WO2010150739A1 - Acat2阻害活性を示す水酸基含有ピリピロペン誘導体 - Google Patents

Acat2阻害活性を示す水酸基含有ピリピロペン誘導体 Download PDF

Info

Publication number
WO2010150739A1
WO2010150739A1 PCT/JP2010/060461 JP2010060461W WO2010150739A1 WO 2010150739 A1 WO2010150739 A1 WO 2010150739A1 JP 2010060461 W JP2010060461 W JP 2010060461W WO 2010150739 A1 WO2010150739 A1 WO 2010150739A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meoh
esi
compound
acat2
Prior art date
Application number
PCT/JP2010/060461
Other languages
English (en)
French (fr)
Inventor
洋 供田
亨 長光
大介 松田
太一 大城
正樹 大多和
智 大村
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to JP2011519884A priority Critical patent/JP5554330B2/ja
Publication of WO2010150739A1 publication Critical patent/WO2010150739A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4433Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a pyripyropene A derivative having extremely excellent cholesterol acyltransferase isozyme 2 (hereinafter abbreviated as ACAT2) inhibitory activity, and more particularly to a pyripyropene A derivative in which the 1-position or the 11-position is substituted with a hydroxyl group.
  • ACAT2 cholesterol acyltransferase isozyme 2
  • statins that specifically inhibit hydroxy-3-methylglutaryl coenzyme A (reduced to HMG-CoA) reductase Systemic drugs are mainly used.
  • Statin drugs are the most widely sold drugs in the world for seven consecutive years since 2001, and are widely used so that two products are included in the top 30 sales in FY2007.
  • statin drugs only 30-40% of statin drugs have an effect of suppressing the onset, and it has become clear that half of patients undergoing treatment do not suppress cardiovascular disease etc. Patent Document 1).
  • HMG-CoA reductase inhibitor a prophylactic / therapeutic agent for arteriosclerosis
  • onset mechanism of arteriosclerosis is complicated, and various factors such as heredity, diabetes, drugs, etc. It is thought that this is because there are many cases of overlapping. Therefore, it is necessary to diagnose and treat according to the patient's individual condition.
  • the mechanism of action differs from that of statin drugs, and there is an urgent need to develop a drug with a new mechanism of action that can be expected to suppress the onset of coronary arteries and regress coronary artery lesions.
  • statin drugs that replace statin drugs has hardly progressed.
  • Cholesterol acyltransferase (more precisely, acyl coenzyme A cholesterol acyltransferase, acyl-CoA-cholesterol acyltransferase, hereinafter abbreviated as ACAT) is an enzyme that introduces an acyl group into cholesterol and is a statin-resistant arteriosclerosis It is regarded as a drug target that is expected to develop into tailor-made medical treatment according to individual treatment and individual pathological conditions. This enzyme has been attracting attention as an important target molecule for arteriosclerosis preventive and therapeutic agents for many years, and many synthetic ACAT inhibitors have been developed, but no side effects or sufficient effects have been observed, and it has not yet been linked to clinical application. No (non-patent document 2).
  • ACAT has two types of isozymes, ACAT1 and ACAT2, which have different functions and localization in vivo (Non-patent Document 3).
  • ACAT1 is widely distributed in many cells and tissues in the living body, and is highly expressed particularly in macrophages and smooth muscle cells, and causes macrophage foaming that causes arteriosclerosis in the arterial wall.
  • ACAT2 is specifically expressed in the small intestine and liver, and is considered to be involved in the absorption of dietary cholesterol and the secretion of very low density lipoprotein in each tissue. Since the difference in function between ACAT1 and ACAT2 in vivo has been clarified, the importance of clarifying the selectivity of drug discovery targeting ACAT has been recognized again.
  • Synthetic agents that have been discontinued during development so far have the properties of selective inhibition of ACAT1 (eg Wu-V-23) or inhibition of both ACAT1 and ACAT2 isozymes (eg abashimibe and pakimimibe) Became clear (Non-Patent Document 4).
  • Non-Patent Document 5 Considering the results of the recently announced knockout mouse (Non-Patent Document 5), the possibility of drug discovery from an ACAT2-selective inhibitor is strongly expected.
  • pyripyropene A Non-patent document 6
  • Non-patent document 7 Only pyripyropene A (Non-patent document 6) has been reported as an ACAT2-selective inhibitor (Non-patent document 7), and no drug discovery research led by an ACAT2-selective inhibitor has been found to date.
  • a pyripyropene derivative inhibits ACAT2 (Non-patent Document 8).
  • a derivative in which 1-position or 11-position is substituted with a hydroxyl group selectively inhibits ACAT2. Is not disclosed or suggested.
  • An object of the present invention is to provide a drug effective for the prevention or treatment of arteriosclerosis having a mechanism of action different from that of statin drugs.
  • the present inventors have found that a novel pyripyropene A derivative has an extremely high inhibitory activity against ACAT2, which is attracting attention as a target for arteriosclerosis preventive and therapeutic agents, and has completed the present invention. .
  • the present invention provides the following general formula (I) or (II) or (III):
  • R 1 and R 2 are groups selected from a hydroxyl group, a lower acyloxy group, an arylcarbonyloxy group, and a heteroarylcarbonyloxy group.
  • R 1 and R 2 may be the same or different from each other, but at least one of them is not a hydroxyl group, and in general formula (II) at least one of R 1 and R 2 is not an acetoxy group
  • R 3 represents a group selected from a hydroxyl group, a lower alkoxy group, an arylalkoxy group, a heteroarylalkoxy group, a lower alkylamino group, an arylamino group, and a heteroarylamino group).
  • pharmaceutically acceptable salts, solvates and hydrates thereof are examples of pharmaceutically acceptable salts, solvates and hydrates thereof.
  • the position of the OH group at the 1-position or the 11-position and the position of the R 2 group are interchanged with each other.
  • the compound represented by the general formula (III) is a compound in which —R 2 is a (C ⁇ O) R 3 group in the compound represented by the general formula (I).
  • lower acyloxy group as a group or a part of the group means a linear, branched or cyclic acyloxy group having about 1 to 7 carbon atoms.
  • lower acyloxy include acetoxy, n-propionyloxy, i-propionyloxy, n-butyryloxy, i-butyryloxy, s-butyryloxy, t-butyryloxy, n-valeryloxy, neovaleryloxy, i-valeryloxy, Examples include t-valeryloxy, n-caproyloxy, i-caproyloxy, cyclohexylcarbonyloxy and the like.
  • the lower acyloxy group includes those in which a hydrogen atom is substituted with another functional group. Examples of functional groups that may be present in the lower acyloxy group include halogen, cyano group, lower alkoxy group and the like.
  • arylcarbonyloxy group as a group or a part of the group means a phenylcarbonyloxy group (benzoyloxy group), a naphthylcarbonyloxy group or the like, and one or two or more on an aromatic ring May be present.
  • substituents include lower alkyl groups, lower alkoxy groups, cyano, nitro, halogen, azide groups, optionally substituted amino groups, hydroxyl groups, optionally substituted aryl groups, lower alkylsulfonyls. Groups and the like.
  • the lower alkyl group and the lower alkoxy group mean a linear, branched or cyclic group having about 1 to 7 carbon atoms.
  • preferred arylcarbonyloxy groups include p-cyanobenzoyl group and p-nitrobenzoyl group.
  • heteroaryl as a group or part of a group refers to a 5- or 6-membered aromatic heterocycle having one or more heteroatoms selected from nitrogen, oxygen, and sulfur. Or a polycyclic heteroaromatic compound.
  • preferred heteroaryl include groups derived from furan, pyrrole, imidazole, thiazole, triazole, tetrazole, thiadiazole, pyridine, pyridazine, pyrimidine, indole, thianaphthene and the like.
  • the heteroaryl group may be substituted with one or more substituents (similar to those exemplified for the arylcarbonyloxy group).
  • lower alkoxy group as a group or a part of the group means a linear, branched or cyclic alkoxy group having about 1 to 7 carbon atoms.
  • lower alkoxy include methoxy, ethoxy, propyloxy and the like.
  • the lower alkoxy group includes those in which a hydrogen atom is substituted with another functional group.
  • functional groups that may be present in the lower alkoxy group include halogen, cyano, azide, lower alkoxy group, lower alkoxycarbonyl group, optionally substituted aryl group, optionally substituted heteroaryl group and the like.
  • lower alkylamino group as a group or part of a group means an amino group having a linear, branched, or cyclic alkyl group having about 1 to 7 carbon atoms, The number of lower alkyl groups bonded to the atom is 1 or 2.
  • Examples of “lower alkylamino group” include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group and the like.
  • the lower alkylamino group includes those in which a hydrogen atom is substituted with another functional group.
  • Examples of functional groups that may be present in the lower alkylamino group include halogen, cyano, azide, lower alkoxy group, lower alkoxycarbonyl group, optionally substituted aryl group, optionally substituted heteroaryl group, and the like.
  • Examples of the “substituted lower alkylamino group” include methoxycarbonylmethyl group, ethoxycarbonylmethyl group, benzylamino group, 2,4-dimethoxyphenylmethyl group, and the like.
  • R 1 is an arylcarbonyloxy group (for example, p-cyanobenzoyl group, p-nitrobenzoyl group). Or a lower acyloxy group (eg, acetyl group), and R 2 is a lower acyloxy group or arylcarbonyloxy group, particularly an acetyl group, a propionyl group, an isobutyryl group, or a benzoyl group.
  • the compound according to the present invention has an excellent ACAT2 inhibitory activity and is a therapeutic or prophylactic agent for obesity, obesity, hyperlipidemia, hypercholesterolemia, dyslipidemia, arteriosclerosis, hypertension, etc. Useful as.
  • a pharmaceutical composition containing the compound of the present invention and a pharmacologically acceptable salt thereof, a pharmacologically acceptable ester thereof or another pharmacologically acceptable derivative thereof as an active ingredient is a prophylactic agent for arteriosclerotic diseases. Alternatively, it is useful as a therapeutic agent.
  • a compound in which R 1 is a lower alkyl or arylcarbonyloxy group and R 2 is an acetoxy group is a scheme shown below (hereinafter also referred to as a first scheme). ).
  • R 1 CO 2 H represents a carboxylic acid corresponding to the lower alkyl or arylcarbonyloxy group defined in the general formula (I).
  • the compound of the formula (a) in the above scheme can be synthesized by a conventional method (for example, Obata et al., J. Antibiot. 49, 1133-1148, 1996).
  • the conversion from compound (a) to compound (b) can be carried out by the following method. That is, in the presence of 1.2 equivalents of di-tert-butylsilylditrifluoromethanesulfonate or di-tert-butylsilyldichloride and 2.4 equivalents or an excess of an organic amine (preferably 2,6-lutidine) relative to (a).
  • (B) can be obtained by reacting in a dimethylformamide solvent at ice temperature for 1 hour and then subjecting it to ordinary post-treatment.
  • Conversion from compound (b) to compound (c) can be carried out by the following method. 1 equivalent or excess of the corresponding carboxylic acid R 1 CO 2 H relative to (b) and 1 equivalent or excess of condensing agent (preferably 1-ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride or dicyclohexylcarbodiimide), and 0.5 equivalent or excess of an organic base (preferably dimethylaminopyridine) in dichloromethane, dimethylformamide, tetrahydrofuran, acetonitrile or the like or a mixed solvent thereof for 30 minutes to 2 at room temperature.
  • condensing agent preferably 1-ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride or dicyclohexylcarbodiimide
  • an organic base preferably dimethylaminopyridine
  • the conversion from compound (c) to compound (d) can be carried out by the following method. That is, in the presence of 10 equivalents or an excess amount of ammonium fluoride relative to (c), in an alcohol solvent (preferably methanol, ethanol), tetrahydrofuran, acetonitrile or the like or a mixed solvent thereof at room temperature for 3 to 5 hours. After the reaction, (d) can be obtained as the main product by subjecting it to ordinary post-treatment.
  • the conversion from compound (d) to compound (e) can be performed by the following method. 1 equivalent or excess of acetic anhydride and 1.5 equivalent or excess of organic amine (preferably triethylamine, diisopropylethylamine) and 0.5 equivalent or excess of organic base (preferably dimethylaminopyridine relative to (d). ) In a dichloromethane, dimethylformamide, tetrahydrofuran, acetonitrile or the like or a mixed solvent thereof at 0 ° C. or room temperature for 30 minutes to 2 days, and then carrying out a usual post-treatment, Obtainable.
  • R 2 is an acetoxy group, but an acyloxy group other than an acetoxy group can be introduced by using a corresponding acid anhydride when converting the compound (d) to the compound (e). it can.
  • the conversion from compound (e) to compound (f) can be carried out by the following method. That is, tetrahydrofuran, an alcohol solvent (preferably methanol, ethanol), acetonitrile, in the presence of a fluorine reagent (preferably triethylamine hydrogen trifluoride, tetrabutylammonium fluoride, etc.) of 1 equivalent or excess with respect to (e).
  • a fluorine reagent preferably triethylamine hydrogen trifluoride, tetrabutylammonium fluoride, etc.
  • R 1 represents the same meaning as defined for general formula (I).
  • Compound (c) in the above scheme can be synthesized by the same method as described in the first scheme.
  • the conversion from compound (c) to compound (g) can be carried out by the following method. That is, 3 to 5 at room temperature in an alcohol solvent (preferably methanol, ethanol), tetrahydrofuran, acetonitrile, or a mixed solvent thereof in the presence of 10 equivalents or an excess amount of ammonium fluoride relative to (c).
  • (G) can be obtained as a by-product by carrying out normal post-treatment after reacting for a period of time.
  • R 2 is an acetoxy group, but an acyloxy group other than an acetoxy group can be introduced by using a corresponding acid anhydride when converting the compound (g) to (h). Can do.
  • a compound in which R 1 is an arylcarbonyloxy group and R 3 is a propylamino group is produced by the following scheme (hereinafter also referred to as the third scheme). be able to.
  • R 1 represents the same meaning as defined for general formula (III).
  • Compound (d) in the above scheme can be synthesized by the same method as described for the first scheme.
  • the conversion from compound (d) to compound (j) can be carried out by the following method. That is, the reaction is carried out in a water-containing acetone solvent (preferably 5% water-containing acetone) for 12 hours at room temperature in the presence of 2 equivalents or an excess amount of Jones reagent with respect to (d), followed by normal post-treatment. (J) can be obtained.
  • a water-containing acetone solvent preferably 5% water-containing acetone
  • conversion from compound (j) to compound (k) can be synthesized by a conventional method (for example, Nagamitsu et al., J. Org. Chem. 61, 882-886, 1996). Conversion from compound (k) to compound (l) can be carried out by the following method.
  • R 3 is a propylamino group, but an alkylamino group or an arylamino group other than the propylamino group can be obtained by using a corresponding amine in the conversion from the compound (k) to the compound (l). Alternatively, a heteroarylamino group can be introduced.
  • a compound having a methoxy group at R 3 can be synthesized by reacting compound (k) with diazomethane or trimethylsilyldiazomethane in an alcohol solvent (preferably methanol) and a benzene mixed solvent.
  • an alcohol solvent preferably methanol
  • a compound having an alkoxy group at R 3 can be synthesized by subjecting one equivalent or excess of the corresponding alcohol to (k) under the above-mentioned conditions.
  • a compound having a hydroxyl group at R 3 can be synthesized by removing the fluorodi-tert-butylsilyl group from compound (k) by the same method as described for the first scheme.
  • the present invention includes salts, solvates and hydrates of the compounds represented by formula (I) or (II) or (III).
  • salts include inorganic acids (eg, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, etc.) or organic acids (eg, acetic acid, propionic acid, citric acid, tartaric acid, malonic acid, maleic acid, fumaric acid, Toluenesulfonic acid, succinic acid, etc.).
  • the compounds according to the invention have a high inhibitory activity against ACAT2.
  • the compounds according to the invention can be used for the prevention and treatment of arteriosclerosis in animals, including humans.
  • the present invention also provides an ACAT2 inhibitor comprising the above compound or a pharmaceutically acceptable salt, solvate or hydrate thereof as an active ingredient, and the above compound or a pharmaceutically acceptable salt, solvate or hydrate thereof.
  • a pharmaceutical composition for inhibiting ACAT2, comprising a product and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention can be formulated by methods known to those skilled in the art.
  • the compound of the present invention can be added to a pharmaceutically acceptable carrier such as sterile water or saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative. It can be formulated by mixing with one or two or more selected from binders and the like in a unit dose form generally required for pharmaceutical practice.
  • tablets, pills, dragees, capsules, liquids, gels, syrups, slurries are prepared by mixing a compound of the present invention or a salt thereof with a pharmaceutically acceptable carrier well known in the art.
  • a pharmaceutically acceptable carrier well known in the art.
  • excipients such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid and the like.
  • Binders such as water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone; dry starch, sodium alginate, agar powder, laminaran powder, carbonic acid Disintegrating agents such as sodium hydride, calcium carbonate, polyoxyethylene sorbitan fatty acid ester, sodium lauryl sulfate, stearic acid monoglyceride, starch, lactose; disintegrating inhibitors such as sucrose, stearic cocoa butter, hydrogenated oil; Absorption promoters such as sodium uryl sulfate; humectants such as glycerin and starch; adsorbents such as starch, lactose, kaolin, bentonite and colloidal silicic acid; abundance of purified talc, stearate, boric acid powder, polyethylene glycol, etc.
  • Binders such
  • the tablet can be a tablet coated with a normal coating, for example, a sugar-coated tablet, a gelatin-encapsulated tablet, an enteric-coated tablet, a film-coated tablet, a double tablet, or a multilayer tablet, if necessary.
  • a normal coating for example, a sugar-coated tablet, a gelatin-encapsulated tablet, an enteric-coated tablet, a film-coated tablet, a double tablet, or a multilayer tablet, if necessary.
  • the compounds of the invention or their salts can be formulated according to conventional pharmaceutical practice using pharmaceutically acceptable vehicles well known in the art as carriers.
  • water-soluble vehicles for injection include isotonic solutions containing, for example, physiological saline, glucose and other adjuvants (for example, water-soluble salts such as D-sorbitol, D-mannose, D-mannitol, sodium chloride).
  • a suitable solubilizing agent such as alcohol, specifically ethanol, polyalcohol such as propylene glycol, polyethylene glycol, nonionic surfactant such as polysorbate 80 TM , HCO-50.
  • Oily vehicles include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizer. Further, a buffer such as phosphate buffer, sodium acetate buffer, soothing agent such as procaine hydrochloride, stabilizer such as benzyl alcohol, phenol and antioxidant may be added.
  • the prepared injection solution is usually filled in a suitable ampoule.
  • Suitable routes of administration of the pharmaceutical composition of the present invention include, but are not limited to, oral, rectal, radial mucosa, or enteral administration, or intramuscular, subcutaneous, intramedullary, intrathecal, direct intraventricular, intravenous, Intravitreal, intraperitoneal, intranasal, or intraocular injection is included.
  • the administration route can be appropriately selected in consideration of the age and medical condition of the patient, other drugs used in combination, and the like.
  • the dosage of the pharmaceutical composition of the present invention can be selected in the range of 0.001 to 10 mg / kg body weight per administration, or in the range of 0.1 to 100 mg per administration. It is not necessarily limited to the numerical value of. Administration may be carried out once or several times a day or once every several days.
  • the dose and administration method can be appropriately selected by the doctor in charge taking into account the patient's weight, age, symptoms, and other drugs used in combination.
  • 1,7,11-trideacetylpyripyropene A (also referred to as PRD165, obtained according to the method of Obata et al. (J. Antibiot. 49, 1149-1156, 1996) under an argon atmosphere.
  • 2,6-lutidine (103 ⁇ L, 0.88 mmol) and t Bu 2 Si (OTf) 2 (161 ⁇ L, 0.44 mmol) were added to a dry DMF (4 mL) solution of mg, 0.367 mmol) and stirred at 0 ° C. for 0.5 hour. . MeOH was added to stop the reaction.
  • Test Example 1 Analysis of metabolites of administered pyripyropene A and its derivatives C57BL6 / J mice (male, purchased from Japan SLC Co., Ltd.) under artificial light (day) -dark (night) cycle in a 12-hour cycle A standard diet (CE-2, manufactured by CLEA Japan, Inc.) was appropriately given and maintained. Before starting each drug test, they were fasted for 20 hours (water ad libitum). In these animals, pyripyropene A or PRD017 is dissolved in a 0.5% (w / v) carboxymethylcellulose physiological saline solution and orally administered to a 10-week-old mouse in a volume of 2.5 ml / kg to a concentration of 50 mg / kg. Administered.
  • 100 ⁇ L of blood was collected from the tail vein of test animals at 0.5, 6 and 12 hours after administration of pyripyropenes. Immediately before administration of pyripyropene, 100 ⁇ L of blood was collected, and this was defined as 0 hour. After 200 ⁇ L of ethyl acetate was added to these blood and mixed well, 150 ⁇ L of the ethyl acetate layer was collected in a 1.5 ⁇ ml tube tube (Catalog No. 3810, Eppendorf). After drying with a centrifugal evaporator (manufactured by Tokyo Science Instruments Co., Ltd.), it was redissolved in 100 ⁇ L of methanol.
  • feces excreted within 6 hours after administration of pyripyropene were collected.
  • the collected feces were heated at 55 ° C. for 24 hours, dried and then crushed.
  • 10 mg of crushed feces was collected in a glass vial, and 1 ml of ethyl acetate was added to dissolve excreted pyripyropenes and their metabolites.
  • the total amount of the ethyl acetate was filtered through a filter having a pore size of 0.22 ⁇ m, and the filtrate was collected in a 1.5 ml tube, dried to dryness with a centrifugal evaporator, and redissolved in 100 ⁇ L of methanol.
  • an ultrahigh performance liquid chromatography kit (system; Prominence, manufactured by Shimadzu Corp .: column; Shin-Pack XR-ODS, 2.0 ⁇ ⁇ 75 mm, 40 ° C., manufactured by Shimadzu Corp.) was used. Elution was started with 5% acetonitrile and 0.1% phosphoric acid aqueous solution, and after 6 minutes, elution was performed with a linear concentration gradient so as to become 95% acetonitrile and 0.1% phosphoric acid aqueous solution, and detection was performed at a wavelength of 320 nm.
  • the molecular weight is high performance liquid chromatography / mass spectrometry (Waters; column, PEGASIL ODS, 2.0 O X 50 mm, Senshu Scientific); mass detector, micromass ZQ 2000, Waters; moving bed, 10% acetonitrile Then, elution was started with 0.05% aqueous trifluoroacetic acid, and after 13 minutes, linear concentration gradient so that it became 100% acetonitrile and 0.05% aqueous trifluoroacetic acid; analysis software, MassLynx (Ver.4.0) was detected.
  • pyripyropene A Three types of pyripyropene A (PPA) -related substances were detected from samples extracted from the blood of mice administered with pyripyropene A, and they were named Peak B1 to Peak B3 in order from those with the latest elution time. From the sample extracted from feces, two types of pyripyropene A-related substances were detected, and were named Peak F1 and Peak F2 in order from the one with the latest elution time. Table 1 shows the elution times and molecular weights of the samples, peaks B1 to B3, and peaks F1 and F2.
  • PRD017-related substances Three types were detected from samples extracted from the blood of mice administered with PRD017, and were named as peak B1 ′ to peak B3 ′ in order from those with the latest elution time. Two types of PRD017-related substances were detected from the sample extracted from the feces, and were named as peak F1 ′ and peak F2 ′ in order from the one with the latest elution time. Table 2 shows the elution times and molecular weights of the samples and peaks B1 ′ to B3 ′ and peaks F1 ′ and F2 ′.
  • PRD017 (7? Op-cyanobenzoyl-pyripyropene A) administered and PRD148 (7-deacetylpyripyropene A) and PRD138 (7-Op-cyanobenzoyl-1,7,11-trideacetylpyri) used as comparative examples
  • PRD148 7-deacetylpyripyropene A
  • PRD138 7-Op-cyanobenzoyl-1,7,11-trideacetylpyri
  • peaks B1 to B3 were identified as PPA, PRD147, and PRD146, respectively. Peaks F1 and F2 were identified as PPA and PRD146, respectively. Further, as is clear from Table 2, peaks B1 ′ to B3 ′ were identified as PRD017, PRD118, and PRD138, respectively. Peaks F1 ′ and F2 ′ were identified as PRD017 and PRD138, respectively.
  • a metabolite detected from blood 30 minutes after administration of pyripyropene a metabolite in which the acetyl group at the 1-position was hydrolyzed and converted to a hydroxyl group, and two metabolites at the 1- and 11-positions
  • Two types of metabolites in which the acetyl group was hydrolyzed and converted to a hydroxyl group were identified.
  • Metabolites detected from feces excreted within 6 hours after administration of pyripyropene are metabolites in which the acetyl groups at the 1st and 11th positions are hydrolyzed and converted to hydroxyl groups.
  • Test Example 2 Measurement of ACAT2 inhibitory activity [Method for preparing enzyme source of ACAT2]
  • An enzyme source was prepared by partially modifying the method of Uelmen et al. (J. Biol. Chem. 270, 26192-26201, 1995).
  • the supernatant obtained by centrifuging this at 12000 ⁇ g was ultracentrifuged at 100,000 ⁇ g to obtain a microsomal fraction, and this fraction was prepared with buffer A so as to have a protein concentration of 5 mg / mL.
  • ACAT activity of the pyripyropene derivative prepared in each example was measured according to the method of Field et al. (Gastroenterology, 83, 873-880, 1982). It said enzyme source 200 ⁇ g protein amount, 200 mM bovine serum albumin, [1- 14 C] oleoyl coenzyme A (final concentration 170 ⁇ M, 0.090 ⁇ Ci) each pyripyropene derivative to be tested (1,0.1,0.01,0.001,0.0001,0.00001Mg 10 ⁇ L / mL methanol solution) was added to buffer A to make a total volume of 200 ⁇ L, followed by reaction at 37 ° C. for 5 minutes. As a control, 10 ⁇ L of methanol was added instead of the pyripyropene derivative.
  • the amount of [ 14 C] cholesteryl oleate produced was quantified with a BAS 2000 bioimage analyzer (manufactured by Fuji Film Co., Ltd.) and compared with the control, whereby the inhibitory activity of the test compound was calculated by the following formula.
  • the radioactivity of thin-layer chromatography in which nothing was spotted was used as the background.
  • Inhibition rate 100-[(radioactivity when test compound is added)-(background)] / [(radioactivity of control)-(background)] From these inhibition rate data, the concentration at which the enzyme activity was inhibited by 50% (IC 50 , inhibition activity) was calculated.
  • the compound according to the present invention exhibits extremely high inhibitory activity against ACAT2.
  • the ACAT2 inhibitory activity test is not limited to the above method, and for example, microsomes prepared from the small intestine or liver of animals such as rats and monkeys may be used as the ACAT2 enzyme source.
  • microsomes prepared from cultured cells (Caco-2 enterocytes, primary cultured hepatocytes, HePG2 hepatocytes, etc.) or cultured cells highly expressing ACAT2 can also be used as the ACAT2 enzyme source.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 スタチン系医薬品とは異なる作用機序を有する動脈硬化症の予防または治療に有効な化合物の提供。 下記一般式(I)または(II):(式中、R1及びR2は、ヒドロキシル基、低級アシロキシ基、アリールカルボニルオキシ基、及びヘテロアリールカルボニルオキシ基から選ばれた基を意味し、─R2は、(=O)R3であってもよく、R3はヒドロキシル基、低級アルコキシ基、アリールアルコキシ基、ヘテロアリールアルコキシ基、低級アルキルアミノ基、アリールアミノ基、又はヘテロアリールアミノ基を意味する)で示されるピリピロペン誘導体、ならびにその薬学上許容される塩、溶媒和物および水和物。

