WO2010150829A1 - 電力供給装置 - Google Patents

電力供給装置 Download PDF

Info

Publication number
WO2010150829A1
WO2010150829A1 PCT/JP2010/060684 JP2010060684W WO2010150829A1 WO 2010150829 A1 WO2010150829 A1 WO 2010150829A1 JP 2010060684 W JP2010060684 W JP 2010060684W WO 2010150829 A1 WO2010150829 A1 WO 2010150829A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
output
value
current
supply device
Prior art date
Application number
PCT/JP2010/060684
Other languages
English (en)
French (fr)
Inventor
小新 博昭
卓也 香川
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/380,662 priority Critical patent/US8922060B2/en
Priority to CN201080029771.3A priority patent/CN102804545B/zh
Priority to SG2011096450A priority patent/SG177383A1/en
Priority to JP2011519925A priority patent/JP5369184B2/ja
Priority to KR1020117031650A priority patent/KR101245652B1/ko
Priority to EP10792147.0A priority patent/EP2448086A4/en
Publication of WO2010150829A1 publication Critical patent/WO2010150829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device in which a plurality of power supply devices are operated in parallel to supply DC power to a load device.
  • a power supply device in which all power supply devices perform constant voltage control.
  • the output voltages of all the power supply devices are set to have the same constant voltage.
  • the power supply apparatus has a problem that the load is concentrated on the power supply device having the maximum output voltage, that is, the specific power supply device, and the advantage that a plurality of power supply devices are operated in parallel is reduced.
  • a power supply apparatus including two power supply devices in which the output voltage monotonously decreases as the output current increases (see, for example, JP-A-10-248253).
  • the inclination angles of the output current-output voltage characteristics of the two power supply devices are different. That is, when the output current changes by the same magnitude, the amount of change in the output voltage of one power supply device is different from the amount of change in the output voltage of the other power supply device.
  • each power supply device depending on the total operating current (load current) of all load devices, each power supply device settles at the balance point of output current-output voltage characteristics and load current, An arbitrary output current can be output from each power supply device at an arbitrary output voltage.
  • each power supply device uses the built-in DC / DC converter to step up and down the input voltage (power supply voltage) to obtain the output voltage.
  • a secondary battery B may be used as a power source connected to the power supply device as described above.
  • the loss due to the internal resistance r increases as the current flowing through the internal resistance r (output current) increases due to the presence of the internal resistance r connected in series to the electromotive force E. Therefore, as shown in FIG. 11B, the efficiency of the secondary battery B (ratio of the output power of the secondary battery B to the sum of the output power of the secondary battery B and the loss due to the internal resistance r) ⁇ 1 is 2
  • the secondary battery B has a characteristic of decreasing as the output current increases.
  • the efficiency (ratio of the output power of the power supply device to the input power of the power supply device) ⁇ 2 of the power supply device A has a characteristic as shown in FIG.
  • the input power of the power supply device A is the sum of the output power of the power supply device A and the internal loss of the power supply device A.
  • the efficiency when the secondary battery B and the power supply device A are combined (the power supply device A with respect to the sum of the output power of the secondary battery B and the loss due to the internal resistance r).
  • the output power ratio ( ⁇ 3) has a characteristic that becomes maximum at a certain output current (output current of the power supply device A). Therefore, the power supply device A to which the secondary battery B is connected can be efficiently operated when used with the output current when the efficiency ⁇ 3 is maximized.
  • the secondary battery B since the magnitude of the output current of each power supply device varies according to the magnitude of the load current, the secondary battery B is connected to the power supply device A as shown in FIG. Is connected as a power source, the combination of the secondary battery B and the power supply device A is not necessarily operated efficiently.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a power supply device that can be operated with maximum efficiency for a combination of a secondary battery and a power supply device.
  • a power supply device is connected to a DC supply line to which a load device is connected, and includes a main power supply device and a sub power supply unit that supply DC power to the load device through the DC supply line, and the DC supply line.
  • a load current detection unit that measures a value of a flowing current and outputs the measurement value, and when the measurement value is obtained from the load current detection unit, it is determined whether or not the obtained measurement value is larger than an optimum current value. Determination means and control means.
  • the main power supply device is configured to generate DC power to be supplied to the load device using the power obtained from the secondary battery.
  • the optimum current value is a value of the ratio of the power output from the main power supply device to the DC supply line to the sum of the power output from the secondary battery to the main power supply device and the loss due to the internal resistance of the secondary battery. Is the value of the current that the main power supply device outputs to the DC supply line when becomes maximum.
  • the control means is configured so that the current value output from the main power supply device to the DC supply line is equal to the optimum current value.
  • An instruction value is output to the main power supply device.
  • the main power supply device includes adjustment means for adjusting a value of a current output to the DC supply line based on the instruction value received from the control means.
  • the sub power unit includes commercial power equipment.
  • the commercial power supply device converts the AC power obtained from the commercial power source into DC power, and performs constant voltage control for applying a constant voltage to the DC supply line regardless of the magnitude of the current output to the DC supply line. Configured to do.
  • the main power device has a slope control that monotonically decreases the output voltage applied to the DC supply line as the output current output to the DC supply line increases, and monotonically increases the output voltage as the output current decreases. Configured to do.
  • the determination unit determines that the measured value is greater than the optimum current value
  • the control unit determines that the main power device is equal to a voltage that the commercial power device supplies to the DC supply line.
  • the instruction value is output to the main power supply device so that the value of the output current of the power supply device becomes the optimum current value.
  • the adjustment unit receives the instruction value from the control unit, the adjustment unit sets the value of the output current to a value corresponding to the instruction value without changing the output voltage by changing the condition of the inclination control. Configured to do.
  • the sub power supply unit includes an inclined output power supply device.
  • the inclined output power supply device monotonously decreases the second output voltage applied to the DC supply line as the second output current output to the DC supply line increases, and the second output current decreases as the second output current decreases.
  • the second inclination control for monotonously increasing the output voltage is performed.
  • the control means determines that the value of the second output current of the inclined output power supply device is the difference between the measured value and the optimum current value.
  • the second instruction value is output to the inclined output power supply device so as to be equal.
  • the inclined output power supply device includes second adjusting means for adjusting the value of the second output current based on the second instruction value. When the second adjustment means receives the second instruction value from the control means, the second output current value is changed without changing the second output voltage by changing the condition of the second inclination control. Is set to a value corresponding to the second indication value.
  • the commercial power supply device is configured such that when the slope output power supply device cannot set the value of the second output current to a value corresponding to the second instruction value, the output current of the main power supply device.
  • the second output current of the inclined output power supply device are configured to output a current having a value equal to the difference between the measured value and the DC supply line.
  • the sub power unit is configured to output the current corresponding to the indicated value received from the control means to the DC power supply line by the adjusting means of the main power equipment while the main power equipment. Is configured to output to the DC supply line a current having a value equal to the difference between the value of the current output to the DC supply line and the optimum current value.
  • FIG. 3 is a block diagram illustrating a main part of the first embodiment. It is a block diagram same as the above. It is a circuit diagram of the 1st power supply device which concerns on the same as the above. It is a circuit diagram of the 2nd power supply device which concerns on the same as the above.
  • (a) shows the output current-output voltage characteristic of the second power supply device
  • (b) shows the output current-output voltage characteristic of the first power supply device
  • (c) Is a figure explaining the output current of a 2nd power supply device. It is a figure explaining operation
  • (A) is a block diagram showing the connection state of the secondary battery and the power supply device
  • (b) is a diagram showing the efficiency of the secondary battery
  • (c) is a diagram showing the efficiency of the power supply device
  • (d) is a secondary battery. It is a figure which shows the efficiency when combining with a power supply device.
  • the house H is provided with a DC power supply unit 101 that outputs DC power and a DC device (load device) 102 as a load driven by the DC power.
  • DC power is supplied to the DC device 102 through a DC supply line Wdc connected to the output end of the DC device 102.
  • a current flowing through the DC supply line Wdc is monitored between the DC power supply unit 101 and the DC device 102.
  • a DC breaker 114 is provided for limiting or blocking the current.
  • the DC supply line Wdc is used as both a DC power supply path and a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices.
  • This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.
  • the DC supply line Wdc is connected to the home server 116 via the DC power supply unit 101.
  • the home server 116 is a main device that constructs a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem or the like constructed by the DC device 102 in the home network.
  • home network a home communication network
  • an illumination system comprising an information equipment system K101 comprising an information-system DC device 102 such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment 102 such as a lighting fixture.
  • Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.
  • the above-described DC breaker 114 is provided in association with a subsystem.
  • four DCs are associated with the information equipment system K101, the lighting system K102 and the entrance system K103, the house alarm system K104, and the lighting system K105.
  • a breaker 114 is provided.
  • a connection box 121 for dividing the system of the DC supply line Wdc is provided for each subsystem.
  • a connection box 121 is provided between the illumination system K102 and the entrance system K103.
  • an information equipment system K101 composed of a DC equipment 102 connected to a DC outlet 131 arranged in advance in the house H (constructed when the house H is constructed) in the form of a wall outlet or a floor outlet.
  • the lighting systems K102 and K105 include a lighting system K102 composed of a lighting device (DC device 102) arranged in advance in the house H and a lighting device (DC device 102) connected to a hook ceiling 132 arranged in advance on the ceiling.
  • An illumination system K105 is provided.
  • the contractor attaches the lighting fixture to the hook ceiling 132, or the householder himself attaches the lighting fixture.
  • an instruction to control the lighting apparatus that is the DC device 102 constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc. That is, the switch 141 has a communication function together with the DC device 102.
  • a control instruction may be given by a communication signal from another DC device 102 in the home network or the home server 116 regardless of the operation of the switch 141.
  • the instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.
  • DC outlet Since any DC device 102 can be connected to the DC outlet 131 and the hooking ceiling 132 described above and DC power is output to the connected DC device 102, the DC outlet 131 and the hooking ceiling 132 are distinguished below. When it is not necessary, it is called “DC outlet”.
  • DC outlets have a plug-in connection port into which a contact (not shown) provided directly on the DC device 102 or a contact (not shown) provided via a connection line is inserted into the body.
  • the contact receiver that directly contacts the contact inserted into the connection port is held by the container. That is, the direct current outlet supplies power in a contact manner.
  • a communication signal can be transmitted through the DC supply line Wdc.
  • a communication function is provided not only in the DC device 102 but also in the DC outlet.
  • the home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet.
  • the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.
  • the service provided by the center server 200 includes a service that enables monitoring and control of equipment (including mainly the DC equipment 102 but also other equipment having a communication function) connected to the home network through the wide area network NT. is there.
  • This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.
  • the in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information about equipment in the home network ( Here, it is assumed that an IP address is used).
  • the home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200.
  • the center server 200 mediates between home devices and communication terminals on the wide area network NT.
  • monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.
  • the home device when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.
  • an event that should be notified to the communication terminal such as a fire detection
  • the home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play).
  • the home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117.
  • the display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117.
  • the display device 117 may be provided separately from the home server 116.
  • the home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.
  • Each device maintains the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116.
  • By associating the linked operations for each device for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.
  • the DC power supply unit 101 basically generates DC power by power conversion of the commercial power supply AC supplied from outside the house.
  • the commercial power source AC is input to the AC / DC converter 112 including the switching power source through the main breaker 111 attached to the distribution board 110 as an internal unit.
  • the DC power output from the AC / DC converter 112 is connected to each DC breaker 114 through the cooperative control unit 113.
  • the DC power supply unit 101 is provided with a secondary battery 162 in preparation for a period in which power is not supplied from the commercial power source AC (for example, a power failure period of the commercial power source AC).
  • a secondary battery 162 for example, a lithium ion secondary battery or the like is used. It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power.
  • the solar cell 161, the secondary battery 162, and the fuel cell 163 are distributed power sources with respect to the main power source including the AC / DC converter 112 that generates DC power from the commercial power source AC.
  • the secondary battery 162 includes a circuit unit that controls charging.
  • the secondary battery 162 is charged in a timely manner by the commercial power source AC, the solar cell 161, and the fuel cell 163, and the secondary battery 162 is discharged in a timely manner as needed not only during a period in which no power is supplied from the commercial power source AC. .
  • the cooperation control unit 113 performs charge / discharge of the secondary battery 162 and cooperation between the main power source and the distributed power source. That is, the cooperative control unit 113 functions as a DC power control unit that controls the distribution of power from the main power supply and the distributed power supply constituting the DC power supply unit 101 to the DC devices 102.
  • a DC / DC converter is provided in the cooperative control unit 113 to convert the DC voltage obtained from the main power source and the distributed power source into a necessary voltage. Is desirable. Normally, one type of voltage is supplied to one subsystem (or DC device 102 connected to one DC breaker 114), but three or more wires are used for one subsystem. A plurality of types of voltages may be supplied. It is also possible to adopt a configuration in which the DC supply line Wdc is of a two-wire type and the voltage applied between the lines is changed over time.
  • the DC / DC converter may be provided in a plurality of dispersed manners like the DC breaker.
  • the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, the solar cell 161, the secondary battery 162, and the fuel cell 163 described above are provided with a communication function, and include a main power source, a distributed power source, and a DC device 102. It is possible to perform cooperative operations that deal with the load status.
  • the communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device 102.
  • the AC / DC converter 112 is arranged in the distribution board 110 in order to convert the AC power output from the main breaker 111 into DC power by the AC / DC converter 112.
  • a branch breaker (not shown) provided in the distribution board 110 branches the AC supply line into a plurality of systems, and an AC / DC converter is provided on the AC supply line of each system to convert it into DC power for each system. You may employ
  • the DC power supply unit 101 can be provided for each floor or room of the house H, the DC power supply unit 101 can be managed for each system, and the DC device 102 that uses DC power and Since the distance of the DC supply line Wdc between the two is reduced, the power loss due to the voltage drop in the DC supply line Wdc can be reduced.
  • the main breaker 111 and the branch breaker are housed in the distribution board 110, and the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, and the home server 116 are housed in a separate board from the distribution board 110. Also good.
  • the power supply apparatus 3 monitors a plurality of power supply devices 4, 4... (4 in the illustrated example) that supply DC power to the DC device (load device) 102 in parallel operation, and the entire DC power supply system.
  • the monitoring device 7 is provided.
  • the plurality of power supply devices 4, 4... are composed of one first power supply device 4 a and a plurality of (three in the illustrated example) second power supply devices 4 b to 4 d.
  • the second power supply device 4c is used as the main power supply device.
  • the remaining first power supply devices 4a, 4b, and 4d constitute sub power supply units.
  • the first power supply device 4a uses a DC voltage that is always a constant voltage regardless of the magnitude of the output current Iout as the output voltage Vout (see FIG. 5B).
  • the power supply voltage from the commercial power supply AC is input to the first power supply device 4a as the input voltage Vin. That is, the first power supply device 4 a is a commercial power supply device (commercial power supply device) that receives a power supply voltage from the commercial power supply AC and supplies DC power to the DC device 102.
  • the first power supply device 4a is connected to the commercial power supply AC.
  • the first power supply device 4a converts the electric power obtained from the commercial power supply AC into DC power, so that the DC power supply line Wdc is constant regardless of the magnitude of the current (output current Ioa) output to the DC supply line Wdc. It is configured to perform constant voltage control that provides a voltage (output voltage Voa).
  • the first power supply device 5 is connected to the commercial power supply AC via the AC / DC converter 112. That is, the AC voltage of the commercial power supply AC is converted into a predetermined DC voltage by the AC / DC converter 112 and is supplied to the first power supply device 4a. Therefore, the input voltage Vin is a DC voltage output from the AC / DC converter 112. However, the input voltage Vin may be an AC voltage output from the commercial power supply AC.
  • the first power supply device 4 a is provided with an AC / DC converter that converts the input voltage Vin, which is an AC voltage, into a DC voltage and outputs the DC voltage to the DC / DC converter 52.
  • the first power supply device 4 a includes a voltage detection unit 50 that detects the output voltage Vout (Voa), an on-duty width according to the reference voltage V2 and the detection voltage V1 of the voltage detection unit 50.
  • the voltage detection means 50 includes two resistors 500 and 501 connected in series, and a voltage follower 502 to which a divided voltage by the resistors 500 and 501 is input, and the output voltage Vout ( Voa) is detected.
  • the voltage detection means 50 is configured to detect the output voltage Voa and to provide the switching control means 51 with a detection voltage V1 corresponding to the detected output voltage Voa.
  • the switching control means 51 includes a switching IC 510 to which the detection voltage (output voltage of the voltage follower 502) V1 of the voltage detection means 50 and the reference voltage V2 are input.
  • the switching IC 510 outputs the pulse width modulation signal S1 in which the on-duty width is set so that the differential voltage (V2 ⁇ V1) between the reference voltage V2 and the detection voltage V1 is constant, to the switching element 520. That is, the switching IC 510 sets the on-duty width of the pulse width modulation signal S1 so that the output voltage Vout (detection voltage V1) is always constant.
