WO2010150534A1 - Flow-through capacitor, method for producing deionized water, and device for producing deionized water - Google Patents

Flow-through capacitor, method for producing deionized water, and device for producing deionized water Download PDF

Info

Publication number
WO2010150534A1
WO2010150534A1 PCT/JP2010/004171 JP2010004171W WO2010150534A1 WO 2010150534 A1 WO2010150534 A1 WO 2010150534A1 JP 2010004171 W JP2010004171 W JP 2010004171W WO 2010150534 A1 WO2010150534 A1 WO 2010150534A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
activated carbon
fiber
sheet
capacitor according
Prior art date
Application number
PCT/JP2010/004171
Other languages
French (fr)
Japanese (ja)
Inventor
大塚清人
川崎修治
石田修一
岩崎秀治
西山正一
藤原直樹
Original Assignee
クラレケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレケミカル株式会社 filed Critical クラレケミカル株式会社
Priority to JP2011519599A priority Critical patent/JP5687620B2/en
Publication of WO2010150534A1 publication Critical patent/WO2010150534A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a flow-through capacitor, a method for producing deionized water, and a deionized water production apparatus.
  • the ionic substances containing nitrate nitrogen contained in tap water are said to be caused by contaminated rivers, groundwater, lakes, etc., with fertilizer, livestock excrement and domestic wastewater.
  • ionic substances containing fluorine, boron, cyanide and various heavy metals contained in tap water are caused by the fact that the rivers taken in are contaminated by factory wastewater. Therefore, it is preferable that various wastewaters are discharged into rivers after being deionized.
  • the ionic substance can be removed by using, for example, a reverse osmosis membrane.
  • a reverse osmosis membrane since the reverse osmosis membrane has a high pressure loss when water is passed through, there is a problem that the amount of treatment that can be treated in a certain time is small. Further, the reverse osmosis membrane type water purifier has a problem that the operation cost becomes high because it is necessary to increase the water pressure with a booster pump. Therefore, there has been a demand for a method for deionizing water at a low cost without using a reverse osmosis membrane.
  • Patent Document 1 discloses a nitrate nitrogen removing device in which a filter medium containing an anion exchange resin and calcium carbonate is arranged on a flow path.
  • a nitrate nitrogen removing device is intended to effectively remove nitrate nitrogen and the like in water by adjusting pH by combining an anion exchange resin and calcium carbonate.
  • such a nitrate nitrogen removing apparatus has a problem that the production cost is high because the anion exchange resin is expensive.
  • a method of removing ionic substances in water using an electrostatic force has been proposed.
  • Patent Document 2 is a liquid-electricity type in which two activated carbon layers mainly made of activated carbon with a high specific surface area are arranged with a separator in between, and a collector electrode is laminated on the outside of the two activated carbon layers.
  • a double layer capacitor is disclosed.
  • Patent Document 3 discloses a liquid-flowing capacitor including a conductive layer including a stacked capacitor activated carbon in which an activated carbon layer is disposed with a separator interposed therebetween and a collector electrode is disposed on the outer side of the stacked capacitor activated carbon. .
  • patent document 4 removes an ionic substance by laminating
  • a liquid-permeable capacitor is disclosed. According to the flow-through capacitors disclosed in Patent Documents 2 to 4, it is possible to purify water containing ionic substances that dissociate in water, such as metal salts, amine salts, inorganic acids, and organic acids. Is described.
  • nitrate ions and fluorine ions that could not be removed by the conventional water purifier using the activated carbon adsorption function are removed without using a water purifier using a reverse osmosis membrane, which has a high operating cost. be able to.
  • the ion removal processing capacity of the conventional liquid-pass capacitor has not been sufficient.
  • the present invention relates to a liquid-permeable capacitor having a higher ability to remove ionic substances than conventional liquid-permeable capacitors, a method for producing deionized water using such a liquid-permeable capacitor, and deionized water production.
  • An object is to provide an apparatus.
  • One aspect of the present invention includes a laminate in which a plurality of electrodes capable of passing liquids and a plurality of separators capable of passing liquids are alternately stacked, and the electrodes include a liquid-permeable activated carbon sheet containing activated carbon powder and a binder.
  • the activated carbon powder has a central particle diameter of 10 to 500 ⁇ m
  • the binder is a liquid passing type capacitor containing at least one selected from fibrillated fibers and thermoplastic binder particles.
  • Another aspect of the present invention is a method for producing deionized water using the liquid-pass capacitor, wherein a plurality of electrodes stacked in the thickness direction of the multilayer body are connected to a positive electrode side and a negative electrode of a DC power source.
  • Another aspect of the present invention includes the above-described liquid-flowing capacitor, a DC power supply, and a container that stores the liquid-flowing capacitor, and the plurality of electrodes stacked in the laminate are positive electrodes of the DC power supply.
  • the container is connected alternately to the negative electrode side in the thickness direction, and the container has a water supply port for supplying water containing an ionic substance to the first main surface of the laminate, and the first main surface of the laminate It is a deionized water manufacturing apparatus provided with the drain outlet for draining the deionized water from the 2nd main surface which opposes.
  • a liquid-permeable capacitor having a higher ability to remove ionic substances than a conventional liquid-permeable capacitor, a method for producing deionized water using such a liquid-permeable capacitor, and deionized water A manufacturing apparatus can be provided.
  • FIG. 1 is a schematic explanatory view of a deionized water production apparatus 110 provided with a liquid-permeable capacitor 10 of the present embodiment.
  • the liquid-passing capacitor 10 is shown in a longitudinal sectional view.
  • the liquid-permeable capacitor 10 includes a plurality of activated carbon sheets 2 (2a, 2b, 2c, 2d, 2e, 2f) and a separator 1 (1a, 1b, 1c, 1d, 1e, 1f) having insulating properties and liquid permeability. And a laminate 11 formed by alternately laminating and.
  • the multilayer body 11 is accommodated in the capacitor container 4.
  • the capacitor container 4 includes a water supply port 7 for supplying water containing an ionic substance and a drain port 8 for draining deionized water.
  • the capacitor container 4 is preferably formed from a synthetic resin molded body from the viewpoint of suppressing water leakage and leakage.
  • the drainage port 8 is further connected to two paths of a deionized water recovery pipe 15 and an ion concentrated water recovery pipe 16. In these paths, the flow paths are switched by opening and closing the valves v1 and v2.
  • the activated carbon sheets 2a to 2f have tabs t led out of the capacitor container 4.
  • the tabs provided on the activated carbon sheets 2a to 2f are electrically connected to the electrode terminals 3a to 3f, respectively.
  • the electrode terminals 3a, 3c, and 3e are connected in parallel to the negative electrode side of the DC power supply 5, and the electrode terminals 3b, 3d, and 3f are connected in parallel to the positive electrode side of the DC power supply 5, respectively.
  • the multilayer body 11 is tightly fixed by a punched resin plate 13 in the capacitor container 4.
  • the activated carbon sheet 2 used in the present embodiment can be passed through a molded sheet comprising activated carbon powder having a center particle diameter of 10 to 500 ⁇ m and at least one binder selected from fibrillated fibers and thermoplastic binder particles. It is a sheet.
  • the activated carbon powder include, for example, wood, sawdust, charcoal, fruit husks such as coconut husk and walnut husk, fruit seeds, pulp production by-products, lignin, molasses, etc .; Mineral activated carbon powder obtained by carbonizing and activating lignite, lignite, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, etc .; carbonizing and activating phenol, saran, acrylic resin, etc. And synthetic resin-based activated carbon powder obtained by carbonization; natural fiber-based activated carbon powder obtained by carbonizing and activating regenerated fiber (rayon) and the like. Among these, coconut shell activated carbon powder is particularly preferable because of its excellent adsorption performance.
  • impurities are removed from the activated carbon powder as much as possible.
  • the impurities include metals such as alkali metals, alkaline earth metals, nickel, and iron. Such a metal is removed by washing with water or an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid. The cleaning may be performed with one type of cleaning liquid or may be repeatedly performed by combining two or more types of cleaning liquids.
  • the washed activated carbon is heat-treated in an inert gas or oxidizing gas to remove metal salts adsorbed when washed with inorganic acids and inorganic acid ions such as hydrochloric acid ions, sulfate ions, and phosphate ions.
  • inorganic acids and inorganic acid ions such as hydrochloric acid ions, sulfate ions, and phosphate ions.
  • the oxidizing gas include combustion gas obtained by burning oxygen, water vapor, carbon dioxide, kerosene and propane.
  • the heat treatment temperature is preferably 500 to 1000 ° C., more preferably 650 to 900 ° C. If the heat treatment temperature is too low, a sufficient heat treatment effect cannot be obtained.
  • the heat treatment temperature when the heat treatment temperature is too high, the adjusted pore structure tends to change due to a rapid activation reaction. In addition, when the heat treatment temperature in the inert gas is too high, the pore structure adjusted by heat shrinkage tends to change.
  • the heat treatment time depends on the heat treatment temperature, it is usually preferably about 30 minutes to 3 hours.
  • the activated carbon powder used in the present embodiment is, for example, activated carbon powder having a central particle diameter of 10 to 500 ⁇ m obtained by pulverizing, finely pulverizing, or classifying granular activated carbon.
  • the central particle size of the activated carbon powder used in this embodiment is 10 to 500 ⁇ m, preferably 50 to 400 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the central particle diameter is the particle diameter when the integrated value of the mass of all particles is 50% in the particle size distribution.
  • Such a center particle diameter can be measured, for example, using a Nikkiso Co., Ltd. Microtrac particle size distribution measuring device (MT3300).
  • the center particle diameter of the activated carbon powder When the center particle diameter of the activated carbon powder is less than 10 ⁇ m, the obtained activated carbon sheet becomes too dense, the water resistance increases, and the ion trapping ability unexpectedly decreases.
  • the reason why the ion capturing ability of the activated carbon sheet decreases when the center particle diameter is less than 10 ⁇ m is not well understood.
  • the present inventors consider as follows. That is, when activated carbon powder having a center particle diameter of less than 10 ⁇ m is used, the surface area covered with the binder is increased, and the contact resistance between the particles is increased, thereby lowering the conductivity. Yes.
  • the center particle diameter is too small, the activated carbon powder is easily dropped from the activated carbon sheet, and there is a problem that the activated carbon particles are easily mixed into the deionized water.
  • the specific surface area of the activated carbon powder is preferably 700 to 2500 m 2 / g, more preferably 1000 to 1800 m 2 / g, and particularly preferably 1100 to 1500 m 2 / g. If the specific surface area is too small, the deionization ability is lowered, and the ions are less likely to be desorbed when the polarities of the electrodes are reversed and desorbed concentrated ions adsorbed on the surface of the activated carbon sheet. There is. Further, when the specific surface area is too large, not only the performance per volume is lowered, but also fine powder is likely to be generated, and the fine powder tends to be mixed into deionized water.
  • the activated carbon sheet is obtained by molding a mixture containing activated carbon powder and fibrillated fibers and / or thermoplastic binder particles into a sheet.
  • a binder it is preferable to use a binder with no biological harm from a viewpoint used for water purification.
  • the ratio of the activated carbon powder contained in the activated carbon sheet is preferably in the range of 50 to 99% by weight, more preferably 80 to 95% by weight. When the ratio of the activated carbon powder contained in the activated carbon sheet is too low, the treatment amount tends to decrease.
  • fibrillated fiber When fibrillated fiber is used as the binder, it is preferably formed by wet molding.
  • the fibrillated fiber is obtained by fibrillating a fiber that can be fibrillated using a high-pressure homogenizer, a high-speed disaggregator, or the like.
  • the average fiber diameter is about 0.1 to 50 ⁇ m, and further 1 to 20 ⁇ m. It is a pulp-like fiber.
  • Such fibrillated fibers are intertwined by paper making to form a sheet.
  • the average fiber length of the fibrillated fibers is, for example, preferably about 0.5 to 4 mm, and more preferably about 1 to 2 mm.
  • fibers forming such fibrillated fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, cellulose fibers, nylon fibers, aramid fibers, and the like.
  • acrylic fibers and cellulose fibers are particularly preferable because they are easily fibrillated and have a high effect of restraining the activated carbon powder.
  • Bi-PUL which is a homoacrylic pulp manufactured by Nippon Exlan Co., Ltd., is available.
  • Examples of a method for wet-molding an activated carbon sheet using fibrillated fibers include the following methods. First, activated carbon powder and fibrillated fiber are mixed and then dispersed in water to prepare a slurry having a solid concentration of 1 to 5% by weight. Next, the slurry is poured into a water-permeable box-type container formed of, for example, a stainless steel wire net, and the moisture is cut and dried. An activated carbon sheet is obtained by such a method.
  • the above-described slurry is filled into a mold cavity having a sheet-like cavity having a predetermined shape and a large number of through holes for decompressing the inside of the cavity. And the water
  • An activated carbon sheet can also be obtained by such a method.
  • the mixing ratio of the fibrillated fibers to 100 parts by weight of the activated carbon powder is preferably 3 to 8 parts by weight from the viewpoint of excellent balance of conductivity, deionization, moldability and the like.
  • thermoplastic binder particles When using thermoplastic binder particles as the binder, dry molding is preferred.
  • the polymer forming the thermoplastic binder particles include polyethylene, polypropylene, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate.
  • polyethylene, polypropylene, polystyrene, ethylene vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate and particularly polyethylene is preferable from the viewpoint of binding properties.
  • the average particle diameter of the thermoplastic binder particles is preferably about 0.1 to 200 ⁇ m, more preferably about 1.0 to 50 ⁇ m from the viewpoint of excellent sheet strength and conductivity.
  • Examples of the method for dry-molding the activated carbon sheet using the thermoplastic binder particles include the following methods. First, the activated carbon powder and the thermoplastic binder particles are weighed at a desired ratio, and the mixture is obtained by stirring using a mixer such as a Henschel mixer. Then, the obtained mixture is filled into a mold having a sheet-like cavity. Then, the mold is melted or softened by heating to a temperature equal to or higher than the melting point of the thermoplastic binder particles, and then the thermoplastic binder particles are solidified by cooling. And an activated carbon sheet is obtained by releasing from a metal mold
  • the mixing ratio of the thermoplastic binder particles to 100 parts by weight of the activated carbon powder is preferably 5 to 50 parts by weight, more preferably 7 to 20 parts by weight from the viewpoint of excellent sheet strength and conductivity.
  • the activated carbon sheet may further contain a conductive material.
  • a conductive material By blending the conductive material, excellent conductivity can be imparted to the activated carbon sheet.
  • a conductive material include, for example, carbon-based materials such as graphite, carbon, and graphite; noble metals such as gold, platinum, and silver; titanium nitride, titanium silicon carbide, titanium carbide, titanium boride, and zirconium boride. And the like.
  • a carbon-based material is preferable because it is excellent in cost and workability.
  • the shape of the conductive material is not particularly limited, and specific examples include powder, short fibers, whiskers, and the like. Among these, short fibers are preferable from the viewpoint of excellent balance of conductivity, water permeability, mechanical properties, flexibility of the obtained activated carbon sheet, and the like.
  • the average fiber diameter of such short fibers is preferably 1 to 50 ⁇ m, more preferably 3 to 20 ⁇ m, and particularly preferably 5 to 10 ⁇ m. If the average fiber diameter is too small, the flexibility of the activated carbon sheet tends to decrease, although it depends on the amount added. In addition, when the softness
  • the average fiber length of the short fibers is preferably 5 to 12000 ⁇ m, more preferably 100 to 6000 ⁇ m, and particularly preferably 1000 to 3000 ⁇ m.
  • the average fiber length is too short, it becomes difficult to get entangled with the activated carbon powder, so that it becomes difficult to obtain the effect of improving conductivity, and the water permeability tends to decrease. Further, when the average fiber length is too long, the dispersibility is lowered, and thus the deionization effect in the surface of the activated carbon sheet tends to be non-uniform.
  • the density of the short fibers is preferably 1 to 2.3 g / cm 3 , more preferably 1.5 to 2.0 g / cm 3 , and particularly preferably 1.6 to 1.9 g / cm 3 .
  • the addition ratio is preferably 1 to 40% by weight, more preferably 2 to 25% by weight, particularly 5 to 15% by weight, based on the total weight of the activated carbon sheet.
  • the addition ratio of the conductive material is too low, the effect of improving the conductivity tends not to be obtained sufficiently.
  • the addition ratio of the conductive material is too high, the deionization capacity per unit volume of the activated carbon sheet tends to decrease due to the relatively decreased content ratio of the activated carbon powder contained in the activated carbon sheet. .
  • the activated carbon sheet may contain other additives as necessary as long as the effects of the present invention are not impaired.
