WO2011016038A1 - Method for removal of selenium contaminants from aqueous fluids - Google Patents

Method for removal of selenium contaminants from aqueous fluids Download PDF

Info

Publication number
WO2011016038A1
WO2011016038A1 PCT/IL2010/000633 IL2010000633W WO2011016038A1 WO 2011016038 A1 WO2011016038 A1 WO 2011016038A1 IL 2010000633 W IL2010000633 W IL 2010000633W WO 2011016038 A1 WO2011016038 A1 WO 2011016038A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
adsorbent material
adsorbent
loaded
water
Prior art date
Application number
PCT/IL2010/000633
Other languages
French (fr)
Inventor
Raphael Semiat
Grigory Zelmanov
Original Assignee
Technion Research And Development Foundation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technion Research And Development Foundation Ltd filed Critical Technion Research And Development Foundation Ltd
Publication of WO2011016038A1 publication Critical patent/WO2011016038A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to an adsorption method for treating a fluid containing undesired selenium contaminants in order to clean the fluid from the contaminant and to a process for the recovery of the adsorbent material.
  • the method is suitable for the recovery of the adsorbent and removal of water dissolved selenium from the adsorbent for its recovery.
  • a strong oxidant such as aqueous permanganate solution, sulfuric acid and following selenite adsorption.
  • Oxidation with permanganate solution produces manganese dioxide precipitate as a by product, which serves also as a selenite ions adsorbent (US 5,993,667).
  • Electrochemical method using dissolvable metal electrodes Insoluble precipitates are obtained from the compounds of selenium with the ions of the dissolved metal electrode.
  • the electrochemical method has high costs relating to the electrolyser construction and very high energy consumption, therefore, it is ineffective from the economic point of view.
  • Water treatment based on the adsorption of contaminants from solutions by using adsorbent material is useful and cost-effective for selenium removal by the purification of drinking water and groundwater, and for the cleaning of industrial wastewater (Balistrieri and Chao, 1987, 1990; Kuan et al., 1998; Zhang and Frankenberger, 2003; Mavrov et al., 2006; Peak, 2006; El-Shafey, 2007).
  • Attempts have been made and reported here to exploit low-cost sorbent to remove selenium contaminants Se 4+ and Se 6+ simultaneously from water.
  • Using adsorption processes for water treatment requires recovery of the adsorbent material.
  • Application of an adsorbent depends on its cost and adsorptive capacity after several adsorption-recovery cycles. Therefore, novel materials and methods are needed for the treatment of waters contaminated with selenium.
  • Adsorption techniques for treatment of solutions containing undesired selenium contaminants may be found in US 6,599,429 and US 6,914,034.
  • US2005/156136 describes a polymeric anion exchanger in which microparticles of hydrated Fe(III)oxides are irreversibly dispersed, for adsorption of selenite.
  • WO2007/011770 describes a method for removing contaminants from solution using a surface-activated nanocrystalline TiO 2 , optionally loaded onto a porous carbon.
  • WO2006/032727 describes an adsorbent material containing iron oxyhydroxide in the form of granules with grain sizes between 0.5-4 mm that may be used for removing selenium, from an aqueous solution.
  • WO 2008/001354 of the same applicant discloses active carbon loaded with iron oxide/hydroxide nanoadsorbent for treating a fluid containing contaminants selected from organic compounds, organisms, toxic substances, hazardous substances, ammonia, or mixtures thereof
  • WO 2009/063456 of the same applicant discloses a method of phosphate removal from aqueous fluid using iron oxide/hydroxide nanoadsorbent optionally loaded on active carbon.
  • nanoadsorbents based on oxides or hydroxides of transition metals described as suitable for phosphate removal in WO 2009/063456 can be successfully used for removal of selenium contaminants from aqueous fluids.
  • the present invention provides a method for treating a polluted aqueous fluid containing undesired selenium contaminants, comprising adsorption of said selenium contaminants onto an adsorbent material by mixing with or passing the polluted aqueous fluid through said adsorbent material to yield aqueous fluid purified from selenium and the adsorbent loaded with undesired selenium contaminants, wherein said adsorbent material is selected from: (i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or
  • porous carbon activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof.
  • the invention provides methods for recovering the adsorbent material for further use and recovering the selenium for its subsequent exploit.
  • the present invention provide an efficient and cost effective method for removal of selenium contaminants, particularly Se 4+ [selenite (SeO 3 "2 )] and Se 6+ [selenate (SeO 4 "2 )], or mixtures thereof; from aqueous fluids such as domestic water, surface water, groundwater, and industrial wastewater.
  • the selenium adsorbents are nanoparticles of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, also referred herein sometimes as “nanoadsorbents”.
  • transition metals relevant for the present invention include, without being limited to, Fe, Ni, Co, Cu and Mn.
  • the transition metal is Fe, preferably Fe (III).
  • oxides or hydroxides refers to oxides, hydroxides and oxides-hydroxides or oxy-hydroxides of transition metals or of aluminum and includes also mixed metal oxides, preferably comprised of iron and at least one other transition metal, or mixtures thereof.
  • the nanoadsorbent material of the invention may be selected from Fe 2 O 3 , FeOOH, FeFe 2 O 3 , Fe(OH) 3 , MnFe 2 O 3 ; CoFe 2 O 3 , CuFe 2 O 3 , NiFe 2 O 3 , FeO, Al 2 O 3 , AlOOH, Al(OH) 3 , or mixtures thereof, in the form of nanoparticles or colloids.
  • the nanoadsorbent is an iron (III) oxide or hydroxide that may be prepared in-situ from iron chloride hexahydrate (FeCl 3 x6H 2 O) by mixing with water at room temperature during 120 minutes.
  • iron chloride hexahydrate FeCl 3 x6H 2 O
  • the concentration of Se 4+ and Se 6+ in contaminated water was reduced from 11.653 ppm and 1.075 ppm, respectively, to less than 0.02 ppm for nanoadsorbent concentrations of 120 ppm and 265 ppm Fe, respectively.
  • the residual concentration of the iron oxide or hydroxide nanoadsorbent in the purified water was less than 0.02 ppm Fe, demonstrating its high adsorption activity.
  • the selenium adsorbents are not nanoparticles but adsorbent materials selected from porous carbon, activated carbon, granular activated carbon, aluminum oxide/hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof, in granular, particles or powder form loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum or mixtures thereof.
  • the adsorbent material is composed of activated carbon loaded with nanoparticles of iron (III) oxide.
  • activated carbon loaded with iron oxide or hydroxide nanoparticles reduced selenite concentrations of contaminated water from 1.047 ppm and 10.22 ppm to 0.025 ppm and 0.021 ppm, respectively, for loaded activated carbon concentrations of 0.003 kg/kg.
  • the residual Fe concentration in the purified water was less than 0.1-0.2 ppm Fe, demonstrating its high adsorption activity.
  • the nanoparticles according to the invention may have a size within the range of about 5 to 400 nanometer, preferably about 50 to about 200, more preferably about 80 to about 150 or about 100 nm.
  • the method of the invention is suitable for removal of selenium contaminants from aqueous fluids, preferably water such as potable water, tap water, ground water, or industrial, agricultural or municipal wastewater.
  • the method is suitable also for treatment of aqueous fluid obtained from sludge or other solid waste mixed with or adsorbed by soil contaminated with selenium, hi this case, the sludge, soil waste or soil is extracted with acidulated water to produce an aqueous fluid containing the undesired selenium contaminants, which is then treated according to the invention.
  • the adsorbent material for use in the method of the invention may be virgin or regenerated. It is indeed one of the advantages of the present invention that it allows the recovery/regeneration of the adsorbent material as well as of the selenium for further use concomitantly with the decontamination process.
  • the adsorbent material e.g. iron oxide or hydroxide nanoadsorbent loaded onto activated carbon, will gradually become saturated due to the adsorption of the selenium contaminants onto its surface. It is important economically and environmentally to recycle the spent adsorbent material and the selenium contaminants.
