WO2010150818A1 - Liquid epoxy resin composition and process for producing same - Google Patents

Liquid epoxy resin composition and process for producing same Download PDF

Info

Publication number
WO2010150818A1
WO2010150818A1 PCT/JP2010/060646 JP2010060646W WO2010150818A1 WO 2010150818 A1 WO2010150818 A1 WO 2010150818A1 JP 2010060646 W JP2010060646 W JP 2010060646W WO 2010150818 A1 WO2010150818 A1 WO 2010150818A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
filler
liquid epoxy
curing agent
Prior art date
Application number
PCT/JP2010/060646
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 金川
洋平 西村
俊幸 牧田
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010150818A1 publication Critical patent/WO2010150818A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention is a mounting system for minimizing the mounting volume of an electronic device, and in a field where a liquid epoxy resin composition is used as a sealing material, in order to suppress warping of the sealed article after curing of the sealing material. Since it is essential to contain a large amount of an inorganic filler having a low coefficient of linear expansion, the present invention relates to an application in which it is necessary to reduce equipment wear during processing such as singulation or grinding. Specifically, a wafer level CSP including a process for sealing and curing the entire wafer, a special semiconductor device with flip-chip connection underfill, a head portion (thermal head) for thermal transfer or thermal sensitivity of a printer, etc.
  • the present invention relates to a liquid epoxy resin composition applied to a field where warpage needs to be minimized, and a manufacturing method thereof.
  • a member such as a semiconductor chip or a substrate constituting an electronic component or a semiconductor device is sealed with a sealing material having electrical insulation.
  • a sealing material a liquid epoxy resin composition containing an epoxy resin is widely used. After applying the sealing material to the surface of the member, the member is sealed by heating and curing. Yes.
  • warping may occur in a sealed article (electronic component or semiconductor device) after the sealing material is cured.
  • a resin cured product containing a large amount of an inorganic filler often increases the wear amount of a dicing blade (dicer) or a grindstone in subsequent processes such as grinding and singulation.
  • dicing blade dicer
  • a grindstone in subsequent processes such as grinding and singulation.
  • wear of blades and grindstones increases running costs and decreases manufacturing tact. There was a problem.
  • the present inventor has proposed to use a filler composed of at least one of porous and hollow particles (eg, porous particles) (see, for example, Patent Document 4), thereby reducing warpage.
  • a filler composed of at least one of porous and hollow particles (eg, porous particles) (see, for example, Patent Document 4), thereby reducing warpage.
  • the amount of wear of the dicing blade and the grindstone can be remarkably reduced while maintaining it, and the above problems have been solved.
  • the filler made of the porous particles or the like has a higher moisture absorption than the filler made of solid particles having no voids inside, and therefore has a high moisture absorption amount.
  • impurity ions entered and remained in the voids, resulting in poor purity.
  • the present invention has been made in view of the above points, and a liquid epoxy resin composition capable of reducing wear of a blade and a grindstone at the time of singulation and grinding, and a moisture absorption amount thereof, and the same
  • the object is to provide a manufacturing method.
  • the liquid epoxy resin composition according to claim 1 of the present invention is a liquid epoxy resin composition containing an epoxy resin, a curing agent and a filler, wherein the filler is selected from porous particles and hollow particles, What is used is that whose surface is coated with a coupling agent after being baked at 1100 ° C.
  • the invention according to claim 2 is characterized in that, in claim 1, the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition.
  • the method for producing a liquid epoxy resin composition according to claim 3 of the present invention is a method for producing a liquid epoxy resin composition containing an epoxy resin, a curing agent and a filler. Selected from particles, fired at 200-1100 ° C., and coated with a coupling agent on the surface, and the filler, the epoxy resin, and a part of the curing agent are blended and mixed. The mixture is heated and then returned to room temperature, and the epoxy resin and the remainder of the curing agent are blended into the mixture and mixed again.
  • the invention according to claim 4 is the invention according to claim 3, together with the remainder of the epoxy resin and the curing agent so that the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition.
  • the inorganic ion exchanger is blended.
  • the filler is not solid particles but is selected from porous particles and hollow particles (such as porous particles).
  • porous particles and hollow particles such as porous particles.
  • moisture and the like are less likely to enter and adsorb inside the porous particles and the like, and the amount of moisture absorption can be reduced.
  • the second aspect of the invention by capturing the impurity ions contained in the liquid epoxy resin composition with the inorganic ion exchanger, it is possible to suppress the occurrence of ion migration and improve the insulation reliability. It is.
  • the epoxy resin, the curing agent and the filler to be used are not blended all at once, but one of the epoxy resin and the curing agent to be used.
  • the compatibility (dispersibility) of the filler with the resin component can be increased.
  • the filler is not solid particles, but is selected from porous particles and hollow particles (porous particles, etc.), so that blades and grindstones wear during singulation and grinding.
  • porous particles and the like are fired at 200 to 1100 ° C., and the surface thereof is coated with a coupling agent, moisture and the like are contained in the porous particles and the like. Hardly incident and adsorbed, is capable of reducing the moisture absorption.
  • the fourth aspect of the invention by trapping impurity ions contained in the liquid epoxy resin composition with an inorganic ion exchanger, the occurrence of ion migration can be suppressed and insulation reliability can be improved. It is.
  • the liquid epoxy resin composition contains an epoxy resin, a curing agent and a filler, and is applied as a sealing material by applying to the surface of a member constituting an electronic component or a semiconductor device and heating.
  • the epoxy resin composition is liquid at room temperature.
  • the filler is selected from porous particles and hollow particles, and is fired at 200 to 1100 ° C. and then coated on the surface with a coupling agent.
  • the filler is not solid particles, but is selected from porous particles and hollow particles (porous particles, etc.), so that the blades and grindstones during singulation and grinding are used. Abrasion can be reduced.
  • the porous particles and the hollow particles are particles having a plurality of or one void inside. Details of the baking treatment at 200 to 1100 ° C. and the coating treatment of the filler surface with the coupling agent will be described later.
  • porous particles for example, various inorganic fillers such as silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, calcium carbonate and the like can be used.
  • silica silica
  • alumina aluminum nitride
  • boron nitride silicon nitride
  • silicon carbide calcium carbonate and the like
  • amorphous silica because amorphous silica has the lowest linear expansion coefficient among inorganic fillers.
  • porous particles and the like are spherical, the increase in viscosity can be further suppressed, and damage to the wafer surface (wafer circuit surface) on which the circuit is formed can be reduced. Moreover, since the porous particles and the like are amorphous silica having a small coefficient of thermal expansion, the linear expansion coefficient of the cured product can be further reduced.
  • the fine pores on the particle surface should be blocked by heat treatment at a temperature of 500 ° C. or less in advance. Is preferred.
  • the surface area of the porous particles and the like are blocked by heat treatment, so that the specific surface area is suppressed, and the increase in resin viscosity, thixo index and increase in moisture absorption can be suppressed. It can be done.
  • the surface area is suppressed in this way, the increase in viscosity and the influence of moisture absorption can be suppressed, and there is a concern that the compounding components are trapped in the pores and the reactivity is affected like GPC (Gel Permeation Chromatography). It will disappear.
  • the temperature of the heat treatment is 500 ° C. or less as described above, the hardness of the shell forming the individual porous particles of the filler is increased. It is possible to reduce cracking (cracking) in the mixing process at the time.
  • the porous particles with the fine pores closed on the surface are fired at a low temperature of 200 to 1100 ° C. using an electric furnace or the like.
  • This treatment time is preferably 2 to 24 hours.
  • the firing temperature is lower than 200 ° C. and the treatment time is shorter than 2 hours, the strength of the porous particles constituting the filler can be kept low, so that it has excellent low wear, but the moisture absorption rate increases, The amount of impurity ions such as ammonium ions may increase.
  • the firing temperature is higher than 1100 ° C. and the treatment time is longer than 24 hours, the moisture absorption rate and the amount of impurity ions are reduced, but the wear amount of the blade and the like may be increased.
  • the void volume ratio of the filler is preferably 10 to 70%. Thereby, it is possible to obtain a higher effect of reducing the wear of the blade and the like while maintaining the strength of the filler. However, if the void volume ratio of the filler is less than 10%, the above-described wear reduction effect may not be sufficient, and conversely, if the void deposition rate of the filler exceeds 70%, the strength of the filler is reduced. There is a risk. If the void volume ratio exceeds 50%, the surface of the filler is treated with epoxy silane or amino silane to improve the familiarity with the resin component for the purpose of suppressing cracking during compounding and mixing. It is also possible to take a method of dispersing by stirring.
  • the maximum particle size of the porous particles constituting the filler is preferably 1 to 40 ⁇ m.
  • a sealing resin layer having a thickness of about 50 ⁇ m can be formed without any problem while reducing the resin viscosity and thixotropy.
  • the fluidity can be controlled by appropriately adjusting the distribution within this range.
  • the maximum particle size of the porous particles or the like is less than 1 ⁇ m, the specific surface area becomes extremely large, which may significantly increase the viscosity and thixotropy of the liquid epoxy resin composition.
  • the maximum particle size exceeds 40 ⁇ m when a sealing resin layer having a thickness of about 50 ⁇ m is formed, porous particles or the like may penetrate this sealing resin layer, and the sealing effect may be impaired.
  • the content of the filler is preferably 60 to 90% by mass with respect to the total amount of the liquid epoxy resin composition.
  • the filler content is 60% by mass or more, the linear expansion coefficient of the cured product can be further reduced, and the filler content is 90% by mass or less.
  • molding can fully be ensured.
  • the content of the filler is less than 60% by mass, the effect of reducing the linear expansion coefficient of the cured product may not be sufficiently obtained.
  • the solvent component must be increased.
  • the workability is remarkably reduced in the direction of increasing thixotropy.
  • the filler may be excessive after heat curing (the resin component is insufficient), and the filler may be exposed on the surface of the cured product, which may impair the filling effect.
  • a part of the filler may be solid particles.
  • the content of the porous particles and the like is preferably 40% by mass or more (the upper limit is 100% by mass) with respect to the total amount of the filler.
  • the content of the porous particles or the like is less than 40% by mass, the above effects may not be sufficiently obtained.
  • the void volume ratio of the filler is in the range of 10 to 70%, if the content of such porous particles is less than 40% by mass, a sufficient wear reduction effect may not be obtained. It is presumed that this is because cracking or the like is remarkably broken and the effect of reducing wear is not exhibited even when a filler with a high void volume ratio is filled at a low ratio in the whole filler.
  • the porous particles after the baking treatment at 200 to 1100 ° C. are subjected to a treatment for coating the surface with a coupling agent.
  • a treatment for coating the surface with a coupling agent As described above, after the porous particles and the like are fired at 200 to 1100 ° C., the surface is coated with the coupling agent, so that moisture and the like are less likely to enter and adsorb inside the porous particles and the like.
  • the compatibility (dispersibility) with the resin component can also be improved.
  • the coupling agent a silane coupling agent, a titanate coupling agent, or the like can be used.
  • silane coupling agents include epoxy silanes such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ Aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltri Aminosilane such as ethoxysilane, mercaptosilane such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyprop
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl / aminoethyl) titanate, diisopropyl bis (dioctyl phosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate be able to.
  • the content of the coupling agent is preferably 0.1 to 1% by mass with respect to the total amount of the liquid epoxy resin composition, or 0.1 to 2% by mass with respect to the total amount of the filler.
  • the coating treatment of the surface of the porous particles or the like with the coupling agent can be performed by a wet method or a dry method.
  • epoxy resin is contained as the main resin component.
  • reliability such as reflow heat resistance
  • a thermoplastic resin is used. That is, in the method of forming a resin layer by dissolving an acrylic thermoplastic resin or bismaleimide in a solvent and fluidizing it, and then evaporating the solvent after curing, the amount of solvent added is reduced while curing shrinkage is reduced. Is unfavorable because of an increase.
  • high reliability as a sealing material can be realized by using an epoxy resin.
  • epoxy resins bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, naphthalene ring-containing epoxy resins and their hydrogenated epoxy resins, alicyclic epoxy resins, polyalkylene glycol skeleton-containing epoxies It is preferable to use at least one of resins (for example, a polypropylene skeleton-containing epoxy resin).
  • resins for example, a polypropylene skeleton-containing epoxy resin.
  • the low-viscosity alicyclic epoxy resin has low reactivity with a phenol-based curing agent described later, a high reaction temperature of 180 ° C. and a sufficient curing time (3 hours) are required.
  • an epoxy resin having a polypropylene glycol skeleton tends to have a low Tg, it is necessary to add an appropriate amount if necessary.
  • phenolic curing agent a compound having a plurality of phenolic hydroxyl groups in one molecule
  • Tg is set low
  • hydrolysis is unlikely to occur and moisture resistance reliability can be improved.
  • the use of a phenol-based curing agent is preferable because hydrolysis of the cured product does not occur, and thus the moisture resistance is improved. For example, it is easy to maintain the reinforcing effect of the post electrode protruding from the wafer surface.
  • the curing agent component may volatilize and cause a curing failure, but also in this respect, it is difficult to vaporize with a phenolic curing agent. Easy to match with this process.
  • the liquid epoxy resin composition preferably contains an elastomer component such as silicone rubber for the purpose of suppressing warpage of the cured product.
  • an elastomer component such as silicone rubber for the purpose of suppressing warpage of the cured product.
  • the cured resin At a temperature higher than the glass transition temperature (Tg), the cured resin is in a rubber-like region and has a low elastic modulus, and bringing this Tg close to room temperature is an extremely effective technique for reducing the elastic modulus (for example, (See JP 2004-027005 A and JP 2006-232950 A).
  • the elastic modulus is remarkably lowered, such as being reduced by two orders of magnitude or more at the boundary of Tg, and control is difficult. If the elastic modulus of the cured resin at room temperature is less than 1 GPa, not only the mechanical strength that is originally intended for sealing is not sufficient, but also the blade and grindstone wear during singulation and grinding, and electrode metal grinding There is a tendency that edge cracks and chipping (chipping) occur easily during sagging and dicing.
  • the content of the silicone rubber elastomer is preferably 2 to 5% by mass with respect to the total amount of the liquid epoxy resin composition. If the content of the silicone rubber elastomer is less than 2%, the effect due to the addition of the elastomer may not be sufficient. Conversely, if the content of the silicone rubber elastomer is more than 5%, the hardness of the cured resin is hardly exhibited. There is a fear.
  • the only effective way to keep the coefficient of linear expansion low is to add fillers. Although it is possible to keep the coefficient of linear expansion low according to the amount of filler added, it is necessary to adjust it appropriately by adding a solvent because the viscosity increases. In this case, the addition amount of the solvent must be within a range not exceeding 10% by mass with respect to the total amount of the liquid epoxy resin composition.
  • the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition.
  • a cation exchange type one containing Zr as a main component
  • an anion exchange type one containing Mg and Al as main components
  • both ion exchange types Zr and Bi are mainly used. Any of the above may be used.
  • these inorganic ion exchangers may use only 1 type, and may mix and use 2 or more types.
  • the occurrence of ion migration can be suppressed and the insulation reliability can be improved.
  • the content of the inorganic ion exchanger is less than 0.5% by mass, the above effects may not be sufficiently obtained.
  • the content of the inorganic ion exchanger is more than 3.0% by mass, the moisture absorption amount of the resin increases and the insulation reliability decreases, or the viscosity of the composition increases and the workability decreases. There is a risk.
  • other substances can be blended as necessary as long as the purpose is not impaired.
  • examples of such substances include dispersion stabilizers, flame retardants, adhesion promoters, thixotropic agents, colorants, diluents, antifoaming agents, and the like.
  • a liquid epoxy resin composition can be manufactured by mixing each component with a stirrer-type disperser, dispersing and mixing with a bead mill, or dispersing and mixing with three rolls. It is preferable to manufacture by a method.
  • a filler containing porous particles whose surface is coated with a coupling agent, an epoxy resin to be used, and a part of the curing agent are preliminarily blended and mixed.
  • the total amount of the epoxy resin and the curing agent used for the pre-blending is preferably 5 to 30% by mass with respect to the total amount of the filler used, and the mass ratio of the epoxy resin and the curing agent at this time is 5 It is preferably 1 to 1: 1.
  • the mixture is usually in a state close to a sheet.
  • the mixture is heated at a temperature of 30 to 90 ° C. for 2 to 24 hours and then returned to room temperature (20 to 30 ° C.).
  • the liquid epoxy resin composition produced as described above is used in applications that require less warping of the sealed article after curing, specifically, a wafer level CSP including a process for sealing and curing the entire wafer. It can also be suitably used in fields where warpage needs to be minimized, such as a special semiconductor device with flip-chip connection underfill, or a head portion (thermal head) for thermal transfer or heat sensitivity of a printer.
  • the semiconductor device is a resin obtained by applying the liquid epoxy resin composition produced as described above to the surface of various members 1 such as a resin substrate, a ceramic substrate, or a wafer using a reduced pressure printing machine, and heating and curing the composition.
  • the layer 2 after forming the layer 2, as shown in FIG. 1, it can be manufactured by a method of dividing into pieces by dicing or the like using a dicing saw 3. According to such a manufacturing method, a semiconductor device with low warpage and high sealing reliability can be obtained with low manufacturing cost and short manufacturing tact, and the inside of the resin layer 2 formed of a liquid epoxy resin composition It is possible to prevent the voids from remaining.
  • the resin layer 2 contains a filler containing porous particles and the like, the wear of the blade of the dicing saw 3 can be reduced.
  • the liquid epoxy resin composition As a method for applying the liquid epoxy resin composition to the surfaces of various members, in addition to vacuum printing, atmospheric pressure screen printing, coating with a spin coater, dispensing, or molding with a mold can be used.
  • the spin coating method it is preferable to suppress the viscosity to 10 Pa ⁇ s or less by increasing the amount of the solvent added.
  • the molding method using a mold if a solvent is added, voids may remain in the cured product. It is preferable to suppress the viscosity to about 200 Pa ⁇ s without containing a solvent.
  • the best method for avoiding inclusion of voids in the resin layer is a method using a vacuum printer. In this case, it is necessary to ensure continuous printability by shifting the boiling point of the solvent to the high boiling point side.
  • the viscosity of the liquid epoxy resin composition is preferably 200 Pa ⁇ s or less. If it exceeds 200 Pa ⁇ s, the transfer of the resin to the printing object is not sufficient, and it may be necessary to repeat squeezing. Moreover, even if it can be suppressed to 200 Pa ⁇ s or less by adding a solvent, if the addition amount exceeds 10% by mass, the solvent remains after curing and the cured product becomes brittle, or a large amount of solvent volatilizes. This is not preferable because voids may occur in the cured product.
  • the resin layer 2 is disposed on the surface 5 on the semiconductor circuit side of the semiconductor chip 4 such as a silicon chip, and a large number of electrodes 6 connected to the semiconductor chip 4 form the resin layer 2.
  • a liquid epoxy resin composition can be suitably used to form the resin layer 2 disposed on the semiconductor circuit side surface 5 of the semiconductor chip 4.
  • the semiconductor device of this form is in a category generally called CSP (chip scale package or chip size package), and is processed into a CSP at the stage of a silicon wafer before the semiconductor chip 4 is separated. It is called WL (wafer level) or WS (wafer scale) CSP, and is abbreviated as WL-CSP or WS-CSP.
  • the resin layer 2 is passed through the pad portion 7 on the wafer at the position where the bump is formed when the CSP is formed.
  • the metal as the post 8 is formed.
  • the post 8 is formed by printing a flux on the pad portion 7 and placing a solder ball on the pad portion 7 for reflow, or printing a solder paste on the pad portion 7.
  • the liquid epoxy resin composition is printed on the wafer on which the metal as the post 8 is formed, and is cured by heating.
  • the printing is preferably by reduced pressure printing.
  • the heat curing may be performed at normal pressure or under pressure, but the voids in the cured product can be reduced under pressure.
  • the curing conditions include two-step curing in which the first-stage curing is performed at 80 to 140 ° C. for 30 minutes to 2 hours and then the second-stage curing is performed at 150 to 210 ° C. for 1 to 6 hours.
  • a compound having a phenolic hydroxyl group is used as a curing agent, in addition to such a two-step curing, a one-step curing at 100 to 210 ° C. for 30 minutes to 6 hours can be employed.
  • the wafer after curing of the liquid epoxy resin composition is polished from the resin layer 2 side, and the height of the post 8 and the resin layer 2 is made uniform. If necessary, a step of polishing the back surface of the wafer to reduce the total thickness may be employed.
  • the polished wafer has a cured product of the liquid epoxy resin composition having an appropriate Tg, elastic modulus, and linear expansion coefficient, so that, for example, a 50 ⁇ m thick resin layer 2 is formed on an 8 inch diameter 250 ⁇ m thick wafer. It is possible to realize a small warp that results in a warp of 1 mm or less when it is present, and it is also possible to suppress the warp amount after reflow to 1 mm or less.
  • a liquid epoxy resin composition or other resin may be applied and cured on the back surface of the wafer.
  • CSP bumps are formed using solder or the like. Specifically, a flux is printed on the end face of the post 8 exposed on the surface of the resin layer 2, a solder ball is placed thereon using a metal mask and reflowed, or a solder paste is printed on the post 8. There is a method of reflowing.
  • a CSP provided with metal electrodes 6 composed of posts 8 and bumps 9 can be obtained.
  • This CSP is excellent in temperature cycleability and moisture resistance reliability because a liquid epoxy resin composition with good adhesion and appropriate linear expansion coefficient is used, and because the internal stress is low due to small warpage. It is.
  • the resin layer is formed by the cured product of the liquid epoxy resin composition described above, warpage as a semiconductor device can be reduced, The stress can be lowered to achieve excellent temperature cycleability and moisture resistance reliability, and the amount of warpage due to the thermal history during reflow can be reduced.
  • Examples 1 to 10 and Comparative Examples 1 to 3 The liquid epoxy resin compositions of Examples 1 to 10 and Comparative Examples 1 to 3 were produced using the raw material blending amounts (unit: parts by mass) and production methods shown in Table 1 and Table 2 below.
  • Amorphous silica solid particles, manufactured by MRC Unitech Co., Ltd., product number “QS9”, average particle size 9 ⁇ m, maximum particle size 35 ⁇ m
  • Amorphous silica solid particles, manufactured by Admatechs Co., Ltd., product number “SO25H”, average particle size 0.6 ⁇ m, maximum particle size 3.5 ⁇ m
  • Porous silica manufactured by JGC Catalysts & Chemicals Co., Ltd., product number “functional silica microbead N15”, porous amorphous spherical amorphous silica, clogged fine pores on the surface, average particle size 10 ⁇ m, maximum particle size 30 ⁇ m , Void volume ratio 20%
  • Hollow silica manufactured by Denki Kagaku Kogyo Co., Ltd., product number “DBS-1030”, spherical amorphous silica as hollow particles, clogged fine pores on the surface, average particle size 10
  • Viscosity of liquid epoxy resin composition The viscosity was measured at room temperature (25 ° C) using a B-type viscometer.
  • Tg Glass transition temperature Evaluation was made at a bending mode of 10 Hz of a viscoelastic spectrometer (DMA). The test piece was formed by heating the liquid epoxy resin composition at 130 ° C. for 1 hour and then heating at 180 ° C. for 3 hours, and was cut into 5 mm width ⁇ 50 mm length ⁇ 0.2 mm thickness. It was. The temperature rise was measured from ⁇ 60 ° C. to 260 ° C. at 2 ° C./min.
  • DMA viscoelastic spectrometer
  • the liquid epoxy resin composition is cured to form a test piece having a length of 70 mm or more, a length of 10 mm, and a thickness of 1 to 3 mm. did.
  • the liquid epoxy resin composition was cured by heating at 130 ° C. for 1 hour and then heating at 180 ° C. for 3 hours.
  • Warpage A liquid epoxy resin composition was applied to a surface of a 5-inch wafer having a thickness of 200 ⁇ m to a thickness of 110 ⁇ m and heated to a thickness of 200 ⁇ m, heated at 130 ° C. for 1 hour, and then heated at 180 ° C. for 3 hours to be cured. It was. After the liquid epoxy resin composition was cured, the amount of warpage was evaluated by measuring a maximum value obtained by warping in the vertical direction (z-axis direction) while pressing one point on the circumferential edge.
  • Impurity ion amount A test piece formed in the same manner as in (6) was pulverized, and the pulverized product was collected to obtain a measurement sample. After 5 g of this measurement sample was moistened with 4 ml of methanol, 46 ml of pure water was added. Next, this was subjected to a pressure cooker test (PCT) under the conditions of 121 ° C., 100% RH, 0.20 MPa (2 atm) and 20 hours, followed by filtration. Then, using the filtrate as a test solution, an ion chromatograph was used to measure the amounts of impurities such as anions (Cl ⁇ ions) and cations (Na + and NH 4+ ions).
  • PCT pressure cooker test
  • Blade wear amount As shown in FIG. 1, a liquid epoxy resin composition is applied to the surface of the member 1 (200 ⁇ m thick wafer) and heated to form a 200 ⁇ m thick resin layer 2, and a dicing saw 3 is used. The amount of blade wear during singulation was measured.
  • the equipment used, the blade used, and the processing conditions are as follows.
  • Example 1-8 the inorganic ion exchangers of the anion-exchange type, as the impurity ions Cl - it is possible to reduce the amount of ions, also in Example 9, the inorganic ion exchangers of the cation exchange type In addition, the amount of Na + and NH 4+ ions as impurity ions can be kept low, and in Example 10, the amount of Cl ⁇ , Na + and NH 4+ ions as impurity ions can be reduced by using both ion exchange type inorganic ion exchangers. It was confirmed that can be kept low.
  • the blade wear amount is small, whereas in Comparative Example 2 using a filler fired at 1200 ° C. and Comparative Example 3 using a filler consisting only of solid particles, the blade wear amount was found to be significantly larger.
  • Example 1 the insulation reliability is good, whereas the filler surface coating treatment with a coupling agent, the firing treatment at 200 to 1100 ° C., and the heat treatment during the production of the liquid epoxy resin composition In Comparative Example 1 in which neither was performed, it was confirmed that the insulation reliability was extremely poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a liquid epoxy resin composition with which it is possible to reduce the wear of a blade or grindstone used for cutting into pieces or grinding and which can reduce moisture absorption. The liquid epoxy resin composition comprises an epoxy resin, a hardener, and a filler. The filler is one obtained by burning, at 200-1,100ºC, particles selected from porous particles and hollow particles and then coating the surface thereof with a coupling agent.