  • additives include granular or fibrous activated carbon capable of adsorbing and removing residual chlorine and trihalomethane, zeolite capable of adsorbing and removing soluble lead, and silver ions and silver compounds having antibacterial properties. Examples include adsorbents.
  • the thickness of the activated carbon sheet is not particularly limited, but is preferably about 0.1 to 3 mm, more preferably about 0.2 to 2 mm from the viewpoint that the electric resistance between the activated carbon sheets does not become too high.
  • the activated carbon sheet is used by cutting into a desired shape. Specifically, for example, a shape in which a tab t serving as a terminal (power receiving unit) as shown in FIG.
  • a tab t serving as a terminal (power receiving unit) as shown in FIG.
  • the tabs formed on each activated carbon sheet are led out from the capacitor container and alternately placed on the positive or negative side of the DC power supply.
  • a plurality of tabs having the same polarity may be connected together with a conductive adhesive, a metal tape, a metal bolt, or the like.
  • the separator 1 used in this embodiment will be described.
  • the separator include, for example, a nonwoven fabric in which synthetic fibers or recycled fibers are integrated, a resin net made of a synthetic resin, a woven fabric, a knitted fabric, a paper-like aggregate, and the like.
  • non-woven fabrics and resin nets, particularly non-woven fabrics are preferable from the viewpoint of excellent liquid permeability and economy.
  • the fiber constituting the nonwoven fabric is not particularly limited. Specific examples include polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, and aramid fiber. These may be used alone or in combination of two or more. Further, a core-sheath type composite fiber including two or more of these fibers may be used.
  • the core-sheath type composite fiber a composite fiber in which the melting point or softening temperature of the sheath component fiber is lower than that of the core component fiber is preferably used.
  • the composite fiber comprising such a combination of the core component and the sheath component include core component polyethylene / sheath component polyethylene terephthalate, core component polyethylene / sheath component polypropylene, core component polypropylene / sheath component polyethylene terephthalate, core component polyethylene.
  • the basis weight of the nonwoven fabric is preferably 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 .
  • the basis weight of the nonwoven fabric is too large, the processing ability tends to decrease due to the decrease in water permeability.
  • the thickness of the nonwoven fabric is preferably 0.01 to 1 mm, more preferably 0.1 to 0.5 mm.
  • the ion trapping performance tends to decrease due to the increase in electrical resistance between cells during energization.
  • the activated carbon particles may be short-circuited during energization due to exposure or dropping of the activated carbon particles from the activated carbon sheet, and the performance as a capacitor may not be exhibited.
  • the average fiber diameter of the fibers constituting the nonwoven fabric is preferably 3 to 40 ⁇ m, more preferably 6 to 30 ⁇ m.
  • the average fiber diameter is too small, the nonwoven fabric becomes too dense and the water flow resistance tends to increase, or the fibers tend to fall off.
  • the average fiber diameter is too large, the bulkiness is increased, which makes it difficult to fill the capacitor container.
  • the nonwoven fabric When the nonwoven fabric is continuously laminated as a separator in the liquid-permeable capacitor, it may be a single layer or a laminate of two or more layers.
  • the number of stacked layers is not limited, but considering workability and bulkiness, it is desirable to have one layer, two layers or three layers.
  • the method for producing a nonwoven fabric is not particularly limited, and a conventionally known method for producing a nonwoven fabric can be used without any particular limitation.
  • Specific examples include a spun bond method, a melt blow method, a water entanglement method, a thermal bond method, and a chemical bond method.
  • the spun bond method, the hydroentanglement method, and the thermal bond method are preferable from the viewpoint of easy adjustment of the basis weight, thickness, and fiber diameter.
  • the ionic substance contained in the water W1 is electrostatically trapped as ions in the activated carbon sheets 2a to 2f.
  • the electrical conductivity of water is increased.
  • the valve v1 is opened and the valve v2 is closed, after switching to the path of the ion concentrated water recovery pipe 16, the polarity of the electrode is reversed so that the concentrated ions adsorbed on the activated carbon sheets 2a to 2f are obtained. Can be removed. Then, the purification ability of the activated carbon sheets 2a to 2f can be regenerated.
  • the ion concentrate can be recovered through the ion concentrated water recovery pipe 16.
  • a water flow method for removing ions in water using the liquid flow type capacitor 10 either a total filtration method for filtering the whole raw water or a circulation filtration method may be employed.
  • the water flow conditions are not particularly limited, but it is preferable to carry out at a space velocity (SV) of 10 to 100 hr ⁇ 1 because the pressure loss does not become too high.
  • the state of ion removal capability can be monitored by plotting the relationship between the electrical conductivity of the discharged water and the amount of water flowed from the start of water flow in two dimensions. Further, since the ion concentration in water has a correlation with the electrical conductivity of water, the ion removal rate can be calculated by measuring the electrical conductivity of water before and after the deionization treatment. The ion concentration in water can also be measured by a method such as ion chromatography.
  • the type of the DC power supply 5 that supplies power to the liquid-flow capacitor 10 is not particularly limited.
  • the voltage may be adjusted from a 100 V household power supply and used as a direct current, or power may be supplied using a battery or a storage battery.
  • an independent power source such as a solar cell, a wind power generator, a fuel cell, or a co-generator may be used. From the viewpoint of energy saving, low carbon energy, and power generation efficiency, it is preferable to use a solar cell.
  • FIG. 2 is a schematic explanatory view of a deionized water production apparatus 120 provided with the liquid-permeable capacitor 20 of the present embodiment.
  • the configuration of the liquid-passing capacitor 20 is shown in a longitudinal sectional view.
  • symbol is shown about the element similar to what was demonstrated in 1st Embodiment.
  • the liquid-permeable capacitor 20 includes a plurality of electrodes 9 (9a to 9f) formed by sandwiching both surfaces of a liquid-permeable conductive sheet 6 (6a to 6f) between the activated carbon sheets 2 and the electrodes 9 (9a to 9f). 9f) is provided with a laminate 12 composed of a plurality of separators 1 disposed between them.
  • the multilayer body 12 is accommodated in the capacitor container 4.
  • the conductive sheets 6 (6a to 6f) are electrically connected to the electrode terminals 3 (3a to 3f), respectively.
  • the electrode terminals 3a to 3f are led out of the capacitor container 4.
  • a part of the conductive sheet 6 may be used as the electrode terminal 3.
  • the electrode terminals 3a, 3c, 3e are connected in parallel to the negative electrode side of each DC power source 5, the electrode terminals 3b, 3d, 3f are connected in parallel to the positive electrode side of each DC power source 5.
  • the multilayer body 12 is tightly fixed by a punched resin plate 13 in the capacitor container 4.
  • liquid-flow type capacitor 20 it is possible to apply a voltage to the activated carbon sheet 2 with low resistance due to the high conductivity of the conductive sheet 6 than when the DC power supply 5 is directly connected to the activated carbon sheet 2.
  • the material for forming the conductive sheet 6 is not particularly limited as long as it is a conductive sheet capable of passing liquid. Specific examples include iron punching metal with nickel coating, titanium lath net with platinum coating on the surface, aluminum punching metal with surface anodized by anodization, and graphite particles as binder. And a carbon fiber base material such as a graphite sheet having a void bound by woven fabric and a woven carbon fiber.
  • the nickel coat and the platinum coat are for preventing electric corrosion of the metal electrode, and are surface-treated by plating or sintering lamination. In these, a carbon fiber base material is especially preferable from the point by which electrocorrosion is suppressed.
  • the thickness of the conductive sheet 6 is preferably about 0.1 to 2 mm, more preferably about 0.2 to 1.0 mm from the viewpoint of excellent conductivity.
  • the conductive sheet 6 and the activated carbon sheet 2 need only be in electrical contact, but are adhered and fixed by bonding with a conductive adhesive or by integrally forming the conductive sheet 6 and the activated carbon sheet 2. You may let them.
  • Specific examples of the conductive adhesive include, for example, a silver paste conductive adhesive, a graphite paste conductive adhesive, a silver graphite mixed paste conductive adhesive, a titanium paste conductive adhesive, and an aluminum paste conductive. Adhesives and the like. Even if the conductive adhesive is directly applied to the conductive sheet 6 or the activated carbon sheet 2, it is partially applied in a grid, stripe, dot or the like by a method such as a screen printing machine, an offset printing machine, or a spray. May be.
  • the conductivity of the electrode can be improved by simply applying the conductive adhesive to the surface of the activated carbon sheet 2 without using the conductive sheet 6.
  • the conductive sheet 6 and the activated carbon sheet 2 are integrally formed, the conductive sheet 6 can be integrally formed with the activated carbon sheet 2 using the support as a support.
  • the resistance at the interface between the conductive sheet 6 and the activated carbon sheet 2 can be reduced. Thereby, the high electroconductivity to the activated carbon sheet 2 is acquired, and high ion capture property is acquired.
  • liquid-permeable type capacitor and deionized water production apparatus of the present invention explained by taking the first embodiment and the second embodiment as examples are used alone for deionization treatment of water containing an ionic substance, It may be used in combination with other known water treatment means such as water purification means.
  • known water treatment means include, for example, water treatment means including various adsorbents such as nonwoven fabric filters, ceramic filters, activated carbon, mineral additives, ceramic filter media, hollow fiber membrane filter materials, ion adsorbents, and the like.
  • the liquid-passing capacitor and deionized water production apparatus of the present invention may be used in combination with other known ion adsorbent filters. Further, it may be used in combination with a hollow fiber membrane separation device for physically removing turbidity and fine substances.
  • the present invention will be described more specifically with reference to examples. The scope of the present invention is not limited by the contents of the following examples.
  • Example 1 100 parts by weight of activated carbon powder having a center particle size of 120 ⁇ m and a specific surface area of 1200 m 2 / g (activated carbon powder using coconut shell as raw material, PGW-120MP manufactured by Kuraray Chemical Co., Ltd.) and fibrillated acrylic fiber (Nippon Exlan Industrial Co., Ltd.) A slurry was prepared by mixing 6 parts by weight of manufactured Bi-PUL / F) in water.
  • the slurry was filled into a mold having a cavity having a length of 220 mm, a width of 220 mm, and a thickness of 1 mm and a suction hole, and then the mold was clamped, and the inside of the mold was decompressed to 20 mmHg to form a sheet.
  • the obtained sheet was a square having a length of 215 mm, a width of 215 mm, and a thickness of 1 mm. From this sheet, an activated carbon sheet A1 having a length of 100 mm and a width of 100 mm and having a tab of 50 mm length and 10 mm width at the center of one side was cut out.
  • a separator B1 was prepared by cutting a non-woven fabric having a thickness of 0.1 mm and a basis weight of 40 g / m 2 (9540F manufactured by Shinwa Co., Ltd. including polyethylene fibers and polypropylene fibers) into a length of 100 mm and a width of 100 mm.
  • the activated carbon sheet A1 and the separator B1 were laminated
  • the obtained laminated body was accommodated in the resin-made capacitor containers 4 as shown in FIG.
  • the laminated body was fixed to the inner wall of the capacitor container 4 by placing a frame made of silicon rubber on each of the upper part and the lower part.
  • the tab provided in each activated carbon sheet A1 was each pulled out from the through-hole provided in the outer wall of the capacitor container 4. In this way, a liquid passing type capacitor was manufactured.
  • the electrode terminal was connected to each tab exposed to the exterior of the obtained liquid-permeable capacitor, and each electrode terminal was alternately connected to the negative electrode side and positive electrode side of the power supply.
  • Example 2 An activated carbon sheet A2 was produced in the same manner as in the production of the activated carbon sheet A1 of Example 1 except that no tab was provided.
  • a punched metal made of nickel-coated iron with a thickness of 0.1 mm having a tab of 50 mm length and 10 mm width at the center of one side of a square of 100 mm length and 100 mm width (aperture ratio 57.9%) Prepared.
  • region of the punching metal electrode was pinched
  • the laminated body was fixed in close contact with the inner wall of the capacitor container 4 by placing a frame made of silicon rubber on each of the upper part and the lower part. Further, each of the tabs provided on the punching metal electrode was drawn out from a through hole provided on the outer wall of the capacitor container 4. In this way, a liquid passing type capacitor was manufactured. And the electrode terminal was connected to each tab exposed to the exterior of the obtained liquid-permeable capacitor, and each electrode terminal was alternately connected to the negative electrode side and positive electrode side of the power supply. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 2 except that a carbon fiber cloth having a thickness of 0.11 mm (trade name: Torayca cloth CO6151B manufactured by Toray Industries, Inc.) was used instead of the punching metal. did. The results are shown in Table 1.
  • Examples 4 to 7 instead of the activated carbon sheet A2, a liquid-permeable capacitor was prepared in the same manner as in Example 2 except that activated carbon sheets A3 to A6 using activated carbon powder having a particle size and specific surface area as shown in Table 1 were used. evaluated. The results are shown in Table 1.
  • Example 8 instead of the activated carbon sheet A2 using the fibrillated acrylic fiber as the binder, the same procedure as in Example 2 was used except that the activated carbon sheet A7 using the fine powder polyethylene particles produced by the following method as the binder was used. A liquid capacitor was created and evaluated. The results are shown in Table 1.
  • Manufacture of activated carbon sheet A7) A mixture obtained by mixing 80 parts by weight of activated carbon powder having a central particle diameter of 120 ⁇ m and a specific surface area of 1200 m 2 / g and 10 parts by weight of finely powdered polyethylene having an average particle diameter (D 50 ) of 20 ⁇ m was obtained.
  • the fine powder polyethylene used was Sumitomo Seika Co., Ltd.
  • seat of length 215mm, width 215mm, and thickness 1mm was obtained by heat-molding the obtained mixture using the metal mold
  • the activated carbon sheet A7 was obtained by cut
  • Example 9 10 parts by weight of conductive short fiber having an average fiber length of 3 mm (Torayca Cut Fiber T010-003 (carbon fiber having an average fiber diameter of 7 ⁇ m and a density of 1.76 g / cm 3 ) manufactured by Toray Industries, Inc. with respect to 100 parts by weight of the activated carbon powder.
  • the activated carbon sheet A8 was obtained in the same manner as in the production of the activated carbon sheet A2 in Example 2.
  • the liquid-permeable type was obtained in the same manner as in Example 2 except that the activated carbon sheet A8 was used instead of the activated carbon sheet A2.
  • Capacitors were created and evaluated, and the results are shown in Table 1.
  • Example 10 to 12 As shown in Table 1, a liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 9 except that the blending ratio of the conductive short fibers in the activated carbon sheet or the basis weight and thickness of the nonwoven fabric (separator) was changed. The results are shown in Table 1.
  • Example 13 The separator was used in the same manner as in Example 9 except that a non-woven fabric having a thickness of 0.1 mm and a basis weight of 18 g / m 2 (9718-5-0-F manufactured by Shinwa Co., Ltd. including polyethylene fiber and polypropylene fiber) was used. A liquid capacitor was created and evaluated. The results are shown in Table 1.
  • Example 14 A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 9 except that the basis weight and thickness of the separator were changed. The results are shown in Table 1.
  • Example 1 In place of the activated carbon sheet, a liquid-permeable capacitor was prepared in the same manner as in Example 2 except that an activated carbon fiber sheet CH700-25 (thickness 0.5 mm, specific surface area 2000 m 2 / g) manufactured by Kuraray Chemical Co., Ltd. was used. Created and evaluated. The results are shown in Table 1.
  • Example 2 A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 2 except that the activated carbon powder having the center particle diameter and specific surface area shown in Table 1 was used. The results are shown in Table 1.
  • the liquid-passing capacitor of Comparative Example 3 having a small center particle diameter of activated carbon had too high a water flow resistance, so that water could not flow smoothly, and ion removal treatment could not be performed.
  • the ion removal capacity when using the liquid-pass capacitors of Comparative Examples 1 to 3 was 2 L or less, whereas the liquid-pass capacitors of Examples 1 to 15 according to the present invention were used.
  • the ion removal capacity was 3 L or more.
  • the liquid passing type capacitor of Example 2 connected to the DC power source through the conductive sheet had a larger ion removal capacity than the liquid passing type capacitor of Example 1 in which the DC power source was directly connected to the activated carbon sheet.
  • Examples 9 to 11, 13, and 14 in which the conductive material was blended with the activated carbon sheet had a very large ion removal capacity.
  • the liquid-passing capacitor of the present invention is excellent in removing ions in water, and can efficiently remove nitrate ions and fluorine ions, which may cause health problems, so a water purifier, a seawater desalination device, a water softener, It can be used for drinking water equipment for groundwater, pure water equipment, wastewater treatment equipment, etc. Further, when a general water purifier is assumed, a processing amount of about 2.0 L or more per 10 minutes is preferable, but such a processing amount can be realized according to the liquid passing type capacitor of the present invention.