  • the DC / DC converter 52 includes, in order from the input side, a smoothing capacitor 521, an inductor 522, a switching element 520, a diode 523, and a smoothing capacitor 524, and the input voltage Vin is changed by the on / off operation of the switching element 520. Boost the pressure.
  • the switching element 520 is, for example, a field effect transistor, and the pulse width modulation signal S1 from the switching IC 510 is input to the gate via the resistor 525.
  • the switching element 520 When the switching element 520 is turned on, conduction occurs between the source and the drain, and electromagnetic energy is stored in the inductor 522. Thereafter, when the switching element 520 is turned off, the electromagnetic energy stored in the inductor 522 is released and the voltage is increased.
  • the boosted voltage is smoothed by the smoothing capacitor 524.
  • the DC voltage smoothed by the smoothing capacitor 524 is output to the DC device 102 (see FIG. 1) as the output voltage Vout.
  • the first power supply device 4a deviates from the output current-output voltage characteristic in which the output voltage Vout is a constant DC voltage regardless of the magnitude of the output current Iout, as shown in FIG. 5B. Feedback control can be performed so that there is no.
  • the second power supply devices 4b to 4d output a DC voltage that decreases monotonically as the output current (current output to the DC supply line Wdc) Iout increases.
  • Vout + ⁇ Iout is a constant value at V0.
  • may be a different value for each of the second power supply devices 4b to 4d, or may be the same value.
  • each of the second power supply devices 4b to 4d monotonously decreases the output voltage Vout applied to the DC supply line Wdc as the output current Iout output to the DC supply line Wdc increases, and outputs as the output current Iout decreases. It is configured to perform tilt control for monotonously increasing the voltage Vout.
  • a solar cell 161 is connected to the second power supply device 4b, a secondary battery 162 is connected to the second power supply device 4c, and a fuel cell 163 is connected to the second power supply device 4d. It is connected.
  • the second power supply devices 4b to 4d receive the input voltage Vin from the batteries 161 to 163, respectively. That is, the second power supply device 4b is a solar cell power supply device that receives the power supply voltage from the solar cell 161 and supplies DC power to the DC device 102, and the second power supply device 4c is connected to the secondary battery 162.
  • the second power supply device 4 d is supplied with the power supply voltage from the fuel cell 163 and supplies the DC power to the DC device 102.
  • the 2nd power supply device 4b of this embodiment is an inclination output power supply device.
  • the second power supply devices 4b to 4d include a current detection means 60 for detecting the output current Iout (Iob, Ioc, Iod) and a voltage for detecting the output voltage Vout (Vob, Voc, Vod).
  • the second power source is controlled by a DC / DC converter 63 having a switching element 630 that turns on and off according to the on-duty width of the pulse width modulation signal S2 from the control means 62, and a control unit 73 (see FIG. 1) described later.
  • the current detection means 60 is divided by resistors 600 and 605, a current IC 601 that detects the voltage across the resistor 600, resistors 602 and 603 that divide the output voltage V3 of the current IC 601, and resistors 602 and 603. And a voltage follower 604 to which the divided voltage is input, and detects an output current Iout (Iob, Ioc, Iod) of the second power supply devices 4b to 4d.
  • the voltage detection means 61 includes two resistors 610 and 611 connected in series and a voltage follower 612 to which a divided voltage by the resistors 610 and 611 is input, and the output voltage of the second power supply devices 4b to 4d. Vout (Vob, Voc, Vod) is detected.
  • the voltage detection means 61 is configured to detect the output voltage Vout and to provide the switching control means 62 with a detection voltage V5 corresponding to the detected output voltage Vout.
  • the switching control means 62 includes a switching IC 620 to which the detection voltage (output voltage of the voltage follower 612) V5 of the voltage detection means 61 and a voltage V8 described later are input.
  • the DC / DC converter 63 includes a smoothing capacitor 631, an inductor 632, a switching element 630, a diode 633, and a smoothing capacitor 634 in order from the input side, and the input voltage Vin is changed by the on / off operation of the switching element 630. Boost the pressure.
  • the adjusting unit 64 includes a CPU 640 that obtains an instruction value of the output current Iout from a control unit 73 (see FIG. 1) described later, two resistors 641 and 642 that divide the output voltage V6 of the CPU 640, and resistors 641 and 642. And a non-inverting amplifier circuit 643 to which the divided voltage is input.
  • the magnitude of the output current Iout is changed based on the instruction value from the control unit 73. Control is performed.
  • the load current detection unit 70 for detecting the magnitude of the load current I L supplied to the DC device 102, the remaining amount detection for detecting the remaining amount of the battery 161-163 and parts 71, the detected load current I L and the determination unit 72 to or greater than the optimal current value Im later in the load current detector 70, the output current of each of the second power device 4b ⁇ 4d And a control unit (control means) 73 for controlling the magnitude of Iout.
  • the load current detection unit 70 detects a necessary current from each DC device 102 at a preset time interval while the power supply device 3 is operating, that is, when power is supplied to the DC device 102 by the power supply device 3. Thus, the load current I L which is the total use current on the DC device 102 side is detected. In this way, the load current detector 70 is configured to measure the value (current value) I0 of the current (load current I L ) flowing through the DC supply line Wdc and output it as a measured value.
  • the remaining amount detection unit 71 outputs the output voltage and output current of each of the batteries 161 to 163 at a preset time interval while the power supply device 3 is operating (when the power supply device 3 supplies power to the DC device 102). And the remaining amount of each of the batteries 161 to 163 is detected using the detection result.
  • the preset time interval is a time interval that satisfies the load following (for example, several milliseconds).
  • the determination unit 72 is configured to determine whether or not the obtained measurement value is larger than the optimum current value Im when the measurement value is obtained from the load current detection unit 70.
  • the determination unit 72 together with the load current I L is determined to or greater than the optimal current value Im as described above, the remaining amount of which is detected by the remaining amount detecting unit 71 secondary battery 162
  • the determination unit 72 is so secondary that the second power supply device 4c can output the output current Ioc having the optimum current value Im. It is determined that the remaining amount of the battery 162 is sufficient.
  • the determination unit 72 does not have a sufficient remaining amount of the secondary battery 162 so that the second power supply device 4c can output the output current Ioc having the optimum current value Im. Judge that there is no.
  • the control unit 73 determines how much power should be supplied from each power supply device 4a to 4d to each DC device 102 as a whole system, and adjusts the output of each power supply device 4a to 4d accordingly.
  • the control unit 73 transmits instruction values for instructing the magnitudes of the output currents Iob, Ioc and Iod of the power supply devices 4b to 4d to the adjusting means 64 of the power supply devices 4b to 4d.
  • the instruction value may be a current value or a voltage value obtained by converting the magnitudes of the output currents Iob, Ioc, and Iod.
  • the instruction value is not limited to a value for instructing the magnitudes of the output currents Iob, Ioc, and Iod of the power supply devices 4b to 4d, but the magnitudes of the output power of the power supply devices 4b to 4d. It may be a value for indicating.
  • the CPU 640 shown in FIG. 4 outputs an output voltage V6 having a magnitude corresponding to the instruction value from the control unit 73 (see FIG. 1).
  • the output voltage V7 of the non-inverting amplifier circuit 643 increases as the output voltage V6 of the CPU 640 increases, and decreases as the output voltage V6 of the CPU 640 decreases.
  • a differential amplifier circuit 606 is inserted between the voltage follower 604 and the resistor 605.
  • the voltage V8 output to the switching IC 620 is also reduced. Note that the magnitude of ⁇ is set so that the voltage V8 can be calculated as the detection voltage V5 in the switching IC 620 described later.
  • the switching IC 620 generates the pulse width modulation signal S2 whose on-duty width is set (changed) so that the differential voltage (V8 ⁇ V5), that is, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) between the voltage V8 and the detection voltage V5 is constant. Output to the switching element 630. Specifically, when the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) becomes larger than before, the switching IC 620 reduces the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) (voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) until now.
  • the on-duty width of the pulse width modulation signal S2 is set wide.
  • the switching IC 620 increases the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) (voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) is the same as before.
  • the on-duty width of the pulse width modulation signal S2 is set to be small.
  • the switching element 630 is, for example, a field effect transistor, and the pulse width modulation signal S2 from the switching IC 620 is input to the gate via the resistor 635.
  • the switching element 630 When the switching element 630 is turned on, conduction occurs between the source and the drain, and electromagnetic energy is stored in the inductor 632. Thereafter, when the switching element 630 is turned off, the electromagnetic energy stored in the inductor 632 is released to increase the voltage.
  • the boosted voltage is smoothed by the smoothing capacitor 634.
  • the DC voltage smoothed by the smoothing capacitor 634 is output to the DC device 102 (see FIG. 1) as the output voltage Vout.
  • the output current Iout (detection voltage V4) becomes larger than before
  • the output voltage Vout (detection voltage V5) can be made smaller than before by setting the on-duty width to be the same size and reducing the boost.
  • the output current Iout (detection voltage V4) becomes smaller than before
  • the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) becomes larger than before, but the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) has the same magnitude as before.
  • the output voltage Vout (detection voltage V5) can be made larger than before by setting the on-duty width to be large and increasing the boost.
  • the second power supply devices 4b to 4d having such a configuration can maintain the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) so that the output voltage Iout increases as shown in FIG. 5A.
  • Feedback control can be performed so that Vout does not deviate from the output current-output voltage characteristic (characteristic in which Vout + ⁇ Iout is a constant value) that decreases monotonously (on a straight line).
  • the output voltages Vob, Voc and Vod are the first power supply devices.
  • the output currents Iob, Ioc, Iod when the output voltages Vob, Voc, Vod are adjusted to the output voltage Voa of the first power supply device 4a are output.
  • the output voltages Vob, Voc, and Vod vary according to the output current-output voltage characteristics of FIG. 6 and temporarily increase ((A) of FIG. 6).
  • the output voltages Vob, Voc, and Vod are increased, the output currents Iob, Ioc, and Iod are increased, and as a result, the detection voltage V4 is also increased ((B) in FIG. 6).
  • the second power supply devices 4b to 4d have the output currents Iob, Ioc, Iod at the intersections with the constant voltage characteristics (output current-output voltage characteristics of the first power supply device 4a) as the indicated values (current value I1). As a result, the output current-output voltage characteristics of the second power supply devices 4b to 4d are shifted so that the output currents Iob, Ioc, Iod according to the indicated values are output.
  • the control unit 73 receives an instruction value for decreasing the output currents Iob, Ioc, Iod under the condition that the load current I L is reduced and the output voltages Vob, Voc, Vod (detection voltage V5) are constant.
  • the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) becomes small, the on-duty width of the pulse width modulation signal S2 becomes narrow, and the output voltages Vob, Voc, and Vod are temporarily smaller than the output voltage Voa (FIG. 7). (D)).
  • This operation corresponds to subtracting a predetermined voltage from the output voltages Vob, Voc, and Vod of the second power supply devices 4b to 4d in the present invention.
  • the output voltages Vob, Voc, Vod are reduced, the output currents Iob, Ioc, Iod (detection voltage V4) are also reduced ((E) in FIG. 7).
  • the detection voltage V4 decreases, the voltage ( ⁇ V7 ⁇ (V5 + ⁇ V4)) increases, so the on-duty width of the pulse width modulation signal S2 increases.
  • the output voltages Vob, Voc, and Vod increase ((F) in FIG. 7).
  • the output voltages Vob, Voc, and Vod become the output voltage Voa.
  • the second power supply devices 4b to 4d have the output currents Iob, Ioc, and Iod at the intersections with the constant voltage characteristics (output current-output voltage characteristics of the first power supply device 4a) indicated values (current values I0).
  • the output current-output voltage characteristics of the second power supply devices 4b to 4d are shifted so that the output currents Iob, Ioc, Iod according to the indicated values are output.
  • the adjustment unit 64 when the adjustment unit 64 receives the instruction value from the control unit (control unit) 73, the instruction that has received the value of the output current Iout without changing the output voltage Vout by changing the slope control condition. It is configured to set to a value corresponding to the value.
  • the adjusting unit 64 shifts the output current-output voltage characteristic by changing the tilt control condition (that is, the line indicating the output current-output voltage characteristic is translated).
  • each of the second power supply devices 4b to 4d has the output voltages Vob, Voc, Vod matched with the output voltage Voa of the first power supply device 4a, and the output voltages Vob, Voc, Vod are the first.
  • the output currents Iob, Ioc, Iod at the same magnitude as the output voltage Voa of one power supply device 4 a can be output to the DC device 102.
  • the power supply device 3 can set the second power supply devices 4b to 4d to the output currents Iob, Ioc, Iod corresponding to the load current, and the load current even I L is varied, by the output voltage Vob of the second power device 4b ⁇ 4d, Voc, is Vod are incorporated according to the output voltage Voa of the first power device 4a, the output voltage (Vob, Voc, Vod) Can be kept at a constant voltage. As a result, it is possible to stably supply power to the DC device 102.
  • FIG. 5 shows the output current-output voltage characteristics of the second power supply devices 4b to 4d
  • (b) shows the output current-output voltage characteristics of the first power supply device 4a.
  • I11 is instructed as an instruction value from the control unit 73
  • the output current-output voltage characteristics of the second power supply devices 4b to 4d are indicated by the arrows in FIG.
  • the output current Iout of the second power supply devices 4b to 4d can be increased from I12 to I11.
  • the power supply voltage from the commercial power supply AC that supplies stable power is input to the first power supply device 4a, thereby reducing the influence of load fluctuation due to the on / off of the DC device 102.
  • the power supply to the DC device 102 can be performed more stably.
  • the power supply to the DC device 102 affects solar radiation in the case of the solar battery 161, and the secondary battery 162. In this case, the power storage status is affected.
  • the relationship in which the output voltage Vout decreases monotonously as the output current Iout increases can be easily realized with almost no increase in the number of parts from the configuration of the first power supply device 4a. can do.
  • the monitoring device 7 shown in FIG. 1 will be described in detail.
  • the efficiency when the secondary battery 162 and the second power supply device (BAT converter) 4c are combined for the sum of the output power of the secondary battery 162 and the loss due to the internal resistance r of the secondary battery 162).
  • the magnitude of the output current Ioc of the second power supply device 4c when the value ( ⁇ 3) of the output power ratio of the second power supply device 4c is maximized is the optimum current value Im.
  • controller 73 When determining unit 72 determines that measured value (value of load current I L ) I0 is greater than optimal current value Im, controller 73 outputs main power supply device (second power supply device) 4c to DC supply line Wdc. The instruction value is output to the second power supply device 4 so that the value of the current Ioc is equal to the optimum current value Im.
  • the control unit 73 determines that the output voltage Voc of the main power supply device (second power supply device) 4c is the commercial power supply device (first power supply device). ) When the value of 4a is equal to the voltage (output voltage) Voa applied to the DC supply line Wdc, the value of the output current Ioc of the second power supply device 4c becomes the optimum current value Im so as to indicate the value to the second power supply device 4c. Is configured to output.
  • the adjustment unit 64 of the second power supply device 4c receives the instruction value from the control unit 73, it receives the value of the output current Ioc without changing the output voltage Voc by changing the slope control condition. Set to the value corresponding to the indicated value.
  • the control unit 73 of the monitoring device 7 when the load current detector load current I L is detected at 70 is greater than or equal to the optimal current value Im, the output voltage Voc of the second power device 4c is the first power device With respect to the adjusting means 64 (see FIG. 4) of the second power supply device 4c so that the output current Ioc of the second power supply device 4c when adjusted to the output voltage Voa of 4a becomes the optimum current value Im.
  • the output current-output voltage characteristic of the second power supply device 4c is shifted.
  • the control unit 73 determines that the value of the output current (second output current) Iob of the inclined output power supply device (second power supply device) 4b is The instruction value (second instruction value) is output to the second power supply device 4b so as to be equal to the difference between the measured value I0 and the optimum current value Im.
  • the adjustment unit (second adjustment unit) 64 of the second power supply device 4b receives the second instruction value from the control unit 73, it changes the condition of the inclination control (second inclination control) to output the second instruction value.
  • the value of the output current (second output current) Iob is set to a value corresponding to the second instruction value without changing the voltage (second output voltage) Vob.
  • control unit 73 so as to compensate for the differential current and the output current Ioc of the load current I L and the second power device 4c in the output current Iob of the second power device (PV converter) 4b, a second power supply
  • the output current-output voltage characteristic of the second power supply device 4b is shifted with respect to the adjusting means 64 of the device 4b.
  • the commercial power supply device (first power supply device 4a) cannot set the value of the second output current Vob to a value corresponding to the second instruction value by the inclined output power supply device (second power supply device 4b).
  • a value equal to the difference between the total value of the output current Voc of the main power supply device (second power supply device 4c) and the second output current Vob of the gradient output power supply device (second power supply device 4b) and the measured value I0.
  • Current (output current) Ioa is output to the DC supply line Wdc.
  • the first power supply device 4a supplements the differential current.
  • the 2nd power supply device 4b and the 2nd power supply device 4d can be utilized as an inclination output power supply device. Even in this case, when neither the second power supply device (PV converter) 4b nor the second power supply device (FC converter) 4d can compensate for the differential current, the first power supply device 4a compensate.
  • the efficiency of the secondary battery 162 and the second power supply device (BAT converter) 4c in the power supply device 3 configured as described above will be described with reference to FIG.
  • the secondary battery B in FIG. 11A is replaced with a secondary battery 162
  • the power supply device A in FIG. 11A is replaced with a second power supply device 4c.
  • the secondary battery 162 has an efficiency (output power of the secondary battery 162) as shown in FIG. 11 (b) due to the presence of the internal resistance r (see FIG. 11 (a)) connected in series with the electromotive force E.
  • the ratio of the output power of the secondary battery 162 to the sum of the loss due to the internal resistance r) ⁇ 1 becomes a characteristic that becomes smaller as the output current of the secondary battery 162 becomes larger.
  • the internal resistance r varies depending on the remaining amount and the usage time, and the efficiency ⁇ 1 also varies according to the variation of the internal resistance r. Therefore, the characteristics of the efficiency ⁇ 1 corresponding to the remaining amount and the usage time are stored in the monitoring device 7 in advance before supplying power.
  • the second power supply device 4c has a second efficiency relative to the input power (Vin ⁇ Iin) of the second power supply device 4c due to the presence of internal loss such as steady loss in the DC / DC converter 63 (see FIG. 4).
  • (Ratio of output power (Voc ⁇ Ioc)) ⁇ 2 of the power supply device 4c of FIG. 11 has characteristics as shown in FIG. Note that the input power of the second power supply device 4c is the sum of the output power of the second power supply device 4c and the internal loss of the second power supply device 4c.
  • the characteristic of efficiency ⁇ 2 is stored in the monitoring device 7 in advance.
  • the efficiency when the secondary battery 162 and the second power supply device 4c are combined (the value corresponding to the sum of the output power of the secondary battery 162 and the loss due to the internal resistance r).
  • the ratio ( ⁇ ) of the output power of the second power supply device 4c) ⁇ 3 becomes the maximum characteristic at a certain output current Ioc as shown in FIG.
