WO2011001592A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2011001592A1
WO2011001592A1 PCT/JP2010/003408 JP2010003408W WO2011001592A1 WO 2011001592 A1 WO2011001592 A1 WO 2011001592A1 JP 2010003408 W JP2010003408 W JP 2010003408W WO 2011001592 A1 WO2011001592 A1 WO 2011001592A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plate
irradiated surface
illuminance
translucent
Prior art date
Application number
PCT/JP2010/003408
Other languages
English (en)
French (fr)
Inventor
坂井徳浩
岩崎朋宏
作間和夫
森一郎
金井正樹
竹永麻紀
大塚洋幸
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Priority to US13/322,821 priority Critical patent/US8690394B2/en
Priority to CN201080029003.8A priority patent/CN102803840B/zh
Priority to JP2011520752A priority patent/JP5569524B2/ja
Publication of WO2011001592A1 publication Critical patent/WO2011001592A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes

Definitions

  • the present invention relates to a lighting device, and more particularly to a technique for reducing illuminance unevenness on an irradiated surface.
  • a light irradiation device also called a solar simulator
  • the entire irradiated surface was virtually divided into a plurality of sections and selected in order to eliminate unevenness in illuminance on the irradiated surface and improve the accuracy of performance measurement, accelerated deterioration test, etc.
  • a technique is known in which a light amount adjusting member is arranged in each section so that the illuminance by a pseudo-sunlight irradiation device is made uniform for each section and then irradiated to an irradiated surface.
  • a light shielding net, a light shielding tape, or a light shielding sheet having different light shielding rates is used (for example, see Patent Document 1).
  • the light-shielding portion may shade the irradiated surface, which may cause uneven illuminance.
  • This problem is considered to be solved by using a transmissive optical filter that absorbs and attenuates transmitted light instead of adjusting the amount of light by shielding light as the light amount adjusting member.
  • a transmission type optical filter plate it is necessary to prepare a transmission type optical filter plate having a transmittance corresponding to the amount of adjustment of the amount of transmitted light, and there is a problem that it is costly and troublesome.
  • This problem is not limited to the pseudo-sunlight irradiation device, and is a problem common to lighting devices that are required to reduce illuminance unevenness on the irradiated surface.
  • This invention is made
  • the present invention provides a transmitted light amount adjustment unit that adjusts a transmitted light amount so as to uniformize an illuminance distribution on the irradiated surface in an illumination device including a light source that illuminates the irradiated surface.
  • the transmitted light amount adjustment unit Provided between the light source and the surface to be irradiated, the transmitted light amount adjustment unit, each of which is laminated by the number of light transmission plates having a constant transmittance in the wavelength range of the light to be transmitted, according to the adjustment amount of the transmitted light amount.
  • the present invention is characterized in that a translucent plate laminate is provided that reflects incident light at the front and back interfaces of the translucent plate.
  • the transmitted light amount should be adjusted for the light transmissive plate laminate in which each light transmissive plate is thinned to have a constant overall thickness according to the number of the light transmissive plates stacked.
  • a single translucent plate formed by forming the translucent plate with the same thickness as the translucent plate laminate is disposed in each gap between the translucent plate laminates. Then, the translucent plate laminate and the single translucent plate are spread over a range in which light that illuminates the irradiated surface is transmitted, and the translucent plate laminate and the single translucent plate are arranged.
  • a spacer member for preventing displacement of the transparent plate laminate and the single transparent plate is provided around the spread.
  • the present invention is characterized in that the lighting device includes a pressing member that covers and presses the surfaces of the transparent plate laminate and the single transparent plate.
  • the present invention provides a lighting device including a light source that illuminates a surface to be irradiated, wherein a light diffusing unit that diffuses light is provided between the light source and the surface to be irradiated so that the illuminance distribution on the surface to be irradiated is uniform.
  • the light diffusing unit is configured by arranging two layers of light diffusing members apart between the irradiated surface and the light source.
  • a reflective surface is formed by arranging a plurality of reflectors side by side on the opposite side of the illuminated surface with respect to the light source, and direct radiation from the light source to the illuminated surface.
  • the two layers of light diffusing members are separated by a distance that makes the boundary between the plurality of reflectors inconspicuous. To do.
  • the present invention is characterized in that, in the illumination device, an illuminance adjusting plate for adjusting illuminance location unevenness is provided on the light diffusing member on the light source side of the two layers of light diffusing members.
  • this invention WHEREIN: The light which goes to the location which remove
  • the transmitted light amount adjustment unit that adjusts the transmitted light amount so as to make the illuminance distribution on the irradiated surface uniform, the translucent plate having a constant transmittance in the wavelength range of the light to be transmitted, Since it is configured with a transparent plate laminate that reflects the incident light at the front and back interfaces of each transparent plate by the number corresponding to the adjustment amount, the amount of transmitted light can be changed simply by changing the number of transparent plates Can be adjusted. Thereby, the illuminance unevenness of the irradiated surface can be reduced with a simple configuration in which the light transmitting plates are stacked without preparing a plurality of types of transmission type optical filter plates having different transmittances.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a simulated solar light irradiation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the right half of the simulated solar light irradiation device.
  • FIG. 3 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device.
  • FIG. 4 is a longitudinal sectional view schematically showing the configuration of the transmitted light amount adjustment unit.
  • FIG. 5 is a plan view schematically showing the configuration of the transmitted light amount adjustment unit.
  • FIG. 6 is a diagram schematically showing a cross section taken along line I-I ′ shown in FIG. 5.
  • FIG. 7 is a diagram showing the relationship between the thickness of a translucent plate made of acrylic resin and the transmission characteristics.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a simulated solar light irradiation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the right
  • FIG. 8 is a diagram showing the relationship between the number of translucent plates made of acrylic resin and the transmission characteristics.
  • FIG. 9 is a diagram showing changes in transmission characteristics when the thickness and the number of translucent plates made of acrylic resin are varied while keeping the translucent plate laminate constant.
  • FIG. 10 is a diagram showing the measurement result of the illuminance distribution on the irradiated surface.
  • FIG. 11 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus according to the second embodiment of the present invention.
  • FIG. 12 is a plan view showing the right half of the simulated solar light irradiation device.
  • FIG. 13 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device.
  • FIG. 14 is a diagram showing the configuration of the light diffusing member, FIG.
  • FIG. 14A is a longitudinal sectional view schematically showing the simulated sunlight irradiation device together with the enlarged light diffusing member, and FIG. It is a figure which shows the light-diffusion member seen from the irradiation surface side.
  • FIG. 15 is an explanatory view showing an experiment in which the illuminance unevenness of the irradiated surface is measured by changing the position of the light diffusing member
  • FIG. 15A is a view showing the arrangement position of the light diffusing member
  • FIG. ) Is a diagram showing the relationship between the position of the light diffusing member and the type of diffuser plate used for the light diffusing member and the measurement result of illuminance unevenness.
  • FIG. 15C shows the type of diffuser plate used for the light diffusing member.
  • FIG. 16 is a diagram showing the measurement result of the illuminance distribution on the irradiated surface by the simulated solar light irradiation device without the illuminance adjusting plate
  • FIG. 16A shows a two-layered light diffusing member stacked on the irradiated surface side
  • FIG. 16B is a diagram showing the measurement result of the illuminance distribution when two layers of the light diffusing members are spaced apart from each other.
  • FIG. 17 is a diagram illustrating the measurement result of the illuminance unevenness of the irradiated surface by the simulated solar light irradiation device in which the illuminance adjusting plate is arranged.
  • FIG. 1 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation device 1 in the first embodiment.
  • W indicates the width direction
  • H indicates the height direction.
  • the simulated solar light irradiation device 1 has a frame 4 in which a plurality of square members 2 are assembled in a lattice shape.
  • the frame 4 has a length of about 2 m (meters), a width and a height of about 1.2, for example. The size is about 1.3 m.
  • Each side surface of the frame body 4 is covered with a light shielding plate (not shown) in order to prevent external light from entering.
  • the simulated sunlight irradiation device 1 is provided with a simulated sunlight irradiation box 6 that emits simulated sunlight between the side surfaces facing in the length direction of the frame 4. Further, the simulated solar light irradiation device 1 is provided with a reflective surface 8 facing the lower surface 6A of the simulated solar light irradiation box 6 and having a flat irradiated surface 10A such as a solar cell panel facing the upper surface 6B.
  • the body 10 is disposed, and the entire area of the irradiated surface 10A is illuminated with the direct light from the simulated sunlight irradiation box 6 and the reflected light from the reflecting surface 8. Further, since the irradiated surface 10A closes the upper surface of the frame body 4, the entry of external light from the upper surface is prevented.
  • FIG. 2 is a plan view showing the right half of the simulated solar light irradiation device 1
  • FIG. 3 is a cross-sectional view showing the configuration of the simulated solar light irradiation device 1.
  • two straight tube type lamps (light sources) 22 are arranged coaxially along the simulated sunlight irradiation box 6 so that a linear light source is used. It is composed.
  • These lamps 22 are, for example, xenon flash lamps having a strong continuous spectrum over a wide wavelength region from the ultraviolet region to the visible region to the infrared region.
  • Terminal blocks 40 are disposed at both ends of each of the lamps 22.
  • the simulated sunlight irradiation box 6 includes a pair of long plate-like side frames 24 that form both side surfaces along the longitudinal direction, an upper surface optical filter 26 that forms an upper surface 6B, and a lower surface 6A. And a metal fitting (not shown) for assembling the side frame 24, the upper surface optical filter 26, and the lower surface optical filter 27.
  • the side frame 24 is formed of a light shielding material, or a light shielding material for preventing light transmission is added or applied thereto.