Abstract

Disclosed is a flow-through capacitor provided with a stacked body wherein a plurality of liquid-permeable electrodes and a plurality of liquid-permeable separators are stacked in alternation, the electrodes being provided with a liquid-permeable activated carbon sheet which contains activated carbon powder and a binder, the activated carbon powder having a mean particle diameter of 10-500μm, and the binder containing at least one type chosen from the list consisting of fibrillated fibers and thermoplastic binder particles. By using such a flow-through capacitor, it is possible to effectively eliminate ionic substances from water more than previous flow-through capacitors.

Description

通液型キャパシタ、脱イオン水の製造方法、及び脱イオン水製造装置Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
 本発明は、通液型キャパシタ、脱イオン水の製造方法、及び脱イオン水製造装置に関する。 The present invention relates to a flow-through capacitor, a method for producing deionized water, and a deionized water production apparatus.
 近年、飲料水を供給する水道水に含まれる有害物質の除去に対する関心が高まっている。例えば、水道水には、活性炭の吸着作用により除去しうる遊離残留塩素、トリハロメタン類、黴臭などの他、活性炭の吸着作用により除去が困難な、硝酸性窒素、フッ素、ホウ素、シアン、各種重金属等のイオン性物質が溶解している。硝酸性窒素の過剰摂取は血液中の酸素運搬を阻害して人体に中毒症状を引き起こさせることが報告されている。また、硝酸塩は体内で発ガン性物質を生成するなどの健康障害の原因になりうることも報告されている。 In recent years, there has been an increasing interest in removing harmful substances contained in tap water that supplies drinking water. For example, in tap water, in addition to free residual chlorine, trihalomethanes, and bad odor that can be removed by the adsorption action of activated carbon, nitrate nitrogen, fluorine, boron, cyan, various heavy metals that are difficult to remove by the adsorption action of activated carbon Ionic substances such as are dissolved. Excessive intake of nitrate nitrogen has been reported to inhibit oxygen transport in the blood and cause toxic symptoms in the human body. It has also been reported that nitrates can cause health problems such as the production of carcinogens in the body.
 水道水に含まれる硝酸性窒素を含むイオン性物質は、取水される河川、地下水、湖沼等が施肥、家畜***物、生活排水等に汚染されることが原因とされている。また、水道水に含まれるフッ素、ホウ素、シアン、各種重金属を含むイオン性物質は、取水される河川等が工場廃水により汚染されることが原因とされている。従って、各種廃水は、脱イオン化処理された後、河川等に放出されることが好ましい。しかしながら、イオン性物質を低コストの活性炭の吸着作用のみで捕捉することは難しかった。 The ionic substances containing nitrate nitrogen contained in tap water are said to be caused by contaminated rivers, groundwater, lakes, etc., with fertilizer, livestock excrement and domestic wastewater. In addition, ionic substances containing fluorine, boron, cyanide and various heavy metals contained in tap water are caused by the fact that the rivers taken in are contaminated by factory wastewater. Therefore, it is preferable that various wastewaters are discharged into rivers after being deionized. However, it has been difficult to capture ionic substances only by the adsorption action of low-cost activated carbon.
 イオン性物質は、例えば、逆浸透膜を用いることにより除去できる。しかしながら、逆浸透膜は通水したときの圧損が高いために、一定時間に処理できる処理量が少ないという問題があった。また、逆浸透膜式浄水器は、昇圧ポンプで水圧を上げる必要があるために、運転コストが高くなるという問題があった。従って、逆浸透膜を用いずに、低コストで水を脱イオン化する方法が求められていた。 The ionic substance can be removed by using, for example, a reverse osmosis membrane. However, since the reverse osmosis membrane has a high pressure loss when water is passed through, there is a problem that the amount of treatment that can be treated in a certain time is small. Further, the reverse osmosis membrane type water purifier has a problem that the operation cost becomes high because it is necessary to increase the water pressure with a booster pump. Therefore, there has been a demand for a method for deionizing water at a low cost without using a reverse osmosis membrane.
 例えば、下記特許文献1は、陰イオン交換樹脂と炭酸カルシウムを含有する濾材を流路上に配置したことを特徴とする硝酸態窒素除去装置を開示する。このような硝酸態窒素除去装置は、陰イオン交換樹脂と炭酸カルシウムとを組み合わせてpHを調整することにより、水中の硝酸性窒素等を有効に除去しようとするものである。しかしながら、このような硝酸態窒素除去装置は、陰イオン交換樹脂が高価であるために、製造コストが高くつくという問題があった。このような問題を解決する手段として、静電力を利用して水中のイオン性物質を除去する方法も提案されている。 For example, the following Patent Document 1 discloses a nitrate nitrogen removing device in which a filter medium containing an anion exchange resin and calcium carbonate is arranged on a flow path. Such a nitrate nitrogen removing device is intended to effectively remove nitrate nitrogen and the like in water by adjusting pH by combining an anion exchange resin and calcium carbonate. However, such a nitrate nitrogen removing apparatus has a problem that the production cost is high because the anion exchange resin is expensive. As a means for solving such a problem, a method of removing ionic substances in water using an electrostatic force has been proposed.
 例えば、下記特許文献2は、セパレータを挟んで、高比表面積活性炭を主材とする2枚の活性炭層を配置し、2枚の活性炭層の外側にそれぞれ集電極を積層配置した通液型電気二重層コンデンサを開示する。また、下記特許文献3は、セパレータを挟んで、活性炭層を配置し、その外側に集電極を配置して層状に積層したスタック式キャパシタ活性炭を含む導電層を備えた通液型コンデンサを開示する。また、下記特許文献4は、セパレータを介して、活性炭を練りこんだ活性炭繊維シートを複数層積層し、交互に逆極性の電圧を印加した積層体に通水することによりイオン性物質を除去する通液型キャパシタが開示されている。特許文献2~4に開示された通液型コンデンサによれば、金属塩、アミン塩、無機酸、有機酸などのような、水中で解離するイオン性物質を含む水の浄化が可能であることが記載されている。 For example, Patent Document 2 below is a liquid-electricity type in which two activated carbon layers mainly made of activated carbon with a high specific surface area are arranged with a separator in between, and a collector electrode is laminated on the outside of the two activated carbon layers. A double layer capacitor is disclosed. Further, Patent Document 3 below discloses a liquid-flowing capacitor including a conductive layer including a stacked capacitor activated carbon in which an activated carbon layer is disposed with a separator interposed therebetween and a collector electrode is disposed on the outer side of the stacked capacitor activated carbon. . Moreover, the following patent document 4 removes an ionic substance by laminating | stacking two or more layers of the activated carbon fiber sheet which kneaded activated carbon through the separator, and letting water flow to the laminated body which applied the voltage of reverse polarity alternately. A liquid-permeable capacitor is disclosed. According to the flow-through capacitors disclosed in Patent Documents 2 to 4, it is possible to purify water containing ionic substances that dissociate in water, such as metal salts, amine salts, inorganic acids, and organic acids. Is described.
特開平10-80682号公報Japanese Patent Laid-Open No. 10-80682 特開平6-325983号公報JP-A-6-325983 特開平5-258992号公報JP-A-5-255892 特開2004-330032公報JP 2004-330032 A
 通液型キャパシタによれば、従来の活性炭の吸着作用を用いた浄水装置では除去できなかった硝酸性イオンやフッ素イオンを、運転コストが高い逆浸透膜を用いた浄水装置を用いずに除去することができる。しかしながら、従来の通液型キャパシタのイオン除去の処理能力は充分なものではなかった。 According to the flow-through capacitor, nitrate ions and fluorine ions that could not be removed by the conventional water purifier using the activated carbon adsorption function are removed without using a water purifier using a reverse osmosis membrane, which has a high operating cost. be able to. However, the ion removal processing capacity of the conventional liquid-pass capacitor has not been sufficient.
 本発明は、従来の通液型キャパシタに比べて、イオン性物質の除去能力が高い通液型キャパシタ、及びこのような通液型キャパシタを用いた脱イオン水の製造方法、及び脱イオン水製造装置を提供することを目的とする。 The present invention relates to a liquid-permeable capacitor having a higher ability to remove ionic substances than conventional liquid-permeable capacitors, a method for producing deionized water using such a liquid-permeable capacitor, and deionized water production. An object is to provide an apparatus.
 本発明の一局面は、複数の通液可能な電極と複数の通液可能なセパレータとを交互に積層した積層体を備え、電極は、活性炭粉末とバインダとを含む通液可能な活性炭シートを備え、活性炭粉末は10~500μmの中心粒子径を有し、バインダがフィブリル化繊維及び熱可塑性バインダ粒子から選ばれた少なくとも1種を含む通液型キャパシタである。
 また、本発明の他の一局面は、上記通液型キャパシタを用いた脱イオン水の製造方法であって、積層体の厚み方向に積層された複数の電極に、直流電源の正極側と負極側とを厚み方向に交互に接続し、積層体の第一主面からイオン性物質を含有する水を供給する工程と、積層体の第一主面に対向する第二主面からイオン性物質が除去された水を排出する工程と、を備える脱イオン水の製造方法である。
 また、本発明の他の一局面は、上記通液型キャパシタと、直流電源と、通液型キャパシタを収容する容器と、を備え、積層体に積層された複数の電極は、直流電源の正極側と負極側とに厚み方向に交互に接続されており、容器は、積層体の第一主面にイオン性物質を含有する水を供給するための給水口、及び積層体の第一主面に対向する第二主面から脱イオン化された水を排水するための排水口を備える脱イオン水製造装置である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明及び添付する図面により、より明白となる。
One aspect of the present invention includes a laminate in which a plurality of electrodes capable of passing liquids and a plurality of separators capable of passing liquids are alternately stacked, and the electrodes include a liquid-permeable activated carbon sheet containing activated carbon powder and a binder. The activated carbon powder has a central particle diameter of 10 to 500 μm, and the binder is a liquid passing type capacitor containing at least one selected from fibrillated fibers and thermoplastic binder particles.
Another aspect of the present invention is a method for producing deionized water using the liquid-pass capacitor, wherein a plurality of electrodes stacked in the thickness direction of the multilayer body are connected to a positive electrode side and a negative electrode of a DC power source. And the step of supplying water containing an ionic substance from the first main surface of the laminate, and the ionic substance from the second main surface facing the first main surface of the laminate And a step of discharging water from which deionized water is removed.
Another aspect of the present invention includes the above-described liquid-flowing capacitor, a DC power supply, and a container that stores the liquid-flowing capacitor, and the plurality of electrodes stacked in the laminate are positive electrodes of the DC power supply. The container is connected alternately to the negative electrode side in the thickness direction, and the container has a water supply port for supplying water containing an ionic substance to the first main surface of the laminate, and the first main surface of the laminate It is a deionized water manufacturing apparatus provided with the drain outlet for draining the deionized water from the 2nd main surface which opposes.
The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
 本発明によれば、従来の通液型キャパシタに比べて、イオン性物質の除去能力が高い通液型キャパシタ、このような通液型キャパシタを用いた脱イオン水の製造方法、及び脱イオン水製造装置を提供することができる。 According to the present invention, a liquid-permeable capacitor having a higher ability to remove ionic substances than a conventional liquid-permeable capacitor, a method for producing deionized water using such a liquid-permeable capacitor, and deionized water A manufacturing apparatus can be provided.
第一実施形態の通液型キャパシタ10を備えた脱イオン水製造装置110の模式説明図である。It is a schematic explanatory drawing of the deionized water manufacturing apparatus 110 provided with the liquid-permeable type capacitor 10 of 1st embodiment. 第二実施形態の通液型キャパシタ20を備えた脱イオン水製造装置120の模式説明図である。It is a schematic explanatory drawing of the deionized water manufacturing apparatus 120 provided with the liquid-permeable type capacitor 20 of 2nd embodiment. 実施例1の電気伝導度と通水量の関係を示すグラフである。It is a graph which shows the relationship between the electrical conductivity of Example 1, and the amount of water flow. 実施例1のイオン除去率と通水量との関係を示すグラフである。It is a graph which shows the relationship between the ion removal rate of Example 1, and the amount of water flow.
[第1実施形態]
 本実施形態の通液型キャパシタについて、図1を参照しながら説明する。図1は本実施形態の通液型キャパシタ10を備えた脱イオン水製造装置110の模式説明図である。なお、通液型キャパシタ10は縦断面図で示されている。
 通液型キャパシタ10は、複数枚の活性炭シート2(2a、2b、2c、2d、2e、2f)と絶縁性及び通液性を有するセパレータ1(1a,1b、1c、1d、1e、1f)とが交互に積層されて形成された積層体11を備えている。積層体11は、キャパシタ容器4に収容されている。キャパシタ容器4は、イオン性物質を含有する水を供給するための給水口7と脱イオン化された水を排水するための排水口8を備える。キャパシタ容器4は、合成樹脂の成形体から形成されていることが漏水や、漏電を抑制できる点から好ましい。また、排水口8は、さらに脱イオン水回収配管15とイオン濃縮水回収配管16の二つの経路に接続されている。これらの経路はバルブv1及びv2の開閉により流路が切り替えられる。
[First Embodiment]
The liquid-permeable type capacitor of this embodiment will be described with reference to FIG. FIG. 1 is a schematic explanatory view of a deionized water production apparatus 110 provided with a liquid-permeable capacitor 10 of the present embodiment. The liquid-passing capacitor 10 is shown in a longitudinal sectional view.
The liquid-permeable capacitor 10 includes a plurality of activated carbon sheets 2 (2a, 2b, 2c, 2d, 2e, 2f) and a separator 1 (1a, 1b, 1c, 1d, 1e, 1f) having insulating properties and liquid permeability. And a laminate 11 formed by alternately laminating and. The multilayer body 11 is accommodated in the capacitor container 4. The capacitor container 4 includes a water supply port 7 for supplying water containing an ionic substance and a drain port 8 for draining deionized water. The capacitor container 4 is preferably formed from a synthetic resin molded body from the viewpoint of suppressing water leakage and leakage. Further, the drainage port 8 is further connected to two paths of a deionized water recovery pipe 15 and an ion concentrated water recovery pipe 16. In these paths, the flow paths are switched by opening and closing the valves v1 and v2.
 活性炭シート2a~2fは、キャパシタ容器4の外部に導出されるタブtを有する。そして活性炭シート2a~2fに設けられた各タブは、それぞれ電極端子3a~3fと電気的に接続されている。そして、電極端子3a、3c、3eはそれぞれ直流電源5の負極側に並列に接続されており、電極端子3b、3d、3fはそれぞれ直流電源5の正極側に並列に接続されている。そして、積層体11は、キャパシタ容器4内のパンチング状の樹脂板13により密着固定されている。 The activated carbon sheets 2a to 2f have tabs t led out of the capacitor container 4. The tabs provided on the activated carbon sheets 2a to 2f are electrically connected to the electrode terminals 3a to 3f, respectively. The electrode terminals 3a, 3c, and 3e are connected in parallel to the negative electrode side of the DC power supply 5, and the electrode terminals 3b, 3d, and 3f are connected in parallel to the positive electrode side of the DC power supply 5, respectively. The multilayer body 11 is tightly fixed by a punched resin plate 13 in the capacitor container 4.
 次に、通液型キャパシタ10の各要素について、詳しく説明する。
 本実施形態で用いられる活性炭シート2は、中心粒子径が10~500μmの活性炭粉末と、フィブリル化繊維及び熱可塑性バインダ粒子から選ばれた少なくとも1種のバインダとを含む成形シートからなる通液可能なシートである。
Next, each element of the liquid-permeable capacitor 10 will be described in detail.
The activated carbon sheet 2 used in the present embodiment can be passed through a molded sheet comprising activated carbon powder having a center particle diameter of 10 to 500 μm and at least one binder selected from fibrillated fibers and thermoplastic binder particles. It is a sheet.
 活性炭粉末の具体例としては、例えば、木材,鋸屑,木炭,ヤシ殻やクルミ殻などの果実殻,果実種子,パルプ製造副生物,リグニン,廃糖蜜などの植物系活性炭粉末;泥炭,草炭,亜炭,褐炭,レキ青炭,無煙炭,コークス,コールタール,石炭ピッチ,石油蒸留残査,石油ピッチなどを炭化及び賦活化して得られる鉱物系活性炭粉末;フェノール,サラン,アクリル樹脂などを炭化及び賦活化して得られる合成樹脂系活性炭粉末;再生繊維(レーヨン)などを炭化及び賦活化して得られる天然繊維系活性炭粉末;等が挙げられる。これらの中では、吸着性能に優れている点からヤシ殻活性炭粉末が特に好ましい。 Specific examples of the activated carbon powder include, for example, wood, sawdust, charcoal, fruit husks such as coconut husk and walnut husk, fruit seeds, pulp production by-products, lignin, molasses, etc .; Mineral activated carbon powder obtained by carbonizing and activating lignite, lignite, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, etc .; carbonizing and activating phenol, saran, acrylic resin, etc. And synthetic resin-based activated carbon powder obtained by carbonization; natural fiber-based activated carbon powder obtained by carbonizing and activating regenerated fiber (rayon) and the like. Among these, coconut shell activated carbon powder is particularly preferable because of its excellent adsorption performance.
 なお、活性炭粉末は不純物ができるだけ除去されていることが好ましい。不純物としては、アルカリ金属、アルカリ土類金属、ニッケル、鉄等の金属が挙げられる。このような金属は、水や、塩酸,硫酸,燐酸等の無機酸等で洗浄することにより除去される。洗浄は1種の洗浄液で行っても、2種以上の洗浄液を組み合わせて繰り返し行ってもよい。 In addition, it is preferable that impurities are removed from the activated carbon powder as much as possible. Examples of the impurities include metals such as alkali metals, alkaline earth metals, nickel, and iron. Such a metal is removed by washing with water or an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid. The cleaning may be performed with one type of cleaning liquid or may be repeatedly performed by combining two or more types of cleaning liquids.
