20 2020-07-02 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン及びガスタービン燃焼器の製造方法
JP2020118391A (ja) * 2019-01-25 2020-08-06 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器及びガスタービン

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366445B2 (en) * 2012-04-05 2016-06-14 General Electric Company System and method for supporting fuel nozzles inside a combustor
US10060630B2 (en) 2012-10-01 2018-08-28 Ansaldo Energia Ip Uk Limited Flamesheet combustor contoured liner
US10378456B2 (en) 2012-10-01 2019-08-13 Ansaldo Energia Switzerland AG Method of operating a multi-stage flamesheet combustor
US20140090400A1 (en) * 2012-10-01 2014-04-03 Peter John Stuttaford Variable flow divider mechanism for a multi-stage combustor
US9897317B2 (en) 2012-10-01 2018-02-20 Ansaldo Energia Ip Uk Limited Thermally free liner retention mechanism
US8756934B2 (en) * 2012-10-30 2014-06-24 General Electric Company Combustor cap assembly
JP6025587B2 (ja) 2013-02-01 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器およびガスタービン
US9671112B2 (en) * 2013-03-12 2017-06-06 General Electric Company Air diffuser for a head end of a combustor
US9273868B2 (en) * 2013-08-06 2016-03-01 General Electric Company System for supporting bundled tube segments within a combustor
CN107076417B (zh) * 2014-08-15 2019-11-29 日蚀公司 双出口燃烧器及方法
CN107429920B (zh) * 2014-11-21 2019-11-05 安萨尔多能源英国知识产权有限公司 火焰面燃烧器定外形的衬套
JP6484126B2 (ja) * 2015-06-26 2019-03-13 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP6779098B2 (ja) 2016-10-24 2020-11-04 三菱パワー株式会社 ガスタービン燃焼器
KR101872801B1 (ko) * 2017-04-18 2018-06-29 두산중공업 주식회사 연료노즐 조립체 및 이를 포함하는 가스터빈
KR101900192B1 (ko) * 2017-04-27 2018-09-18 두산중공업 주식회사 연료 노즐 조립체, 이를 포함하는 연료 노즐 모듈 및 가스 터빈
KR102097029B1 (ko) * 2019-05-13 2020-04-03 두산중공업 주식회사 연소기 및 이를 포함하는 가스 터빈
GB201907834D0 (en) * 2019-06-03 2019-07-17 Rolls Royce Plc A fuel sparay nozzle arrangement
CN111043624A (zh) * 2019-12-31 2020-04-21 新奥能源动力科技(上海)有限公司 一种燃烧室及燃气轮机
CN112944395B (zh) * 2021-05-12 2021-09-07 成都中科翼能科技有限公司 一种用于燃气轮机的组合式预混器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198143A (ja) * 1994-01-12 1995-08-01 Hitachi Ltd ガスタービン燃焼器
JP2000346361A (ja) * 1999-06-09 2000-12-15 Mitsubishi Heavy Ind Ltd ガスタービン及びその燃焼器
JP2007232348A (ja) 2006-02-27 2007-09-13 Mitsubishi Heavy Ind Ltd 燃焼器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1060026A (en) * 1965-10-06 1967-02-22 Rolls Royce Combustion equipment for a gas turbine engine
US3792582A (en) * 1970-10-26 1974-02-19 United Aircraft Corp Combustion chamber for dissimilar fluids in swirling flow relationship
GB1385903A (en) * 1971-04-15 1975-03-05 United Aircraft Canada Continuous combustion device
US3952501A (en) 1971-04-15 1976-04-27 United Aircraft Of Canada Limited Gas turbine control
JPS59124864U (ja) * 1983-02-04 1984-08-22 株式会社日立製作所 ガスタ−ビン燃焼器
JPH09184629A (ja) * 1996-01-04 1997-07-15 Hitachi Ltd ガスタービン燃焼器の予混合器
US6253538B1 (en) * 1999-09-27 2001-07-03 Pratt & Whitney Canada Corp. Variable premix-lean burn combustor
JP4508474B2 (ja) 2001-06-07 2010-07-21 三菱重工業株式会社 燃焼器
JP4432865B2 (ja) * 2004-09-30 2010-03-17 ダイキン工業株式会社 送風機の羽根車およびそれを用いた空気調和機
JP4476176B2 (ja) 2005-06-06 2010-06-09 三菱重工業株式会社 ガスタービンの予混合燃焼バーナー
US7770395B2 (en) * 2006-02-27 2010-08-10 Mitsubishi Heavy Industries, Ltd. Combustor
US7540153B2 (en) 2006-02-27 2009-06-02 Mitsubishi Heavy Industries Ltd. Combustor
JP4719059B2 (ja) 2006-04-14 2011-07-06 三菱重工業株式会社 ガスタービンの予混合燃焼バーナー
EP1936468A1 (en) 2006-12-22 2008-06-25 Siemens Aktiengesellschaft Bi-metallic elements for adjusting a cooling channel
US8234872B2 (en) * 2009-05-01 2012-08-07 General Electric Company Turbine air flow conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198143A (ja) * 1994-01-12 1995-08-01 Hitachi Ltd ガスタービン燃焼器
JP2000346361A (ja) * 1999-06-09 2000-12-15 Mitsubishi Heavy Ind Ltd ガスタービン及びその燃焼器
JP2007232348A (ja) 2006-02-27 2007-09-13 Mitsubishi Heavy Ind Ltd 燃焼器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466205A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534037A (ja) * 2012-11-07 2015-11-26 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンの燃焼器のための音響減衰システム
JP2016042014A (ja) * 2014-08-14 2016-03-31 ゼネラル・エレクトリック・カンパニイ ガスタービン燃焼器に関連するシステム及び装置
JP2017053276A (ja) * 2015-09-10 2017-03-16 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
EP3425280A4 (en) * 2016-02-29 2019-07-31 Mitsubishi Hitachi Power Systems, Ltd. COMBUSTION CHAMBER AND GAS TURBINE
US11215364B2 (en) 2016-02-29 2022-01-04 Mitsubishi Power, Ltd. Combustor, gas turbine
JP2017161109A (ja) * 2016-03-07 2017-09-14 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
JP2020101306A (ja) * 2018-12-20 2020-07-02 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン及びガスタービン燃焼器の製造方法
JP7130545B2 (ja) 2018-12-20 2022-09-05 三菱重工業株式会社 ガスタービン燃焼器、ガスタービン及びガスタービン燃焼器の製造方法
JP2020118391A (ja) * 2019-01-25 2020-08-06 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器及びガスタービン
JP7112342B2 (ja) 2019-01-25 2022-08-03 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン

Also Published As

Publication number Publication date
EP2466205A4 (en) 2014-08-27
KR20120019441A (ko) 2012-03-06
EP2466205B1 (en) 2016-05-25
CN102422083B (zh) 2014-07-16
EP2466205A1 (en) 2012-06-20
US9863637B2 (en) 2018-01-09
CN102422083A (zh) 2012-04-18
KR101318553B1 (ko) 2013-10-16
US20120045725A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2011018853A1 (ja) 燃焼器
JP4918509B2 (ja) 燃焼器
US8408002B2 (en) Gas turbine combustor
JP4838682B2 (ja) 燃焼器
JP4764301B2 (ja) 燃焼器
JP4848240B2 (ja) 燃焼器
EP2481986B1 (en) Gas turbine combustor
JP6159136B2 (ja) 差動流を有する複数の管の燃料ノズルを有するシステムおよび方法
JP4755058B2 (ja) 燃焼器
US20130232979A1 (en) System for enhancing mixing in a multi-tube fuel nozzle
JP4922878B2 (ja) ガスタービン燃焼器
JP4894295B2 (ja) 燃焼装置と燃焼装置の燃焼方法、及び燃焼装置の改造方法
KR101906080B1 (ko) 연소기 및 가스 터빈
JP2011191046A (ja) ガスタービン燃焼器
JP4066658B2 (ja) ガスタービン燃焼器,ガスタービン燃焼器用予混合装置、及びガスタービン燃焼器の予混合方法
US20180266678A1 (en) Staged burner
US20120023951A1 (en) Fuel nozzle with air admission shroud
JP6318443B2 (ja) 燃焼器、及び回転機械
JP2011038710A (ja) ガスタービン燃焼器
JP4043440B2 (ja) ガスタービン燃焼器
JP6417620B2 (ja) 燃焼器、ガスタービン
CN107620984B (zh) 燃气轮机的燃料喷嘴
EP3376110B1 (en) Gas turbine electrical power plant and method for operating said gas turbine electrical power plant
JP2008082590A (ja) ガスタービン燃焼器
JP5984445B2 (ja) 燃焼器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159275.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13266652

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009848272

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117026370

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP