JP3302443B2 - Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same - Google Patents

Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same

Info

Publication number
JP3302443B2
JP3302443B2 JP13935493A JP13935493A JP3302443B2 JP 3302443 B2 JP3302443 B2 JP 3302443B2 JP 13935493 A JP13935493 A JP 13935493A JP 13935493 A JP13935493 A JP 13935493A JP 3302443 B2 JP3302443 B2 JP 3302443B2
Authority
JP
Japan
Prior art keywords
liquid
layer capacitor
activated carbon
flow
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13935493A
Other languages
Japanese (ja)
Other versions
JPH06325983A (en
Inventor
利郎 音羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP13935493A priority Critical patent/JP3302443B2/en
Priority to PCT/US1994/005364 priority patent/WO1994026669A1/en
Priority to US08/379,493 priority patent/US5538611A/en
Publication of JPH06325983A publication Critical patent/JPH06325983A/en
Application granted granted Critical
Publication of JP3302443B2 publication Critical patent/JP3302443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/247Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2475Separation means, e.g. membranes inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2493Means for assembling plates together, e.g. sealing means, screws, bolts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The object of the invention is to provide a flow-through, electric, double-layer capacitor providing for a high, steady rate of removal of ionic substances and amenable to commercial scale application and a method of treating fluids using the flow-through electric double-layer capacitor. The invention is a planar, flow-through, electric, double-layer capacitor comprising a separator (1) consisting in an electrically-insulating, porous, flow-through sheet, activated carbon layers (2, 2), each comprising a high specific surface area activated carbon as a main component, collectors (3, 3) disposed externally of the active carbon layers (2, 2), and retaining plates (4, 4) disposed externally of the collectors (3, 3). A fluid containing ionic substances is treated by passing the fluid through the planar, flow-through, electric, double-layer capacitor and repeating, in alternate cycles, application of a direct current constant voltage to collectors (3, 3) and short-circuiting or reversal of connection between collectors (3, 3).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、活性炭層を用いた平板
形状の通液型電気二重層コンデンサに関するものであ
る。またその平板形状の通液型電気二重層コンデンサを
用いて、イオン性物質を含む液体を処理する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat, liquid-flow type electric double layer capacitor using an activated carbon layer. Also, the present invention relates to a method for treating a liquid containing an ionic substance using the flat-plate type liquid-flow type electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層コンデンサを用い、静電力を
利用してイオン性物質を含む水中からそのイオン性物質
を除去する方法が知られている。
2. Description of the Related Art There is known a method of removing an ionic substance from water containing an ionic substance by using an electrostatic force by using an electric double layer capacitor.

【0003】たとえば、米国特許第5192432号明
細書には、液体の精製を目的とする定電荷クロマトグラ
フ用カラムに用いる通液型コンデンサであって、第1の
導電性支持層、第1の高表面積導電性層、第1の非導電
性多孔質のスペーサ層、第2の導電性支持層、第2の高
表面積導電性層、第2の非導電性多孔質のスペーサ層な
どを含む複数の隣接層群をスパイラル状に巻回した通液
型コンデンサが示されている。また同明細書には、この
コンデンサはたとえば塩化ナトリウム等のイオン性物質
を含む水の精製に用いうることも示されている。
[0003] For example, US Pat. No. 5,192,432 discloses a liquid-flow type capacitor used for a column for constant charge chromatography for purifying a liquid, which comprises a first conductive support layer and a first high-pressure layer. A plurality of layers including a surface area conductive layer, a first non-conductive porous spacer layer, a second conductive support layer, a second high surface area conductive layer, a second non-conductive porous spacer layer, and the like. A liquid-flowing capacitor in which adjacent layers are spirally wound is shown. The specification also discloses that the condenser can be used for purifying water containing an ionic substance such as sodium chloride.

【0004】[0004]

【発明が解決しようとする課題】米国特許第51924
32号明細書に開示の通液型コンデンサは興味のあるも
のであり、本出願人は現在においてはこの米国特許の権
利者と協力しながらそれぞれの立場で研究を行ってい
る。
SUMMARY OF THE INVENTION U.S. Pat.
The through-flow condenser disclosed in the specification of US Pat. No. 32 is of interest, and the present applicant is currently conducting research in their respective positions in cooperation with the assignee of the US patent.