 また、洗浄後の活性炭を不活性ガスまたは酸化性ガス中で熱処理することにより、無機酸で洗浄した際に吸着された金属塩や塩酸イオン、硫酸イオン、リン酸イオン等の無機酸イオンが除去される点から好ましい。特に、不純物除去と高結晶化を促進することができる点から不活性ガス中で熱処理することが好ましい。酸化性ガスの具体例としては、酸素、水蒸気、炭酸ガス、灯油やプロパンを燃焼して得られる燃焼ガスが挙げられる。熱処理の処理温度は、500~1000℃、さらには、650~900℃が好ましい。熱処理温度が低すぎる場合には充分な熱処理の効果が得られない。また熱処理温度が高すぎる場合には、急激な賦活反応が起こることにより、調整された細孔構造が変化してしまう傾向がある。また、不活性ガス中での熱処理温度が高すぎる場合には、熱収縮により調整された細孔構造が変化してしまう傾向がある。熱処理時間は熱処理温度にもよるが、通常30分~3時間程度であることが好ましい。 In addition, the washed activated carbon is heat-treated in an inert gas or oxidizing gas to remove metal salts adsorbed when washed with inorganic acids and inorganic acid ions such as hydrochloric acid ions, sulfate ions, and phosphate ions. This is preferable. In particular, it is preferable to perform heat treatment in an inert gas from the viewpoint that impurity removal and high crystallization can be promoted. Specific examples of the oxidizing gas include combustion gas obtained by burning oxygen, water vapor, carbon dioxide, kerosene and propane. The heat treatment temperature is preferably 500 to 1000 ° C., more preferably 650 to 900 ° C. If the heat treatment temperature is too low, a sufficient heat treatment effect cannot be obtained. Further, when the heat treatment temperature is too high, the adjusted pore structure tends to change due to a rapid activation reaction. In addition, when the heat treatment temperature in the inert gas is too high, the pore structure adjusted by heat shrinkage tends to change. Although the heat treatment time depends on the heat treatment temperature, it is usually preferably about 30 minutes to 3 hours.
 本実施形態で用いられる活性炭粉末は、例えば、粒状の活性炭を粉砕、細粒化、または分級することにより得られる、中心粒子径が10~500μmの活性炭粉末である。
 本実施形態で用いられる活性炭粉末の中心粒子径は10~500μmであり、好ましくは50~400μm、さらに好ましくは100~300μmである。ここで中心粒子径とは、粒度分布において、全粒子の質量の積算値が50%になるときの粒子径である。このような中心粒子径は、例えば、日機装(株)製マイクロトラック粒度分布測定装置(MT3300)を用いて測定することができる。
The activated carbon powder used in the present embodiment is, for example, activated carbon powder having a central particle diameter of 10 to 500 μm obtained by pulverizing, finely pulverizing, or classifying granular activated carbon.
The central particle size of the activated carbon powder used in this embodiment is 10 to 500 μm, preferably 50 to 400 μm, more preferably 100 to 300 μm. Here, the central particle diameter is the particle diameter when the integrated value of the mass of all particles is 50% in the particle size distribution. Such a center particle diameter can be measured, for example, using a Nikkiso Co., Ltd. Microtrac particle size distribution measuring device (MT3300).
 活性炭粉末の中心粒子径が10μm未満の場合には、得られる活性炭シートが緻密になりすぎて通水抵抗が上昇するとともに、意外にもイオンの捕捉能力が低下する。中心粒子径が10μm未満の場合に、活性炭シートのイオンの捕捉能力が低下する理由はよくわかっていない。しかしながら、本発明者らは次のように考えている。すなわち、中心粒子径が10μm未満の活性炭粉末を用いた場合には、バインダに覆われる表面積が大きくなることにより、粒子間の接触抵抗が上昇することにより導電性が低下するためであると考えている。また、中心粒子径が小さすぎる場合には、活性炭シートから活性炭粉末が脱落しやすくなり、脱イオン水に活性炭粒子が混入しやすくなるという問題もある。 When the center particle diameter of the activated carbon powder is less than 10 μm, the obtained activated carbon sheet becomes too dense, the water resistance increases, and the ion trapping ability unexpectedly decreases. The reason why the ion capturing ability of the activated carbon sheet decreases when the center particle diameter is less than 10 μm is not well understood. However, the present inventors consider as follows. That is, when activated carbon powder having a center particle diameter of less than 10 μm is used, the surface area covered with the binder is increased, and the contact resistance between the particles is increased, thereby lowering the conductivity. Yes. In addition, when the center particle diameter is too small, the activated carbon powder is easily dropped from the activated carbon sheet, and there is a problem that the activated carbon particles are easily mixed into the deionized water.
 また、活性炭粉末の中心粒子径が500μmを超える場合には、得られる活性炭シートを通過する水との接触効率が低下する。 Moreover, when the center particle diameter of the activated carbon powder exceeds 500 μm, the contact efficiency with water passing through the obtained activated carbon sheet is lowered.
 活性炭粉末の比表面積は、700~2500m/g、さらには1000~1800m/g、とくには1100~1500m/gであることが好ましい。比表面積が小さすぎる場合には、脱イオン能力が低くなるとともに、電極の極性を逆極性にして活性炭シートの表面に吸着した濃縮されたイオンを脱離させるときに、イオンが脱離しにくくなる傾向がある。また、比表面積が大きすぎる場合には体積あたりの性能が低下するだけでなく、微粉が発生しやすくなり、脱イオン水に微粉が混入しやすくなる傾向がある。 The specific surface area of the activated carbon powder is preferably 700 to 2500 m 2 / g, more preferably 1000 to 1800 m 2 / g, and particularly preferably 1100 to 1500 m 2 / g. If the specific surface area is too small, the deionization ability is lowered, and the ions are less likely to be desorbed when the polarities of the electrodes are reversed and desorbed concentrated ions adsorbed on the surface of the activated carbon sheet. There is. Further, when the specific surface area is too large, not only the performance per volume is lowered, but also fine powder is likely to be generated, and the fine powder tends to be mixed into deionized water.
 活性炭シートは活性炭粉末とフィブリル化繊維及び/または熱可塑性バインダ粒子とを含む混合物をシート状に成形することにより得られる。なお、バインダとしては、浄水用に使用される観点から、生体為害性のないバインダを用いることが好ましい。
 活性炭シート中に含まれる活性炭粉末の割合は、50~99重量%、さらには80~95重量%の範囲であることが好ましい。活性炭シート中に含まれる活性炭粉末の割合が低すぎる場合には処理量が低下する傾向がある。
The activated carbon sheet is obtained by molding a mixture containing activated carbon powder and fibrillated fibers and / or thermoplastic binder particles into a sheet. In addition, as a binder, it is preferable to use a binder with no biological harm from a viewpoint used for water purification.
The ratio of the activated carbon powder contained in the activated carbon sheet is preferably in the range of 50 to 99% by weight, more preferably 80 to 95% by weight. When the ratio of the activated carbon powder contained in the activated carbon sheet is too low, the treatment amount tends to decrease.
 バインダとしてフィブリル化繊維を用いる場合、湿式成形により成形することが好ましい。なお、フィブリル化繊維とは、高圧ホモジナイザーや高速離解機などを用いてフィブリル化可能な繊維を解繊することにより得られる、例えば、平均繊維径0.1~50μm程度、さらには、1~20μm程度のパルプ状の繊維である。このようなフィブリル化繊維は、抄紙することにより絡合してシートを形成する。フィブリル化繊維の平均繊維長としては、例えば、0.5~4mm程度、さらには、1~2mm程度であることが好ましい。 When fibrillated fiber is used as the binder, it is preferably formed by wet molding. The fibrillated fiber is obtained by fibrillating a fiber that can be fibrillated using a high-pressure homogenizer, a high-speed disaggregator, or the like. For example, the average fiber diameter is about 0.1 to 50 μm, and further 1 to 20 μm. It is a pulp-like fiber. Such fibrillated fibers are intertwined by paper making to form a sheet. The average fiber length of the fibrillated fibers is, for example, preferably about 0.5 to 4 mm, and more preferably about 1 to 2 mm.
 このようなフィブリル化繊維を形成する繊維の具体例としては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維等が挙げられる。これらの中では、フィブリル化しやすく、活性炭粉末を拘束する効果が高い点から、アクリル繊維、セルロース繊維がとくに好ましい。市販品としては、例えば、日本エクスラン(株)製のホモアクリルパルプであるBi-PULが入手できる。 Specific examples of fibers forming such fibrillated fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, cellulose fibers, nylon fibers, aramid fibers, and the like. Among these, acrylic fibers and cellulose fibers are particularly preferable because they are easily fibrillated and have a high effect of restraining the activated carbon powder. As a commercially available product, for example, Bi-PUL, which is a homoacrylic pulp manufactured by Nippon Exlan Co., Ltd., is available.
 フィブリル化繊維を用いて活性炭シートを湿式成形する方法としては、例えば、次のような方法が挙げられる。はじめに、活性炭粉末及びフィブリル化繊維を混合した後、水中に分散させることにより固形物濃度が1~5重量%のスラリーを調製する。次に、例えば、ステンレス製の金網等から形成された通水性の箱型容器にスラリーを流し込み、水分を切り、乾燥する。このような方法により活性炭シートが得られる。 Examples of a method for wet-molding an activated carbon sheet using fibrillated fibers include the following methods. First, activated carbon powder and fibrillated fiber are mixed and then dispersed in water to prepare a slurry having a solid concentration of 1 to 5% by weight. Next, the slurry is poured into a water-permeable box-type container formed of, for example, a stainless steel wire net, and the moisture is cut and dried. An activated carbon sheet is obtained by such a method.
 また、次のような方法も挙げられる。はじめに、所定の形状のシート状のキャビティを有し、且つキャビティ内部を減圧する多数の貫通孔を有する金型のキャビティに上述したようなスラリーを充填する。そして、貫通孔からスラリー中の水分を吸引除去する。このような方法によっても活性炭シートが得られる。 Also, the following methods can be mentioned. First, the above-described slurry is filled into a mold cavity having a sheet-like cavity having a predetermined shape and a large number of through holes for decompressing the inside of the cavity. And the water | moisture content in a slurry is suction-removed from a through-hole. An activated carbon sheet can also be obtained by such a method.
 活性炭粉末100重量部に対するフィブリル化繊維の混合割合は、3~8重量部であることが導電性、脱イオン性、成形性等のバランスに優れる点から好ましい。 The mixing ratio of the fibrillated fibers to 100 parts by weight of the activated carbon powder is preferably 3 to 8 parts by weight from the viewpoint of excellent balance of conductivity, deionization, moldability and the like.
 バインダとして熱可塑性バインダ粒子を用いる場合には、乾式成形することが好ましい。熱可塑性バインダ粒子を形成するポリマーの具体例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレート等が挙げられる。これらの中ではポリエチレン、ポリプロピレン、ポリスチレン、エチレン酢酸ビニル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレート、とくには、ポリエチレンが結着性等の観点から好ましい。 When using thermoplastic binder particles as the binder, dry molding is preferred. Specific examples of the polymer forming the thermoplastic binder particles include polyethylene, polypropylene, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate. Among these, polyethylene, polypropylene, polystyrene, ethylene vinyl acetate copolymer, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate, and particularly polyethylene is preferable from the viewpoint of binding properties.
 熱可塑性バインダ粒子の平均粒子径としては、0.1~200μm、さらには1.0~50μm程度であることがシート強度と導電性に優れる点から好ましい。 The average particle diameter of the thermoplastic binder particles is preferably about 0.1 to 200 μm, more preferably about 1.0 to 50 μm from the viewpoint of excellent sheet strength and conductivity.
 熱可塑性バインダ粒子を用いて活性炭シートを乾式成形する方法としては、例えば、次のような方法が挙げられる。はじめに、活性炭粉末と熱可塑性バインダ粒子とを所望の割合で計量し、ヘンシェルミキサーなどのミキサーを用いて攪拌することにより混合物を得る。そして、得られた混合物をシート状のキャビティを有する金型に充填する。そして、金型を熱可塑性バインダ粒子の融点以上に加熱することにより溶融または軟化させた後、冷却することにより熱可塑性バインダ粒子を固化させる。そして、金型から離型することにより活性炭シートが得られる。 Examples of the method for dry-molding the activated carbon sheet using the thermoplastic binder particles include the following methods. First, the activated carbon powder and the thermoplastic binder particles are weighed at a desired ratio, and the mixture is obtained by stirring using a mixer such as a Henschel mixer. Then, the obtained mixture is filled into a mold having a sheet-like cavity. Then, the mold is melted or softened by heating to a temperature equal to or higher than the melting point of the thermoplastic binder particles, and then the thermoplastic binder particles are solidified by cooling. And an activated carbon sheet is obtained by releasing from a metal mold | die.
 活性炭粉末100重量部に対する熱可塑性バインダ粒子の混合割合は、5~50重量部、さらには7~20重量部であることがシート強度と導電性に優れる点から好ましい。 The mixing ratio of the thermoplastic binder particles to 100 parts by weight of the activated carbon powder is preferably 5 to 50 parts by weight, more preferably 7 to 20 parts by weight from the viewpoint of excellent sheet strength and conductivity.
 活性炭シートはさらに導電材を含有してもよい。導電材を配合することにより、活性炭シートに優れた導電性を付与することができる。このような導電材の具体例としては、例えば、黒鉛,炭素,グラファイト等の炭素系材料;金,白金,銀などの貴金属;窒化チタン,チタンシリコンカーバイド,炭化チタン,硼化チタン,硼化ジルコニウム等の高導電性セラミックス;などが挙げられる。これらの中では、炭素系材料がコストや加工性に優れている点から好ましい。 The activated carbon sheet may further contain a conductive material. By blending the conductive material, excellent conductivity can be imparted to the activated carbon sheet. Specific examples of such a conductive material include, for example, carbon-based materials such as graphite, carbon, and graphite; noble metals such as gold, platinum, and silver; titanium nitride, titanium silicon carbide, titanium carbide, titanium boride, and zirconium boride. And the like. Among these, a carbon-based material is preferable because it is excellent in cost and workability.
 導電材の形状は特に限定されないが、具体例として、粉末、短繊維、ウィスカーなどが挙げられる。これらの中でも、短繊維が導電性、水の透過性、機械的特性、得られる活性炭シートの柔軟性等のバランスに優れている点から好ましい。
 このような短繊維の平均繊維径としては1~50μm、さらには3~20μm、とくには5~10μmであることが好ましい。平均繊維径が小さすぎる場合には添加量にもよるが活性炭シートの柔軟性が低下する傾向がある。なお、活性炭シートの柔軟性が低下した場合には通水中に活性炭シートが崩壊するおそれがある。また、平均繊維径が大きすぎる場合には分散性が低下したり、機械的強度が低下したりする傾向がある。
The shape of the conductive material is not particularly limited, and specific examples include powder, short fibers, whiskers, and the like. Among these, short fibers are preferable from the viewpoint of excellent balance of conductivity, water permeability, mechanical properties, flexibility of the obtained activated carbon sheet, and the like.
The average fiber diameter of such short fibers is preferably 1 to 50 μm, more preferably 3 to 20 μm, and particularly preferably 5 to 10 μm. If the average fiber diameter is too small, the flexibility of the activated carbon sheet tends to decrease, although it depends on the amount added. In addition, when the softness | flexibility of an activated carbon sheet falls, there exists a possibility that an activated carbon sheet may collapse | disintegrate in passing water. Moreover, when an average fiber diameter is too large, there exists a tendency for a dispersibility to fall or for a mechanical strength to fall.
 また短繊維の平均繊維長は5~12000μm、さらには100~6000μm、とくには1000~3000μmであることが好ましい。平均繊維長が短すぎる場合には活性炭粉末と絡み合いにくくなることにより、導電性向上効果が得られにくくなり、また、水の透過性が低下する傾向もある。また、平均繊維長が長すぎる場合には分散性が低下することにより、活性炭シートの面内における脱イオン効果が不均一になる傾向がある。 The average fiber length of the short fibers is preferably 5 to 12000 μm, more preferably 100 to 6000 μm, and particularly preferably 1000 to 3000 μm. When the average fiber length is too short, it becomes difficult to get entangled with the activated carbon powder, so that it becomes difficult to obtain the effect of improving conductivity, and the water permeability tends to decrease. Further, when the average fiber length is too long, the dispersibility is lowered, and thus the deionization effect in the surface of the activated carbon sheet tends to be non-uniform.
 なお、短繊維の密度は1~2.3g/cm、さらには1.5~2.0g/cm、とくには1.6~1.9g/cmであることが好ましい。 The density of the short fibers is preferably 1 to 2.3 g / cm 3 , more preferably 1.5 to 2.0 g / cm 3 , and particularly preferably 1.6 to 1.9 g / cm 3 .
 導電材を添加する場合、その添加割合は活性炭シートの全重量に対して、1~40重量%、さらには2~25重量%、とくには5~15重量%であることが好ましい。導電材の添加割合が低すぎる場合には導電性向上効果が充分に得られなくなる傾向がある。また、導電材の添加割合が高すぎる場合には相対的に活性炭シート中に含有される活性炭粉末の含有割合が低下することにより、活性炭シートの単位体積あたりの脱イオン能力が低下する傾向がある。 When the conductive material is added, the addition ratio is preferably 1 to 40% by weight, more preferably 2 to 25% by weight, particularly 5 to 15% by weight, based on the total weight of the activated carbon sheet. When the addition ratio of the conductive material is too low, the effect of improving the conductivity tends not to be obtained sufficiently. Moreover, when the addition ratio of the conductive material is too high, the deionization capacity per unit volume of the activated carbon sheet tends to decrease due to the relatively decreased content ratio of the activated carbon powder contained in the activated carbon sheet. .
 活性炭シートは、本発明の効果を阻害しない限り、必要に応じてその他の添加剤を含有してもよい。このような添加剤の具体例としては、例えば、残留塩素やトリハロメタンを吸着除去しうる粒状または繊維状の活性炭、溶解性鉛を吸着除去しうるゼオライト、抗菌性を有する銀イオンや銀化合物を含む吸着材等が挙げられる。 The activated carbon sheet may contain other additives as necessary as long as the effects of the present invention are not impaired. Specific examples of such additives include granular or fibrous activated carbon capable of adsorbing and removing residual chlorine and trihalomethane, zeolite capable of adsorbing and removing soluble lead, and silver ions and silver compounds having antibacterial properties. Examples include adsorbents.
 活性炭シートの厚みは特に限定されないが、0.1~3mm程度、さらには、0.2~2mm程度であることが活性炭シート間の電気抵抗が高くなり過ぎない点から好ましい。 The thickness of the activated carbon sheet is not particularly limited, but is preferably about 0.1 to 3 mm, more preferably about 0.2 to 2 mm from the viewpoint that the electric resistance between the activated carbon sheets does not become too high.