  • the desorption process according to the method of the present invention allows efficient reactivation of the spent iron oxide or hydroxide and the selenium for further use.
  • the concentration of Se 4+ was reduced in these experiments from 11.653 ppm to less than 0.02 ppm for adsorption at pH range of 5-6, and to 1.48 ppm for pH value of about 8.
  • the concentration of Se 6+ was reduced in these experiments from 1.075 ppm to less than 0.02 ppm for adsorption at pH range of 5-6.
  • the recovery/regeneration of the spent adsorbent material and of the pure Se contaminants for further exploitation is carried out by removal of the adsorbent loaded with selenium contaminants from water by producing a concentrated sludge or by secondary adsorption of this adsorbent loaded with selenium contaminants onto particles or granules of a secondary bulk adsorbent material.
  • the recovery of the adsorbent material and of the selenium is carried out by a method comprising the following steps:
  • said adsorbent material is selected from (i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or (H) porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof.
  • the adsorbent material is nanoparticles of iron oxides or hydroxides. In other preferred embodiments the adsorbed material is activated carbon loaded with nanoparticles of iron oxides or hydroxides.
  • the separation of the adsorbent material loaded with selenium from the purified solution in step (i) can be carried out by means of separation techniques such as filtration, centrifugation, precipitation, etc.
  • a water wash solution at pH above 8 is used for treating the adsorbent loaded with the selenium.
  • the regeneration of the nanoadsorbent material and of the selenium for further use comprises the following steps:
  • the nanoadsorbent is iron (III) oxide or hydroxide and the secondary adsorbent material is granular activated carbon.
  • an adsorption/regeneration method for removal of undesired selenium contaminants from polluted aqueous fluid comprising adsorption of said selenium contaminants onto an adsorbent material and recovery of the purified adsorbent material and of the purified selenium for further use, said method comprising:
  • adsorbent material selected from: (/) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or (H) activated carbon, activated alumina, aluminum oxide, mineral clay, or zeolite, or mixtures thereof, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, by mixing or passing the polluted aqueous fluid through said adsorbent material;
  • the method comprises the steps:
  • step (i), (ii) and (iii) occur concomitantly, the adsorption of the contaminants in step (i) includes pH adjustment from about 3 to 8, preferably pH 5 to 6, and step (iii) includes pH adjustment from about 8 to 12.5.
  • Iron-chloride hexahydrate, FeCl 3 x6H 2 O (analytical grade; Merck KGaA,
  • the pH was determined using a Consort P-931 electrochemical analyzer. Iron and selenium concentrations were determined by Induced coupled plasma (ICP).
  • ICP Induced coupled plasma
  • the starting material used for preparing the iron oxide/hydroxide was iron chloride hexa- hydrate, FeCl 3 x6H 2 O (analytical grade; Merck). Hydrolysis was used to prepare a 10% sol iron oxide/hydroxide nanoadsorbent. A series of iron oxide/hydroxide nanoadsorbent was then prepared by diluting the initial solution.
  • Iron oxide/hydroxide nanoadsorbent was prepared as follows: 100 ml distillate water was mixed with 35 g iron chloride hexahydrate, FeCl 3 x6H 2 O (analytical grade; Merck) at room temperature during 120 min.
  • the adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 ⁇ m filter paper (filter paper of pore size 0.45 ⁇ m).
  • the concentration of Se 4+ in contaminated water was reduced from 11.653 to ⁇ 0.02 ppm for nanoadsorbent concentrations of 120 ppm of Fe.
  • residual concentration of the iron oxide/hydroxide nanoadsorbent in purified water was less than 0.02 ppm Fe. Therefore, the iron oxide/hydroxide nanoadsorbent demonstrated extremely high adsorption activity of Se 4+ .
  • Example 2 Selenite (Se ⁇ 3 2 ⁇ ) removal from water using various iron oxide/hydroxide nanoadsorbent concentrations
  • Example 3 Selenate (SeO 4 2" ) removal from water using various iron oxide/hydroxide nanoadsorbent concentrations
  • Example 2 The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent.
  • the results of purification of polluted water experiments for different iron oxide/hydroxide nanoadsorbent concentrations are presented in Table 3.
  • Example 2 The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent.
  • the pH level of the water was adjusted to various values by adding solution of NaOH.
  • selenium adsorption process onto nanoadsorbent was performed at different pH values of the solution.
  • the adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 ⁇ m filter paper.
  • the initial iron- oxide/hydroxide nano-adsorbent concentration was 120 ppm Fe.
  • Example 2 The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent.
  • the pH level of the water was adjusted to various values by adding solution of NaOH.
  • selenium adsorption process onto nanoadsorbent was performed at different pH values of the solution.
  • the adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 ⁇ m filter paper.
  • the initial iron- oxide/hydroxide nanoadsorbent concentration was 400 ppm Fe.
  • the concentration of Se 6+ was reduced in these experiments from 12.162 to 0.089 ppm for pH values of 4.55 (experiment 5-1) during the adsorption process, to 0.379 ppm for pH of 5.24 in experiment 5-2, and to 8.708 ppm for pH of 7.198 in experiment 5-4.
  • Example 2 The procedure described in Example 1 was repeated for the preparation of iron- oxide nanoadsorbent.
  • the concentration of Se 6+ was reduced in these experiments from 10.224 to 0.2 ppm Se 6+ at pH values of 5-6.
  • the adsorbent loaded with selenium contaminants was removed from the water solution as a concentrated sludge by filtration using 0.45 ⁇ m filter paper. The recovery at elevated pH removed the adsorbent and produced concentrated selenium solution.
  • the pH of the slurry was adjusted to pH values of 7-12.5 in order to release the adsorbent from adsorbed selenium while producing concentrated selenium solution.
  • the concentrated slurry was filtrated using 0.45 ⁇ m filter paper to yield iron-oxide nanoadsorbent free of selenium.
  • the selenium recovery efficiency was calculated from the mass balanc ⁇ j as follows:
  • Example 2 The procedure described in Example 1 was repeated for the preparation of iron- oxide nanoadsorbent.
  • the adsorbent loaded with selenium contaminants was removed from the water solution as a concentrated sludge by filtration using 0.45 ⁇ m filter paper. The recovery at elevated pH removed the adsorbent and produced concentrated selenium solution.
  • the pH of the slurry was adjusted to pH values of 9-12.5 in order to release the adsorbent from adsorbed selenium while producing concentrated selenium solution.
  • the concentrated solution was filtrated using 0.45 ⁇ m filter paper to yield iron-oxide nanoadsorbent free of selenium.
  • the selenium recovery efficiency was calculated from the mass balance, as follows:
  • Example 2 The procedure described in Example 1 was repeated for preparation of iron-oxide nanoadsorbent. This 10% solution of iron oxide nanoadsorbent was used to prepare granular activated carbon loaded with iron oxide nanoparticles: 100 ml of aqueous solution containing 700 ppm of iron oxide/hydroxide nanoparticles was mixed with 1O g of virgin activated carbon. The concentration of iron oxide nanoparticles was reduced from 700 ppm to lower than 20 ppm.
  • the activated carbon loaded with iron oxide nanoparticles was used to purify a portion of polluted water: 100 ml aqueous selenite (SeO 3 2" ) solutions containing 1.047 ppm or 10.22 ppm selenium were mixed for 150 min with activated carbon which was either loaded or not loaded with iron oxide/hydroxide nanoparticles.
  • 100 ml aqueous selenite (SeO 3 2" ) solutions containing 1.047 ppm or 10.22 ppm selenium were mixed for 150 min with activated carbon which was either loaded or not loaded with iron oxide/hydroxide nanoparticles.
  • Table 8 The results of purification of polluted water for different activated carbon concentrations are presented in Table 8.
  • the selenium-loaded activated carbon was separated by filtration using 0.45 ⁇ m filter paper.
  • the concentration of Se in water solution was reduced from 1 ppm to 0.850 ppm for activated carbon (AC) without iron oxide/hydroxide (0.003 kg/kg) and to 0.025 ppm for AC loaded with iron oxide/hydroxide (0.003 kg/kg). Similar performance was shown with higher initial concentration of Se. At the end of the process, the residual Fe concentration in the purified water was lower than 0.1-0.2 ppm.
  • activated carbon loaded with iron oxide nanoparticles demonstrated high selenite (SeO 3 2" ) adsorption ability versus the unloaded activated carbon.