  • the magnitude of the output current Ioc when the efficiency ⁇ 3 is maximized is taken as the optimum current value Im.
  • the control unit 73 obtains the characteristic of the efficiency ⁇ 3 shown in FIG. 11D using the characteristic of the efficiency ⁇ 1 shown in FIG. 11B and the characteristic of the efficiency ⁇ 2 shown in FIG.
  • the optimum current value Im is obtained from the characteristic of ⁇ 3.
  • Control unit 73 compares the output voltage and output current of secondary battery 162 detected by remaining amount detection unit 71 with these initial values, and can respond to fluctuations in efficiency ⁇ 1 of secondary battery 162. .
  • the efficiency ⁇ 1 varies, the efficiency ⁇ 3 also varies, and the optimum current value Im also varies.
  • the control part 73 can control the magnitude
  • the remaining amount detecting unit 71 detects the remaining amount of the secondary battery 162 (S1 of FIG. 8), the load current detector 70 detects the current value I0 of the load current I L (S2). Subsequently, whether the current value I0 of the load current I L is equal to or more than the optimal current value Im determination unit 72 determines (S3). When the determination unit 72 determines that the current value I0 of the load current I L is equal to or greater than the optimum current value Im, the second power supply device (BAT converter) 4c is so secondary that the output current Ioc of the optimum current value Im can be output. The determination unit 72 determines whether or not the remaining amount of the battery 162 is sufficient (S4).
  • the control unit 73 transmits an instruction value such that the output current Ioc becomes the optimum current value Im to the second power supply device 4c.
  • the second power supply device 4c receives the instruction value from the control unit 73, the second power supply device 4c shifts the output current-output voltage characteristic of the second power supply device 4c by using the adjusting unit 64 (see FIG. 4), and FIG. ), The output current Ioc is supplied to the DC device 102 as the optimum current value Im (S5).
  • the load current I L is equal to or output current Ioc is greater than the second power device 4c (S6). If the current value I0 of the load current I L is greater than the output current Ioc, control unit 73, the output current Iob current value I0 and the optimal second power device (PV converter) 4b in the feed capacity range of the solar cell 161 An instruction value that is a difference value (I0-Im) with respect to the current value Im is transmitted to the second power supply device 4b.
  • the adjustment means 64 is used to shift the output current-output voltage characteristic of the second power supply device 4b, and the output current Iob is changed to the difference value (I0 ⁇ Im) is supplied to the DC device 102 (S7).
  • step S7 to step S9 the second power supply device (PV converter) 4b is prioritized over the other power supply device (first power supply device 4a) as control for compensating for the difference value (I0-Im), thereby saving energy. Can be achieved.
  • the controller 73 determines the output current Iob of the second power supply device (PV converter) 4b in the current sunshine environment when the difference value (I0-Im) is known.
  • the maximum current value I1 is still insufficient, and further, it is instantaneously determined by calculation that the first power supply device 4a should output current, and from this, the output current Iob of the second power supply device 4b becomes the maximum current value I1.
  • the instruction value may be output to the second power supply device 4b.
  • step S3 the load current when the current value I0 of I L is the optimum current value Im is smaller than, or in step S4, as the secondary battery second power device 4c can output the output current Ioc of the optimal current value Im
  • the second power supply device 4b does not output the output current Ioc from the second power supply device 4c, and the second power supply device 4b is within the supply capacity range of the solar cell 161.
  • the output current-output voltage characteristic of the second power supply device 4b shown in FIG. 9B is shifted, and the output current Iob is supplied to the DC device 102 as the maximum current value I2 (S7). Then, step S8 is performed.
  • step S3 even when the current value I0 of the load current I L is smaller than the optimal current value Im, a single the output current Ioc of the second power device 4c and the optimum current value Im, can be remaining output amount to the load current I L and (Im-I0) to the charging current of the other second power device 4c.
  • BAT converter second power device
  • step S1 to step S8 If the operation from step S1 to step S8 is performed periodically (a preset time interval), the power supply device 3 changes the supply capacity of each battery 161 to 163 or the load current. Even in this case, it is possible to set the output current corresponding to the fluctuation.
  • the preset time interval is a time interval that satisfies the load following (for example, several milliseconds). Note that the power supply device 3 may perform the operations from step S1 to step S8 other than a preset time interval.
  • the power supply device (power supply device) 3 of the present embodiment described above includes a secondary battery power supply device (second power supply device) 2c that supplies DC power to the load device 102 using the secondary battery 162 as an input power supply. , One or a plurality of other power supply devices 4 that operate in parallel with the second power supply device 4 c and supply DC power to the load device 102, and a load that detects the magnitude of the load current I L supplied to the load device 102 A current detection unit (load current detection unit) 70 and a control unit (control unit) 73 that controls the magnitude of the output current Voc of the second power supply device 4 c are provided.
  • the second power supply device 4 c includes the control unit 73.
  • And adjusting means 64 that adjusts the magnitude of the output current Voc of the second power supply device 4c by controlling the second power supply device 4c.
  • Efficiency ⁇ 3 representing the values the optimum current value Im of the magnitude of the output current Ioc of the second power device 4c when the maximum
  • the control unit 73 the load current detected by the detector 70 the load current I L If is greater than or equal to the optimal current value Im
  • the output current Ioc of the second power device 4c controls the adjusting means 64 so as to optimize the current value Im, the other power supply device 4, the load current I L and the second An output current corresponding to a difference current from the output current Ioc of the power supply device 4c is output.
  • the power supply device 3 of the present embodiment is connected to the DC supply line Wdc to which the load device 102 is connected, and the main power supply device (second power supply) that supplies DC power to the load device 102 through the DC supply line Wdc.
  • Equipment 4c and a sub power supply unit, and a load current detection unit (load current detection means) 70 that measures a value (current value) I0 of a current (load current) I L flowing through the DC supply line Wdc and outputs it as a measurement value;
  • a determination unit (determination unit) 72 for determining whether or not the obtained measurement value I0 is larger than the optimum current value Im a control unit (control unit) 73, .
  • the second power supply device 4 c is configured to generate DC power supplied to the load device 102 using the power obtained from the secondary battery 162.
  • the optimum current value Im is output from the second power supply device 4c to the DC supply line Wdc with respect to the sum of the power output from the secondary battery 162 to the second power supply device 4c and the loss due to the internal resistance r of the secondary battery 162. This is the value of the current Ioc that the second power supply device 4c outputs to the DC supply line Wdc when the value of the power ratio becomes maximum.
  • Second power supply device 4 c includes adjustment means 64 that adjusts the value of current Ioc output to DC supply line Wdc based on the instruction value received from control unit 73.
  • the secondary power supply unit outputs the second power supply while the adjustment means 64 of the second power supply device 4c outputs the current Ioc having a value corresponding to the instruction value received from the control unit 73 to the DC supply line Wdc.
  • the device 4c is configured to output, to the DC supply line Wdc, a current having a value equal to the difference value between the value of the current Ioc output to the DC supply line Wdc and the optimum current value Im.
  • the load current I L is increased in efficiency (the sum of the output power of the secondary battery 162 and the loss due to the internal resistance r of the secondary battery 162) of the second power supply device (BAT converter) 4c.
  • the output current Ioc of the second power supply device 4c is set to the optimum current value Im when the ratio of the output power) ⁇ 3 is equal to or greater than the magnitude of the output current Ioc (optimum current value Im)
  • the combination of the secondary battery 162 and the second power supply device 4c can be operated with maximum efficiency.
  • a DC voltage that is a constant voltage regardless of the magnitude of the output current Ioa when the power supply voltage from the commercial power supply AC is input is set as the output voltage Voa.
  • the second power supply device 4c includes a commercial power supply device (first power supply device) 4a.
  • the second power supply device 4c uses the DC voltage that decreases monotonously as the output current Ioc increases as the output voltage Voc.
  • output current at the time of power supply to 102 shows the relationship between the output current Ioc and the output voltage Voc - to shift the output voltage characteristic, the control unit 73, detected by the load current detection unit 70 a load current I L optimal current value Im
  • the output current Ioc of the second power supply device 4c when the output voltage Voc of the second power supply device 4c is adjusted to the output voltage Voa of the first power supply device 4a is the optimum current.
  • the sub power supply unit includes a commercial power supply device (first power supply device) 4a.
  • the commercial power supply device 4a converts the electric power obtained from the commercial power supply AC into DC power, so that a constant voltage is applied to the DC supply line Wdc regardless of the magnitude of the current (output current) Ioa output to the DC supply line Wdc. (Output voltage) It is comprised so that the constant voltage control which gives Voa may be performed.
  • the second power supply device 4c monotonously decreases the output voltage Voc applied to the DC supply line Wdc as the output current Ioc output to the DC supply line Wdc increases, and monotonously decreases the output voltage Voc as the output current Ioc decreases.
  • the control unit 73 determines that the output voltage Voc of the second power supply device 4c is the voltage (output) that the first power supply device 4a applies to the DC supply line Wdc.
  • the instruction value is output to the second power supply device 4c so that the value of the output current Ioc of the second power supply device 4c becomes the optimum current value Im.
  • the adjustment unit 64 of the second power supply device 4c When the adjustment unit 64 of the second power supply device 4c receives the instruction value from the control unit 73, the adjustment unit 64 changes the slope control condition so that the value of the output current Ioc corresponds to the instruction value without changing the output voltage Voc. Configured to be set to a value.
  • the secondary battery 162 connected to the second power supply device 4c is replaced with one having different characteristics, or the characteristics of the secondary battery 162 change during use. Even when the value Im (see FIG. 11D) changes, the output voltage Voa of the first power supply device 4a is changed to the first output voltage Voa by shifting the output current-output voltage characteristic of the second power supply device 4c.
  • the output current Ioc of the second power supply device 4c when the output voltage Voc of the second power supply device 4c is combined can be set to the optimum current value Im.
  • a gradient output power supply device (second output) in which a DC voltage that monotonously decreases as the power supply voltage is input and the output current Iob increases is used as the output voltage Vob.
  • Power supply device 4b, and the second power supply device 4b shifts the output current-output voltage characteristic indicating the relationship between the output current Iob and the output voltage Vob when power is supplied to the load device 102.
  • the output current-output voltage characteristic of the second power supply device 4b is shifted.
  • the sub power supply unit includes an inclined output power supply device (second power supply device) 4b.
  • the second power supply device 4b monotonously decreases the output voltage (second output voltage) Vob applied to the DC supply line Wdc as the output current (second output current) Iob output to the DC supply line Wdc increases.
  • the second output voltage Vob is monotonously increased as the two output current Iob decreases, and the inclination control (second inclination control) is performed.
  • the determination unit (determination unit) 72 determines that the measurement value I0 is greater than the optimum current value Im
  • the control unit (control unit) 73 determines that the value of the second output current Iob of the second power supply device 4b is the measurement value I0.
  • the optimum current value Im are configured to output an instruction value (second instruction value) to the second power supply device 4b.
  • the second power supply device 4b includes an adjustment unit (second adjustment unit) 64 that adjusts the value of the second output current Iob based on the received second instruction value.
  • the second adjustment unit 64 receives the second instruction value from the control unit 73, the second adjustment unit 64 changes the second inclination control condition to change the value of the second output current Iob without changing the second output voltage Vob. 2 is configured to be set to a value corresponding to the indicated value.
  • power device (first power device) for a commercial power supply 4a the load current I L and the inclination output power of the differential current and the output current Ioc of the second power device 4c
  • the output current Ioa corresponding to the shortage current when supplemented by the output current Iob of the device (second power supply device) 4b is output.
  • the commercial power supply device (first power supply device) 4a has the slope output power supply device (second power supply device) 4b and the output current (second output current) Iob value.
  • the total value of the output current Ioc of the main power supply device (second power supply device) 4c and the second output current Iob of the second power supply device 4b A current (output current) Ioa having a value equal to the difference between the measured value I0 and the measured value I0 is output to the DC supply line Wdc.
  • the load device 4a when the load current I L is greater than the optimal current value Im, by supplementing the difference current in the second power device 4b of the solar cell 161 is connected, the load device It is possible to perform power supply corresponding to fluctuations. At this time, the shortage current is compensated for by the first power supply device 4a before the first or second power supply device 4b by supplementing the shortage current by the first power supply device 4a to which the commercial power supply AC is finally connected. Compared to the case, the power consumption of the commercial power supply AC can be reduced.
  • the difference current may be used instead of the second power supply device 4b.
  • the second power supply device 4d corresponds to the inclined output power supply device
  • the adjustment means 64 (see FIG. 4) of the second power supply device 4d corresponds to the second adjustment means.
  • the differential current may be supplemented by using the second power supply device 4b and the second power supply device 4d together.
  • the second power supply device 4b and the second power supply device 4d correspond to the inclined output power supply device described above, and the adjusting means 64 for the second power supply device 4b and the second power supply device 4d (see FIG. 4). Corresponds to the second adjusting means.
  • Embodiment 2 Power supply device 3 according to the second embodiment, when the load current I L optimal current value Im (see FIG. 11 (d)) less than the second power device (PV converter) 4b outputs the output current Iob Instead, the second power supply device (BAT converter) 4c outputs the output current Ioc, which is different from the power supply device 3 according to the first embodiment.
  • symbol is attached
  • the load current I whether L is the optimal current value Im or more, residues of more rechargeable batteries 162 second power device 4c can output the output current Ioc of the optimal current value Im Whether or not the amount is sufficient is determined in the same manner as the determination unit 72 of the first embodiment, and when the current value I0 of the load current I L is smaller than the optimum current value Im, the second power supply device 4c determines that the load current I the remaining amount of the higher secondary battery 162 can output the output current Ioc of the same size as the L of the current value I0 is determined whether or not sufficient.
  • the remaining amount of the secondary battery 162 is equal to or a second threshold value or more set in advance, the determination unit 72, the same size as the current value I0 of the second power device 4c the load current I L It is determined that the remaining amount of the secondary battery 162 is sufficient to output the output current Ioc.
  • the second power device 4c can output the output current Ioc having the same magnitude as the current value I0 of the load current I L It is determined that the remaining amount of the secondary battery 162 is not enough.
  • the remaining amount detecting unit 71 detects the remaining amount of the secondary battery 162 (S1 of FIG. 10)
  • the load current detector 70 detects the magnitude of the load current I L (S2 )
  • the operation in the case where the current value I0 of the load current I L is equal to or more than the optimal current value Im determination unit 72 has determined is the same as Embodiment 1 (S4 ⁇ S9).
  • step S3 the load current when the current value I0 of I L is the optimum current value Im is smaller than, the second power device (BAT converter) 4c have the same magnitude of the output current Ioc and the current value I0 of the load current I L
  • the determination unit 72 determines whether or not the remaining amount of the secondary battery 162 is sufficient to output (S10).
  • the control unit 73 sets an instruction value such that the output current Ioc becomes the current value I0 of the load current I L to the second power supply device 4c. Send to.
  • the adjustment means 64 (see FIG. 4) is used to shift the output current-output voltage characteristic of the second power supply device 4c, and the output current Ioc is changed.
  • the current value I0 is supplied to the DC device 102 (S11).
  • step S10 if the second power device 4c load current I L remaining enough secondary battery 162 can output the output current Ioc having the same magnitude as the current value I0 of not enough, the control unit 73 Then, an instruction value such that the output current Ioc becomes the maximum current value within the supplyable range of the secondary battery 162 is transmitted to the second power supply device 4c.
  • the adjustment means 64 is used to shift the output current-output voltage characteristic of the second power supply device 4c so that the output current Ioc can be supplied.
  • the maximum current value is supplied to the DC device 102 (S12). Then, step S6 is performed.
  • the commercial power supply AC is connected when the output current Iob of the second power supply device (PV converter) 4b is still insufficient (when I0> I2 + Im).
  • the power supply device 3 according to the first embodiment is that the second power supply device (FC converter) 4d to which the fuel cell 163 is connected supplies the shortage current to the DC device 102 instead of the first power supply device 4a. Is different.
  • symbol is attached
  • the measurement value (load current the current value of I L) I0 is the total value of the maximum value I2 of the output current Iob of optimal current value Im and the second power device 4b (I2 + Im) than It is configured to determine whether it is large.
  • the control unit 73 of the present embodiment When the determination unit 72 determines that the measured value I0 is greater than the total value (I2 + Im), the control unit 73 of the present embodiment outputs a current (output current) Iod that the second power supply device 4d outputs to the DC supply line Wdc. Is configured to output an instruction value to the second power supply device 4d so that the value of is equal to the difference between the measured value I0 and the total value (I2 + Im).
  • the control unit 73 of the present embodiment has the same output current Iod as the shortage current.
  • An instruction value such that becomes is transmitted to the second power supply device 4d.
  • the second power supply device 4d receives the instruction value from the control unit 73, it shifts the output current-output voltage characteristic of the second power supply device 4d using the adjusting means 64 (see FIG. 4), and the shortage current.
  • the output current Iod having the same magnitude is supplied to the DC device 102.
  • the power consumption of the AC system can be further reduced by supplementing the insufficient current with the second power supply device 4d to which the fuel cell 163 is connected.
  • the first power supply device 4a When the output current Iob of the second power supply device (PV converter) 4b is still insufficient even when the maximum current value is set (when I0> I2 + Im), in the first embodiment, the first power supply device 4a has a shortage current. Is supplied to the DC device 102, and in the third embodiment, the second power supply device (FC converter) 4d supplies the insufficient current to the DC device 102. As a modification of the above embodiment, the first power supply device 4a The shortage current may be supplied to the DC device 102 by using the second power supply device 4d together. In this case, the power consumption of the AC system can be reduced as compared with the case where only the first power supply device 4 a supplies the shortage current to the DC device 102.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 電力供給装置は、直流供給線路に直流電力を供給する主電源機器および副電源ユニットと、制御手段とを備える。上記主電源機器は、二次電池より得た電力を利用して直流電力を生成するように構成される。上記制御手段は、計測値(直流供給線路に流れる電流の値)が上記最適電流値より大きい場合、上記主電源機器が上記直流供給線路に出力する電流の値が上記最適電流値と等しくなるように、上記主電源機器に指示値を出力するように構成される。上記最適電流値は、上記二次電池が上記主電源機器に出力する電力と上記二次電池の内部抵抗による損失との和に対する上記主電源機器が上記直流供給線路に出力する電力の比の値が最大となるときに上記主電源機器が上記直流供給線路に出力する電流の値である。上記主電源機器は、上記制御手段から受け取った上記指示値に基づいて上記直流供給線路に出力する電流の値を調整するように構成される。