 活性炭シートは、所望の形状に切断して用いられる。具体的には、例えば、短冊形の主体の一辺に、図1に示すような、端子(受電部)となるタブtが形成されたような形状が挙げられる。活性炭シートとセパレータとを交互に積層してなる積層体をキャパシタ容器に収容する場合、各活性炭シートに形成されたタブはキャパシタ容器から外部に導出されて、直流電源の正極側または負極側に交互に接続される。なお、極性が同じ複数のタブを導電性の接着剤、金属テープあるいは金属製のボルトなどでまとめて接続してもよい。 The activated carbon sheet is used by cutting into a desired shape. Specifically, for example, a shape in which a tab t serving as a terminal (power receiving unit) as shown in FIG. When accommodating a laminated body in which activated carbon sheets and separators are alternately laminated in a capacitor container, the tabs formed on each activated carbon sheet are led out from the capacitor container and alternately placed on the positive or negative side of the DC power supply. Connected to. A plurality of tabs having the same polarity may be connected together with a conductive adhesive, a metal tape, a metal bolt, or the like.
 次に本実施形態で用いられるセパレータ1について説明する。
 セパレータの具体例としては、例えば合成繊維または再生繊維を集積させた不織布や合成樹脂製の樹脂ネット、織物、編物、紙状の集合体等が挙げられる。これらの中では、不織布や樹脂ネット、特には不織布が、通液性及び経済性に優れている点から好ましい。
Next, the separator 1 used in this embodiment will be described.
Specific examples of the separator include, for example, a nonwoven fabric in which synthetic fibers or recycled fibers are integrated, a resin net made of a synthetic resin, a woven fabric, a knitted fabric, a paper-like aggregate, and the like. Among these, non-woven fabrics and resin nets, particularly non-woven fabrics, are preferable from the viewpoint of excellent liquid permeability and economy.
 不織布を構成する繊維は、特に限定されない。具体的には、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。また、これらの繊維を2種以上含む芯鞘型等の複合繊維を用いてもよい。 The fiber constituting the nonwoven fabric is not particularly limited. Specific examples include polyethylene fiber, polypropylene fiber, polyethylene terephthalate fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, and aramid fiber. These may be used alone or in combination of two or more. Further, a core-sheath type composite fiber including two or more of these fibers may be used.
 芯鞘型の複合繊維としては、芯成分の繊維に対して鞘成分の繊維の融点あるいは軟化温度が低い複合繊維が好ましく用いられる。このような芯成分と鞘成分との組み合わせからなる複合繊維の具体例としては、芯成分ポリエチレン/鞘成分ポリエチレンテレフタレート、芯成分ポリエチレン/鞘成分ポリプロピレン、芯成分ポリプロピレン/鞘成分ポリエチレンテレフタレート、芯成分ポリエチレン/鞘成分ポリアミド、芯成分ポリエチレンテレフタレート/鞘成分変性ポリエチレンテレフタレート、等の組み合わせが挙げられる。 As the core-sheath type composite fiber, a composite fiber in which the melting point or softening temperature of the sheath component fiber is lower than that of the core component fiber is preferably used. Specific examples of the composite fiber comprising such a combination of the core component and the sheath component include core component polyethylene / sheath component polyethylene terephthalate, core component polyethylene / sheath component polypropylene, core component polypropylene / sheath component polyethylene terephthalate, core component polyethylene. / Sheath component polyamide, core component polyethylene terephthalate / sheath component modified polyethylene terephthalate, etc.
 不織布の目付は5~100g/m、さらには10~50g/mであることが好ましい。不織布の目付が大きすぎる場合には水の通過性が低下することにより処理能力が低下する傾向がある。 The basis weight of the nonwoven fabric is preferably 5 to 100 g / m 2 , more preferably 10 to 50 g / m 2 . When the basis weight of the nonwoven fabric is too large, the processing ability tends to decrease due to the decrease in water permeability.
 不織布の厚みは0.01~1mm、さらには0.1~0.5mmであることが好ましい。不織布の厚みが厚すぎる場合には通電時にセル間の電気抵抗が高くなることによりイオンの捕捉性能が低下する傾向がある。また、薄すぎる場合には、活性炭シートから活性炭粒子の露出や脱落により通電時に短絡してキャパシタとしての性能を発現できなくなることがある。 The thickness of the nonwoven fabric is preferably 0.01 to 1 mm, more preferably 0.1 to 0.5 mm. When the thickness of the nonwoven fabric is too thick, the ion trapping performance tends to decrease due to the increase in electrical resistance between cells during energization. Moreover, when too thin, the activated carbon particles may be short-circuited during energization due to exposure or dropping of the activated carbon particles from the activated carbon sheet, and the performance as a capacitor may not be exhibited.
 不織布を構成する繊維の平均繊維径は3~40μm、さらには6~30μmであることが好ましい。平均繊維径が小さすぎる場合には不織布が緻密になりすぎて通水抵抗が高くなったり、繊維の脱落が起こりやすくなったりする傾向がある。また、平均繊維径が大きすぎる場合には、嵩高性が増すことにより、キャパシタ容器に充填しにくくなる。 The average fiber diameter of the fibers constituting the nonwoven fabric is preferably 3 to 40 μm, more preferably 6 to 30 μm. When the average fiber diameter is too small, the nonwoven fabric becomes too dense and the water flow resistance tends to increase, or the fibers tend to fall off. In addition, when the average fiber diameter is too large, the bulkiness is increased, which makes it difficult to fill the capacitor container.
 通液型キャパシタ内にセパレータとして不織布を連続して積層させる場合、単層でもよいし、2層以上の複層の積層であってもよい。積層数は制約を受けるものではないが、作業性や嵩高性を考慮すると、1層、2層または3層であることが望ましい。 When the nonwoven fabric is continuously laminated as a separator in the liquid-permeable capacitor, it may be a single layer or a laminate of two or more layers. The number of stacked layers is not limited, but considering workability and bulkiness, it is desirable to have one layer, two layers or three layers.
 不織布の製造方法は特に限定されず、従来から知られた不織布の製造方法が特に限定なく用いられる。具体的には、例えば、スパンボンド法、メルトブロー法、水流絡合法、サーマルボンド法、ケミカルボンド法等が挙げられる。これらの中では、スパンボンド法、水流絡合法、サーマルボンド法が、目付、厚み、繊維径の調整が容易である点から好ましい。 The method for producing a nonwoven fabric is not particularly limited, and a conventionally known method for producing a nonwoven fabric can be used without any particular limitation. Specific examples include a spun bond method, a melt blow method, a water entanglement method, a thermal bond method, and a chemical bond method. Among these, the spun bond method, the hydroentanglement method, and the thermal bond method are preferable from the viewpoint of easy adjustment of the basis weight, thickness, and fiber diameter.
 次に、脱イオン水製造装置110の動作について図1を参照しながら説明する。通液型キャパシタ10によりイオン性物質を含有する水の脱イオン処理するために、はじめに、給水口7からイオン性物質を含有する水 W1を給水する。そして、水 W1を給水しながら直流電源5から各電極端子3a~3fを介して活性炭シート2a~2fに電圧を印加する。そして、電圧を印加しながら、キャパシタ容器4の排水口8から脱イオン水 W2を排出する。脱イオン水 W2は脱イオン水回収配管15から回収される。このとき、バルブv1は閉じられており、バルブv2は開かれている。 Next, the operation of the deionized water production apparatus 110 will be described with reference to FIG. In order to deionize the water containing the ionic substance by the liquid-passing capacitor 10, first, water W 1 containing the ionic substance is supplied from the water supply port 7. Then, a voltage is applied to the activated carbon sheets 2a to 2f from the DC power source 5 through the electrode terminals 3a to 3f while supplying water W1. And deionized water W2 is discharged | emitted from the drain port 8 of the capacitor container 4, applying a voltage. Deionized water W2 is recovered from the deionized water recovery pipe 15. At this time, the valve v1 is closed and the valve v2 is opened.
 水 W1に含まれているイオン性物質は活性炭シート2a~2fに静電的にイオンとして捕捉される。そして、活性炭シート2a~2fの表面がイオンで飽和したときには、水の電気伝導度が高くなる。このとき、バルブv1を開け、バルブv2を閉じることによりイオン濃縮水回収配管16の経路に切り替えた後、電極の極性を逆極性にすることにより、活性炭シート2a~2fに吸着した濃縮されたイオンを離脱させることができる。そして、活性炭シート2a~2fの浄化能力を再生させることができる。イオン濃縮液はイオン濃縮水回収配管16を通じて回収することができる。 The ionic substance contained in the water W1 is electrostatically trapped as ions in the activated carbon sheets 2a to 2f. When the surfaces of the activated carbon sheets 2a to 2f are saturated with ions, the electrical conductivity of water is increased. At this time, after the valve v1 is opened and the valve v2 is closed, after switching to the path of the ion concentrated water recovery pipe 16, the polarity of the electrode is reversed so that the concentrated ions adsorbed on the activated carbon sheets 2a to 2f are obtained. Can be removed. Then, the purification ability of the activated carbon sheets 2a to 2f can be regenerated. The ion concentrate can be recovered through the ion concentrated water recovery pipe 16.
 通液型キャパシタ10を用いて水中のイオン除去を行うための通水方式としては、原水を全量濾過する全濾過方式を採用しても、循環濾過方式を採用してもよい。通水条件は特に限定されないが、10~100hr-1の空間速度(SV)で行うことが圧力損失が高くなり過ぎない点から好ましい。 As a water flow method for removing ions in water using the liquid flow type capacitor 10, either a total filtration method for filtering the whole raw water or a circulation filtration method may be employed. The water flow conditions are not particularly limited, but it is preferable to carry out at a space velocity (SV) of 10 to 100 hr −1 because the pressure loss does not become too high.
 なお、排出された水の電気伝導度と、通水開始から流した通水量との関係を2次元にプロットすることにより、イオン除去能力の状態をモニターすることができる。また、水中のイオン濃度は水の電気伝導度と相関があるために、脱イオン処理前と脱イオン処理後の水の電気伝導度を測定することにより、イオン除去率を計算することができる。また、水中のイオン濃度は、例えばイオンクロマトグラフィ等の方法により測定することもできる。 In addition, the state of ion removal capability can be monitored by plotting the relationship between the electrical conductivity of the discharged water and the amount of water flowed from the start of water flow in two dimensions. Further, since the ion concentration in water has a correlation with the electrical conductivity of water, the ion removal rate can be calculated by measuring the electrical conductivity of water before and after the deionization treatment. The ion concentration in water can also be measured by a method such as ion chromatography.
 通液型キャパシタ10に電力を供給する直流電源5の種類は、特に制限されない。100Vの家庭用電源から電圧を調整し、直流化して使用してもよいし、電池、蓄電池を使用して電力を供給してもよい。また、通液型キャパシタ10を屋外で用いる場合には、太陽電池、風力発電機、燃料電池、コジェネレータなどの独立電源を用いてもよい。省エネルギー、低炭素エネルギー、発電効率の観点から、太陽電池を用いることが好ましい。 The type of the DC power supply 5 that supplies power to the liquid-flow capacitor 10 is not particularly limited. The voltage may be adjusted from a 100 V household power supply and used as a direct current, or power may be supplied using a battery or a storage battery. In addition, when the liquid-permeable capacitor 10 is used outdoors, an independent power source such as a solar cell, a wind power generator, a fuel cell, or a co-generator may be used. From the viewpoint of energy saving, low carbon energy, and power generation efficiency, it is preferable to use a solar cell.
[第2実施形態]
 次に、上述した活性炭シート2を用いた通液型キャパシタの他の形態について図2を参照しながら説明する。図2は本実施形態の通液型キャパシタ20を備えた脱イオン水製造装置120の模式説明図である。なお、通液型キャパシタ20の構成は縦断面図で示されている。また、第1実施形態で説明したものと同様の要素については、同じ符号で示している。
[Second Embodiment]
Next, another embodiment of the liquid-passing capacitor using the above-described activated carbon sheet 2 will be described with reference to FIG. FIG. 2 is a schematic explanatory view of a deionized water production apparatus 120 provided with the liquid-permeable capacitor 20 of the present embodiment. The configuration of the liquid-passing capacitor 20 is shown in a longitudinal sectional view. Moreover, the same code | symbol is shown about the element similar to what was demonstrated in 1st Embodiment.
 通液型キャパシタ20は、通液可能な導電性シート6(6a~6f)の両表面を活性炭シート2で挟持して形成された複数の電極9(9a~9f)と各電極9(9a~9f)間にそれぞれ配設された複数のセパレータ1とからなる積層体12を備えている。積層体12はキャパシタ容器4に収容されている。導電性シート6(6a~6f)はそれぞれ電極端子3(3a~3f)と電気的に接続されている。電極端子3a~3fはキャパシタ容器4の外部に導出されている。なお、導電性シート6の一部が電極端子3として用いられてもよい。そして、電極端子3a、3c、3eはそれぞれ直流電源5の負極側に並列に続されており、電極端子3b、3d、3fはそれぞれ直流電源5の正極側に並列に接続されている。そして、積層体12は、キャパシタ容器4内のパンチング状の樹脂板13により密着固定されている。 The liquid-permeable capacitor 20 includes a plurality of electrodes 9 (9a to 9f) formed by sandwiching both surfaces of a liquid-permeable conductive sheet 6 (6a to 6f) between the activated carbon sheets 2 and the electrodes 9 (9a to 9f). 9f) is provided with a laminate 12 composed of a plurality of separators 1 disposed between them. The multilayer body 12 is accommodated in the capacitor container 4. The conductive sheets 6 (6a to 6f) are electrically connected to the electrode terminals 3 (3a to 3f), respectively. The electrode terminals 3a to 3f are led out of the capacitor container 4. A part of the conductive sheet 6 may be used as the electrode terminal 3. Then, the electrode terminals 3a, 3c, 3e are connected in parallel to the negative electrode side of each DC power source 5, the electrode terminals 3b, 3d, 3f are connected in parallel to the positive electrode side of each DC power source 5. The multilayer body 12 is tightly fixed by a punched resin plate 13 in the capacitor container 4.
 通液型キャパシタ20によれば、活性炭シート2に直流電源5を直接接続するときよりも、導電性シート6の高い導通性により、低抵抗で活性炭シート2に電圧を印加することができる。 According to the liquid-flow type capacitor 20, it is possible to apply a voltage to the activated carbon sheet 2 with low resistance due to the high conductivity of the conductive sheet 6 than when the DC power supply 5 is directly connected to the activated carbon sheet 2.
 導電性シート6を形成する材料は、通液可能な導電性を有するシートであれば、特に限定されない。その具体例としては、例えば、ニッケルコートを施した鉄製のパンチングメタル、表面に白金コートを施したチタン製ラス網、表面を陽極酸化によりアルマイト加工を施したアルミ製のパンチングメタル、黒鉛粒子をバインダで結着した空隙を有する黒鉛シート、織物状炭素繊維等の炭素繊維基材等が挙げられる。なお、ニッケルコートや白金コートは金属電極の電気腐蝕を防止するためのものであり、鍍金または焼結積層等によって表面処理される。これらの中では、炭素繊維基材が電気腐蝕が抑制される点から特に好ましい。 The material for forming the conductive sheet 6 is not particularly limited as long as it is a conductive sheet capable of passing liquid. Specific examples include iron punching metal with nickel coating, titanium lath net with platinum coating on the surface, aluminum punching metal with surface anodized by anodization, and graphite particles as binder. And a carbon fiber base material such as a graphite sheet having a void bound by woven fabric and a woven carbon fiber. The nickel coat and the platinum coat are for preventing electric corrosion of the metal electrode, and are surface-treated by plating or sintering lamination. In these, a carbon fiber base material is especially preferable from the point by which electrocorrosion is suppressed.
 導電性シート6の厚みは0.1~2mm、さらには0.2~1.0mm程度であることが導電性に優れる点から好ましい。 The thickness of the conductive sheet 6 is preferably about 0.1 to 2 mm, more preferably about 0.2 to 1.0 mm from the viewpoint of excellent conductivity.
 導電性シート6と活性炭シート2とは、電気的に接触していればよいが、導電性接着剤で接着したり、導電性シート6と活性炭シート2とを一体成形したりすることにより密着固定させてもよい。導電性接着剤の具体例としては、例えば、銀ペースト系導電性接着剤、黒鉛ペースト系導電性接着剤、銀黒鉛混合ペースト系導電性接着剤、チタンペースト系導電性接着剤、アルミペースト系導電性接着剤等が挙げられる。導電性接着剤は導電性シート6または活性炭シート2に直接塗布しても、スクリーン印刷機、オフセット印刷機、スプレー等の方法により、格子状、ストライプ状、ドット状等のように部分的に塗布してもよい。このように部分的に塗布することにより通水路を塞ぐことなく、接着することができる。また、導電性接着剤の導電性が高い場合には、導電性シート6を用いずに活性炭シート2の表面に導電性接着剤を塗布するだけで電極の導通性を向上させることもできる。 The conductive sheet 6 and the activated carbon sheet 2 need only be in electrical contact, but are adhered and fixed by bonding with a conductive adhesive or by integrally forming the conductive sheet 6 and the activated carbon sheet 2. You may let them. Specific examples of the conductive adhesive include, for example, a silver paste conductive adhesive, a graphite paste conductive adhesive, a silver graphite mixed paste conductive adhesive, a titanium paste conductive adhesive, and an aluminum paste conductive. Adhesives and the like. Even if the conductive adhesive is directly applied to the conductive sheet 6 or the activated carbon sheet 2, it is partially applied in a grid, stripe, dot or the like by a method such as a screen printing machine, an offset printing machine, or a spray. May be. Thus, it can adhere | attach, without blocking a water flow path by apply | coating partially. Further, when the conductive adhesive has high conductivity, the conductivity of the electrode can be improved by simply applying the conductive adhesive to the surface of the activated carbon sheet 2 without using the conductive sheet 6.
 導電性シート6と活性炭シート2とを一体成形する場合には、導電性シート6を支持体として活性炭シート2と一体成形することができる。導電性シート6と活性炭シート2とを一体成形することにより、導電性シート6と活性炭シート2との界面の抵抗を低減することができる。それにより活性炭シート2への導電性が高くなることにより、高いイオン捕捉性が得られる。 When the conductive sheet 6 and the activated carbon sheet 2 are integrally formed, the conductive sheet 6 can be integrally formed with the activated carbon sheet 2 using the support as a support. By integrally molding the conductive sheet 6 and the activated carbon sheet 2, the resistance at the interface between the conductive sheet 6 and the activated carbon sheet 2 can be reduced. Thereby, the high electroconductivity to the activated carbon sheet 2 is acquired, and high ion capture property is acquired.
 以上、第一実施形態及び第二実施形態を例として説明した本発明の通液型キャパシタ及び脱イオン水製造装置は、単独で、イオン性物質を含有する水の脱イオン処理に用いても、その他の公知の浄水手段等の水処理手段と組み合わせて用いてもよい。公知の水処理手段の具体例としては、例えば、不織布フィルター、セラミックフィルター、活性炭等の各種吸着材、ミネラル添加材、セラミック濾過材、中空糸膜濾過材、イオン吸着剤などを含む水処理手段が挙げられる。また、とくに、本発明の通液型キャパシタ及び脱イオン水製造装置を他の公知のイオン吸着剤フィルターと組み合わせて用いてもよい。また、濁り、微細物などを物理的に除去するための中空糸膜分離装置と組み合わせて用いてもよい。
 以下、本発明を実施例によりさらに具体的に説明する。なお、本発明の範囲は以下の実施例の内容により何ら限定されるものではない。