Abstract

Aqueous fluid polluted with selenium contaminants is mixed with or passed through an adsorbent material selected from: (i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or (ii) porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, to yield aqueous fluid purified from selenium

Description

METHOD FOR REMOVAL OF SELENIUM CONTAMINANTS FROM
AQUEOUS FLUIDS FIELD OF THE INVENTION
The present invention relates to an adsorption method for treating a fluid containing undesired selenium contaminants in order to clean the fluid from the contaminant and to a process for the recovery of the adsorbent material. The method is suitable for the recovery of the adsorbent and removal of water dissolved selenium from the adsorbent for its recovery.
BACKGROUND OF THE INVENTION
Irrigation drainage and industrial wastewaters often contain selenium contaminants.
The presence of toxic selenium in waste and surface waters at elevated levels causes a severe environmental and health problem.
California's San Joaquin Valley is one of the world's most productive agricultural regions, supplying more than 70% of the United States' fruits and vegetables. Irrigation in these soils has produced high-salt drainage water containing selenium (Se) at levels ranging from 75 to 1,400 ppb. The main forms of selenium existing in these aqueous systems are selenite (SeO3 "2) and selenate (SeO4 "2), which is the more stable in aqueous solution and more difficult to remove. Selenium is found in effluents from thermal power stations, oil refineries and smelting plants, in addition to the industries of glass production, pigments, solar batteries and semiconductors. Selenium is an important nutrient for human and animal health in the range of 0.8-1.7 μmol/1, but toxic above this value.
No universal method exists for selenium removal from water. A large variety of possible methods for its removal are available, for example:
(i) Precipitation as elemental selenium. Zero-valent iron can be used for removing selenium from water by reducing selenium oxyanions to elemental selenium (Se0).
However, this method is not effective for selenate removal and achieves only 87% removal effectivity (Zhang et al., 2005). Metallic zinc or aluminum at an acidic pH is also used to chemically reduce selenium ions to elemental selenium (US 3,933,635). US 4,806,264 discloses another technique in which ferrous iron is added to wastewater at a pH of about 9 to chemically reduce selenate and selenite to elemental selenium;
(ii) Co-precipitation with ferric hydroxide or aluminum hydroxide (Montgomery, 1985) is efficient at pH values of 7 or lower and is only effective for selenite; (iii) Adsorption of selenium by mineral adsorbents on ferrihydrite, activated alumina, ferric, manganese and aluminum oxy-hydroxides, and metal oxide-coated sand.
This method is effective only for Se4+. For this reason, adsorption has not been used directly to treat Se6+ dominant in drainage water (Balistrieri and Chao, 1987, 1990; Kuan et al., 1998; Mavrov et al., 2006 Peak, 2006);
(iv) Oxidation of Se0 to Se4+ by adding a strong oxidant, such as aqueous permanganate solution, sulfuric acid and following selenite adsorption. Oxidation with permanganate solution produces manganese dioxide precipitate as a by product, which serves also as a selenite ions adsorbent (US 5,993,667).
(v) Reduction of Se6+ to Se4+ with sulfuric acid carried out at a temperature 80°C, followed by addition of a reducing agent comprising the powder of a metal or the ion of a metal. The time required for the reduction reaction is about 2 to 12 hr (JP10218611);
(vi) Ion-exchange process is effective for the removal of Se6+ (Mavrov et al., 2006);
(vii) Biological processes: bacterial reduction of selenium species Se4+ and Se + to elemental selenium (Se0) requires long operating times and a large-sized apparatus (Zhang and Moore, 1997; Mavrov et al. 2006);
(viii) Methylation/volatilization to the atmosphere using bacteria, fungi and algae for methylating Se in aquatic systems. The rates of Se volatilization depend on the Se species present, microbial activity and various environmental conditions (Lin et al., 2002);
(ix) Solvent extraction is highly efficient and selective, but has some disadvantages including the complexity of the equipment and high costs; and
(x) Electrochemical method using dissolvable metal electrodes. Insoluble precipitates are obtained from the compounds of selenium with the ions of the dissolved metal electrode. The electrochemical method has high costs relating to the electrolyser construction and very high energy consumption, therefore, it is ineffective from the economic point of view.
In addition, all these traditional water treatment processes achieve removal of the undesired selenium contaminants by merely transferring the pollutants from one phase to another, producing concentrated sludge and leaving the problem of disposing of the transferred pollutants, recovering the removed adsorbent and producing concentrated selenium solution or crystals for secondary exploit.
Water treatment based on the adsorption of contaminants from solutions by using adsorbent material is useful and cost-effective for selenium removal by the purification of drinking water and groundwater, and for the cleaning of industrial wastewater (Balistrieri and Chao, 1987, 1990; Kuan et al., 1998; Zhang and Frankenberger, 2003; Mavrov et al., 2006; Peak, 2006; El-Shafey, 2007). Attempts have been made and reported here to exploit low-cost sorbent to remove selenium contaminants Se4+ and Se6+ simultaneously from water. Using adsorption processes for water treatment requires recovery of the adsorbent material. Application of an adsorbent depends on its cost and adsorptive capacity after several adsorption-recovery cycles. Therefore, novel materials and methods are needed for the treatment of waters contaminated with selenium.
Adsorption techniques for treatment of solutions containing undesired selenium contaminants may be found in US 6,599,429 and US 6,914,034. US2005/156136 describes a polymeric anion exchanger in which microparticles of hydrated Fe(III)oxides are irreversibly dispersed, for adsorption of selenite. WO2007/011770 describes a method for removing contaminants from solution using a surface-activated nanocrystalline TiO2, optionally loaded onto a porous carbon. WO2006/032727 describes an adsorbent material containing iron oxyhydroxide in the form of granules with grain sizes between 0.5-4 mm that may be used for removing selenium, from an aqueous solution. WO 2008/001354 of the same applicant discloses active carbon loaded with iron oxide/hydroxide nanoadsorbent for treating a fluid containing contaminants selected from organic compounds, organisms, toxic substances, hazardous substances, ammonia, or mixtures thereof, and WO 2009/063456 of the same applicant discloses a method of phosphate removal from aqueous fluid using iron oxide/hydroxide nanoadsorbent optionally loaded on active carbon.
SUMMARY OF THE INVENTION
It has now been found that nanoadsorbents based on oxides or hydroxides of transition metals described as suitable for phosphate removal in WO 2009/063456, can be successfully used for removal of selenium contaminants from aqueous fluids.
Thus, in one aspect, the present invention provides a method for treating a polluted aqueous fluid containing undesired selenium contaminants, comprising adsorption of said selenium contaminants onto an adsorbent material by mixing with or passing the polluted aqueous fluid through said adsorbent material to yield aqueous fluid purified from selenium and the adsorbent loaded with undesired selenium contaminants, wherein said adsorbent material is selected from: (i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or
(ii) porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof.
In another aspect, the invention provides methods for recovering the adsorbent material for further use and recovering the selenium for its subsequent exploit.
The present invention provide an efficient and cost effective method for removal of selenium contaminants, particularly Se4+ [selenite (SeO3 "2)] and Se6+ [selenate (SeO4 "2)], or mixtures thereof; from aqueous fluids such as domestic water, surface water, groundwater, and industrial wastewater.
DETAILED DESCRIPTION OF THE INVENTION
In some embodiments of the present invention, the selenium adsorbents are nanoparticles of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, also referred herein sometimes as "nanoadsorbents".
Examples of transition metals relevant for the present invention include, without being limited to, Fe, Ni, Co, Cu and Mn. In the most preferred embodiments, the transition metal is Fe, preferably Fe (III).
The term "oxides or hydroxides", as used herein, refers to oxides, hydroxides and oxides-hydroxides or oxy-hydroxides of transition metals or of aluminum and includes also mixed metal oxides, preferably comprised of iron and at least one other transition metal, or mixtures thereof. Thus, the nanoadsorbent material of the invention may be selected from Fe2O3, FeOOH, FeFe2O3, Fe(OH)3, MnFe2O3; CoFe2O3, CuFe2O3, NiFe2O3, FeO, Al2O3, AlOOH, Al(OH)3, or mixtures thereof, in the form of nanoparticles or colloids.
In preferred embodiments, the nanoadsorbent is an iron (III) oxide or hydroxide that may be prepared in-situ from iron chloride hexahydrate (FeCl3x6H2O) by mixing with water at room temperature during 120 minutes. As shown in the examples, with this nanoadsorbent the concentration of Se4+ and Se6+ in contaminated water was reduced from 11.653 ppm and 1.075 ppm, respectively, to less than 0.02 ppm for nanoadsorbent concentrations of 120 ppm and 265 ppm Fe, respectively. The residual concentration of the iron oxide or hydroxide nanoadsorbent in the purified water was less than 0.02 ppm Fe, demonstrating its high adsorption activity.
In other embodiment of the present invention, the selenium adsorbents are not nanoparticles but adsorbent materials selected from porous carbon, activated carbon, granular activated carbon, aluminum oxide/hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof, in granular, particles or powder form loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum or mixtures thereof. In some preferred embodiments, the adsorbent material is composed of activated carbon loaded with nanoparticles of iron (III) oxide. As shown in Example 8 hereinafter, activated carbon loaded with iron oxide or hydroxide nanoparticles reduced selenite concentrations of contaminated water from 1.047 ppm and 10.22 ppm to 0.025 ppm and 0.021 ppm, respectively, for loaded activated carbon concentrations of 0.003 kg/kg. The residual Fe concentration in the purified water was less than 0.1-0.2 ppm Fe, demonstrating its high adsorption activity. The same experiment was repeated with activated carbon not loaded with the iron oxide or hydroxide nanoadsorbent and the selenite concentrations of contaminated water were reduced from 1.047 ppm and 10.22 ppm to 0.850 ppm and 8.214 ppm, respectively, showing the superiority of the activated carbon loaded with iron oxide or hydroxide nanoparticles as the adsorbent material vs. unloaded activated carbon.
The nanoparticles according to the invention may have a size within the range of about 5 to 400 nanometer, preferably about 50 to about 200, more preferably about 80 to about 150 or about 100 nm.