  • Each of the upper optical filter 26 and the lower optical filter 27 is a so-called air mass filter that approximates the emission spectrum of the radiated light to sunlight by cutting the infrared wavelength region from the radiated light of the lamp 22, and is a dielectric multilayer filter. It is comprised using. Further, as shown in FIG. 1, each of the upper optical filter 26 and the lower optical filter 27 includes two plate-like filter materials 28 in order to make the incident angle of incident light as vertical as possible and suppress the wavelength shift of transmitted light. It is configured to engage with a mountain shape (valley shape).
  • the reflecting surface 8 reflects the simulated sunlight from the lower surface 6A of the simulated sunlight irradiation box 6 and holds the reflecting plate 30 that irradiates the irradiated surface 10A of the irradiated body 10 in a tiltable manner.
  • the plurality of reflecting devices 32 are configured.
  • the irradiated body 10 is placed on the sample support frame 12 attached on the frame body 4 so that the irradiated surface 10A is separated from the simulated sunlight irradiation box 6 by a predetermined distance L, and the irradiated surface 10A.
  • the direct light from the upper surface 6B of the simulated sunlight irradiation box 6 and the reflected light reflected by the reflecting surface 8 are irradiated.
  • the distribution of the reflected light is controlled so as to compensate for the illuminance unevenness of the direct light on the irradiated surface 10A.
  • the reflection plate 30 is a metal plate having a surface, and extends substantially in parallel along the pseudo-sunlight irradiation box 6 as shown in FIGS.
  • a reflection device 32 is configured by the reflection plate 30 and a holder 31 that holds the reflection plate 30.
  • the plurality of reflecting devices 32 are arranged on the bottom floor 4 ⁇ / b> A of the frame body 4 so that the plurality of reflecting plates 30 are provided and the reflecting surface 8 is formed by these reflecting plates 30.
  • the holder 31 has an angle adjustment mechanism for adjusting the inclination angle of the reflection plate 30, whereby the reflection angle of light can be adjusted independently for each of the reflection plates 30. ing.
  • the heights of several holders 31 close to both side surfaces in the width direction of the frame 4 are sequentially increased, and the reflected light of the reflecting plates 30 on both side surfaces is on the inner side. It is prevented from being shielded by the reflecting plate 30.
  • auxiliary reflection surfaces 50 that reflect light toward both end sides in the length direction are provided on the side surfaces facing the frame body 4 in the length direction.
  • the auxiliary reflection surface 50 is configured by arranging a plurality of metal plate materials whose surfaces extending substantially in parallel along the simulated sunlight irradiation box 6.
  • the auxiliary reflection surface 50 adjusts the reflection angle (inclination angle) of the auxiliary reflection surface 50 when, for example, the illuminance drop of the direct light on both ends in the length direction of the simulated sunlight irradiation box 6 is significant. It can be used to compensate for the decrease in illuminance.
  • the amount of transmitted light is set so as to cover the entire irradiated surface 10A and make the illuminance distribution on the irradiated surface 10A uniform.
  • a transmitted light amount adjustment unit 60 for adjustment is provided. That is, in the simulated solar light irradiation device 1, in addition to the compensation for uneven illuminance of direct light by the reflected light from the reflecting surface 8, the illuminance unevenness of the irradiated surface 10 ⁇ / b> A is also reduced by the transmitted light amount adjustment unit 60.
  • the transmitted light amount adjustment unit 60 includes a base plate 62, a transparent plate laminate 64 for adjusting the transmitted light amount, and a surface film (pressing member) 66, and the illuminance of the irradiated surface 10A is high.
  • the translucent plate laminate 64 reduces the amount of light traveling toward a high location, thereby making the illuminance distribution uniform on the irradiated surface 10A in accordance with the low illuminance.
  • the base plate 62, the translucent plate laminate 64, and the surface film 66 each have a transmittance in the spectrum range of the artificial sunlight so as not to modulate the spectrum of the artificial sunlight emitted by the simulated sunlight irradiation box 6.
  • Is constant (flat) and a material having a high transmittance is preferably used.
  • acrylic resin is used in this embodiment.
  • the base plate 62 is a plate-like member having a rectangular shape when viewed from above for supporting the light-transmitting plate laminate 64, and is formed to have such a thickness as to obtain rigidity sufficient to prevent bending due to its own weight.
  • the base plate 62 is arranged so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
  • a translucent plate laminate 64 is arranged in each of the positions where the amount of transmitted light should be reduced in the illumination light passage range R through which the light illuminating the irradiated surface 10A passes.
  • the remaining portions of the illumination light passage range R are made of a transparent plate laminate 64, an acrylic resin that is the same material as the transparent plate 65 and the base plate 62 constituting the transparent plate laminate 64.
  • a single translucent plate 68 (hereinafter referred to as “spacer translucent plate 68”) is disposed.
  • the spacer translucent plate 68 is formed to have the same dimensions as the translucent plate laminate 64, and the replacement of the spacer translucent plate 68 and the translucent plate laminate 64 is easy.
  • the translucent plate laminate 64 is configured by laminating a plurality of translucent plates 65 (FIG. 6), and the parenthesis written with reference numeral 64 in FIG. The number of laminated transparent plates 65 is shown. The specific configuration of the light transmitting plate laminate 64 and the light amount adjustment will be described in detail later.
  • a spacer plate (spacer member) 70 is provided around the illumination light passage range R to fill a gap between the illumination light passage range R and the side surface of the simulated solar light irradiation device 1. That is, the upper surface of the base plate 62 is completely filled with the translucent plate laminate 64, the spacer translucent plate 68, and the spacer plate 70, so that the translucent plate laminate 64 can be positioned without being bonded to the base plate 62. Can be fixed. As a result, the translucent plate laminate 64 can be exchanged, and even if an impact or earthquake vibration during installation is applied to the transmitted light amount adjustment unit 60, the misalignment of the translucent plate laminate 64 can be prevented.
  • the optical characteristics of the spacer plate 70 are equivalent to those of the spacer translucent plate 68 provided in the illumination light passage range R. Therefore, the area of the irradiated surface 10A is increased and the illumination light passage range R is somewhat expanded to the periphery. Even in such a case, the entire illuminated surface 10A can be illuminated.
  • the surface film 66 has a spacer light-transmitting plate 64 and a spacer light-transmitting plate 64 in order to prevent lateral displacement of the light-transmitting plate stack 64 mounted on the base plate 62. Cover and press the surfaces of the plate 68 and the spacer plate 70.
  • the surface film 66 is formed by forming PET (polyethylene terephthalate), which is a material that does not modulate the spectrum of pseudo-sunlight, in the same manner as an acrylic resin, in a thin film shape.
  • the simulated sunlight irradiation device 1 is provided with a slip-off prevention bracket 80 extending in parallel with the simulated sunlight irradiation box 6 on both side surfaces sandwiching the simulated sunlight irradiation box 6. ing. Further, a fixing L angle 82 having an L-shaped cross section is fixed to each misalignment drop prevention bracket 80, and both edge portions 62 ⁇ / b> A of the base plate 62 of the transmitted light amount adjustment unit 60 are connected to each fixing L angle 82. The base plate 62 is installed by placing it.
  • a lateral shift preventing L angle 84 is provided that fills the gap between the side surfaces of the spacer plate 70 and the simulated solar light irradiation device 1 and prevents the lateral displacement of the spacer plate 70.
  • the fixing L angle 82 is fixed to the square member 2 with screws.
  • a lateral deviation preventing L angle 84 is placed from the upper side, and the preventing L angle 84 is attached to the fixing L angle 82 with a screw 87, so that the simulated sunlight irradiation device 1. It fixes to the square material 2 of the side surface.
  • the edge 62A of the base plate 62 is sandwiched between the fixing L angle 82 and the lateral shift preventing L angle 84, and the base plate 62 is prevented from rattling.
  • the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are spread on the base plate 62. Then, the spacer plate 70, the translucent plate laminate 64, and the spacer translucent plate 68 are covered with the surface film 66 together with the lateral shift preventing L angle 84. Finally, the edge portion of the surface film 66 is pressed by a pressing bar 86, and the pressing bar 86 is fixed to the L angle 84 for preventing lateral displacement by a bolt 89. With the above operation, the installation of the transmitted light amount adjustment unit 60 is completed.
  • FIG. 6 is a diagram schematically showing a cross section taken along the line II ′ shown in FIG.
  • the translucent plate laminate 64 is formed by overlapping a plurality of translucent plates 65 each made of an acrylic resin having a rectangular translucent surface with the same dimensions.
  • the pseudo sunlight F is incident on the light transmitting plate laminate 64
  • the back reflection of the pseudo sunlight F occurs at the front and back interfaces of each light transmitting plate 65, and the light transmitting plate laminate 64 is equivalent to the back reflection.
  • the amount of transmitted light is reduced.
  • the transmittance of the translucent plate laminate 64 is determined by the number of the translucent plates 65 stacked without depending on the thickness of the translucent plate 65. The transmission characteristics will be described below.
  • FIG. 7 is a diagram showing the relationship between the thickness t of the translucent plate 65 made of acrylic resin and the transmission characteristics
  • FIG. 8 shows the relationship between the number of the translucent plates 65 and the transmission characteristics
  • FIG. It is a figure which shows the change of the permeation
  • the translucent plate 65 has a substantially constant transmittance (flat) over a wide wavelength range K from the ultraviolet region (wavelength 400 nm) to the infrared region (wavelength 900 nm) used as the pseudo-sunlight F. It turns out that it has the transmission characteristic which becomes and has the high transmittance
  • the simulated sunlight F emitted from the simulated sunlight irradiation box 6 is generated.
  • the spectrum can be transmitted with high efficiency without being modulated, and the reduction in illumination efficiency can be prevented.
  • the thickness t of the translucent plate 65 is set to 0.5 mm. Even if it is increased to 1 mm and 3 mm, no significant change is observed in the transmittance.
  • the transmittance is proportional to the number of translucent plates 65 in the entire wavelength region. Decreases substantially uniformly.
  • the acrylic resin which is the material of the translucent plate 65
  • the validity of this reason is the case where four translucent plates 65 having a thickness of 0.5 mm are overlapped, and two translucent plates 65 having a thickness of 1 mm and two translucent plates 65 having a thickness of 1 mm. Even if the translucent plates 65 are stacked, the transmittance is almost the same regardless of the thickness of the translucent plate 65, and the same result can be obtained even if the number is changed to five. It is done.
  • the transmitted light amount adjustment unit 60 shown in FIG. 6 in the light transmitting plate laminate 64 in which the two light transmitting plates 65 are stacked, back surface reflection occurs at the front and back interfaces of each light transmitting plate 65, so that a total of 4
  • the amount of light transmitted through the simulated sunlight F is reduced by the number of back surface reflections
  • the transmission of the pseudo sunlight F is transmitted by a total of 8 times of back surface reflection.