Description

ACAT2阻害活性を示す水酸基含有ピリピロペン誘導体
 本発明は、極めて優れたコレステロールアシル転移酵素アイソザイム2(以下、ACAT2と略す)阻害活性を有するピリピロペンA誘導体に関し、さらに詳しくは、1位または11位が水酸基に置換されたピリピロペンA誘導体に関する。
 心筋梗塞や脳卒中などの死に直結する疾患へと発展するリスクが高い高脂血症や動脈硬化症のわが国の患者数は、自覚症状のない予備軍を含めて3000万人にのぼると言われている。動脈硬化性疾患ガイドラインが改訂された現在も、この過程を経た死は死因の上位を占めている。高脂血症や動脈硬化症は、日本だけでなく、欧米諸国においても重要な健康問題となっている。
 現在、動脈硬化症の予防治療薬としては、ヒドロキシ-3-メチルグルタリル補酵素A (hydroxy-3-methylglutaryl Co-A)(以下、HMG-CoAと略す)還元酵素を特異的に阻害するスタチン系医薬品が主に用いられている。スタチン系医薬品は、2001年から7年連続して世界で最も多く販売されている医薬品であり、2007年度売上高トップ30に2製品も入るほど広く使用されている。しかし、現実には、スタチン系医薬品では30~40%しか発症抑制効果が得られず、治療を受けている患者の半数が心血管疾患等を抑制していないことが明らかとなってきた(非特許文献1)。
 動脈硬化症の予防治療薬であるHMG-CoA還元酵素阻害剤が十分に心血管疾患等を抑制していない理由は、動脈硬化の発症メカニズムが複雑で、遺伝、糖尿病、薬剤などの様々な要因が重なって発症していることが多いためではないかと考えられる。そのため、患者個々の病態に合わせた診断及び治療が必要である。
 従って、スタチン系医薬品とは作用機序が異なり、冠状動脈での発症抑制や冠状動脈病変の退縮が期待できる新しい作用機序を有する医薬品の開発が急務である。しかし、現状ではスタチン系医薬品に代わる医薬品の開発はほとんど進んでいない。
 コレステロールアシル転移酵素(より正確には、アシル補酵素Aコレステロールアシル転移酵素、acyl-CoA-cholesterol acyltransferase、以下ACATと略す)は、コレステロールにアシル基を導入する酵素であり、スタチン耐性の動脈硬化症の治療や個々の病態に応じたテーラメイド医療への発展が期待される薬剤標的とされている。本酵素は長年動脈硬化予防治療薬の重要な標的分子として注目され、数多くの合成ACAT阻害剤が開発されてきたが、副作用や十分な効果が認められず、未だに臨床への実用化に結びついていない(非特許文献2)。
 そのような中、最近になって、ACATには、生体内での機能や局在が異なる2種のアイソザイム、ACAT1とACAT2、が存在することが明らかになってきた(非特許文献3)。ACAT1は、生体内の多くの細胞・組織に広く分布し、特にマクロファージや平滑筋細胞に高発現し、動脈壁においては動脈硬化症の原因となるマクロファージ泡沫化を引き起こす。一方、ACAT2は、小腸と肝臓に特異的発現し、それぞれの組織において食餌性コレステロールの吸収と超低密度リポタンパク質の分泌に関与していると考えられている。ACAT1とACAT2の生体内での機能の相違が明らかとなってきたことから、ACATを標的とした創薬にはその選択性を明確にすることの重要性が再認識されている。
 これまでに開発途中で中止された合成剤は、ACAT1の選択的阻害(例えば、Wu-V-23)、あるいはACAT1とACAT2両アイソザイム阻害(例えば、アバシミベやパクチミベ)の特性を有していることが明らかとなった(非特許文献4)。
 最近発表されたノックアウトマウスの結果(非特許文献5)も考えあわせると、ACAT2選択的阻害剤からの創薬の可能性が強く期待されている。しかし、ACAT2選択的阻害剤として報告されているのはピリピロペンA(非特許文献6)のみであり(非特許文献7)、今日までACAT2選択的阻害剤をリードとした創薬研究は見当たらない。さらに、ピリピロペン誘導体がACAT2を阻害することは既に開示されている(非特許文献8)が、その中には、1位または11位が水酸基に置換された誘導体がACAT2を選択的に阻害することは開示も示唆もなされていない。
Libby、 J. Am. Coll. Cardiol. 46巻、1225-1228頁、2005年 Meuwese等、Curr. Opin. Lipidol. 17巻、426-431頁、2006年 Chang等、Acta. Biochim. Biophys. Sin. 38 巻、151-156頁、2006年 Farese, Arterioscler. Thromb. Vasc. Biol. 26巻、1684-1686頁、2006年 Bell等、Arterioscler. Thromb. Vasc. Biol. 27巻、1396-1402頁、2007年 Tomoda等、J. Antibiot.47巻、148-153頁、1994年 Lada等、J. Lipid Res.45巻、378-386頁、2004年 Ohshiro等、J. Antibiot. 61巻、503-508頁、2008年
 本発明の目的は、スタチン系医薬品とは異なる作用機序を有する動脈硬化症の予防または治療に有効な薬剤を提供することである。
 本発明者らは、新規なピリピロペンA誘導体が、動脈硬化予防治療薬の標的として注目されているACAT2に対して極めて高い阻害活性を有していることを見いだし、本発明を完成するに至った。
 ここに、本発明は、下記一般式(I)または(II)または(III):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(前記(I)式~(III)式において、R1およびR2は、ヒドロキシル基、低級アシロキシ基、アリールカルボニルオキシ基、およびヘテロアリールカルボニルオキシ基から選ばれた基を意味し、一般式(I)および(II)においてR1とR2は互いに同一でも異なっていてもよいが、少なくとも一方はヒドロキシル基ではなく、かつ一般式(II)においてR1とR2の少なくとも一方はアセトキシ基ではなく、R3はヒドロキシル基、低級アルコキシ基、アリールアルコキシ基、ヘテロアリールアルコキシ基、低級アルキルアミノ基、アリールアミノ基、およびヘテロアリールアミノ基から選ばれた基を意味する)で示されるピリピロペンA誘導体、ならびにその薬学上許容される塩、溶媒和物および水和物である。
 一般式(I)で示される化合物と一般式(II)で示される化合物は、1位又は11位のOH基の位置とR2基の位置が相互に交換されているが、その他の化学構造は共通している。また、一般式(III)で示される化合物は、一般式(I)で示される化合物において、─R2が(C=O)R3基である化合物であるといえる。
 本明細書において、基または基の一部としての「低級アシロキシ基」という語は、直鎖、分岐鎖、もしくは環状の炭素数1~7程度のアシロキシ基を意味する。
 「低級アシロキシ」の例としては、アセトキシ、n-プロピオニルオキシ、i-プロピオニルオキシ、n-ブチリルオキシ、i-ブチリルオキシ、s-ブチリルオキシ、t-ブチリルオキシ、n-バレリルオキシ、ネオバレリルオキシ、i-バレリルオキシ、t-バレリルオキシ、n-カプロイルオキシ、i-カプロイルオキシ、シクロヘキシルカルボニルオキシ等が挙げられる。低級アシロキシ基は、水素原子が他の官能基で置換されているものも包含する。低級アシロキシ基に存在しうる官能基の例としては、ハロゲン、シアノ基、低級アルコキシ基などが挙げられる。
 本明細書において、基または基の一部としての「アリールカルボニルオキシ基」という語は、フェニルカルボニルオキシ基(ベンゾイルオキシ基)またはナフチルカルボニルオキシ基等を意味し、芳香環上に1または2以上の置換基が存在していてもよい。そのような置換基の例としては、低級アルキル基、低級アルコキシ基、シアノ、ニトロ、ハロゲン、アジド基、置換されていてもよいアミノ基、ヒドロキシル基、置換されてもよいアリール基、低級アルキルスルホニル基などが挙げられる。低級アルキル基および低級アルコキシ基は、直鎖、分岐鎖または環式の炭素数1~7程度の基を意味する。好ましいアリールカルボニルオキシ基の例としては、p-シアノベンゾイル基、p-ニトロベンゾイル基等が挙げられる。
 本明細書において、基または基の一部としての「ヘテロアリール」という語は、窒素、酸素、および硫黄から選択された1または2以上のヘテロ原子を有する5または6員環の芳香族複素環、もしくは多環式複素環芳香族化合物を意味する。好ましいヘテロアリールの例としては、フラン、ピロール、イミダゾール、チアゾール、トリアゾール、テトラゾール、チアジアゾール、ピリジン、ピリダジン、ピリミジン、インドール、チアナフテン等から誘導された基が挙げられる。ヘテロアリール基は1または2以上の置換基(アリールカルボニルオキシ基について例示したものと同様でよい)で置換されていてもよい。
 本明細書において、基または基の一部としての「低級アルコキシ基」という語は、直鎖、分岐鎖、もしくは環状の炭素数1~7程度のアルコキシ基を意味する。「低級アルコキシ」の例としては、メトキシ、エトキシ、プロピルオキシ等が挙げられる。低級アルコキシ基は水素原子が他の官能基で置換されているものも包含する。低級アルコキシ基に存在しうる官能基の例としては、ハロゲン、シアノ、アジド、低級アルコキシ基、低級アルコキシカルボニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基などが挙げられる。
 本明細書において、基または基の一部としての「低級アルキルアミノ基」という語は、直鎖、分岐鎖、もしくは環状の炭素数1~7程度のアルキル基を有するアミノ基を意味し、窒素原子に結合する低級アルキル基の数は1もしくは2である。「低級アルキルアミノ基」の例としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基等が挙げられる。低級アルキルアミノ基は水素原子が他の官能基で置換されているものも包含する。低級アルキルアミノ基に存在しうる官能基の例としては、ハロゲン、シアノ、アジド、低級アルコキシ基、低級アルコキシカルボニル基、置換されてもよいアリール基、置換されてもよいヘテロアリール基などが挙げられる。「置換された低級アルキルアミノ基」の例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基、ベンジルアミノ基、2,4-ジメトキシフェニルメチル基、などが挙げられる。
 本発明に係る上記一般式(I)、(II)または(III)で示される化合物として特に好ましいのは、R1がアリールカルボニルオキシ基(例えば、p-シアノベンゾイル基、p-ニトロベンゾイル基)、または低級アシロキシ基(例、アセチル基)であり、R2が低級アシロキシ基またはアリールカルボニルオキシ基、特にアセチル基、プロピオニル基、イソブチリル基、ベンゾイル基である化合物である。
 本発明に係る化合物は、優れたACAT2阻害活性を有し、肥満、肥満症、高脂血症、高コレステロール血症、脂質代謝異常疾患、動脈硬化症、もしくは高血圧症等の治療剤もしくは予防剤として有用である。さらに、本発明の化合物及びその薬理上許容される塩、その薬理上許容されるエステル又はその薬理上許容されるその他の誘導体を有効成分として含有する薬剤組成物は、動脈硬化性疾患に対する予防剤もしくは治療薬としても有用である。
 本発明に係る一般式(I)で示される化合物のうち、R1が低級アルキルもしくはアリールカルボニルオキシ基、R2がアセトキシ基を意味する化合物は、次に示すスキーム(以下、第1スキームともいう)によって製造することができる。
Figure JPOXMLDOC01-appb-C000007
[上記スキーム中、R1CO2Hは一般式(I)で定義した低級アルキルもしくはアリールカルボニルオキシ基に対応するカルボン酸を表す。]
 上記スキーム中の式(a)の化合物は、常法(例えば、Obata等、J. Antibiot. 49巻、1133-1148頁、1996年)により合成できる。
 化合物(a)から化合物(b)への変換は以下の方法で行うことができる。即ち、(a)に対して1.2当量のジ-tert-ブチルシリルジトリフルオロメタンスルホネートもしくはジ-tert-ブチルシリルジクロリドならびに2.4当量または過剰量の有機アミン(好ましくは2,6-ルチジン)の存在下、ジメチルホルムアミド溶媒中で、氷温において1時間反応させた後、通常の後処理にかけることにより(b)を得ることができる。
 化合物(b)から化合物(c)への変換は以下の方法で行うことができる。即ち、(b)に対して1当量または過剰量の対応するカルボン酸R1CO2H、ならびに1当量または過剰量の縮合剤(好ましくは、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩もしくはジシクロヘキシルカルボジイミド)、ならびに0.5当量または過剰量の有機塩基(好ましくはジメチルアミノピリジン)の存在下、ジクロロメタン、ジメチルホルムアミド、テトラヒドロフラン、アセトニトリル等またはそれらの混合溶媒中で、室温において30分から2日間反応させた後、通常の後処理にかけることにより(c)を得ることができる。
 化合物(c)から化合物(d)への変換は以下の方法で行うことができる。即ち、(c)に対して10当量のまたは過剰量のフッ化アンモニウムの存在下、アルコール溶媒(好ましくはメタノール、エタノール)、テトラヒドロフラン、アセトニトリル等またはそれらの混合溶媒中で、室温において3~5時間反応させた後、通常の後処理にかけることにより主生成物として(d)を得ることができる。
 化合物(d)から化合物(e)への変換は以下の方法で行うことができる。即ち、(d)に対して1当量または過剰量の無水酢酸、ならびに1.5当量または過剰量の有機アミン(好ましくはトリエチルアミン、ジイソプロピルエチルアミン)、並びに0.5当量または過剰量の有機塩基(好ましくはジメチルアミノピリジン)の存在下、ジクロロメタン、ジメチルホルムアミド、テトラヒドロフラン、アセトニトリル等またはそれらの混合溶媒中で、0℃もしくは室温において30分から2日間反応させた後、通常の後処理を実施することにより、(e)を得ることができる。
 なお、上記スキームではR2をアセトキシ基としているが、化合物(d)から化合物(e)への変換の際に対応する酸無水物を用いることで、アセトキシ基以外のアシルオキシ基を導入することができる。
 化合物(e)から化合物(f)への変換は以下の方法で行うことができる。即ち、(e)に対して1当量のまたは過剰量のフッ素試薬(好ましくはトリエチルアミン三フッ化水素、テトラブチルアンモニウムフルオリド等)の存在下、テトラヒドロフラン、アルコール溶媒(好ましくはメタノール、エタノール)、アセトニトリル等またはそれらの混合溶媒中で、室温において1時間反応させた後、通常の後処理にかけることにより(f)を得ることができる。
 本発明に係る前記一般式(II)で示される化合物のうち、R1がアリールカルボニルオキシ基、R2がアセトキシ基である化合物は、下記スキーム(以下、第2スキームともいう)によって製造することができる。
Figure JPOXMLDOC01-appb-C000008
[上記スキーム中、R1は一般式(I)に対して定義したものと同じ意味を表す。]
 上記スキーム中の化合物(c)は、第1スキームにおいて説明したのと同様の手法で合成できる。
 化合物(c)から化合物(g)への変換は以下の方法で行うことができる。即ち、(c)に対して10当量のまたは過剰量のフッ化アンモニウムの存在下、アルコール溶媒(好ましくはメタノール、エタノール)、もしくはテトラヒドロフラン、アセトニトリル等及びその混合溶媒中で、室温にて3~5時間反応させた後、通常の後処理にかけることにより、副生成物として(g)を得ることができる。
 化合物(g)から化合物(h)を経た化合物(i)への変換は、第1スキームにおいて化合物(d)から化合物(e)を経た化合物(f)への変換について説明したのと同様の方法で行うことができる。
 尚、上記第2スキームではR2をアセトキシ基としているが、化合物(g)から(h)への変換の際に対応する酸無水物を用いることで、アセトキシ基以外のアシルオキシ基を導入することができる。
 本発明に係る前記一般式(III)で示される化合物のうち、R1がアリールカルボニルオキシ基、R3がプロピルアミノ基である化合物は、下記スキーム(以下、第3スキームともいう)によって製造することができる。
Figure JPOXMLDOC01-appb-C000009
[上記スキーム中、R1は一般式(III)に対して定義したものと同じ意味を表す。]
 上記スキーム中の化合物(d)は、第1スキームについて説明したのと同様の手法で合成できる。
 化合物(d)から化合物(j)への変換は以下の方法で行うことができる。即ち、(d)に対して2当量または過剰量のJones試薬の存在下、含水アセトン溶媒(好ましくは5%含水アセトン)中で、室温において12時間反応させた後、通常の後処理を実施することにより(j)を得ることができる。
 化合物(j)から化合物(k)への変換は、常法(例えば、Nagamitsu等、J. Org. Chem. 61巻、882-886頁、1996年)により合成できる。
 化合物(k)から化合物(l)への変換は以下の方法で行うことができる。即ち、(k)に対して1当量または過剰量の対応するアミン、ならびに1当量または過剰量の縮合剤(好ましくは、ベンゾトリアゾール?1?イルオキシトリスジメチルアミノホスホニウムヘキサフルオロホスフェート/BOP)ならびに0.5当量または過剰量の有機塩基(好ましくはジメチルアミノピリジン)の存在下、ジクロロメタン、ジメチルホルムアミド、テトラヒドロフラン、アセトニトリル等またはそれらの混合溶媒中で、室温において30分から2日間反応させた後、通常の後処理にかけることにより(l)を得ることができる。
 化合物(l)から化合物(m)への変換は、第1スキームにおいて化合物(e)から化合物(f)への変換について説明したのと同様の方法で行うことができる。
 尚、上記スキームではR3をプロピルアミノ基としているが、化合物(k)から化合物(l)への変換の際に対応するアミンを用いることで、プロピルアミノ基以外のアルキルアミノ基またはアリールアミノ基もしくはヘテロアリールアミノ基を導入することができる。
 又、化合物(k)にジアゾメタンもしくはトリメチルシリルジアゾメタンをアルコール溶媒(好ましくはメタノール)及びベンゼン混合溶媒中で反応させることで、R3にメトキシ基を有する化合物を合成することができる。その他のアルコキシ基を導入する場合は、(k)に対して1当量または過剰量の対応するアルコールを上述の条件に付すことで、R3にアルコキシ基を有する化合物を合成することができる。
 化合物(k)に対し、第1スキームについて説明したのと同様の方法によりフルオロジ-tert-ブチルシリル基を除去することで、R3にヒドロキシル基を有する化合物を合成することができる。
 本発明は、一般式(I)または(II)または(III)で示される化合物の塩、溶媒環物および水和物を包含する。塩の例は、無機酸(例、塩酸、臭化水素酸、硫酸、リン酸、硝酸など)または有機酸(例、酢酸、プロピオン酸、クエン酸、酒石酸、マロン酸、マレイン酸、フマル酸、トルエンスルホン酸、コハク酸など)との酸付加塩である。
 本発明による化合物は、ACAT2に対し高い阻害活性を有している。従って本発明による化合物は、ヒトを含む動物の動脈硬化症の予防ならびに治療に用いることができる。
 本発明はまた、上記化合物またはその医薬に許容される塩、溶媒和物もしくは水和物を有効成分とするACAT2阻害剤、ならびに上記化合物またはその医薬に許容される塩、溶媒和物もしくは水和物と医薬に許容される担体とを含むACAT2阻害用薬剤組成物も提供する。