The method of the invention is suitable for removal of selenium contaminants from aqueous fluids, preferably water such as potable water, tap water, ground water, or industrial, agricultural or municipal wastewater. The method is suitable also for treatment of aqueous fluid obtained from sludge or other solid waste mixed with or adsorbed by soil contaminated with selenium, hi this case, the sludge, soil waste or soil is extracted with acidulated water to produce an aqueous fluid containing the undesired selenium contaminants, which is then treated according to the invention.
The adsorbent material for use in the method of the invention may be virgin or regenerated. It is indeed one of the advantages of the present invention that it allows the recovery/regeneration of the adsorbent material as well as of the selenium for further use concomitantly with the decontamination process. In the method of the invention, the adsorbent material, e.g. iron oxide or hydroxide nanoadsorbent loaded onto activated carbon, will gradually become saturated due to the adsorption of the selenium contaminants onto its surface. It is important economically and environmentally to recycle the spent adsorbent material and the selenium contaminants. The desorption process according to the method of the present invention allows efficient reactivation of the spent iron oxide or hydroxide and the selenium for further use.
The adsorption of the selenium contaminants is performed at pH conditions such as from pH of about 3 to about 8, preferably, from pH=5 to pH=6.0. The concentration of Se4+ was reduced in these experiments from 11.653 ppm to less than 0.02 ppm for adsorption at pH range of 5-6, and to 1.48 ppm for pH value of about 8. The concentration of Se6+ was reduced in these experiments from 1.075 ppm to less than 0.02 ppm for adsorption at pH range of 5-6.
The recovery/regeneration of the spent adsorbent material and of the pure Se contaminants for further exploitation is carried out by removal of the adsorbent loaded with selenium contaminants from water by producing a concentrated sludge or by secondary adsorption of this adsorbent loaded with selenium contaminants onto particles or granules of a secondary bulk adsorbent material.
In one embodiment, the recovery of the adsorbent material and of the selenium is carried out by a method comprising the following steps:
(i) separating the adsorbent material loaded with the undesired selenium contaminants from the purged water, thus producing a concentrated sludge, a bed of loaded adsorbent or a wet cake;
(ii) treating the produced concentrated sludge, bed of loaded adsorbent or wetcake by increasing the pH above 8;
(iii) washing with water or aqueous solution, thus recovering the adsorbent material free from selenium contaminants and producing a concentrated selenium solution or selenium slurry; and
(iv) separating the recovered/regenerated purified adsorbent from the selenium solution or slurry, thus obtaining purified adsorbent material and purified selenium solution or selenium slurry for further exploitation;
wherein said adsorbent material is selected from (i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or (H) porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof.
In some preferred embodiments the adsorbent material is nanoparticles of iron oxides or hydroxides. In other preferred embodiments the adsorbed material is activated carbon loaded with nanoparticles of iron oxides or hydroxides.
The separation of the adsorbent material loaded with selenium from the purified solution in step (i) can be carried out by means of separation techniques such as filtration, centrifugation, precipitation, etc. In the desorption step for recovering the adsorbent while producing a concentrated selenium solution or selenium slurry for repeated use, a water wash solution at pH above 8 is used for treating the adsorbent loaded with the selenium. The preferable pH range for desorption is from pH=8 to pH=12.5.
In another embodiment, the regeneration of the nanoadsorbent material and of the selenium for further use comprises the following steps:
(i) removing the nanoadsorbent material loaded with selenium contaminants from the water fluid by a secondary adsorption of the contaminated nanoadsorbent onto particles or granules of a secondary bulk adsorbent material selected from porous carbon, granular activated carbon, aluminum oxide, activated alumina, mineral clay, zeolite, or mixtures thereof;
(ii) washing with water or aqueous solution, thus recovering the secondary adsorbent material loaded with the selenium contaminated nanoadsorbent material and producing concentrated selenium solution or selenium slurry and recovery of the secondary adsorbent material for its subsequent exploit.
(iii) separating the recovered/regenerated secondary adsorbent loaded with the purified nanoadsorbent from the selenium solution or a selenium slurry.
In preferred embodiment the nanoadsorbent is iron (III) oxide or hydroxide and the secondary adsorbent material is granular activated carbon.
According to the invention, an adsorption/regeneration method for removal of undesired selenium contaminants from polluted aqueous fluid is provided comprising adsorption of said selenium contaminants onto an adsorbent material and recovery of the purified adsorbent material and of the purified selenium for further use, said method comprising:
(i) adsorption of the selenium contaminants onto an adsorbent material selected from: (/) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or (H) activated carbon, activated alumina, aluminum oxide, mineral clay, or zeolite, or mixtures thereof, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, by mixing or passing the polluted aqueous fluid through said adsorbent material;
(ii) removal of the adsorbent material loaded with the undesired selenium contaminants from the purged water, thus producing a concentrated sludge, a bed of loaded adsorbent or a wet cake; and
(iii) recovery of the removed adsorbent to yield a purified adsorbent material free from selenium contaminants and producing a concentrated selenium solution or a selenium slurry for secondary exploit.
In another embodiment, the method comprises the steps:
(i) adsorption of the selenium contaminants onto an adsorbent material selected from nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, by mixing or passing the polluted aqueous fluid through said adsorbent material;
(ii) removal of the adsorbent material loaded with the undesired selenium contaminants from the purged water by secondary adsorption of the nanoadsorbent onto particles or granules of a secondary bulk adsorbent material selected from porous carbon, granular activated carbon, aluminum oxide, activated alumina, mineral clay, zeolite, or mixtures thereof; and
(iii) washing with water or aqueous solution, thus recovering the secondary adsorbent material loaded with the selenium contaminated nanoadsorbent material and producing concentrated selenium solution or selenium slurry for its subsequent exploit.
(iv) separating the recovered/regenerated secondary adsorbent loaded with the purified nanoadsorbent form the selenium solution or a selenium slurry.
hi preferred embodiments of the invention, the steps (i), (ii) and (iii) occur concomitantly, the adsorption of the contaminants in step (i) includes pH adjustment from about 3 to 8, preferably pH 5 to 6, and step (iii) includes pH adjustment from about 8 to 12.5.
The invention will now be illustrated by the following non-limiting examples. EXAMPLES
Materials and Methods
General. Iron-chloride hexahydrate, FeCl3x6H2O (analytical grade; Merck KGaA,
Germany), sodium selenate anhydrous, Na2SeO4 and sodium selenite, Na2SeO3 (analytical grade; Sigma- Aldrich, Israel Ltd), and activated carbon (Sigma- Aldrich Laborchemikalien
GmbH, Germany) were used as received.
The pH was determined using a Consort P-931 electrochemical analyzer. Iron and selenium concentrations were determined by Induced coupled plasma (ICP).
The starting material used for preparing the iron oxide/hydroxide was iron chloride hexa- hydrate, FeCl3x6H2O (analytical grade; Merck). Hydrolysis was used to prepare a 10% sol iron oxide/hydroxide nanoadsorbent. A series of iron oxide/hydroxide nanoadsorbent was then prepared by diluting the initial solution.
A series of experiments were conducted to investigate the adsorption-recovery properties of iron oxide/hydroxide and aluminum oxide/hydroxide nano-particles. All these experiments were carried at room temperature.
Example 1: Selenite (SeC>3 2") removal from water
Iron oxide/hydroxide nanoadsorbent was prepared as follows: 100 ml distillate water was mixed with 35 g iron chloride hexahydrate, FeCl3x6H2O (analytical grade; Merck) at room temperature during 120 min.
This 10% solution of iron oxide/hydroxide nanoadsorbent was used to purify a portion of polluted water: 1000 ml aqueous selenite (SeO3 2") solution containing 11.653 ppm Se4+ with initial pH=7.2. The results of purification of polluted water experiments for different iron oxide/hydroxide nanoadsorbent concentrations are presented in Table 1.
Table: 1. Selenite (Seθ3 2") removal from water
Figure imgf000010_0001
In these experiments after adding iron oxide/hydroxide nanoadsorbent the pH of water was adjusted to pH values of5.0-6.0, by adding a solution of NaOH.
The adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 μm filter paper (filter paper of pore size 0.45 μm). hi these experiments, the concentration of Se4+ in contaminated water was reduced from 11.653 to < 0.02 ppm for nanoadsorbent concentrations of 120 ppm of Fe. In all these experiments residual concentration of the iron oxide/hydroxide nanoadsorbent in purified water was less than 0.02 ppm Fe. Therefore, the iron oxide/hydroxide nanoadsorbent demonstrated extremely high adsorption activity of Se4+. Example 2: Selenite (Seθ3 2~) removal from water using various iron oxide/hydroxide nanoadsorbent concentrations
The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent. This 10% solution of iron oxide/hydroxide nanoadsorbent was used to purify a portion of polluted water: 1000 ml aqueous selenite (SeO3 2") solution containing 1.047 ppm Se4+ with initial pH=6.8. The results of purification of polluted water experiments for different iron oxide nanoadsorbent concentrations are presented in Table 2.
Table: 2. Selenite (Seθ3 2") removal from water
Figure imgf000011_0001
In these experiments after adding iron oxide/hydroxide nanoadsorbent the pH of the water was adjusted to pH=5.8-6.0 by adding solution of NaOH. The adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 μm filter paper. In these experiments the concentration of Se4+ in contaminated water was reduced from 1.047 to less than 0.02 ppm for nanoadsorbent concentrations of 32 ppm of Fe. In all these experiments residual concentration of the iron oxide/hydroxide nanoadsorbent in purified water was less than 0.02 ppm Fe. Therefore, the iron oxide/hydroxide nanoadsorbent demonstrated extremely high adsorption activity of Se4+.
Example 3: Selenate (SeO4 2") removal from water using various iron oxide/hydroxide nanoadsorbent concentrations
The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent. This 10% solution of iron oxide/hydroxide nanoadsorbent was used to purify a portion of polluted water: 1000 ml aqueous selenate (SeO4 2") solution containing 1.075 ppm Se6+ with initial pH=6.9. The results of purification of polluted water experiments for different iron oxide/hydroxide nanoadsorbent concentrations are presented in Table 3.