  • the amount of light will be reduced.
  • the number of back surface reflections increases in proportion to the number of light transmitting plates 65, and thus the amount of transmitted light of the pseudo sunlight F is reduced in proportion to the number of light transmitting plates 65.
  • the back surface reflection occurs twice at the contact portion C where the transparent plates 65 overlap in the vertical direction. That is, when the transparent plates 65 are simply stacked without using a binder such as an adhesive, a thin air layer 90 is formed between the transparent plates 65. By interposing the air layer 90 between the translucent plates 65, back-surface reflection occurs when the pseudo sunlight F exits from the lower translucent plate 65 to the air layer 90, and the upper side from the air layer 90. Even when the light enters the translucent plate 65, back surface reflection occurs, which causes two back surface reflections at the contact portion C.
  • the light transmitting plates 65 are simply overlapped without using a binder such as an adhesive, and only the air layer 90 is formed between the light transmitting plates 65, thereby transmitting the light transmitting plate laminate 64.
  • the rate can be reduced in proportion to the number of laminated light-transmitting plates 65, and a light-transmitting plate laminate 64 with easy adjustment of the amount of light transmitted can be obtained.
  • a base plate 62 is provided below the translucent plate laminate 64, and a surface film 66 is provided on the translucent plate laminate 64. Since 68 is disposed, back surface reflection similarly occurs at each interface of the base plate 62, the surface film 66, and the spacer translucent plate 68. Therefore, the number of translucent plates 65 of the translucent plate laminate 64 is determined in consideration of these back surface reflections.
  • the translucent plate laminate 64 is configured by simply superimposing the translucent plates 65 without using a binder such as an adhesive, the translucent plate 65 is likely to be laterally displaced by an impact such as an earthquake. Therefore, as shown in FIG. 6, in the light transmitting plate laminate 64, the number of light transmitting plates 65 is reduced by reducing the thickness of the light transmitting plates 65 per sheet according to the number of light transmitting plates 65 to be stacked. Regardless, the entire thickness D is constant (3 mm in the present embodiment), and the spacer translucent plate 68 is also formed to the same thickness D. Thereby, since the other translucent plate 65 or the spacer translucent plate 68 always exists in the horizontal direction of the translucent plate 65, the lateral displacement of the translucent plate 65 is prevented.
  • the translucent plate 65 becomes thinner as the number of the translucent plates 65 stacked is increased. Therefore, the thickness of the translucent plate laminate 64 and the spacer translucent plate 68 varies slightly. Only by this, the lateral displacement of the translucent plate 65 is likely to occur. Therefore, in the present embodiment, as shown in FIG. 6, the surfaces of the translucent plate laminate 64 and the spacer translucent plate 68 are covered with the surface film 66 described above, and the translucent plate laminate 64 is covered with the surface film 66. The lateral displacement of the translucent plate 65 is surely prevented by pressing the surface.
  • FIG. 10 shows the measurement results of the illuminance unevenness of the irradiated surface 10A by the simulated sunlight irradiation device 1.
  • the illuminance unevenness is calculated from the illuminance distribution shown in this figure, a value of about 1.59% is obtained, and according to the simulated solar light irradiation device 1 of this embodiment, the illuminance unevenness of the irradiated surface 10A is satisfactorily reduced. It has been demonstrated that In addition, the calculation of the illuminance unevenness is calculated based on JIS C8912 and JIS C8933 defined by the JIS standard (Japanese Industrial Standard).
  • the transmitted light amount adjustment unit 60 that adjusts the transmitted light amount so that the illuminance distribution on the irradiated surface 10A is made uniform is transmitted in the wavelength range K of the simulated sunlight F.
  • a translucent plate laminate 64 is provided in which the translucent plates 65 with constant light are overlapped by the number corresponding to the adjustment amount of the transmitted light amount and incident light is reflected at the front and back interfaces of each translucent plate 65. Configured. With this configuration, the amount of transmitted light can be adjusted simply by changing the number of light transmitting plates 65, and a simple configuration in which the light transmitting plates 65 are stacked without preparing a plurality of types of transmission type optical filter plates having different transmittances. Thus, the illuminance unevenness of the irradiated surface 10A can be reduced.
  • each of the positions where the amount of transmitted light is to be adjusted is adjusted for each of the transparent plate laminates 64 in which the respective transparent plates 65 are thinned to have a constant thickness according to the number of the transparent plates 65 to be stacked.
  • the spacer light-transmitting plate 68 is disposed in the gap generated between the light-transmitting plate laminates 64, and the light-transmitting plate laminate 64 and the spacer light-transmitting plates 68 are spread over the illumination light passing range R.
  • a spacer plate 70 is disposed around the illumination light passage range R to prevent the light transmission plate laminate 64 and the spacer light transmission plate 68 from being displaced.
  • the translucent plate laminate 64 and the spacer translucent plate 68 are fixed. Even if the shock or vibration of installation is applied to the transmitted light amount adjustment unit 60, the displacement of the light transmitting plate laminate 64 can be prevented while being exchangeable.
  • the surface film 66 as a pressing member which covers and hold
  • the surface film 66 presses the surface of the light-transmitting plate laminate 64 so that the lateral displacement of the light-transmitting plate 65 is reliably prevented.
  • the auxiliary reflection surface 50 is provided at the lower part on the side surface facing the frame body 4 in the length direction.
  • Auxiliary reflective surfaces 150A and 150B that reflect light emitted from the simulated sunlight irradiation box 6 toward the side surface of the frame 4 between the lamp 22 on the side surface and the irradiated surface 10A toward the irradiated surface 10A. May be provided.
  • the auxiliary reflection surfaces 150A and 150B adjust the reflection angle (tilt angle) of the auxiliary reflection surface 50 to compensate for the illuminance drop. It can be used for things.
  • the auxiliary reflecting surfaces 150A and 150B are formed in such a length that does not cause a gap at an adjusted inclination angle so as not to reduce the illuminance at the four corners of the irradiated surface 10A.
  • the light emitted from the lamp 22 is directed to the irradiated surface 10A from the irradiated surface 10A.
  • Auxiliary reflection surfaces 150A and 150B that reflect toward the surface are arranged.
  • the simulated sunlight irradiation apparatus 1 can be reduced in size.
  • the transmitted light amount adjustment unit 60 for adjusting the transmitted light amount is provided between the lamp 22 and the irradiated surface 10A in order to reduce the illuminance unevenness of the irradiated surface 10A, but in the second embodiment, Instead of the transmitted light amount adjustment unit 60, a light diffusion unit 101 that diffuses light is provided.
  • FIG. 11 is a longitudinal sectional view schematically showing the configuration of the simulated solar light irradiation apparatus 100 according to the second embodiment.
  • 12 is a plan view showing the right half of the simulated sunlight irradiation device 100
  • FIG. 13 is a cross-sectional view showing the configuration of the simulated sunlight irradiation device 100. 11 to 13, the same parts as those of the simulated solar light irradiation device 1 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the frame 4 in which a plurality of square members 2 are assembled in a grid shape has dimensions of, for example, a length of about 1.7 m, a width of about 1.2 m, and a height of about 0.8 m.
  • the effective area of the irradiated surface 10A is set to 600 mm ⁇ 1200 mm.
  • one straight tube type lamp 22 is arranged along the simulated sunlight irradiation box 6 to constitute a linear light source.
  • the simulated sunlight irradiation box 6 is housed in a lamp house 7 formed of a material that does not modulate the spectrum of simulated sunlight emitted by the simulated sunlight irradiation box 6.
  • the reflecting surface 8 is configured to include six reflecting devices 32, and the inclination angle ⁇ of the reflecting plate 30 is 33 °, 21 °, ⁇ 5 °, 5 ° in order from the right as shown in FIG. It is set to -21 ° and -33 °. With this configuration, even if fine adjustment in units of 0.1 ° is performed, the illuminance unevenness of the irradiated surface 10A is not affected, and shipping adjustment time can be shortened.
  • the inclination angles of the auxiliary reflecting surfaces 150A and 150B are preferably set to about 0 ° to 5 °, and the auxiliary reflecting surfaces 150A and 150B have an inclination angle of 0 so as not to reduce the illuminance at the four corners of the irradiated surface 10A. When adjusted to about 5 ° to 5 °, they are formed so as not to cause a gap.
  • the length of the auxiliary reflection surface 150A on the long side is set to about 1400 mm
  • the length of the auxiliary reflection surface 150B on the short side is set to about 920 mm.
  • the distance L from the lamp 22 to the irradiated surface 10A is about several tens of centimeters, and it is difficult to make the illuminance unevenness uniform, It required effort to maintain a uniform illumination. Therefore, in this embodiment, light is diffused between the simulated sunlight irradiation box 6 and the irradiated surface 10A so as to cover the entire irradiated surface 10A and make the illuminance distribution on the irradiated surface 10A uniform.
  • a light diffusion unit 101 is provided.
  • the illuminance unevenness of the irradiated surface 10A is also reduced by the light diffusion unit 101.
  • FIG. 14 is a view showing the configuration of the light diffusing members 110 and 120
  • FIG. 14A is a longitudinal sectional view schematically showing the simulated sunlight irradiation device 100 together with the enlarged light diffusing members 110 and 120
  • FIG. 14B is a view showing the light diffusing member 120 viewed from the irradiated surface 10A side.
  • the light diffusing unit 101 includes a base plate 102 and two layers of light diffusing members 110 and 120 having a light diffusing effect, and goes to a place where the illuminance of the irradiated surface 10A is high.
  • the light diffusing members 110 and 120 diffuse light to make the illuminance distribution uniform on the irradiated surface 10A.
  • the transmittance of the base plate 102 and the light diffusing members 110 and 120 is constant (flat) in the spectrum range of the simulated sunlight so as not to modulate the spectrum of the simulated sunlight emitted by the simulated sunlight irradiation box 6. Furthermore, a material having a high transmittance is preferably used.
  • the base plate 102 is a plate-like member having a rectangular shape in a top view for supporting the light diffusing member 110, and is formed to have a thickness (for example, 15 mm) that can provide rigidity enough to prevent bending due to its own weight. Yes.
  • acrylic resin is used as the material.
  • the base plate 102 is arranged on the irradiated surface 10A side of the frame 4 so as to completely partition the simulated sunlight irradiation box 6 and the irradiated surface 10A.
  • the two layers of light diffusing members 110 and 120 are each formed by laminating a plurality of diffusing plates, and are disposed at a distance D between the irradiated surface 10A and the lamp 22.
  • the light diffusion effect of the light diffusion unit 101 that is, the effect of reducing the illuminance unevenness of the irradiated surface 10A depends on the distance D, and the light diffusion characteristics of such a light diffusion unit 101 will be described below.