As mentioned above, even if the liquid-permeable type capacitor and deionized water production apparatus of the present invention explained by taking the first embodiment and the second embodiment as examples are used alone for deionization treatment of water containing an ionic substance, It may be used in combination with other known water treatment means such as water purification means. Specific examples of known water treatment means include, for example, water treatment means including various adsorbents such as nonwoven fabric filters, ceramic filters, activated carbon, mineral additives, ceramic filter media, hollow fiber membrane filter materials, ion adsorbents, and the like. Can be mentioned. In particular, the liquid-passing capacitor and deionized water production apparatus of the present invention may be used in combination with other known ion adsorbent filters. Further, it may be used in combination with a hollow fiber membrane separation device for physically removing turbidity and fine substances.
Hereinafter, the present invention will be described more specifically with reference to examples. The scope of the present invention is not limited by the contents of the following examples.
 [実施例1]
 中心粒子径120μm、比表面積1200m/gの活性炭粉末(ヤシ殻を原料とする活性炭粉末、クラレケミカル(株)製PGW-120MP)100重量部と、フィブリル化アクリル繊維(日本エクスラン工業(株)製Bi-PUL/F)6重量部とを水中で混合することによりスラリーを調製した。
 そして、縦220mm、横220mm、厚み1mmのキャビティと吸引孔とを有する金型にスラリーを充填した後、型締し、型内を20mmHgに減圧することによりシートを成形した。得られたシートは、縦215mm、横215mm、厚み1mmの正方形であった。このシートから、縦100mm、横100mmであり、一つの辺の中央に縦50mm、横10mmのタブを有する活性炭シートA1を切り出した。
[Example 1]
100 parts by weight of activated carbon powder having a center particle size of 120 μm and a specific surface area of 1200 m 2 / g (activated carbon powder using coconut shell as raw material, PGW-120MP manufactured by Kuraray Chemical Co., Ltd.) and fibrillated acrylic fiber (Nippon Exlan Industrial Co., Ltd.) A slurry was prepared by mixing 6 parts by weight of manufactured Bi-PUL / F) in water.
The slurry was filled into a mold having a cavity having a length of 220 mm, a width of 220 mm, and a thickness of 1 mm and a suction hole, and then the mold was clamped, and the inside of the mold was decompressed to 20 mmHg to form a sheet. The obtained sheet was a square having a length of 215 mm, a width of 215 mm, and a thickness of 1 mm. From this sheet, an activated carbon sheet A1 having a length of 100 mm and a width of 100 mm and having a tab of 50 mm length and 10 mm width at the center of one side was cut out.
 また、厚み0.1mm、目付40g/mの不織布(ポリエチレン繊維及びポリプロピレン繊維を含むシンワ(株)製の9540F)を縦100mm、横100mmに裁断することによりセパレータB1を作成した。 Further, a separator B1 was prepared by cutting a non-woven fabric having a thickness of 0.1 mm and a basis weight of 40 g / m 2 (9540F manufactured by Shinwa Co., Ltd. including polyethylene fibers and polypropylene fibers) into a length of 100 mm and a width of 100 mm.
 そして、活性炭シートA1とセパレータB1とを交互に各10枚ずつ積層することにより、積層体を得た。そして、得られた積層体を図1に示すような樹脂製のキャパシタ容器4に収容した。なお、積層体は、その上部と下部のそれぞれにシリコンゴムからなる枠体を載置してキャパシタ容器4の内壁に密着固定された。また、各活性炭シートA1に設けられたタブは、キャパシタ容器4の外壁に設けられた貫通孔から外部にそれぞれ引き出された。このようにして、通液型キャパシタを製造した。そして、得られた、通液型キャパシタの外部に露出した各タブに電極端子を接続し、各電極端子を電源の負極側と正極側に交互に接続した。 And the activated carbon sheet A1 and the separator B1 were laminated | stacked 10 sheets each alternately, and the laminated body was obtained. And the obtained laminated body was accommodated in the resin-made capacitor containers 4 as shown in FIG. The laminated body was fixed to the inner wall of the capacitor container 4 by placing a frame made of silicon rubber on each of the upper part and the lower part. Moreover, the tab provided in each activated carbon sheet A1 was each pulled out from the through-hole provided in the outer wall of the capacitor container 4. In this way, a liquid passing type capacitor was manufactured. And the electrode terminal was connected to each tab exposed to the exterior of the obtained liquid-permeable capacitor, and each electrode terminal was alternately connected to the negative electrode side and positive electrode side of the power supply.
 そして、得られた通液型キャパシタに約120μS/cmの原水を100ml/分で通水した。そして、各電極に10Vの電圧を印加した。そして、所定の通水量ごとに、排出された処理水の電気伝導度を測定し、原水の電気伝導度と処理水の電気伝導度からイオンの除去率を算出した。なお、除去率が80%を下回った時点で、活性炭シートを再生させるために、電極端子に接続した直流電源の極性を逆にした。通水量に対してプロットした電気伝導度の変化を図3のグラフに、通水量に対してプロットしたイオンの除去率を図4のグラフに示す。 Then, about 120 μS / cm of raw water was passed through the obtained liquid-passing capacitor at 100 ml / min. Then, a voltage of 10 V was applied to each electrode. And the electrical conductivity of the discharged treated water was measured for every predetermined amount of water flow, and the ion removal rate was calculated from the electrical conductivity of the raw water and the electrical conductivity of the treated water. When the removal rate fell below 80%, the polarity of the DC power source connected to the electrode terminal was reversed in order to regenerate the activated carbon sheet. The graph of FIG. 3 shows the change in electrical conductivity plotted against the water flow rate, and FIG. 4 shows the ion removal rate plotted against the water flow rate.
 図4のグラフから、通水量の増加に伴い除去率は90%程度まで徐々に上昇し、通水量4L付近から徐々に低下していくことがわかる。また、図3のグラフから、除去率が通水量が5.2Lのときに直流電源の極性を逆にすることにより、活性炭シートの表面に吸着された濃縮されたイオンが急激に脱離したことがわかる。除去率80%以上に低下するまでの通水量をイオン除去容量とした。結果を表1に示す。 From the graph of FIG. 4, it can be seen that the removal rate gradually increases to about 90% as the water flow rate increases, and gradually decreases from around 4 L of water flow rate. In addition, from the graph of FIG. 3, the concentrated ions adsorbed on the surface of the activated carbon sheet were suddenly desorbed by reversing the polarity of the DC power source when the removal rate was 5.2L. I understand. The amount of water passing until the removal rate decreased to 80% or more was defined as the ion removal capacity. The results are shown in Table 1.
 [実施例2]
 タブを設けない以外、実施例1の活性炭シートA1の製造と同様にして活性炭シートA2を製造した。そして、導電性シートとして、縦100mm、横100mmの正方形の一つの辺の中央に縦50mm、横10mmのタブを有する、厚み0.1mmのニッケルコート鉄製のパンチングメタル(開口率57.9%)を用意した。そして、パンチングメタル電極の正方形の領域を2枚の活性炭シートA1で挟み、さらに、その両表面に2枚のセパレータB1を配置してキャパシタセルを作製した。このようにして得られたキャパシタセルを10セル積層して積層体を形成し、キャパシタ容器4に収容した。なお、積層体は、その上部と下部のそれぞれにシリコンゴムからなる枠体を載置してキャパシタ容器4の内壁と密着固定された。また、パンチングメタル電極に設けられたタブのそれぞれは、キャパシタ容器4の外壁に設けられた貫通孔から外部に引き出された。このようにして、通液型キャパシタを製造した。そして、得られた、通液型キャパシタの外部に露出した各タブに電極端子を接続し、各電極端子を電源の負極側と正極側に交互に接続した。そして、実施例1と同様にして、評価した。結果を表1に示す。
[Example 2]
An activated carbon sheet A2 was produced in the same manner as in the production of the activated carbon sheet A1 of Example 1 except that no tab was provided. As a conductive sheet, a punched metal made of nickel-coated iron with a thickness of 0.1 mm having a tab of 50 mm length and 10 mm width at the center of one side of a square of 100 mm length and 100 mm width (aperture ratio 57.9%) Prepared. And the square area | region of the punching metal electrode was pinched | interposed with two activated carbon sheets A1, and also two separators B1 were arrange | positioned on the both surfaces, and the capacitor cell was produced. 10 capacitor cells thus obtained were stacked to form a stacked body, and stored in the capacitor container 4. The laminated body was fixed in close contact with the inner wall of the capacitor container 4 by placing a frame made of silicon rubber on each of the upper part and the lower part. Further, each of the tabs provided on the punching metal electrode was drawn out from a through hole provided on the outer wall of the capacitor container 4. In this way, a liquid passing type capacitor was manufactured. And the electrode terminal was connected to each tab exposed to the exterior of the obtained liquid-permeable capacitor, and each electrode terminal was alternately connected to the negative electrode side and positive electrode side of the power supply. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
 [実施例3]
 パンチングメタルに代えて、厚み0.11mmの炭素繊維クロス(東レ(株)製の商品名:トレカクロスCO6151B)を用いた以外は実施例2と同様にして、通液型キャパシタを作成し、評価した。結果を表1に示す。
[Example 3]
A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 2 except that a carbon fiber cloth having a thickness of 0.11 mm (trade name: Torayca cloth CO6151B manufactured by Toray Industries, Inc.) was used instead of the punching metal. did. The results are shown in Table 1.
 [実施例4~7]
 活性炭シートA2の代わりに、表1に記載のような粒度及び比表面積を有する活性炭粉末を用いた活性炭シートA3~A6を用いた以外は実施例2と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Examples 4 to 7]
Instead of the activated carbon sheet A2, a liquid-permeable capacitor was prepared in the same manner as in Example 2 except that activated carbon sheets A3 to A6 using activated carbon powder having a particle size and specific surface area as shown in Table 1 were used. evaluated. The results are shown in Table 1.
 [実施例8]
 フィブリル化アクリル繊維をバインダとして用いた活性炭シートA2の代わりに、以下のような方法により製造された微粉末ポリエチレン粒子をバインダとして用いた活性炭シートA7を用いた以外は実施例2と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
(活性炭シートA7の製造)
 中心粒子径120μm、比表面積1200m/gの活性炭粉末80重量部と、平均粒子径(D50)20μmの微粉末ポリエチレン10重量部とを混合した混合物を得た。なお、微粉末ポリエチレンは住友精化(株)製の商品名:フローセンUF-20(MI20g/10分)を用いた。
 そして、得られた混合物を縦220mm、横220mm、厚み1mmのキャビティを有する金型を用いて加熱成形することにより、縦215mm、横215mm、厚み1mmのシートを得た。そして、得られたシートを縦100mm、横100mm、厚み1mmのサイズに切断することにより、活性炭シートA7を得た。
[Example 8]
Instead of the activated carbon sheet A2 using the fibrillated acrylic fiber as the binder, the same procedure as in Example 2 was used except that the activated carbon sheet A7 using the fine powder polyethylene particles produced by the following method as the binder was used. A liquid capacitor was created and evaluated. The results are shown in Table 1.
(Manufacture of activated carbon sheet A7)
A mixture obtained by mixing 80 parts by weight of activated carbon powder having a central particle diameter of 120 μm and a specific surface area of 1200 m 2 / g and 10 parts by weight of finely powdered polyethylene having an average particle diameter (D 50 ) of 20 μm was obtained. The fine powder polyethylene used was Sumitomo Seika Co., Ltd. trade name: Flowsen UF-20 (MI 20 g / 10 min).
And the sheet | seat of length 215mm, width 215mm, and thickness 1mm was obtained by heat-molding the obtained mixture using the metal mold | die which has a cavity of length 220mm, width 220mm, and thickness 1mm. And the activated carbon sheet A7 was obtained by cut | disconnecting the obtained sheet | seat to the size of 100 mm in length, 100 mm in width, and 1 mm in thickness.
 [実施例9]
 活性炭粉末100重量部に対して、平均繊維長3mmの導電性短繊維(東レ(株)製トレカカットファイバーT010-003(平均繊維径7μm、密度1.76g/cmの炭素繊維)10重量部を混合した以外、実施例2の活性炭シートA2の製造と同様にして活性炭シートA8を得た。活性炭シートA2の代わりに、活性炭シートA8を用いた以外は実施例2と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Example 9]
10 parts by weight of conductive short fiber having an average fiber length of 3 mm (Torayca Cut Fiber T010-003 (carbon fiber having an average fiber diameter of 7 μm and a density of 1.76 g / cm 3 ) manufactured by Toray Industries, Inc. with respect to 100 parts by weight of the activated carbon powder. The activated carbon sheet A8 was obtained in the same manner as in the production of the activated carbon sheet A2 in Example 2. The liquid-permeable type was obtained in the same manner as in Example 2 except that the activated carbon sheet A8 was used instead of the activated carbon sheet A2. Capacitors were created and evaluated, and the results are shown in Table 1.
 [実施例10~12]
 表1に示すように活性炭シート中の導電性短繊維の配合割合又は不織布(セパレータ)の目付及び厚みを変えた以外は実施例9と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Examples 10 to 12]
As shown in Table 1, a liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 9 except that the blending ratio of the conductive short fibers in the activated carbon sheet or the basis weight and thickness of the nonwoven fabric (separator) was changed. The results are shown in Table 1.
 [実施例13]
 セパレータとして、厚み0.1mm、目付18g/mの不織布(ポリエチレン繊維及びポリプロピレン繊維を含むシンワ(株)製の9718-5-0-F)を用いた以外、実施例9と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Example 13]
The separator was used in the same manner as in Example 9 except that a non-woven fabric having a thickness of 0.1 mm and a basis weight of 18 g / m 2 (9718-5-0-F manufactured by Shinwa Co., Ltd. including polyethylene fiber and polypropylene fiber) was used. A liquid capacitor was created and evaluated. The results are shown in Table 1.
 [実施例14、15]
 セパレータの目付及び厚みを変えた以外は実施例9と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Examples 14 and 15]
A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 9 except that the basis weight and thickness of the separator were changed. The results are shown in Table 1.
 [比較例1]
 活性炭シートに代えて、クラレケミカル(株)製の活性炭繊維シートCH700-25(厚さ0.5mm、比表面積2000m/g)を用いた以外は実施例2と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。
[Comparative Example 1]
In place of the activated carbon sheet, a liquid-permeable capacitor was prepared in the same manner as in Example 2 except that an activated carbon fiber sheet CH700-25 (thickness 0.5 mm, specific surface area 2000 m 2 / g) manufactured by Kuraray Chemical Co., Ltd. was used. Created and evaluated. The results are shown in Table 1.
 [比較例2~3]
 表1にしめすような中心粒子径及び比表面積を有する活性炭粉末を用いた以外は実施例2と同様にして通液型キャパシタを作成し、評価した。結果を表1に示す。なお、活性炭の中心粒子径が小さい比較例3の通液型キャパシタは通水抵抗が高すぎて水をスムーズに流すことができず、イオン除去処理ができなかった。
[Comparative Examples 2 to 3]
A liquid-permeable capacitor was prepared and evaluated in the same manner as in Example 2 except that the activated carbon powder having the center particle diameter and specific surface area shown in Table 1 was used. The results are shown in Table 1. In addition, the liquid-passing capacitor of Comparative Example 3 having a small center particle diameter of activated carbon had too high a water flow resistance, so that water could not flow smoothly, and ion removal treatment could not be performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、比較例1~3の通液型キャパシタを用いたときのイオン除去容量は2L以下であったのに対し、本発明に係る実施例1~15の通液型キャパシタを用いたイオン除去容量は3L以上であった。
 また、導電性シートを通じて直流電源に接続された実施例2の通液型キャパシタは、活性炭シートに直接直流電源を接続した実施例1の通液型キャパシタに比べて、イオン除去容量が大きかった。さらに、活性炭シートに導電材を配合した実施例9~11、13、14はイオン除去容量が極めて大きかった。なお、活性炭シートに導電材を配合した実施例12及び15は、セパレータの目付け及び厚みが大きかったために、導通性がやや低下し、また、通水性もやや低下したためにイオン除去容量がやや低かった。
From the results in Table 1, the ion removal capacity when using the liquid-pass capacitors of Comparative Examples 1 to 3 was 2 L or less, whereas the liquid-pass capacitors of Examples 1 to 15 according to the present invention were used. The ion removal capacity was 3 L or more.
Further, the liquid passing type capacitor of Example 2 connected to the DC power source through the conductive sheet had a larger ion removal capacity than the liquid passing type capacitor of Example 1 in which the DC power source was directly connected to the activated carbon sheet. Further, Examples 9 to 11, 13, and 14 in which the conductive material was blended with the activated carbon sheet had a very large ion removal capacity. In Examples 12 and 15 in which the conductive material was blended with the activated carbon sheet, the separator's weight and thickness were large, so the conductivity was slightly lowered, and the water permeability was also slightly lowered, so that the ion removal capacity was slightly low. .
 本発明の通液型キャパシタは、水中のイオン除去に優れており、健康障害が懸念される硝酸性イオンやフッ素イオンを効率よく除去することができるので浄水器、海水淡水化装置、軟水器、地下水の飲料適用水装置、純水装置、排水処理装置、などに使用できる。また、一般的な浄水器を想定した場合、10分間あたり2.0L以上程度の処理量が好ましいが、本発明の通液型キャパシタによればこのような処理量を実現できる。 The liquid-passing capacitor of the present invention is excellent in removing ions in water, and can efficiently remove nitrate ions and fluorine ions, which may cause health problems, so a water purifier, a seawater desalination device, a water softener, It can be used for drinking water equipment for groundwater, pure water equipment, wastewater treatment equipment, etc. Further, when a general water purifier is assumed, a processing amount of about 2.0 L or more per 10 minutes is preferable, but such a processing amount can be realized according to the liquid passing type capacitor of the present invention.