Table: 3. Selenate (SeO4 2") removal from water
Figure imgf000012_0001
hi these experiments after adding iron oxide/hydroxide nanoadsorbent the pH of the water was adjusted to pH=5.5-6.1 by adding solution of NaOH. The adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 μm filter paper. In these experiments the concentration of Se6+ in contaminated water was reduced from 1.075 to less than 0.02 ppm for nanoadsorbent concentrations of 265 ppm of Fe. hi all these experiments residual concentration of the iron oxide/hydroxide nanoadsorbent in purified water was less than 0.02 ppm Fe. Therefore, the iron oxide/hydroxide nanoadsorbent demonstrated also high adsorption activity for Se6+. Example 4: Selenite (Seθ3 2") removal from water, as a function of pH
The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent. This 10% solution of iron oxide/hydroxide nanoadsorbent was used to purify a portion of polluted water: 1000 ml aqueous solution containing 11.653 ppm Se4+ with initial pH=7.2. Before adding iron oxide/hydroxide nanoadsorbent the pH level of the water was adjusted to various values by adding solution of NaOH. As a result, selenium adsorption process onto nanoadsorbent was performed at different pH values of the solution. The adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 μm filter paper. The initial iron- oxide/hydroxide nano-adsorbent concentration was 120 ppm Fe.
The results of purification of polluted water experiments for different pH values are presented in Table 4.
Table 4: Selenite (Seθ3 2~) removal from water as a function of pH
Figure imgf000013_0001
The concentration of Se was reduced in these experiments from 11.653 ppm Se4+ to <0.02 for pH values of 3-5.5 (exp.4-1 to 4-3) during the adsorption process, to 0.339 ppm for pH values of 8.16 in experiment 4-6, and to 4.146 ppm for pH values above 9.5 in experiment 4-8. Example 5: Selenate (SeC>4 2") removal from water as a function of pH
The procedure described in Example 1 was repeated for the preparation of iron- oxide/hydroxide nanoadsorbent. This 10% solution of iron oxide/hydroxide nanoadsorbent was used to purify a portion of polluted water: 1000 ml aqueous solution containing 12.162 ppm Se6+ with initial pH=6.7. Before adding iron oxide/hydroxide nanoadsorbent the pH level of the water was adjusted to various values by adding solution of NaOH. As a result, selenium adsorption process onto nanoadsorbent was performed at different pH values of the solution. The adsorbent loaded with selenium contaminants was removed from water as a concentrated sludge by filtration using 0.45 μm filter paper. The initial iron- oxide/hydroxide nanoadsorbent concentration was 400 ppm Fe.
The results of purification of polluted water experiments for different pH values are presented in Table 5.
Table 5: Selenate (SeO_}2") removal from water as a function of pH
Figure imgf000014_0001
The concentration of Se6+ was reduced in these experiments from 12.162 to 0.089 ppm for pH values of 4.55 (experiment 5-1) during the adsorption process, to 0.379 ppm for pH of 5.24 in experiment 5-2, and to 8.708 ppm for pH of 7.198 in experiment 5-4.
Experiment 6: Se6+ Recovery efficiency
The procedure described in Example 1 was repeated for the preparation of iron- oxide nanoadsorbent. This 10% solution of iron oxide nanoadsorbent was used to purify a portion of simulated polluted water: 1000 ml aqueous selenate (SeO4 2') solution containing 10.224 ppm Se6+ with initial pH=6.8. The concentration of Se6+ was reduced in these experiments from 10.224 to 0.2 ppm Se6+ at pH values of 5-6. The adsorbent loaded with selenium contaminants was removed from the water solution as a concentrated sludge by filtration using 0.45 μm filter paper. The recovery at elevated pH removed the adsorbent and produced concentrated selenium solution. The pH of the slurry was adjusted to pH values of 7-12.5 in order to release the adsorbent from adsorbed selenium while producing concentrated selenium solution. The concentrated slurry was filtrated using 0.45 μm filter paper to yield iron-oxide nanoadsorbent free of selenium. The selenium recovery efficiency was calculated from the mass balancβj as follows:
Λ = -^-100(%)
mn
where: mo -mass of selenium in the initial solution (10.224 ppm
Figure imgf000015_0001
mj - mass of
Se ,6+ in concentrated selenium solution.
The selenium recovery results for different pH values are presented in Table 6.
Table: 6. Se »6+ recovery efficiency
Figure imgf000015_0002
The results show that at pH values of 9.5-10.5, 95-96% selenium (Se6+) recovery was achieved concomitantly with adsorbent recovery. Experiment 7: Se4+ Recovery efficiency
The procedure described in Example 1 was repeated for the preparation of iron- oxide nanoadsorbent. This 10% solution of iron oxide nanoadsorbent was used to purify a portion of simulated polluted water: 1000 ml aqueous selenite (SeO3 2") solution containing 1.0673 ppm Se4+ with initial pH=7.12. The concentration of Se4+ was reduced in these experiments from 1.0673 to 0.02 ppm Se4+ at pH values of 5-6. The adsorbent loaded with selenium contaminants was removed from the water solution as a concentrated sludge by filtration using 0.45 μm filter paper. The recovery at elevated pH removed the adsorbent and produced concentrated selenium solution. The pH of the slurry was adjusted to pH values of 9-12.5 in order to release the adsorbent from adsorbed selenium while producing concentrated selenium solution. The concentrated solution was filtrated using 0.45 μm filter paper to yield iron-oxide nanoadsorbent free of selenium. The selenium recovery efficiency was calculated from the mass balance, as follows:
R = ^lOO(0Zo)
m0
where: mo -mass of selenium in the initial solution (1.0673 ppm Se4+), ntj - mass of Se4+ in concentrated selenium solution.
The selenium recovery results for different pH values are presented in Table 7.
Table: 7. Se -4+ recovery efficiency
Figure imgf000016_0001
The results show that at pH values of 11.5-12.5, 93-96% selenium (Se4+) recovery was achieved concomitantly with adsorbent recovery. Example 8: Removal of Se4+ from water: comparison of activated carbon and granular activated carbon loaded with iron oxide/hydroxide nanoparticles as adsorbents
The procedure described in Example 1 was repeated for preparation of iron-oxide nanoadsorbent. This 10% solution of iron oxide nanoadsorbent was used to prepare granular activated carbon loaded with iron oxide nanoparticles: 100 ml of aqueous solution containing 700 ppm of iron oxide/hydroxide nanoparticles was mixed with 1O g of virgin activated carbon. The concentration of iron oxide nanoparticles was reduced from 700 ppm to lower than 20 ppm. The activated carbon loaded with iron oxide nanoparticles was used to purify a portion of polluted water: 100 ml aqueous selenite (SeO3 2") solutions containing 1.047 ppm or 10.22 ppm selenium were mixed for 150 min with activated carbon which was either loaded or not loaded with iron oxide/hydroxide nanoparticles. The results of purification of polluted water for different activated carbon concentrations are presented in Table 8.
Table 8: Selenite (SeC^2") removal from water
Figure imgf000017_0001
*- activated carbon without iron oxide/hydroxide nanoadsorbent
The selenium-loaded activated carbon was separated by filtration using 0.45 μm filter paper. The concentration of Se in water solution was reduced from 1 ppm to 0.850 ppm for activated carbon (AC) without iron oxide/hydroxide (0.003 kg/kg) and to 0.025 ppm for AC loaded with iron oxide/hydroxide (0.003 kg/kg). Similar performance was shown with higher initial concentration of Se. At the end of the process, the residual Fe concentration in the purified water was lower than 0.1-0.2 ppm. Thus, activated carbon loaded with iron oxide nanoparticles demonstrated high selenite (SeO3 2") adsorption ability versus the unloaded activated carbon.
REFERENCES:
Albert, M., Demesmay, C, Rocca, J.L. 1995. Analysis of organic and nonorganic arsenious or selenious compounds by capillary electrophoresis, Fresenius J. Anal. Chem. 351 (4-5), 426-432.
Amweg, E., Stuart, D., Weston, D. 2003. Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water Aquatic Toxicology 63 (2003) 13-25.
Balistrieri, L.S., Chao, T.T. 1990. Adsorption of selenium by amorphous iron oxyhydroxides and manganese dioxide. Geochim Cosmochim Acta. 54, 739-751.
Balistrieri, L.S., Chao, T.T. 1987. Selenium adsorption by geothite. Soil Sci Soc
Am J 51, 1145-1151.
Cantafio, A., Hagen, K., Lewis, G., Bledsoe, T., Nunan, K., Macy, J. 1996. Pilot- scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl. Environ. Microbiol. 62 (9), 3298-3303.
El-Shafey, E. 2007. Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice husk. Journal of Hazardous Materials 147 (1-2), 546-555.
Engberg, R., Westcot, D., Delamore, M., HoIz, D. 1998. Federal and state perspectives on regulation and remediation of irrigation-induced selenium problems. In: Frankenberger W.T., Engberg R.A, editors, Environmental Chemistry of Selenium. New York: Marcel Dekker, pp. 1-25.
Glasauer, S, Doner, H., Gehring, A. 1995. Adsorption of selenite to goethite in a flow-through reaction chamber. Europ J Soil Sci. 46, 47-52.
Jacobs, L. 1989. Selenium in agriculture and the environment, American Society of Agronomy, Inc., Madison. WI.
Kashiwa, M., Nishimoto, S., Takahashi, K., Ike, M., Fujita, M. 2000. Factors affecting soluble selenium removal by a selenate reducing bacterium Bacillus sp. SF-I, J. Biosci. Bi89oeng. 89 (6), 528-533.
Kuan W., Lo, S., Wang, M., Lin, C. 1998. Removal of Se(IV) and Se(VI) from water by aluminum-oxide coated sand. Wat. Res. 32 (3), 915-923.
Lawson, S., Macy, J.M. 1995. Bioremediation of selenite in oil refinery wastewater. Appl. Microbiol. Biotechnol. 43 (4), 762-765. Lin, Z.-Q., Cervinka, V., Pickering, L, Zayed, A., Terry, N. 2002. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization. Water Research 36, 3150-3160.
Losi, M., Frankenberger, W. 1997. Bioremediation of selenium in soil and water. Soil Sci. 162 (10), 692-702.
Mavrov, V., Stamenov, S., Todorova, E., Chmiel, H., Erwe, T. 2006. New hybrid electro-coagulation membrane process for removing selenium from industrial wastewater. Desalination 201, 290-296.
Mondal, K., Jegadeesan, G and Lalvani, Sh., B. 2004. Removal of selenate by Fe and NiFe nanosized particles. Ind. Eng. Chem. Res. 43, 4922-4934.
Montgomery, J. 1985. Water Treatment Principles & Design. Consulting Engineers, Inc., John Wiley & Sons, New York.
Ohlendorf, H. 1989. Bioaccumulation and effects of selenium in wildlife. In: Jacobs L. W., editor. Selenium in agriculture and the environment. Madison, WI: ASA and SSSA, 133-177.
Peak, D. 2006. Adsorption mechanisms of selenium oxy-anions at the aluminum oxide/water interface. Journal of Colloid and Interface Science 303, 337-345.
Presser, T., S., Ohlendorf, H., M. 1987. Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA. Environ Manage.11, 805-821.
Zhang, Y., Moore, J.N. 1997. Environmental conditions controlling selenium volatilization from a wetland system, Environ Sci Technol. 31, 511-517.
Zhang, Y., Frankenberger, W.T. 2003. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Science of the Total Environment 305, 207- 216.
Zhang, Y., Amrhein, Ch., Frankenberger, W.T. 2005. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron. Science of the Total Environment 350, 1-11.