  • FIG. 15 is an explanatory view showing an experiment in which the illuminance unevenness of the irradiated surface 10A is measured by changing the positions of the light diffusing members 110 and 120, and FIG. 15A shows the arrangement position of the light diffusing members 110 and 120.
  • 15B is a diagram showing the relationship between the position of the light diffusing members 110 and 120, the type of the diffusion plate used for the light diffusing members 110 and 120, and the measurement result of the illuminance unevenness. ) Is a diagram showing the type of diffusion plate used for the light diffusing members 110 and 120.
  • FIG. 15B shows the measurement result of the illuminance unevenness when the light diffusing member 110 is disposed at a position 400 m from the lamp 22 and the light diffusing member 120 is disposed at a position 200 mm, 300 mm, or 400 mm from the lamp 22. It is shown.
  • the illuminance unevenness when the light diffusing member 120 is arranged at a position of 300 mm is the case when the light diffusing member 120 is arranged at a position of 400 mm (experiment E1).
  • E2 is not much different from the illuminance unevenness.
  • the illuminance unevenness is improved as compared with the case of being disposed at a position of 300 mm or 400 mm.
  • the light diffusing member 120 is disposed within a range of 200 mm to 300 mm from the lamp 22, in other words, the distance D between the two layers of the light diffusing members 110 and 120 is set to 100 mm to 200 mm. Is desirable (100 mm ⁇ D ⁇ 200 mm). In the present embodiment, the distance D between the two layers of the light diffusing members 110 and 120 is set to 200 mm.
  • the simulated sunlight irradiation device 100 includes a plate-like light diffusion extending in parallel with the simulated sunlight irradiation box 6 above the frame 4 and above the simulated sunlight irradiation box 6.
  • Member receivers 103 are provided on both side surfaces sandwiching the simulated sunlight irradiation box 6.
  • a light diffusing member receiver 104 having an L-shaped cross section that extends perpendicularly to the simulated sunlight irradiation box 6 is provided above the frame body 4 and the simulated sunlight irradiation box 6. It is provided on each side surface facing in the vertical direction.
  • the base plate 102 and the light diffusing member 110 are placed on the light diffusing member receivers 103 and 104 provided on the upper part of the frame body 4 and fixed by holding metal fittings (not shown), and the light diffusing member 120 is attached to the simulated sunlight irradiation box 6. It is placed on the light diffusing member receivers 103 and 104 provided on the upper side, and is fixed by holding metal fittings (not shown).
  • the light diffusing member 110 on the irradiated surface 10A side is disposed on the upper surface of the base plate 102, and is configured by laminating a plurality of (in this embodiment, two) light diffusing plates 111 and 112.
  • the light diffusing plate 111 on the irradiated surface 10A side is a plate-like member that is formed to have a size that covers the entire illumination light passing range through which the light that illuminates the irradiated surface 10A passes, and has been matted on both sides. It has a mat-like diffusion surface.
  • the light diffusing plate 111 of this embodiment has a thickness of about 3 mm and is formed using a material (acrylic resin in this embodiment) having substantially the same optical characteristics as the base plate 102.
  • the light diffusing plate 112 on the base plate 102 side is a plate-like member formed in substantially the same size as the light diffusing plate 111, and has diffusing surfaces on both sides.
  • One surface of the diffusion surface is formed into an embossed shape by being embossed, and the light diffusion plate 112 is arranged with the diffusion surface having the embossed shape facing the irradiated surface 10A. That is, the mat-like diffusion surface of the light diffusing plate 111 and the embossed surface of the light diffusing plate 112 are in contact with each other, and the lateral displacement of the light diffusing plate 111 can be prevented.
  • the light diffusing plate 112 of this embodiment is formed using a material having a thickness of about 205 ⁇ m and a haze that is a ratio of the parallel light transmittance and the diffuse light transmittance of about 50%.
  • the light diffusing member 120 on the lamp 22 side is formed by laminating a plurality of (in this embodiment, three) light diffusing plates 121 to 123 and an illuminance adjusting plate 124 that is a diffusing plate for adjusting illuminance location unevenness.
  • the light diffusing plate 121 is configured substantially the same as the light diffusing plate 111, and two light diffusing plates 122 and 123 configured substantially the same as the light diffusing plate 112 have an embossed shape on the upper surface of the light diffusing plate 121.
  • the diffusion surface is placed facing the irradiated surface 10A.
  • An illuminance adjusting plate 124 formed smaller than the light diffusion plates 121 to 123 is disposed between the two light diffusion plates 122 and 123 (see FIG. 14B).
  • the illuminance adjusting plate 124 is a plate-like member having diffusion surfaces on both sides and embossed on one side, and is disposed with the embossed surface facing the lamp 22 side. Thereby, the embossed surface of the lower light diffusion plate 123 and the embossed surface of the illuminance adjusting plate 124 come into contact with each other, and the lateral shift of the illuminance adjusting plate 124 can be prevented.
  • the illuminance adjusting plate 124 is formed using a material having a thickness of about 270 ⁇ m and a haze of about 90%, and has three sizes of 80 mm ⁇ 400 mm, 150 mm ⁇ 600 mm, and 80 mm ⁇ 300 mm. An illuminance adjustment plate 124 is disposed.
  • the illuminance adjusting plate 124 having a relatively high light diffusing effect is provided on the light diffusing member 120 on the lamp 22 side, the illuminance of the irradiated surface 10A is locally changed only by changing the position of the illuminance adjusting plate 124. Light that travels to high places can be more effectively diffused, and fine adjustment of illuminance unevenness can be easily performed.
  • the light diffused by the illuminance adjusting plate 124 can be further diffused by the light diffusing member 110 on the irradiated surface 10A side, compared to the case where the illuminance adjusting plate is arranged on the light diffusing member 110 on the irradiated surface 10A side, Irradiance unevenness can be further reduced.
  • the illuminance unevenness can be easily reduced by changing the position and size of the illuminance adjusting plate 124.
  • the illuminance adjusting plate 124 is disposed between the light diffusing plates 122 and 123, there is no need to provide a fixture for fixing the illuminance adjusting plate 124, and the number of parts can be reduced.
  • FIG. 16 is a diagram showing a measurement result of the illuminance distribution on the irradiated surface 10A by the simulated solar light irradiation device 100 in which the illuminance adjusting plate 124 is not disposed.
  • FIG. 16A shows the two layers of the light diffusing members 110 and 120 covered. It is a figure which shows the measurement result of the illuminance distribution at the time of laminating
  • FIG.16 (B) is a figure which shows the measurement result of the illuminance distribution at the time of arranging two layers of light-diffusion members 110 and 120 apart. It is.
  • the range is 1.05-1.1 SUN, and the difference is 0.3 SUN.
  • the illuminance is 0.9-0.95 SUN as shown in FIG.
  • the range is 1.05 to 1.1 SUN, and the difference is 0.15 SUN, and the illuminance unevenness of the irradiated surface 10A is well reduced.
  • FIG. 17 shows the measurement result of the illuminance unevenness of the irradiated surface 10A by the simulated solar light irradiation device 100 in which the illuminance adjusting plate 124 is arranged.
  • the illuminance is in the range of 0.98-0.99 SUN to 1.01-1.02 SUN, and the illuminance unevenness is about 1.8%.
  • the boundary of the illuminance caused by the plurality of reflecting plates 30 is also less noticeable.
  • the light diffusion unit 101 that diffuses light is provided between the lamp 22 and the irradiated surface 10A so as to make the illuminance distribution on the irradiated surface 10A uniform.
  • the light diffusing unit 101 is configured by disposing two layers of light diffusing members 110 and 120 apart between the irradiation surface 10A and the lamp 22. With this configuration, light directed toward the irradiated surface 10A can be diffused and uniformed, so that it is possible to prepare a plurality of types of transmissive optical filter plates having different transmittances for placement in the virtual divided section of the irradiated surface 10A.
  • the illuminance unevenness of the irradiated surface 10A can be reduced with a simple configuration in which the two layers of the light diffusing members 110 and 120 are spaced apart.
  • diffusing light it is possible to reduce a drop in illuminance at the four corners of the irradiated surface 10A.
  • the reflecting surface 8 is formed by arranging the plurality of reflecting plates 30 side by side on the side opposite to the irradiated surface 10A with respect to the lamp 22, and directly from the lamp 22 to the irradiated surface 10A.
  • the reflecting surface 8 can be formed by a plurality of reflecting plates 30, the reflecting surface 8 can be formed with a simple configuration as compared with the case where the reflecting surface 8 is formed by curving one reflecting plate. By adjusting the reflection angle (inclination angle), it is possible to easily compensate for a decrease in illuminance on the irradiated surface 10A.
  • the light diffusing member 120 on the lamp 22 side of the two layers of light diffusing members 110 and 120 is provided with the illuminance adjusting plate 124 for adjusting the illuminance location unevenness.
  • the illuminance adjusting plate 124 by arranging the illuminance adjusting plate 124 at a location where the illuminance is locally high, fine adjustment of the illuminance unevenness can be easily performed.
  • the illuminance adjusting plate 124 can be diffused by the light diffusing member 110 on the irradiated surface 10A side, so that the irradiated surface 10A side
  • the illuminance unevenness can be further reduced as compared with the case where the illuminance adjusting plate is arranged on the light diffusion member 110.
  • the light emitted from the lamp 22 to the place outside the irradiated surface 10A is emitted between the lamp 22 on the side surface of the simulated solar light irradiation device 100 and the irradiated surface 10A.
  • the auxiliary reflection surfaces 150A and 150B that reflect toward the irradiated surface 10A are arranged. With this configuration, the light diffused by the light diffusing member 120 on the lamp 22 side can be reflected. Therefore, compared to the case where an auxiliary reflecting surface is disposed between the lamp 22 and the reflecting surface 8, the illumination intensity of the irradiated surface 10A is reduced. While directing light to the desired location to be compensated, light can be more diffused and uniformed.
  • the light that is blocked by the light shielding plate disposed on the side surface of the frame body 4 can be effectively used to compensate for the decrease in illuminance of the irradiated surface 10 ⁇ / b> A, and the auxiliary reflection surface is disposed below the frame body 4.
  • the simulated solar light irradiation device 100 can be downsized.
  • the simulated sunlight irradiation apparatus was illustrated as an illuminating device which concerns on this invention, it is not restricted to this. That is, the transmitted light amount adjusting unit or the light diffusing unit of the present invention can be provided in any lighting device as long as it is a lighting device that should reduce the illuminance unevenness of the irradiated surface.
  • an ultraviolet curing device is mentioned, for example. The UV curing device irradiates the UV-cured material uniformly by irradiating the UV-cured material such as UV ink, UV paint, UV adhesive, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 被照射面の照度むらを簡単な構成で低減できる照明装置を提供する。 被照射面10Aを照明するランプ22を備えた擬似太陽光照射装置1において、前記被照射面10Aでの照度分布を均一化するように透過光量を調整する透過光量調整ユニット60を前記ランプ22と被照射面10Aの間に備え、前記透過光量調整ユニット60を、透過すべき光の波長範囲で透過率が一定な透光板65を前記透過光量の調整量に応じた枚数分だけ重ねて各透光板65の表裏の各界面で入射光を反射するようにした透光板積層体64を設けて構成した。