Description

電力供給装置
 本発明は、複数台の電源機器が並列運転して直流電力を負荷機器に供給する電力供給装置に関するものである。
 従来から、複数台の電源機器が並列運転して直流電力を負荷機器に供給する電力供給装置として、さまざまな方式のものが知られている。
 従来の電力供給装置の一例として、すべての電源機器が定電圧制御を行う電力供給装置がある。この電力供給装置では、すべての電源機器の出力電圧が同じ大きさの定電圧になるように設定されている。
 ところが、この電力供給装置では、実際にはすべての電源機器の出力電圧を精度よく同じ大きさに設定することが難しく、電源機器間に出力電圧の差が生じてしまう。このため、上記電力供給装置では、最大出力電圧の電源機器のみが供給能力分だけ直流電力を負荷機器に供給し、上記電源機器からの電力供給のみでは不足するときに、不足した電力分を他の電源機器が供給するようになる。その結果、上記電力供給装置には、最大出力電圧の電源機器つまり特定の電源機器に負担が集中し、複数台の電源機器が並列運転する利点が低減するという問題があった。
 上記問題を解決するものとして、出力電流が大きくなると出力電圧が単調に小さくなる電源機器を2台備える電力供給装置が知られている(例えば特開平10-248253号公報参照)。この電力供給装置では、2台の電源機器の出力電流-出力電圧特性の傾斜角度が異なっている。つまり、出力電流が同じ大きさだけ変化したときに、一方の電源機器の出力電圧の変化量と他方の電源機器の出力電圧の変化量とが異なる。
 上記のような電力供給装置では、すべての負荷機器の総使用電流(負荷電流)の大きさに応じて、各電源機器がそれぞれ出力電流-出力電圧特性と負荷電流のバランス点で落ち着くことによって、各電源機器から任意の出力電圧で任意の出力電流を出力することができる。このとき、各電源機器は、内蔵のDC/DCコンバータを用いて、入力電圧(電源電圧)を昇降圧して出力電圧としている。
 ところで、上記のような電源機器に接続される電源として、図11(a)に示すように、二次電池Bが用いられる場合がある。二次電池Bは、起電力Eに直列接続される内部抵抗rが存在することによって、内部抵抗rに流れる電流(出力電流)が大きくなるほど、内部抵抗rによる損失が増加する。したがって、図11(b)に示すように、二次電池Bの効率(二次電池Bの出力電力と内部抵抗rによる損失との和に対する二次電池Bの出力電力の比)η1は、二次電池Bの出力電流が大きくなるにつれて小さくなるという特性になる。
 一方、二次電池Bが接続される電源機器Aには、内蔵のDC/DCコンバータ部分において、定常損失(スイッチング素子のオン抵抗やインダクタの寄生抵抗などによる損失)などの内部損失が存在する。その結果、電源機器Aの効率(電源機器の入力電力に対する電源機器の出力電力の比)η2は、図11(c)に示すような特性になる。なお、電源機器Aの入力電力とは、電源機器Aの出力電力と電源機器Aの内部損失との和である。
 図11(b)と図11(c)より、二次電池Bと電源機器Aとを組み合わせたときの効率(二次電池Bの出力電力と内部抵抗rによる損失との和に対する電源機器Aの出力電力の比)η3は、図11(d)に示すように、ある出力電流(電源機器Aの出力電流)で最大となる特性になる。したがって、二次電池Bが接続されている電源機器Aは、効率η3が最大となるときの出力電流で用いると、効率よく運転することができる。
 しかしながら、従来の電力供給装置では、負荷電流の大きさに応じて各電源機器の出力電流の大きさを変動しているため、図11(a)に示すように電源機器Aに二次電池Bが電源として接続された場合に、二次電池Bと電源機器Aとの組み合わせに対して、必ずしも効率よく運転させているとはいえなかった。
 本発明は上記の点に鑑みて為されたものであり、その目的は、二次電池と電源機器との組み合わせに対して最大効率で運転させることができる電力供給装置を提供することにある。
 本発明にかかる電力供給装置は、負荷機器が接続される直流供給線路に接続され、上記直流供給線路を通じて上記負荷機器に直流電力を供給する主電源機器および副電源ユニットと、上記直流供給線路を流れる電流の値を計測して計測値として出力する負荷電流検出手段と、上記負荷電流検出手段より上記計測値を得ると、得られた上記計測値が最適電流値より大きいか否かを判定する判定手段と、制御手段と、を備える。上記主電源機器は、二次電池より得た電力を利用して上記負荷機器に供給する直流電力を生成するように構成される。上記最適電流値は、上記二次電池が上記主電源機器に出力する電力と上記二次電池の内部抵抗による損失との和に対する上記主電源機器が上記直流供給線路に出力する電力の比の値が最大となるときに上記主電源機器が上記直流供給線路に出力する電流の値である。上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記主電源機器が上記直流供給線路に出力する電流の値が上記最適電流値と等しくなるように、上記主電源機器に指示値を出力するように構成される。上記主電源機器は、上記制御手段から受け取った上記指示値に基づいて上記直流供給線路に出力する電流の値を調整する調整手段を備える。
 好ましい形態では、上記副電源ユニットは、商用電源機器を含む。上記商用電源機器は、商用電源より得た交流電力を直流電力に変換して、上記直流供給線路に出力する電流の大きさに関わらず、上記直流供給線路に一定の電圧を与える定電圧制御を行うように構成される。上記主電源機器は、上記直流供給線路に出力する出力電流が増加するにつれて上記直流供給線路に与える出力電圧を単調に下降させ、上記出力電流が減少するにつれて上記出力電圧を単調に上昇させる傾斜制御を行うように構成される。上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記主電源機器の上記出力電圧が上記商用電源機器が上記直流供給線路に与える電圧と等しいときに上記主電源機器の上記出力電流の値が上記最適電流値になるように、上記主電源機器に上記指示値を出力するように構成される。上記調整手段は、上記制御手段から上記指示値を受け取ると、上記傾斜制御の条件を変更することで、上記出力電圧を変化させることなく上記出力電流の値を上記指示値に対応する値に設定するように構成される。
 この場合、さらに好ましい形態では、上記副電源ユニットは、傾斜出力電源機器を備える。上記傾斜出力電源機器は、上記直流供給線路に出力する第2出力電流が増加するにつれて上記直流供給線路に与える第2出力電圧を単調に下降させ、上記第2出力電流が減少するにつれて上記第2出力電圧を単調に上昇させる第2傾斜制御を行うように構成される。上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記傾斜出力電源機器の上記第2出力電流の値が、上記計測値と上記最適電流値との差に等しくなるように、上記傾斜出力電源機器に第2指示値を出力するように構成される。上記傾斜出力電源機器は、上記第2指示値に基づいて上記第2出力電流の値を調整する第2調整手段を備える。上記第2調整手段は、上記制御手段から上記第2指示値を受け取ると、上記第2傾斜制御の条件を変更することで、上記第2出力電圧を変化させることなく上記第2出力電流の値を上記第2指示値に対応する値に設定するように構成される。
 この場合、さらに好ましい形態では、上記商用電源機器は、上記傾斜出力電源機器が上記第2出力電流の値を上記第2指示値に対応する値に設定できないとき、上記主電源機器の上記出力電流と上記傾斜出力電源機器の上記第2出力電流との合計値と上記計測値との差に等しい値の電流を上記直流供給線路に出力するように構成される。
 好ましい形態では、上記副電源ユニットは、上記主電源機器の上記調整手段が上記制御手段から受け取った上記指示値に対応する値の電流を上記直流供給線路に出力している間、上記主電源機器が上記直流供給線路に出力する電流の値と上記最適電流値との差分値に等しい値を持つ電流を上記直流供給線路に出力するように構成される。
実施形態1の要部を示すブロック図である。 同上の構成図である。 同上に係る第1の電源機器の回路図である。 同上に係る第2の電源機器の回路図である。 同上に係る電力供給装置において、(a)が第2の電源機器の出力電流-出力電圧特性を示す図、(b)が第1の電源機器の出力電流-出力電圧特性を示す図、(c)が第2の電源機器の出力電流について説明する図である。 同上に係る第2の電源機器の動作を説明する図である。 同上に係る第2の電源機器の出力電流-出力電圧特性のシフトについて説明する図である。 同上に係る電力供給装置の動作を説明するフローチャートである。 同上に係る電力供給装置において、(a)が第1の電源機器の出力電流-出力電圧特性を示す図、(b)がPVコンバータの出力電流-出力電圧特性を示す図、(c)がBATコンバータの出力電流-出力電圧特性を示す図である。 実施形態2に係る電力供給装置の動作を説明するフローチャートである。 (a)が二次電池と電源機器の接続状態を示すブロック図、(b)が二次電池の効率を示す図、(c)が電源機器の効率を示す図、(d)が二次電池と電源機器とを組み合わせたときの効率を示す図である。
 (実施形態1)
 以下に説明する形態は、本発明に係る電力供給装置3を適用する建物として戸建て住宅の家屋を想定して説明するが、本発明の技術思想を集合住宅に適用することを妨げるものではない。家屋Hには、図2に示すように、直流電力を出力する直流電力供給部101と、直流電力により駆動される負荷としての直流機器(負荷機器)102とが設けられ、直流電力供給部101の出力端部に接続した直流供給線路Wdcを通して直流機器102に直流電力が供給される。直流電力供給部101と直流機器102との間には、直流供給線路Wdcに流れる電流を監視し、異常を検知したときに直流供給線路Wdc上で直流電力供給部101から直流機器102への給電を制限ないし遮断する直流ブレーカ114が設けられる。
 直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。
 直流供給線路Wdcは、直流電力供給部101を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下「宅内網」という)を構築する主装置であり、宅内網において直流機器102が構築するサブシステムなどと通信を行う。
 図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器102からなる情報機器システムK101、照明器具のような照明系の直流機器102からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器102からなる玄関システムK103、火災感知器のような警報系の直流機器102からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。
 上述した直流ブレーカ114は、サブシステムに関連付けて設けられており、図示例では、情報機器システムK101、照明システムK102および玄関システムK103、住警器システムK104、照明システムK105に関連付けて4個の直流ブレーカ114を設けている。1台の直流ブレーカ114に複数個のサブシステムを関連付ける場合には、サブシステムごとに直流供給線路Wdcの系統を分割する接続ボックス121が設けられる。図示例においては、照明システムK102と玄関システムK103との間に接続ボックス121が設けられている。
 情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で家屋Hに先行配置(家屋Hの建築時に施工)される直流コンセント131に接続される直流機器102からなる情報機器システムK101が設けられる。
 照明システムK102,K105としては、家屋Hに先行配置される照明器具(直流機器102)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器102)からなる照明システムK105とが設けられる。引掛シーリング132には、家屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。
 照明システムK102を構成する直流機器102である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。すなわち、スイッチ141は直流機器102とともに通信の機能を有している。また、スイッチ141の操作によらず、宅内網の別の直流機器102あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。
 上述した直流コンセント131、引掛シーリング132には、任意の直流機器102を接続することができ、接続された直流機器102に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。
 これらの直流アウトレットは、直流機器102に直接設けた接触子(図示せず)または接続線を介して設けた接触子(図示せず)が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有している。すなわち、直流アウトレットは接触式で給電を行う。直流アウトレットに接続された直流機器102が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器102だけではなく直流アウトレットにも通信機能が設けられている。
 宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。
 センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器102であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。
 宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。
 宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。
 通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。
 また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。
 宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。
 宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。
 機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、例えば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。
 ところで、直流電力供給部101は、基本的には、宅外から供給される商用電源ACの電力変換により直流電力を生成する。図示する構成では、商用電源ACは、分電盤110に内器として取り付けられた主幹ブレーカ111を通して、スイッチング電源を含むAC/DCコンバータ112に入力される。AC/DCコンバータ112から出力される直流電力は、協調制御部113を通して各直流ブレーカ114に接続される。
 直流電力供給部101には、商用電源ACから電力が供給されない期間(例えば商用電源ACの停電期間)に備えて二次電池162が設けられている。二次電池162としては、例えばリチウムイオン二次電池などが用いられる。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。商用電源ACから直流電力を生成するAC/DCコンバータ112を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示していないが、二次電池162は、充電を制御する回路部を含んでいる。
 二次電池162は、商用電源ACや太陽電池161、燃料電池163によって適時充電され、二次電池162の放電は、商用電源ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部113により行われる。すなわち、協調制御部113は、直流電力供給部101を構成する主電源および分散電源から直流機器102への電力の配分を制御する直流電力制御部として機能する。
 直流機器102の駆動電圧は機器に応じた複数種類の電圧から選択されるから、協調制御部113にDC/DCコンバータを設け、主電源および分散電源から得られる直流電圧を必要な電圧に変換するのが望ましい。通常は、1系統のサブシステム(もしくは1台の直流ブレーカ114に接続された直流機器102)に対して1種類の電圧が供給されるが、1系統のサブシステムに対して3線以上を用いて複数種類の電圧を供給するように構成してもよい。また、直流供給線路Wdcを2線式とし、線間に印加する電圧を時間経過に伴って変化させる構成を採用することも可能である。DC/DCコンバータは、直流ブレーカと同様に複数に分散して設けてもよい。