Description

液状エポキシ樹脂組成物及びその製造方法Liquid epoxy resin composition and method for producing the same
 本発明は、電子機器の実装体積を極小化するための実装システムで、液状エポキシ樹脂組成物を封止材として用いる分野において、封止材の硬化後の封止物品の反りを低く抑えるために線膨張率の低い無機充填材を多量に含有することが必須であるため、個片化や研削などの加工時の設備磨耗を低減することが必要とされる用途に関する発明である。具体的には、ウェハー全体を封止し硬化するプロセスを含むウェハーレベルCSPや、アンダーフィルしたフリップチップ接続の特殊な半導体装置や、プリンタの熱転写あるいは感熱のためのヘッド部分(サーマルヘッド)など、反りを極小化する必要がある分野などに適用される液状エポキシ樹脂組成物及びその製造方法に関するものである。 The present invention is a mounting system for minimizing the mounting volume of an electronic device, and in a field where a liquid epoxy resin composition is used as a sealing material, in order to suppress warping of the sealed article after curing of the sealing material. Since it is essential to contain a large amount of an inorganic filler having a low coefficient of linear expansion, the present invention relates to an application in which it is necessary to reduce equipment wear during processing such as singulation or grinding. Specifically, a wafer level CSP including a process for sealing and curing the entire wafer, a special semiconductor device with flip-chip connection underfill, a head portion (thermal head) for thermal transfer or thermal sensitivity of a printer, etc. The present invention relates to a liquid epoxy resin composition applied to a field where warpage needs to be minimized, and a manufacturing method thereof.
 従来より、電子部品や半導体装置を構成する半導体チップや基板等の部材を電気絶縁性を有する封止材で封止することが行われている。このような封止材としてはエポキシ樹脂を配合した液状エポキシ樹脂組成物が汎用されており、封止材を上記部材の表面に塗布した後、加熱硬化させることにより部材を封止するようにしている。しかしながら、従来では、封止材の硬化後に封止物品(電子部品や半導体装置)に反りが発生することがあった。この反りを低減するためには封止材とこれが塗布された部材との間の応力を極小化することが必要であり、封止材と部材との線膨張率の差を極小化するか、線膨張率差があっても応力とならないように弾性率を低く抑えるかのいずれかである(例えば、特許文献1-3参照)。硬化後の封止材の低線膨張率化は、シリカやアルミナなどの金属酸化物フィラーの含有量をできるだけ高めるというのが唯一の方法である。これは、液状の封止材の流動性を低下させて作業性を悪くするが、溶剤など硬化物中に残らない液体成分を適切に含有させることができる場合には流動性との両立は可能となる。 Conventionally, a member such as a semiconductor chip or a substrate constituting an electronic component or a semiconductor device is sealed with a sealing material having electrical insulation. As such a sealing material, a liquid epoxy resin composition containing an epoxy resin is widely used. After applying the sealing material to the surface of the member, the member is sealed by heating and curing. Yes. However, conventionally, warping may occur in a sealed article (electronic component or semiconductor device) after the sealing material is cured. In order to reduce this warp, it is necessary to minimize the stress between the sealing material and the member to which it is applied, or minimize the difference in linear expansion coefficient between the sealing material and the member, Either elastic modulus is kept low so that stress does not occur even if there is a difference in linear expansion coefficient (see, for example, Patent Documents 1-3). The only way to reduce the linear expansion coefficient of the encapsulant after curing is to increase the content of a metal oxide filler such as silica or alumina as much as possible. This lowers the fluidity of the liquid encapsulant and degrades the workability, but it can be compatible with fluidity if it can properly contain liquid components such as solvents that do not remain in the cured product. It becomes.
 しかしながら、多量の無機充填材を含有した樹脂硬化物は研削、個片化等のその後の工程でダイシングブレード(ダイサー)や砥石の磨耗量が増大する場合が多い。そして、樹脂基板、セラミック基板、ウェハー等に一括樹脂封止されたパッケージの個片化や樹脂表面研削の工程においてブレードや砥石の磨耗はランニングコストを増加させたり、製造タクトの低下を招いたりするといった問題があった。 However, a resin cured product containing a large amount of an inorganic filler often increases the wear amount of a dicing blade (dicer) or a grindstone in subsequent processes such as grinding and singulation. And, in the process of singulation of a package that is resin-encapsulated on a resin substrate, a ceramic substrate, a wafer, etc. and the grinding of the resin surface, wear of blades and grindstones increases running costs and decreases manufacturing tact. There was a problem.
 そこで、本発明者は、充填材として多孔質と中空の少なくともいずれか一方の粒子(多孔質粒子等)からなるものを用いることを提案し(例えば、特許文献4参照)、これにより低反りを維持しながらダイシングブレードや砥石の磨耗量を画期的に低く抑えることができ、上記問題の解決に至っている。 In view of this, the present inventor has proposed to use a filler composed of at least one of porous and hollow particles (eg, porous particles) (see, for example, Patent Document 4), thereby reducing warpage. The amount of wear of the dicing blade and the grindstone can be remarkably reduced while maintaining it, and the above problems have been solved.
 しかしながら、反面、上記多孔質粒子等からなる充填材は、内部に空隙を有しない中実粒子からなる充填材と比べると、内部に空隙を有しているため吸湿量が高くなり、また内部の空隙に水分のほか不純物イオンが浸入・残留して純度が劣るなどの問題があった。 However, on the other hand, the filler made of the porous particles or the like has a higher moisture absorption than the filler made of solid particles having no voids inside, and therefore has a high moisture absorption amount. In addition to moisture, impurity ions entered and remained in the voids, resulting in poor purity.
特開2004-027005号公報JP 2004-027005 A 特開2006-232950号公報JP 2006-232950 A 特許第3794349号公報Japanese Patent No. 3794349 特開2008-156383号公報JP 2008-156383 A
 本発明は上記の点に鑑みてなされたものであり、個片化や研削時のブレードや砥石の磨耗を低減することができると共に、吸湿量を低減することができる液状エポキシ樹脂組成物及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above points, and a liquid epoxy resin composition capable of reducing wear of a blade and a grindstone at the time of singulation and grinding, and a moisture absorption amount thereof, and the same The object is to provide a manufacturing method.
 本発明の請求項1に係る液状エポキシ樹脂組成物は、エポキシ樹脂、硬化剤及び充填材を含有する液状エポキシ樹脂組成物において、前記充填材として、多孔質粒子及び中空粒子から選ばれ、200~1100℃で焼成処理された後、カップリング剤で表面が被覆されたものが用いられていることを特徴とするものである。 The liquid epoxy resin composition according to claim 1 of the present invention is a liquid epoxy resin composition containing an epoxy resin, a curing agent and a filler, wherein the filler is selected from porous particles and hollow particles, What is used is that whose surface is coated with a coupling agent after being baked at 1100 ° C.
 請求項2に係る発明は、請求項1において、液状エポキシ樹脂組成物全量に対して無機イオン交換体が0.5~3.0質量%含有されていることを特徴とするものである。 The invention according to claim 2 is characterized in that, in claim 1, the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition.
 本発明の請求項3に係る液状エポキシ樹脂組成物の製造方法は、エポキシ樹脂、硬化剤及び充填材を含有する液状エポキシ樹脂組成物を製造する方法において、前記充填材として、多孔質粒子及び中空粒子から選ばれ、200~1100℃で焼成処理された後、カップリング剤で表面が被覆されたものを用いると共に、前記充填材と、前記エポキシ樹脂及び硬化剤の一部とを配合して混合し、この混合物を加熱した後に室温に戻し、前記混合物に前記エポキシ樹脂及び硬化剤の残部を配合して再度混合することを特徴とするものである。 The method for producing a liquid epoxy resin composition according to claim 3 of the present invention is a method for producing a liquid epoxy resin composition containing an epoxy resin, a curing agent and a filler. Selected from particles, fired at 200-1100 ° C., and coated with a coupling agent on the surface, and the filler, the epoxy resin, and a part of the curing agent are blended and mixed. The mixture is heated and then returned to room temperature, and the epoxy resin and the remainder of the curing agent are blended into the mixture and mixed again.
 請求項4に係る発明は、請求項3において、液状エポキシ樹脂組成物全量に対して無機イオン交換体が0.5~3.0質量%含有されるように前記エポキシ樹脂及び硬化剤の残部と共に前記無機イオン交換体を配合することを特徴とするものである。 The invention according to claim 4 is the invention according to claim 3, together with the remainder of the epoxy resin and the curing agent so that the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition. The inorganic ion exchanger is blended.
 本発明の請求項1に係る液状エポキシ樹脂組成物によれば、充填材として、中実粒子ではなく、多孔質粒子及び中空粒子から選ばれるもの(多孔質粒子等)が用いられていることによって、個片化や研削時のブレードや砥石の磨耗を低減することができると共に、前記多孔質粒子等が200~1100℃で焼成処理された後、その表面がカップリング剤で被覆されていることによって、多孔質粒子等の内部に水分等が浸入・吸着しにくくなり、吸湿量を低減することができるものである。 According to the liquid epoxy resin composition according to claim 1 of the present invention, the filler is not solid particles but is selected from porous particles and hollow particles (such as porous particles). In addition, it is possible to reduce wear of blades and grindstones during singulation and grinding, and after the porous particles and the like are fired at 200 to 1100 ° C., the surface thereof is coated with a coupling agent. Thus, moisture and the like are less likely to enter and adsorb inside the porous particles and the like, and the amount of moisture absorption can be reduced.
 請求項2に係る発明によれば、液状エポキシ樹脂組成物中に含まれる不純物イオンを無機イオン交換体で捕捉することによって、イオンマイグレーションの発生を抑えて、絶縁信頼性を向上させることができるものである。 According to the second aspect of the invention, by capturing the impurity ions contained in the liquid epoxy resin composition with the inorganic ion exchanger, it is possible to suppress the occurrence of ion migration and improve the insulation reliability. It is.
 本発明の請求項3に係る液状エポキシ樹脂組成物の製造方法によれば、使用するエポキシ樹脂、硬化剤及び充填材の全部を一度に配合するのではなく、使用するエポキシ樹脂及び硬化剤の一部と充填材とを配合し、一旦加熱して室温に戻した後に残部のエポキシ樹脂及び硬化剤を配合することによって、充填材の樹脂成分との相溶性(分散性)を高めることができるものであり、また充填材として、中実粒子ではなく、多孔質粒子及び中空粒子から選ばれるもの(多孔質粒子等)が用いられていることによって、個片化や研削時のブレードや砥石の磨耗を低減することができると共に、前記多孔質粒子等が200~1100℃で焼成処理された後、その表面がカップリング剤で被覆されていることによって、多孔質粒子等の内部に水分等が浸入・吸着しにくくなり、吸湿量を低減することができるものである。 According to the method for producing a liquid epoxy resin composition according to claim 3 of the present invention, the epoxy resin, the curing agent and the filler to be used are not blended all at once, but one of the epoxy resin and the curing agent to be used. By mixing the part and filler, heating once to room temperature, and then blending the remaining epoxy resin and curing agent, the compatibility (dispersibility) of the filler with the resin component can be increased. In addition, the filler is not solid particles, but is selected from porous particles and hollow particles (porous particles, etc.), so that blades and grindstones wear during singulation and grinding. In addition, after the porous particles and the like are fired at 200 to 1100 ° C., and the surface thereof is coated with a coupling agent, moisture and the like are contained in the porous particles and the like. Hardly incident and adsorbed, is capable of reducing the moisture absorption.
 請求項4に係る発明によれば、液状エポキシ樹脂組成物中に含まれる不純物イオンを無機イオン交換体で捕捉することによって、イオンマイグレーションの発生を抑えて、絶縁信頼性を向上させることができるものである。 According to the fourth aspect of the invention, by trapping impurity ions contained in the liquid epoxy resin composition with an inorganic ion exchanger, the occurrence of ion migration can be suppressed and insulation reliability can be improved. It is.
個片化するときの様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode when dividing into pieces. 半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of a semiconductor device.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明において液状エポキシ樹脂組成物は、エポキシ樹脂、硬化剤及び充填材を含有するものであり、電子部品や半導体装置を構成する部材の表面に塗布し、加熱することにより封止材として使用される室温で液状のエポキシ樹脂組成物である。そして、上記充填材としては、多孔質粒子及び中空粒子から選ばれ、200~1100℃で焼成処理された後、カップリング剤で表面が被覆されたものを用いるものである。このように、充填材としては、中実粒子ではなく、多孔質粒子及び中空粒子から選ばれるもの(多孔質粒子等)が用いられていることによって、個片化や研削時のブレードや砥石の磨耗を低減することができるものである。なお、多孔質粒子及び中空粒子とは、それぞれ内部に複数又は1つの空隙を有する粒子のことである。また、200~1100℃の焼成処理及びカップリング剤による充填材表面の被覆処理の詳細については後述する。 In the present invention, the liquid epoxy resin composition contains an epoxy resin, a curing agent and a filler, and is applied as a sealing material by applying to the surface of a member constituting an electronic component or a semiconductor device and heating. The epoxy resin composition is liquid at room temperature. The filler is selected from porous particles and hollow particles, and is fired at 200 to 1100 ° C. and then coated on the surface with a coupling agent. In this way, the filler is not solid particles, but is selected from porous particles and hollow particles (porous particles, etc.), so that the blades and grindstones during singulation and grinding are used. Abrasion can be reduced. The porous particles and the hollow particles are particles having a plurality of or one void inside. Details of the baking treatment at 200 to 1100 ° C. and the coating treatment of the filler surface with the coupling agent will be described later.
 ここで、多孔質粒子等としては、例えば、シリカ、アルミナ、窒化アルミニウム、ボロンナイトライド、窒化珪素、シリコンカーバイド、炭酸カルシウム等の各種無機フィラーを用いることができる。線膨張率を下げる目的で充填材を配合する場合には、非晶質シリカが無機充填材の中では最も線膨張率が低いため、これを用いるのが効果的である。 Here, as the porous particles, for example, various inorganic fillers such as silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, calcium carbonate and the like can be used. When blending a filler for the purpose of lowering the linear expansion coefficient, it is effective to use amorphous silica because amorphous silica has the lowest linear expansion coefficient among inorganic fillers.