 本発明の薬剤組成物は、当業者に公知の方法で製剤化することができる。例えば、本発明の化合物を、医薬に許容される担体、例えば、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などから選ばれた1種又は2種以上と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。
 経口投与用には、本発明の化合物またはその塩を当該技術分野においてよく知られる薬学的に許容し得る担体と混合することにより、錠剤、丸薬、糖衣剤、カプセル、液体、ゲル、シロップ、スラリー、懸濁液、散剤等として処方することができる。
 担体としては、当該技術分野において従来公知のものを広く使用することができ、例えば、乳糖、白糖、塩化ナトリウム、グルコース、尿素、澱粉、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸等の賦形剤;水、エタノール、プロパノール、単シロップ、グルコース液、澱粉液、ゼラチン溶液、カルボキシメチルセルロース、セラック、メチルセルロース、リン酸カリウム、ポリビニルピロリドン等の結合剤;乾燥澱粉、アルギン酸ナトリウム、寒天末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、澱粉、乳糖等の崩壊剤;白糖、ステアリンカカオバター、水素添加油等の崩壊抑制剤;第4級アンモニウム塩類、ラウリル硫酸ナトリウム等の吸収促進剤;グリセリン、澱粉等の保湿剤;澱粉、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤;精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリコール等の潤沢剤等を用いることができる。さらに錠剤は、必要に応じ、通常の剤皮を施した錠剤、例えば、糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング錠、あるいは二重錠、多層錠とすることができる。
 非経口投与用には、本発明の化合物またはその塩を当該技術分野においてよく知られる医薬に許容されるビヒクルを担体として使用して、通常の製剤実施に従って処方することができる。注射用の水溶性ビヒクルとしては、例えば生理食塩水、ブドウ糖やその他の補助薬(例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムなどの水溶性塩)を含む等張液が挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80TM、HCO-50と併用してもよい。油性ビヒクルとしてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤を配合してもよい。調製された注射液は、通常は適当なアンプルに充填される。
 本発明の薬剤組成物の適当な投与経路には、限定されないが、経口、直腸内、径粘膜、または腸内投与、または筋肉内、皮下、骨髄内、鞘内、直接心室内、静脈内、硝子体内、腹腔内、鼻腔内、もしくは眼内注射が含まれる。投与経路は、患者の年齢や病状、併用する他の薬剤等を考慮して適宜選択することができる。
 本発明の薬剤組成物の投与量としては1回投与あたり0.001~10mg/kg体重の範囲で、あるいは1回投与あたり0.1~100mgの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与は1日に1回または複数回、あるいは数日に1回の割合で実施しうる。投与量、投与方法は、患者の体重や年齢、症状、併用する他の薬剤などを考慮して担当の医師が適宜選択することができる。
 以下に合成例と実施例を挙げて本発明を詳細に説明するが、本発明はこれらのみに限定されるものではない。
 (実施例1)
 7-O-p-シアノベンゾイル-1,7-ジデアセチルピリピロペンA (PRD118) の合成
 a) 1,11-O-(ジ-tert-ブチルシリレン)-1,7,11-トリデアセチルピリピロペンA (b) の合成
Figure JPOXMLDOC01-appb-C000010
 アルゴン雰囲気下、Obata等(J. Antibiot. 49巻、1149-1156頁、1996年)の方法にしたがって得られた1,7,11-トリデアセチルピリピロペンA (a) (PRD165とも表記、168 mg, 0.367 mmol) の乾燥DMF (4 mL) 溶液に2,6-ルチジン (103μL, 0.88 mmol)、tBu2Si(OTf)2 (161μL, 0.44 mmol) を加え、0℃で0.5時間撹拌した。MeOHを加え、反応を停止した。反応液にEtOAcを加え、有機層を1N HCl、水で順に洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を無水硫酸ナトリウムで乾燥し、濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (3×10, MeOH in CH2Cl20-3%)にて精製し、白色泡状物質 (b) (220 mg, 定量的) を得た。
 1H NMR (CDCl3, 300 MHz) δ 8.99 (d, 1H, H-2", J = 2.4 Hz), 8.68 (dd, 1H, H-6", J = 1.5, 4.8 Hz), 8.13-8.09 (m, 1H, H-4"), 7.44-7.40 (m, 1H, H-5"), 6.50 (s, 1H, H-5'), 5.31 (t, 1H, H-13, J = 3.0 Hz), 3.93-3.73 (m, 4H, H-1, 7,11), 3.26 (br s, 1H, OH-13), 2.85 (br s, 1H, OH-7), 2.18-1.26 (m, 8H, H-2, 3, 5, 8, 9), 1.66 (s, 3H, Me), 1.40 (s, 3H, Me), 1.14 (s, 3H, Me), 1.09 (s, 9H, tBu), 1.05 (s, 9H, tBu);
 ESI-LRMS m/z 620 (M+Na); ESI-HRMS (MeOH) calcd. for C33H47NNaO7Si 620.3020 (M+Na), found 620.2968 (M+Na)。
 b) 7-O-p-シアノベンゾイル-1,11-O-(ジ-tert-ブチルシリレン)-1,7,11-トリデアセチルピリピロペンA (PRD059) の合成
Figure JPOXMLDOC01-appb-C000011
 アルゴン雰囲気下、(b) (50 mg, 83.7μmol) の CH2Cl2(1.0 mL) 溶液にEDCI (48.0 mg, 251μmol)、p-シアノ安息香酸 (16.0 mg, 109μmol)、DMAP (10.2 mg, 83.7μmol) を加え、室温で4時間撹拌した。反応液にMeOHを加え、反応を停止した。EtOAcを加え、希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (1.5×7, MeOH in CH2Cl20.5-1%)にて精製し、白色固体 PRD059 (69.0 mg, 定量的) を得た。
 1H NMR (CDCl3, 300 MHz) δ 8.9 (dd, 1H, H-2", J = 0.6, 1.5 Hz), 8.67 (dd, 1H, H-6", J = 1.8, 4.8 Hz), 8.22 (d, 2H, H-Ar, J = 8.4 Hz), 8.09-8.05 (m, 1H, H-4"), 7.81 (d, 2H, H-Ar, J = 8.4 Hz), 7.41-7.29 (m, 1H, H-5"), 6.40 (s, 1H, H-5'), 5.28-5.25 (m, 1H, H-7), 5.03 (d, 1H, H-13, J = 4.2 Hz), 3.95 (dd, 1H, H-1, J = 4.5, 11.4 Hz), 3.82 (d, 2H, H-11, J = 11.4 Hz), 3.23 (br s, 1H, OH-13), 2.23-1.37 (m, 8H, H-2, 3, 5, 8, 9), 1.85 (s, 3H, Me), 1.48 (s, 3H, Me), 1.15 (s, 3H, Me), 1.10 (s, 9H, tBu), 1.04 (s, 9H, tBu);
 FAB-LRMS m/z 727 (MH); FAB-HRMS (m-NBA) calcd. for C41H51N2O8Si727.3415 (MH), found 727.3428 (MH)。
 c) 7-O-p-シアノベンゾイル-1-(フルオロジ-tert-ブチルシリルオキシ)-1,7,11-トリデアセチルピリピロペンA (n) および 7-O-p-シアノベンゾイル-11-(フルオロジ-tert-ブチルシリルオキシ)-1,7,11-トリデアセチルピリピロペンA (o) の合成
Figure JPOXMLDOC01-appb-C000012
 PRD059 (320 mg, 441μmol) の MeOH (5.0 mL) 溶液に、NH4F (163 mg, 4.41 mmol)を加え、室温で3時間撹拌した。反応液にEtOAcを加え希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (3×10, MeOH in CH2Cl20.5-1.5%)にて精製し、白色泡状物質 (n) (265 mg, 81%) 及び白色泡状物質 (o) (18.0 mg, 5%)を得た。
 (n)のデータ (11-OH)
 [α]24 D +101.07 (c 1.0, CHCl3);
 IR (KBr) 3456, 2942, 2890, 2862, 2235, 1716, 1643, 1579, 1475, 1274, 1112 cm-1;
 1H NMR (CDCl3, 300 MHz) δ 8.97 (d, 1H, H-2", J = 2.4 Hz), 8.65 (dd, 1H, H-6", J = 1.8, 5.1 Hz), 8.21 (d, 2H, H-Ar, J = 8.7 Hz), 8.09-8.04 (m, 1H, H-4"), 7.78 (d, 2H, H-Ar, J = 8.7 Hz), 7.39-7.35 (m, 1H, H-5"), 6.45 (s, 1H, H-5'), 5.36 (dd, 1H, H-7, J = 4.8, 10.8 Hz), 5.03 (d, 1H, H-13, J = 3.0 Hz), 4.17 (dd, 1H, H-1, J = 7.8, 8.4 Hz), 3.60 (dd, 1H, H-11a, J = 3.6, 10.5 Hz), 3.31 (dd, 1H, H-11b, J = 3.6, 10.5 Hz), 3.03 (br s, 1H, OH-13), 2.17-1.09 (m, 8H, H-2, 3, 5, 8, 9), 1.85 (s, 3H, Me), 1.47 (s, 3H, Me), 1.07-1.05 (m, 18H, tBu x 2), 0.74 (s, 3H, Me);
 13C NMR (CDCl3, 100 MHz) δ 164.05, 163.90, 162.11, 157.22, 151.42, 146.76, 134.00, 132.93, 132.28, 130.16, 127.11, 123.60, 117.82, 116.62, 103.12, 99.31, 83.46, 83.26, 79.91, 73.73, 63.91, 60.08, 54.70, 44.02, 43.28, 40.64, 37.75, 36.34, 29.01, 27.70, 27.17, 27.06, 26.29, 25.45, 20.66, 20.50, 20.28, 20.13, 17.51, 16.68, 12.72 ;
 ESI-LRMS m/z 769 (M+Na); ESI-HRMS (MeOH) calcd. for C41H51FN2NaO11Si769.3296 (M+Na), found 769.3261 (M+Na)。
 (o)のデータ (1-OH)
 [α]24 D +85.04 (c 1.0, CHCl3);
 IR (KBr) 3451, 2938, 2888, 2861, 2233, 1725, 1643, 1577, 1473, 1273, 1101 cm-1;
 1H NMR (CDCl3, 400 MHz) δ 8.96 (dd, 1H, H-2", J = 0.4, 1.2 Hz), 8.66 (dd, 1H, H-6", J = 1.6, 4.8 Hz), 8.22 (d, 2H, H-Ar, J = 8.8 Hz), 8.08-8.05 (m, 1H, H-4"), 7.80 (d, 2H, H-Ar, J = 8.8 Hz), 7.40-7.36 (m, 1H, H-5"), 6.40 (s, 1H, H-5'), 5.31 (dd, 1H, H-7, J = 5.2, 12.0 Hz), 5.04 (br s, 1H, H-13), 3.90 (d, 1H, H-11a, J = 10.4 Hz), 3.78 (dd, 1H, H-1, J = 7.6, 8.8 Hz), 3.56 (d, 1H, H-11b, J = 10.4 Hz), 3.21 (br s, 1H, OH-13), 2.34 (br s, 1H, OH-1), 2.21-1.26 (m, 8H, H-2, 3, 5, 8, 9), 1.85 (s, 3H, Me), 1.48 (s, 3H, Me), 1.09-1.08 (m, 18H, tBu x 2), 0.81 (s, 3H, Me);
 13C NMR (CDCl3, 100 MHz) δ 164.05, 163.90, 162.11, 157.22, 151.42, 146.76, 134.00, 132.93, 132.28, 130.16, 127.11, 123.60, 117.82, 116.62, 103.12, 99.31, 83.46, 83.26, 79.91, 73.73, 63.91, 60.08, 54.70, 44.02, 43.28, 40.64, 37.75, 36.34, 29.01, 27.70, 27.17, 27.06, 26.29, 25.45, 20.66, 20.50, 20.28, 20.13, 17.51, 16.68, 12.72 ;
 ESI-LRMS m/z 769 (M+Na); ESI-HRMS (MeOH) calcd. for C41H51FN2NaO11Si 769.3296 (M+Na), found 769.3265 (M+Na)。
 d) 7-O-p-シアノベンゾイル-1,7-ジデアセチルピリピロペンA (PRD118) の合成
Figure JPOXMLDOC01-appb-C000013
 窒素雰囲気下、(n) (320 mg, 429μmol) の CH2Cl2 (4.3 mL) 溶液にAc2O (101μL, 1.07 mmol)、Et3N (149μL, 1.07 mmol)、DMAP (10.5 mg, 85.8μmol)を加え、0℃で1時間撹拌した。反応液にMeOHを加え反応を停止させ、更にEtOAcを加え希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を減圧下濃縮した。得られた残渣をTHF (5.0 mL) に溶解し、Et3N・3HF (140μL, 0.858 mmol) を加え室温で1時間撹拌した。反応液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (1.5×10+1.5, MeOH in CH2Cl24%)にて精製し、白色泡状物質PRD118 (275 mg, 2段階, 定量的) を得た。
 1H NMR (CDCl3, 400 MHz) δ 8.96 (d, 1H, H-2", J = 2.0 Hz), 8.66 (dd, 1H, H-6", J = 1.6, 4.4 Hz), 8.23 (d, 2H, H-Ar, J = 8.4 Hz), 8.08-8.05 (m, 1H, H-4"), 7.82 (d, 2H, H-Ar, J = 8.4 Hz), 7.41-7.38 (m, 1H, H-5"), 6.42 (s, 1H, H-5'), 5.31-5.28 (m, 1H, H-7), 5.05 (d, 1H, H-13, J = 1.6 Hz), 4.23 (d, 1H, H-11a, J = 12.0 Hz), 3.75 (d, 1H, H-11b, J = 12.0 Hz), 3.53 (dd, 1H, H-1, J = 6.0, 10.4 Hz), 2.82 (br s, 1H, OH-13), 2.36 (br s, 1H, OH-1), 2.21-1.17 (m, 8H, H-2, 3, 5, 8, 9), 2.15 (s, 3H, Ac), 1.88 (s, 3H, Me), 1.49 (s, 3H, Me), 0.85 (s, 3H, Me);
 ESI-LRMS m/z 651 (M+Na); ESI-HRMS (MeOH) calcd. for C35H36N2NaO651.2319 (M+Na), found 651.2231 (M+Na)。
 (実施例2)
 11-イソブチリル-7-O-p-シアノベンゾイル-1,7-ジデアセチルピリピロペンA (PRD171) の合成
Figure JPOXMLDOC01-appb-C000014
 窒素雰囲気下、(n) (50.0 mg, 75.8μmol) の CH2Cl2(0.75 mL) 溶液に無水イソ酪酸 (19.0μL, 0.114 mmol)、Et3N (16.8μL, 0.121 mmol)、触媒量のDMAPを加え、0℃下1時間撹拌した。反応液にMeOHを加えて反応を停止させ、更にEtOAcを加えて希釈し、飽和NaHCO3水溶液ならびに水で洗浄した。有機層をNa2SO4で乾燥後、ろ過し、ろ液を減圧下濃縮した。得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (18.6μL, 0.114 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (20 g, MeOH in CH2Cl2 2%) で精製を行うことにより、白色泡状物質 PRD171 (36.5 mg, 2 steps, 85%) を得た。
 1H NMR (CDCl3, 270 MHz) δ 8.95 (d, 1H, H-2", J = 1.7 Hz), 8.66 (dd, 1H, H-6", J = 1.5, 4.8 Hz), 8.21 (d, 2H, H-Ar, J = 8.6 Hz), 8.07-8.03 (m, 1H, H-4"), 7.80 (d, 2H, H-Ar, J = 8.6 Hz), 7.37 (dd, 1H, H-5", J = 5.0, 7.9 Hz), 6.39 (s, 1H, H-5’), 5.26-5.22 (m, 1H, H-7), 5.04 (br s, 1H, H-13), 4.26 (d, 1H, H-11a, J = 11.9 Hz), 3.69 (d, 1H, H-11b, J = 11.9 Hz), 3.46 (dd, 1H, H-1, J = 6.9, 9.2 Hz), 3.00 (br s, 1H, OH-13), 2.69-2.59 (m, 1H, CH(CH3)2), 2.23-1.05 (m, 8H, H-2, 3, 5, 8, 9), 1.84 (s, 3H, Me), 1.47 (s, 3H, Me), 1.25-1.22 (m, 6H, CH(CH 3 ) 2 ), 0.84 (s, 3H, Me);