 上述の構成例では、AC/DCコンバータ112を1個だけ図示しているが、複数個のAC/DCコンバータ112を並設することが可能であり、複数個のAC/DCコンバータ112を設けるときには、負荷の大きさに応じて運転するAC/DCコンバータ112の台数を増減させるのが望ましい。
 上述したAC/DCコンバータ112、協調制御部113、直流ブレーカ114、太陽電池161、二次電池162、燃料電池163には通信機能が設けられており、主電源および分散電源や直流機器102を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器102に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。
 上述の例では主幹ブレーカ111から出力された交流電力をAC/DCコンバータ112により直流電力に変換するために、AC/DCコンバータ112を分電盤110内に配置しているが、主幹ブレーカ111の出力側において分電盤110内に設けた分岐ブレーカ(図示せず)で交流供給線路を複数系統に分岐し、各系統の交流供給線路にAC/DCコンバータを設けて系統ごとに直流電力に変換する構成を採用してもよい。
 この場合、家屋Hの各階や各部屋を単位として直流電力供給部101を設けることができるから、直流電力供給部101を系統別に管理することができ、しかも、直流電力を利用する直流機器102との間の直流供給線路Wdcの距離が小さくなるから、直流供給線路Wdcでの電圧降下による電力損失を低減させることができる。また、主幹ブレーカ111および分岐ブレーカを分電盤110に収納し、AC/DCコンバータ112と協調制御部113と直流ブレーカ114と宅内サーバ116とを分電盤110とは別の盤に収納してもよい。
 続いて、直流電力供給部101に収納されている電力供給装置3について図1を用いて説明する。電力供給装置3は、並列運転して直流電力を直流機器(負荷機器)102に供給する複数台(図示例では4台)の電源機器4,4・・・、直流電力供給のシステム全体を監視する監視装置7とを備えている。
 複数台の電源機器4,4・・・は、1台の第1の電源機器4aと複数台(図示例では3台)の第2の電源機器4b~4dとで構成されている。
 本実施形態では、第2の電源機器4cが主電源機器として用いられる。残りの第1の電源機器4a,4b,4dは、副電源ユニットを構成する。
 第1の電源機器4aは、出力電流Ioutの大きさに関わらず常に定電圧となる直流電圧を出力電圧Voutとするものである(図5(b)参照)。第1の電源機器4aには、商用電源ACからの電源電圧が入力電圧Vinとして入力される。つまり、第1の電源機器4aは、商用電源ACからの電源電圧が入力され直流電力を直流機器102に供給する商用電源用電源機器(商用電源機器)である。
 すなわち、第1の電源機器4aは、商用電源ACに接続される。第1の電源機器4aは、商用電源ACより得た電力を直流電力に変換することで、直流供給線路Wdcに出力する電流(出力電流Ioa)の大きさに関わらず直流供給線路Wdcに一定の電圧(出力電圧Voa)を与える定電圧制御を行うように構成される。
 なお、本実施形態では、図2に示すように、第1の電源機器5は、AC/DCコンバータ112を介して商用電源ACに接続されている。すなわち、商用電源ACの交流電圧は、AC/DCコンバータ112で所定の直流電圧に変換されて、第1の電源機器4aに与えられる。よって、入力電圧Vinは、AC/DCコンバータ112が出力する直流電圧である。しかしながら、入力電圧Vinは、商用電源ACが出力する交流電圧であってもよい。この場合、第1の電源機器4aには、交流電圧である入力電圧Vinを直流電圧に変換してDC/DCコンバータ52に出力するAC/DCコンバータが設けられる。
 この第1の電源機器4aは、図3に示すように、出力電圧Vout(Voa)を検出する電圧検出手段50と、基準電圧V2と電圧検出手段50の検出電圧V1とに応じてオンデューティ幅が設定されたパルス幅変調信号S1を生成するスイッチング制御手段51と、スイッチング制御手段51からのパルス幅変調信号S1のオンデューティ幅に応じてオンオフ動作するスイッチング素子520を有するDC/DCコンバータ52とを備えている。
 電圧検出手段50は、直列接続の2つの抵抗器500,501と、抵抗器500,501による分割電圧が入力される電圧ホロア502とを備えており、第1の電源機器4aの出力電圧Vout(Voa)を検出する。電圧検出手段50は、出力電圧Voaを検出し、検出された出力電圧Voaに応じた検出電圧V1をスイッチング制御手段51に与えるように構成される。
 スイッチング制御手段51は、電圧検出手段50の検出電圧(電圧ホロア502の出力電圧)V1および基準電圧V2が入力されるスイッチングIC510を備えている。
 スイッチングIC510は、基準電圧V2と検出電圧V1との差分電圧(V2-V1)が一定となるようにオンデューティ幅が設定されたパルス幅変調信号S1をスイッチング素子520に出力する。つまり、スイッチングIC510は、出力電圧Vout(検出電圧V1)が常に一定となるように、パルス幅変調信号S1のオンデューティ幅を設定する。
 DC/DCコンバータ52は、入力側から順に、平滑コンデンサ521と、インダクタ522と、スイッチング素子520と、ダイオード523と、平滑コンデンサ524とを備えており、スイッチング素子520のオンオフ動作によって入力電圧Vinを昇圧する。
 スイッチング素子520は、例えば電界効果トランジスタなどであり、スイッチングIC510からのパルス幅変調信号S1が抵抗器525を介してゲートに入力される。スイッチング素子520がオンになると、ソースとドレインの間が導通し、インダクタ522には電磁エネルギーが蓄えられる。その後、スイッチング素子520がオフになると、インダクタ522に蓄えられた電磁エネルギーが放出されることによって昇圧する。昇圧された電圧は平滑コンデンサ524で平滑される。平滑コンデンサ524で平滑された直流電圧は、出力電圧Voutとして直流機器102(図1参照)に出力される。
 上記の動作により、第1の電源機器4aは、図5(b)に示すように、出力電流Ioutの大きさに関わらず出力電圧Voutを一定の直流電圧とする出力電流-出力電圧特性から外れないようにフィードバック制御を行うことができる。
 第2の電源機器4b~4dは、図5(a)に示すように、出力電流(直流供給線路Wdcに出力する電流)Ioutが大きくなるにつれて単調に小さくなる直流電圧を出力電圧(直流供給線路Wdcに与える電圧)Voutとするものである。このような第2の電源機器4b~4dの出力電流-出力電圧特性を、Vout=-αIout+V0(α>0、V0>0)と表わすことができる。上記の出力電流-出力電圧特性では、Vout+αIoutはV0で一定値となる。αは、第2の電源機器4b~4dごとに異なった値であってもよいし、同じ値であってもよい。
 すなわち、各第2の電源機器4b~4dは、直流供給線路Wdcに出力する出力電流Ioutが増加するにつれて直流供給線路Wdcに与える出力電圧Voutを単調に下降させ、出力電流Ioutが減少するにつれて出力電圧Voutを単調に上昇させる傾斜制御を行うように構成される。
 図1に示すように、第2の電源機器4bには太陽電池161が接続され、第2の電源機器4cには二次電池162が接続され、第2の電源機器4dには燃料電池163が接続されている。第2の電源機器4b~4dは、それぞれ各電池161~163から入力電圧Vinが入力される。つまり、第2の電源機器4bは、太陽電池161からの電源電圧が入力され直流電力を直流機器102に供給する太陽電池用電源機器であり、第2の電源機器4cは、二次電池162からの電源電圧が入力され直流電力を直流機器102に供給する二次電池用電源機器であり、第2の電源機器4dは、燃料電池163からの電源電圧が入力され直流電力を直流機器102に供給する燃料電池用電源機器である。なお、本実施形態の第2の電源機器4bは、傾斜出力電源機器である。
 第2の電源機器4b~4dは、図4に示すように、出力電流Iout(Iob,Ioc,Iod)を検出する電流検出手段60と、出力電圧Vout(Vob,Voc,Vod)を検出する電圧検出手段61と、電圧検出手段61の検出電圧V5と電流検出手段60から出力される電圧V8とに応じてオンデューティ幅が設定されたパルス幅変調信号S2を生成するスイッチング制御手段62と、スイッチング制御手段62からのパルス幅変調信号S2のオンデューティ幅に応じてオンオフ動作するスイッチング素子630を有するDC/DCコンバータ63と、後述の制御部73(図1参照)の制御によって上記第2の電源機器4b~4dの出力電流Iout(Iob,Ioc,Iod)の大きさを調整する調整手段64とを備えている。
 電流検出手段60は、抵抗器600,605と、抵抗器600の両端電圧を検出する電流IC601と、電流IC601の出力電圧V3を分割する抵抗器602,603と、抵抗器602,603で分割された分割電圧が入力される電圧ホロア604とを備えており、第2の電源機器4b~4dの出力電流Iout(Iob,Ioc,Iod)を検出する。
 電圧検出手段61は、直列接続の2つの抵抗器610,611と、抵抗器610,611による分割電圧が入力される電圧ホロア612とを備えており、第2の電源機器4b~4dの出力電圧Vout(Vob,Voc,Vod)を検出する。電圧検出手段61は、出力電圧Voutを検出し、検出された出力電圧Voutに応じた検出電圧V5をスイッチング制御手段62に与えるように構成される。
 スイッチング制御手段62は、電圧検出手段61の検出電圧(電圧ホロア612の出力電圧)V5および後述の電圧V8が入力されるスイッチングIC620を備えている。
 DC/DCコンバータ63は、入力側から順に、平滑コンデンサ631と、インダクタ632と、スイッチング素子630と、ダイオード633と、平滑コンデンサ634とを備えており、スイッチング素子630のオンオフ動作によって入力電圧Vinを昇圧する。
 調整手段64は、後述の制御部73(図1参照)から出力電流Ioutの指示値を取得するCPU640と、CPU640の出力電圧V6を分割する2つの抵抗器641,642と、抵抗器641,642による分割電圧が入力される非反転増幅回路643とを備えている。
 CPU640では、電力供給装置3の動作中において、つまり電力供給装置3による直流機器102への電力供給時において、制御部73からの指示値に基づいて、出力電流Ioutの大きさを変動するための制御が行われる。
 監視装置7は、図1に示すように、直流機器102に供給される負荷電流ILの大きさを検出する負荷電流検出部70と、各電池161~163の残量を検出する残量検出部71と、負荷電流検出部70で検出された負荷電流ILが後述の最適電流値Im以上であるか否かを判定する判定部72と、各第2の電源機器4b~4dの出力電流Ioutの大きさを制御する制御部(制御手段)73とを備えている。
 負荷電流検出部70は、電力供給装置3が動作中において、つまり電力供給装置3による直流機器102への電力供給時において、予め設定された時間間隔で各直流機器102から必要な電流を検出して、直流機器102側の総使用電流である負荷電流ILを検出する。このように、負荷電流検出部70、直流供給線路Wdcを流れる電流(負荷電流IL)の値(電流値)I0を計測して計測値として出力するように構成される。
 残量検出部71は、電力供給装置3が動作中(電力供給装置3による直流機器102への電力供給時)において、予め設定された時間間隔で各電池161~163の出力電圧および出力電流を検出し、検出結果を用いて各電池161~163の残量を検出する。予め設定された時間間隔は、負荷追従を満足する時間間隔(例えば数ミリ秒間)である。
 判定部72は、負荷電流検出部70より計測値を得ると、得られた計測値が最適電流値Imより大きいか否かを判定するように構成される。
 本実施形態では、判定部72は、上述したように負荷電流ILが最適電流値Im以上であるか否かを判定するとともに、残量検出部71で検出された二次電池162の残量が、第2の電源機器(BATコンバータ)4cが最適電流値Imの出力電流Iocを出力できるほど十分であるか否かも判定する。具体的には、二次電池162の残量が、予め設定された閾値以上であれば、判定部72は、第2の電源機器4cが最適電流値Imの出力電流Iocを出力できるほど二次電池162の残量が十分であると判定する。一方、二次電池162の残量が閾値未満であれば、判定部72は、第2の電源機器4cが最適電流値Imの出力電流Iocを出力できるほど二次電池162の残量が十分ではないと判定する。
 制御部73は、システム全体としてどの電源機器4a~4dからどれだけの電力を各直流機器102に供給すればよいのかを求め、それに応じて各電源機器4a~4dの出力を調整する。制御部73は、各電源機器4b~4dの調整手段64のそれぞれに対して、各電源機器4b~4dの出力電流Iob,Ioc,Iodの大きさを指示するための指示値を送信する。なお、指示値は、電流値であってもよいし、出力電流Iob,Ioc,Iodの大きさを換算した電圧値であってもよい。また、指示値は、各電源機器4b~4dの出力電流Iob,Ioc,Iodの大きさを指示するための値に限定されるものではなく、各電源機器4b~4dの出力電力の大きさを指示するための値であってもよい。
 図4に示すCPU640は、制御部73(図1参照)からの指示値に応じた大きさの出力電圧V6を出力する。非反転増幅回路643の出力電圧V7は、CPU640の出力電圧V6が大きくなるにつれて大きくなっていき、CPU640の出力電圧V6が小さくなるにつれて小さくなっていく。
 また、電流検出手段60には、電圧ホロア604と抵抗器605との間に差動増幅回路606が挿入されている。差動増幅回路606は、非反転増幅回路643の出力電圧V7と電流検出手段60の検出電圧(電圧ホロア604の出力電圧)V4との差分電圧(V7-V4)に比例した電圧V8(=β(V7-V4)(β>0))をスイッチングIC620に出力する。したがって、検出電圧V4が同じ大きさであっても、制御部73からの指示値に応じて出力電圧V6および出力電圧V7が大きくなった場合、スイッチングIC620に出力される電圧V8も大きくなる。逆に、出力電圧V6および出力電圧V7が小さくなった場合、スイッチングIC620に出力される電圧V8も小さくなる。なお、βの大きさは、後述のスイッチングIC620において、電圧V8が検出電圧V5と演算できるように設定される。
 スイッチングIC620は、電圧V8と検出電圧V5との差分電圧(V8-V5)つまり電圧(βV7-(V5+βV4))が一定となるようにオンデューティ幅が設定(変更)されたパルス幅変調信号S2をスイッチング素子630に出力する。具体的には、電圧(βV7-(V5+βV4))がこれまでよりも大きくなると、スイッチングIC620は、電圧(βV7-(V5+βV4))が小さくなるように(電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるように)、パルス幅変調信号S2のオンデューティ幅を広く設定する。逆に、電圧(βV7-(V5+βV4))がこれまでよりも小さくなると、スイッチングIC620は、電圧(βV7-(V5+βV4))が大きくなるように(電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるように)、パルス幅変調信号S2のオンデューティ幅を狭く設定する。
 スイッチング素子630は、例えば電界効果トランジスタなどであり、スイッチングIC620からのパルス幅変調信号S2が抵抗器635を介してゲートに入力される。スイッチング素子630がオンになると、ソースとドレインの間が導通し、インダクタ632には電磁エネルギーが蓄えられる。その後、スイッチング素子630がオフになると、インダクタ632に蓄えられた電磁エネルギーが放出されることによって昇圧する。昇圧された電圧は、平滑コンデンサ634で平滑される。平滑コンデンサ634で平滑された直流電圧は、出力電圧Voutとして直流機器102(図1参照)に出力される。
 上記の動作により、出力電流Iout(検出電圧V4)がこれまでよりも大きくなると、電圧(βV7-(V5+βV4))がこれまでよりも小さくなるが、電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるようにオンデューティ幅を狭く設定して昇圧を小さくすることによって、出力電圧Vout(検出電圧V5)をこれまでよりも小さくすることができる。一方、出力電流Iout(検出電圧V4)がこれまでよりも小さくなると、電圧(βV7-(V5+βV4))がこれまでよりも大きくなるが、電圧(βV7-(V5+βV4))がこれまでと同じ大きさになるようにオンデューティ幅を広く設定して昇圧を大きくすることによって、出力電圧Vout(検出電圧V5)をこれまでよりも大きくすることができる。
 よって、このような構成の第2の電源機器4b~4dは、電圧(βV7-(V5+βV4))を一定とすることによって、図5(a)に示すように、出力電流Ioutが大きくなると出力電圧Voutが単調(直線上)に小さくなる出力電流-出力電圧特性(Vout+αIoutが一定値である特性)から外れないようにフィードバック制御を行うことができる。