 また、多孔質粒子等としては、球状非晶質シリカを用いるのが好ましい。このように、多孔質粒子等が球状であることによって、粘度の上昇をさらに抑えることができると共に、回路が形成されたウェハーの表面(ウェハー回路面)に対するダメージを小さくすることができるものであり、また、多孔質粒子等が熱膨張率の小さい非晶質シリカであることによって、硬化物の線膨張係数をより低下させることができるものである。 Moreover, it is preferable to use spherical amorphous silica as the porous particles. Thus, since the porous particles and the like are spherical, the increase in viscosity can be further suppressed, and damage to the wafer surface (wafer circuit surface) on which the circuit is formed can be reduced. Moreover, since the porous particles and the like are amorphous silica having a small coefficient of thermal expansion, the linear expansion coefficient of the cured product can be further reduced.
 また、充填材を構成する多孔質粒子等の表面には微細な孔が形成されているおそれがあるので、あらかじめ500℃以下の温度で熱処理することにより粒子表面の微細孔を閉塞しておくのが好ましい。このような充填材を用いると、多孔質粒子等の表面の微細孔が熱処理で閉塞されていることによって、比表面積が抑えられ、樹脂粘度、チクソ指数の上昇や吸湿量の増加を抑えることができるものである。このように表面積が抑えられるため粘度の上昇や吸湿の影響を抑えることができるほか、GPC(Gel Permeation Chromatography)のように細孔に配合成分がトラップされて反応性に影響を与えたりする心配がなくなるものである。また、上記のように熱処理の温度が500℃以下であると、充填材の個々の多孔質粒子等を形成するシェル(殻)の硬度が高くなるため、中空率を高めても材料化の配合時における混合工程等でのワレ(割れ)を低減することができるものである。 In addition, since fine pores may be formed on the surface of the porous particles constituting the filler, the fine pores on the particle surface should be blocked by heat treatment at a temperature of 500 ° C. or less in advance. Is preferred. When such a filler is used, the surface area of the porous particles and the like are blocked by heat treatment, so that the specific surface area is suppressed, and the increase in resin viscosity, thixo index and increase in moisture absorption can be suppressed. It can be done. Since the surface area is suppressed in this way, the increase in viscosity and the influence of moisture absorption can be suppressed, and there is a concern that the compounding components are trapped in the pores and the reactivity is affected like GPC (Gel Permeation Chromatography). It will disappear. In addition, when the temperature of the heat treatment is 500 ° C. or less as described above, the hardness of the shell forming the individual porous particles of the filler is increased. It is possible to reduce cracking (cracking) in the mixing process at the time.
 また、表面の微細孔を閉塞した多孔質粒子等は、電気炉等を用いて200~1100℃の低温で焼成処理する。この処理時間は2~24時間であることが好ましい。焼成温度が200℃より低く、処理時間が2時間より短いと、充填材を構成する多孔質粒子等の強度が低く抑えられるので低磨耗性に優れることになるが、吸湿率が増加したり、アンモニウムイオン等の不純物イオンの量が増加したりするおそれがある。逆に、焼成温度が1100℃より高く、処理時間が24時間より長いと、吸湿率及び不純物イオンの量は低減するが、ブレード等の磨耗量が増加するおそれがある。 Also, the porous particles with the fine pores closed on the surface are fired at a low temperature of 200 to 1100 ° C. using an electric furnace or the like. This treatment time is preferably 2 to 24 hours. When the firing temperature is lower than 200 ° C. and the treatment time is shorter than 2 hours, the strength of the porous particles constituting the filler can be kept low, so that it has excellent low wear, but the moisture absorption rate increases, The amount of impurity ions such as ammonium ions may increase. Conversely, if the firing temperature is higher than 1100 ° C. and the treatment time is longer than 24 hours, the moisture absorption rate and the amount of impurity ions are reduced, but the wear amount of the blade and the like may be increased.
 また、充填材の空隙体積率は10~70%であることが好ましい。これにより、充填材の強度を保持しつつ、ブレード等の磨耗を低減する効果をより高く得ることができるものである。しかし、充填材の空隙体積率が10%を下回ると、上記の磨耗低減効果が十分ではないおそれがあり、逆に、充填材の空隙堆積率が70%を上回ると、充填材の強度が低下するおそれがある。なお、空隙体積率が50%を超える場合には、配合混合時のワレを抑える目的で、充填材の表面をエポキシシランやアミノシランなどで処理して樹脂成分との馴染みを良くし、より緩やかな攪拌により分散させる手法をとることも可能である。 Further, the void volume ratio of the filler is preferably 10 to 70%. Thereby, it is possible to obtain a higher effect of reducing the wear of the blade and the like while maintaining the strength of the filler. However, if the void volume ratio of the filler is less than 10%, the above-described wear reduction effect may not be sufficient, and conversely, if the void deposition rate of the filler exceeds 70%, the strength of the filler is reduced. There is a risk. If the void volume ratio exceeds 50%, the surface of the filler is treated with epoxy silane or amino silane to improve the familiarity with the resin component for the purpose of suppressing cracking during compounding and mixing. It is also possible to take a method of dispersing by stirring.
 また、充填材を構成する多孔質粒子等の最大粒径は1~40μmであることが好ましい。これにより、樹脂粘度及びチクソ性を低減しつつ、50μm程度の厚みの封止樹脂層を問題なく形成することができるものである。そして、このように多孔質粒子等の最大粒径が1~40μmであれば、この範囲内で分布を適宜に調整することで流動性を制御することが可能である。しかし、多孔質粒子等の最大粒径が1μmを下回ると、比表面積が極めて大きくなり、液状エポキシ樹脂組成物の粘度及びチクソ性を著しく高めてしまうおそれがあり、逆に、多孔質粒子等の最大粒径が40μmを上回ると、50μm程度の厚みの封止樹脂層を形成した場合に多孔質粒子等がこの封止樹脂層を貫通してしまい、封止効果が損なわれるおそれがある。 Further, the maximum particle size of the porous particles constituting the filler is preferably 1 to 40 μm. Thereby, a sealing resin layer having a thickness of about 50 μm can be formed without any problem while reducing the resin viscosity and thixotropy. If the maximum particle size of the porous particles or the like is 1 to 40 μm, the fluidity can be controlled by appropriately adjusting the distribution within this range. However, when the maximum particle size of the porous particles or the like is less than 1 μm, the specific surface area becomes extremely large, which may significantly increase the viscosity and thixotropy of the liquid epoxy resin composition. When the maximum particle size exceeds 40 μm, when a sealing resin layer having a thickness of about 50 μm is formed, porous particles or the like may penetrate this sealing resin layer, and the sealing effect may be impaired.
 また、充填材の含有量は液状エポキシ樹脂組成物全量に対して60~90質量%であることが好ましい。このように、充填材の含有量が60質量%以上であることによって、硬化物の線膨張係数をより低下させることができるものであり、また、充填材の含有量が90質量%以下であることによって、成形時における液状エポキシ樹脂組成物の流動性を十分に確保することができるものである。しかし、充填材の含有量が60質量%を下回ると、硬化物の線膨張係数を低下させる効果を十分に得ることができないおそれがあり、逆に、充填材の含有量が90質量%を上回ると、液状エポキシ樹脂組成物の流動性が損なわれるおそれがある。なお、充填材の含有量が90%を超えて流動性を持たせるためには溶剤成分を増やすほかないが、この場合チクソ性が増大する方向で作業性の低下が著しい。また、加熱硬化後に充填材が余り(樹脂成分が不足し)、硬化物表面に充填材が露出し、充填効果が損なわれるおそれがある。 Further, the content of the filler is preferably 60 to 90% by mass with respect to the total amount of the liquid epoxy resin composition. Thus, when the filler content is 60% by mass or more, the linear expansion coefficient of the cured product can be further reduced, and the filler content is 90% by mass or less. By this, the fluidity | liquidity of the liquid epoxy resin composition at the time of shaping | molding can fully be ensured. However, if the content of the filler is less than 60% by mass, the effect of reducing the linear expansion coefficient of the cured product may not be sufficiently obtained. Conversely, the content of the filler exceeds 90% by mass. And there exists a possibility that the fluidity | liquidity of a liquid epoxy resin composition may be impaired. In order to provide fluidity with the filler content exceeding 90%, the solvent component must be increased. In this case, the workability is remarkably reduced in the direction of increasing thixotropy. In addition, the filler may be excessive after heat curing (the resin component is insufficient), and the filler may be exposed on the surface of the cured product, which may impair the filling effect.
 また、充填材の一部は中実粒子でもよいが、この場合、多孔質粒子等の含有量は充填材全量に対して40質量%以上(上限は100質量%)であることが好ましい。これにより、個片化や研削時のブレードや砥石の磨耗を低減する効果をより高く得ることができるものである。しかし、多孔質粒子等の含有量が40質量%を下回ると、上記のような効果を十分に得ることができないおそれがある。特に、充填材の空隙体積率が10~70%の範囲では、このような多孔質粒子等の含有量が40質量%を下回ると、十分な磨耗低減効果が得られなくなるおそれがある。これは高空隙体積率の充填材を全充填材中に低比率で充填してもワレ等の破壊が著しく、磨耗低減効果が発揮されないためであると推察される。 Further, a part of the filler may be solid particles. In this case, the content of the porous particles and the like is preferably 40% by mass or more (the upper limit is 100% by mass) with respect to the total amount of the filler. Thereby, the effect of reducing wear of the blade and the grindstone at the time of singulation and grinding can be obtained higher. However, if the content of the porous particles or the like is less than 40% by mass, the above effects may not be sufficiently obtained. In particular, when the void volume ratio of the filler is in the range of 10 to 70%, if the content of such porous particles is less than 40% by mass, a sufficient wear reduction effect may not be obtained. It is presumed that this is because cracking or the like is remarkably broken and the effect of reducing wear is not exhibited even when a filler with a high void volume ratio is filled at a low ratio in the whole filler.
 また、200~1100℃で焼成処理した後の多孔質粒子等はその表面をカップリング剤で被覆する処理を行う。このように、多孔質粒子等が200~1100℃で焼成処理された後、その表面がカップリング剤で被覆されていることによって、多孔質粒子等の内部に水分等が浸入・吸着しにくくなり、吸湿量を低減することができると共に、樹脂成分との相溶性(分散性)も高めることができるものである。 In addition, the porous particles after the baking treatment at 200 to 1100 ° C. are subjected to a treatment for coating the surface with a coupling agent. As described above, after the porous particles and the like are fired at 200 to 1100 ° C., the surface is coated with the coupling agent, so that moisture and the like are less likely to enter and adsorb inside the porous particles and the like. In addition to being able to reduce the amount of moisture absorption, the compatibility (dispersibility) with the resin component can also be improved.
 ここで、カップリング剤としては、シランカップリング剤やチタネートカップリング剤等を使用することができる。 Here, as the coupling agent, a silane coupling agent, a titanate coupling agent, or the like can be used.
 このうち、シランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p-スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン、さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシラン等を用いることができる。 Of these, silane coupling agents include epoxy silanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ Aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ-ureidopropyltri Aminosilane such as ethoxysilane, mercaptosilane such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltrimethoxysilane, vinyltriethoxy Vinyl silanes such as silane and γ-methacryloxypropyltrimethoxysilane, and epoxy, amino and vinyl polymer type silanes can be used.
 一方、チタネートカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジイソプロピルビス(ジオクチルホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等を用いることができる。 On the other hand, titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl / aminoethyl) titanate, diisopropyl bis (dioctyl phosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis ( Ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate be able to.
 これらのカップリング剤は、1種類のみを使用してもよいし、2種類以上を混合して使用してもよい。このときカップリング剤の含有量は、液状エポキシ樹脂組成物全量に対して0.1~1質量%、又は充填材全量に対して0.1~2質量%であることが好ましい。またカップリング剤による多孔質粒子等の表面の被覆処理は、湿式法又は乾式法により行うことができる。 These coupling agents may be used alone or in combination of two or more. At this time, the content of the coupling agent is preferably 0.1 to 1% by mass with respect to the total amount of the liquid epoxy resin composition, or 0.1 to 2% by mass with respect to the total amount of the filler. Further, the coating treatment of the surface of the porous particles or the like with the coupling agent can be performed by a wet method or a dry method.
 また、エポキシ樹脂を樹脂の主剤として含有する。このようにエポキシ樹脂を用いることによって、熱可塑性樹脂を用いる場合に比べて、リフロー耐熱性などの信頼性を高く得ることができるものである。すなわち、アクリル系の熱可塑性樹脂やビスマレイミドなどを溶剤に溶解させて流動化させ、硬化後に溶剤を気化させることで樹脂層を形成するような手法では硬化収縮が小さくなる一方で添加する溶剤量が増大するため好ましくない。これに対して、エポキシ樹脂を用いることで封止材としての高い信頼性を実現することができるものである。 Also, epoxy resin is contained as the main resin component. Thus, by using an epoxy resin, reliability, such as reflow heat resistance, can be obtained high compared with the case where a thermoplastic resin is used. That is, in the method of forming a resin layer by dissolving an acrylic thermoplastic resin or bismaleimide in a solvent and fluidizing it, and then evaporating the solvent after curing, the amount of solvent added is reduced while curing shrinkage is reduced. Is unfavorable because of an increase. On the other hand, high reliability as a sealing material can be realized by using an epoxy resin.
