JP2019506292A - Composite membrane separation method applied to desalination and recovery of sewage - Google Patents

Composite membrane separation method applied to desalination and recovery of sewage Download PDF

Info

Publication number
JP2019506292A
JP2019506292A JP2018537775A JP2018537775A JP2019506292A JP 2019506292 A JP2019506292 A JP 2019506292A JP 2018537775 A JP2018537775 A JP 2018537775A JP 2018537775 A JP2018537775 A JP 2018537775A JP 2019506292 A JP2019506292 A JP 2019506292A
Authority
JP
Japan
Prior art keywords
composite membrane
membrane
reactor
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018537775A
Other languages
Japanese (ja)
Other versions
JP6583868B2 (en
Inventor
志▲偉▼ 王
志▲偉▼ 王
子梦 李
子梦 李
▲鴻▼光 于
▲鴻▼光 于
金星 ▲馬▼
金星 ▲馬▼
志超 ▲呉▼
志超 ▲呉▼
君健 ▲鄭▼
君健 ▲鄭▼
雪野 王
雪野 王
辰 潘
辰 潘
巧英 王
巧英 王
Original Assignee
同▲済▼大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同▲済▼大学 filed Critical 同▲済▼大学
Publication of JP2019506292A publication Critical patent/JP2019506292A/en
Application granted granted Critical
Publication of JP6583868B2 publication Critical patent/JP6583868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、汚水の脱塩回収に適用し、低濃度の塩を含んだ汚水(廃水)に適用する複合膜分離方法を提供する。本発明の汚水脱塩方法は、導電複合膜の濾過及び吸着作用で実現される。導電複合膜は、フラットフィルムアセンブリの形式を採用し、浸水式の方式で運行する。通電の条件で、導電複合膜がイオン型汚染物質への吸着及び回収を完成する。本発明は、膜分離と電気吸着の脱塩プロセスをカップリングし、予めパーティクル汚染物質を阻むことで、吸着材料の使用寿命を延ばし、吸着効果を向上させ、エネルギー消耗を低減することができる。本発明は、その装置がコンパクトで、運行管理が便利で、外から与えられた電圧及び膜フラックスでイオンの除去効果を制御することで、適切な電圧及び膜フラックスの条件で、汚水(廃水)における汚染物への浄化及び除去を実現できるようになる。  The present invention provides a composite membrane separation method applied to sewage (waste water) containing low-concentration salt, applied to desalination and recovery of sewage. The wastewater desalination method of the present invention is realized by filtration and adsorption action of a conductive composite membrane. The conductive composite film adopts a flat film assembly type and operates in a submerged type. Under the condition of energization, the conductive composite film completes adsorption and recovery to ionic contaminants. The present invention can couple the membrane separation and electroadsorption desalination processes to prevent particle contaminants in advance, thereby extending the service life of the adsorbent material, improving the adsorption effect, and reducing energy consumption. In the present invention, the apparatus is compact, the operation management is convenient, and the ion removal effect is controlled by the voltage and membrane flux given from the outside, so that the sewage (waste water) can be obtained under the conditions of the appropriate voltage and membrane flux. It becomes possible to realize purification and removal of contaminants.

Description

本発明は、膜による濾過と電気吸着のカップリング原理で汚水中のイオンを除去して排水の水質を向上させる、汚水(廃水)の処理分野に属す、汚水の脱塩回収に適用する複合膜分離方法に関する。   The present invention relates to a composite membrane applied to the desalination and recovery of sewage, belonging to the field of sewage (wastewater) treatment, which improves the quality of wastewater by removing ions in the sewage by the coupling principle of filtration and electroadsorption by membrane. It relates to a separation method.

社会経済の高速発展に従って、環境の状況が益々厳しくなり、多くの環境問題には、水資源の不足が益々深刻になり、社会経済の継続的な発展に制限がある問題が存在する。この状況で、僅か用水の節約のみを呼びかけるのは、現在の用水要求を満たせず、苦い塩水の淡水化、工業廃水のリサイクル利用及び市政廃水の再利用等、非常用の水源を開発することが求められているが、ある農村地域の地下水、沿岸都市での海水を混合した生活汚水、及び化工、印刷、食品加工等の産業の工業廃水には、例えばCl-、NO3 -、SO4 2-及び各種類の金属イオン等の、濃度が高いイオンが含まれており、それらの処理の不当によって深刻な水汚染問題が発生する恐れがある。また、重金属イオンが水に入ると、居住者の生活飲用水の安全に影響があり、人体の健康に損害を与え、例えば、鉛は貧血を誘発することができ、水銀の濃縮は水俣病を引き起こすことができ、カドミウムは骨の痛みを引く起こすことができ、過度の銅摂取は肝臓を損傷することができ、ヒ素の化合物は非常に毒性が高くて発癌性がある。このため、このような非常用の水源への利用を実現するために、それらを脱塩処理して高標準の排水又は有効的な回収再利用の目的を達成する必要があり、これは、現在の研究課題の一つになる。 With the rapid development of socio-economic conditions, the environmental situation becomes increasingly severe, and for many environmental problems, the shortage of water resources becomes more serious, and there are problems that limit the continuous development of socio-economics. In this situation, the only call to save a small amount of water is to meet the current water requirements, and to develop an emergency water source, such as desalting bitter salt water, recycling industrial wastewater, and reusing municipal wastewater. For example, Cl , NO 3 , SO 4 2 may be used for groundwater in a certain rural area, domestic wastewater mixed with seawater in coastal cities, and industrial wastewater in industries such as chemical processing, printing, and food processing. - and the like each type of metal ions, the concentration includes a high ion, there is a possibility that serious water pollution problems due to undue their processing. Also, the entry of heavy metal ions into the water has an impact on the safety of the resident's drinking water and damages the health of the human body.For example, lead can induce anemia, and mercury concentration can cause Minamata disease. Cadmium can cause bone pain, excessive copper intake can damage the liver, and arsenic compounds are very toxic and carcinogenic. Therefore, in order to realize the use for such an emergency water source, it is necessary to desalinate them to achieve the purpose of high standard drainage or effective recovery and reuse. It becomes one of the research subjects.