  ESI-LRMS m/z 657 (MH); ESI-HRMS (MeOH) calcd. for C37H41N2O657.2812 (MH), found 657.2803 (MH)。
 (実施例3)
 7-O-p-シアノベンゾイル-1,7-ジデアセチル-11-ヘキサノイルピリピロペンA (PRD173) の合成
Figure JPOXMLDOC01-appb-C000015
 窒素雰囲気下、(n) (30 mg, 40.2μmol) の CH2Cl2(0.5 mL) 溶液にヘキサン酸 (7.54μL, 0.0603 mmol)、EDCI (15.4 mg, 0.0804 mmol)、触媒量のDMAPを加え、0℃下1時間撹拌した。反応液にMeOHを加えて反応を停止させ、更にEtOAcを加えて希釈し、水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (9.83μL, 0.0603 mmol) を加え、室温下1時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1 ) で精製を行うことにより、白色泡状物質 PRD173 (12.7 mg, 2 steps, 46%) を得た。
 1H NMR (CDCl3, 270 MHz) δ 8.95 (d, 1H, H-2", J = 2.0 Hz), 8.66 (dd, 1H, H-6", J = 1.6, 4.9 Hz), 8.21 (d, 2H, H-Ar, J = 8.2 Hz), 8.08-8.04 (m, 1H, H-4"), 7.80 (d, 2H, H-Ar, J = 8.6 Hz), 7.38 (dd, 1H, H-5", J = 4.8, 8.1 Hz), 6.39 (s, 1H, H-5’), 5.31-5.25 (m, 1H, H-7), 5.03 (d, 1H, H-13, J = 3.6 Hz), 4.29 (d, 1H, H-11a, J = 11.9 Hz), 3.68 (d, 1H, H-11b, J = 11.9 Hz), 3.46 (dd, 1H, H-1, J = 6.6, 9.6 Hz), 3.01 (br s, 1H, OH-13), 2.42-2.36 (m, 2H, COCH 2 (CH2)3CH3), 2.23-0.86 (m, 17H, H-2, 3, 5, 8, 9, COCH2 (CH 2 )  3 CH 3 ), 1.84 (s, 3H, Me), 1.47 (s, 3H, Me), 0.85 (s, 3H, Me);
  ESI-LRMS m/z 685 (MH); ESI-HRMS (MeOH) calcd. for C39H45N2O685.3125 (MH), found 685.3087 (MH)。
 (実施例4)
 7-O-p-シアノベンゾイル-1,7-ジデアセチル-11-ベンゾイルピリピロペンA (PRD172) の合成
Figure JPOXMLDOC01-appb-C000016
 窒素雰囲気下, (n) (50 mg, 45.5μmol) の CH2Cl2(0.75 mL) 溶液に安息香酸 (13.9μL, 0.0683 mmol)、EDCI (29.0 mg, 0.0910 mmol)、触媒量のDMAPを加え、0℃下3時間撹拌した。反応液にMeOHを加えて反応を停止させ、更にEtOAcを加えて希釈し、水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (11.1μL, 0.0683 mmol) を加え、室温下1時間撹拌した。反応液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (2.0 g, MeOH in CH2Cl2 3%) で精製を行うことにより、白色泡状物質 PRD172 (26.9 mg, 2 steps, 98%) を得た。
 1H NMR (CDCl3, 270 MHz) δ 8.94 (d, 1H, H-2", J = 1.7 Hz), 8.65 (dd, 1H, H-6", J = 1.7, 4.9 Hz), 8.22 (d, 2H, H-Ar, J = 8.6 Hz), 8.11-8.02 (m, 3H, H-4", Ar), 7.80 (d, 2H, H-Ar, J = 8.6 Hz), 7.61-7.45 (m, 3H, H-Ar), 7.36 (ddd, 1H, H-5", 0.66, 5.6, 7.9 Hz), 6.38 (s, 1H, H-5’), 5.33-5.27 (m, 1H, H-7), 5.01 (br s, 1H, H-13), 4.66 (d, 1H, H-11a, J = 12.2 Hz), 3.88 (d, 1H, H-11b, J = 11.9 Hz), 3.53-3.49 (m, 1H, H-1), 3.02 (br s, 1H, OH-13), 2.66 (br s, 1H, OH-1), 2.24-0.86 (m, 8H, H-2, 3, 5, 8, 9), 1.86 (s, 3H, Me), 1.49 (s, 3H, Me), 0.91 (s, 3H, Me);
  ESI-LRMS m/z 691 (MH); ESI-HRMS (MeOH) calcd. for C40H39N2O691.2656 (MH), found 691.2622 (MH)。
 (実施例5)
 7-O-p-シアノベンゾイル-7,11-ジデアセチルピリピロペンA (PRD136)の合成
Figure JPOXMLDOC01-appb-C000017
 実施例1-dと同様にして、(o) (20 mg, 28.1μmol)より、白色泡状物質 PRD136 (14.1 mg, 2段階, 80%)を得た。
 1H NMR (CDCl3, 400 MHz) δ 8.96 (d, 1H, H-2", J = 2.0 Hz), 8.63 (dd, 1H, H-6", J = 1.6, 4.8 Hz), 8.20 (d, 2H, H-Ar, J = 8.4 Hz), 8.07-8.04 (m, 1H, H-4"), 7.79 (d, 2H, H-Ar, J = 8.4 Hz), 7.39-7.36 (m, 1H, H-5"), 6.41 (s, 1H, H-5'), 5.40 (dd, 1H, H-7, J = 5.2, 11.6 Hz), 4.95 (dd, 1H, H-1, J = 4.4, 11.6 Hz), 5.02 (d, 1H, H-13, J = 2.8 Hz), 3.29 (d, 1H, H-11a, J = 12.0 Hz), 3.02-3.00 (m, 2H, H-11b, OH-13), 2.73 (br s, 1H, OH-1), 2.24-1.17 (m, 8H, H-2, 3, 5, 8, 9), 2.10 (s, 3H, Ac), 1.85 (s, 3H, Me), 1.48 (s, 3H, Me), 0.81 (s, 3H, Me);
 ESI-LRMS m/z 651 (M+Na); ESI-HRMS (MeOH) calcd. for C35H36N2NaO651.2319 (M+Na), found 651.2331 (M+Na)。
 (実施例6)
 1-デアセチルピリピロペンA (PRD147) の合成
 a) 1,11-O-(ジ-tert-ブチルシリレン)-1,11-ジデアセチルピリピロペンA  (p) の合成
Figure JPOXMLDOC01-appb-C000018
 窒素雰囲気下、(b) (350 mg, 586μmol) の CH2Cl2 (6.0 mL) 溶液に、Ac2O (61μL, 0.654 mmol)、Et3N (179μL, 1.29 mmol)、DMAP (7.2 mg, 58.6μmol)を加え、0℃で1時間撹拌した。反応液にMeOHを加え、反応を停止させ、更にEtOAcを加え希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。反応液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (2×10, MeOH in CH2Cl20-1.5%)にて精製し、白色泡状物質(p) (361 mg, 96%) を得た。
 1H NMR (CDCl3, 400 MHz) δ 9.01 (d, 1H, H-2", J = 2.4 Hz), 8.68 (dd, 1H, H-6", J = 1.2, 4.8 Hz), 8.11-8.08 (m, 1H, H-4"), 7.40 (dd, 1H, H-5", J = 5.2, 8.4 Hz), 6.44 (s, 1H, H-5'), 5.00-4.97 (m, 2H, H-7, 13), 3.90 (dd, 1H, H-1, J = 4.0, 11.2 Hz), 3.81 (d, 1H, H-11a, J = 10.4 Hz), 3.70 (d, 1H, H-11b, J = 10.4 Hz), 2.92 (br s, 1H, OH-13), 2.18-1.32 (m, 8H, H-2, 3, 5, 8, 9), 2.17 (s, 3H, Ac), 1.68 (s, 3H, Me), 1.41 (s, 3H, Me), 1.12 (s, 3H, Me), 1.09 (s, 9H, tBu), 1.04 (s, 9H, tBu);
 ESI-LRMS m/z 662 (M+Na); ESI-HRMS (MeOH) calcd. for C35H49NNaO8Si 662.3125 (M+Na), found 662.3136 (M+Na)。
 b) 1-(フルオロジ-tert-ブチルシリルオキシ)-1,11-ジデアセチルピリピロペンA (q), 11-(フルオロジ-tert-ブチルシリルオキシ)-1,11-ジデアセチルピリピロペンA (r), および 1,11-ジデアセチルピリピロペンA (PRD146) の合成
Figure JPOXMLDOC01-appb-C000019
 実施例1-cと同様にして、(p) (350 mg, 547μmol)より、白色泡状物質(q) (271 mg, 78%)、白色泡状物質(r) (16.9 mg, 4.7%)、白色泡状物質PRD146 (14.2 mg, 5.2%)を得た。
 (q)のデータ (11-OH)
 1H NMR (CDCl3, 300 MHz) δ 9.02 (br s, 1H, H-2"), 8.67 (br d, 1H, H-6", J = 4.5 Hz), 8.12-8.08 (m, 1H, H-4"), 7.40 (dd, 1H, H-5", J = 4.8, 7.8 Hz), 6.49 (s, 1H, H-5'), 5.07 (dd, 1H, H-7, J = 4.8, 7.5 Hz), 4.99 (d, 1H, H-13, J = 2.7 Hz), 4.16 (t, 1H, H-1, J = 7.8 Hz), 3.56 (d, 1H, H-11a, J = 10.8 Hz), 3.31 (d, 1H, H-11b, J = 10.8 Hz), 3.18 (br s, 1H, OH-13), 2.53 (br s, 1H, OH-13), 2.12-1.12 (m, 8H, H-2, 3, 5, 8, 9), 2.17 (s, 3H, Ac), 1.71 (s, 3H, Me), 1.42 (s, 3H, Me), 1.05-1.03 (m, 18H, tBu x 2), 0.71 (s, 3H, Me);
 ESI-LRMS m/z 682 (M+Na); ESI-HRMS (MeOH) calcd. for C35H50FNNaO8Si 682.3187 (M+Na), found 682.3192 (M+Na)。
 (r)のデータ (1-OH)
 1H NMR (CDCl3, 300 MHz) δ 9.02 (br s, 1H, H-2"), 8.68 (br s, 1H, H-6"), 8.12-8.08 (m, 1H, H-4"), 7.40 (dd, 1H, H-5", J = 5.1, 8.1 Hz), 6.47 (s, 1H, H-5'), 5.06-5.00 (m, 2H, H-7, 13), 3.88 (d, 1H, H-11a, J = 10.2 Hz), 3.74 (t, 1H, H-1, J = 7.5 Hz), 3.55 (d, 1H, H-11b, J = 10.2 Hz), 2.98 (br s, 1H, OH-13), 2.14-1.25 (m, 8H, H-2, 3, 5, 8, 9), 2.16 (s, 3H, Ac), 1.70 (s, 3H, Me), 1.41 (s, 3H, Me), 1.07-1.06 (m, 18H, tBu x 2), 0.80 (s, 3H, Me);
 ESI-LRMS m/z 682 (M+Na); ESI-HRMS (MeOH) calcd. for C35H50FNNaO8Si 682.3187 (M+Na), found 682.3207 (M+Na)。
 PRD146のデータ
 1H NMR (CDCl3, 400 MHz) δ 9.01 (br s, 1H, H-2"), 8.68 (br d, 1H, H-6", J = 2.0 Hz), 8.12-8.09 (m, 1H, H-4"), 7.42-7.39 (m, 1H, H-5"), 6.45 (s, 1H, H-5'), 5.03-4.99 (m, 2H, H-7, 13), 3.73-3.40 (m, 2H, H-1, 11a), 3.41 (d, 1H, H-11b, J = 10.8 Hz), 2.85 (br s, 1H, OH-13), 2.19-1.13 (m, 8H, H-2, 3, 5, 8, 9), 2.17 (s, 3H, Ac), 1.42 (s, 3H, Me), 1.25 (s, 3H, Me), 0.89 (s, 3H, Me);
 ESI-LRMS m/z 522 (M+Na); ESI-HRMS (MeOH) calcd. for C27H33NNaO522.2104 (M+Na), found 522.2071 (M+Na)。
 c) 1-デアセチルピリピロペンA (PRD147) の合成
Figure JPOXMLDOC01-appb-C000020
 実施例1-dと同様にして、(q) (28 mg, 42.5μmol)より、白色泡状物質PRD147 (20.8 mg, 2段階, 90%)を得た。
 1H NMR (CDCl3, 400 MHz)δ 9.02 (dd, 1H, H-2"), 8.68 (dd, 1H, H-6", J = 1.6, 4.8 Hz), 8.11-8.08 (m, 1H, H-4"), 7.42-7.39 (m, 1H, H-5"), 6.45 (s, 1H, H-5'), 5.06-5.00 (m, 2H, H-7, 13), 4.24 (d, 1H, H-11a, J = 11.6 Hz), 3.70 (d, 1H, H-11b, J = 11.6 Hz), 3.46 (dd, 1H, H-1, J = 6.0, 10.0 Hz), 3.01 (br s, 1H, OH-13), 2.33 (br s, 1H, OH-1), 2.16-1.25 (m, 8H, H-2, 3, 5, 8, 9), 2.17 (s, 3H, Ac), 2.11 (s, 3H, Ac), 1.70 (s, 3H, Me), 1.42 (s, 3H, Me), 0.82 (s, 3H, Me);
 ESI-LRMS m/z 564 (M+Na); ESI-HRMS (MeOH) calcd. for C29H35NNaO564.2210 (M+Na), found 564.2160 (M+Na)。
 (実施例7)
 1,11-ジデアセチル-11-イソブチリルピリピロペンA (PRD174) の合成
Figure JPOXMLDOC01-appb-C000021
 実施例1-dと同様にして、(q) (50 mg, 75.8μmol)より、白色泡状物質 PRD174 (36.5 mg, 2 steps, 85%)を得た。
 1H NMR (CDCl3, 270 MHz) δ 8.99 (s, 1H, H-2"), 8.67 (d, 1H, H-6", J = 3.3 Hz), 8.08 (d, 1H, H-4", J = 7.9 Hz), 7.39 (dd, 1H, H-5", J = 4.9, 7.9 Hz), 6.44 (s, 1H, H-5’), 5.00 (br s, 2H, H-7, 13), 4.24 (d, 1H, H-11a, J = 11.9 Hz), 3.67 (d, 1H, H-11b, J = 11.9 Hz), 3.43 (dd, 1H, H-1, J = 6.6, 8.2 Hz), 3.00 (br s, 1H, OH-13), 2.65-2.54 (m, 1H, CHMe2), 2.31-0.73 (m, 8H, H-2, 3, 5, 8, 9), 2.15 (s, 3H, Ac), 1.69 (s, 3H, Me), 1.41 (s, 3H, Me), 1,21-1.18 (m, 6H, CHMe 2 ), 0.81 (s, 3H, Me);
 ESI-LRMS m/z 592 (M+Na); ESI-HRMS (MeOH) calcd. for C31H39NNaO592.2523 (M+Na), found 592.2568 (M+Na)。
 (実施例8)
 11-ベンゾイル-1,11-ジデアセチル-ピリピロペンA (PRD175) の合成
Figure JPOXMLDOC01-appb-C000022
 実施例1-dと同様にして、(q) (50 mg, 75.8μmol)より、白色泡状物質 PRD175 (26.9 mg, 2 steps, 59%)を得た。
 1H NMR (CDCl3, 270 MHz) δ 8.98 (br s, 1H, H-2"), 8.66 (br s, 1H, H-6"), 8.09-8.03 (m, 3H, H-4", Ar x 2), 7.58-7.36 (m, 4H, H-5", Ar x 3), 6.44 (s, 1H, H-5’), 5.07-4.96 (m, 2H, H-7, 13), 4.64 (d, 1H, H-11a, J = 11.9 Hz), 3.85 (d, 1H, H-11b, J = 11.9 Hz), 3.48-3.44 (br s, 1H, H-1), 3.02 (br s, 1H, OH-13), 2.70 (br s, 1H, OH-1), 2.09-1.24 (m, 8H, H-2, 3, 5, 8, 9), 2.17 (s, 3H, Ac), 1.70 (s, 3H, Me), 1.43 (s, 3H, Me), 0.89 (s, 3H, Me);
 ESI-LRMS m/z 626 (M+Na); ESI-HRMS (MeOH) calcd. for C34H37NNaO626.2366 (M+Na), found 626.2342 (M+Na)。
 (参考例1)
 11-デアセチルピリピロペンA (PRD149)の合成
Figure JPOXMLDOC01-appb-C000023
 実施例1-dと同様にして、(r) (16.3 mg, 24.7μmol)より、白色泡状物質PRD149 (11.3 mg, 2段階, 84%)を得た。