 特に、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂及びこれらの水素添加型エポキシ樹脂、脂環式エポキシ樹脂、ポリアルキレングリコール骨格含有エポキシ樹脂(例えばポリプロピレン骨格含有エポキシ樹脂など)のうち少なくとも1種のものを用いるのが好ましい。このように列挙したエポキシ樹脂のうち少なくとも1種のものを用いることによって、リフロー耐熱性などの信頼性をより高く得ることができるものであり、また、少なくとも2種以上のエポキシ樹脂を適宜に組み合わせて用いることによって、作業性に影響する粘度や硬化後の反りに影響するガラス転移温度(Tg)を適切に調整することができるものである。なお、低粘度化の可能な脂環式エポキシ樹脂では後述するフェノール系硬化剤との反応性が低いため、180℃の高い反応温度と十分な硬化時間(3時間)が必要である。また、ポリプロピレングリコール骨格を有するエポキシ樹脂ではTgが低くなってしまう傾向があるため必要に応じて適量配合する必要がある。 In particular, as epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, naphthalene ring-containing epoxy resins and their hydrogenated epoxy resins, alicyclic epoxy resins, polyalkylene glycol skeleton-containing epoxies It is preferable to use at least one of resins (for example, a polypropylene skeleton-containing epoxy resin). By using at least one of the enumerated epoxy resins as described above, it is possible to obtain higher reliability such as reflow heat resistance, and appropriately combine at least two or more epoxy resins. The glass transition temperature (Tg) affecting the viscosity affecting the workability and the warping after curing can be appropriately adjusted. In addition, since the low-viscosity alicyclic epoxy resin has low reactivity with a phenol-based curing agent described later, a high reaction temperature of 180 ° C. and a sufficient curing time (3 hours) are required. Moreover, since an epoxy resin having a polypropylene glycol skeleton tends to have a low Tg, it is necessary to add an appropriate amount if necessary.
 また、硬化剤として、フェノール性水酸基を1分子中に複数個有する化合物(フェノール系硬化剤)を含有するのが好ましい。これにより、Tgを低く設定しても、加水分解が起こりにくく、耐湿信頼性を高めることができるものである。すなわち、フェノール系硬化剤を用いることにより硬化物の加水分解が起こらないため耐湿性が向上し、例えば、ウェハー表面から突き出したポスト電極の補強効果を維持しやすく好ましい。また、液状エポキシ樹脂組成物が薄く塗り広げられた状態で硬化するような場合には硬化剤成分が揮発し、硬化不良を起こすおそれがあるが、この点においてもフェノール系硬化剤では気化しにくく、本プロセスにマッチしやすい。 Further, it is preferable to contain a compound having a plurality of phenolic hydroxyl groups in one molecule (phenolic curing agent) as a curing agent. Thereby, even if Tg is set low, hydrolysis is unlikely to occur and moisture resistance reliability can be improved. That is, the use of a phenol-based curing agent is preferable because hydrolysis of the cured product does not occur, and thus the moisture resistance is improved. For example, it is easy to maintain the reinforcing effect of the post electrode protruding from the wafer surface. In addition, when the liquid epoxy resin composition is cured in a thinly spread state, the curing agent component may volatilize and cause a curing failure, but also in this respect, it is difficult to vaporize with a phenolic curing agent. Easy to match with this process.
 また、液状エポキシ樹脂組成物には、硬化物の反りを抑える目的でシリコーンゴムなどのエラストマー成分を含有するのが好ましい。反りを低減する手法としては塗布対象物と樹脂の線膨張率差を極小化するか、樹脂の弾性率を低くして線膨張率と弾性率の積分で表される応力を極小化するか、のいずれかである。ガラス転移温度(Tg)より高い温度では樹脂硬化物はゴム状領域にあって低弾性率体であるため、このTgを室温に近づけることは低弾性率化の極めて有効な手法である(例えば、特開2004-027005号公報、特開2006-232950号公報参照)。ただし、この方法によるとTgを境に2桁以上低下するなど弾性率の低下が著しく、制御が難しい。室温での硬化樹脂の弾性率が1GPaを下回ると、本来の封止目的である機械的な強度が十分でないばかりか、個片化や研削時においてブレードや砥石が磨耗したり、電極金属の研削ダレ、ダイシング時の端部割れ、欠け(チッピング)が発生しやすくなる傾向がある。 In addition, the liquid epoxy resin composition preferably contains an elastomer component such as silicone rubber for the purpose of suppressing warpage of the cured product. As a technique to reduce the warp, minimize the difference in linear expansion coefficient between the application object and the resin, or lower the elastic modulus of the resin to minimize the stress expressed by the integral of the linear expansion coefficient and the elastic modulus, One of them. At a temperature higher than the glass transition temperature (Tg), the cured resin is in a rubber-like region and has a low elastic modulus, and bringing this Tg close to room temperature is an extremely effective technique for reducing the elastic modulus (for example, (See JP 2004-027005 A and JP 2006-232950 A). However, according to this method, the elastic modulus is remarkably lowered, such as being reduced by two orders of magnitude or more at the boundary of Tg, and control is difficult. If the elastic modulus of the cured resin at room temperature is less than 1 GPa, not only the mechanical strength that is originally intended for sealing is not sufficient, but also the blade and grindstone wear during singulation and grinding, and electrode metal grinding There is a tendency that edge cracks and chipping (chipping) occur easily during sagging and dicing.
 シリコーンゴムエラストマーを用いる場合には、このシリコーンゴムエラストマーの含有量は液状エポキシ樹脂組成物全量に対して2~5質量%であることが好ましい。シリコーンゴムエラストマーの含有量が2%を下回ると、エラストマーの添加による効果が十分ではないおそれがあり、逆に、シリコーンゴムエラストマーの含有量が5%を上回ると、硬化樹脂の硬度が発現しにくいおそれがある。 When a silicone rubber elastomer is used, the content of the silicone rubber elastomer is preferably 2 to 5% by mass with respect to the total amount of the liquid epoxy resin composition. If the content of the silicone rubber elastomer is less than 2%, the effect due to the addition of the elastomer may not be sufficient. Conversely, if the content of the silicone rubber elastomer is more than 5%, the hardness of the cured resin is hardly exhibited. There is a fear.
 他方、線膨張率を低く抑える効果的な方法としては唯一、充填材を添加する以外にはない。充填材の添加量に応じて線膨張率を低く抑えることは可能であるが、粘度が上昇するため溶剤を加えることにより適宜に調整する必要がある。この場合、溶剤の添加量は液状エポキシ樹脂組成物全量に対して10質量%を超えない範囲でなければならない。また、多孔質でも中空でもない均質な中実の非晶質球状シリカの場合、その充填量が液状エポキシ樹脂組成物全量に対して80質量%を超えると、個片化や研削時のブレードや砥石の磨耗が著しくなるので、低線膨張率化と低磨耗の両立を図る点で多孔質粒子等を含有する充填材を用いる効果は著しく大きい。 On the other hand, the only effective way to keep the coefficient of linear expansion low is to add fillers. Although it is possible to keep the coefficient of linear expansion low according to the amount of filler added, it is necessary to adjust it appropriately by adding a solvent because the viscosity increases. In this case, the addition amount of the solvent must be within a range not exceeding 10% by mass with respect to the total amount of the liquid epoxy resin composition. Further, in the case of a homogeneous solid amorphous spherical silica that is neither porous nor hollow, if the filling amount exceeds 80 mass% with respect to the total amount of the liquid epoxy resin composition, Since the wear of the grindstone becomes remarkable, the effect of using the filler containing porous particles and the like is remarkably great in terms of achieving both a low linear expansion coefficient and low wear.
 また、液状エポキシ樹脂組成物全量に対して無機イオン交換体が0.5~3.0質量%含有されているのが好ましい。ここで、無機イオン交換体としては、陽イオン交換タイプ(Zrを主成分とするもの)、陰イオン交換タイプ(Mg、Alを主成分とするもの)、両イオン交換タイプ(Zr、Biを主成分とするもの)のいずれを使用してもよい。また、これらの無機イオン交換体は、1種類のみを使用してもよいし、2種類以上を混合して使用してもよい。このように、液状エポキシ樹脂組成物中に含まれる不純物イオンを無機イオン交換体で捕捉することによって、イオンマイグレーションの発生を抑えて、絶縁信頼性を向上させることができるものである。しかし、無機イオン交換体の含有量が0.5質量%より少ないと、上記のような効果を十分に得ることができないおそれがある。逆に無機イオン交換体の含有量が3.0質量%より多いと、樹脂の吸湿量が増大して絶縁信頼性が低下したり、組成物の粘度の増大を招いて作業性が低下したりするおそれがある。 Further, it is preferable that the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition. Here, as the inorganic ion exchanger, a cation exchange type (one containing Zr as a main component), an anion exchange type (one containing Mg and Al as main components), and both ion exchange types (Zr and Bi are mainly used). Any of the above may be used. Moreover, these inorganic ion exchangers may use only 1 type, and may mix and use 2 or more types. Thus, by capturing the impurity ions contained in the liquid epoxy resin composition with the inorganic ion exchanger, the occurrence of ion migration can be suppressed and the insulation reliability can be improved. However, if the content of the inorganic ion exchanger is less than 0.5% by mass, the above effects may not be sufficiently obtained. Conversely, if the content of the inorganic ion exchanger is more than 3.0% by mass, the moisture absorption amount of the resin increases and the insulation reliability decreases, or the viscosity of the composition increases and the workability decreases. There is a risk.
 さらに、本発明ではその目的を損なわない限り、必要に応じて他の物質を配合することもできる。このような物質としては、分散安定剤、難燃剤、密着性付与剤、チクソ性付与剤、着色剤、希釈剤、消泡剤等を例示することができる。 Furthermore, in the present invention, other substances can be blended as necessary as long as the purpose is not impaired. Examples of such substances include dispersion stabilizers, flame retardants, adhesion promoters, thixotropic agents, colorants, diluents, antifoaming agents, and the like.
 そして、液状エポキシ樹脂組成物は、各成分を撹拌型の分散機で混合したり、ビーズミルで分散混合したり、3本ロールで分散混合したりすることによって製造することができるが、特に以下の方法により製造するのが好ましい。 And a liquid epoxy resin composition can be manufactured by mixing each component with a stirrer-type disperser, dispersing and mixing with a bead mill, or dispersing and mixing with three rolls. It is preferable to manufacture by a method.
 すなわち、まず、カップリング剤で表面が被覆された多孔質粒子等を含有する充填材と、使用するエポキシ樹脂及び硬化剤の一部とを予備的に配合して混合する。予備配合に使用するエポキシ樹脂及び硬化剤の合計量は、使用する充填材の全量に対して、5~30質量%であることが好ましく、またこのときのエポキシ樹脂と硬化剤の質量比は5:1~1:1であることが好ましい。予備配合に3本ロール等を使用すると混合物は通常シートに近い状態となるが、次にこの混合物を30~90℃の温度で2~24時間加熱した後に室温(20~30℃)に戻す。そして、この混合物にエポキシ樹脂及び硬化剤の残部を配合すると共に、必要に応じて無機イオン交換体など他の物質を配合して再度混合することによって、液状エポキシ樹脂組成物を得ることができる。このように、使用するエポキシ樹脂、硬化剤及び充填材の全部を一度に配合するのではなく、使用するエポキシ樹脂及び硬化剤の一部と充填材とを配合し、一旦加熱して室温に戻した後に残部のエポキシ樹脂及び硬化剤を配合することによって、充填材の樹脂成分との相溶性(分散性)を高めることができるものである。 That is, first, a filler containing porous particles whose surface is coated with a coupling agent, an epoxy resin to be used, and a part of the curing agent are preliminarily blended and mixed. The total amount of the epoxy resin and the curing agent used for the pre-blending is preferably 5 to 30% by mass with respect to the total amount of the filler used, and the mass ratio of the epoxy resin and the curing agent at this time is 5 It is preferably 1 to 1: 1. When three rolls or the like are used for pre-mixing, the mixture is usually in a state close to a sheet. Next, the mixture is heated at a temperature of 30 to 90 ° C. for 2 to 24 hours and then returned to room temperature (20 to 30 ° C.). And while mix | blending an epoxy resin and the remainder of a hardening | curing agent with this mixture, another liquid substance, such as an inorganic ion exchanger, is mix | blended as needed, and a liquid epoxy resin composition can be obtained. In this way, not all of the epoxy resin, curing agent and filler used are blended at once, but some of the epoxy resin and curing agent used and the filler are blended, and once heated to room temperature. After that, by adding the remaining epoxy resin and the curing agent, the compatibility (dispersibility) with the resin component of the filler can be improved.
 上記のようにして製造された液状エポキシ樹脂組成物は、硬化後に封止物品の反りが少ないことを必要とする用途、具体的には、ウェハー全体を封止し硬化するプロセスを含むウェハーレベルCSPや、アンダーフィルしたフリップチップ接続の特殊な半導体装置や、プリンタの熱転写あるいは感熱のためのヘッド部分(サーマルヘッド)など、反りを極小化する必要がある分野に好適に使用することができる。 The liquid epoxy resin composition produced as described above is used in applications that require less warping of the sealed article after curing, specifically, a wafer level CSP including a process for sealing and curing the entire wafer. It can also be suitably used in fields where warpage needs to be minimized, such as a special semiconductor device with flip-chip connection underfill, or a head portion (thermal head) for thermal transfer or heat sensitivity of a printer.
 また、半導体装置は、上記のようにして製造した液状エポキシ樹脂組成物を樹脂基板、セラミック基板又はウェハー等の各種部材1の表面に減圧印刷機を用いて塗布し、これを加熱硬化して樹脂層2を形成した後、図1に示すように、ダイシングソー3を用いてダイシング等により個片化する方法によって、製造することができる。このような製造方法によれば、反りが小さく、封止信頼性の高い半導体装置を安価な製造コストと短い製造タクトで得ることができ、液状エポキシ樹脂組成物で形成された樹脂層2の内部にボイドを残存させないことができるものである。しかも、樹脂層2の内部には、多孔質粒子等を含有する充填材が含有されていることによって、ダイシングソー3のブレードの磨耗を低減することができるものである。 In addition, the semiconductor device is a resin obtained by applying the liquid epoxy resin composition produced as described above to the surface of various members 1 such as a resin substrate, a ceramic substrate, or a wafer using a reduced pressure printing machine, and heating and curing the composition. After forming the layer 2, as shown in FIG. 1, it can be manufactured by a method of dividing into pieces by dicing or the like using a dicing saw 3. According to such a manufacturing method, a semiconductor device with low warpage and high sealing reliability can be obtained with low manufacturing cost and short manufacturing tact, and the inside of the resin layer 2 formed of a liquid epoxy resin composition It is possible to prevent the voids from remaining. In addition, since the resin layer 2 contains a filler containing porous particles and the like, the wear of the blade of the dicing saw 3 can be reduced.
 各種部材の表面に液状エポキシ樹脂組成物を塗布する方法としては、真空印刷のほか、大気圧スクリーン印刷、スピンコーターによる塗布、あるいはディスペンスによる方法や、金型による成形法などを用いることができる。ただし、スピンコート法では粘度は溶剤の添加量を増やすなどして10Pa・s以下に抑えることが好ましく、金型による成形法では逆に溶剤を添加すると硬化物中にボイドが残る原因ともなるため溶剤を含まずに粘度を200Pa・s程度に抑えることが好ましい。樹脂層にボイドを内包しないための最良の方法は減圧印刷機を用いた方法であるが、この場合は溶剤の沸点を高沸点側にシフトするなどして連続印刷性を確保する必要がある。 As a method for applying the liquid epoxy resin composition to the surfaces of various members, in addition to vacuum printing, atmospheric pressure screen printing, coating with a spin coater, dispensing, or molding with a mold can be used. However, in the spin coating method, it is preferable to suppress the viscosity to 10 Pa · s or less by increasing the amount of the solvent added. In the molding method using a mold, if a solvent is added, voids may remain in the cured product. It is preferable to suppress the viscosity to about 200 Pa · s without containing a solvent. The best method for avoiding inclusion of voids in the resin layer is a method using a vacuum printer. In this case, it is necessary to ensure continuous printability by shifting the boiling point of the solvent to the high boiling point side.