【0005】しかしながら、この通液型コンデンサは隣
接層群をスパイラル状に巻回した構造を有するため通液
時に偏流を生じやすく、この通液型コンデンサをイオン
性物質を含む液体の精製に適用した場合、精製操作中に
イオン性物質の除去率が変動して安定しない上、その除
去率が平均的にはかなり低くなるという事実が判明し
た。そのため、この通液型コンデンサを工業的規模で液
体の精製に用いることは困難であるという事態に立ち至
った。
However, since the liquid-flow condenser has a structure in which adjacent layers are spirally wound, a drift is likely to occur when the liquid is passed, and the liquid-flow condenser is applied to the purification of a liquid containing an ionic substance. In this case, it has been found that the removal rate of the ionic substance fluctuates during the purification operation and is not stable, and that the removal rate becomes considerably low on average. For this reason, it has been difficult to use this liquid-flow condenser for liquid purification on an industrial scale.

【0006】本発明は、このような背景下において、イ
オン性物質の除去率が高くかつ安定しており、工業的規
模での実施が可能な通液型電気二重層コンデンサを提供
すること、およびその通液型電気二重層コンデンサを用
いた液体の処理方法を提供することを目的とするもので
ある。
[0006] Under such circumstances, the present invention provides a flow-through type electric double layer capacitor which has a high and stable removal rate of ionic substances and can be implemented on an industrial scale. It is an object of the present invention to provide a method for treating a liquid using the liquid-pass type electric double layer capacitor.

【0007】[0007]

【課題を解決するための手段】本発明の平板形状の通液
型電気二重層コンデンサは、電気絶縁性多孔質通液性シ
ートからなるセパレータ(1) を挟んで、高比表面積活性
炭を主材とする活性炭層(2), (2)を配置し、その活性炭
層(2), (2)の外側に集電極(3), (3)を配置し、さらにそ
の集電極(3), (3)の外側に押え板(4), (4)を配置した構
成を有するものである。
According to the present invention, there is provided a flat-plate type liquid-permeation type electric double-layer capacitor according to the present invention comprising a high specific surface area activated carbon sandwiched between separators (1) made of an electrically insulating porous liquid-permeable sheet. Activated carbon layers (2) and (2) are arranged, and collecting electrodes (3) and (3) are arranged outside the activated carbon layers (2) and (2). It has a configuration in which the holding plates (4), (4) are arranged outside of (3).

【0008】また本発明の液体の処理方法は、上記の平
板形状の通液型電気二重層コンデンサにイオン性物質を
含む液体を通液しながら、集電極(3), (3)への直流定電
圧の印加と、両集電極(3), (3)間のショートまたは逆接
続とを交互に繰り返すことを特徴とするものである。
Further, the method for treating a liquid according to the present invention is characterized in that the liquid containing an ionic substance is passed through the above-mentioned flat plate type liquid-permeation type electric double layer capacitor while the direct current to the collecting electrodes (3) and (3) is supplied. The method is characterized in that the application of a constant voltage and the short-circuit or reverse connection between both collector electrodes (3), (3) are alternately repeated.

【0009】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】セパレータ(1) としては、ろ紙、多孔質高
分子膜、織布、不織布など、液体の通過が容易でかつ電
気絶縁性を有する有機質または無機質のシートからなる
ものが用いられる。セパレータ(1) の厚さは、0.01〜0.
5mm 程度、殊に0.02〜0.3mm程度が適当である。
As the separator (1), a filter made of an organic or inorganic sheet, such as a filter paper, a porous polymer membrane, a woven fabric, or a nonwoven fabric, which allows easy passage of liquid and has electrical insulation properties is used. The thickness of the separator (1) is 0.01 to 0.
About 5 mm, especially about 0.02 to 0.3 mm is suitable.