Claims

1. A method for treating a polluted aqueous fluid containing undesired selenium contaminants, comprising adsorption of said selenium contaminants onto an adsorbent material by mixing with or passing the polluted aqueous fluid through said adsorbent material to yield aqueous fluid purified from selenium and the adsorbent loaded with undesired selenium contaminants, wherein said adsorbent material is selected from:
(i) nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or
(ii) porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof.
2. The method according to claim 1, wherein the treated aqueous fluid is water.
3. The method according to claim 2, wherein the aqueous fluid is potable water, tap water, ground water, or industrial, agricultural or municipal wastewater.
4. The method according to claim 1, wherein the aqueous fluid is obtained from sludge or other solid waste mixed with or adsorbed by soil contaminated with selenium, wherein the sludge, soil waste or soil is extracted with acidulated water to produce an aqueous fluid containing the undesired selenium contaminants.
5. The method according to any of claims 1 to 4, wherein said selenium contaminant is selenite, selenate or both.
6. The method according to any of claims 1 to 5, wherein said transition metal is Fe, Ni, Co, Cu or Mn.
7. The method according to any of claims 1 to 6, wherein said adsorbent material is selected from nanoparticles of oxides, hydroxides, or oxy-hydroxides of iron or aluminum, or a mixed metal oxide comprised of iron and at least one other transition metal, or mixtures thereof.
8. The method according to claim 7, wherein said adsorbent material is selected from nanoparticles of Fe2O3, FeOOH, FeFe2O3, Fe(OH)3, MnFe2O3, CoFe2O3, CuFe2O3, NiFe2O3, FeO, Al2O3, AlOOH, Al(OH)3, or mixtures thereof.
9. The method according to claim 8, wherein said adsorbent is nanoparticles of an iron (III) oxide or hydroxide.
10. The method according to claim 1, wherein the adsorbent material is virgin.
11. The method according to claim 1, wherein the adsorbent material is regenerated.
12. The method according to claim 1, wherein the adsorption of the selenium contaminants onto the particles of the adsorbent material is carried out at pH from about 3 to about 8, preferably from pH 5 to 6.
13. The method according to any of claims 1 to 12, further including regeneration of the adsorbent material and of the selenium for further use, comprising the following steps:
(i) separating the adsorbent material loaded with the undesired selenium contaminants from the purged water, thus producing a concentrated sludge, a bed of loaded adsorbent or a wet cake;
(ii) treating the produced concentrated sludge, bed of loaded adsorbent or wet cake by increasing the pH above 8;
(iii) washing with water or aqueous solution, thus recovering the adsorbent material free from selenium contaminants and producing a concentrated selenium solution or selenium slurry; and
(iv) separating the recovered/regenerated purified adsorbent from the selenium solution or selenium slurry, thus obtaining purified adsorbent material and purified selenium solution or selenium slurry for further use.
14. The method according to claim 13, wherein in step (ii) the pH is adjusted to pH values from about 8 to about 12.5.
15. The method according to any of claims 1 to 12, wherein the adsorbent material is nanoparticles of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, further including regeneration of the adsorbent material and of the selenium, comprising the following steps: (i) removing the adsorbent material loaded with selenium contaminants from the water fluid by a secondary adsorption of the contaminated adsorbent material onto particles or granules of a secondary bulk adsorbent material selected from porous carbon, granular activated carbon, aluminum oxide, activated alumina, mineral clay, zeolite, or mixtures thereof;
(ii) washing with water or aqueous solution, thus recovering the secondary adsorbent material loaded with the selenium contaminated adsorbent material and producing concentrated selenium solution or selenium slurry; and
(iii) separating the recovered/regenerated secondary adsorbent loaded with the purified adsorbent from the selenium solution or selenium slurry.
16. The method according to any of claims 1 to 12, wherein the adsorbent material is porous carbon, activated carbon, aluminum oxide or hydroxide, activated alumina, mineral clay, zeolite, or mixtures thereof in granular, particles or powder form, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, further including regeneration of the adsorbent material and of the selenium, comprising the following steps:
(i) removing the adsorbent material loaded with selenium contaminants from the water fluid, thus producing a concentrated sludge, a bed of loaded adsorbent or a wet cake;
(ii) treating the produced concentrated sludge, bed of loaded adsorbent or wet cake by increasing the pH above 8;
(iii) washing with water or aqueous solution, thus recovering the adsorbent material free from selenium contaminants and producing a concentrated selenium solution or selenium slurry; and
(iv) separating the recovered/regenerated purified adsorbent from the selenium solution or selenium slurry, thus obtaining purified adsorbent material and purified selenium solution or selenium slurry for further use.
17. The method according to claim 15 or 16, wherein in step (ii) the pH is adjusted to pH values from about 8 to about 12.5.
18. The method according to claim 15 or 17, wherein the adsorbent is nanoparticles of iron (III) oxide or hydroxide and the secondary adsorbent material is granular activated carbon.
19. The method according to claim 16, wherein the adsorbent material is granular activated carbon loaded with nanoparticles of iron oxides or hydroxides.
20. A method according to claim 1 for treating a polluted aqueous fluid containing undesired selenium contaminants comprising adsorption of said selenium contaminants onto an adsorbent material and recovery of the purified adsorbent material and of the purified selenium, said method comprising:
(i) adsorption of the selenium contaminants onto an adsorbent material selected from nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, or a powder or granulated species of activated carbon, activated alumina, aluminum oxide, mineral clay, or zeolite, loaded with nanoparticles or colloids of oxides or hydroxides of transition metals or of aluminum, or mixtures thereof, by mixing or passing the polluted aqueous fluid through said adsorbent material;
(ii) removal of the adsorbent material loaded with the undesired selenium contaminants from the purged water, thus producing a concentrated sludge, a bed of loaded adsorbent or a wet cake; and
(iii) recovery of the removed adsorbent to yield a purified adsorbent material free from selenium contaminants and producing a concentrated selenium solution or a selenium slurry for further use.
21. The method according to claim 20, wherein steps (i), (ii) and (iii) occur concomitantly.
22. The method according to claim 18, wherein the adsorption of the contaminants in step (i) includes pH adjustment from about 3 to 8, preferably pH 5 to 6.
PCT/IL2010/000633 2009-08-05 2010-08-05 Method for removal of selenium contaminants from aqueous fluids WO2011016038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23136809P 2009-08-05 2009-08-05
US61/231,368 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016038A1 true WO2011016038A1 (en) 2011-02-10