近年、電気吸着技術は、除去効率および省エネルギー等の点で独特の利点があるため、広く注目されている。外部から低電圧の直流電源を供給することにより、電気吸着技術は汚染イオンを除去し、廃水の浄化を達成することができる。他の水処理技術と比較して、電気吸着技術は、簡単な操作とメンテナンス、長い装置寿命、低いエネルギー消費、二次汚染無しなどの特徴があり、溶解性汚染物質に対する良好な除去効果を有する。しかしながら、伝統的な電気吸着プロセスは、パーティクル状の汚染物質に対してより敏感である。パーティクルの導入は、脱塩効果を減少させるだけでなく、電極を詰め、装置のメンテナンスコストを増加させる。従って、パーティクル汚染物質を含んだ、塩を含有する廃水の処理においては、通常、パーティクルを捕捉するために、電気吸着プロセスの先端にプリ処理工程を設ける必要があり、それによって、電気吸着プロセスの設置面積、設備コストおよび操作工程が増加してしまうことになる。   In recent years, electroadsorption technology has received wide attention because of its unique advantages in terms of removal efficiency and energy saving. By supplying a low-voltage DC power supply from the outside, the electroadsorption technology can remove contaminating ions and achieve purification of wastewater. Compared with other water treatment technologies, electroadsorption technology has features such as easy operation and maintenance, long equipment life, low energy consumption, no secondary pollution and has good removal effect on soluble pollutants . However, traditional electrosorption processes are more sensitive to particulate contaminants. The introduction of particles not only reduces the desalting effect, but also packs the electrodes and increases the maintenance cost of the device. Therefore, in the treatment of wastewater containing salt containing particle contaminants, it is usually necessary to provide a pre-treatment step at the tip of the electroadsorption process in order to capture particles, thereby Installation area, equipment cost, and operation process will increase.

中国公開公報CN103052437AChinese publication CN103052437A 中国公開公報CN104609518AChina publication CN10609509A 中国公開公報CN103693718AChina publication gazette CN103693718A

一方、膜分離方法は、固液分離の効果に優れているため、汚水処理分野で広く用いられている。膜分離技術は、電気吸着プロセスにおけるパーティクル汚染の問題を効果的に解決する有効な手段である。膜分離プロセスの発展を制限する最も主な問題は、膜の汚染であり、外部から直流電界を与えることにより、膜の表面を負の電荷に帯電させ、汚水中の負の電荷にも帯電したパーティクル汚染を排斥し、膜の汚染の作用を制御できるようになる。電気吸着と膜分離プロセスをカップリングすることにより、新しいタイプの導電性複合膜電気吸着脱塩プロセスを形成し、パーティクルの阻みとイオン除去を同時に実現でき、塩を有する廃水の処理のための新しいアイデアを形成することができる。しかし、既存の研究成果や文献報告は主に電気吸着プロセスの最適化に集中するものであり、且つ、国内特許での脱塩に関する成果は、例えば木内崇文(膜分離装置、膜分離方法、特許文献CN103052437A)、常▲ツェン▼(電気吸着技術で工業廃水から選択的にFe2+及び/又はFe3+を除去する方法、特許文献CN104609518A)のように、膜分離と電気吸着の単独に運行する動作条件に集中するものであり、膜分離および電気吸着カップリングのプロセスは滅多に報告されません。両方を組み合わせたいくつかのプロセスに関しては、張▲鴻▼涛(脱塩システムに用いられる膜-電気吸着装置、特許文献CN103693718A)が電解吸着プロセスと組み合わせてイオン交換膜で廃水を脱塩しており、アノードイオン交換膜とカソードイオン交換膜を増加する目的は、アノードイオンとカソードイオンの透過性を選択的に高めることであり、イオン交換膜は汚水フィルタとして機能することができず、次に、該システムが依然として装置自身に対するパーティクル汚染物質の損傷を解決することができず、且つイオン交換膜のコストが高く、運行やメンテナンスが面倒である。 On the other hand, the membrane separation method is widely used in the sewage treatment field because of its excellent solid-liquid separation effect. Membrane separation technology is an effective means for effectively solving the problem of particle contamination in the electroadsorption process. The main problem that limits the development of the membrane separation process is the contamination of the membrane. By applying a DC electric field from the outside, the surface of the membrane is charged to a negative charge, and the negative charge in the sewage is also charged. It is possible to eliminate particle contamination and control the effect of membrane contamination. By coupling electroadsorption and membrane separation process, a new type of conductive composite membrane electroadsorption desalination process can be formed, which can simultaneously realize particle blockage and ion removal, a new for the treatment of wastewater with salt Ideas can be formed. However, existing research results and literature reports mainly focus on optimizing the electroadsorption process, and the achievements related to desalination in domestic patents are, for example, Takafumi Kiuchi (membrane separation device, membrane separation method, patent (Document CN103052437A), Tsuen (Method of selectively removing Fe 2+ and / or Fe 3+ from industrial wastewater by electroadsorption technology, Patent Document CN10609518A), and operates independently for membrane separation and electroadsorption. The process of membrane separation and electroadsorption coupling is rarely reported. For some processes that combine both, Zhang ▲ 鴻 ▼ 涛 (membrane-electroadsorber used in the desalination system, patent document CN103693718A) combined with the electrolytic adsorption process to desalinate wastewater with ion exchange membranes. The purpose of increasing the anode ion exchange membrane and the cathode ion exchange membrane is to selectively increase the permeability of the anode ion and the cathode ion, and the ion exchange membrane cannot function as a sewage filter. The system still cannot solve the damage of the particle pollutant to the apparatus itself, the cost of the ion exchange membrane is high, and the operation and maintenance are troublesome.

本発明は、膜分離と電気吸着を組合せしながら、汚水の濾過分離と電気吸着によるイオン脱離の機能を同時に実現し、汚水中におけるパーティクルを阻み、それによる吸着材料への損害を避け、同時に汚水中の汚染イオンを除去し、二次汚染を避け、エネルギーを節約し、コストを削減するものである。   While combining membrane separation and electroadsorption, the present invention simultaneously achieves the function of filtration separation of sewage and ion desorption by electroadsorption, prevents particles in the sewage, thereby avoiding damage to the adsorbent material, and at the same time It eliminates contaminating ions in sewage, avoids secondary contamination, saves energy, and reduces costs.

本発明は、その目的が、汚水処理中に固液分離及び脱塩の機能を同時に実現できる膜分離技術を提供することにあり、該技術方法は、膜分離と電気吸着プロセスをカップリングし、同時に汚水の濾過分離と電気吸着によるイオン脱離の機能を同時に実現し、パーティクルを阻み、廃水におけるイオン型汚染物質を吸着し、脱塩の効果を向上させ、二次汚染がなく、且つ操作が簡単で、エネルギー消耗が低く、低濃度の塩を含んだ廃水の処理に適用されるものである。   The object of the present invention is to provide a membrane separation technology capable of simultaneously realizing the functions of solid-liquid separation and desalting during sewage treatment, and this technical method couples membrane separation and electroadsorption process, At the same time, it simultaneously realizes the functions of filtration and separation of sewage and ion desorption by electroadsorption, blocking particles, adsorbing ionic pollutants in wastewater, improving the desalination effect, eliminating secondary contamination, and operating. It is simple, has low energy consumption and is applied to the treatment of wastewater containing low concentrations of salt.