【0011】活性炭層(2), (2)としては、高比表面積活
性炭を主材とする層が用いられる。高比表面積活性炭と
は、BET比表面積1000m2/g以上、好ましくは15
00m2/g以上、さらに好ましくは2000〜2500m2
/gの活性炭を言う。BET比表面積が余りに小さいとき
は、イオン性物質を含む液体を通したときのイオン性物
質の除去率が低下する。なおBET比表面積が余りに大
きくなるとイオン性物質の除去率がかえって低下する傾
向があるので、BET比表面積を必要以上に大きくする
には及ばない。
As the activated carbon layers (2), (2), a layer mainly composed of activated carbon having a high specific surface area is used. The high specific surface area activated carbon is a BET specific surface area of 1,000 m 2 / g or more, preferably 15 m 2 / g or more.
00 m 2 / g or more, more preferably 2000 to 2500 m 2
/ g activated carbon. When the BET specific surface area is too small, the removal rate of the ionic substance when passing through the liquid containing the ionic substance decreases. If the BET specific surface area is too large, the removal rate of the ionic substance tends to be rather lowered, so that it is not sufficient to increase the BET specific surface area more than necessary.

【0012】使用する活性炭の形状は、粉粒状、繊維状
など任意である。粉粒状の場合には平板状またはシート
状に成形して用い、繊維状の場合には布状に加工して用
いる。粉粒状活性炭を平板状またはシート状に成形して
用いることは、繊維状の活性炭を布状に加工して用いる
場合に比し、コストの点からは格段に有利である。
The shape of the activated carbon to be used is arbitrary such as powdery and granular, fibrous and the like. In the case of a powdery or granular form, it is used after being formed into a flat plate or a sheet. The use of powdered or granular activated carbon formed into a flat plate or a sheet is significantly more advantageous in terms of cost than the case where fibrous activated carbon is processed into a cloth.

【0013】平板状またはシート状への成形は、たとえ
ば、粉粒状活性炭をバインダー成分(ポリテトラフルオ
ロエチレン、フェノール樹脂、カーボンブラック等)お
よび/または分散媒(溶媒等)と混合して板状に成形し
てから、適宜熱処理することにより得られる。活性炭層
(2), (2)として平板状またはシート状のものを用いる場
合は、必要に応じこれに穿孔加工を施しておくこともで
きる。なお、平板状またはシート状の活性炭を用いる技
術については、特開昭63−107011号公報、特開
平3−122008号公報、特開平3−228814
号、特開昭63−110622号、特開昭63−226
019号公報、特開昭64−1219号公報などにも開
示があるので、それらの公報に開示のものを参考にする
こともできる。
For forming into a flat plate or a sheet, for example, powdered granular activated carbon is mixed with a binder component (polytetrafluoroethylene, phenol resin, carbon black, etc.) and / or a dispersion medium (solvent, etc.) to form a plate. It is obtained by appropriately heat-treating after molding. Activated carbon layer
When a flat plate or a sheet is used as (2), (2), a perforation process can be performed on the plate if necessary. In addition, with respect to the technique of using activated carbon in the form of a plate or a sheet, Japanese Patent Application Laid-Open Nos. 63-107011, 3-122008, and 3-228814 are disclosed.
JP-A-63-110622, JP-A-63-226
No. 019 and Japanese Unexamined Patent Publication (Kokai) No. 64-1219, etc., the disclosures of these publications can also be referred to.

【0014】活性炭層(2), (2)の厚さは、 0.1〜3mm程
度、殊に 0.5〜2mm程度とすることが多いが、必ずしも
この範囲内に限られるものではない。
The thickness of the activated carbon layers (2), (2) is often about 0.1 to 3 mm, especially about 0.5 to 2 mm, but is not necessarily limited to this range.

【0015】集電極(3), (3)としては、銅板、アルミニ
ウム板、カーボン板、フォイル状グラファイトなどの電
気良導体であって、活性炭層(2), (2)との緊密な接触が
可能なものが用いられる。集電極(3), (3)の厚さには限
定はないが、 0.1〜0.5mm 程度のものを用いることが多
い。印加を容易にするため、集電極(3), (3)には端子
(リード)(3a)を設けるのが通常である。
The collectors (3) and (3) are made of an electric conductor such as a copper plate, an aluminum plate, a carbon plate, or foil-like graphite, and can be in close contact with the activated carbon layers (2) and (2). Is used. The thickness of the collecting electrodes (3), (3) is not limited, but is often about 0.1 to 0.5 mm. Usually, terminals (leads) (3a) are provided on the collecting electrodes (3) and (3) to facilitate application.

【0016】押え板(4), (4)としては、プラスチックス
板などの電気絶縁性材料からできた変形しにくい平板が
用いられる。この押え板(4), (4)には、液入口、液出
口、固定用ボルト孔などを適宜設けることができる。
As the holding plates (4), (4), a flat plate made of an electrically insulating material such as a plastics plate, which is difficult to deform, is used. The holding plates (4), (4) can be appropriately provided with a liquid inlet, a liquid outlet, fixing bolt holes, and the like.