Family

ID=43289793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2010/000633 WO2011016038A1 (en) 2009-08-05 2010-08-05 Method for removal of selenium contaminants from aqueous fluids

Country Status (1)

Country Link
WO (1) WO2011016038A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104639A3 (en) * 2011-02-03 2013-01-03 The University Of Surrey Composite adsorbent material containing a porous carbon matrix
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
US20150068980A1 (en) * 2013-09-12 2015-03-12 King Fahd University Of Petroleum And Minerals Nanocomposite for removing selenium from water
CN105018729A (en) * 2015-08-18 2015-11-04 云南驰宏锌锗股份有限公司 Composite additive for removing selenium and tellurium in zinc sulfate solution for purification and use method of composite additive
US20160016818A1 (en) * 2014-07-21 2016-01-21 MAR Systems, Inc. Selenium and other contaminants removal process
CN105969759A (en) * 2016-06-14 2016-09-28 江苏瑞达环保科技有限公司 Method for immobilized culture of salt-tolerant bacillus strains and application
CN107055637A (en) * 2017-03-28 2017-08-18 覃淑兰 A kind of recyclable water purification agent and preparation method thereof
US10307706B2 (en) 2014-04-25 2019-06-04 Ada Carbon Solutions, Llc Sorbent compositions for use in a wet scrubber unit
CN112138662A (en) * 2020-09-22 2020-12-29 广东石油化工学院 Ferric oxide-loaded alumina composite material and application thereof
EP4321247A2 (en) 2019-01-17 2024-02-14 Research Triangle Institute Polyamine phosphorus dendrimer materials for metal sequestration

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933635A (en) 1975-07-15 1976-01-20 The United States Of America As Represented By The Secretary Of The Interior Method for removing soluble selenium from acidic waste water
US4806264A (en) 1987-09-01 1989-02-21 The United Sates Of America As Represented By The Secretary Of The Interior Method of selectively removing selenium ions from an aqueous solution
JPH10218611A (en) 1997-02-05 1998-08-18 Sumitomo Metal Mining Co Ltd Treatment of solution containing selenium
US5993667A (en) 1997-10-20 1999-11-30 Texaco Inc. Process for removing selenium from refinery process water and waste water streams
US6599429B1 (en) 1998-04-01 2003-07-29 Alcan International Limited Water treatment product and method
US6914034B2 (en) 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US20050156136A1 (en) 2004-01-21 2005-07-21 Arup K. Sengupta Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids
WO2006032727A1 (en) 2004-09-24 2006-03-30 Kemira Oyj Process for the preparation of an adsorbent material containing iron oxyhydroxide, adsorbent material and the use thereof
WO2007011770A1 (en) 2005-07-14 2007-01-25 The Trustees Of The Stevens Institute Of Technology Methods of preparing a titanium oxide product
WO2007032860A2 (en) * 2005-08-23 2007-03-22 Battelle Energy Alliance, Llc High capacity adsorption media for separating or removing constituents, associated apparatus, and methods of producing and using the adsorption media
US20070241057A1 (en) * 2006-04-11 2007-10-18 Reinhold Klipper Oxo anion-adsorbing ion exchangers
WO2008001354A2 (en) 2006-06-27 2008-01-03 Technion Reserch And Development Foundation Ltd. Method for adsorption of fluid contaminants and regeneration of the adsorbent
WO2009063456A1 (en) 2007-11-12 2009-05-22 Technion Research And Development Foundation Ltd Method for adsorption of phosphate contaminants from water solutions and its recovery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933635A (en) 1975-07-15 1976-01-20 The United States Of America As Represented By The Secretary Of The Interior Method for removing soluble selenium from acidic waste water
US4806264A (en) 1987-09-01 1989-02-21 The United Sates Of America As Represented By The Secretary Of The Interior Method of selectively removing selenium ions from an aqueous solution
JPH10218611A (en) 1997-02-05 1998-08-18 Sumitomo Metal Mining Co Ltd Treatment of solution containing selenium
US5993667A (en) 1997-10-20 1999-11-30 Texaco Inc. Process for removing selenium from refinery process water and waste water streams
US6599429B1 (en) 1998-04-01 2003-07-29 Alcan International Limited Water treatment product and method
US6914034B2 (en) 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US20050156136A1 (en) 2004-01-21 2005-07-21 Arup K. Sengupta Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids
WO2006032727A1 (en) 2004-09-24 2006-03-30 Kemira Oyj Process for the preparation of an adsorbent material containing iron oxyhydroxide, adsorbent material and the use thereof
WO2007011770A1 (en) 2005-07-14 2007-01-25 The Trustees Of The Stevens Institute Of Technology Methods of preparing a titanium oxide product
WO2007032860A2 (en) * 2005-08-23 2007-03-22 Battelle Energy Alliance, Llc High capacity adsorption media for separating or removing constituents, associated apparatus, and methods of producing and using the adsorption media
US20070241057A1 (en) * 2006-04-11 2007-10-18 Reinhold Klipper Oxo anion-adsorbing ion exchangers
WO2008001354A2 (en) 2006-06-27 2008-01-03 Technion Reserch And Development Foundation Ltd. Method for adsorption of fluid contaminants and regeneration of the adsorbent
WO2009063456A1 (en) 2007-11-12 2009-05-22 Technion Research And Development Foundation Ltd Method for adsorption of phosphate contaminants from water solutions and its recovery