 また、印刷を用いた方法による場合は液状エポキシ樹脂組成物の粘度は200Pa・s以下であることが好ましい。200Pa・sを超えると印刷対象への樹脂の転写が十分にされず、スキージングを繰り返す必要が生じるおそれがあるなどして好ましくない。また、溶剤を添加することで200Pa・s以下に抑えることができても添加量が10質量%を超える場合は硬化後に溶剤が残存して硬化物が脆くなってしまったり、多量の溶剤の揮発により硬化物中にボイドが生じたりするおそれがあるため好ましくない。硬化時の溶剤の揮発によるこのボイドを低減するには沸点の異なる溶剤を複数種添加して低沸点溶剤から順に緩やかに揮発させるのが一般的であるが特に真空印刷による方法ではこの限りではない。印刷時に低沸点溶剤が揮発して印刷中に粘度が上昇して連続して印刷する際に品質バラツキが発生しやすい。また硬化温度上限より溶剤の沸点が50~100℃高ければ急激な揮発が抑えられ、徐々に溶剤が揮発するためボイドとなりにくく、硬化に要する時間に変更を加える必要もない。 Further, when the method using printing is used, the viscosity of the liquid epoxy resin composition is preferably 200 Pa · s or less. If it exceeds 200 Pa · s, the transfer of the resin to the printing object is not sufficient, and it may be necessary to repeat squeezing. Moreover, even if it can be suppressed to 200 Pa · s or less by adding a solvent, if the addition amount exceeds 10% by mass, the solvent remains after curing and the cured product becomes brittle, or a large amount of solvent volatilizes. This is not preferable because voids may occur in the cured product. In order to reduce this void due to solvent volatilization during curing, it is common to add multiple types of solvents with different boiling points and gradually evaporate in order from the low boiling point solvent, but this is not particularly the case with methods using vacuum printing. . The low boiling point solvent volatilizes during printing, and the viscosity increases during printing, so that quality variations are likely to occur when printing is performed continuously. Further, if the boiling point of the solvent is 50 to 100 ° C. higher than the upper limit of the curing temperature, rapid volatilization is suppressed, and since the solvent gradually volatilizes, it is difficult to form voids, and there is no need to change the time required for curing.
 また、図2に示すように、シリコンチップ等の半導体チップ4の半導体回路側の面5には樹脂層2が配置され、かつ半導体チップ4に接続された多数の電極6がその樹脂層2を貫通して配置された型式の半導体装置において、半導体チップ4の半導体回路側の面5に配置されている樹脂層2を形成するために、液状エポキシ樹脂組成物を好適に使用することができる。この形態の半導体装置は、一般にはCSP(チップスケールパッケージあるいはチップサイズパッケージ)と呼ばれる範疇のものであり、半導体チップ4を個片化する以前のシリコンウェハーの段階でCSPへの加工を行うことからWL(ウェハーレベル)あるいはWS(ウェハースケール)のCSPと呼ばれ、WL-CSP、WS-CSPと略されているものである。 As shown in FIG. 2, the resin layer 2 is disposed on the surface 5 on the semiconductor circuit side of the semiconductor chip 4 such as a silicon chip, and a large number of electrodes 6 connected to the semiconductor chip 4 form the resin layer 2. In a semiconductor device of a type disposed through, a liquid epoxy resin composition can be suitably used to form the resin layer 2 disposed on the semiconductor circuit side surface 5 of the semiconductor chip 4. The semiconductor device of this form is in a category generally called CSP (chip scale package or chip size package), and is processed into a CSP at the stage of a silicon wafer before the semiconductor chip 4 is separated. It is called WL (wafer level) or WS (wafer scale) CSP, and is abbreviated as WL-CSP or WS-CSP.
 液状エポキシ樹脂組成物を使用して、WL-CSPを製造するには、まず、CSPとなったときにバンプが形成される位置にあるウェハー上のパッド部7に、樹脂層2を貫通することになるポスト8としての金属を形成する。ポスト8を形成する方法としては、具体的には、パッド部7にフラックスを印刷し、その上にメタルマスクを利用して半田ボールを載せてリフローする方法や、パッド部7にハンダペーストを印刷してリフローする方法、あるいはパッド部7に銅などの金属をメッキ法により成長させる方法などがある。次に、ポスト8としての金属が形成されたウェハーに、液状エポキシ樹脂組成物を印刷し、加熱硬化させる。印刷は減圧印刷によることが好ましい。常圧印刷の場合は、印刷後に減圧下に置いて、組成物中のボイドを除く処理を行うのが好ましい。加熱硬化は、常圧でも加圧下でもよいが、加圧下の方が硬化物中のボイドをより少なくすることができる。また硬化条件は、80~140℃で30分~2時間の1段目硬化を行った後に、150~210℃で1~6時間の2段目硬化を行うという2ステップ硬化を例示できる。フェノール性水酸基を有する化合物を硬化剤として使用した場合は、このような2ステップ硬化以外にも、100~210℃で30分~6時間の1ステップ硬化を採用することもできる。 In order to manufacture WL-CSP using a liquid epoxy resin composition, first, the resin layer 2 is passed through the pad portion 7 on the wafer at the position where the bump is formed when the CSP is formed. The metal as the post 8 is formed. Specifically, the post 8 is formed by printing a flux on the pad portion 7 and placing a solder ball on the pad portion 7 for reflow, or printing a solder paste on the pad portion 7. Then, there is a method of reflowing, or a method of growing a metal such as copper on the pad portion 7 by a plating method. Next, the liquid epoxy resin composition is printed on the wafer on which the metal as the post 8 is formed, and is cured by heating. The printing is preferably by reduced pressure printing. In the case of normal pressure printing, it is preferable to carry out a treatment for removing voids in the composition by placing it under reduced pressure after printing. The heat curing may be performed at normal pressure or under pressure, but the voids in the cured product can be reduced under pressure. Examples of the curing conditions include two-step curing in which the first-stage curing is performed at 80 to 140 ° C. for 30 minutes to 2 hours and then the second-stage curing is performed at 150 to 210 ° C. for 1 to 6 hours. When a compound having a phenolic hydroxyl group is used as a curing agent, in addition to such a two-step curing, a one-step curing at 100 to 210 ° C. for 30 minutes to 6 hours can be employed.
 次に、液状エポキシ樹脂組成物の硬化後のウェハーを樹脂層2側から研磨し、ポスト8と樹脂層2の高さを揃える。必要に応じて、その後にウェハーの背面を研磨し、総厚みを小さくする工程を採ることもある。 Next, the wafer after curing of the liquid epoxy resin composition is polished from the resin layer 2 side, and the height of the post 8 and the resin layer 2 is made uniform. If necessary, a step of polishing the back surface of the wafer to reduce the total thickness may be employed.
 研磨後のウェハーは、液状エポキシ樹脂組成物の硬化物が適切なTgや弾性率、線膨張係数を有していることにより、例えば、8インチ径250μm厚のウェハーに50μm厚の樹脂層2を有する場合で1mm以下の反りとなるような小さな反りを実現でき、またリフロー後の反り量についても1mm以下に抑えることが可能となる。 The polished wafer has a cured product of the liquid epoxy resin composition having an appropriate Tg, elastic modulus, and linear expansion coefficient, so that, for example, a 50 μm thick resin layer 2 is formed on an 8 inch diameter 250 μm thick wafer. It is possible to realize a small warp that results in a warp of 1 mm or less when it is present, and it is also possible to suppress the warp amount after reflow to 1 mm or less.
 また、半導体チップ4の背面保護やマーキング性向上のため、ウェハーの背面に液状エポキシ樹脂組成物あるいは、他の樹脂を塗布、硬化してもよい。 Further, in order to protect the back surface of the semiconductor chip 4 and improve the marking property, a liquid epoxy resin composition or other resin may be applied and cured on the back surface of the wafer.
 次に、半田等を用いてCSPのバンプの形成を行う。具体的には、樹脂層2の表面に露出するポスト8の端面にフラックスを印刷し、その上にメタルマスクを利用して半田ボールを載せてリフローする方法や、ポスト8にハンダペーストを印刷してリフローする方法などがある。 Next, CSP bumps are formed using solder or the like. Specifically, a flux is printed on the end face of the post 8 exposed on the surface of the resin layer 2, a solder ball is placed thereon using a metal mask and reflowed, or a solder paste is printed on the post 8. There is a method of reflowing.
 このようにして得られたウェハーをダイシングにより個片化すると、ポスト8とバンプ9からなる金属製の電極6を備えたCSPを得ることができる。このCSPは、密着性が良く、線膨張係数も適切な液状エポキシ樹脂組成物が使用されているので、また反りが小さいため内部応力が低いので、温度サイクル性や耐湿信頼性に優れているものである。 When the wafer thus obtained is separated into pieces by dicing, a CSP provided with metal electrodes 6 composed of posts 8 and bumps 9 can be obtained. This CSP is excellent in temperature cycleability and moisture resistance reliability because a liquid epoxy resin composition with good adhesion and appropriate linear expansion coefficient is used, and because the internal stress is low due to small warpage. It is.
 すなわち、上記のようにして形成された半導体装置にあっては、上述した液状エポキシ樹脂組成物の硬化物により樹脂層が形成されているので、半導体装置としての反りを小さくすることができ、内部応力が低くなって優れた温度サイクル性や耐湿信頼性を実現することができると共に、リフロー時の熱履歴による反り量を低減することができるものである。 That is, in the semiconductor device formed as described above, since the resin layer is formed by the cured product of the liquid epoxy resin composition described above, warpage as a semiconductor device can be reduced, The stress can be lowered to achieve excellent temperature cycleability and moisture resistance reliability, and the amount of warpage due to the thermal history during reflow can be reduced.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 (実施例1~10及び比較例1~3)
 下記表1及び表2に示す原材料の配合量(単位は質量部)及び製造方法で、実施例1~10及び比較例1~3の液状エポキシ樹脂組成物を製造した。
(Examples 1 to 10 and Comparative Examples 1 to 3)
The liquid epoxy resin compositions of Examples 1 to 10 and Comparative Examples 1 to 3 were produced using the raw material blending amounts (unit: parts by mass) and production methods shown in Table 1 and Table 2 below.
 ここで、下記表1及び表2において使用した原材料は次のものである。 Here, the raw materials used in Tables 1 and 2 below are as follows.
 (充填材)
 非晶質シリカ(中実粒子、MRCユニテック株式会社製、品番「QS9」、平均粒径9μm、最大粒径35μm)
 非晶質シリカ(中実粒子、株式会社アドマテックス製、品番「SO25H」、平均粒径0.6μm、最大粒径3.5μm)
 多孔質シリカ(日揮触媒化成株式会社製、品番「機能性シリカマイクロビードN15」、多孔質粒子である球状非晶質シリカ、表面の微細孔を閉塞したもの、平均粒径10μm、最大粒径30μm、空隙体積率20%)
 中空シリカ(電気化学工業株式会社製、品番「DBS-1030」、中空粒子である球状非晶質シリカ、表面の微細孔を閉塞したもの、平均粒径10μm、最大粒径30μm、空隙体積率20%)
 なお、実施例1~4、6~10及び比較例2における多孔質シリカ並びに実施例5における中空シリカは、電気炉を用いて下記表1及び表2に示す焼成温度で6時間焼成処理した。
(Filler)
Amorphous silica (solid particles, manufactured by MRC Unitech Co., Ltd., product number “QS9”, average particle size 9 μm, maximum particle size 35 μm)
Amorphous silica (solid particles, manufactured by Admatechs Co., Ltd., product number “SO25H”, average particle size 0.6 μm, maximum particle size 3.5 μm)
Porous silica (manufactured by JGC Catalysts & Chemicals Co., Ltd., product number “functional silica microbead N15”, porous amorphous spherical amorphous silica, clogged fine pores on the surface, average particle size 10 μm, maximum particle size 30 μm , Void volume ratio 20%)
Hollow silica (manufactured by Denki Kagaku Kogyo Co., Ltd., product number “DBS-1030”, spherical amorphous silica as hollow particles, clogged fine pores on the surface, average particle size 10 μm, maximum particle size 30 μm, void volume ratio 20 %)
The porous silica in Examples 1 to 4, 6 to 10 and Comparative Example 2 and the hollow silica in Example 5 were fired at the firing temperatures shown in Tables 1 and 2 below for 6 hours using an electric furnace.
 (エポキシ樹脂)
 ビスフェノールF型エポキシ樹脂(東都化成株式会社製、品番「YDF8170」、エポキシ当量160)
 ビスフェノールA型エポキシ樹脂(東都化成株式会社製、品番「YD8125」、エポキシ当量175)
 ナフタレン環含有エポキシ樹脂(DIC株式会社製、品番「HP4032D」、エポキシ当量141)
 (硬化剤)
 アリル化フェノール(明和化成株式会社製、品番「MEH8000H」、水酸基当量141)
 (低弾性化剤)
 シリコーンゴム(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、品番「XE14-A8491」)
 (溶剤)
 ジエチレングリコールジエチルエーテル(ナカライテスク株式会社製、沸点180℃)
 (硬化促進剤)
 マイクロカプセル型潜在性硬化促進剤(旭化成工業株式会社製、品番「HXA3792」)
 (着色剤)
 カーボンブラック(三菱化学株式会社製、品番「MA100」)
 (カップリング剤)
 シランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、品番「A186」)
 チタネートカップリング剤(味の素ファインテクノ株式会社製、品番「KR-TTS」)
 (無機イオン交換体)
 陽イオン交換タイプ(東亞合成株式会社製、品番「IXE-100」)
 陰イオン交換タイプ(東亞合成株式会社製、品番「IXE-770F」)
 両イオン交換タイプ(東亞合成株式会社製、品番「IXE-600」)
 また、下記表1及び表2において採用した製造方法は次の通りである。
(Epoxy resin)
Bisphenol F type epoxy resin (manufactured by Tohto Kasei Co., Ltd., product number “YDF8170”, epoxy equivalent 160)
Bisphenol A type epoxy resin (manufactured by Toto Kasei Co., Ltd., product number “YD8125”, epoxy equivalent 175)
Naphthalene ring-containing epoxy resin (manufactured by DIC Corporation, product number “HP4032D”, epoxy equivalent 141)
(Curing agent)
Allylated phenol (Maywa Kasei Co., Ltd., product number “MEH8000H”, hydroxyl group equivalent 141)
(Low elasticity agent)
Silicone rubber (product number “XE14-A8491” manufactured by Momentive Performance Materials Japan LLC)
(solvent)
Diethylene glycol diethyl ether (Nacalai Tesque, Inc., boiling point 180 ° C.)
(Curing accelerator)
Microcapsule type latent curing accelerator (manufactured by Asahi Kasei Corporation, product number “HXA3792”)
(Coloring agent)
Carbon black (Mitsubishi Chemical Corporation, part number “MA100”)
(Coupling agent)
Silane coupling agent (product number “A186”, manufactured by Momentive Performance Materials Japan GK)
Titanate coupling agent (manufactured by Ajinomoto Fine Techno Co., product number "KR-TTS")
(Inorganic ion exchanger)
Cation exchange type (Toagosei Co., Ltd., product number “IXE-100”)
Anion exchange type (manufactured by Toagosei Co., Ltd., product number “IXE-770F”)
Both ion exchange type (manufactured by Toagosei Co., Ltd., part number “IXE-600”)
Moreover, the manufacturing method employ | adopted in following Table 1 and Table 2 is as follows.