 このような出力電流-出力電圧特性を持つ第2の電源機器4b~4dは、第1の電源機器4aとともに用いられた交点を持つ状態において、出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれ、出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれたときの出力電流Iob,Ioc,Iodを出力する。
 ここで、出力電流Iob,Ioc,Iodが減少した場合、出力電圧Vob,Voc,Vodは、図6の出力電流-出力電圧特性にしたがって変動し、一時的に大きくなる(図6の(A))。出力電圧Vob,Voc,Vodが大きくなると、出力電流Iob,Ioc,Iodは大きくなり、その結果、検出電圧V4も大きくなる(図6の(B))。検出電圧V4が大きくなると、電圧(βV7-(V5+βV4))が小さくなることにより、パルス幅変調信号S2のオンデューティ幅が狭くなり、出力電圧Vob,Voc,Vod(検出電圧V5)は小さくなる(図6の(C))。これにより、出力電圧Vob,Voc,Vodは出力電圧Voaに合わせ込まれる。
 一方、出力電流Iob,Ioc,Iodが増加した場合、出力電圧Vob,Voc,Vodは、図6の出力電流-出力電圧特性にしたがって変動し、一時的に小さくなる(図6の(D))。出力電圧Vob,Voc,Vodが小さくなると、出力電流Iob,Ioc,Iodは小さくなり、その結果、検出電圧V4も小さくなる(図6の(E))。検出電圧V4が小さくなると、電圧(βV7-(V5+βV4))が大きくなることにより、パルス幅変調信号S2のオンデューティ幅が広くなり、出力電圧Vob,Voc,Vod(検出電圧V5)は大きくなる(図6の(F))。これにより、出力電圧Vob,Voc,Vodは出力電圧Voaに合わせ込まれる。
 続いて、このような第2の電源機器4b~4dに対して、直流機器102側の総使用電流(負荷電流IL)が大きくなり、出力電圧Vob,Voc,Vod(検出電圧V5)が一定のもとで、出力電流Iob,Ioc,Iodを大きくする指示値が制御部73からあった場合について図7を用いて説明する。まず、上記指示値があると、出力電圧V7および電圧V8(=β(V7-V4))が大きくなる。このとき、電圧(βV7-(V5+βV4))が大きくなるので、パルス幅変調信号S2のオンデューティ幅は広くなり、出力電圧Vob,Voc,Vodは一時的に出力電圧Voaより大きくなる(図7の(A))。この動作が、本発明における第2の電源機器4b~4dの出力電圧Vob,Voc,Vodに所定電圧を加算することに相当する。出力電圧Vob,Voc,Vodが大きくなると、出力電流Iob,Ioc,Iod(検出電圧V4)も大きくなる(図7の(B))。検出電圧V4が大きくなると、電圧(βV7-(V5+βV4))は小さくなるので、パルス幅変調信号S2のオンデューティ幅は狭くなる。その結果、出力電圧Vob,Voc,Vodは小さくなる(図7の(C))。上記の動作を繰り返した後、出力電圧Vob,Voc,Vodは出力電圧Voaになる。これにより、第2の電源機器4b~4dは、定電圧特性(第1の電源機器4aの出力電流-出力電圧特性)との交点の出力電流Iob,Ioc,Iodが指示値(電流値I1)になるように第2の電源機器4b~4dの出力電流-出力電圧特性をシフトしたことになり、指示値通りの出力電流Iob,Ioc,Iodを出力する。
 これに対して、負荷電流ILが小さくなり、出力電圧Vob,Voc,Vod(検出電圧V5)が一定のもとで、出力電流Iob,Ioc,Iodを小さくする指示値が制御部73からあった場合、出力電圧V7および電圧V8(=β(V7-V4))が小さくなる。このとき、電圧(βV7-(V5+βV4))が小さくなるので、パルス幅変調信号S2のオンデューティ幅は狭くなり、出力電圧Vob,Voc,Vodは一時的に出力電圧Voaより小さくなる(図7の(D))。この動作が、本発明における第2の電源機器4b~4dの出力電圧Vob,Voc,Vodに所定電圧を減算することに相当する。出力電圧Vob,Voc,Vodが小さくなると、出力電流Iob,Ioc,Iod(検出電圧V4)も小さくなる(図7の(E))。検出電圧V4が小さくなると、電圧(βV7-(V5+βV4))は大きくなるので、パルス幅変調信号S2のオンデューティ幅は広くなる。その結果、出力電圧Vob,Voc,Vodは大きくなる(図7の(F))。上記の動作を繰り返した後、出力電圧Vob,Voc,Vodは出力電圧Voaになる。これにより、第2の電源機器4b~4dは、定電圧特性(第1の電源機器4aの出力電流-出力電圧特性)との交点の出力電流Iob,Ioc,Iodが指示値(電流値I0)になるように第2の電源機器4b~4dの出力電流-出力電圧特性をシフトしたことになり、指示値通りの出力電流Iob,Ioc,Iodを出力する。
 このように、調整手段64は、制御部(制御手段)73から指示値を受け取ると、傾斜制御の条件を変更することで、出力電圧Voutを変化させることなく出力電流Ioutの値を受け取った指示値に対応する値に設定するように構成される。調整手段64は、傾斜制御の条件を変更することで、出力電流-出力電圧特性をシフトさせる(すなわち、出力電流-出力電圧特性を示す線を平行移動させる)。
 上記のように第2の電源機器4b~4dの出力電流-出力電圧特性がシフトした後も、シフト前と同様、第2の電源機器4b~4dの出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれ、出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれたときの出力電流Iob,Ioc,Iodを出力する。
 上記より、負荷電流ILが変化したときに、各第2の電源機器4b~4dにおいて、制御部73からの指示値に基づいて、図7に示すように、出力電流-出力電圧特性をシフトすることができる。シフトさせた後においても、各第2の電源機器4b~4dは、出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれ、出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaと同じ大きさであるときの出力電流Iob,Ioc,Iodを直流機器102に出力することができる。これにより、負荷電流ILが変化しても、電力供給装置3は各第2の電源機器4b~4dを負荷電流に応じた出力電流Iob,Ioc,Iodに設定することができるとともに、負荷電流ILが変化しても、第2の電源機器4b~4dの出力電圧Vob,Voc,Vodが第1の電源機器4aの出力電圧Voaに合わせ込まれることで、上記出力電圧Vob,Voc,Vodを定電圧に保つことができる。その結果、直流機器102への電力供給を安定に行うことができる。
 以下に一例を示す。図5では、(a)が第2の電源機器4b~4dの出力電流-出力電圧特性を示し、(b)が第1の電源機器4aの出力電流-出力電圧特性を示す。ここで、図5(c)に示すように、制御部73からの指示値としてI11が指示されて第2の電源機器4b~4dの出力電流-出力電圧特性を図5(c)の矢印のようにシフトさせた場合、第2の電源機器4b~4dの出力電流IoutをI12からI11に増加させることができる。
 また、本実施形態によれば、安定した電力を供給する商用電源ACからの電源電圧が第1の電源機器4aに入力されることによって、直流機器102のオンオフによる負荷変動の影響を低減することができ、直流機器102への電力供給をより安定に行うことができる。これに対して、第1の電源機器4aに太陽電池161や二次電池162が接続されると、直流機器102への電力供給は、太陽電池161の場合は日射に影響し、二次電池162の場合は蓄電状況に影響してしまう。
 さらに、第2の電源機器4b~4dにおいて、出力電流Ioutが大きくなるにつれて単調に出力電圧Voutが小さくなる関係を、第1の電源機器4aの構成から部品点数をほとんど増やすことなく、容易に実現することができる。
 続いて、図1に示す監視装置7について詳細に説明する。以下の説明において、二次電池162と第2の電源機器(BATコンバータ)4cとを組み合わせたときの効率(二次電池162の出力電力と二次電池162の内部抵抗rによる損失との和に対する第2の電源機器4cの出力電力の比の値)η3が最大となるときの第2の電源機器4cの出力電流Iocの大きさを最適電流値Imとする。
 制御部73は、計測値(負荷電流ILの値)I0が最適電流値Imより大きいと判定部72が判定すると、主電源機器(第2の電源機器)4cが直流供給線路Wdcに出力する電流Iocの値が最適電流値Imと等しくなるように、第2の電源機器4に指示値を出力するように構成される。
 特に、制御部73は、計測値I0が最適電流値Imより大きいと判定部72が判定すると、主電源機器(第2の電源機器)4cの出力電圧Vocが商用電源機器(第1の電源機器)4aが直流供給線路Wdcに与える電圧(出力電圧)Voaと等しいときに第2の電源機器4cの出力電流Iocの値が最適電流値Imになるように、第2の電源機器4cに指示値を出力するように構成される。
 この場合、第2の電源機器4cの調整手段64は、制御部73から指示値を受け取ると、傾斜制御の条件を変更することで、出力電圧Vocを変化させることなく出力電流Iocの値を受け取った指示値に対応する値に設定する。
 すなわち、監視装置7の制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Im以上である場合、第2の電源機器4cの出力電圧Vocが第1の電源機器4aの出力電圧Voaに合わせ込まれたときの第2の電源機器4cの出力電流Iocが最適電流値Imになるように、第2の電源機器4cの調整手段64(図4参照)に対して第2の電源機器4cの出力電流-出力電圧特性をシフトさせる。
 また、制御部73は、計測値I0が最適電流値Imより大きいと判定部72が判定すると、傾斜出力電源機器(第2の電源機器)4bの出力電流(第2出力電流)Iobの値が、計測値I0と最適電流値Imとの差に等しくなるように、第2の電源機器4bに指示値(第2指示値)を出力するように構成される。
 この場合、第2の電源機器4bの調整手段(第2調整手段)64は、制御部73から第2指示値を受け取ると、傾斜制御(第2傾斜制御)の条件を変更することで、出力電圧(第2出力電圧)Vobを変化させることなく出力電流(第2出力電流)Iobの値を第2指示値に対応する値に設定する。
 すなわち、制御部73は、負荷電流ILと第2の電源機器4cの出力電流Iocとの差分電流を第2の電源機器(PVコンバータ)4bの出力電流Iobで補うように、第2の電源機器4bの調整手段64に対して第2の電源機器4bの出力電流-出力電圧特性をシフトさせる。
 本実施形態において、商用電源機器(第1の電源機器4a)は、傾斜出力電源機器(第2の電源機器4b)が第2出力電流Vobの値を第2指示値に対応する値に設定できないとき、主電源機器(第2の電源機器4c)の出力電流Vocと傾斜出力電源機器(第2の電源機器4b)の第2出力電流Vobとの合計値と計測値I0との差に等しい値の電流(出力電流)Ioaを直流供給線路Wdcに出力するように構成される。
 すなわち、第2の電源機器(PVコンバータ)4bが上記差分電流を補うことができない場合、第1の電源機器4aが上記差分電流を補う。
 なお、第2の電源機器4bと第2の電源機器4dとを傾斜出力電源機器として利用することができる。この場合であっても、第2の電源機器(PVコンバータ)4bも第2の電源機器(FCコンバータ)4dも上記差分電流を補うことができない場合、第1の電源機器4aが上記差分電流を補う。
 続いて、上記のような構成の電力供給装置3において、二次電池162および第2の電源機器(BATコンバータ)4cの効率について図11を用いて説明する。なお、以下の説明において、図11(a)の二次電池Bは二次電池162に置き換え、図11(a)の電源機器Aは第2の電源機器4cに置き換えて説明する。
 まず、二次電池162は、起電力Eに直列接続される内部抵抗r(図11(a)参照)の存在によって、図11(b)に示すように、効率(二次電池162の出力電力と内部抵抗rによる損失との和に対する二次電池162の出力電力の比)η1が、二次電池162の出力電流が大きくなるにつれて小さくなるという特性になる。なお、二次電池162では、残量や使用時間によって内部抵抗rが変動し、内部抵抗rの変動に応じて効率η1も変動する。したがって、残量や使用時間のそれぞれに対応した効率η1の特性が、電力供給前に予め監視装置7に格納されている。
 一方、第2の電源機器4cは、DC/DCコンバータ63(図4参照)における定常損失などの内部損失の存在によって、効率(第2の電源機器4cの入力電力(Vin×Iin)に対する第2の電源機器4cの出力電力(Voc×Ioc)の比)η2が、図11(c)に示すような特性になる。なお、第2の電源機器4cの入力電力は、第2の電源機器4cの出力電力と第2の電源機器4cの内部損失との和である。効率η2の特性は、予め監視装置7に格納されている。
 図11(b)と図11(c)より、二次電池162と第2の電源機器4cとを組み合わせたときの効率(二次電池162の出力電力と内部抵抗rによる損失との和に対する第2の電源機器4cの出力電力の比)η3は、図11(d)に示すように、ある出力電流Iocで最大となる特性になる。効率η3が最大となるときの出力電流Iocの大きさを最適電流値Imとする。制御部73は、図11(b)に示す効率η1の特性と図11(c)に示す効率η2の特性とを用いて、図11(d)に示す効率η3の特性を求め、求めた効率η3の特性から最適電流値Imを求める。
 ところで、上述したように、二次電池162では、残量や使用時間によって内部抵抗rが変動し、内部抵抗rの変動に応じて効率η1も変動する。制御部73は、残量検出部71で検出された二次電池162の出力電圧および出力電流とこれらの初期値とを比較して、二次電池162の効率η1の変動に対応することができる。効率η1の変動によって効率η3も変動し、最適電流値Imも変動する。これにより、制御部73は、二次電池162の効率η1の変動に対応して、第2の電源機器4cの出力電流Iocの大きさを制御することができる。
 次に、本実施形態に係る電力供給装置3において、二次電池162を効率よく利用するための動作について図8を用いて説明する。
 まず、残量検出部71が二次電池162の残量を検出し(図8のS1)、負荷電流検出部70が負荷電流ILの電流値I0を検出する(S2)。続いて、負荷電流ILの電流値I0が最適電流値Im以上であるか否かを判定部72が判定する(S3)。負荷電流ILの電流値I0が最適電流値Im以上であると判定部72が判定した場合、第2の電源機器(BATコンバータ)4cが最適電流値Imの出力電流Iocを出力できるほど二次電池162の残量が十分であるか否かを判定部72が判定する(S4)。二次電池162の残量が十分であると判定部72が判定した場合、制御部73は、出力電流Iocが最適電流値Imになるような指示値を第2の電源機器4cに送信する。第2の電源機器4cは、制御部73から指示値を受け取ると、調整手段64(図4参照)を用いて第2の電源機器4cの出力電流-出力電圧特性をシフトし、図9(c)に示すように出力電流Iocを最適電流値Imとして直流機器102に供給する(S5)。
 続いて、図8に示すように、負荷電流ILが第2の電源機器4cの出力電流Iocより大きいか否かを判定する(S6)。負荷電流ILの電流値I0が出力電流Iocより大きい場合、制御部73は、太陽電池161の供給能力範囲内で第2の電源機器(PVコンバータ)4bの出力電流Iobが電流値I0と最適電流値Imとの差分値(I0-Im)になるような指示値を第2の電源機器4bに送信する。第2の電源機器4bは、制御部73から指示値を受け取ると、調整手段64を用いて第2の電源機器4bの出力電流-出力電圧特性をシフトし、出力電流Iobを差分値(I0-Im)として直流機器102に供給する(S7)。
 ここで、図9(b)に示すように第2の電源機器4bの出力電流Iobを最大電流値I2にしても差分値(I0-Im)に満たさない場合(I0>I2+Imの場合)(S8)、第1の電源機器4aは、図9(a)に示すように、第1の電源機器4aの出力電流Ioaを電流値I1(=I0-I2-Im)として直流機器102に供給する(S9)。つまり、第1の電源機器4aは、負荷電流ILと第2の電源機器4cの出力電流Iocとの差分電流を第2の電源機器4bの出力電流Iobで補ったときの不足電流を補うように出力電流Ioaを出力する。
 上記ステップS7~ステップS9において、差分値(I0-Im)を補う制御として、第2の電源機器(PVコンバータ)4bを他の電源機器(第1の電源機器4a)より優先することによって、省エネルギー化を図ることができる。
 なお、ステップS8,S9の他の例として、制御部73は、差分値(I0-Im)がわかった時点で、第2の電源機器(PVコンバータ)4bの出力電流Iobを現在の日照環境における最大電流値I1としてもまだ足りず、さらに、第1の電源機器4aを電流出力させるべきと計算によって瞬時に判断し、そこから、第2の電源機器4bの出力電流Iobが最大電流値I1になるように第2の電源機器4bに指示値を出してもよい。