Claims (20)

  1.  複数の通液可能な電極と複数の通液可能なセパレータとを交互に積層した積層体を備え、
     前記電極は、活性炭粉末とバインダとを含む通液可能な活性炭シートを備え、
     前記活性炭粉末は10~500μmの中心粒子径を有し、
     前記バインダがフィブリル化繊維及び熱可塑性バインダ粒子から選ばれた少なくとも1種を含むことを特徴とする通液型キャパシタ。
    Provided with a laminate in which a plurality of liquid-permeable electrodes and a plurality of liquid-permeable separators are alternately laminated,
    The electrode comprises an activated carbon sheet capable of passing liquid containing activated carbon powder and a binder,
    The activated carbon powder has a central particle size of 10 to 500 μm,
    The liquid-passing capacitor, wherein the binder contains at least one selected from fibrillated fibers and thermoplastic binder particles.
  2.  前記活性炭シート中に含まれる前記活性炭粉末の割合が50重量%以上である請求項1に記載の通液型キャパシタ。 The liquid-flowing capacitor according to claim 1, wherein a ratio of the activated carbon powder contained in the activated carbon sheet is 50% by weight or more.
  3.  前記電極は通液可能な導電性シートの両表面に前記活性炭シートを配設したものである請求項1または2に記載の通液型キャパシタ。 3. The liquid passing type capacitor according to claim 1 or 2, wherein the activated carbon sheet is disposed on both surfaces of a conductive sheet through which the liquid can pass.
  4.  前記導電性シートは、導電性繊維織物又は導電性繊維不織布である請求項3に記載の通液型キャパシタ。 4. The liquid-permeable capacitor according to claim 3, wherein the conductive sheet is a conductive fiber woven fabric or a conductive fiber nonwoven fabric.
  5.  前記導電性シートは、多数の貫通孔を有する開口率30~70%の導電性多孔性シートである請求項3に記載の通液型キャパシタ。 The liquid-permeable capacitor according to claim 3, wherein the conductive sheet is a conductive porous sheet having a large number of through holes and an opening ratio of 30 to 70%.
  6.  前記活性炭シートは前記導電性シートの表面に導電性接着剤で接着されている請求項3~5の何れか1項に記載の通液型キャパシタ。 6. The liquid-permeable capacitor according to claim 3, wherein the activated carbon sheet is bonded to the surface of the conductive sheet with a conductive adhesive.
  7.  前記活性炭シートは前記導電性シートと一体成形されている請求項3~5の何れか1項に記載の通液型キャパシタ。 The liquid-passing capacitor according to any one of claims 3 to 5, wherein the activated carbon sheet is integrally formed with the conductive sheet.
  8.  前記電極は前記活性炭シートのみから形成されている請求項1または2に記載の通液型キャパシタ。 The liquid passing type capacitor according to claim 1 or 2, wherein the electrode is formed only from the activated carbon sheet.
  9.  前記活性炭シートは導電材をさらに含有する請求項1~8の何れか1項に記載の通液型キャパシタ。 The liquid-passing capacitor according to any one of claims 1 to 8, wherein the activated carbon sheet further contains a conductive material.
  10.  前記導電材が導電性短繊維である請求項9に記載の通液型キャパシタ。 The liquid-permeable capacitor according to claim 9, wherein the conductive material is a conductive short fiber.
  11.  前記導電性短繊維が平均繊維径1~50μm、密度1~2.3g/cm、平均繊維長5~12000μmの導電性繊維である請求項10に記載の通液型キャパシタ。 11. The liquid-permeable capacitor according to claim 10, wherein the conductive short fibers are conductive fibers having an average fiber diameter of 1 to 50 μm, a density of 1 to 2.3 g / cm 3 , and an average fiber length of 5 to 12000 μm.
  12.  前記活性炭シートは活性炭粉末100重量部に対し、前記フィブリル化繊維3~8重量部含有する請求項1~11の何れか1項に記載の通液型キャパシタ。 The liquid-passing capacitor according to any one of claims 1 to 11, wherein the activated carbon sheet contains 3 to 8 parts by weight of the fibrillated fiber with respect to 100 parts by weight of the activated carbon powder.
  13.  前記フィブリル化繊維が、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、及びアラミド繊維から選ばれる少なくとも一種の繊維からなる請求項12に記載の通液型キャパシタ。 The liquid-permeable capacitor according to claim 12, wherein the fibrillated fiber comprises at least one fiber selected from acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, and aramid fiber.
  14.  前記バインダが、平均粒子径0.1~200μmの熱可塑性バインダ粒子である請求項1~11の何れか1項に記載の通液型キャパシタ。 The liquid-passing capacitor according to any one of claims 1 to 11, wherein the binder is thermoplastic binder particles having an average particle diameter of 0.1 to 200 µm.
  15.  前記セパレータが、目付5~100g/m、厚み0.01~1.0mmの不織布である請求項1~14の何れか1項に記載の通液型キャパシタ。 The liquid-permeable capacitor according to any one of claims 1 to 14, wherein the separator is a nonwoven fabric having a basis weight of 5 to 100 g / m 2 and a thickness of 0.01 to 1.0 mm.
  16.  前記活性炭粉末の比表面積が700~2500m/gの範囲である請求項1~15の何れか1項に記載の通液型キャパシタ。 The liquid-permeable capacitor according to any one of claims 1 to 15, wherein a specific surface area of the activated carbon powder is in a range of 700 to 2500 m 2 / g.
  17.  請求項1~16の何れか1項に記載の通液型キャパシタを用いる脱イオン水の製造方法であって、
     前記積層体の厚み方向に積層された複数の前記電極に、直流電源の正極側と負極側とを厚み方向に交互に接続し、
     前記積層体の第一主面からイオン性物質を含有する水を供給する工程と、
     前記積層体の前記第一主面に対向する第二主面から前記イオン性物質が除去された水を排出する工程と、を備えることを特徴とする脱イオン水の製造方法。
    A method for producing deionized water using the liquid-permeable capacitor according to any one of claims 1 to 16,
    To the plurality of electrodes laminated in the thickness direction of the laminate, alternately connecting the positive electrode side and the negative electrode side of the DC power source in the thickness direction,
    Supplying water containing an ionic substance from the first main surface of the laminate;
    Discharging the water from which the ionic substance has been removed from the second main surface facing the first main surface of the laminate, and a method for producing deionized water.
  18.  前記第二主面から排出された水の電気伝導度を測定し、前記電気伝導度が所定値以上の値に達した場合に前記交互に接続された前記各電極の正極と負極との極性を置き換えることにより、前記各電極表面に付着した濃縮されたイオンを回収する工程をさらに備える請求項17に記載の脱イオン水の製造方法。 The electrical conductivity of the water discharged from the second main surface is measured, and when the electrical conductivity reaches a value equal to or greater than a predetermined value, the polarity of the positive electrode and the negative electrode of each of the alternately connected electrodes is determined. The method for producing deionized water according to claim 17, further comprising a step of recovering concentrated ions attached to the surface of each electrode by replacement.
  19.  請求項1~16の何れか1項に記載の通液型キャパシタと、直流電源と、前記通液型キャパシタを収容する容器と、を備え、
     前記積層体に積層された複数の前記電極は、前記直流電源の正極側と負極側とに厚み方向に交互に接続されており、
     前記容器は、前記積層体の第一主面にイオン性物質を含有する水を供給するための給水口、及び前記積層体の前記第一主面に対向する第二主面から脱イオン化された水を排水するための排水口を備えることを特徴とする脱イオン水製造装置。
    A liquid-permeable capacitor according to any one of claims 1 to 16, a DC power source, and a container for housing the liquid-permeable capacitor,
    The plurality of electrodes stacked in the stacked body are alternately connected in the thickness direction to the positive electrode side and the negative electrode side of the DC power supply,
    The container is deionized from a water supply port for supplying water containing an ionic substance to the first main surface of the laminate, and from the second main surface facing the first main surface of the laminate. A deionized water production apparatus comprising a drain outlet for draining water.
  20.  前記直流電源が太陽電池を含む請求項19に記載の脱イオン水製造装置。 The deionized water production apparatus according to claim 19, wherein the DC power source includes a solar battery.
PCT/JP2010/004171 2009-06-23 2010-06-23 Flow-through capacitor, method for producing deionized water, and device for producing deionized water WO2010150534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519599A JP5687620B2 (en) 2009-06-23 2010-06-23 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009148741 2009-06-23
JP2009-148741 2009-06-23
JP2010-042815 2010-02-26
JP2010042815 2010-02-26