【0017】集電極(3), (3)と押え板(4), (4)との間に
は、枠状のガスケット(5), (5)を介在させることが望ま
しい。そのようなガスケット(5), (5)を独立に設ける代
りに、押え板(4), (4)側にシール機能を有する部材を設
けておくこともできる。
It is desirable to interpose frame-like gaskets (5), (5) between the collectors (3), (3) and the holding plates (4), (4). Instead of providing such gaskets (5) and (5) independently, a member having a sealing function may be provided on the side of the holding plates (4) and (4).

【0018】上記の部材を用いて、押え板(4) /(ガス
ケット(5) /)集電極(3) /活性炭層(2) /セパレータ
(1) /活性炭層(2) /集電極(3) /(ガスケット(5)
/)押え板(4) の構成を有する平板形状の通液型電気二
重層コンデンサが組み立てられる。
Using the above members, a holding plate (4) / (gasket (5) /) collector electrode (3) / activated carbon layer (2) / separator
(1) / activated carbon layer (2) / collecting electrode (3) / (gasket (5)
/) A flat-plate, liquid-flow type electric double layer capacitor having the structure of the holding plate (4) is assembled.

【0019】上記構造の平板形状の通液型電気二重層コ
ンデンサを用いて、イオン性物質を含む液体の処理がな
される。液体の処理とは、水の浄化、海水の淡水化、廃
液の脱窒素の如き精製処理だけでなく、貴金属の回収、
無機塩の精製、溶存するイオン性物質の定量などイオン
性物質の捕捉・回収のための処理も含む。液体として
は、水やその他の無機系溶媒、有機系溶媒あるいはこれ
らの混合溶媒を媒体とするものがあげられ、血液などで
あってもよい。イオン性物質としては、金属塩、アミン
塩、アンモニウム塩、無機酸、有機酸など液中で解離可
能な電解質や帯電性物質があげられる。
A liquid containing an ionic substance is treated using the flat-plate, liquid-flow type electric double layer capacitor having the above structure. Liquid treatment includes not only purification treatment such as water purification, seawater desalination, and denitrification of waste liquid, but also recovery of precious metals,
It also includes processes for capturing and recovering ionic substances such as purification of inorganic salts and quantification of dissolved ionic substances. Examples of the liquid include those using water, another inorganic solvent, an organic solvent, or a mixed solvent thereof as a medium, such as blood. Examples of the ionic substance include an electrolyte and a chargeable substance that can be dissociated in a liquid such as a metal salt, an amine salt, an ammonium salt, an inorganic acid, and an organic acid.

【0020】本発明に従ってイオン性物質を含む液体の
処理を行うにあたっては、次の手順が採用される。 ・ 平板形状の通液型電気二重層コンデンサを組み立
て、送液ポンプ等で液入口からイオン性物質を含む液体
を通液する。 ・ 直流定電圧供給源より 0.5〜5ボルト(水溶液の場
合には水が電気分解しないように2ボルト程度までにと
どめる)またはその前後の電圧を集電極(3), (3)の端子
より印加する。なお水溶液の場合には ・ 液出口部分の液を導電率計などを用いてモニター
し、適当なタイミングでショート(または逆接続)、印
加を繰り返す。タイマーによる時間的な制御も可能であ
る。ショート(または逆接続)時には、活性炭層(2),
(2)に電気的に吸着されていたイオン性物質が脱離し、
濃縮液となって液出口から排出される。
In the treatment of a liquid containing an ionic substance according to the present invention, the following procedure is employed.・ Assemble a flat-plate, liquid-flow type electric double-layer capacitor, and pass the liquid containing ionic substances from the liquid inlet using a liquid feed pump or the like.・ 0.5 to 5 volts from the DC constant voltage supply source (in the case of aqueous solution, keep it to about 2 volts so as not to electrolyze water) or the voltage before and after that is applied from the terminals of the collecting electrodes (3) and (3) I do. In the case of an aqueous solution:-Monitor the liquid at the liquid outlet using a conductivity meter or the like, and short-circuit (or reverse connect) and repeat application at appropriate timing. Temporal control by a timer is also possible. When short (or reverse connection), activated carbon layer (2),
The ionic substance electrically adsorbed on (2) is desorbed,
It is discharged from the liquid outlet as a concentrated liquid.