 一方、ステップS3において、負荷電流ILの電流値I0が最適電流値Imより小さい場合、またはステップS4において、第2の電源機器4cが最適電流値Imの出力電流Iocを出力できるほど二次電池162の残量が十分ではない場合、どちらの場合においても、第2の電源機器4cによる出力電流Iocの出力は行わずに、第2の電源機器4bが、太陽電池161の供給能力範囲内で、図9(b)に示す第2の電源機器4bの出力電流-出力電圧特性をシフトして、出力電流Iobを最大電流値I2として直流機器102に供給する(S7)。その後、ステップS8を行う。
 なお、電力供給装置3が第2の電源機器(BATコンバータ)4cを複数備えていれば、ステップS3において、負荷電流ILの電流値I0が最適電流値Imより小さくなっても、1台の第2の電源機器4cの出力電流Iocを最適電流値Imとし、負荷電流ILへの出力分の残り(Im-I0)を他の第2の電源機器4cの充電電流にすることができる。
 電力供給装置3は、ステップS1からステップS8までの動作を定期的(予め設定された時間間隔)に行えば、各電池161~163の供給能力が変動した場合や負荷電流の大きさが変動した場合であっても、変動に対応した出力電流の設定を行うことができる。予め設定された時間間隔は、負荷追従を満足する時間間隔(例えば数ミリ秒間)である。なお、電力供給装置3は、ステップS1からステップS8までの動作を、予め設定された時間間隔以外に行ってもよい。
 以上述べた本実施形態の電力供給装置(電源供給装置)3は、二次電池162を入力電源として直流電力を負荷機器102に供給する二次電池用電源機器(第2の電源機器)2cと、第2の電源機器4cと並列運転して直流電力を負荷機器102に供給する1乃至複数の他の電源機器4と、負荷機器102に供給される負荷電流ILの大きさを検出する負荷電流検出部(負荷電流検出手段)70と、第2の電源機器4cの出力電流Vocの大きさを制御する制御部(制御手段)73とを備え、第2の電源機器4cは、制御部73の制御によって第2の電源機器4cの出力電流Vocの大きさを調整する調整手段64を有し、二次電池162の出力電力と二次電池162の内部抵抗rによる損失との和に対する第2の電源機器4cの出力電力の比の値を表わす効率η3が最大となるときの第2の電源機器4cの出力電流Iocの大きさを最適電流値Imとし、制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Im以上である場合、第2の電源機器4cの出力電流Iocが最適電流値Imになるように調整手段64を制御し、他の電源機器4は、負荷電流ILと第2の電源機器4cの出力電流Iocとの差分電流に相当する出力電流を出力する。
 言い換えれば、本実施形態の電力供給装置3は、負荷機器102が接続される直流供給線路Wdcに接続され、直流供給線路Wdcを通じて負荷機器102に直流電力を供給する主電源機器(第2の電源機器)4cおよび副電源ユニットと、直流供給線路Wdcを流れる電流(負荷電流)ILの値(電流値)I0を計測して計測値として出力する負荷電流検出部(負荷電流検出手段)70と、負荷電流検出部70より計測値I0を得ると、得られた計測値I0が最適電流値Imより大きいか否かを判定する判定部(判定手段)72と、制御部(制御手段)73と、を備える。第2の電源機器4cは、二次電池162より得た電力を利用して負荷機器102に供給する直流電力を生成するように構成される。最適電流値Imは、二次電池162が第2の電源機器4cに出力する電力と二次電池162の内部抵抗rによる損失との和に対する第2の電源機器4cが直流供給線路Wdcに出力する電力の比の値が最大となるときに第2の電源機器4cが直流供給線路Wdcに出力する電流Iocの値である。制御部73は、計測値I0が最適電流値Imより大きいと判定部72が判定すると、第2の電源機器4cが直流供給線路Wdcに出力する電流(出力電流)Iocの値が最適電流値Imと等しくなるように、第2の電源機器4cに指示値を出力するように構成される。第2の電源機器4cは、制御部73から受け取った指示値に基づいて直流供給線路Wdcに出力する電流Iocの値を調整する調整手段64を備える。
 ここで、副電源ユニットは、第2の電源機器4cの調整手段64が制御部73から受け取った指示値に対応する値の電流Iocを直流供給線路Wdcに出力している間、第2の電源機器4cが直流供給線路Wdcに出力する電流Iocの値と最適電流値Imとの差分値に等しい値を持つ電流を直流供給線路Wdcに出力するように構成される。
 したがって、本実施形態によれば、負荷電流ILが、効率(二次電池162の出力電力と二次電池162の内部抵抗rによる損失との和に対する第2の電源機器(BATコンバータ)4cの出力電力の比)η3が最大となるときの出力電流Iocの大きさ(最適電流値Im)以上である場合に、第2の電源機器4cの出力電流Iocを最適電流値Imにすることによって、二次電池162と第2の電源機器4cとの組み合わせに対して最大効率で運転させることができる。
 また、本実施形態の電力供給装置3では、他の電源機器4として、商用電源ACからの電源電圧が入力され出力電流Ioaの大きさに関わらず定電圧となる直流電圧を出力電圧Voaとする商用電源用電源機器(第1の電源機器)4aを備え、第2の電源機器4cは、出力電流Iocが大きくなるにつれて単調に小さくなる直流電圧を出力電圧Vocとし、調整手段64は、負荷機器102への電力供給時に出力電流Iocと出力電圧Vocの関係を示す出力電流-出力電圧特性をシフトし、制御部73は、負荷電流検出部70で検出された負荷電流ILが最適電流値Im以上である場合、第2の電源機器4cの出力電圧Vocが第1の電源機器4aの出力電圧Voaに合わせ込まれたときの第2の電源機器4cの出力電流Iocが最適電流値Imになるように、調整手段64に対して第2の電源機器4cの出力電流-出力電圧特性をシフトさせる。
 言い換えれば、本実施形態の電力供給装置3では、副電源ユニットは、商用電源機器(第1の電源機器)4aを含む。商用電源機器4aは、商用電源ACより得た電力を直流電力に変換することで、直流供給線路Wdcに出力する電流(出力電流)Ioaの大きさに関わらず、直流供給線路Wdcに一定の電圧(出力電圧)Voaを与える定電圧制御を行うように構成される。第2の電源機器4cは、直流供給線路Wdcに出力する出力電流Iocが増加するにつれて直流供給線路Wdcに与える出力電圧Vocを単調に下降させ、出力電流Iocが減少するにつれて出力電圧Vocを単調に上昇させる傾斜制御を行うように構成される。制御部73は、計測値I0が最適電流値Imより大きいと判定部72が判定すると、第2の電源機器4cの出力電圧Vocが第1の電源機器4aが直流供給線路Wdcに与える電圧(出力電圧)Voaと等しいときに第2の電源機器4cの出力電流Iocの値が最適電流値Imになるように、第2の電源機器4cに指示値を出力するように構成される。第2の電源機器4cの調整手段64は、制御部73から指示値を受け取ると、傾斜制御の条件を変更することで、出力電圧Vocを変化させることなく出力電流Iocの値を指示値に対応する値に設定するように構成される。
 また、本実施形態によれば、第2の電源機器4cに接続される二次電池162を特性の異なるものに交換したり、二次電池162の特性が使用中に変化したりして最適電流値Im(図11(d)参照)が変化した場合であっても、第2の電源機器4cの出力電流-出力電圧特性をシフトすることによって、第1の電源機器4aの出力電圧Voaに第2の電源機器4cの出力電圧Vocを合わせ込んだときの第2の電源機器4cの出力電流Iocを最適電流値Imに設定することができる。
 また、本実施形態の電力供給装置3では、他の電源機器4として、電源電圧が入力され出力電流Iobが大きくなるにつれて単調に小さくなる直流電圧を出力電圧Vobとする傾斜出力電源機器(第2の電源機器)4bをさらに備え、第2の電源機器4bは、負荷機器102への電力供給時に出力電流Iobと出力電圧Vobの関係を示す出力電流-出力電圧特性をシフトする第2の調整手段64を有し、制御部73は、負荷電流ILの電流値と最適電流値Imとの差分値を第2の電源機器4bの出力電流Iobで補うように、第2の調整手段64に対して第2の電源機器4bの出力電流-出力電圧特性をシフトさせる。
 言い換えれば、本実施形態の電力供給装置3では、副電源ユニットは、傾斜出力電源機器(第2の電源機器)4bを備える。第2の電源機器4bは、直流供給線路Wdcに出力する出力電流(第2出力電流)Iobが増加するにつれて直流供給線路Wdcに与える出力電圧(第2出力電圧)Vobを単調に下降させ、第2出力電流Iobが減少するにつれて第2出力電圧Vobを単調に上昇させる傾斜制御(第2傾斜制御)を行うように構成される。制御部(制御手段)73は、計測値I0が最適電流値Imより大きいと判定部(判定手段)72が判定すると、第2の電源機器4bの第2出力電流Iobの値が、計測値I0と最適電流値Imとの差に等しくなるように、第2の電源機器4bに指示値(第2指示値)を出力するように構成される。第2の電源機器4bは、受け取った第2指示値に基づいて第2出力電流Iobの値を調整する調整手段(第2調整手段)64を備える。第2調整手段64は、制御部73から第2指示値を受け取ると、第2傾斜制御の条件を変更することで、第2出力電圧Vobを変化させることなく第2出力電流Iobの値を第2指示値に対応する値に設定するように構成される。
 また、本実施形態の電力供給装置3では、商用電源用電源機器(第1の電源機器)4aは、負荷電流ILと第2の電源機器4cの出力電流Iocとの差分電流を傾斜出力電源機器(第2の電源機器)4bの出力電流Iobで補ったときの不足電流に相当する出力電流Ioaを出力することを特徴とする。
 言い換えれば、本実施形態の電力供給装置3では、商用電源機器(第1の電源機器)4aは、傾斜出力電源機器(第2の電源機器)4bが出力電流(第2出力電流)Iobの値を指示値(第2指示値)に対応する値に設定できないとき、主電源機器(第2の電源機器)4cの出力電流Iocと第2の電源機器4bの第2出力電流Iobとの合計値と計測値I0との差に等しい値の電流(出力電流)Ioaを直流供給線路Wdcに出力するように構成される。
 このように、本実施形態によれば、負荷電流ILが最適電流値Imより大きい場合に、太陽電池161が接続されている第2の電源機器4bで差分電流を補うことによって、負荷機器の変動に対応した電力供給を行うことができる。このとき、最後に商用電源ACが接続されている第1の電源機器4aで不足電流を補うことによって、最初または第2の電源機器4bよりも先に第1の電源機器4aで不足電流を補う場合に比べて、商用電源ACの消費電力を低減することができる。
 なお、本実施形態では、負荷電流ILが最適電流値Imより大きい場合に、差分電流を第2の電源機器(PVコンバータ)4bで補うが、本実施形態の変形例として、上記差分電流を第2の電源機器4bではなく、第2の電源機器(FCコンバータ)4dで補ってもよい。この場合、第2の電源機器4dは、上記の傾斜出力電源機器に相当し、第2の電源機器4dの調整手段64(図4参照)は、上記の第2調整手段に相当する。
 また、上記差分電流を、第2の電源機器4bと第2の電源機器4dを併用して補ってもよい。この場合、第2の電源機器4bおよび第2の電源機器4dが、上記の傾斜出力電源機器に相当し、第2の電源機器4bおよび第2の電源機器4dの調整手段64(図4参照)が、上記の第2調整手段に相当する。
 (実施形態2)
 実施形態2に係る電力供給装置3は、負荷電流ILが最適電流値Im(図11(d)参照)より小さい場合に、第2の電源機器(PVコンバータ)4bが出力電流Iobを出力するのではなく、第2の電源機器(BATコンバータ)4cが出力電流Iocを出力する点で、実施形態1に係る電力供給装置3と相違する。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
 本実施形態の判定部72は、負荷電流ILが最適電流値Im以上であるか否か、第2の電源機器4cが最適電流値Imの出力電流Iocを出力できるほど二次電池162の残量が十分であるか否かを実施形態1の判定部72と同様に判定するとともに、負荷電流ILの電流値I0が最適電流値Imより小さい場合、第2の電源機器4cが負荷電流ILの電流値I0と同じ大きさの出力電流Iocを出力できるほど二次電池162の残量が十分であるか否かを判定する。具体的には、二次電池162の残量が、予め設定された第2の閾値以上であれば、判定部72は、第2の電源機器4cが負荷電流ILの電流値I0と同じ大きさの出力電流Iocを出力できるほど二次電池162の残量が十分であると判定する。一方、二次電池162の残量が第2の閾値未満であれば、判定部72は、第2の電源機器4cが負荷電流ILの電流値I0と同じ大きさの出力電流Iocを出力できるほど二次電池162の残量が十分ではないと判定する。
 本実施形態に係る電力供給装置3の動作について図10を用いて説明する。まず、実施形態1と同様に、残量検出部71が二次電池162の残量を検出し(図10のS1)、負荷電流検出部70が負荷電流ILの大きさを検出し(S2)、負荷電流ILの電流値I0が最適電流値Im以上であるか否かを判定部72が判定する(S3)。なお、負荷電流ILの電流値I0が最適電流値Im以上であると判定部72が判定した場合の動作は、実施形態1と同様である(S4~S9)。
 一方、ステップS3において、負荷電流ILの電流値I0が最適電流値Imより小さい場合、第2の電源機器(BATコンバータ)4cが負荷電流ILの電流値I0と同じ大きさの出力電流Iocを出力できるほど二次電池162の残量が十分であるか否かを判定部72が判定する(S10)。二次電池162の残量が十分であると判定部72が判定した場合、制御部73は、出力電流Iocが負荷電流ILの電流値I0になるような指示値を第2の電源機器4cに送信する。第2の電源機器4cは、制御部73から指示値を受け取ると、調整手段64(図4参照)を用いて第2の電源機器4cの出力電流-出力電圧特性をシフトし、出力電流Iocを電流値I0として直流機器102に供給する(S11)。
 一方、ステップS10において、第2の電源機器4cが負荷電流ILの電流値I0と同じ大きさの出力電流Iocを出力できるほど二次電池162の残量が十分ではない場合、制御部73は、二次電池162の供給可能範囲内で出力電流Iocが最大電流値となるような指示値を第2の電源機器4cに送信する。第2の電源機器4cは、制御部73から指示値を受け取ると、調整手段64を用いて第2の電源機器4cの出力電流-出力電圧特性をシフトし、出力電流Iocを供給可能範囲内における最大電流値として直流機器102に供給する(S12)。その後、ステップS6を行う。
 以上、本実施形態によれば、負荷電流ILが最適電流値Imより小さい場合に、二次電池162が接続されている第2の電源機器4cを用いることによって、他の電源の負担を低減することができる。
 (実施形態3)
 実施形態3に係る電力供給装置3は、第2の電源機器(PVコンバータ)4bの出力電流Iobを最大にしてもなお不足する場合(I0>I2+Imの場合)に、商用電源ACが接続されている第1の電源機器4aではなく、燃料電池163が接続されている第2の電源機器(FCコンバータ)4dが不足電流を直流機器102に供給する点で、実施形態1に係る電力供給装置3と相違する。なお、実施形態1と同様の構成要素については、同一の符号を付して説明を省略する。
 本実施形態の判定部72は、計測値(負荷電流ILの電流値)I0が最適電流値Imと第2の電源機器4bの出力電流Iobの最大値I2との合計値(I2+Im)よりも大きいか否かを判定するように構成される。
 本実施形態の制御部73は、計測値I0が上記合計値(I2+Im)よりも大きいと判定部72が判定すると、第2の電源機器4dが直流供給線路Wdcに出力する電流(出力電流)Iodの値が、計測値I0と合計値(I2+Im)との差分に等しくなるように、第2の電源機器4dに指示値を出力するように構成される。
 このように、本実施形態の制御部73は、第2の電源機器4bの出力電流Iobを最大にしてもなお不足する場合、第2の電源機器4dの出力電流Iodが不足電流と同じ大きさになるような指示値を第2の電源機器4dに送信する。第2の電源機器4dは、制御部73から指示値を受け取ると、調整手段64(図4参照)を用いて第2の電源機器4dの出力電流-出力電圧特性をシフトして、不足電流と同じ大きさの出力電流Iodを直流機器102に供給する。
 以上、本実施形態によれば、燃料電池163が接続されている第2の電源機器4dで不足電流を補うことによって、交流系統の消費電力をさらに低減することができる。
 なお、第2の電源機器(PVコンバータ)4bの出力電流Iobを最大電流値にしてもなお不足する場合(I0>I2+Imの場合)に、実施形態1では、第1の電源機器4aが不足電流を直流機器102に供給し、実施形態3では、第2の電源機器(FCコンバータ)4dが不足電流を直流機器102に供給するが、上記実施形態の変形例として、第1の電源機器4aと第2の電源機器4dを併用して不足電流を直流機器102に供給してもよい。この場合、第1の電源機器4aのみが不足電流を直流機器102に供給する場合に比べて、交流系統の消費電力を低減することができる。