Description

照明装置
 本発明は、照明装置に係り、特に被照射面での照度むらを低減する技術に関する。
 太陽電池に代表される各種太陽エネルギー利用機器の性能測定や加速劣化試験などのために、自然太陽光の発光スペクトルを再現した擬似太陽光を、太陽エネルギー利用機器の被照射面に照射する擬似太陽光照射装置(ソーラーシミュレーターとも呼ばれる)が知られている。この種の擬似太陽光照射装置では、被照射面での照度むらを解消して性能測定や加速劣化試験などの精度を高めるために、被照射面全域を複数の区画に仮想分割し、選択した光量調整部材を各区画に配置することにより、区画ごとに擬似太陽光照射装置による照度を均一化してから被照射面に照射する技術が知られている。この光量調整部材には、遮光率の異なる遮光網や遮光テープ、遮光シートが用いられている(例えば、特許文献1参照)。
特開2006-216619号公報
 しかしながら、遮光網等を光量調部材に使用すると、遮光部分が被照射面に陰を作り、これが照度むらの原因になるおそれがある。この問題は、光量調整部材として、遮光して光量を調整するのではなく透過光を吸収して減衰する透過型光学フィルターを用いれば解決されると考えられる。しかしながら、透過型光学フィルター板を用いる場合には、透過光量の調整量に応じた透過率の透過型光学フィルター板を用意する必要がありコストと手間がかかるという問題がある。
 なお、この問題は、擬似太陽光照射装置に限らず、被照射面での照度むらの低減が求められる照明装置に共通する課題である。
 本発明は、上述した事情に鑑みてなされたものであり、被照射面の照度むらを簡単な構成で低減できる照明装置を提供することを目的とする。
 上記目的を達成するために、本発明は、被照射面を照明する光源を備えた照明装置において、前記被照射面での照度分布を均一化するように透過光量を調整する透過光量調整ユニットを前記光源と被照射面の間に備え、前記透過光量調整ユニットを、透過すべき光の波長範囲で透過率が一定な透光板を前記透過光量の調整量に応じた枚数分だけ重ねて各透光板の表裏の各界面で入射光を反射するようにした透光板積層体を設けて構成したことを特徴とする。
 また本発明は、上記照明装置において、前記透光板を重ねる枚数に応じて各透光板を薄くして全体の厚みを一定にした前記透光板積層体を、前記透過光量を調整すべき位置のそれぞれに配置し、前記透光板積層体の間に生じた隙間には、前記透光板を前記透光板積層体と同じ厚みに形成して成る一枚の前記透光板を配置して、前記被照射面を照明する光が透過する範囲に、前記透光板積層体及び前記一枚の透光板を敷き詰めるとともに、前記透光板積層体及び前記一枚の透光板を敷き詰めた周囲には、前記透光板積層体及び前記一枚の透光板の位置ずれを防ぐスペーサ部材を設けたことを特徴とする。
 また本発明は、上記照明装置において、前記透光板積層体及び前記一枚の透光板のそれぞれの表面を覆って押さえる押さえ部材を備えたことを特徴とする。
 また本発明は、被照射面を照明する光源を備えた照明装置において、前記被照射面での照度分布を均一化するように、光を拡散する光拡散ユニットを前記光源と被照射面の間に備え、前記被照射面と前記光源との間に、二層の光拡散部材を離間配置して前記光拡散ユニットを構成したことを特徴とする。
 また本発明は、上記照明装置において、前記光源に対して前記被照射面と反対側に、複数の反射板を並設して反射面を形成し、前記被照射面に、前記光源から直接放射される直接光、及び前記反射面で反射された反射光を照射する構成とし、前記複数の反射板の境界が目立たなくなる距離だけ、前記二層の光拡散部材の間を離したことを特徴とする。
 また本発明は、上記照明装置において、前記二層の光拡散部材のうち前記光源側の光拡散部材に、照度場所むら調整用の照度調整板を設けたことを特徴とする。
 また本発明は、上記照明装置において、装置側面の前記光源と前記被照射面との間に、前記光源から放射された光のうち前記被照射面から外れた箇所に向かう光を前記被照射面に向けて反射する補助反射面を配置したことを特徴とする。
 なお、この明細書には、2009年6月30日に出願された日本国特許出願・特願2009-154604号の全ての内容が含まれるものとする。
 本発明によれば、被照射面での照度分布を均一化するように透過光量を調整する透過光量調整ユニットを、透過すべき光の波長範囲で透過率が一定な透光板を透過光量の調整量に応じた枚数分だけ重ねて各透光板の表裏の各界面で入射光を反射するようにした透光板積層体を設けて構成したため、透光板の枚数を変えるだけで透過光量の調整が可能となる。これにより、透過率が異なる複数種類の透過型光学フィルター板を用意せずとも、透光板を重ねた簡単な構成で被照射面の照度むらを低減できる。
図1は、本発明の第1実施形態に係る擬似太陽光照射装置の構成を模式的に示す縦断面図である。 図2は、擬似太陽光照射装置の右半分を示す平面図である。 図3は、擬似太陽光照射装置の構成を示す横断面図である。 図4は、透過光量調整ユニットの構成を模式的に示す縦断面図である。 図5は、透過光量調整ユニットの構成を模式的に示す平面図である。 図6は、図5に示すI-I’線の断面を模式的に示す図である。 図7は、アクリル樹脂から成る透光板の厚みと透過特性の関係を示す図である。 図8は、アクリル樹脂から成る透光板の枚数と透過特性の関係を示す図である。 図9は、透光板積層体の厚みを一定にしつつ、アクリル樹脂から成る透光板の厚みと枚数を可変したときの透過特性の変化を示す図である。 図10は、被照射面の照度分布の測定結果を示す図である。 図11は、本発明の第2実施形態に係る擬似太陽光照射装置の構成を模式的に示す縦断面図である。 図12は、擬似太陽光照射装置の右半分を示す平面図である。 図13は、擬似太陽光照射装置の構成を示す横断面図である。 図14は光拡散部材の構成を示す図であり、図14(A)は擬似太陽光照射装置を、拡大した光拡散部材とともに模式的に示す縦断面図であり、図14(B)は被照射面側から見た光拡散部材を示す図である。 図15は光拡散部材の位置を変えて被照射面の照度むらを測定した実験を示す説明図であり、図15(A)は光拡散部材の配置位置を示す図であり、図15(B)は光拡散部材の位置及び光拡散部材に使用した拡散板の種類と照度むらの測定結果との関係を示す図であり、図15(C)は光拡散部材に使用した拡散板の種類を示す図である。 図16は照度調整板を配置しない擬似太陽光照射装置による被照射面の照度分布の測定結果を示す図であり、図16(A)は二層の光拡散部材を被照射面側に積層配置した場合の照度分布の測定結果を示す図であり、図16(B)は二層の光拡散部材を離間配置した場合の照度分布の測定結果を示す図である。 図17は、照度調整板を配置した擬似太陽光照射装置による被照射面の照度むらの測定結果を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。以下の実施形態では、本発明に係る照明装置の一例として擬似太陽光照明装置を例示する。
<第1実施形態>
 図1は、第1実施形態における擬似太陽光照射装置1の構成を模式的に示す縦断面図である。なお、図1においてWは幅方向を、Hは高さ方向を示している。擬似太陽光照射装置1は、複数の角材2を格子状に組んだ枠体4を有し、この枠体4は、例えば長さが略2m(メートル)、幅及び高さが略1.2~1.3m程度の寸法に構成されている。枠体4の四方の各側面は、外部光の進入を防止するために遮光板(不図示)で覆われている。
 擬似太陽光照射装置1は、この枠体4の長さ方向において対面する側面間に、擬似太陽光を放射する擬似太陽光照射ボックス6が渡設されている。また擬似太陽光照射装置1は、擬似太陽光照射ボックス6の下面6Aに対向させて反射面8が配置され、上面6Bに対向させて太陽電池パネル等の平坦な被照射面10Aを有する被照射体10が配置されており、被照射面10Aの全域が擬似太陽光照射ボックス6の直射光と反射面8の反射光とで照明される。また、被照射面10Aが枠体4の上面を閉塞することで当該上面からの外部光の進入が防止されている。
 図2は擬似太陽光照射装置1の右半分を示す平面図であり、図3は擬似太陽光照射装置1の構成を示す横断面図である。
 擬似太陽光照射ボックス6には、図2及び図3に示すように、2本の直管型のランプ(光源)22が擬似太陽光照射ボックス6に沿って同軸に配置されて線状光源を構成している。これらのランプ22には、紫外領域~可視領域~赤外領域の広い波長領域に亘り、強い連続したスペクトルを有する、例えばキセノンフラッシュランプ等が用いられている。ランプ22のそれぞれの両端部には端子台40が配設されている。
 この擬似太陽光照射ボックス6は、図1に示すように、長手方向に沿った両側面を構成する長板状の一対のサイドフレーム24と、上面6Bを構成する上面光学フィルター26と、下面6Aを構成する下面光学フィルター27と、これらサイドフレーム24、上面光学フィルター26及び下面光学フィルター27を組み留める金具(図示せず)とを有している。サイドフレーム24は、光遮光性材により形成され、或いは、光の透過を防止する遮光材が付加または塗布されている。
 上面光学フィルター26及び下面光学フィルター27は、それぞれランプ22の放射光から赤外波長域をカットすることで、放射光の発光スペクトルを太陽光に近似させる、いわゆるエアマスフィルターであり、誘電多層膜フィルターを用いて構成されている。また、上面光学フィルター26及び下面光学フィルター27は、図1に示すように、入射光の入射角度を極力垂直に近づけ透過光の波長シフトを抑えるべく、それぞれ2枚の板状のフィルター材28を山形(谷形)に係合させて構成されている。
 反射面8は、図1に示すように、擬似太陽光照射ボックス6の下面6Aからの擬似太陽光を反射し、被照射体10の被照射面10Aを照射する反射板30を傾動自在に保持する複数の反射装置32を有して構成されている。
 被照射体10は、被照射面10Aが擬似太陽光照射ボックス6から所定の距離Lだけ離間するように、枠体4の上に取り付けられた試料支持枠12に載置され、被照射面10Aに対して、擬似太陽光照射ボックス6の上面6Bからの直接光と、反射面8で反射された反射光が照射される。反射光の配光は、被照射面10Aでの直接光の照度むらを補償するように制御されている。
 反射板30は、表面が金属の板材であり、図2及び図3に示すように、擬似太陽光照射ボックス6に沿って略平行に延在している。反射板30と、該反射板30を保持する保持具31とにより反射装置32が構成されている。そして、枠体4の底床4A上に、複数の反射装置32が並設されることで、複数の反射板30が敷き詰められて設けられ、これらの反射板30により反射面8が形成されている。
 保持具31は、反射板30の傾斜角度を調節するための角度調整機構を有し、これにより、反射板30のそれぞれを、互いに独立して光の反射角度を調整することができるようになっている。このとき、図1に示すように、枠体4の幅方向における両側面に近い幾つかの保持具31の高さが順次高くなされており、両側面側の反射板30の反射光が内側の反射板30に遮蔽されるのを防止している。
 また、枠体4の長さ方向において対面する側面側には、図2及び図3に示すように、長さ方向における両端側に向けて光を反射する補助反射面50が設けられている。補助反射面50は、擬似太陽光照射ボックス6に沿って略平行に延在する表面が金属の板材が複数配列されて構成されている。この補助反射面50は、例えば、擬似太陽光照射ボックス6の長さ方向における両端側での直接光の照度低下が顕著な場合に、この補助反射面50の反射角度(傾斜角度)を調整して照度低下を補うことなどに使用可能である。
 図1に示すように、擬似太陽光照射ボックス6と被照射面10Aの間には、該被照射面10Aの全面を覆い該被照射面10Aでの照度分布を均一化するように透過光量を調整する透過光量調整ユニット60が設けられている。
 すなわち、擬似太陽光照射装置1では、反射面8の反射光による直接光の照度むら補償に加え、透過光量調整ユニット60によっても被照射面10Aの照度むらの低減が図られている。
 図4は透過光量調整ユニット60の構成を模式的に示す縦断面図であり、図5は同平面図である。
 透過光量調整ユニット60は、図4に示すように、ベース板62と、透過光量調整用の透光板積層体64と、表面フィルム(押さえ部材)66とを備え、被照射面10Aの照度が高い箇所に向かう光の光量を透光板積層体64が減じることで、被照射面10Aで照度分布を低い照度に合せて均一化する。
 これらベース板62、透光板積層体64、及び、表面フィルム66には、擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しないように、それぞれ擬似太陽光のスペクトル範囲において透過率が一定(フラット)であり、さらに、好ましくは高い透過率を有する材質が用いられている。この材質として、本実施形態では、アクリル樹脂が用いられている。なお、この材質にはガラスを用いてもよい。
 ベース板62は、透光板積層体64を担持するための上面視矩形状の板状部材であり、自重による撓みが生じない程度の剛性が得られる厚みを有して形成されている。係るベース板62は、擬似太陽光照射ボックス6と被照射面10Aとの間を完全に仕切るように配置されている。
 ベース板62の上面には、図5に示すように、被照射面10Aを照明する光が通過する照明光通過範囲Rに、透過光量を減じるべき位置のそれぞれに透光板積層体64が配置され、また照明光通過範囲Rの残余の箇所には、透光板積層体64や、この透光板積層体64を構成する透光板65、ベース板62と同一の素材であるアクリル樹脂から成る1枚の透光板68(以下、「スペーサ透光板68」と言う)が配置されている。これにより、照明光通過範囲Rには透光板積層体64及びスペーサ透光板68が隙間無く敷き詰められることとなる。このスペーサ透光板68は、透光板積層体64と同一寸法に形成されており、スペーサ透光板68と透光板積層体64との入れ替えが容易となっている。
 透光板積層体64は、複数枚の透光板65(図6)を積層して構成されており、図5において符号64に添えて記載した括弧書きは、各透光板積層体64の透光板65の積層枚数を示している。なお、この透光板積層体64の具体的な構成、及び、光量調整の作用については後に詳述する。