 (製造方法A)
 液状エポキシ樹脂組成物の構成成分であるエポキシ樹脂、硬化剤、充填材及びその他の成分を下記表1及び表2に示す配合量で配合し、これをプラネタリーミキサーで室温(25℃)にて混合し、さらに3本ロールにて分散させることによって、液状エポキシ樹脂組成物を製造した。
(Production method A)
The epoxy resin, the curing agent, the filler, and other components that are constituents of the liquid epoxy resin composition are blended in the blending amounts shown in Tables 1 and 2 below, and this is mixed at room temperature (25 ° C.) with a planetary mixer. A liquid epoxy resin composition was produced by mixing and further dispersing with three rolls.
 (製造方法B)
 液状エポキシ樹脂組成物の構成成分であるエポキシ樹脂、硬化剤及びその他の成分(充填材及び硬化促進剤を除く)を下記表1及び表2に示す配合量で配合し、これをプラネタリーミキサーで室温(25℃)にて混合し、さらに3本ロールにて分散させた後、充填材及び硬化促進剤を添加してプラネタリーミキサーで再度室温(25℃)にて混合することによって、液状エポキシ樹脂組成物を製造した。
(Production method B)
The epoxy resin, the curing agent and other components (excluding the filler and curing accelerator), which are constituents of the liquid epoxy resin composition, are blended in the blending amounts shown in Tables 1 and 2 below, and this is mixed with a planetary mixer. After mixing at room temperature (25 ° C) and further dispersing with three rolls, a filler and a curing accelerator are added and mixed again at room temperature (25 ° C) with a planetary mixer. A resin composition was produced.
 (製造方法C)
 液状エポキシ樹脂組成物の構成成分であるエポキシ樹脂、硬化剤及びその他の成分(充填材、カップリング剤及び硬化促進剤を除く)を下記表1及び表2に示す配合量で配合し、これをプラネタリーミキサーで室温(25℃)にて混合し、さらに3本ロールにて分散させた後、あらかじめカップリング剤で表面を被覆した充填材を添加してプラネタリーミキサーで再度室温(25℃)にて混合し、さらに硬化促進剤を添加して混合することによって、液状エポキシ樹脂組成物を製造した。なお、カップリング剤は、充填材に直接噴霧することによってその表面を被覆した。
(Manufacturing method C)
The epoxy resin, curing agent and other components (excluding filler, coupling agent and curing accelerator), which are constituents of the liquid epoxy resin composition, are blended in the blending amounts shown in Tables 1 and 2 below. After mixing with a planetary mixer at room temperature (25 ° C.) and further dispersing with three rolls, a filler whose surface is coated with a coupling agent in advance is added, and again at room temperature (25 ° C.) with a planetary mixer. A liquid epoxy resin composition was produced by mixing the mixture at the same temperature and further adding and mixing a curing accelerator. In addition, the coupling agent coat | covered the surface by spraying directly on a filler.
 (製造方法D)
 あらかじめカップリング剤で表面を被覆した充填材と、エポキシ樹脂及び硬化剤の一部(使用する充填材の全量に対して15質量%)とを配合し、これをプラネタリーミキサーで室温(25℃)にて混合すると共に3本ロールにて分散させた。次にこの混合物を45℃で5時間加熱した後に室温(25℃)に戻した。そして、この混合物にエポキシ樹脂及び硬化剤の残部並びにその他の成分(硬化促進剤を除く)を配合し、これをプラネタリーミキサーで室温(25℃)にて混合し、さらに3本ロールにて分散させた後、硬化促進剤を添加してプラネタリーミキサーで再度混合することによって、液状エポキシ樹脂組成物を製造した。なお、カップリング剤は、充填材に直接噴霧することによってその表面を被覆した。また、下記表1及び表2中の加熱処理は、上記45℃で5時間加熱することを意味する。
(Production method D)
A filler whose surface is previously coated with a coupling agent and a part of an epoxy resin and a curing agent (15% by mass with respect to the total amount of the filler used) are blended, and this is mixed with a planetary mixer at room temperature (25 ° C. ) And dispersed with three rolls. The mixture was then heated at 45 ° C. for 5 hours before returning to room temperature (25 ° C.). Then, the epoxy resin, the remainder of the curing agent and other components (excluding the curing accelerator) are blended into this mixture, and this is mixed with a planetary mixer at room temperature (25 ° C.) and further dispersed with three rolls. Then, a curing accelerator was added and mixed again with a planetary mixer to produce a liquid epoxy resin composition. In addition, the coupling agent coat | covered the surface by spraying directly on a filler. Moreover, the heat processing in following Table 1 and Table 2 means heating at the said 45 degreeC for 5 hours.
 実施例1~10及び比較例1~3で得られた液状エポキシ樹脂組成物の特性を次の方法で測定した。測定結果を下記表1及び表2に示す。 The characteristics of the liquid epoxy resin compositions obtained in Examples 1 to 10 and Comparative Examples 1 to 3 were measured by the following method. The measurement results are shown in Tables 1 and 2 below.
 (1)液状エポキシ樹脂組成物の粘度
 室温(25℃)にてB型粘度計を用いて測定した。
(1) Viscosity of liquid epoxy resin composition The viscosity was measured at room temperature (25 ° C) using a B-type viscometer.
 (2)ガラス転移温度(Tg)
 粘弾性スペクトロメータ(DMA)の曲げモード10Hzにて評価した。試験片は、液状エポキシ樹脂組成物を130℃で1時間加熱した後、180℃で3時間加熱して形成したものであって、5mm幅×50mm長×0.2mm厚に切り出したものを用いた。昇温は2℃/分により-60℃~260℃まで測定した。
(2) Glass transition temperature (Tg)
Evaluation was made at a bending mode of 10 Hz of a viscoelastic spectrometer (DMA). The test piece was formed by heating the liquid epoxy resin composition at 130 ° C. for 1 hour and then heating at 180 ° C. for 3 hours, and was cut into 5 mm width × 50 mm length × 0.2 mm thickness. It was. The temperature rise was measured from −60 ° C. to 260 ° C. at 2 ° C./min.
 (3)弾性率(E’)
 (2)の粘弾性スペクトロメータ(DMA)の曲げモード10Hzの25℃での弾性率(E’)を求めた。
(3) Elastic modulus (E ')
The elastic modulus (E ′) at 25 ° C. in a bending mode of 10 Hz of the viscoelastic spectrometer (DMA) of (2) was determined.
 (4)線膨張率
 熱分析計TMAにより評価した。液状エポキシ樹脂組成物を硬化させて、70mm以上長×10mm幅×1~3mm厚の試験片を形成し、この試験片を用いて昇温速度5℃/分により-60℃~260℃まで測定した。液状エポキシ樹脂組成物の硬化は130℃で1時間加熱した後、180℃で3時間加熱して行った。
(4) Linear expansion coefficient It evaluated by the thermal analyzer TMA. The liquid epoxy resin composition is cured to form a test piece having a length of 70 mm or more, a length of 10 mm, and a thickness of 1 to 3 mm. did. The liquid epoxy resin composition was cured by heating at 130 ° C. for 1 hour and then heating at 180 ° C. for 3 hours.
 (5)反り
 5インチで200μm厚のウェハーの表面に液状エポキシ樹脂組成物を直径110mmで200μm厚に塗布し、130℃で1時間加熱した後、180℃で3時間加熱することによって、硬化させた。液状エポキシ樹脂組成物の硬化後、円周端部の一点を押さえ垂直方向(z軸方向)に反り上がった最大値を測定することにより反り量を評価した。
(5) Warpage A liquid epoxy resin composition was applied to a surface of a 5-inch wafer having a thickness of 200 μm to a thickness of 110 μm and heated to a thickness of 200 μm, heated at 130 ° C. for 1 hour, and then heated at 180 ° C. for 3 hours to be cured. It was. After the liquid epoxy resin composition was cured, the amount of warpage was evaluated by measuring a maximum value obtained by warping in the vertical direction (z-axis direction) while pressing one point on the circumferential edge.
 (6)吸湿率
 液状エポキシ樹脂組成物を130℃で1時間加熱した後、180℃で3時間加熱して硬化させることによって、50mmΦ×3mm厚の試験片を形成した。そしてこの試験片を120℃で15時間加熱して乾燥させ、この直後の重量を測定した。次に、121℃、100%RH、0.20MPa(2atm)、20時間の条件でプレッシャークッカーテスト(PCT)を行って上記試験片を吸湿させ、この直後の重量を測定した。そして、(吸湿率)=((吸湿後の試験片の重量)-(吸湿前の試験片の重量))×100/(吸湿前の試験片の重量)の式により、吸湿率を求めた。
(6) Moisture absorption rate After the liquid epoxy resin composition was heated at 130 ° C. for 1 hour and then cured by heating at 180 ° C. for 3 hours, a 50 mmφ × 3 mm thick test piece was formed. And this test piece was heated and dried at 120 degreeC for 15 hours, and the weight immediately after this was measured. Next, a pressure cooker test (PCT) was performed under the conditions of 121 ° C., 100% RH, 0.20 MPa (2 atm), and 20 hours to absorb moisture from the test piece, and the weight immediately after this was measured. Then, the moisture absorption rate was determined by the following formula: (moisture absorption rate) = ((weight of test piece after moisture absorption) − (weight of test piece before moisture absorption) × 100 / (weight of test piece before moisture absorption)).
 (7)不純物イオン量
 (6)と同様に形成した試験片を粉砕し、この粉砕物を採取して測定試料とした。そしてこの測定試料5gをメタノール4mlで湿らせた後、純水46mlを加えた。次にこれに、121℃、100%RH、0.20MPa(2atm)、20時間の条件でプレッシャークッカーテスト(PCT)を行った後、濾過を行った。そしてこの濾液を検液としてイオンクロマトグラフを用いて、不純物である陰イオン(Clイオン)及び陽イオン(Na及びNH4+イオン)の量を測定した。
(7) Impurity ion amount A test piece formed in the same manner as in (6) was pulverized, and the pulverized product was collected to obtain a measurement sample. After 5 g of this measurement sample was moistened with 4 ml of methanol, 46 ml of pure water was added. Next, this was subjected to a pressure cooker test (PCT) under the conditions of 121 ° C., 100% RH, 0.20 MPa (2 atm) and 20 hours, followed by filtration. Then, using the filtrate as a test solution, an ion chromatograph was used to measure the amounts of impurities such as anions (Cl ions) and cations (Na + and NH 4+ ions).
 (8)ブレード磨耗量
 図1に示すように、部材1(200μm厚ウェハー)の表面に液状エポキシ樹脂組成物を塗布・加熱して200μm厚の樹脂層2を形成し、ダイシングソー3を用いて個片化する際のブレード磨耗量を測定した。使用装置、使用ブレード、加工条件は次の通りである。
(8) Blade wear amount As shown in FIG. 1, a liquid epoxy resin composition is applied to the surface of the member 1 (200 μm thick wafer) and heated to form a 200 μm thick resin layer 2, and a dicing saw 3 is used. The amount of blade wear during singulation was measured. The equipment used, the blade used, and the processing conditions are as follows.
 使用装置
 ディスコ社製「DFD6340 FULLY AUTOMATIC DICING SAW」
 使用ブレード
 「NBC-ZH2050」
 加工条件
 スピンドル回転数:35000rpm、送り速度:50mm/s、切削水:純水、加工距離:9.8m
 (9)ダイシング時チッピング
 (8)の条件で個片化した2mm□樹脂付きウェハーチップ10個について端面観察を行い、チッピングの有無を確認した。チッピングが確認されないか又は確認されても5μm未満の長さの亀裂が確認されるだけの場合には「○」、5μm以上20μm未満の長さの亀裂が確認される場合には「△」、20μm以上の長さの亀裂が確認される場合には「×」と判定した。
Equipment used "DFD6340 FULL AUTOMATIC DICING SAW" manufactured by DISCO
Used blade "NBC-ZH2050"
Processing conditions Spindle rotation speed: 35000 rpm, feed rate: 50 mm / s, cutting water: pure water, processing distance: 9.8 m
(9) Chipping at the time of dicing End face observation was performed on 10 wafer chips with 2 mm □ resin separated into pieces under the conditions of (8) to confirm the presence or absence of chipping. Even if chipping is not confirmed or only confirmed, a crack with a length of less than 5 μm is confirmed, “◯”, and when a crack with a length of 5 μm or more and less than 20 μm is confirmed, “△”, When a crack having a length of 20 μm or more was confirmed, it was determined as “x”.
 (10)絶縁信頼性評価
 ライン幅(L)及びライン間隔(S)が共に75μmの櫛型電極(銅めっき)が設けられた基板を用い、この電極が設けられた面に液状エポキシ樹脂組成物を塗布・加熱して樹脂層を形成した。次にこの基板を85℃、85%RHの槽内に設置し、上記電極に3.5Vの電圧を印加して2000時間経過するまで抵抗値をモニタリングした。そして抵抗値が1.0×10Ωを下回った時間を不良発生時間として絶縁信頼性を評価した。
(10) Insulation reliability evaluation A liquid epoxy resin composition is used on a surface provided with a comb-shaped electrode (copper plating) having a line width (L) and a line interval (S) of 75 μm. Was applied and heated to form a resin layer. Next, this substrate was placed in a bath at 85 ° C. and 85% RH, and a voltage of 3.5 V was applied to the electrode, and the resistance value was monitored until 2000 hours passed. The insulation reliability was evaluated by setting the time when the resistance value was below 1.0 × 10 5 Ω as the failure occurrence time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2にみられるように、実施例1~10では充填材の表面をカップリング剤で被覆することで吸湿率を低く抑えることができることが確認された。 As can be seen from Tables 1 and 2, in Examples 1 to 10, it was confirmed that the moisture absorption rate can be kept low by coating the surface of the filler with a coupling agent.
 また実施例1~8では、陰イオン交換タイプの無機イオン交換体により、不純物イオンとしてClイオンの量を低く抑えることができること、また実施例9では、陽イオン交換タイプの無機イオン交換体により、不純物イオンとしてNa及びNH4+イオンの量を低く抑えることができること、また実施例10では、両イオン交換タイプの無機イオン交換体により、不純物イオンとしてCl、Na及びNH4+イオンの量を低く抑えることができることが確認された。 In addition Examples 1-8, the inorganic ion exchangers of the anion-exchange type, as the impurity ions Cl - it is possible to reduce the amount of ions, also in Example 9, the inorganic ion exchangers of the cation exchange type In addition, the amount of Na + and NH 4+ ions as impurity ions can be kept low, and in Example 10, the amount of Cl , Na + and NH 4+ ions as impurity ions can be reduced by using both ion exchange type inorganic ion exchangers. It was confirmed that can be kept low.
 また、実施例1~10ではブレード磨耗量が小さいのに対し、1200℃で焼成処理した充填材を用いた比較例2及び中実粒子のみからなる充填材を用いた比較例3ではブレード磨耗量が著しく大きいことが確認された。 In addition, in Examples 1 to 10, the blade wear amount is small, whereas in Comparative Example 2 using a filler fired at 1200 ° C. and Comparative Example 3 using a filler consisting only of solid particles, the blade wear amount Was found to be significantly larger.
 また、カップリング剤で表面を被覆していない充填材を用いた比較例1では、ダイシング時にチッピングが発生することが確認された。 Also, in Comparative Example 1 using a filler whose surface was not coated with a coupling agent, it was confirmed that chipping occurred during dicing.
 また、実施例1~10では絶縁信頼性が良好であるのに対し、カップリング剤による充填材表面の被覆処理、200~1100℃の焼成処理、液状エポキシ樹脂組成物の製造時の加熱処理のいずれも行っていない比較例1では絶縁信頼性が極端に悪いことが確認された。 Further, in Examples 1 to 10, the insulation reliability is good, whereas the filler surface coating treatment with a coupling agent, the firing treatment at 200 to 1100 ° C., and the heat treatment during the production of the liquid epoxy resin composition In Comparative Example 1 in which neither was performed, it was confirmed that the insulation reliability was extremely poor.