本発明に提出される汚水の脱塩回収に適用する複合膜分離方法は、導電複合膜リアクターで汚水の脱塩を実現し、前記導電複合膜リアクターが給水システム1、電源システム2、膜リアクター3、排水制御システム4及び清浄水タンク5からなり、給水システム1は、給水タンクと給水流量調整装置とからなり、プロセス要求に応じて給水流量を調整し、給水流量調整装置が給水タンクの給水ポートに設置され、給水タンクの排水ポートがパイプを介して膜リアクターと接続され、膜リアクターがリアクタータンク、複合膜アセンブリー6及び攪拌システムからなり、リアクタータンク中に位置する複数の複合膜アセンブリー6がそれぞれ導電性の良い導線7を介して電源システム2の正極と負極に接続される。膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンクに設置され、リアクタータンク内のリアクター液体を均一に混合させ、膜リアクターのリアクタータンクの排水ポートがパイプを介して排水システムと接続される。   The composite membrane separation method applied to the desalination and recovery of sewage submitted to the present invention realizes desalination of sewage with a conductive composite membrane reactor, and the conductive composite membrane reactor includes a water supply system 1, a power supply system 2, and a membrane reactor 3. The water supply system 1 is composed of a water supply tank and a water supply flow rate adjusting device, and adjusts the water supply flow rate according to the process request. The water supply flow rate adjusting device is a water supply port of the water supply tank. The drainage port of the water supply tank is connected to the membrane reactor through a pipe, and the membrane reactor is composed of the reactor tank, the composite membrane assembly 6 and the stirring system, and each of the plurality of composite membrane assemblies 6 located in the reactor tank The power supply system 2 is connected to the positive electrode and the negative electrode through a conductive wire 7 having good conductivity. The membrane reactor is constructed so as to adopt a submersible arrangement system, a stirrer is installed in the reactor tank, the reactor liquid in the reactor tank is uniformly mixed, and the drain port of the reactor tank of the membrane reactor is connected via a pipe. Connected to the drainage system.

各々の複合膜アセンブリーは、フラットフィルムになるよう構成され、カソード複合膜8、アノード複合膜9及び分離層10からなり、このうち、カソード複合膜は、カソード電極11とカソード電流コレクタ12をポリマー材料で張り付けることで形成されるものであり、アノード複合膜は、アノード電極13とアノード電流コレクタ14をポリマー材料で張り付けることで形成されるものであり、前記カソード複合膜8とアノード複合膜9とは、短絡を防止するように分離層10で仕切られ、前記カソード電流コレクタが給水ポート側に位置し、アノード電流コレクタが排水ポート側に位置し、即ち、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出される。
具体的には、プロセス要求に合致した給水を給水タンクに入れ、給水流量調整装置で給水流量を調整し、給水タンクの排水が膜リアクターに入り、一定流量又は一定圧力の方式を採用するように運行し、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出され、膜フラックスが8〜50L/(m2h)になるように制御し、膜間差圧が0.4〜20kPaになり、電源をオンにし、膜リアクターを起動させ、塩を含んだ廃水中のイオン型汚染物を吸着するステップを備える。
Each composite membrane assembly is configured to be a flat film, and includes a cathode composite membrane 8, an anode composite membrane 9, and a separation layer 10. Of these, the cathode composite membrane includes a cathode electrode 11 and a cathode current collector 12 as a polymer material. The anode composite film is formed by attaching the anode electrode 13 and the anode current collector 14 with a polymer material, and the cathode composite film 8 and the anode composite film 9 are formed. Is separated by a separation layer 10 so as to prevent a short circuit, the cathode current collector is located on the water supply port side, the anode current collector is located on the drainage port side, that is, the water supply is first performed on the cathode current collector and the cathode. Flow through the electrode and flow through the separation layer, then flow through the anode current collector and the anode electrode, from the membrane It is discharged to the conductive composite membrane reactor to exit.
Specifically, feed water that meets the process requirements is put into the feed tank, the feed flow rate is adjusted with the feed water flow rate adjustment device, and the waste water from the feed water tank enters the membrane reactor, adopting a method of constant flow rate or constant pressure. The water supply flows through the cathode current collector and the cathode electrode through the separation layer first, then flows through the anode current collector and the anode electrode, and is discharged to the conductive composite membrane reactor so as to be discharged from the membrane. Control to be 8-50 L / (m 2 h), the transmembrane pressure difference becomes 0.4-20 kPa, the power is turned on, the membrane reactor is activated, and ionic contamination in wastewater containing salt A step of adsorbing an object.

本発明において、給水タンクの給水濃度が5000mg/L(TDSで計測)を下回るように制御する。   In the present invention, the feed water concentration of the feed water tank is controlled to be less than 5000 mg / L (measured by TDS).

本発明において、外から与えられた直流電圧範囲が0.4〜2.0Vになる。   In the present invention, the DC voltage range given from the outside becomes 0.4 to 2.0V.

本発明において、電源システムは、一定電圧の直流電源から電気吸着過程に給電し、カソード複合膜が電源の負極に接続され、アノード複合膜が電源の正極に接続され、電源システムとカソード又はアノードとが接続される電気回路中に電流検出装置を設けて電流の状況をリアルタイムに検出する。   In the present invention, the power supply system supplies power to the electroadsorption process from a constant voltage DC power supply, the cathode composite membrane is connected to the negative electrode of the power supply, the anode composite membrane is connected to the positive electrode of the power supply, and the power supply system and the cathode or anode A current detection device is provided in the electric circuit to which is connected to detect the current state in real time.

本発明において、カソード電流コレクタ又はアノード電流コレクタは、導電性の良いネット形状材料を採用し、前記材料は、チタン、チタン合金材料又はステンレス鋼材料のうち何れか一つであり、カソード電極又はアノード電極が、カーボンクロス、カーボンナノチューブ、活性炭粉末または繊維、カーボンエアロゲル、グラフェン、カーボンブラックのうち何れか一つである炭素系材料を採用し、ポリマー材料が、高分子ポリマーを採用し、具体的にはポリビニリデンフルオライド、ポリエーテルスルホン、ポリテトラフルオルエチレン、或いはポリアクリロニトリルのうち何れか一つである。   In the present invention, the cathode current collector or the anode current collector employs a net-shaped material having good conductivity, and the material is any one of titanium, a titanium alloy material, and a stainless steel material, and the cathode electrode or the anode The electrode adopts carbon-based material that is any one of carbon cloth, carbon nanotube, activated carbon powder or fiber, carbon aerogel, graphene, carbon black, and the polymer material adopts a polymer polymer, specifically Is any one of polyvinylidene fluoride, polyethersulfone, polytetrafluoroethylene, or polyacrylonitrile.

本発明において、前記分離層は、ナイロンネット、不織布、及びポリプロピレン材料のうち何れか一つである、水透過性の良い材料を採用する。   In the present invention, the separation layer employs a material having good water permeability, which is any one of a nylon net, a nonwoven fabric, and a polypropylene material.