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ALBERT, M.; DEMESMAY, C.; ROCCA, J.L.: "Analysis of organic and nonorganic arsenious or selenious compounds by capillary electrophoresis", FRESENIUS J. ANAL. CHEM., vol. 351, no. 4-5, 1995, pages 426 - 432
AMWEG, E.; STUART, D.; WESTON, D.: "Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water", AQUATIC TOXICOLOGY, vol. 63, 2003, pages 13 - 25
BALISTRIERI, L.S.; CHAO, T.T.: "Adsorption of selenium by amorphous iron oxyhydroxides and manganese dioxide", GEOCHIM COSMOCHIM ACTA., vol. 54, 1990, pages 739 - 751
BALISTRIERI, L.S.; CHAO, T.T.: "Selenium adsorption by geothite", SOIL SCI SOC AM J, vol. 51, 1987, pages 1145 - 1151
CANTAFIO, A.; HAGEN, K.; LEWIS, G.; BLEDSOE, T.; NUNAN, K.; MACY, J.: "Pilot- scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis", APPL. ENVIRON. MICROBIOL., vol. 62, no. 9, 1996, pages 3298 - 3303
EL-SHAFEY, E.: "Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice husk", JOURNAL OF HAZARDOUS MATERIALS, vol. 147, no. 1-2, 2007, pages 546 - 555
ENGBERG, R.; WESTCOT, D.; DELAMORE, M.; HOLZ, D.: "Environmental Chemistry of Selenium", 1998, MARCEL DEKKER, article "Federal and state perspectives on regulation and remediation of irrigation-induced selenium problems", pages: 1 - 25
GLASAUER, S; DONER, H.; GEHRING, A.: "Adsorption of selenite to goethite in a flow-through reaction chamber", EUROP J SOIL SCI., vol. 46, 1995, pages 47 - 52
JACOBS, L.: "Selenium in agriculture and the environment", 1989, AMERICAN SOCIETY OF AGRONOMY, INC.
KASHIWA, M.; NISHIMOTO, S.; TAKAHASHI, K.; IKE, M.; FUJITA, M.: "Factors affecting soluble selenium removal by a selenate reducing bacterium Bacillus sp. SF-1", J. BIOSCI. BI89OENG., vol. 89, no. 6, 2000, pages 528 - 533
KUAN W.; LO, S.; WANG, M.; LIN, C.: "Removal of Se(IV) and Se(VI) from water by aluminum-oxide coated sand", WAT. RES., vol. 32, no. 3, 1998, pages 915 - 923
LAWSON, S.; MACY, J.M.: "Bioremediation of selenite in oil refinery wastewater", APPL. MICROBIOL. BIOTECHNOL., vol. 43, no. 4, 1995, pages 762 - 765
LIN, Z.-Q.; CERVINKA, V.; PICKERING, L; ZAYED, A.; TERRY, N.: "Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization", WATER RESEARCH, vol. 36, 2002, pages 3150 - 3160
LOSI, M.; FRANKENBERGER, W.: "Bioremediation of selenium in soil and water", SOIL SCI., vol. 162, no. 10, 1997, pages 692 - 702
MAVROV, V.; STAMENOV, S.; TODOROVA, E.; CHMIEL, H.; ERWE, T.: "New hybrid electro-coagulation membrane process for removing selenium from industrial wastewater", DESALINATION, vol. 201, 2006, pages 290 - 296
MONDAL, K.; JEGADEESAN, G; LALVANI, SH., B.: "Removal of selenate by Fe and NiFe nanosized particles", IND. ENG. CHEM. RES., vol. 43, 2004, pages 4922 - 4934
MONTGOMERY, J.: "Water Treatment Principles & Design", 1985, CONSULTING ENGINEERS, INC., JOHN WILEY & SONS
OHLENDORF, H.: "Selenium in agriculture and the environment.", 1989, article "Bioaccumulation and effects of selenium in wildlife", pages: 133 - 177
PEAK, D.: "Adsorption mechanisms of selenium oxy-anions at the aluminum oxide/water interface.", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 303, 2006, pages 337 - 345
PRESSER, T., S.; OHLENDORF, H., M.: "Biogeochemical cycling of selenium in the San Joaquin Valley", ENVIRON MANAGE., vol. 11, 1987, pages 805 - 821
ZHANG, Y.; AMRHEIN, CH.; FRANKENBERGER, W.T.: "Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 350, 2005, pages 1 - 11
ZHANG, Y.; FRANKENBERGER, W.T.: "Factors affecting removal of selenate in agricultural drainage water utilizing rice straw", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 305, 2003, pages 207 - 216
ZHANG, Y.; MOORE, J.N.: "Environmental conditions controlling selenium volatilization from a wetland system", ENVIRON SCI TECHNOL., vol. 31, 1997, pages 511 - 517

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104639A3 (en) * 2011-02-03 2013-01-03 The University Of Surrey Composite adsorbent material containing a porous carbon matrix
US9878356B2 (en) 2011-02-03 2018-01-30 The University Of Surrey Composite adsorbent material
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
US20150068980A1 (en) * 2013-09-12 2015-03-12 King Fahd University Of Petroleum And Minerals Nanocomposite for removing selenium from water
US11590446B2 (en) 2014-04-25 2023-02-28 Ada Carbon Solutions, Llc Methods for treating a flue gas stream using a wet scrubber unit
US10682605B2 (en) 2014-04-25 2020-06-16 Ada Carbon Solutions, Llc Methods for treating a flue gas stream using a wet scrubber unit
US10307706B2 (en) 2014-04-25 2019-06-04 Ada Carbon Solutions, Llc Sorbent compositions for use in a wet scrubber unit
US10421037B2 (en) 2014-04-25 2019-09-24 Ada Carbon Solutions, Llc Methods for treating a flue gas stream using a wet scrubber unit
US10526215B2 (en) * 2014-07-21 2020-01-07 The Frazer And Cruickshank Living Trust Selenium and other contaminants removal process
US20160016818A1 (en) * 2014-07-21 2016-01-21 MAR Systems, Inc. Selenium and other contaminants removal process
CN105018729A (en) * 2015-08-18 2015-11-04 云南驰宏锌锗股份有限公司 Composite additive for removing selenium and tellurium in zinc sulfate solution for purification and use method of composite additive
CN105969759A (en) * 2016-06-14 2016-09-28 江苏瑞达环保科技有限公司 Method for immobilized culture of salt-tolerant bacillus strains and application
CN107055637A (en) * 2017-03-28 2017-08-18 覃淑兰 A kind of recyclable water purification agent and preparation method thereof
EP4321247A2 (en) 2019-01-17 2024-02-14 Research Triangle Institute Polyamine phosphorus dendrimer materials for metal sequestration
CN112138662A (en) * 2020-09-22 2020-12-29 广东石油化工学院 Ferric oxide-loaded alumina composite material and application thereof

Similar Documents

Publication Publication Date Title
Zelmanov et al. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent
Xu et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite
Ahmed et al. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil
WO2011016038A1 (en) Method for removal of selenium contaminants from aqueous fluids
Mondal et al. Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions
Jain et al. Technological options for the removal of arsenic with special reference to South East Asia
US7807606B2 (en) High capacity adsorption media and method of producing
Zelmanov et al. Iron (Fe+ 3) oxide/hydroxide nanoparticles-based agglomerates suspension as adsorbent for chromium (Cr+ 6) removal from water and recovery
US20100243571A1 (en) Method for adsorption of phosphate contaminants from water solutions and its recovery
Ali et al. Removal of lead and cadmium ions by single and binary systems using phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid
CA2680402A1 (en) Arsenic adsorbing composition and methods of use
Hua Synthesis and characterization of bentonite based inorgano–organo-composites and their performances for removing arsenic from water
WO2014209777A1 (en) Method for multi-part treatment of liquids containing contaminants using zero valent nanoparticles
Zelmanov et al. Phosphate removal from aqueous solution by an adsorption ultrafiltration system
Xu et al. Use of drinking water treatment solids for arsenate removal from desalination concentrate
Verma et al. Arsenic removal from water through adsorption-A Review
Li et al. Combination of hydrous iron oxide precipitation with zeolite filtration to remove arsenic from contaminated water
Zhang et al. Vanadium removal from mining ditch water using commercial iron products and ferric groundwater treatment residual-based materials
Wang et al. Application and functionalization of toxic waste sludge-derived biochar for efficient phosphate separation from aqueous media: Toxicity diminution, robust adsorption, and inner mechanism
Tee et al. Comprehensive review and future research directions on using various lanthanum-based adsorbents for selective phosphate removal
Wu et al. Facile synthesis of novel tremella-like Mn0@ Mn2O3 and its exceptional performance on removal of phosphate
Simeonidis et al. Nanoparticles for heavy metal removal from drinking water
TWI672273B (en) Adsorption method
JP3830878B2 (en) Water-soluble selenium removing agent and method for removing water-soluble selenium using the same
Byun et al. Engineered nanoparticles for water treatment application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10762754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10762754

Country of ref document: EP

Kind code of ref document: A1