Publications (1)

Publication Number Publication Date
WO2010150534A1 true WO2010150534A1 (en) 2010-12-29

Family

ID=43386320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004171 WO2010150534A1 (en) 2009-06-23 2010-06-23 Flow-through capacitor, method for producing deionized water, and device for producing deionized water

Country Status (2)

Country Link
JP (1) JP5687620B2 (en)
WO (1) WO2010150534A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108597A1 (en) * 2012-01-16 2013-07-25 クラレケミカル株式会社 Flow-through capacitor, deionized liquid manufacturing device, and deionized liquid manufacturing method
WO2014091726A1 (en) * 2012-12-14 2014-06-19 パナソニック株式会社 Ion exchanger, water treatment device provided with same, and hot water supply device
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
JP2014212314A (en) * 2013-04-04 2014-11-13 有限会社ターナープロセス Electrode containing active carbon
WO2015005250A1 (en) * 2013-07-08 2015-01-15 株式会社クラレ Electrode and process for producing same, and flow-through capacitor using same
WO2015068797A1 (en) * 2013-11-07 2015-05-14 富士フイルム株式会社 Ion exchange membrane electrode assembly, method for manufacturing same, and capacitor demineralization device
WO2015076123A1 (en) * 2013-11-19 2015-05-28 ユニチカ株式会社 Deionizing sheet for use in electrode in flow-through-type capacitor
CN104823255A (en) * 2012-12-06 2015-08-05 旭化成株式会社 Nonaqueous lithium storage element
CN104986920A (en) * 2015-08-21 2015-10-21 广东灵捷制造化工有限公司 Microelectrolysis treatment system for treating acrylon wastewater
US9365440B2 (en) 2010-12-01 2016-06-14 Voltea B.V. Method of producing an apparatus for removal of ions from water
JP2018514382A (en) * 2015-05-20 2018-06-07 エディプ・バイラムEdip BAYRAM Electroadsorption system for removing foreign matter from water
JP2018525769A (en) * 2015-05-20 2018-09-06 エディプ・バイラムEdip BAYRAM Generation method
JP2019506292A (en) * 2016-01-22 2019-03-07 同▲済▼大学 Composite membrane separation method applied to desalination and recovery of sewage
US10246356B2 (en) 2010-12-01 2019-04-02 Voltea B.V. Apparatus for removal of ions comprising multiple stacks
WO2020039676A1 (en) * 2018-08-23 2020-02-27 株式会社寿通商 Water treatment device and ion concentration adjusted water manufacturing method
WO2020138054A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Water purifying filter and water purifier using same
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
JP6982668B1 (en) * 2020-08-31 2021-12-17 大同メタル工業株式会社 Purification device
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
CN114144255A (en) * 2019-05-23 2022-03-04 寿控股有限公司 Filter unit, fluid separation device, and separation method
JP7030570B2 (en) 2011-06-07 2022-03-07 ファーストキャップ・システムズ・コーポレイション Energy storage medium for ultracapacitors
EP3984964A1 (en) * 2020-10-15 2022-04-20 Siontech Co., Ltd. Energy-saving ion adsorption/desorption water purification apparatus and energy-saving water purification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941056B2 (en) 2016-01-12 2021-03-09 Mitsubishi Electric Corporation Water treatment device and water treatment method
KR102286716B1 (en) * 2017-03-28 2021-08-05 미쓰비시덴키 가부시키가이샤 Water treatment device, water treatment system, assembly method of water treatment device and water treatment method
KR102007878B1 (en) * 2018-01-01 2019-08-07 주식회사 오투엔비 Water treatment system using deionization having voltage generator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422062A (en) * 1990-05-15 1992-01-27 Kuraray Chem Corp Polarizable electrode plate
JPH08119615A (en) * 1994-10-14 1996-05-14 Kuraray Co Ltd Activated-carbon sheet and electric-double-layer capacitor
JPH08138978A (en) * 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
JPH11154630A (en) * 1997-09-22 1999-06-08 Japan Gore Tex Inc Polar electrode and manufacture thereof
JP2000091169A (en) * 1998-09-08 2000-03-31 Kansai Coke & Chem Co Ltd Liquid-passable capacitor and method of treating liquid using the same
JP2000344507A (en) * 1999-06-07 2000-12-12 Kuraray Chem Corp Powdery activated carbon, activated carbon sheet and electric double layer capacitor
JP2001135554A (en) * 1999-11-05 2001-05-18 Ccr:Kk Electric double layer capacitor, electrode and manufacturing method thereof
JP2003285066A (en) * 2002-03-27 2003-10-07 Luxon Energy Devices Corp Pure water apparatus with energy recovery
JP2004097915A (en) * 2002-09-06 2004-04-02 Nomura Micro Sci Co Ltd Electro-desalting method and electro-desalting apparatus
JP2004330032A (en) * 2003-05-02 2004-11-25 Nomura Micro Sci Co Ltd Electric desalting method
JP2007158163A (en) * 2005-12-07 2007-06-21 Teijin Techno Products Ltd Electrode sheet and its manufacturing method
JP2007251025A (en) * 2006-03-17 2007-09-27 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor
JP2008132466A (en) * 2006-11-28 2008-06-12 Linxross Inc Integrated system for water treatment, of low-power consumption ozone generator and cdi deionization apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105316B2 (en) * 1985-08-13 1995-11-13 旭硝子株式会社 Polarizable electrode for electric double layer capacitor and method for manufacturing the same
JPS63110622A (en) * 1986-10-28 1988-05-16 松下電器産業株式会社 Polarizing electrode
JPH0770448B2 (en) * 1987-03-13 1995-07-31 松下電器産業株式会社 Method of manufacturing polarizable electrodes
JPH0770449B2 (en) * 1987-06-24 1995-07-31 松下電器産業株式会社 Method of manufacturing polarizable electrodes
JPH03122008A (en) * 1989-10-05 1991-05-24 Tokai Carbon Co Ltd Activated carbon sheet and production thereof
JPH03228814A (en) * 1990-02-01 1991-10-09 Tokai Carbon Co Ltd Production of activated carbon sheet
JP3302443B2 (en) * 1993-05-17 2002-07-15 関西熱化学株式会社 Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
JPH0955341A (en) * 1995-08-11 1997-02-25 Nisshinbo Ind Inc Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the polarizable electrode
FR2759087B1 (en) * 1997-02-06 1999-07-30 Electricite De France POROUS COMPOSITE PRODUCT WITH HIGH SPECIFIC SURFACE, PREPARATION METHOD AND ELECTRODE FOR ELECTROCHEMICAL ASSEMBLY FORMED FROM POROUS COMPOSITE FILM
JP2004024990A (en) * 2002-06-24 2004-01-29 Tmh:Kk Method of removing ionic substance in liquid and liquid treatment apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422062A (en) * 1990-05-15 1992-01-27 Kuraray Chem Corp Polarizable electrode plate
JPH08119615A (en) * 1994-10-14 1996-05-14 Kuraray Co Ltd Activated-carbon sheet and electric-double-layer capacitor
JPH08138978A (en) * 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
JPH11154630A (en) * 1997-09-22 1999-06-08 Japan Gore Tex Inc Polar electrode and manufacture thereof
JP2000091169A (en) * 1998-09-08 2000-03-31 Kansai Coke & Chem Co Ltd Liquid-passable capacitor and method of treating liquid using the same
JP2000344507A (en) * 1999-06-07 2000-12-12 Kuraray Chem Corp Powdery activated carbon, activated carbon sheet and electric double layer capacitor
JP2001135554A (en) * 1999-11-05 2001-05-18 Ccr:Kk Electric double layer capacitor, electrode and manufacturing method thereof
JP2003285066A (en) * 2002-03-27 2003-10-07 Luxon Energy Devices Corp Pure water apparatus with energy recovery
JP2004097915A (en) * 2002-09-06 2004-04-02 Nomura Micro Sci Co Ltd Electro-desalting method and electro-desalting apparatus
JP2004330032A (en) * 2003-05-02 2004-11-25 Nomura Micro Sci Co Ltd Electric desalting method
JP2007158163A (en) * 2005-12-07 2007-06-21 Teijin Techno Products Ltd Electrode sheet and its manufacturing method
JP2007251025A (en) * 2006-03-17 2007-09-27 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor
JP2008132466A (en) * 2006-11-28 2008-06-12 Linxross Inc Integrated system for water treatment, of low-power consumption ozone generator and cdi deionization apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365440B2 (en) 2010-12-01 2016-06-14 Voltea B.V. Method of producing an apparatus for removal of ions from water
US10246356B2 (en) 2010-12-01 2019-04-02 Voltea B.V. Apparatus for removal of ions comprising multiple stacks
JP7030570B2 (en) 2011-06-07 2022-03-07 ファーストキャップ・システムズ・コーポレイション Energy storage medium for ultracapacitors
US11250995B2 (en) 2011-07-08 2022-02-15 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US10714271B2 (en) 2011-07-08 2020-07-14 Fastcap Systems Corporation High temperature energy storage device
US11901123B2 (en) 2011-07-08 2024-02-13 Fastcap Systems Corporation High temperature energy storage device
US11776765B2 (en) 2011-07-08 2023-10-03 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
US11482384B2 (en) 2011-07-08 2022-10-25 Fastcap Systems Corporation High temperature energy storage device
CN104185609A (en) * 2012-01-16 2014-12-03 可乐丽化学株式会社 Flow-through capacitor, deionized liquid manufacturing device, and deionized liquid manufacturing method
WO2013108597A1 (en) * 2012-01-16 2013-07-25 クラレケミカル株式会社 Flow-through capacitor, deionized liquid manufacturing device, and deionized liquid manufacturing method
JPWO2013108597A1 (en) * 2012-01-16 2015-05-11 クラレケミカル株式会社 Liquid-permeable capacitor, deionized liquid production apparatus, and deionized liquid production method
CN104823255A (en) * 2012-12-06 2015-08-05 旭化成株式会社 Nonaqueous lithium storage element
JP2014133228A (en) * 2012-12-14 2014-07-24 Panasonic Corp Ion exchanger, water treatment apparatus using the same, and hot water feeder
WO2014091726A1 (en) * 2012-12-14 2014-06-19 パナソニック株式会社 Ion exchanger, water treatment device provided with same, and hot water supply device
US9701547B2 (en) 2012-12-14 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Ion exchanger, water treatment device provided with same, and hot water supply device
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
JP2014212314A (en) * 2013-04-04 2014-11-13 有限会社ターナープロセス Electrode containing active carbon
WO2015005250A1 (en) * 2013-07-08 2015-01-15 株式会社クラレ Electrode and process for producing same, and flow-through capacitor using same
WO2015068797A1 (en) * 2013-11-07 2015-05-14 富士フイルム株式会社 Ion exchange membrane electrode assembly, method for manufacturing same, and capacitor demineralization device
JPWO2015068797A1 (en) * 2013-11-07 2017-03-09 富士フイルム株式会社 ION EXCHANGE MEMBRANE ELECTRODE ASSEMBLY, ITS MANUFACTURING METHOD, AND CAPACITOR DESALTING DEVICE
WO2015076123A1 (en) * 2013-11-19 2015-05-28 ユニチカ株式会社 Deionizing sheet for use in electrode in flow-through-type capacitor
JP2018525769A (en) * 2015-05-20 2018-09-06 エディプ・バイラムEdip BAYRAM Generation method
JP2018514382A (en) * 2015-05-20 2018-06-07 エディプ・バイラムEdip BAYRAM Electroadsorption system for removing foreign matter from water
CN104986920A (en) * 2015-08-21 2015-10-21 广东灵捷制造化工有限公司 Microelectrolysis treatment system for treating acrylon wastewater
JP2019506292A (en) * 2016-01-22 2019-03-07 同▲済▼大学 Composite membrane separation method applied to desalination and recovery of sewage
JPWO2020039676A1 (en) * 2018-08-23 2021-08-12 株式会社寿ホールディングス Water treatment equipment and manufacturing method of ion concentration adjusted water
EP3842130A4 (en) * 2018-08-23 2022-05-18 Kotobuki Holdings Co., Ltd. Water treatment device and ion concentration adjusted water manufacturing method
CN112566712A (en) * 2018-08-23 2021-03-26 寿控股有限公司 Water treatment device and method for producing ion concentration-adjusted water
WO2020039676A1 (en) * 2018-08-23 2020-02-27 株式会社寿通商 Water treatment device and ion concentration adjusted water manufacturing method
JPWO2020138054A1 (en) * 2018-12-28 2021-11-11 株式会社クラレ Water purification filter and water purifier using it
CN113226539A (en) * 2018-12-28 2021-08-06 株式会社可乐丽 Filter for water purification and water purifier using the same
JP7356458B2 (en) 2018-12-28 2023-10-04 株式会社クラレ Water purification filter and water purifier using it
WO2020138054A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Water purifying filter and water purifier using same
CN114144255A (en) * 2019-05-23 2022-03-04 寿控股有限公司 Filter unit, fluid separation device, and separation method
JP6982668B1 (en) * 2020-08-31 2021-12-17 大同メタル工業株式会社 Purification device
JP2022040885A (en) * 2020-08-31 2022-03-11 大同メタル工業株式会社 Purifier
EP3984964A1 (en) * 2020-10-15 2022-04-20 Siontech Co., Ltd. Energy-saving ion adsorption/desorption water purification apparatus and energy-saving water purification method

Also Published As

Publication number Publication date
JP5687620B2 (en) 2015-03-18
JPWO2010150534A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5687620B2 (en) Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
JP5798201B2 (en) Liquid-permeable capacitor, deionized liquid production apparatus, and deionized liquid production method
US20080035548A1 (en) Multi-functional filtration and ultra-pure water generator
US6214204B1 (en) Ion-removal from water using activated carbon electrodes
US20080073288A1 (en) Multifunctional filtration and water purification systems
KR102093443B1 (en) Capacitive deionization apparatus and methods of treating fluid using the same
CN103723868A (en) Water purifier
EP2180949A1 (en) Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
EP2253593A1 (en) Apparatus and method for removal of ions
KR20150074822A (en) Electrode material for capacitive deionization, methods of producing the same and capacitive deionization apparatus including the same
CN106045099A (en) Multifunctional composite filter core
KR102289676B1 (en) Capacitive Deionization Electrode Module, Manufacturing Method thereof and Deionization Equipment using the Same
KR20150084956A (en) Impregnated electrode for capacitive deionisation, process for preparing it and apparatus employing the electrodes
WO2004039494A1 (en) Composite adsorbent and method for production thereof, and water purification material and water purifier
WO2009065023A1 (en) Multifunctional filtration and water purification systems
CN104649456A (en) Drinking water terminal sterilizing water purifier
WO2017038220A1 (en) Desalination treatment method using flow-through capacitor
KR20190010502A (en) Seawater desalination apparatus
KR100442773B1 (en) Desalination System and Regeneration Method by Electrosorption
RU2282494C2 (en) Porous filter element (variations)
WO2001009907A1 (en) Flow-through capacitor and method
KR20150035265A (en) Capacitive deionization electrodes and production methods thereof, and capacitive deionization apparatus including the same
JP2012086192A (en) Electric double-layer capacitor, deionizer using the same, and operation method for the deionizer
JP6561429B2 (en) Deionized sheet for electrode of liquid-type capacitor
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519599

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791856

Country of ref document: EP

Kind code of ref document: A1