本発明において、前記カソード複合膜とアノード複合膜とは、異なる電極材料と電流コレクタ材料を採用する。   In the present invention, the cathode composite film and the anode composite film employ different electrode materials and current collector materials.

本発明の原理は、フラットフィルムの電極の形式を採用し、膜分離と電気吸着過程をカップリングし、適切な膜フラックスで、分離層がパーティクル汚染物質を阻み、汚水の固液分離を実現し、アノード電極とカソード電極に対して適切な電圧を与え、汚水中におけるイオン型汚染物質を吸着し、汚水の脱塩の目的を実現することである。電極吸着の完了後、脱着は外部からの電源との短絡で始まり、電極を再生する。吸着-脱着の循環で膜アセンブリーのリサイクル利用を実現でき、運行コストを低減できるようになる。   The principle of the present invention adopts the form of flat film electrode, coupling membrane separation and electroadsorption process, with proper membrane flux, separation layer prevents particle pollutants and realizes solid-liquid separation of sewage An appropriate voltage is applied to the anode electrode and the cathode electrode to adsorb ionic pollutants in the sewage, thereby realizing the purpose of desalting the sewage. After completion of electrode adsorption, desorption begins with a short circuit with an external power source to regenerate the electrode. Adsorption-desorption circulation enables the recycling of membrane assemblies and reduces operating costs.

本発明は、従来技術と比較して以下のメリットを備える。
(1)本発明は、フラットフィルムの膜アセンブリ形式を採用し、膜分離と電気吸着をカップリングする技術方法は、固液分離と同時にイオン型汚染物質を吸着し、既存の膜分離と電気吸着プロセスの限界を破り、脱塩効果を向上させることができ、該技術は、運行エネルギー消耗が低く、運行管理が便利になるようになる。
(2)本発明の導電複合膜は、その外側がパーティクルを阻む機能を有し、無効な吸着を減少する同時に内側の吸着材料への摩耗を減少することができ、電極材料の使用効率を向上させ、装置のメンテナンス費用を低減することできるようになる。
(3)外から与えられた直流電場は、膜の表面を負の電荷に帯電させており、汚水中に負の電荷にも帯電したパーティクル、コロイドなどの汚染物質を排斥し、膜汚染を制御し、膜の洗浄周期および膜の使用寿命を延ばし、膜洗浄によるエネルギー消費を低減し、運行コストを低減することができるようになる。
The present invention has the following advantages over the prior art.
(1) The present invention adopts a flat film membrane assembly format, and the method of coupling membrane separation and electroadsorption is to adsorb ionic contaminants at the same time as solid-liquid separation. Breaking the limits of the process and improving the desalination effect, the technology reduces operating energy consumption and makes operating management more convenient.
(2) The conductive composite film of the present invention has a function of blocking particles on the outer side, can reduce ineffective adsorption, and at the same time can reduce wear on the inner adsorbing material, improving the use efficiency of the electrode material. Therefore, the maintenance cost of the apparatus can be reduced.
(3) The DC electric field applied from the outside charges the surface of the membrane to a negative charge, and removes contaminants such as particles and colloids that are also charged to a negative charge in the sewage to control membrane contamination. In addition, the cleaning cycle of the membrane and the service life of the membrane can be extended, the energy consumption by the membrane cleaning can be reduced, and the operation cost can be reduced.

図1は、膜分離及び電気吸着技術の脱塩プロセスをカップリングする概略図である。FIG. 1 is a schematic diagram for coupling the desalination process of membrane separation and electroadsorption techniques. 図2は、モノリシックフィルムの複合膜アセンブリの詳細構成の概略図である。FIG. 2 is a schematic view of a detailed configuration of a monolithic film composite membrane assembly.

以下、本発明について、図面を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

[実施例1]
図1に示すプロセス装置を採用することにより、給水システム1は、給水タンクと給水流量調整装置とからなり、プリ処理を介してプロセス要求に合致した、NaClを主にする苦い塩水が給水タンクに入り、給水の塩量が1200mg/L(TDSで計測)になり、給水流量を調整して膜フラックスが10L/m2hになるように制御する。給水タンクは、その排水ポートが膜リアクターとパイプを介して接続され、その排水が膜リアクターに入り、膜リアクターがリアクタータンク、複合膜アセンブリー6及び攪拌システムからなり、図2に示す複合膜アセンブリーが採用され、このうち、アノード複合膜は、チタンネットとカーボンクロスとがPVDFで張り付けられることで形成され、カソード複合膜は、ステンレスのシルクネットとカーボンクロスとがPVDFで張り付けられることで形成され、分離層は、不織布である。カソード複合膜アセンブリーは、導電性が良い導線7を介して電源システム2の負極と接続され、アノード複合膜は、導線を介して電源の正極と接続され、膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンク内に設置され、リアクタータンク内のリアクター液体を均一に混合させ、一定流量の方式で運行する。電源がオンになり、運行電圧が2.0Vになり、膜リアクターを起動させ、油圧保持時間が1hで、6hだけ運行し、運行の最中に膜間差圧が0.7kPaになるように安定し、排水制御システム4で排水流量を調整し、システムの脱塩率が65〜72%になる。
[Example 1]
By adopting the process device shown in FIG. 1, the water supply system 1 is composed of a water supply tank and a water supply flow rate adjusting device, and the bitter salt water mainly composed of NaCl that matches the process requirements through pre-processing is supplied to the water supply tank. And the salt amount of the feed water is 1200 mg / L (measured by TDS), and the feed water flow rate is adjusted to control the membrane flux to 10 L / m 2 h. The drainage port of the water supply tank is connected to the membrane reactor via a pipe, the wastewater enters the membrane reactor, and the membrane reactor is composed of the reactor tank, the composite membrane assembly 6 and the stirring system. The composite membrane assembly shown in FIG. Among them, the anode composite film is formed by pasting titanium net and carbon cloth with PVDF, and the cathode composite film is formed by pasting stainless silk net and carbon cloth with PVDF. The separation layer is a nonwoven fabric. The cathode composite membrane assembly is connected to the negative electrode of the power supply system 2 through a conductive wire 7 having good conductivity, the anode composite membrane is connected to the positive electrode of the power supply through a conductive wire, and the membrane reactor has a submerged arrangement system. A stirrer is installed in the reactor tank, the reactor liquid in the reactor tank is uniformly mixed, and the system is operated at a constant flow rate. The power is turned on, the operating voltage is 2.0V, the membrane reactor is started, the hydraulic pressure holding time is 1h, it operates for 6h, and the transmembrane pressure difference is 0.7kPa during the operation. The drainage control system 4 adjusts the drainage flow rate, and the desalination rate of the system is 65 to 72%.