 1H NMR (CDCl3, 400 MHz) δ 9.01 (dd, 1H, H-2", J = 0.8, 2.4 Hz), 8.69-8.68 (m, 1H, H-6"), 8.11-8.08 (m, 1H, H-4"), 7.42-7.38 (m, 1H, H-5"), 6.46 (s, 1H, H-5'), 5.12 (dd, 1H, H-7, J = 5.2, 11.6 Hz), 4.98 (d, 1H, H-13, J = 2.0 Hz), 4.93 (dd, 1H, H-1, J = 4.4, 12.0 Hz), 3.29 (d, 1H, H-11a, J = 12.8 Hz), 2.98 (d, 1H, H-11b, J = 12.8 Hz), 2.93 (br s, 1H, OH-13), 2.61 (br s, 1H, OH-11), 2.19-1.12 (m, 8H, H-2, 3, 5, 8, 9), 2.16 (s, 3H, Ac), 2.09 (s, 3H, Ac), 1.69 (s, 3H, Me), 1.43 (s, 3H, Me), 0.93 (s, 3H, Me);
 ESI-LRMS m/z 564 (M+Na); ESI-HRMS (MeOH) calcd. for C29H35NNaO564.2210 (M+Na), found 564.2160 (M+Na)。
 (実施例9)
 1,7-ジデアセチルピリピロペンA (PRD150)の合成
 a) 7-O-アリルオキシカルボニル-1,11-O-(ジ-tert-ブチルシリレン)-1,7,11-トリデアセチルピリピロペンA (s) の合成
Figure JPOXMLDOC01-appb-C000024
 窒素雰囲気、0℃下、(b) (400 mg, 670μmol) の CH2Cl2 (7.0 mL) 溶液にTMEDA (588μL, 4.02 mmol)、クロロギ酸アリル (213μL, 2.01 mmol)、DMAP (10.5 mg, 85.8μmol)を加え、0℃で1時間撹拌した。反応液にMeOHを加えて反応を停止させ、更にEtOAcを加えて希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。反応液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (3×10, MeOH in CH2Cl20-0.5%)にて精製し、白色泡状物質(s) (290 mg, 67%) を得た。
 1H NMR (CDCl3, 400 MHz) δ 9.00 (dd, 1H, H-2", J = 0.8, 2.4 Hz), 8.68 (dd, 1H, H-6", J = 1.2, 4.8 Hz), 8.11-8.08 (m, 1H, H-4"), 7.42-7.38 (m, 1H, H-5"), 6.47 (s, 1H, H-5'), 6.03-5.95 (m, 1H, OCH2 CHCH2), 5.42 (dd, 1H, 1/2 OCH2CHCH 2 (trans), J = 1.2, 16.0 Hz), 5.33 (dd, 1H, 1/2 OCH2CHCH 2 (cis), J = 1.2, 9.2 Hz), 4.99 (br s, 1H, H-13), 4.83 (t, 1H, H-7, J = 8.8 Hz), 4.72-4.69 (m, 2H, OCH 2 CHCH2), 3.91 (dd, 1H, H-1, J = 4.0, 8.4 Hz), 3.83 (d, 1H, H-11a, J = 10.4 Hz), 3.77 (d, 1H, H-11b, J = 10.4 Hz), 3.21 (br s, 1H, OH-13), 2.18-1.11 (m, 8H, H-2, 3, 5, 8, 9), 1.71 (s, 3H, Me), 1.42 (s, 3H, Me), 1.13 (s, 3H, Me), 1.13-1.05 (m, 18H, tBu×2);
 ESI-LRMS m/z 704 (M+Na); ESI-HRMS (MeOH) calcd. for C37H51NNaO9Si 704.3231 (M+Na), found 704.3239 (M+Na)。
 b) 7-O-アリルオキシカルボニル-1-(フルオロジ-tert-ブチルシリルオキシ)-1,7,11-トリデアセチルピリピロペンA (t), および 7-O-アリルオキシカルボニル-11-(フルオロジ-tert-ブチルシリルオキシ)-1,7,11-トリデアセチルピリピロペンA (u) の合成
Figure JPOXMLDOC01-appb-C000025
 実施例1-cと同様にして、(s) (277 mg, 407μmol)より、白色泡状物質(t) (254 mg, 89%)、白色泡状物質(u) (13.0 mg, 4.6 %)を得た。
 (t)のデータ (11-OH)
 1H NMR (CDCl3, 400 MHz)δ 9.03 (dd, 1H, H-2", J = 0.8, 1.5 Hz), 8.66 (d, 1H, H-6", J = 4.4 Hz), 8.14-8.11 (m, 1H, H-4"), 7.42-7.39 (m, 1H, H-5"), 6.62 (s, 1H, H-5'), 6.04-5.96 (m, 1H, OCH2 CHCH2), 5.41 (dd, 1H, 1/2 OCH2CHCH 2 (trans), J = 1.2, 16.0 Hz), 5.31 (dd, 1H, 1/2 OCH2CHCH 2 (cis), J = 1.2, 10.4 Hz), 5.00-4.98 (m, 1H, H-13), 4.95-4.92 (m, 1H, H-7), 4.72-4.70 (m, 2H, OCH 2 CHCH2), 4.16 (t, 1H, H-1, J = 8.0 Hz), 3.59 (d, 1H, H-11a, J = 10.8 Hz), 3.33 (d, 1H, H-11b, J = 10.8 Hz), 3.00 (br s, 1H, OH-13), 2.46 (br s, 1H, OH-11), 2.12-1.25 (m, 8H, H-2, 3, 5, 8, 9), 1.72 (s, 3H, Me), 1.41 (s, 3H, Me), 1.06-1.04 (m, 18H, tBu×2), 0.73 (s, 3H, Me); 
 ESI-LRMS m/z 724 (M+Na); ESI-HRMS (MeOH) calcd. for C37H52FNNaO9Si 724.3293 (M+Na), found 724.3351 (M+Na)。
 (u)のデータ (1-OH)
 1H NMR (CDCl3, 400 MHz) δ 9.00 (dd, 1H, H-2", J = 0.8, 2.0 Hz), 8.68 (dd, 1H, H-6", J = 1.6, 4.8 Hz), 8.11-8.08 (m, 1H, H-4"), 7.42-7.39 (m, 1H, H-5"), 6.47 (s, 1H, H-5'), 6.03-5.95 (m, 1H, OCH2 CHCH2), 5.42 (dd, 1H, 1/2 OCH2CHCH 2 (trans), J = 1.2, 16.0 Hz), 5.31 (dd, 1H, 1/2 OCH2CHCH 2 (cis), J = 1.2, 10.4 Hz), 5.01-4.99 (m, 1H, H-13), 4.88 (dd, 1H, H-7, J = 5.6, 12.0 Hz), 4.72-4.68 (m, 2H, OCH 2 CHCH2), 3.89 (d, 1H, H-11a, J = 10.4 Hz), 3.74 (t, 1H, H-1, J = 8.0 Hz), 3.56 (d, 1H, H-11b, J = 10.4 Hz), 2.91 (br s, 1H, OH-13), 2.17-1.23 (m, 8H, H-2, 3, 5, 8, 9), 1.71 (s, 3H, Me), 1.41 (s, 3H, Me), 1.08-1.07 (m, 18H, tBu×2), 0.80 (s, 3H, Me);
 ESI-LRMS m/z 724 (M+Na); ESI-HRMS (MeOH) calcd. for C37H52FNNaO9Si 724.3293 (M+Na), found 724.3367 (M+Na)。
 c) 1,7-ジデアセチルピリピロペンA (PRD150) の合成
Figure JPOXMLDOC01-appb-C000026
 窒素雰囲気下、(t) (30.0 mg, 42.8μmol) の CH2Cl2 (0.5 mL) 溶液に、Ac2O (4.8μL, 51.3μmol)、Et3N (8.9μL, 64.2μmol)、触媒量のDMAPを加え、0℃で2時間撹拌した。反応液にMeOHを加え反応を停止させ、更にEtOAcを加え希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を減圧下濃縮した。得られた残渣をTHF (0.5 mL) に溶解し、HCOONH4 (13.6 mg, 214μmol)、Pd(PPh3)4(5.0 mg, 4.28μmol)を加え、アルゴン置換の後に室温で1時間撹拌した。反応液にEtOAcを加え希釈し、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。溶液をろ過後、ろ液を減圧下濃縮し、得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (1×5, MeOH in CH2Cl20-4%)にて粗精製し、生成物が含まれる画分を濃縮した。得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (7.0μL, 42.8μmol) を加え、室温で15分撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (MeOH in CH2Cl2 9%×2 )にて精製し、白色泡状物質PRD150 (15.5 mg, 3段階, 73%) を得た。
 1H NMR (CDCl3, 400 MHz) δ 9.02 (dd, 1H, H-2", J = 0.4, 1.5 Hz), 8.69 (dd, 1H, H-6", J = 1.2, 5.2 Hz), 8.12-8.09 (m, 1H, H-4"), 7.44-7.40 (m, 1H, H-5"), 6.52 (s, 1H, H-5'), 4.99 (d, 1H, H-13, J = 2.0 Hz), 4.25 (d, 1H, H-11a, J = 11.6 Hz), 3.84-3.76 (m, 2H, H-7, 11b), 3.44 (dd, 1H, H-1, J = 5.2, 10.8 Hz), 3.02 (br s, 1H, OH-13), 2.51 (br s, 1H, OH-7), 2.33 (br s, 1H, OH-1), 2.18-1.23 (m, 8H, H-2, 3, 5, 8, 9), 2.09 (s, 3H, Ac), 1.67 (s, 3H, Me), 1.40 (s, 3H, Me), 0.84 (s, 3H, Me);
 ESI-LRMS m/z 522 (M+Na); ESI-HRMS (MeOH) calcd. for C27H33NNaO522.2104 (M+Na), found 522.2056 (M+Na)。
 (実施例10)
 11,7-ジデアセチルピリピロペンA (PRD151)の合成
Figure JPOXMLDOC01-appb-C000027
 実施例4-cと同様にして、(u) (11.3 mg, 16.1μmol)より、白色固体 PRD151 (4.6 mg, 3段階, 57%)を得た。
 1H NMR (CDCl3, 400 MHz) δ 9.01 (dd, 1H, H-2", J = 0.8, 2.4 Hz), 8.68 (dd, 1H, H-6", 1.2, 4.8 Hz), 8.12-8.09 (m, 1H, H-4"), 7.43-7.40 (m, 1H, H-5"), 6.54 (s, 1H, H-5'), 4.98-4.97 (m, 1H, H-13), 4.90 (dd, 1H, H-1, J = 4.8, 12.0 Hz), 3.91 (dd, 1H, H-7, J = 4.8, 7.2 Hz), 3.35 (d, 1H, H-11a, J = 12.0 Hz), 2.96 (d, 1H, H-11b, J = 12.0 Hz), 2.89 (br s, 1H, OH-13), 2.81 (br s, 1H, OH-7), 2.41 (br s, 1H, OH-1), 2.20-1.25 (m, 8H, H-2, 3, 5, 8, 9), 2.11 (s, 3H, Ac), 1.65 (s, 3H, Me), 1.41 (s, 3H, Me), 0.74 (s, 3H, Me);
 ESI-LRMS m/z 522 (M+Na); ESI-HRMS (MeOH) calcd. for C27H33NNaO522.2104 (M+Na), found 522.2075 (M+Na)。
 (実施例11)
 7-O-p-シアノベンゾイル-10-デアセトキシメチル-10-プロピルカルバモイル-1,7-ジデアセチルピリピロペンA (PRD189) の合成
 a) 10-カルボキシル-7-O-p-シアノベンゾイル-10-デアセトキシメチル-1-O-ジターシャリーブチルフルオロシリルオキシ-13-ケト-1,7-ジデアセチルピリピロペンA (v)の合成
Figure JPOXMLDOC01-appb-C000028
 (n) (354 mg, 0.474 mmol) の95%アセトン水溶液 (140 mL) 溶液に、Jones試薬 (2.66 mL, 2.8 M) を加え、室温下13.5時間撹拌した。イソプロパノールを加えて反応を停止させた後、溶液をセライトとフロリジールでろ過し、ろ液を減圧下濃縮した。得られた残渣にEtOAcを加え希釈し、水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル30 g, MeOH in CH2Cl20.8-2.0%) で精製を行うことにより、白色泡状物質 (v) (287 mg, 80%) を得た。
 1H NMR (CDCl3, 270 MHz) δ 9.04 (d, 1H, H-2", J = 2.0 Hz), 8.65 (dd, 1H, H-6", J = 1.3, 4.9 Hz), 8.31 (d, 1H, H-4", J = 8.2 Hz), 7.84 (d, 2H, H-Ar, J = 8.2 Hz), 7.57 (d, 2H, H-Ar, J = 8.3 Hz), 7.51 (dd, 1H, H-5", J = 4.9, 8.2 Hz), 7.26 (s, 1H, H-5’), 5.44 (dd, 1H, H-7, J = 5.2, 10.8 Hz), 4.51-4.45 (m, 1H, H-1), 2.82-0.77 (m, 8H, H-2, 3, 5, 8, 9), 1.74 (s, 3H, Me), 1.29 (s, 3H, Me), 1.18 (s, 3H, Me), 1.01(s, 9H, t-Bu), 1.00 (s, 9H, t-Bu);
 ESI-LRMS m/z 759 (MH); ESI-HRMS (MeOH) calcd. for C41H48FN2O9Si 759.3113 (MH), found 759.3066 (MH)。
 b) 10-カルボキシル-7-O-p-シアノベンゾイル-10-デアセトキシメチル-1-O-ジターシャリーブチルフルオロシリルオキシ-1,7-ジデアセチルピリピロペンA (x) の合成
Figure JPOXMLDOC01-appb-C000029
 (v) (274 mg, 0.362 mmol) のMeOH (6.0 mL) 溶液を-78℃下、CeCl3・7H2O (674 mg, 1.81 mmol) を加え、よく撹拌した。その後NaBH4 (68.5 mg, 1.81 mmol) を少量ずつ加え、発泡が収まるまで撹拌した。反応液にアセトンを加え反応を停止し、更にEtOAcを加え希釈し、水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル12 g, MeOH in CH2Cl20.75-1.5%) で精製を行うことにより、淡黄色泡状物質 (x) (232 mg, 84%) を得た。
 1H NMR (CDCl3, 300 MHz) δ 9.09 (br s, 1H, H-2"), 8.70 (d, 1H, H-6", J = 2.4 Hz), 8.45 (d, 1H, H-4", J = 6.9 Hz), 7.89 (d, 2H, H-Ar, J = 7.9 Hz), 7.69-7.27 (m, 3H, H-5", Ar), 7.23 (s, 1H, H-5’), 5.44 (dd, 1H, H-7, J = 5.3, 11.4 Hz), 5.08 (d, 1H, H-13, J = 3.4 Hz), 4.49 (dd, 1H, H-1, J = 4.7, 11.2 Hz), 2.03-0.85 (m, 8H, H-2, 3, 5, 8, 9), 1.89 (s, 3H, Me), 1.48 (s, 3H, Me), 1.21 (s, 3H, Me), 1.01(s, 9H, t-Bu), 1.00 (s, 9H, t-Bu);
 ESI-LRMS m/z 761 (MH); ESI-HRMS (MeOH) calcd. for C41H50FN2O9Si 761.3270 (MH), found 761.3231 (MH)。
 c) 7-O-p-シアノベンゾイル-10-デアセトキシメチル-10-プロピルカルバモイル-1,7-ジデアセチルピリピロペンA (PRD189) の合成
Figure JPOXMLDOC01-appb-C000030
 窒素雰囲気下、(x) (20.5 mg, 0.0270 mmol) のTHF (0.5 mL) 溶液に触媒量のDMAP、BOP (25.9 mg, 0.0810 mmol)、ならびにn-プロピルアミン (6.7μL, 0.0810 mmol) を加え、室温下40時間撹拌した。反応液にEtOAcを入れて希釈し、0.2 N HCl ならびに水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル3 g, MeOH in CH2Cl24%) にて粗精製し、生成物が含まれる画分を濃縮した。
 こうして得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (2.5μL, 0.101 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1× 2, 10 : 1 ) で精製を行うことにより、淡黄色固体 PRD189 (3.7 mg, 2 steps, 21%) を得た。
 1H NMR (CDCl3, 300 MHz) δ 9.22 (d, 1H, H-2", J = 1.6 Hz), 8.82 (d, 1H, H-6", J = 4.5 Hz), 8.72 (d, 1H, H-4", J = 8.2 Hz), 8.18 (d, 2H, H-Ar, J = 8.4 Hz), 8.01 (dd, 1H, H-5", J = 5.3, 8.5 Hz), 7.79 (d, 2H, H-Ar, J = 8.4 Hz), 6.67 (s, 1H, H-5’), 6.02 (br s, 1H, NH), 5.35-5.30 (m, 1H, H-7), 5.05 (d, 1H, H-13, J = 3.8 Hz), 4.10 (dd, 1H, H-1, J = 7.8, 8.4 Hz), 3.31-3.20 (m, 2H, CH 2 CH2CH3), 2.37-0.83 (m, 13H, H-2, 3, 5, 8, 9, CH2 CH 2 CH 3 ), 1.82 (s, 3H, Me), 1.47 (s, 3H, Me), 1.20 (s, 3H, Me);
 ESI-LRMS m/z 664 (M+Na); ESI-HRMS (MeOH) calcd. for C36H39N3NaO664.2635 (M+Na), found 664.2668 (M+Na)。
 (実施例12)
 7-O-p-シアノベンゾイル-10-デアセトキシメチル-10-(3-ヒドロキシプロピル)カルバモイル-1,7-ジデアセチルピリピロペンA (PRD190) の合成
Figure JPOXMLDOC01-appb-C000031
 窒素雰囲気下、(x) (21.7 mg, 0.0285 mmol) のTHF (0.5 mL) 溶液に触媒量のDMAP、BOP (27.3 mg, 0.0855 mmol)、3-アミノ-1-プロパノール(6.5μL, 0.0855 mmol) を加え、室温下20時間反応させた。反応液をEtOAcで希釈し、0.2 N HCl ならびに水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル3 g, MeOH in CH2Cl20.75%) にて粗精製し、生成物が含まれる画分を濃縮した。
 こうして得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (3.1μL, 0.193 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1, 10 : 1 ) で精製を行うことにより、淡黄色固体PRD190 (7.9 mg, 2 steps, 42%) を得た。
 1H NMR (CD3OD, 300 MHz) δ 9.02 (d, 1H, H-2", J = 2.2 Hz), 8.63 (dd, 1H, H-6", J = 1.4, 4.9 Hz), 8.30-8.24 (m, 3H, H-4", Ar), 7.96 (d, 2H, H-Ar, J = 8.2 Hz), 7.55 (dd, 1H, H-5", J = 5.0, 8.2 Hz), 6.81 (s, 1H, H-5’), 5.28-5.22 (m, 1H, H-7), 5.06 (d, 1H, H-13, J = 3.5 Hz), 4.06 (dd, 1H, H-1, J = 5.7, 10.7 Hz), 3.63 (t, 2H, CH 2 (CH2)2OH, J = 6.0 Hz), 3.40-3.34 (m, 2H, (CH2)2 CH 2 OH), 2.24-0.94 (m, 10H, H-2, 3, 5, 8, 9, CH2 CH 2 CH2OH), 1.94 (s, 3H, Me), 1.54 (s, 3H, Me), 1.21 (s, 3H, Me);
 ESI-LRMS m/z 680 (M+Na); ESI-HRMS (MeOH) calcd. for C36H39N3NaO680.2584 (M+Na), found 680.2595 (M+Na)。
 (実施例13)
 10-ベンジルカルバモイル-7-O-p-シアノベンゾイル-10-デアセトキシメチル-1,7-ジデアセチルピリピロペンA (PRD191) の合成
Figure JPOXMLDOC01-appb-C000032
 窒素雰囲気下、(x) (19.7 mg, 0.0259 mmol) のTHF (0.5 mL) 溶液に触媒量のDMAP、 BOP (24.8 mg, 0.0777 mmol)、ベンジルアミン (8.5μL, 0.0777 mmol) を加え、室温下20時間撹拌した。反応液をEtOAcで希釈し、0.2 N HCl ならびに水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル2 g, MeOH in CH2Cl20.75-1.5%) にて粗精製し、生成物が含まれる画分を濃縮した。
 こうして得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (5.0μL, 0.0305 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1×3) で精製を行うことにより白色固体PRD191 (10.6 mg, 2 steps, 59%) を得た。
 1H NMR (CDCl3, 300 MHz) δ 9.00 (br s, 1H, H-2"), 8.67 (d, 1H, H-6", J = 4.7 Hz), 8.20-8.16 (m, 3H, H-Ar, 4"), 7.80 (d, 2H, H-Ar, J = 8.5 Hz), 7.50-7.46 (m, 1H, H-5"), 7.26-7.12 (m, 5H, H-Ar), 6.45 (s, 1H, H-5’), 6.28 (t, 1H, NH, J = 5.4 Hz), 5.36 (dd, 1H, H-7, J = 7.3, 9.5 Hz), 5.02 (d, 1H, H-13, J = 4.0 Hz), 4.57 (dd, 1H, 1/2NHCH 2 Ph, J = 5.9, 14.9 Hz), 4.38 (dd, 1H, 1/2NHCH 2 Ph, J = 5.3, 14.8 Hz), 4.15 (t, 1H, H-1, J = 8.1 Hz), 3.05 (br s, 1H, OH-13), 2.21-0.89 (m, 8H, H-2, 3, 5, 8, 9), 1.79 (s, 3H, Me), 1.45 (s, 3H, Me), 1.20 (s, 3H, Me);
 ESI-LRMS m/z 712 (M+Na); ESI-HRMS (MeOH) calcd. for C40H39N3NaO712.2635 (M+Na), found 712.2639 (M+Na)。
 (実施例14)
 7-O-p-シアノベンゾイル-10-デアセトキシメチル-10-(4-メトキシベンジル)カルバモイル-1,7-ジデアセチルピリピロペンA (PRD192) の合成
Figure JPOXMLDOC01-appb-C000033
 窒素雰囲気下、(x) (20.7 mg, 0.0272 mmol) のTHF (0.5 mL) 溶液に触媒量のDMAP、 BOP (26.0 mg, 0.0816mmol)、p-メトキシベンジルアミン (10.6μL, 0.0816  mmol) を加え、室温下20時間撹拌した。反応液をEtOAcで希釈し、0.2 N HCl ならびに水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル3 g, MeOH in CH2Cl21.0-1.5%) にて粗精製し、生成物が含まれる画分を濃縮した。
 こうして得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (7.4μL, 0.456 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1×2, 10 : 1 ) で精製を行うことにより、淡黄色固体PRD192 (17.1 mg, 2 steps, 78%) を得た。
 1H NMR (CDCl3, 270 MHz) δ8.97 (d, 1H, H-2", J = 2.0 Hz), 8.64 (dd, 1H, H-6", J = 1.6, 4.6 Hz), 8.19 (d, 2H, H-Ar, J = 8.6 Hz), 8.07-8.03 (m, 1H, H-4"), 7.78 (d, 2H, H-Ar, J = 8.2 Hz), 7.36 (dd, 1H, H-5", J = 4.9, 8.2 Hz), 7.17 (d, 2H, H-Ar, J = 8.6 Hz), 6.74 (d, 2H, H-Ar, J = 8.6 Hz), 6.39 (s, 1H, H-5’), 6.21 (t, 1H, NH, J = 5.5 Hz), 5.35 (dd, 1H, H-7, J = 7.3, 9.6 Hz), 5.02 (br s, 1H, H-13), 4.52 (dd, 1H, 1/2NHCH 2 Ar, J = 6.1, 14.5 Hz), 4.26 (dd, 1H, 1/2NHCH 2 Ar, J = 4.9, 14.5 Hz), 4.14 (t, 1H, H-1, J = 8.2 Hz), 3.67 (s, 3H, OMe), 3.13 (br s, 1H, OH-13), 2.31-0.87 (m, 8H, H-2, 3, 5, 8, 9), 1.79 (s, 3H, Me), 1.44 (s, 3H, Me), 1.18 (s, 3H, Me);
 ESI-LRMS m/z 742 (M+Na); ESI-HRMS (MeOH) calcd. for C41H41N3NaO742.2741 (M+Na), found 742.2805 (M+Na)。
 (実施例15)
 7-O-p-シアノベンゾイル-10-デアセトキシメチル-10-[(R)-3-メトキシ-3-オキソ-1-フェニルプロピルカルバモイル]-1,7-ジデアセチルピリピロペンA (PRD193) の合成
Figure JPOXMLDOC01-appb-C000034
 窒素雰囲気下、(x) (28.1 mg, 0.0370 mmol) のTHF (0.6 mL) 溶液に触媒量のDMAP、BOP (35.4 mg, 0.111 mmol)、L-フェニルアラニンメチルエステル (19.9 mg, 0.111 mmol) を加え、室温下72時間撹拌した。反応液をEtOAcで希釈し、0.2N HCl ならびに水で洗浄した。有機層をNa2SO4で乾燥後ろ過し、ろ液を減圧下濃縮した。得られた残渣を中性フラッシュシリカゲルカラムクロマトグラフィー (シリカゲル3 g, MeOH in CH2Cl20-1.5%) にて粗精製し、生成物が含まれる画分を濃縮した。
 こうして得られた残渣をTHF (0.5 mL) に溶解し、Et3N・3HF (1.3μL, 0.00814 mmol) を加え、室温下1.5時間撹拌した。反応液を減圧下濃縮し、得られた残渣をプレパラティブTLC (CH2Cl: MeOH = 15 : 1) で精製を行うことにより、淡黄色固体PRD193 (5.1 mg, 2 steps, 18%) を得た。
 1H NMR (CDCl3, 300 MHz) δ 8.95 (dd, 1H, H-2", J = 1.2, 1.9 Hz), 8.71-8.68 (m, 1H, H-6"), 8.44-8.42 (m, 1H, H-4"), 8.12 (d, 2H, H-Ar, J = 7.8 Hz), 7.74-7.69 (m, 3H, H-5", Ar), 7.15 (d, 2H, H-Ar, 7.3 Hz), 7.07-7.01 (m, 3H, H-Ar), 6.48 (s, 1H, H-5’), 6.16 (d, 1H, NH, J = 8.9 Hz), 5.32-5.26 (m, 1H, H-7), 4.96 (d, 1H, H-13, J = 3.8 Hz), 4.81-4.76 (m, 1H, H-1), 3.68 (s, 3H, OMe), 3.58 (d, 1H, NHCH, J = 5.4 Hz), 3.04 (d, 2H, NHCHCH 2 , J = 6.0 Hz), 2.30-0.76 (m, 8H, H-2, 3, 5, 8, 9), 1.73 (s, 3H, Me), 1.39 (s, 3H, Me), 1.04 (s, 3H, Me);
 ESI-LRMS m/z 784 (M+Na); ESI-HRMS (MeOH) calcd. for C43H43N3NaO10 784.2846 (M+Na), found 784.2837 (M+Na)。
 試験例1:投与したピリピロペンA及びその誘導体の代謝産物の解析
 C57BL6/Jマウス (雄性、日本SLC株式会社より購入) を12時間周期での人工光 (昼)-暗黒 (夜) サイクルのもと、標準的な食餌 (CE-2、日本クレア社製) を適宜与えて維持した。各薬剤の試験を開始する前に、20時間絶食(水は自由摂取)させた。これら動物に、ピリピロペンAまたはPRD017を0.5% (w/v) カルボキシメチルセルロースの生理食塩水溶液に溶解し、50 mg/kgの濃度になるように2.5 ml/kgの量で10週齢のマウスに経口で投与した。
 ピリピロペン類を投与した0.5、6及び12時間後に、試験動物の尾静脈から100μLを採血した。ピリピロペン類を投与する直前にも100μLを採血し、これを0時間目とした。これらの血液に200μLの酢酸エチルを加えて充分に混和後、150μLの酢酸エチル層を1.5 mlチューブ (カタログ番号3810、Eppendorf社製) に回収した。遠心エバポレーター (東京理科器械社製) で乾固後、100μLのメタノールに再溶解した。
 また、ピリピロペン類を投与してから6時間の間に***された糞を回収した。回収した糞は、55℃で24時間加温して乾燥させた後、粉砕した。粉砕した糞10 mgをガラスバイアルに回収し、酢酸エチル1mlを加えて***されたピリピロペン類とその代謝産物を溶解させた。次いで、その酢酸エチル全量を孔径0.22μmのフィルターでろ過し、ろ液を1.5 mlチューブに回収して、遠心エバポレーターで乾固後、100μLのメタノールに再溶解した。
 分析には、超高速液体クロマトグラフィー (システム;Prominence、島津社製:カラム;Shin Pack XR-ODS、2.0φ×75 mm、40℃、島津社製) を用いた。5%アセトニトリル、0.1%リン酸水溶液で溶出を始め、6分後に95%アセトニトリル、0.1%リン酸水溶液になるように直線型濃度勾配で溶出させ、320 nmの波長で検出した。さらに、分子量は高速液体クロマトグラフィー/質量分析(Waters社製;カラム、PEGASIL ODS、2.0 o X 50 mm、センシュー科学社製;質量検出器、micromass ZQ 2000、Waters社製;移動層、10%アセトニトリル、0.05%トリフルオロ酢酸水溶液で溶出を始め13分後に100%アセトニトリル、0.05%トリフルオロ酢酸水溶液になるような直線型濃度勾配;解析ソフト、MassLynx Ver 4.0) で検出した。
 ピリピロペンAを投与したマウスの血液から抽出したサンプルからは、3種類のピリピロペンA (PPA) 関連物質が検出され、溶出時間の遅いものから順にピークB1~ピークB3と命名した。糞から抽出したサンプルからは、2種類のピリピロペンA関連物質が検出され、溶出時間の遅いものから順にピークF1およびピークF2と命名した。標品およびピークB1からB3そしてピークF1とF2の溶出時間と分子量を表1に示した。
 PRD017を投与したマウスの血液から抽出したサンプルからは、3種類のPRD017関連物質が検出され、溶出時間の遅いものから順にピークB1'~ピークB3'と命名した。糞から抽出したサンプルからは、2種類のPRD017関連物質が検出され、溶出時間の遅いものから順にピークF1'およびピークF2'と命名した。標品およびピークB1'からB3'そしてピークF1'とF2'の溶出時間と分子量を表2に示した。
 投与したPRD017(7?O-p-シアノベンゾイル-ピリピロペンA)および比較例として用いたPRD148(7-デアセチルピリピロペンA)およびPRD138(7-O-p-シアノベンゾイル-1,7,11-トリデアセチルピリピロペンA)の構造は下記のとおりである。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 表1から明らかなように、ピークB1~B3はそれぞれPPA、PRD147、PRD146と同定した。またピークF1とF2はそれぞれPPAとPRD146と同定した。さらに、表2から明らかなように、ピークB1'~B3'はそれぞれPRD017、PRD118、PRD138と同定した。またピークF1'とF2'はそれぞれPRD017とPRD138と同定した。すなわち、ピリピロペン類を投与して30分後に血中から検出された代謝産物は、その1位のアセチル基が加水分解されて水酸基に変換された代謝産物と、1位と11位の2カ所のアセチル基が加水分解されて水酸基に変換された代謝産物の2種類と同定した。また、ピリピロペン類を投与して6時間の間に***された糞中から検出された代謝産物は、その1位と11位の2カ所のアセチル基が加水分解されて水酸基に変換された代謝産物と同定した。
 試験例2:ACAT2阻害活性の測定
 [ACAT2の酵素源の調製方法]
 Uelmenらの方法(J. Biol. Chem. 270巻、26192-26201頁、1995年)を一部改変して酵素源を調製した。ACAT2の酵素源としては、マウス肝臓ミクロソーム由来の膜画分を用いた。マウス肝臓は緩衝液A[50 mMトリス塩酸液(pH 7.8)、1mMエチレンジアミン四酢酸及び1mMフェニルメタンスルフォニルフルオリド]中でポッター型ホモジナイザー(Tokyo-RIKO社製)を用いてホモジナイズした。これを12000×gで遠心した上清を100000×gで超遠心した沈さをミクロソーム画分とし、この画分を5mg/mLの蛋白質濃度となるように緩衝液Aで調製した。
 [ACAT阻害活性の測定方法]
 各実施例で調製したピリピロペン誘導体のACAT活性の測定は、Fieldらの方法(Gastroenterology、83巻、873-880頁、1982年)に従って実施した。上記酵素源200μg蛋白量、200 mM牛血清アルブミン、[1-14C]オレオイルコエンザイムA(最終濃度 170μM、0.090μCi)と試験する各ピリピロペン誘導体(1、0.1、0.01、0.001、0.0001、0.00001mg/mLのメタノール溶液を10μL)を緩衝液A中に加えて全量200μLとし、37℃で5分間反応させた。ピリピロペン誘導体の代わりにメタノール10μLを加えたものをコントロールとした。
 次いで、そこに1.2 mLクロロホルム/メタノール(1:2)を加えて反応を停止させ、Bligh & Dyer 法(Can. J. Biochem. Physiol. 37巻、911-917頁、1959年)により脂質を回収した。クロロホルム層を乾固後、薄層クロマトグラフィー(シリカゲルプレート、メルク社製、厚さ0.5 mm)にスポットし、ヘキサン/ジエチルエーテル/酢酸(70:30:1、v/v)の溶媒で展開して分離した。次に生成した[14C]コレステリルオレエートの量をBAS 2000バイオイメージアナライザ(富士フィルム社製)で定量して、コントロールと比較することにより、試験化合物の阻害活性を以下の式により算出した。なお、何もスポットしていない薄層クロマトグラフィーの放射活性をバックグラウンドとした。
 阻害率=100-[(試験化合物添加時の放射活性)-(バックグラウンド)]/[(コントロールの放射活性)-(バックグラウンド)]
 これらの阻害率のデータから、本酵素活性を50%阻害する濃度(IC50、阻害活性)を算定した。
 阻害活性について、得られた結果を下記の表3に示した。表の符号の意味は次の通りである。
 阻害活性:ACAT2を50%阻害する濃度(=IC50
 +++++:阻害活性<0.5μM
  ++++:0.5μM≦阻害活性<1.0μM
   +++:1.0μM≦阻害活性<5.0μM
    ++:5.0μM≦阻害活性<10.0μM
     +:10.0μM≦阻害活性
Figure JPOXMLDOC01-appb-T000038
 比較例として示した既知化合物のPRD146およびPRD149、そして1位と11位の両方が水酸基に置換された誘導体であるPRD138と比べて、本発明に係る化合物はACAT2に対する極めて高い阻害活性を示す。
 なお、ACAT2阻害活性試験は上記の方法に限定されず、例えばラット、サル等の動物の小腸または肝臓から調製したミクロソームをACAT2酵素源として使用してもよい。また、培養細胞(Caco-2腸細胞、初代培養肝細胞、HePG2肝細胞等)またはACAT2を高発現させた培養細胞から調製したミクロソームをACAT2酵素源として使用することもできる。