Claims (4)

  1.  エポキシ樹脂、硬化剤及び充填材を含有する液状エポキシ樹脂組成物において、前記充填材として、多孔質粒子及び中空粒子から選ばれ、200~1100℃で焼成処理された後、カップリング剤で表面が被覆されたものが用いられていることを特徴とする液状エポキシ樹脂組成物。 In the liquid epoxy resin composition containing an epoxy resin, a curing agent, and a filler, the filler is selected from porous particles and hollow particles, and after firing at 200 to 1100 ° C., the surface is coated with a coupling agent. The liquid epoxy resin composition characterized by using what was coat | covered.
  2.  液状エポキシ樹脂組成物全量に対して無機イオン交換体が0.5~3.0質量%含有されていることを特徴とする請求項1に記載の液状エポキシ樹脂組成物。 2. The liquid epoxy resin composition according to claim 1, wherein the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass based on the total amount of the liquid epoxy resin composition.
  3.  エポキシ樹脂、硬化剤及び充填材を含有する液状エポキシ樹脂組成物を製造する方法において、前記充填材として、多孔質粒子及び中空粒子から選ばれ、200~1100℃で焼成処理された後、カップリング剤で表面が被覆されたものを用いると共に、前記充填材と、前記エポキシ樹脂及び硬化剤の一部とを配合して混合し、この混合物を加熱した後に室温に戻し、前記混合物に前記エポキシ樹脂及び硬化剤の残部を配合して再度混合することを特徴とする液状エポキシ樹脂組成物の製造方法。 In the method for producing a liquid epoxy resin composition containing an epoxy resin, a curing agent, and a filler, the filler is selected from porous particles and hollow particles, baked at 200 to 1100 ° C., and then coupled. A material whose surface is coated with an agent is used, and the filler, the epoxy resin and a part of the curing agent are blended and mixed, the mixture is heated and returned to room temperature, and the epoxy resin is added to the mixture. And the remainder of a hardening | curing agent is mix | blended and mixed again, The manufacturing method of the liquid epoxy resin composition characterized by the above-mentioned.
  4.  液状エポキシ樹脂組成物全量に対して無機イオン交換体が0.5~3.0質量%含有されるように前記エポキシ樹脂及び硬化剤の残部と共に前記無機イオン交換体を配合することを特徴とする請求項3に記載の液状エポキシ樹脂組成物の製造方法。 The inorganic ion exchanger is blended together with the remainder of the epoxy resin and the curing agent so that the inorganic ion exchanger is contained in an amount of 0.5 to 3.0% by mass with respect to the total amount of the liquid epoxy resin composition. The manufacturing method of the liquid epoxy resin composition of Claim 3.
PCT/JP2010/060646 2009-06-25 2010-06-23 Liquid epoxy resin composition and process for producing same WO2010150818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009151614A JP5672589B2 (en) 2009-06-25 2009-06-25 Liquid epoxy resin composition
JP2009-151614 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010150818A1 true WO2010150818A1 (en) 2010-12-29