 照明光通過範囲Rの周囲には、図5に示すように、照明光通過範囲Rと擬似太陽光照射装置1の側面との隙間を埋めるスペーサ板(スペーサ部材)70が設けられている。すなわち、ベース板62の上面は、透光板積層体64、スペーサ透光板68及びスペーサ板70で隙間無く埋め尽くされることとなり、透光板積層体64をベース板62に接着せずとも位置を固定することができる。これにより、透光板積層体64を交換自在にしつつ、設置時の衝撃や地震の振動が透過光量調整ユニット60に加わっても、透光板積層体64の位置ずれを防止できる。
 なお、スペーサ板70の素材には、透光板積層体64と同一の素材(本実施形態ではアクリル樹脂)を用いることが好ましい。こうすることで、スペーサ板70の光学特性が、照明光通過範囲Rに設けたスペーサ透光板68と同等になるため、被照射面10Aの面積が広がり照明光通過範囲Rが多少周囲に拡張された場合でも、被照射面10Aの全域を照明することができる。
 表面フィルム66は、図4に示すように、ベース板62に載置された透光板積層体64の透光板65の横ずれを防止するために、これら透光板積層体64とともにスペーサ透光板68及びスペーサ板70の表面を覆って押さえる。この表面フィルム66は、アクリル樹脂と同様に擬似太陽光のスペクトルを変調しない素材であるPET(ポリエチレンテレフタラート)を薄いフィルム状に形成したものである。
 次に、擬似太陽光照射装置1への透過光量調整ユニット60の取付構造を説明する。
 図4に示すように、擬似太陽光照射装置1には、擬似太陽光照射ボックス6と平行に延びるズレ落ち防止ブラケット80が、該擬似太陽光照射ボックス6を挟んだ両側の側面にそれぞれ設けられている。また、各ズレ落ち防止ブラケット80には、断面L字状の固定用Lアングル82が固定されており、各固定用Lアングル82に、透過光量調整ユニット60のベース板62の両縁部62Aを載せることで該ベース板62が設置される。
 ベース板62の両縁部62Aの上面には、スペーサ板70と擬似太陽光照射装置1の側面の隙間を埋めてスペーサ板70の横ずれを防止する横ずれ防止用Lアングル84が設けられている。
 透過光量調整ユニット60の取付け時には、先ず、固定用Lアングル82を角材2にネジ止め固定する。この固定用Lアングル82にベース板62を載せた後、上側から横ずれ防止用Lアングル84を置いて、この防止用Lアングル84を固定用Lアングル82にネジ87で、擬似太陽光照射装置1の側面の角材2に固定する。これにより、ベース板62の縁部62Aが固定用Lアングル82及び横ずれ防止用Lアングル84で挟み込まれ、ベース板62のガタつきが防止される。
 次いで、ベース板62の上に、スペーサ板70、透光板積層体64及びスペーサ透光板68を敷き詰める。そして、これらスペーサ板70、透光板積層体64及びスペーサ透光板68を横ずれ防止用Lアングル84とともに表面フィルム66で覆う。最後に、表面フィルム66の縁部を押さえバー86で押さえ、この押さえバー86を横ずれ防止用Lアングル84にボルト89で固定する。以上の作業により、透過光量調整ユニット60の取付けが完了する。
 次いで、透光板積層体64の構成について詳述する。
 図6は、図5に示したI-I’線の断面を模式的に示す図である。
 この図に示すように、透光板積層体64は、それぞれ矩形状の透光面が同一寸法のアクリル樹脂から成る透光板65を複数枚重ねて構成されている。この透光板積層体64に擬似太陽光Fを入射した場合、各透光板65の表裏の各界面で擬似太陽光Fの裏面反射が生じ、この裏面反射の分だけ透光板積層体64の透過光量が減じられる。また、この透光板積層体64の透過率は、透光板65の厚みには依らず、該透光板65を重ねた枚数で決定されており、このような透光板積層体64の透過特性について以下に説明する。
 図7はアクリル樹脂から成る透光板65の厚みtと透過特性の関係を示す図であり、図8は透光板65の枚数と透過特性の関係を示し、また、図9は透光板積層体64の厚みを一定にしつつ透光板65の厚みtと枚数を可変したときの透過特性の変化を示す図である。
 これらの図に示すように、透光板65は、擬似太陽光Fとして用いられる紫外領域(波長400nm)~赤外領域(波長900nm)の広い波長範囲Kに亘り透過率がほぼ一定(フラット)になる透過特性を有し、また、高い透過率を有していることが分かる。したがって、この透光板65、並びに、この透光板65と同一素材から成るスペーサ透光板68、スペーサ板70、ベース板62によれば、擬似太陽光照射ボックス6が発する擬似太陽光Fを、そのスペクトルを変調することなく高効率に透過し、照明効率の低下を防止できる。
 このとき図7に示すように、ベース板62を10mm厚のアクリル樹脂とし、このベース板62に1枚の透光板65を重ねた場合、この透光板65の厚みtを、0.5mm、1mm、3mmと大きくしても、透過率にさほどの変化は見られない。
 一方、図8に示すように、10mm厚のベース板62の上に重ねる透光板65の枚数を1枚ずつ増やすと、透光板65の枚数に比例して、透過率が全波長域で略一様に減少する。
 この理由としては、透光板65の材質であるアクリル樹脂が擬似太陽光Fに対して高い透過率を有するため、擬似太陽光Fが透光板65を透過する際に透光板65への吸収は、ほぼ生じないものの、透光板65の表裏の各界面で裏面反射が発生することから各裏面反射により透過光量が減じられるためと考えられる。この理由の妥当性は、図9に示すように、厚み0.5mmの透光板65を4枚重ねた場合と、厚み1mmの2枚の透光板65に厚み0.5mmの2枚の透光板65を重ねた場合とで、透光板65の厚みが異なるにもかかわらず透過率はほぼ一致し、また、枚数を5枚に変えても同様な結果が得られることからも裏付けられる。
 したがって、図6に示した透過光量調整ユニット60において、透光板65を2枚重ねた透光板積層体64では、それぞれの透光板65の表裏の界面で裏面反射が生じるため、合計4回の裏面反射分だけ擬似太陽光Fの透過光量が減じられ、また、透光板65を4枚重ねた透光板積層体64では、合計8回の裏面反射分だけ擬似太陽光Fの透過光量が減じられることとなる。このように、透光板積層体64では、透光板65の枚数に比例して裏面反射回数が増えるため、透光板65の枚数に比例して擬似太陽光Fの透過光量が減じられる。
 ここで図6に示すように、透光板65同士が上下方向で重なり合う接触部Cで2回の裏面反射が生じるのは次のように考えられる。すなわち、接着剤等のバインダ-を使用せずに透光板65同士を単に重ねた場合、これら透光板65の間には薄い空気層90が形成される。この空気層90が透光板65同士の間に介在することで、擬似太陽光Fが下側の透光板65から空気層90に出るときに裏面反射が生じるとともに、空気層90から上側の透光板65に入射するときにも裏面反射が生じ、これにより接触部Cで2回の裏面反射が生じることとなる。
 このように、接着剤等のバインダーを用いずに透光板65同士を単純に重ね合せ、これら透光板65の間に空気層90のみを形成することで、透光板積層体64の透過率が透光板65の積層枚数に比例して減少させることができ、透光量の調整が容易な透光板積層体64が得られることとなる。
 なお、透過光量調整ユニット60では、透光板積層体64の下にベース板62を、上に表面フィルム66をそれぞれ備え、また、透光板積層体64が無い場所には、スペーサ透光板68が配置されるため、これらベース板62、表面フィルム66及びスペーサ透光板68の各界面でも同様に裏面反射が生じる。したがって、これらの裏面反射を加味して、透光板積層体64の透光板65の枚数が決定される。
 ここで、接着剤等のバインダーを用いずに透光板65同士を単純に重ねて透光板積層体64を構成しているため、地震などの衝撃により透光板65が横ずれを起こしやすい。そこで、図6に示すように、透光板積層体64においては、透光板65を重ねる枚数に応じて1枚当たりの透光板65の厚みを薄くすることで透光板65の枚数にかかわらず全体の厚みDが一定(本実施形態では3mm)となるようにし、また、スペーサ透光板68も同じ厚みDに形成されている。これにより、透光板65の横方向には、必ず、他の透光板65又はスペーサ透光板68が存在するため、透光板65の横ずれが防止される。
 ただし、透光板積層体64においては、透光板65を重ねる枚数が多くなるほど透光板65が薄くなるため、透光板積層体64やスペーサ透光板68の厚みに多少のバラつきがあるだけで透光板65の横ずれが生じやすくなる。そこで、本実施形態では、図6に示すように、これら透光板積層体64及びスペーサ透光板68の表面を上述した表面フィルム66で覆い、該表面フィルム66により、透光板積層体64の表面を押さえることで透光板65の横ずれを確実に防止することとしている。
 この擬似太陽光照射装置1による被照射面10Aの照度むらの測定結果を図10に示す。この図に示す照度分布から照度むらを計算すると約1.59%という値が得られており、本実施形態の擬似太陽光照射装置1によれば、被照射面10Aの照度むらが良好に低減されていることが実証された。なお、この照度むらの計算は、JIS規格(日本工業規格)で規定されたJIS C8912、JIS C8933に基づいて算出したものである。
 以上説明したように、本実施形態によれば、被照射面10Aでの照度分布を均一化するように透過光量を調整する透過光量調整ユニット60を、擬似太陽光Fの波長範囲Kで透過率が一定となる透光板65を透過光量の調整量に応じた枚数分だけ重ねて各透光板65の表裏の各界面で入射光を反射するようにした透光板積層体64を設けて構成した。この構成により、透光板65の枚数を変えるだけで透過光量の調整が可能となり、透過率が異なる複数種類の透過型光学フィルター板を用意せずとも、透光板65を重ねた簡単な構成で被照射面10Aの照度むらを低減できる。
 また、本実施形態によれば、透光板65を重ねる枚数に応じて各透光板65を薄くして厚みを一定にした透光板積層体64を、透過光量を調整すべき位置のそれぞれに配置し、透光板積層体64の間に生じた隙間にはスペーサ透光板68を配置して、照明光通過範囲Rに、透光板積層体64体及びスペーサ透光板68を敷き詰めるとともに、この照明光通過範囲Rの周囲にはスペーサ板70を配置して、透光板積層体64及びスペーサ透光板68の位置ずれを防ぐ構成とした。
 この構成により、ベース板62と透光板積層体64及びスペーサ透光板68を接着剤等のバインダーを用いて固定する必要がないため、これら透光板積層体64及びスペーサ透光板68を交換自在にしつつ、設置時の衝撃や地震の振動が透過光量調整ユニット60に加わっても、透光板積層体64の位置ずれを防止できる。
 さらに本実施形態によれば、透光板積層体64及びスペーサ透光板68のそれぞれの表面を覆って押さえる押さえ部材としての表面フィルム66を備える構成とした。
 この構成により、該表面フィルム66が透光板積層体64の表面を押さえることで透光板65の横ずれが確実に防止される。
 なお、本実施形態では、枠体4の長さ方向において対面する側面側の下部に補助反射面50が設けられているが、図1~図3に二点鎖線で示すように、枠体4の側面のランプ22と被照射面10Aとの間に、擬似太陽光照射ボックス6から枠体4の側面に向けて放射された光を被照射面10Aに向けて反射する補助反射面150A,150Bが設けられてもよい。この補助反射面150A,150Bは、例えば、枠体4の側面側での直接光の照度低下が顕著な場合に、この補助反射面50の反射角度(傾斜角度)を調整して照度低下を補うことなどに使用可能である。補助反射面150A,150Bは、被照射面10Aの四隅の照度を低下させないように、調整された傾斜角度において、互いに隙間を生じさせない長さに形成される。
 このように、擬似太陽光照射装置1側面のランプ22と被照射面10Aとの間に、ランプ22から放射された光のうち被照射面10Aから外れた箇所に向かう光を被照射面10Aに向けて反射する補助反射面150A,150Bを配置する構成とした。この構成により、枠体4の側面に配置した遮光板によって遮光されてしまう光を有効利用して、被照射面10Aの照度低下を補うことができるとともに、補助反射面を枠体4の下部に配置する場合に比べ、擬似太陽光照射装置1を小型化することができる。
<第2実施形態>
 第1実施形態では、被照射面10Aの照度むらを低減するために、ランプ22と被照射面10Aの間に透過光量を調整する透過光量調整ユニット60を設けていたが、第2実施形態では、透過光量調整ユニット60に代えて、光を拡散する光拡散ユニット101を設けている。
 図11は、第2実施形態に係る擬似太陽光照射装置100の構成を模式的に示す縦断面図である。また、図12は擬似太陽光照射装置100の右半分を示す平面図であり、図13は擬似太陽光照射装置100の構成を示す横断面図である。なお、これら図11~図13では、図1~3に示す擬似太陽光照射装置1と同一部分には同一の符号を付して説明を省略する。
 擬似太陽光照射装置100では、複数の角材2を格子状に組んだ枠体4が、例えば長さが略1.7m、幅が略1.2m、高さが略0.8m程度の寸法に構成され、被照射面10Aの有効面積が600mm×1200mmに設定されている。また、擬似太陽光照射ボックス6には、1本の直管型のランプ22が擬似太陽光照射ボックス6に沿って配置されて線状光源を構成している。擬似太陽光照射ボックス6は、該擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しない材質で形成されたランプハウス7に収納されている。
 反射面8は6つの反射装置32を有して構成されており、反射板30の傾斜角度θは、図1に示すように、右から順に33°、21°、-5°、5°、-21°、-33°に設定されている。この構成により、0.1°単位の微調整を行っても被照射面10Aの照度むらに影響を与えることがなく、出荷調整の時間を短縮することができる。
 補助反射面150A,150Bの傾斜角度は0°~5°程度に設定されるのが望ましく、補助反射面150A,150Bは、被照射面10Aの四隅の照度を低下させないように、傾斜角度が0°~5°程度に調整された場合に、互いに隙間を生じさせない長さに形成されている。本実施形態では、長手側の補助反射面150Aの長さが約1400mmに、短手側の補助反射面150Bの長さが約920mmに設定されている。
 このように構成された比較的小型の擬似太陽光照射装置100では、ランプ22から被照射面10Aまでの距離Lが数十cm程度となっており、照度むらを均一化するのが難しく、また、均一化した照度を維持することに労力を必要としていた。