Claims (4)

  1.  下記一般式(I)または(II)または(III):
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (式中、R1およびR2は、ヒドロキシル基、低級アシロキシ基、アリールカルボニルオキシ基、およびヘテロアリールカルボニルオキシ基から選ばれた基を意味し、一般式(I)および(II)においてR1とR2は互いに同一でも異なっていてもよいが、少なくとも一方はヒドロキシル基ではなく、かつ一般式(II)においてR1とR2の少なくとも一方はアセトキシ基ではなく、R3はヒドロキシル基、低級アルコキシ基、アリールアルコキシ基、ヘテロアリールアルコキシ基、低級アルキルアミノ基、アリールアミノ基、およびヘテロアリールアミノ基から選ばれた基を意味する)で示されるピリピロペンA誘導体、ならびにその薬学上許容される塩、溶媒和物および水和物。
  2.  R1がヒドロキシル基、アリールカルボニルオキシ基、または低級アシロキシ基であり、R2が低級アシロキシ基またはアリールカルボニルオキシ基である、請求項1に記載の化合物。
  3.  請求項1に記載のピリピロペン誘導体またはその医薬に許容される塩、溶媒和物もしくは水和物を有効成分とするACAT2阻害剤。
  4.  請求項1に記載のピリピロペン誘導体またはその医薬に許容される塩、溶媒和物もしくは水和物と医薬に許容される担体とを含むACAT2阻害用薬剤組成物。
PCT/JP2010/060461 2009-06-23 2010-06-21 Acat2阻害活性を示す水酸基含有ピリピロペン誘導体 WO2010150739A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519884A JP5554330B2 (ja) 2009-06-23 2010-06-21 Acat2阻害活性を示す水酸基含有ピリピロペン誘導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009148718 2009-06-23
JP2009-148718 2009-06-23