Family

ID=43386587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060646 WO2010150818A1 (en) 2009-06-25 2010-06-23 Liquid epoxy resin composition and process for producing same

Country Status (2)

Country Link
JP (1) JP5672589B2 (en)
WO (1) WO2010150818A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060870A (en) * 2014-09-19 2016-04-25 日立化成株式会社 Thermosetting resin composition and method for producing the same, and prepreg, laminate and printed wiring board prepared therewith
WO2019159775A1 (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Chip resistor
CN112410106A (en) * 2020-11-26 2021-02-26 李彦林 Lubricating material for metal mechanical precision instrument and preparation method thereof
WO2023090026A1 (en) * 2021-11-17 2023-05-25 株式会社スリーボンド Microcapsule type curable resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086744A1 (en) * 2010-12-24 2012-06-28 Hoya株式会社 Mask blank and method of producing the same, and transfer mask and method of producing the same
JP2013133406A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Composite insulating resin, and insulating spacer and gas insulation instrument using the same
JP6174461B2 (en) * 2013-11-08 2017-08-02 アセック株式会社 Epoxy resin composition and cured product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137531A (en) * 2001-11-02 2003-05-14 Mitsubishi Rayon Co Ltd Surface modified spherical silica, method of manufacturing the same and plastic resin composition for semiconductor sealing material
JP2005054130A (en) * 2003-08-07 2005-03-03 Mitsubishi Rayon Co Ltd Adsorptive silica filler and its manufacturing method and resin composition for sealing
JP2006176343A (en) * 2004-12-21 2006-07-06 Catalysts & Chem Ind Co Ltd Method for producing porous silica-based particle and porous silica-based particle obtained by the same
JP2007091899A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Highly stable curing agent for epoxy resin and epoxy resin composition
JP2007161518A (en) * 2005-12-13 2007-06-28 Sumitomo Osaka Cement Co Ltd Low permittivity filler, and low permittivity composition and low permittivity film using this
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2009215088A (en) * 2008-03-07 2009-09-24 Nihon Yamamura Glass Co Ltd Spherical silica glass fine particle and method for producing the same
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342326A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Method of manufacturing epoxy resin composition for photosemiconductor sealing
JP2005126543A (en) * 2003-10-23 2005-05-19 Nippon Kayaku Co Ltd Flame-retardant nonhalogen epoxy resin composition and flexible printed wiring board using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137531A (en) * 2001-11-02 2003-05-14 Mitsubishi Rayon Co Ltd Surface modified spherical silica, method of manufacturing the same and plastic resin composition for semiconductor sealing material
JP2005054130A (en) * 2003-08-07 2005-03-03 Mitsubishi Rayon Co Ltd Adsorptive silica filler and its manufacturing method and resin composition for sealing
JP2006176343A (en) * 2004-12-21 2006-07-06 Catalysts & Chem Ind Co Ltd Method for producing porous silica-based particle and porous silica-based particle obtained by the same
JP2007091899A (en) * 2005-09-29 2007-04-12 Asahi Kasei Chemicals Corp Highly stable curing agent for epoxy resin and epoxy resin composition
JP2007161518A (en) * 2005-12-13 2007-06-28 Sumitomo Osaka Cement Co Ltd Low permittivity filler, and low permittivity composition and low permittivity film using this
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008156383A (en) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd Liquid resin composition, semiconductor device and method for producing the same
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2009215088A (en) * 2008-03-07 2009-09-24 Nihon Yamamura Glass Co Ltd Spherical silica glass fine particle and method for producing the same
JP2010138022A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle, producing method of the same and composite material comprising the porous silica particle
JP2010138021A (en) * 2008-12-10 2010-06-24 Jgc Catalysts & Chemicals Ltd Porous silica particle and producing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060870A (en) * 2014-09-19 2016-04-25 日立化成株式会社 Thermosetting resin composition and method for producing the same, and prepreg, laminate and printed wiring board prepared therewith
WO2019159775A1 (en) * 2018-02-15 2019-08-22 パナソニックIpマネジメント株式会社 Chip resistor
JPWO2019159775A1 (en) * 2018-02-15 2021-01-28 パナソニックIpマネジメント株式会社 Chip resistor
CN112410106A (en) * 2020-11-26 2021-02-26 李彦林 Lubricating material for metal mechanical precision instrument and preparation method thereof
WO2023090026A1 (en) * 2021-11-17 2023-05-25 株式会社スリーボンド Microcapsule type curable resin composition

Also Published As

Publication number Publication date
JP5672589B2 (en) 2015-02-18
JP2011006583A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5270833B2 (en) Liquid resin composition, semiconductor device and manufacturing method thereof
JP5672589B2 (en) Liquid epoxy resin composition
US9994729B2 (en) Liquid sealing material, and electronic component using same
KR101960996B1 (en) Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
WO2012133818A1 (en) Three-dimensional integrated circuit laminate and interlayer filler material for three-dimensional integrated circuit laminate
WO2014157626A1 (en) Composition for interlayer filler of layered semiconductor device, layered semiconductor device, and method for manufacturing layered semiconductor device
WO2011129272A1 (en) Attachment material for semiconductor chip bonding, attachment film for semiconductor chip bonding, semiconductor device manufacturing method, and semiconductor device
JP2006232950A (en) Sealing liquid epoxy resin composition, semiconductor device, and method for producing the same
WO2015104917A1 (en) Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JP3794349B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
KR20130089187A (en) Liquid epoxy resin composition and semiconductor device
WO2021029259A1 (en) Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
JP2013222889A (en) Interlayer filler composition for three-dimensional lamination type semiconductor device and coating liquid thereof
JP6051557B2 (en) Epoxy resin liquid sealing material for underfill and electronic component device
JP5579764B2 (en) Liquid epoxy resin composition for underfill and semiconductor device sealed with the composition
WO2011162055A1 (en) Epoxy resin composition and semiconductor device
JP5101860B2 (en) Epoxy resin composition and semiconductor device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP4848925B2 (en) Epoxy resin composition and adhesive
JP2003192767A (en) Liquid resin composition, method for manufacturing semiconductor device and semiconductor device
JPWO2005080502A1 (en) Liquid epoxy resin composition for underfill and semiconductor device sealed using the composition
JP2017101140A (en) Resin composition and semiconductor device having layer consisting of the resin composition
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same
WO2016056655A1 (en) Method for making semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792136

Country of ref document: EP

Kind code of ref document: A1