[実施例2]
図1に示すプロセス装置を採用することにより、給水システム1は、給水タンクと給水流量調整装置とからなり、プリ処理を介してプロセス要求に合致した、冷間圧延廃水の生物処理排水をタンクに流し、給水の塩量が1000mg/L(TDSで計測)になり、浮遊固形物の濃度が50mg/Lになり、給水流量を調整して膜フラックスが40L/m2hになるように制御する。給水タンクは、その排水ポートが膜リアクターとパイプを介して接続され、その排水が膜リアクターに入り、膜リアクターがリアクタータンク、複合膜アセンブリー6及び攪拌システムからなり、図2に示す複合膜アセンブリーが採用され、このうち、アノード複合膜とカソード複合膜とは、何れもチタンネットとカーボンクロスとがPANで張り付けられることで形成され、分離層がナイロンネットである。カソード複合膜アセンブリーは、導電性が良い導線7を介して電源システム2の負極と接続され、アノード複合膜アセンブリーは、導線を介して電源の正極と接続され、膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンク内に設置され、リアクタータンク内のリアクター液体を均一に混合させ、一定流量の方式で運行する。電源がオンになり、運行電圧が1.6Vになり、膜リアクターを起動させ、油圧保持時間が15minで、4hだけ運行し、運行の最中に膜間差圧が2.3kPaになるように安定し、膜リアクターのリアクタータンクの排水ポートがパイプを介して排水システムと接続され、排水制御システム4で排水流量を調整し、システムの脱塩率が60〜70%になり、排水の浮遊固形物の濃度が検出の閾値を下回るようになっている。
[Example 2]
By adopting the process device shown in FIG. 1, the water supply system 1 is composed of a water supply tank and a water supply flow rate adjusting device, and the biological treatment wastewater of cold rolling wastewater that meets the process requirements through pre-treatment is stored in the tank. The amount of salt in the feed water is 1000 mg / L (measured with TDS), the concentration of suspended solids is 50 mg / L, and the feed flux is adjusted to control the membrane flux to 40 L / m 2 h. . The drainage port of the water supply tank is connected to the membrane reactor via a pipe, the wastewater enters the membrane reactor, and the membrane reactor is composed of the reactor tank, the composite membrane assembly 6 and the stirring system. The composite membrane assembly shown in FIG. Among them, the anode composite membrane and the cathode composite membrane are both formed by attaching a titanium net and a carbon cloth with PAN, and the separation layer is a nylon net. The cathode composite membrane assembly is connected to the negative electrode of the power supply system 2 through the conductive wire 7 having good conductivity, the anode composite membrane assembly is connected to the positive electrode of the power supply through the conductive wire, and the membrane reactor is a submersible arrangement system. The stirrer is installed in the reactor tank, and the reactor liquid in the reactor tank is uniformly mixed and operated in a constant flow rate manner. The power is turned on, the operation voltage becomes 1.6 V, the membrane reactor is started, the hydraulic pressure holding time is 15 min, it operates for 4 hours, and the transmembrane pressure difference becomes 2.3 kPa during operation. Stable, the drainage port of the reactor tank of the membrane reactor is connected to the drainage system through a pipe, the drainage control system 4 adjusts the drainage flow rate, the system desalination rate becomes 60-70%, and the wastewater solids The concentration of the object falls below the detection threshold.

[実施例3]
図1に示すプロセス装置を採用することにより、給水システム1は、給水タンクと給水流量調整装置とからなり、プリ処理を介してプロセス要求に合致した、硝酸塩を主にするある肥料生産工業廃水が給水タンクに入り、給水の塩量が900mg/L(TDSで計測)になり、給水流量を調整して膜フラックスが10L/m2hになるように制御する。給水タンクは、その排水ポートがパイプを介して膜リアクターと接続され、その排水が膜リアクターに入り、膜リアクターがリアクタータンク、複合膜アセンブリー6及び攪拌システムからなり、図2に示す複合膜アセンブリーが採用され、このうち、アノード複合膜とカソード複合膜が何れもチタンネットとカーボンナノチューブとからなり、分離層がナイロンネットであり、カソード複合膜アセンブリーは、導電性が良い導線7を介して電源システム2の負極と接続され、アノード複合膜は、導線を介して電源の正極と接続され、膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンクに設置され、リアクタータンク内のリアクター液体を均一に混合させ、一定流量の方式で運行する。電源がオンになり、運行電圧が2.0Vになり、膜リアクターを起動させ、油圧保持時間が1hで、4hだけ運行し、運行の最中に膜間差圧が2.4kPaになるように安定し、膜リアクターのリアクタータンクの排水ポートがパイプを介して排水システムと接続され、排水制御システム4で排水流量を調整し、システムの脱塩率が57〜68%になる。
[Example 3]
By adopting the process device shown in FIG. 1, the water supply system 1 is composed of a water supply tank and a water supply flow rate adjusting device, and certain fertilizer-producing industrial wastewater mainly composed of nitrate that meets the process requirements through pre-processing. Entering the water supply tank, the amount of salt in the water supply becomes 900 mg / L (measured by TDS), and the flow rate of the water supply is adjusted to control the membrane flux to 10 L / m 2 h. The drainage port of the water supply tank is connected to the membrane reactor through a pipe, the wastewater enters the membrane reactor, and the membrane reactor is composed of the reactor tank, the composite membrane assembly 6 and the stirring system. The composite membrane assembly shown in FIG. Among them, the anode composite membrane and the cathode composite membrane are both made of titanium net and carbon nanotube, the separation layer is nylon net, and the cathode composite membrane assembly is connected to the power supply system via the conductive wire 7 having good conductivity. The anode composite membrane is connected to the positive electrode of the power source via a conductor, the membrane reactor is configured to adopt a submersible arrangement system, the stirrer is installed in the reactor tank, the reactor The reactor liquid in the tank is evenly mixed and operated with a constant flow rate. The power is turned on, the operation voltage becomes 2.0 V, the membrane reactor is started, the hydraulic pressure holding time is 1 h, the operation is only for 4 h, and the transmembrane pressure difference is 2.4 kPa during operation. The drainage port of the reactor tank of the membrane reactor is connected to the drainage system via a pipe, the drainage flow rate is adjusted by the drainage control system 4, and the desalination rate of the system becomes 57 to 68%.