【0021】[0021]

【作用】本発明の平板形状の通液型電気二重層コンデン
サを用いてイオン性物質を含む液体の処理を行うときの
原理を、イオン性物質を含む液体が食塩水である場合を
例にとって図6に示す。
The principle of processing a liquid containing an ionic substance by using the flat-plate type liquid-permeation type electric double-layer capacitor of the present invention will be described by taking a case where the liquid containing an ionic substance is a saline solution as an example. 6 is shown.

【0022】図6(イ)のように、電圧印加時には、通
水した水中のナトリウンムイオンはアノード側の集電極
(3) に接する活性炭層(2) に電気的に吸着され、塩素イ
オンはカソード側の集電極(3) に接する活性炭層(2) に
電気的に吸着され、その結果出口水中の食塩濃度は著減
する。通水を続けると活性炭層(2), (2)に対する両イオ
ンの吸着は飽和に達するので、出口における食塩濃度は
原液のそれに近くなる。適当なタイミングを見てカソー
ド側とアノード側とをショートさせるか逆接続すれば、
図6(ロ)のように、活性炭層(2), (2)に吸着されてい
たナトリムイオンおよび塩素イオンが脱離し、原液中の
食塩濃度よりはるかに高濃度の食塩水が出口より排出さ
れる。この際、通液時の流速を落とすなどの工夫を凝ら
せば、出口水中の食塩濃度はさらに上昇する。
As shown in FIG. 6 (a), when a voltage is applied, the sodium ions in the passed water are collected by the anode-side collector electrode.
(3) is electrically adsorbed to the activated carbon layer (2) in contact with the collector electrode (3) on the cathode side, and chloride ions are electrically adsorbed to the activated carbon layer (2) in contact with the collector electrode (3) on the cathode side. Decrease significantly. If water is continued, the adsorption of both ions to the activated carbon layers (2) and (2) reaches saturation, so that the salt concentration at the outlet is close to that of the stock solution. If you short-circuit or reverse connect the cathode and anode sides at an appropriate timing,
As shown in Fig. 6 (b), the sodium ion and chloride ion adsorbed on the activated carbon layers (2) and (2) are desorbed, and the salt solution having a concentration much higher than the salt concentration in the stock solution is discharged from the outlet. You. At this time, the salt concentration in the outlet water can be further increased by taking measures such as reducing the flow velocity during the passage of the liquid.

【0023】そして本発明においては、フラットな活性
炭層(2), (2)を用いると共に、各部材を配置して圧締し
た平板形状の構造としてあるため、活性炭層(2), (2)を
均等に圧縮でき、通液時の液の偏流を効果的に防止する
ことができる。そのため、イオン性物質の除去率の安定
化が図られ、しかもその除去率を極限にまで高めること
ができる。
In the present invention, since the flat activated carbon layers (2) and (2) are used and each member is arranged and pressed into a flat plate-shaped structure, the activated carbon layers (2) and (2) Can be uniformly compressed, and the drift of the liquid at the time of passing the liquid can be effectively prevented. Therefore, the removal rate of the ionic substance is stabilized, and the removal rate can be increased to the limit.

【0024】[0024]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
The present invention will be further described with reference to the following examples.

【0025】〈通液型電気二重層コンデンサの作製〉 装置例 図1は本発明の通液型電気二重層コンデンサの分解図、
図2はその組み立て図である。なお図2においては集電
極(3), (3)を断面で表示してある。
<Production of Liquid-Pass Type Electric Double-Layer Capacitor> Example of Apparatus FIG. 1 is an exploded view of a liquid-pass type electric double-layer capacitor of the present invention.
FIG. 2 is an assembly diagram. In FIG. 2, the collectors (3) and (3) are shown in cross section.

【0026】下記の部材を準備し、図2の通液型電気二
重層コンデンサを作製した。
The following members were prepared, and the liquid-flow type electric double layer capacitor shown in FIG. 2 was produced.

【0027】(1) は平板状セパレータであり、厚さ約
0.2mmのろ紙を用いている。
(1) is a flat separator having a thickness of about
0.2mm filter paper is used.