Claims (5)

  1.  負荷機器が接続される直流供給線路に接続され、上記直流供給線路を通じて上記負荷機器に直流電力を供給する主電源機器および副電源ユニットと、
     上記直流供給線路を流れる電流の値を計測して計測値として出力する負荷電流検出手段と、
     上記負荷電流検出手段より上記計測値を得ると、得られた上記計測値が最適電流値より大きいか否かを判定する判定手段と、
     制御手段と、を備え、
      上記主電源機器は、二次電池より得た電力を利用して上記負荷機器に供給する直流電力を生成するように構成され、
      上記最適電流値は、上記二次電池が上記主電源機器に出力する電力と上記二次電池の内部抵抗による損失との和に対する上記主電源機器が上記直流供給線路に出力する電力の比の値が最大となるときに上記主電源機器が上記直流供給線路に出力する電流の値であり、
      上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記主電源機器が上記直流供給線路に出力する電流の値が上記最適電流値と等しくなるように、上記主電源機器に指示値を出力するように構成され、
      上記主電源機器は、上記制御手段から受け取った上記指示値に基づいて上記直流供給線路に出力する電流の値を調整する調整手段を備える
     ことを特徴とする電力供給装置。
  2.  上記副電源ユニットは、商用電源機器を含み、
     上記商用電源機器は、商用電源より得た電力を直流電力に変換することで、上記直流供給線路に出力する電流の大きさに関わらず、上記直流供給線路に一定の電圧を与える定電圧制御を行うように構成され、
     上記主電源機器は、上記直流供給線路に出力する出力電流が増加するにつれて上記直流供給線路に与える出力電圧を単調に下降させ、上記出力電流が減少するにつれて上記出力電圧を単調に上昇させる傾斜制御を行うように構成され、
     上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記主電源機器の上記出力電圧が上記商用電源機器が上記直流供給線路に与える電圧と等しいときに上記主電源機器の上記出力電流の値が上記最適電流値になるように、上記主電源機器に上記指示値を出力するように構成され、
     上記調整手段は、上記制御手段から上記指示値を受け取ると、上記傾斜制御の条件を変更することで、上記出力電圧を変化させることなく上記出力電流の値を上記指示値に対応する値に設定するように構成される
     ことを特徴とする請求項1記載の電力供給装置。
  3.  上記副電源ユニットは、傾斜出力電源機器を備え、
     上記傾斜出力電源機器は、上記直流供給線路に出力する第2出力電流が増加するにつれて上記直流供給線路に与える第2出力電圧を単調に下降させ、上記第2出力電流が減少するにつれて上記第2出力電圧を単調に上昇させる第2傾斜制御を行うように構成され、
     上記制御手段は、上記計測値が上記最適電流値より大きいと上記判定手段が判定すると、上記傾斜出力電源機器の上記第2出力電流の値が、上記計測値と上記最適電流値との差に等しくなるように、上記傾斜出力電源機器に第2指示値を出力するように構成され、
     上記傾斜出力電源機器は、上記第2指示値に基づいて上記第2出力電流の値を調整する第2調整手段を備え、
     上記第2調整手段は、上記制御手段から上記第2指示値を受け取ると、上記第2傾斜制御の条件を変更することで、上記第2出力電圧を変化させることなく上記第2出力電流の値を上記第2指示値に対応する値に設定するように構成される
     ことを特徴とする請求項2記載の電力供給装置。
  4.  上記商用電源機器は、上記傾斜出力電源機器が上記第2出力電流の値を上記第2指示値に対応する値に設定できないとき、上記主電源機器の上記出力電流と上記傾斜出力電源機器の上記第2出力電流との合計値と上記計測値との差に等しい値の電流を上記直流供給線路に出力するように構成される
     ことを特徴とする請求項3記載の電力供給装置。
  5.  上記副電源ユニットは、上記主電源機器の上記調整手段が上記制御手段から受け取った上記指示値に対応する値の電流を上記直流供給線路に出力している間、上記主電源機器が上記直流供給線路に出力する電流の値と上記最適電流値との差分値に等しい値を持つ電流を上記直流供給線路に出力するように構成される
     ことを特徴とする請求項1記載の電力供給装置。
PCT/JP2010/060684 2009-06-25 2010-06-23 電力供給装置 WO2010150829A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/380,662 US8922060B2 (en) 2009-06-25 2010-06-23 Power supply apparatus
CN201080029771.3A CN102804545B (zh) 2009-06-25 2010-06-23 电力供给装置
SG2011096450A SG177383A1 (en) 2009-06-25 2010-06-23 Power supply apparatus
JP2011519925A JP5369184B2 (ja) 2009-06-25 2010-06-23 電力供給装置
KR1020117031650A KR101245652B1 (ko) 2009-06-25 2010-06-23 전력 공급 장치
EP10792147.0A EP2448086A4 (en) 2009-06-25 2010-06-23 POWER SUPPLY APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009151632 2009-06-25
JP2009-151632 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150829A1 true WO2010150829A1 (ja) 2010-12-29

Family

ID=43386598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060684 WO2010150829A1 (ja) 2009-06-25 2010-06-23 電力供給装置

Country Status (6)

Country Link
US (1) US8922060B2 (ja)
EP (1) EP2448086A4 (ja)
JP (1) JP5369184B2 (ja)
KR (1) KR101245652B1 (ja)
CN (1) CN102804545B (ja)
WO (1) WO2010150829A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227785A (ja) * 2011-04-20 2012-11-15 Panasonic Eco Solutions Switchgear Devices Co Ltd 計測ユニットおよびこれを用いた配電システム
JP2012239286A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd 電子機器および充電制御回路

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069950A1 (en) * 2012-05-22 2015-03-12 Sony Corporation Control system
JP6509191B2 (ja) * 2013-03-22 2019-05-08 シグニファイ ホールディング ビー ヴィ ソースと負荷との間の電力管理
JP5713072B2 (ja) * 2013-09-26 2015-05-07 日本電気株式会社 測定装置、半導体装置およびインピーダンス調整方法
CN104967181B (zh) * 2015-07-15 2017-03-29 杰华特微电子(张家港)有限公司 一种充电设备的充电控制方法和充电控制装置
FR3043274A1 (fr) * 2015-11-03 2017-05-05 Upowa Dispositif electrique autonome a controle differe
CN109196762B (zh) * 2016-06-02 2021-03-16 株式会社村田制作所 电源***
JP6808589B2 (ja) * 2017-07-21 2021-01-06 株式会社東芝 発電システム
JP7097869B2 (ja) * 2018-10-26 2022-07-08 株式会社九電工 再生可能エネルギーを用いた電力供給設備
JP6992737B2 (ja) * 2018-12-14 2022-01-13 オムロン株式会社 設計支援装置及び設計支援プログラム
US11327459B2 (en) * 2019-02-28 2022-05-10 Honeywell International Inc. Multi-device connections for input/output (I/O) terminals
CN110492562B (zh) * 2019-08-16 2020-11-24 珠海格力电器股份有限公司 移动电源设备及其供电控制方法、装置、供电设备
DE102019219904B4 (de) * 2019-12-17 2022-12-22 Conti Temic Microelectronic Gmbh Datennetzwerk mit zumindest drei Leitungszweigen, die über einen gemeinsamen Sternpunkt miteinander verbunden sind, sowie Kraftfahrzeug und Betriebsverfahren für das Datennetzwerk
WO2023073681A1 (en) * 2021-10-26 2023-05-04 Universitas Indonesia Dc-dc converter for household appliances

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248253A (ja) 1997-03-03 1998-09-14 Omron Corp 電源装置
JP2002345161A (ja) * 2001-05-11 2002-11-29 Denso Corp 複数電圧出力型車両用電源装置およびその制御方法
JP2006288129A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 複数の電源を備えた電源システム及びそれを備えた車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520963B2 (ja) * 1989-08-24 1996-07-31 日本電信電話株式会社 燃料電池直流並列運転システム
JP4604389B2 (ja) * 2001-05-09 2011-01-05 株式会社デンソー 燃料電池システム
US6583602B2 (en) 2001-05-11 2003-06-24 Denso Corporation Vehicular power supply apparatus and method of controlling the same
KR100597025B1 (ko) * 2002-01-16 2006-07-04 도요다 지도샤 가부시끼가이샤 전압변환장치의 제어장치와 전압변환방법 및 기억매체, 프로그램, 구동시스템 및 구동시스템을 탑재하는 차량
JP4191625B2 (ja) * 2004-02-05 2008-12-03 マイウェイ技研株式会社 分散電源システム
JP2006262549A (ja) * 2005-03-15 2006-09-28 Densei Lambda Kk 電源装置の系統連携システム
JP2007066757A (ja) * 2005-08-31 2007-03-15 Canon Inc ハイブリッド燃料電池
CN100580603C (zh) * 2006-07-21 2010-01-13 晨星半导体股份有限公司 电源供应装置及提供电压的方法
JP5167645B2 (ja) * 2007-01-30 2013-03-21 富士通株式会社 電子機器および直流電圧変換システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248253A (ja) 1997-03-03 1998-09-14 Omron Corp 電源装置
JP2002345161A (ja) * 2001-05-11 2002-11-29 Denso Corp 複数電圧出力型車両用電源装置およびその制御方法
JP2006288129A (ja) * 2005-04-04 2006-10-19 Toyota Motor Corp 複数の電源を備えた電源システム及びそれを備えた車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448086A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227785A (ja) * 2011-04-20 2012-11-15 Panasonic Eco Solutions Switchgear Devices Co Ltd 計測ユニットおよびこれを用いた配電システム
JP2012239286A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd 電子機器および充電制御回路

Also Published As

Publication number Publication date
US20120091814A1 (en) 2012-04-19
CN102804545B (zh) 2014-11-05
KR20120027431A (ko) 2012-03-21
JPWO2010150829A1 (ja) 2012-12-10
EP2448086A4 (en) 2015-09-16
US8922060B2 (en) 2014-12-30
CN102804545A (zh) 2012-11-28
KR101245652B1 (ko) 2013-03-20
EP2448086A1 (en) 2012-05-02
JP5369184B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5369184B2 (ja) 電力供給装置
JP4966321B2 (ja) 電源供給装置
JP5303032B2 (ja) 電力供給装置
JP5346255B2 (ja) 電源供給装置
JP2009159734A (ja) 直流配電システム
JP5271190B2 (ja) 電源供給装置
JP2009159655A (ja) 直流配電システム
JP5385698B2 (ja) 電源供給装置
JP2009159692A (ja) 電源システムおよびその電源装置
JP2009153338A (ja) 直流配電システム
JP2009165247A (ja) 電源システムおよびその電源装置
JP2009165250A (ja) 直流配電システム
JP2009159693A (ja) 電力供給システムおよびその電源装置
JP2009159728A (ja) 直流配電システム
JP4977003B2 (ja) 回路遮断器
SG177383A1 (en) Power supply apparatus
JP2009159652A (ja) 直流電源装置および直流電源システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029771.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519925

Country of ref document: JP

Ref document number: 9662/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010792147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010792147

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117031650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13380662

Country of ref document: US