[実施例4]
図1に示すプロセス装置を採用することにより、給水システム1は、給水タンクと給水流量調整装置とからなり、プリ処理を介してプロセス要求に合致した、ある銅を含んだ廃水が給水タンクに入り、給水の塩量が500mg/L(TDSで計測)になり、給水流量を調整して膜フラックスが25L/m2hになるように制御する。給水タンクは、その排水ポートがパイプを介して膜リアクターと接続され、その排水が膜リアクターに入り、膜リアクターがリアクタータンク、複合膜アセンブリー6及び攪拌システムからなり、図2に示す複合膜アセンブリーが採用され、このうち、アノード複合膜とカソード複合膜が何れもチタンネットとカーボンナノチューブとからなり、分離層がナイロンネットであり、カソード複合膜アセンブリーは、導電性が良い導線7を介して電源システム2の負極と接続され、アノード複合膜は、導線を介して電源の正極と接続され、膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンク内に設置され、リアクタータンク内のリアクター液体を均一に混合させ、一定流量の方式で運行する。電源がオンになり、運行電圧が1.6Vになり、膜リアクターを起動させ、油圧保持時間が24minで、3hだけ運行し、運行の最中に膜間差圧が1.5kPaになるように安定し、膜リアクターのリアクタータンクの排水ポートがパイプを介して排水システムと接続され、排水制御システム4で排水流量を調整し、システムの脱塩率が45〜58%になる。
[Example 4]
By adopting the process device shown in FIG. 1, the water supply system 1 is composed of a water supply tank and a water supply flow rate adjusting device, and waste water containing copper that meets the process requirements through pre-treatment enters the water supply tank. The salt amount of the feed water is 500 mg / L (measured by TDS), and the feed water flow rate is adjusted to control the membrane flux to 25 L / m 2 h. The drainage port of the water supply tank is connected to the membrane reactor through a pipe, the wastewater enters the membrane reactor, and the membrane reactor is composed of the reactor tank, the composite membrane assembly 6 and the stirring system. The composite membrane assembly shown in FIG. Among them, the anode composite membrane and the cathode composite membrane are both made of titanium net and carbon nanotube, the separation layer is nylon net, and the cathode composite membrane assembly is connected to the power supply system via the conductive wire 7 having good conductivity. The anode composite membrane is connected to the positive electrode of the power source via a conductor, the membrane reactor is configured to adopt a submersible arrangement system, the stirrer is installed in the reactor tank, The reactor liquid in the reactor tank is mixed uniformly and operated in a constant flow rate system. The power is turned on, the operation voltage becomes 1.6 V, the membrane reactor is started, the hydraulic pressure holding time is 24 min, it operates for 3 hours, and the transmembrane pressure difference becomes 1.5 kPa during operation. The drainage port of the reactor tank of the membrane reactor is connected to the drainage system via a pipe, and the drainage flow rate is adjusted by the drainage control system 4, so that the desalination rate of the system is 45 to 58%.

1…給水システム、2…電源システム、3…膜リアクター、4…排水制御システム、5…清浄水タンク、6…複合膜アセンブリー、7…導線、8…カソード複合膜、9…アノード複合膜、10…分離層、11…カソード電流コレクタ、12…カソード電極、13…アノード電極、14…アノード電流コレクタ   DESCRIPTION OF SYMBOLS 1 ... Water supply system, 2 ... Power supply system, 3 ... Membrane reactor, 4 ... Drainage control system, 5 ... Clean water tank, 6 ... Composite membrane assembly, 7 ... Conductor, 8 ... Cathode composite membrane, 9 ... Anode composite membrane, 10 ... separation layer, 11 ... cathode current collector, 12 ... cathode electrode, 13 ... anode electrode, 14 ... anode current collector

各々の複合膜アセンブリーは、フラットフィルムになるよう構成され、カソード複合膜8、アノード複合膜9及び分離層10からなり、このうち、カソード複合膜は、カソード電極12とカソード電流コレクタ11をポリマー材料で張り付けることで形成されるものであり、アノード複合膜は、アノード電極13とアノード電流コレクタ14をポリマー材料で張り付けることで形成されるものであり、前記カソード複合膜8とアノード複合膜9とは、短絡を防止するように分離層10で仕切られ、前記カソード電流コレクタが給水ポート側に位置し、アノード電流コレクタが排水ポート側に位置し、即ち、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出される。
具体的には、プロセス要求に合致した給水を給水タンクに入れ、給水流量調整装置で給水流量を調整し、給水タンクの排水が膜リアクターに入り、一定流量又は一定圧力の方式を採用するように運行し、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出され、膜フラックスが8〜50L/(m2h)になるように制御し、膜間差圧が0.4〜20kPaになり、電源をオンにし、膜リアクターを起動させ、塩を含んだ廃水中のイオン型汚染物を吸着するステップを備える。
Each composite membrane assembly is configured to be a flat film, and includes a cathode composite membrane 8, an anode composite membrane 9, and a separation layer 10, and the cathode composite membrane includes a cathode electrode 12 and a cathode current collector 11 as a polymer material. The anode composite film is formed by attaching the anode electrode 13 and the anode current collector 14 with a polymer material, and the cathode composite film 8 and the anode composite film 9 are formed. Is separated by a separation layer 10 so as to prevent a short circuit, the cathode current collector is located on the water supply port side, the anode current collector is located on the drainage port side, that is, the water supply is first performed on the cathode current collector and the cathode. Flow through the electrode and flow through the separation layer, then flow through the anode current collector and the anode electrode, from the membrane It is discharged to the conductive composite membrane reactor to exit.
Specifically, feed water that meets the process requirements is put into the feed tank, the feed flow rate is adjusted with the feed water flow rate adjustment device, and the waste water from the feed water tank enters the membrane reactor, adopting a method of constant flow rate or constant pressure. The water supply flows through the cathode current collector and the cathode electrode through the separation layer first, then flows through the anode current collector and the anode electrode, and is discharged to the conductive composite membrane reactor so as to be discharged from the membrane. Control to be 8-50 L / (m 2 h), the transmembrane pressure difference becomes 0.4-20 kPa, the power is turned on, the membrane reactor is activated, and ionic contamination in wastewater containing salt A step of adsorbing an object.

本発明において、給水タンクの給水を制御するTDS濃度が5000mg/Lを下回るIn this invention, the TDS density | concentration which controls the water supply of a water supply tank is less than 5000 mg / L.

Claims (7)