 そこで、本実施形態では、擬似太陽光照射ボックス6と被照射面10Aの間に、該被照射面10Aの全面を覆い該被照射面10Aでの照度分布を均一化するように光を拡散する光拡散ユニット101が設けられている。すなわち、擬似太陽光照射装置100では、反射面8の反射光による直接光の照度むら補償に加え、光拡散ユニット101によっても被照射面10Aの照度むらの低減が図られている。
 図14は光拡散部材110、120の構成を示す図であり、図14(A)は擬似太陽光照射装置100を、拡大した光拡散部材110、120とともに模式的に示す縦断面図であり、図14(B)は被照射面10A側から見た光拡散部材120を示す図である。
 光拡散ユニット101は、図14(A)に示すように、ベース板102と、光拡散効果を有する二層の光拡散部材110,120とを備え、被照射面10Aの照度が高い箇所に向かう光を光拡散部材110,120が拡散することで、被照射面10Aで照度分布を均一化する。
 これらベース板102、及び光拡散部材110,120には、擬似太陽光照射ボックス6が放射する擬似太陽光のスペクトルを変調しないように、それぞれ擬似太陽光のスペクトル範囲において透過率が一定(フラット)であり、さらに、好ましくは高い透過率を有する材質が用いられている。
 ベース板102は、光拡散部材110を担持するための上面視矩形状の板状部材であり、自重による撓みが生じない程度の剛性が得られる厚み(例えば、15mm)を有して形成されている。本実施形態のベース板102には、上記材質として、アクリル樹脂が用いられている。なお、この材質にはガラスを用いてもよい。係るベース板102は、擬似太陽光照射ボックス6と被照射面10Aとの間を完全に仕切るように、枠体4の被照射面10A側に配置されている。
 二層の光拡散部材110,120は、それぞれ複数枚の拡散板を積層して構成されており、被照射面10Aとランプ22との間に、距離Dだけ離して配置されている。光拡散ユニット101の光拡散効果、すなわち、被照射面10Aの照度むらの低減の効果は、この距離Dに依存しており、このような光拡散ユニット101の光拡散特性を以下に説明する。
 図15は光拡散部材110,120の位置を変えて被照射面10Aの照度むらを測定した実験を示す説明図であり、図15(A)は光拡散部材110,120の配置位置を示す図であり、図15(B)は光拡散部材110,120の位置及び光拡散部材110,120に使用した拡散板の種類と照度むらの測定結果との関係を示す図であり、図15(C)は光拡散部材110,120に使用した拡散板の種類を示す図である。
 この実験では、被照射面10Aの光拡散部材110の位置を固定とし、ランプ22側の光拡散部材120の位置、及び、光拡散部材110,120に使用する拡散板の種類を変更し、被照射面10Aの照度むらを測定した。
 光拡散部材110,120の配置位置は、図15(A)に示すように、ランプ22からの距離とする。図15(B)には、光拡散部材110をランプ22から400mの位置に配置するとともに、光拡散部材120をランプ22から200mm、300mm、又は400mmの位置に配置した場合の照度むらの測定結果が示されている。
 図15(B)に示すように、光拡散部材120を300mmの位置に配置した場合(実験E5,E6,E7)の照度むらは、光拡散部材120を400mmの位置に配置した場合(実験E1,E2)の照度むらとあまり差がない。一方、光拡散部材120を200mmの位置に配置した場合(実験E3,E4)には、300mm又は400mmの位置に配置した場合に比べ、照度むらが改善されている。したがって、光拡散部材120は、ランプ22から200mm~300mmの範囲に配置されるのが望ましく、換言すれば、二層の光拡散部材110,120間の距離Dは、100mm~200mmに設定されるのが望ましい(100mm<D≦200mm)。本実施形態では、二層の光拡散部材110,120間の距離Dを200mmに設定している。
 次に、擬似太陽光照射装置100への光拡散ユニット101の取付構造を説明する。
 図11~図13に示すように、擬似太陽光照射装置100には、枠体4の上部及び擬似太陽光照射ボックス6の上方に、擬似太陽光照射ボックス6と平行に延びる板状の光拡散部材受け103が、該擬似太陽光照射ボックス6を挟んだ両側の側面にそれぞれ設けられている。また、枠体4の上部及び擬似太陽光照射ボックス6の上方に、擬似太陽光照射ボックス6と直交して延びる断面L字状の光拡散部材受け104が、該擬似太陽光照射ボックス6の長さ方向において対面する側面にそれぞれ設けられている。
 ベース板102及び光拡散部材110は枠体4の上部に設けられた光拡散部材受け103,104に載置され、図示しない抑え金具によって固定され、光拡散部材120は擬似太陽光照射ボックス6の上方に設けられた光拡散部材受け103,104に載置され、図示しない抑え金具によって固定される。
 次いで、図11~図14を参照し、光拡散部材110、120の構成について詳述する。
 被照射面10A側の光拡散部材110は、ベース板102の上面に配置され、複数枚(本実施形態では、2枚)の光拡散板111,112を積層して構成されている。被照射面10A側の光拡散板111は、被照射面10Aを照明する光が通過する照明光通過範囲全体を覆う大きさに形成された板状部材であり、両面に艶消し加工を施したマット状の拡散面を有している。本実施形態の光拡散板111は、厚みが約3mmであり、ベース板102とほぼ同じ光学的特徴を有する素材(本実施形態では、アクリル樹脂)を用いて形成されている。
 ベース板102側の光拡散板112は、光拡散板111と略同一の大きさに形成された板状部材であり、両面に拡散面を有している。この拡散面の片面はエンボス加工が施されることによりエンボス形状に形成されており、光拡散板112は、エンボス形状を有する拡散面を被照射面10A側に向けて配置されている。すなわち、光拡散板111のマット状の拡散面と光拡散板112のエンボス面とが接触することとなり、光拡散板111の横ずれを防止できる。本実施形態の光拡散板112は、厚みが約205μm、平行光線透過率と拡散光線透過率の比であるヘイズが約50%である素材を用いて形成されている。
 ランプ22側の光拡散部材120は、複数枚(本実施形態では、3枚)の光拡散板121~123と、照度場所むら調整用の拡散板である照度調整板124とを積層して構成されている。光拡散板121は光拡散板111と略同一に構成され、光拡散板121の上面には、光拡散板112と略同一に構成された2枚の光拡散板122,123がエンボス形状を有する拡散面を被照射面10A側に向けて載置されている。2枚の光拡散板122,123間には、光拡散板121~123より小さく形成された照度調整板124が配置されている(図14(B)参照)。照度調整板124は、両面に拡散面を有するとともに、片面にエンボス加工が施された板状部材であり、エンボス面をランプ22側に向けて配置されている。これにより、下側の光拡散板123のエンボス面と照度調整板124のエンボス面とが接触することとなり、照度調整板124の横ずれを防止できる。本実施形態では、照度調整板124は、厚みが約270μm、ヘイズが約90%である素材を用いて形成されており、大きさが80mm×400mm、150mm×600mm、80mm×300mmの3枚の照度調整板124が配置されている。
 このように、比較的光拡散効果の高い照度調整板124を、ランプ22側の光拡散部材120に設けたため、照度調整板124の位置を変えるだけで、被照射面10Aの照度が局部的に高い箇所に向かう光をより効果的に拡散し、照度むらの微調整を容易に行うことができる。これに加え、照度調整板124で拡散した光を被照射面10A側の光拡散部材110でさらに拡散できるので、被照射面10A側の光拡散部材110に照度調整板を配置する場合に比べ、照度むらをより低減できる。また、照度むらに経時変化が生じた場合や、ランプ22を交換して照度むらが変更した場合にも、照度調整板124の位置や大きさを変更することで、照度むらを容易に低減できる。さらに、照度調整板124は、光拡散板122,123の間に配置されているため、照度調整板124を固定する固定具を設ける必要がなくなり、部品点数を削減できる。
 図16は照度調整板124を配置しない擬似太陽光照射装置100による被照射面10Aの照度分布の測定結果を示す図であり、図16(A)は二層の光拡散部材110,120を被照射面10A側に積層配置した場合の照度分布の測定結果を示す図であり、図16(B)は二層の光拡散部材110,120を離間配置した場合の照度分布の測定結果を示す図である。
 二層の光拡散部材110,120を被照射面10A側に積層配置した場合には、図16(A)に示すように、照度が0.8-0.85SUN(1SUN=1000W/m2)の範囲から1.05-1.1SUNの範囲にあり、その差は0.3SUNである。
 これに対し、上記擬似太陽光照射装置100のように二層の光拡散部材110,120を離間配置した場合には、図16(B)に示すように、照度が0.9-0.95SUNの範囲から1.05-1.1SUNの範囲にあり、その差は0.15SUNとなっており、被照射面10Aの照度むらが良好に低減されている。さらに、二層の光拡散部材110,120を積層配置した場合に比べ、複数の反射板30(図12)に起因する照度の境界が目立たなくなっている。
 照度調整板124を配置した擬似太陽光照射装置100による被照射面10Aの照度むらの測定結果を図17に示す。この図において、照度は0.98-0.99SUNの範囲から1.01-1.02SUNの範囲にあるとともに、照度むらは約1.8%となっており、本実施形態の擬似太陽光照射装置100では、被照射面10Aの照度むらを良好に低減できることが実証された。また、複数の反射板30(図12)に起因する照度の境界も、より目立たなくなっている。
 以上説明したように、本実施形態によれば、被照射面10Aでの照度分布を均一化するように、光を拡散する光拡散ユニット101をランプ22と被照射面10Aの間に備え、被照射面10Aとランプ22との間に、二層の光拡散部材110,120を離間配置して光拡散ユニット101を構成した。
 この構成により、被照射面10Aに向かう光を拡散して均一化できるので、被照射面10Aの仮想分割区画に配置するために透過率が異なる複数種類の透過型光学フィルター板を用意せずとも、二層の光拡散部材110,120を離間配置した簡単な構成で被照射面10Aの照度むらを低減できる。また、光を拡散することにより、被照射面10Aの四隅の照度の落ち込みを低減できる。
 また、本実施形態によれば、ランプ22に対して被照射面10Aと反対側に、複数の反射板30を並設して反射面8を形成し、被照射面10Aに、ランプ22から直接放射される直接光、及び反射面8で反射された反射光を照射する構成とし、複数の反射板30の境界が目立たなくなる距離Dだけ、二層の光拡散部材110,120の間を離す構成とした。
 この構成により、複数の反射板30を並設して反射面8を形成した場合であっても、複数の反射板30の境界を目立たなくさせることができる。すなわち、反射面8を複数の反射板30で形成できるので、反射面8を一枚の反射板を湾曲させて形成する場合に比べ、簡単な構成で反射面8を形成できるとともに、反射板30の反射角度(傾斜角度)を調整することにより、被照射面10Aの照度低下を容易に補うことができる。
 また、本実施形態によれば、二層の光拡散部材110,120のうちランプ22側の光拡散部材120に、照度場所むら調整用の照度調整板124を設ける構成とした。
 この構成により、照度が局部的に高い箇所に照度調整板124を配置することで、照度むらの微調整を容易に行うことができる。また、ランプ22側の光拡散部材120に照度調整板124を配置することにより、照度調整板124で拡散した光を被照射面10A側の光拡散部材110で拡散できるので、被照射面10A側の光拡散部材110に照度調整板を配置する場合に比べ、照度むらをより低減できる。
 また、本実施形態によれば、擬似太陽光照射装置100側面のランプ22と被照射面10Aとの間に、ランプ22から放射された光のうち被照射面10Aから外れた箇所に向かう光を被照射面10Aに向けて反射する補助反射面150A,150Bを配置する構成とした。
 この構成により、ランプ22側の光拡散部材120で拡散された光を反射できるので、ランプ22と反射面8との間に補助反射面を配置する場合に比べ、被照射面10Aの照度低下を補償すべき所望の場所に光を向かわせつつ、光をより拡散させて均一化できる。また、枠体4の側面に配置した遮光板によって遮光されてしまう光を有効利用して、被照射面10Aの照度低下を補うことができるとともに、補助反射面を枠体4の下部に配置する場合に比べ、擬似太陽光照射装置100を小型化できる。
 なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。
 上述した実施形態では、本発明に係る照明装置として、擬似太陽光照射装置を例示したが、これに限らない。すなわち、被照射面の照度むらを低減すべき照明装置であれば、任意の照明装置に、本発明の透過光量調整ユニット又は光拡散ユニットを設けることができる。このような照明装置としては、例えば紫外線硬化装置が挙げられる。紫外線硬化装置は、UVインキ、UV塗料、UV接着剤などの紫外線硬化素材が塗布された面に均一に紫外線を照射して、紫外線硬化素材を硬化させるものであり、印刷や上面コーティング、半導体や電子部品、光学部品の接着、液晶パネルの張り合わせなど様々な表面処理加工システムに応用されている。この紫外線硬化装置に本発明の透過光量調整ユニット又は光拡散ユニットを設けることで、より一層むらを抑えた表面処理加工が可能な紫外線硬化装置が実現される。
 1,100 擬似太陽光照射装置(照明装置)
 6 擬似太陽光照射ボックス
 8 反射面
 10 被照射体
 10A 被照射面
 22 ランプ(光源)
 30 反射板
 50,150A,150B 補助反射面
 60 透過光量調整ユニット
 62 ベース板
 64 透光板積層体
 65 透光板
 66 表面フィルム(押さえ部材)
 68 スペーサ透光板(1枚の透光板)
 70 スペーサ板(スペーサ部材)
 101 光拡散ユニット
 110 光拡散部材
 120 光拡散部材
 124 照度調整板
 D 距離
 F 擬似太陽光
 K 波長範囲
 R 照明光通過範囲