Publications (1)

Publication Number Publication Date
WO2010150739A1 true WO2010150739A1 (ja) 2010-12-29

Family

ID=43386508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060461 WO2010150739A1 (ja) 2009-06-23 2010-06-21 Acat2阻害活性を示す水酸基含有ピリピロペン誘導体

Country Status (2)

Country Link
JP (1) JP5554330B2 (ja)
WO (1) WO2010150739A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122468A1 (ja) * 2010-03-31 2011-10-06 学校法人北里研究所 Acat2阻害活性を示す代謝酵素に安定なピリピロペン誘導体
EP2578084A1 (en) * 2010-05-24 2013-04-10 Meiji Seika Pharma Co., Ltd. Noxious organism control agent
JP2014144922A (ja) * 2013-01-28 2014-08-14 Kitasato Institute Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
WO2015198966A1 (ja) * 2014-06-24 2015-12-30 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430869B2 (ja) 2020-01-27 2024-02-14 学校法人北里研究所 プロタンパク質転換酵素サブチリシン/ケキシン9型(pcsk9)阻害剤及びその医薬用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259569A (ja) * 1995-03-27 1996-10-08 Kitasato Inst:The ピリピロペン誘導体
JPH08269063A (ja) * 1995-03-28 1996-10-15 Kitasato Inst:The ピリピロペン誘導体
WO2006129714A1 (ja) * 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. 害虫防除剤
WO2008013336A1 (en) * 2006-07-27 2008-01-31 Korea Research Institute Of Bioscience And Biotechnology Pyripyropene derivatives and insecticidal compositions comprising them
WO2009022702A1 (ja) * 2007-08-13 2009-02-19 Meiji Seika Kaisha, Ltd. ピリピロペン誘導体の製造法およびその製造中間体
WO2009081957A1 (ja) * 2007-12-25 2009-07-02 The Kitasato Institute Acat 2 阻害活性を有するピリピロペン誘導体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259569A (ja) * 1995-03-27 1996-10-08 Kitasato Inst:The ピリピロペン誘導体
JPH08269063A (ja) * 1995-03-28 1996-10-15 Kitasato Inst:The ピリピロペン誘導体
WO2006129714A1 (ja) * 2005-06-01 2006-12-07 Meiji Seika Kaisha, Ltd. 害虫防除剤
WO2008013336A1 (en) * 2006-07-27 2008-01-31 Korea Research Institute Of Bioscience And Biotechnology Pyripyropene derivatives and insecticidal compositions comprising them
WO2009022702A1 (ja) * 2007-08-13 2009-02-19 Meiji Seika Kaisha, Ltd. ピリピロペン誘導体の製造法およびその製造中間体
WO2009081957A1 (ja) * 2007-12-25 2009-07-02 The Kitasato Institute Acat 2 阻害活性を有するピリピロペン誘導体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Abstracts of Annual Meeting of Pharmaceutical Society of Japan, 05 March 2009 (05.03.2009)", vol. 129, article MASAKI OTAWA ET AL. ET AL.: "ACAT2 Sentaku-teki Sogaizai pyripyropene A no Yudotai Gosei to Kozo Kassei Sokan", pages: 203 *
OBATA, R. ET AL.: "Chemical modification and structure-activity relationships of pyripyropenes. 1. Modification at the four hydroxyl groups", JOURNAL OF ANTIBIOTICS, vol. 49, no. 11, 1996, pages 1133 - 1148, XP003002774 *
OBATA, R. ET AL.: "Chemical modification and structure-activity relationships of pyripyropenes. 2. 1,11-Cyclic analogs", JOURNAL OF ANTIBIOTICS, vol. 49, no. 11, 1996, pages 1149 - 1156, XP008130150 *
OBATA, R. ET AL.: "Structure-activity relationships study of pyripyropenes: reversal of cancer cell multidrug resistance", JOURNAL OF ANTIBIOTICS, vol. 53, no. 4, 2000, pages 422 - 425, XP008137617 *
OHSHIRO T ET AL.: "Selectivity of pyripyropene derivatives in inhibition toward Acyl-CoA: cholesterol acyltransferase 2 isozyme", JOURNAL OF ANTIBIOTICS, vol. 61, no. 8, 2008, pages 503 - 508, XP008161258, DOI: doi:10.1038/ja.2008.67 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122468A1 (ja) * 2010-03-31 2011-10-06 学校法人北里研究所 Acat2阻害活性を示す代謝酵素に安定なピリピロペン誘導体
US9187492B2 (en) 2010-03-31 2015-11-17 School Juridical Person Kitasato Institute Pyripyropene derivative having ACAT2 inhibiting activity and stable to metabolizing enzymes
EP2578084A1 (en) * 2010-05-24 2013-04-10 Meiji Seika Pharma Co., Ltd. Noxious organism control agent
EP2578084A4 (en) * 2010-05-24 2014-04-23 Meiji Seika Pharma Co Ltd MEANS OF COMBATING HARMFUL ORGANISMS
JP2014144922A (ja) * 2013-01-28 2014-08-14 Kitasato Institute Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
WO2015198966A1 (ja) * 2014-06-24 2015-12-30 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物
JP2016008191A (ja) * 2014-06-24 2016-01-18 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物
US9896456B2 (en) 2014-06-24 2018-02-20 School Juridical Person Kitasato Institute Pharmaceutical compound having inhibitory activity against cholesterol acyltransferase isozyme 2 (ACAT2)

Also Published As

Publication number Publication date
JP5554330B2 (ja) 2014-07-23
JPWO2010150739A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
EP2228376B1 (en) Pyripyropene derivative having acat2-inhibiting activity
JP2024503755A (ja) ウイルス感染症治療用ヌクレオシド系化合物及びその用途
RU2572818C2 (ru) Производное тетрагидрокарболина
CN111295372B (zh) 硝羟喹啉前药及其用途
JP5554330B2 (ja) Acat2阻害活性を示す水酸基含有ピリピロペン誘導体
AU2005218610A1 (en) Triptolide lactone ring derivatives as immunomodulators and anticancer agents
CZ301754B6 (cs) Premostené indenopyrrolokarbazoly
CN104341434B (zh) 取代的雷帕霉素三氮唑衍生物和用途
JP5592482B2 (ja) Acat2阻害活性を示す代謝酵素に安定なピリピロペン誘導体
JP2020530490A (ja) アンドロゲン受容体拮抗薬として使用されるジアリールチオヒダントイン化合物
WO2021139739A1 (zh) ***二酚衍生物及其制备方法和在医药上的应用
CN114591201A (zh) 具有HDACi药效团的β-榄香烯衍生物及其制备方法和应用
WO2005062913A2 (en) Triplide 5,6-derivatives as immunomodulators and anticancer agents
EP2233467B1 (en) Alpha-amino-n-substituted amides, pharmaceutical composition containing them and uses thereof
JP5963278B2 (ja) 種選択的な電子伝達系の複合体ii阻害活性を有する新規アトペニン類縁体
Zheng et al. Total synthesis of LC-KA05, the proposed structure of LC-KA05-2, and 2, 18-seco-lankacidinol B: A quest to revisit lankacidin biosynthesis
JP5946100B2 (ja) コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物
JP2014144922A (ja) Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
CN111825695B (zh) 噁唑烷酮类化合物、其制备方法、用途及其药物组合物
AU2006292268A1 (en) Cytotoxin compounds and methods of isolation
FR2999575A1 (fr) 3,5-diaryl-azaindoles comme inhibiteurs de la proteine dyrk1a pour le traitement des deficiences cognitives liees au syndrome de down et a la maladie d'alzheimer
EP3686196B1 (en) Polycyclic compound acting as ido inhibitor and/or ido-hdac dual inhibitor
JPH09512799A (ja) チューブリン重合及び解重合に影響を与えるボルネオール誘導体
KR20220164216A (ko) 신규한 에르고스텐올 유도체 및 이의 용도
JP2005500365A (ja) 抗腫瘍剤としての使用のためのパクリタキセルのc−2′メチル化誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011519884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792057

Country of ref document: EP

Kind code of ref document: A1