導電複合膜リアクターで汚水の脱塩を実現し、前記導電複合膜リアクターが給水システム(1)、電源システム(2)、膜リアクター(3)、排水制御システム(4)及び清浄水タンク(5)からなり、
前記給水システム(1)は、給水タンクと給水流量調整装置とからなり、プロセス要求に応じて給水流量を調整し、給水流量調整装置が給水タンクの給水ポートに設置され、給水タンクの排水ポートがパイプを介して膜リアクターと接続され、膜リアクターがリアクタータンク、複合膜アセンブリー(6)及び攪拌システムからなり、リアクタータンク中に位置する複数の複合膜アセンブリー(6)がそれぞれ導電性の良い導線(7)を介して電源システム(2)の正極と負極に接続され、膜リアクターは、浸水式の配置方式を採用するように構成され、攪拌器がリアクタータンクに設置され、リアクタータンク内のリアクター液体を均一に混合させ、膜リアクターのリアクタータンクの排水ポートがパイプを介して排水システムと接続され、
各々の複合膜アセンブリーは、フラットフィルムになるよう構成され、カソード複合膜(8)、アノード複合膜(9)及び分離層(10)からなり、このうち、カソード複合膜は、カソード電極(11)とカソード電流コレクタ(12)をポリマー材料で張り付けることで形成されるものであり、アノード複合膜は、アノード電極(13)とアノード電流コレクタ(14)をポリマー材料で張り付けることで形成されるものであり、
前記カソード複合膜(8)とアノード複合膜(9)とは、短絡を防止するように分離層(10)で仕切られ、前記カソード電流コレクタが給水ポート側に位置し、アノード電流コレクタが排水ポート側に位置し、即ち、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出され、
具体的には、プロセス要求に合致した給水を給水タンクに入れ、給水流量調整装置で給水流量を調整し、給水タンクの排水が膜リアクターに入り、一定流量又は一定圧力の方式を採用するように運行し、給水が先にカソード電流コレクタとカソード電極を流れて分離層を流れてから、アノード電流コレクタとアノード電極を流れて、膜から排出するように導電複合膜リアクターに排出され、膜フラックスが8〜50L/(m2h)になるように制御し、膜間差圧が0.4〜20kPaになり、電源をオンにし、膜リアクターを起動させ、塩を含んだ廃水中のイオン型汚染物を吸着するステップを備える、
ことを特徴とする汚水の脱塩回収に適用する複合膜分離方法。
The conductive composite membrane reactor achieves desalination of sewage, and the conductive composite membrane reactor includes a water supply system (1), a power supply system (2), a membrane reactor (3), a drainage control system (4), and a clean water tank (5). Consists of
The water supply system (1) includes a water supply tank and a water supply flow rate adjusting device, adjusts the water supply flow rate according to the process requirements, the water supply flow rate adjusting device is installed in the water supply port of the water supply tank, The membrane reactor is connected to a membrane reactor via a pipe, and the membrane reactor includes a reactor tank, a composite membrane assembly (6), and a stirring system. A plurality of composite membrane assemblies (6) located in the reactor tank are each electrically conductive wires ( 7) is connected to the positive and negative electrodes of the power supply system (2) via the membrane reactor is configured to adopt a submersible arrangement, the stirrer is installed in the reactor tank, and the reactor liquid in the reactor tank The reactor tank's reactor tank drain port is connected to the drainage system via a pipe.
Each composite membrane assembly is configured to be a flat film, and includes a cathode composite membrane (8), an anode composite membrane (9), and a separation layer (10). Of these, the cathode composite membrane is a cathode electrode (11). The cathode current collector (12) is pasted with a polymer material, and the anode composite film is formed by pasting the anode electrode (13) and the anode current collector (14) with a polymer material. Is,
The cathode composite membrane (8) and the anode composite membrane (9) are partitioned by a separation layer (10) so as to prevent a short circuit, the cathode current collector is located on the water supply port side, and the anode current collector is a drain port. Located on the side, i.e. the feed water first flows through the cathode current collector and cathode electrode and then through the separation layer, then flows through the anode current collector and anode electrode and is discharged to the conductive composite membrane reactor so as to be discharged from the membrane. ,
Specifically, feed water that meets the process requirements is put into the feed tank, the feed flow rate is adjusted with the feed water flow rate adjustment device, and the waste water from the feed water tank enters the membrane reactor, adopting a method of constant flow rate or constant pressure. The water supply flows through the cathode current collector and the cathode electrode through the separation layer first, then flows through the anode current collector and the anode electrode, and is discharged to the conductive composite membrane reactor so as to be discharged from the membrane. Control to be 8-50 L / (m 2 h), the transmembrane pressure difference becomes 0.4-20 kPa, the power is turned on, the membrane reactor is activated, and ionic contamination in wastewater containing salt A step of adsorbing an object,
A composite membrane separation method applied to desalination and recovery of sewage.
給水タンクの給水濃度が5000mg/L(TDSで計測)を下回るように制御する、ことを特徴とする請求項1に記載の汚水の脱塩回収に適用する複合膜分離方法。   2. The composite membrane separation method applied to desalination and recovery of sewage according to claim 1, wherein the feed water concentration of the water tank is controlled to be less than 5000 mg / L (measured by TDS). 外から与えられた直流電圧範囲が0.4〜2.0Vになる、
ことを特徴とする請求項1に記載の汚水の脱塩回収に適用する複合膜分離方法。
DC voltage range given from outside becomes 0.4-2.0V,
The composite membrane separation method applied to the desalination and recovery of sewage according to claim 1.
電源システムは、一定電圧の直流電源から電気吸着過程に給電し、カソード複合膜が電源の負極に接続され、アノード複合膜が電源の正極に接続され、電源システムとカソード又はアノードとが接続される電気回路中に電流検出装置を設けて電流の状況をリアルタイムに検出する、
ことを特徴とする請求項1に記載の汚水の脱塩回収に適用する複合膜分離方法。
The power supply system supplies power to the electroadsorption process from a constant voltage DC power supply, the cathode composite membrane is connected to the negative electrode of the power supply, the anode composite membrane is connected to the positive electrode of the power supply, and the power supply system and the cathode or anode are connected. Provide a current detection device in the electric circuit to detect the current status in real time.
The composite membrane separation method applied to the desalination and recovery of sewage according to claim 1.
カソード電流コレクタ又はアノード電流コレクタは、導電性の良いネット形状材料を採用し、
前記材料は、チタン、チタン合金材料又はステンレス鋼材料のうち何れか一つであり、
カソード電極又はアノード電極が、カーボンクロス、カーボンナノチューブ、活性炭粉末または繊維、カーボンエアロゲル、グラフェン、カーボンブラックのうち何れか一つである炭素系材料を採用し、
ポリマー材料が、高分子ポリマーを採用し、具体的にはポリビニリデンフルオライド、ポリエーテルスルホン、ポリテトラフルオルエチレン、或いはポリアクリロニトリルのうち何れか一つである、
ことを特徴とする請求項1に記載の汚水の脱塩回収に適用する複合膜分離方法。
The cathode current collector or anode current collector uses a net-shaped material with good conductivity,
The material is any one of titanium, titanium alloy material or stainless steel material,
The cathode electrode or the anode electrode adopts a carbon-based material that is any one of carbon cloth, carbon nanotube, activated carbon powder or fiber, carbon aerogel, graphene, carbon black,
The polymer material employs a high molecular polymer, and specifically is any one of polyvinylidene fluoride, polyethersulfone, polytetrafluoroethylene, or polyacrylonitrile.
The composite membrane separation method applied to the desalination and recovery of sewage according to claim 1.
前記カソード複合膜とアノード複合膜とは、異なる電極材料と電流コレクタ材料を採用する、
ことを特徴とする請求項5に記載の汚水の脱塩回収に適用する複合膜分離方法。
The cathode composite membrane and the anode composite membrane employ different electrode materials and current collector materials,
The composite membrane separation method applied to the desalination collection | recovery of the sewage of Claim 5 characterized by the above-mentioned.
前記分離層は、ナイロンネット、不織布、及びポリプロピレン材料のうち何れか一つである、水透過性の良い材料を採用する、
ことを特徴とする請求項1に記載の汚水の脱塩回収に適用する複合膜分離方法。
The separation layer employs a material having good water permeability, which is any one of nylon net, nonwoven fabric, and polypropylene material.
The composite membrane separation method applied to the desalination and recovery of sewage according to claim 1.
JP2018537775A 2016-01-22 2016-10-27 Composite membrane separation method applied to desalination and recovery of sewage Active JP6583868B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610041958.4 2016-01-22
CN201610041958.4A CN105692817B (en) 2016-01-22 2016-01-22 A kind of compound membrane separating method suitable for sewage desalination reuse
PCT/CN2016/103464 WO2017124798A1 (en) 2016-01-22 2016-10-27 Composite membrane separation method applicable to desalting and recycling of sewage