Claims (7)

  1.  被照射面を照明する光源を備えた照明装置において、
     前記被照射面での照度分布を均一化するように透過光量を調整する透過光量調整ユニットを前記光源と被照射面の間に備え、
     前記透過光量調整ユニットを、透過すべき光の波長範囲で透過率が一定な透光板を前記透過光量の調整量に応じた枚数分だけ重ねて各透光板の表裏の各界面で入射光を反射するようにした透光板積層体を設けて構成したことを特徴とする照明装置。
  2.  前記透光板を重ねる枚数に応じて各透光板を薄くして全体の厚みを一定にした前記透光板積層体を、前記透過光量を調整すべき位置のそれぞれに配置し、
     前記透光板積層体の間に生じた隙間には、前記透光板を前記透光板積層体と同じ厚みに形成して成る一枚の前記透光板を配置して、前記被照射面を照明する光が透過する範囲に、前記透光板積層体及び前記一枚の透光板を敷き詰めるとともに、
     前記透光板積層体及び前記一枚の透光板を敷き詰めた周囲には、前記透光板積層体及び前記一枚の透光板の位置ずれを防ぐスペーサ部材を設けたことを特徴とする請求項1に記載の照明装置。
  3.  前記透光板積層体及び前記一枚の透光板のそれぞれの表面を覆って押さえる押さえ部材を備えたことを特徴とする請求項2に記載の照明装置。
  4.  被照射面を照明する光源を備えた照明装置において、
     前記被照射面での照度分布を均一化するように、光を拡散する光拡散ユニットを前記光源と被照射面の間に備え、
     前記被照射面と前記光源との間に、二層の光拡散部材を離間配置して前記光拡散ユニットを構成したことを特徴とする照明装置。
  5.  前記光源に対して前記被照射面と反対側に、複数の反射板を並設して反射面を形成し、前記被照射面に、前記光源から直接放射される直接光、及び前記反射面で反射された反射光を照射する構成とし、
     前記複数の反射板の境界が目立たなくなる距離だけ、前記二層の光拡散部材の間を離したことを特徴とする請求項4に記載の照明装置。
  6.  前記二層の光拡散部材のうち前記光源側の光拡散部材に、照度場所むら調整用の照度調整板を設けたことを特徴とする請求項4又は5に記載の照明装置。
  7.  装置側面の前記光源と前記被照射面との間に、前記光源から放射された光のうち前記被照射面から外れた箇所に向かう光を前記被照射面に向けて反射する補助反射面を配置したことを特徴とする請求項1乃至6のいずれかに記載の照明装置。
PCT/JP2010/003408 2009-06-30 2010-05-20 照明装置 WO2011001592A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/322,821 US8690394B2 (en) 2009-06-30 2010-05-20 Illuminating device for reducing unevenness in illuminance on an irradiation target face
CN201080029003.8A CN102803840B (zh) 2009-06-30 2010-05-20 照明装置
JP2011520752A JP5569524B2 (ja) 2009-06-30 2010-05-20 照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-154604 2009-06-30
JP2009154604 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001592A1 true WO2011001592A1 (ja) 2011-01-06

Family

ID=43410685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003408 WO2011001592A1 (ja) 2009-06-30 2010-05-20 照明装置

Country Status (5)

Country Link
US (1) US8690394B2 (ja)
JP (2) JP5569524B2 (ja)
KR (1) KR20120104082A (ja)
CN (1) CN102803840B (ja)
WO (1) WO2011001592A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012988A (ja) * 2015-06-30 2017-01-19 岩崎電気株式会社 光照射装置、及び光硬化システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816159B2 (ja) * 2012-11-13 2015-11-18 株式会社エス・ケー・ジー 表示装置及び表示看板
CN104201989B (zh) * 2014-09-17 2016-08-17 中国电子科技集团公司第四十一研究所 一种大面积太阳模拟器匀光装置及制造方法
JP6292406B2 (ja) * 2014-12-26 2018-03-14 東亞合成株式会社 樹脂シートの製造方法
JP6861381B2 (ja) 2017-01-18 2021-04-21 パナソニックIpマネジメント株式会社 光環境演出装置
CN110441935B (zh) * 2019-08-01 2021-07-06 Tcl华星光电技术有限公司 用于紫外配向的照射机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356512U (ja) * 1986-09-30 1988-04-15
JPH07161212A (ja) * 1993-12-10 1995-06-23 Tec Corp 照明器具
JP2007250489A (ja) * 2006-03-20 2007-09-27 Matsushita Electric Works Ltd 液晶表示装置用バックライト装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796450A (en) * 1994-12-16 1998-08-18 Canon Kabushiki Kaisha Illumination device and liquid crystal display apparatus including same
CA2257957A1 (en) * 1997-04-07 1998-10-15 Koninklijke Philips Electronics N.V. Luminaire
JP2000075289A (ja) * 1998-08-26 2000-03-14 Yazaki Corp 液晶表示装置
US6992828B2 (en) * 2001-07-06 2006-01-31 Exfo Electro-Optical Engineering Inc. Optical attentuator system
EP2420873A3 (en) * 2001-12-14 2013-01-16 QUALCOMM MEMS Technologies, Inc. Uniform illumination system
CN1942788A (zh) * 2004-02-26 2007-04-04 他喜龙株式会社 光扩散片和使用该光扩散片的背光单元
US7997771B2 (en) * 2004-06-01 2011-08-16 3M Innovative Properties Company LED array systems
US7267467B2 (en) * 2004-06-02 2007-09-11 Pixon Technologies Corp. Linear light source for enhancing uniformity of beaming light within the beaming light's effective focal range
US20060087866A1 (en) * 2004-10-22 2006-04-27 Ng Kee Y LED backlight
JP5236858B2 (ja) 2005-02-01 2013-07-17 日清紡ホールディングス株式会社 太陽電池の出力特性の測定方法。
JP4524255B2 (ja) * 2006-02-07 2010-08-11 富士フイルム株式会社 面状照明装置
JP2010506371A (ja) * 2006-10-10 2010-02-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 薄型イルミネーションデバイス、ディスプレイデバイス及び照明デバイス
US8220941B2 (en) * 2007-03-13 2012-07-17 The Boeing Company Compact high intensity solar simulator
US8040461B2 (en) * 2009-10-13 2011-10-18 Entire Technology Co., Ltd. Compound diffusion plate structure, backlight module, and liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356512U (ja) * 1986-09-30 1988-04-15
JPH07161212A (ja) * 1993-12-10 1995-06-23 Tec Corp 照明器具
JP2007250489A (ja) * 2006-03-20 2007-09-27 Matsushita Electric Works Ltd 液晶表示装置用バックライト装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017012988A (ja) * 2015-06-30 2017-01-19 岩崎電気株式会社 光照射装置、及び光硬化システム

Also Published As

Publication number Publication date
JPWO2011001592A1 (ja) 2012-12-10
US8690394B2 (en) 2014-04-08
CN102803840A (zh) 2012-11-28
CN102803840B (zh) 2014-07-02
JP5569524B2 (ja) 2014-08-13
JP2014112566A (ja) 2014-06-19
US20120069578A1 (en) 2012-03-22
JP5928510B2 (ja) 2016-06-01
KR20120104082A (ko) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5928510B2 (ja) 擬似太陽光照射装置
JP5621328B2 (ja) 擬似太陽光照射装置
US20120275132A1 (en) Pseudo-Sunlight Irradiating Apparatus
WO2007049584A1 (ja) 反射型スクリーンおよび前方投影システム
KR20160045213A (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
KR20030097143A (ko) 액정표시장치의 백라이트 유닛
JP6990279B2 (ja) 光源装置、照明装置、及び表示装置
WO2014082325A1 (zh) 一种背光模组及其显示装置
US20120257119A1 (en) Lighting device, display device and television receiver
JP6035998B2 (ja) 擬似太陽光照射装置
CN106773282A (zh) 反射板、背光模组及液晶显示器
JP3460149B2 (ja) 擬似太陽光照射装置
JP5208039B2 (ja) 表示装置および光源装置
JP2015184270A (ja) 擬似太陽光照射装置
CN112958416A (zh) 一种紫外固化设备
KR20050004205A (ko) 면 발광 장치
JPS61219980A (ja) 透過型表示パネルのバツクライト
EP1167875B1 (en) Method and device for modifying the irradiance distribution of a radiation source
KR101210412B1 (ko) 일체형 도광판 및 그 제조 방법
KR100977478B1 (ko) 경화시스템이 장착된 롤
JP2015190905A (ja) 擬似太陽光照射装置
KR102654815B1 (ko) 고휘도 양면 광고패널
JP5251714B2 (ja) 擬似太陽光照射装置
KR100997956B1 (ko) 일체형 도광판 및 그 제조 방법
JP6270579B2 (ja) 反射型液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029003.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13322821

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117031457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793770

Country of ref document: EP

Kind code of ref document: A1