【0028】(2), (2)は120mm×120mmの大きさの
比重 0.4の活性炭層であり、石油コークスを水酸化カリ
ウムで賦活することにより製造されたBET比表面積2
200m2/gの粉粒状の高比表面積活性炭をポリテトラフ
ルオロエチレン、カーボンブラックおよび適当な分散媒
と混合して厚さ 1.0mmの板状に圧縮成形したものからな
る。成形時の活性炭の配合割合は80重量%であり、2
枚の活性炭層(2), (2)に含まれる活性炭の合計量は10
gである。
(2) and (2) are activated carbon layers having a specific gravity of 0.4 and a size of 120 mm × 120 mm, and a BET specific surface area of 2 produced by activating petroleum coke with potassium hydroxide.
It is made by mixing 200 m 2 / g of powdery high specific surface area activated carbon with polytetrafluoroethylene, carbon black and an appropriate dispersion medium and compression-molding into a 1.0 mm-thick plate. The mixing ratio of activated carbon at the time of molding was 80% by weight.
The total amount of activated carbon in the activated carbon layers (2) and (2) is 10
g.

【0029】(3), (3)は集電極であり、厚さ125μm
のフォイル状のグラファイトからなる。一方の集電極
(3) の下半分には径1mm程度の通液孔(3b)を穿設してあ
り、他方の集電極(3) の上半分には同様の通液孔(3b)を
穿設してある。また、これらの集電極(3), (3)にはいず
れも端子(3a)を付設してある。
(3) and (3) are collector electrodes having a thickness of 125 μm.
Of foil-like graphite. One collector electrode
A liquid passage hole (3b) with a diameter of about 1 mm is formed in the lower half of (3), and a similar liquid passage hole (3b) is formed in the upper half of the other collector (3). is there. Each of the collecting electrodes (3) and (3) is provided with a terminal (3a).

【0030】(4), (4)は押え板であり、厚さ10mmのポ
リメチルメタクリレート板からなる。押え板(4), (4)の
周縁にはボルト孔(8) を設けてある。また、一方の押え
板(4) の片側の下隅には液入口(6) を設けてあり、他方
の押え板(4) の対角側の上隅には液出口(7) を設けてあ
る。
(4), (4) are holding plates, which are made of a polymethyl methacrylate plate having a thickness of 10 mm. Bolt holes (8) are provided on the periphery of the holding plates (4) and (4). A liquid inlet (6) is provided at a lower corner on one side of one holding plate (4), and a liquid outlet (7) is provided at an upper diagonal corner of the other holding plate (4). .

【0031】(5), (5)はいずれも厚さ1mmの枠状のガス
ケットであり、シリコーンゴムシートを枠状に打ち抜い
たものを用いている。
Each of (5) and (5) is a frame-shaped gasket having a thickness of 1 mm, which is obtained by punching a silicone rubber sheet into a frame.

【0032】上記の各部材を図1の配置関係となるよう
にし、ボルト・ナット(9) を用いて圧締して図2の通液
型電気二重層コンデンサを組み立てた。
Each of the above-described members was arranged in the arrangement shown in FIG. 1 and pressed together using bolts and nuts (9) to assemble the liquid-flow type electric double layer capacitor shown in FIG.

【0033】〈イオン性物質を含む液体の処理〉 処理例1 上記で得た通液型電気二重層コンデンサを用い、図2の
ように集電極(3), (3)の端子(3a), (3a)を1ボルトの直
流電源とつなぎ、押え板(4) の液入口(6) から濃度0.01
モル/リットルの食塩水を通液し、流し放し状態で液出
口(7) より流出させた。
<Treatment of Liquid Containing Ionic Substance> Treatment Example 1 Using the flow-through type electric double layer capacitor obtained above, as shown in FIG. 2, the terminals (3a) and (3a) of the collectors (3) and (3) were used. (3a) is connected to a 1 volt DC power supply, and the concentration 0.01 from the liquid inlet (6) of the holding plate (4).
The solution was passed through a mol / liter saline solution, and allowed to flow out from the liquid outlet (7) in a drained state.

【0034】食塩水通液時の流速をそれぞれ 0.9ml/mi
n、 9.1ml/minとしたときの積算通液量と出口液食塩濃
度との関係を図3に示す。
The flow rate when passing saline solution is 0.9 ml / mi, respectively.
FIG. 3 shows the relationship between the integrated flow rate and the outlet liquid salt concentration when n and 9.1 ml / min.