Publications (2)

Publication Number Publication Date
JP2019506292A true JP2019506292A (en) 2019-03-07
JP6583868B2 JP6583868B2 (en) 2019-10-02

Family

ID=56228549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537775A Active JP6583868B2 (en) 2016-01-22 2016-10-27 Composite membrane separation method applied to desalination and recovery of sewage

Country Status (4)

Country Link
JP (1) JP6583868B2 (en)
CN (1) CN105692817B (en)
AU (1) AU2016388020B2 (en)
WO (1) WO2017124798A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692817B (en) * 2016-01-22 2018-02-09 同济大学 A kind of compound membrane separating method suitable for sewage desalination reuse
CN107441950B (en) * 2017-08-02 2020-05-05 同济大学 Electrochemical coupling ceramic filter membrane and application thereof
CN109987755B (en) * 2017-12-29 2024-01-19 宁波方太厨具有限公司 Water filtration system
CN110526349A (en) * 2018-05-24 2019-12-03 华东理工大学 A kind of electricity auxiliary membrane separating method
CN110182906B (en) * 2019-07-12 2022-01-11 山东大学 Treatment process for degrading organic wastewater by conductive organic membrane coupling filtering system
CN110498491B (en) * 2019-08-28 2021-03-16 山东大学 Treatment process for degrading antibiotic wastewater by electrochemical membrane filtration coupling system
CN111359449B (en) * 2020-03-03 2021-05-18 清华大学 Electroactive film and method for preparing same
CN112358097B (en) * 2020-11-13 2022-10-25 昆明理工大学 Method and device for strengthening high-electrolyte wastewater treatment through multiple physical fields
CN114149075B (en) * 2021-12-09 2024-04-09 吉林省电力科学研究院有限公司 Membrane biological reaction system with desalting capability
CN115676986A (en) * 2022-11-01 2023-02-03 河南师范大学 Three-dimensional pore structure Fe 2 O 3 Preparation and application of/rGO/foamed nickel composite capacitive desalination electrode
CN116835790B (en) * 2023-06-15 2024-03-08 艾培克环保科技(上海)有限公司 Treatment process of butyl acrylate wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688271A (en) * 1991-07-03 1994-03-29 Konica Corp Carbonaceous electrode type electrolytic cell
JP2004097915A (en) * 2002-09-06 2004-04-02 Nomura Micro Sci Co Ltd Electro-desalting method and electro-desalting apparatus
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234016A (en) * 1990-02-09 1991-10-18 Isuzu Motors Ltd Electric double layer capacitor
US6309532B1 (en) * 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
US7813106B2 (en) * 2006-12-19 2010-10-12 General Electric Company High current efficiency supercapacitor desalination devices and methods of making the same
CN101615512B (en) * 2008-06-24 2013-02-06 通用电气公司 Super-capacitor device and manufacturing method thereof
US9469554B2 (en) * 2009-07-29 2016-10-18 General Electric Company Bipolar electrode and supercapacitor desalination device, and methods of manufacture
CN101891286B (en) * 2010-04-02 2012-05-02 广州天至环保科技有限公司 System for purifying and recycling electroplating/chemical plating wastewater on line
CN104211141B (en) * 2014-09-11 2016-07-06 北京今大禹环保技术有限公司 The cloth water-bound of a kind of SPE electrolysis bath and water distribution method thereof
CN105692817B (en) * 2016-01-22 2018-02-09 同济大学 A kind of compound membrane separating method suitable for sewage desalination reuse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688271A (en) * 1991-07-03 1994-03-29 Konica Corp Carbonaceous electrode type electrolytic cell
JP2004097915A (en) * 2002-09-06 2004-04-02 Nomura Micro Sci Co Ltd Electro-desalting method and electro-desalting apparatus
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water

Also Published As

Publication number Publication date
AU2016388020B2 (en) 2019-10-10
JP6583868B2 (en) 2019-10-02
CN105692817A (en) 2016-06-22
WO2017124798A1 (en) 2017-07-27
AU2016388020A1 (en) 2018-08-09
CN105692817B (en) 2018-02-09

Similar Documents

Publication Publication Date Title
JP6583868B2 (en) Composite membrane separation method applied to desalination and recovery of sewage
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
CN110002530B (en) Membrane adsorption assembly, renewable membrane adsorption reactor, liquid treatment device and method
JP2008114213A (en) Method for treating water
KR101299735B1 (en) Capacitive deionization method for drinking water treatment
US20110240472A1 (en) Capacitive deionization cell with through-flow
CN101891331B (en) Integrated treatment device for active carbon adsorption and electrochemical regeneration and use method thereof
JP2004537411A (en) Movable electrode flow-through capacitor
CN102320696A (en) Large water treatment equipment and control method thereof
CN102329029A (en) Method for removing fluorin ions in water through electrocoagulation-adsorption
CN109354304A (en) A kind of sewage treatment and energy recovery method based on three-level membrane separation technique
KR102301795B1 (en) Household water purifier comprising carbon electrode filter
CN103819036A (en) Treating method for desulfurization waste water of power plant
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
CN212476408U (en) Sewage treatment system
CN213357034U (en) Electro-adsorption desalination device
CN108751480A (en) A kind of method and system of the industrial high-salt wastewater of processing
JP2004008888A (en) Oil separation method and oil separation apparatus for oil-containing liquid
CN108033524B (en) Double-layer mixed bed membraneless electrodeionization system and method for heavy metal wastewater treatment
CN111233094A (en) Water purification system and water purifier
Xu et al. Electrosorption of heavy metals with capacitive deionization: Water reuse, desalination and resources recovery
CN206970371U (en) A kind of casing processes sewage-treatment plant
CN111606397A (en) Water purifier and method based on dielectrophoresis nano-membrane and electrodialysis
JP2002336863A (en) Method and apparatus for making desalted water
JP2002336859A (en) Desalted water making method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190827

R150 Certificate of patent or registration of utility model

Ref document number: 6583868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250