【0035】図3から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下して、流速0.9ml/minの場合に
は最大で93%の食塩が除去され、流速 9.1ml/minの場
合には最大で70%の食塩が除去されることがわかる。
From FIG. 3, it can be seen from FIG. 3 that when the constant voltage of 1 volt is applied, the outlet salt concentration sharply drops, and when the flow rate is 0.9 ml / min, a maximum of 93% of salt is removed, and when the flow rate is 9.1 ml / min. Shows that up to 70% of the salt is removed.

【0036】処理例2 図4は図2の通液型電気二重層コンデンサに食塩水を通
液し、定電圧印加とショートとを交互に繰り返したとき
の積算通液量と出口液食塩濃度との関係を示したグラフ
である。
Processing Example 2 FIG. 4 shows the accumulated amount of liquid and the outlet salt concentration when the saline solution is passed through the electric double layer condenser of FIG. 2 and the application of the constant voltage and the short circuit are alternately repeated. 5 is a graph showing the relationship of FIG.

【0037】上記で得た通液型電気二重層コンデンサを
用い、図2のように集電極(3), (3)の端子(3a), (3a)を
1ボルトの直流電源とつなぎ、押え板(4) の液入口(6)
から濃度0.01モル/リットルの食塩水を 0.9ml/minの流
速で通液し、流し放し状態で液出口(7) より流出させ
た。
The terminals (3a) and (3a) of the collectors (3) and (3) were connected to a 1 volt DC power source as shown in FIG. Board (4) liquid inlet (6)
, A saline solution having a concentration of 0.01 mol / liter was passed through the solution at a flow rate of 0.9 ml / min, and was allowed to flow out from the liquid outlet (7) in a drained state.

【0038】図4中に付記のタイミングで1ボルト定電
圧の印加とショートとを繰り返し、液出口(7) から流出
する液中の食塩濃度を測定した。結果を図4に示す。
The application of a constant voltage of 1 volt and the short circuit were repeated at the timing shown in FIG. 4, and the salt concentration in the liquid flowing out from the liquid outlet (7) was measured. FIG. 4 shows the results.

【0039】図4から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下して最大で93%の食塩が除去
され、ショートさせると最大で約4倍にまで食塩濃度が
高まった液が導出されること、出口食塩濃度が原液のそ
れ近くになった時点で再度印加を開始すると出口食塩濃
度急激に低下して同様に最大で93%まで食塩が除去さ
れ、ショートさせると最大で約4倍にまで食塩濃度の高
まった液が導出されること、以下同様のパターンを10
回以上繰り返しても同様の結果が得られること、従って
脱イオン率の安定性がすぐれていることがわかる。
FIG. 4 shows that the application of a constant voltage of 1 volt sharply lowers the outlet salt concentration and removes up to 93% of salt, and short-circuiting increases the salt concentration up to about 4 times. When the application is started again when the outlet salt concentration becomes close to that of the undiluted solution, the outlet salt concentration sharply drops and the salt is also removed up to 93% in the same manner. The solution with a higher salt concentration is derived by a factor of two.
It can be seen that the same result can be obtained even if the repetition is repeated more than once, and that the stability of the deionization rate is excellent.

【0040】処理例3 活性炭層(2), (2)としてBET比表面積1450m2/gの
繊維状活性炭からなるフェルト状の布を用いたほかは、
上記の装置例と同様にして通液型電気二重層コンデンサ
を組み立てた。
Processing Example 3 Except for using a felt-like cloth made of fibrous activated carbon having a BET specific surface area of 1450 m 2 / g as the activated carbon layers (2) and (2),
A flow-through type electric double layer capacitor was assembled in the same manner as in the above apparatus example.

【0041】上記で得た通液型電気二重層コンデンサを
用い、図2のように集電極(3), (3)の端子(3a), (3a)を
1ボルトの直流電源とつなぎ、押え板(4) の液入口(6)
から濃度0.01モル/リットルの食塩水を通液し、流し放
し状態で液出口(7) より流出させた。
The terminals (3a) and (3a) of the collectors (3) and (3) were connected to a 1 volt DC power source as shown in FIG. Board (4) liquid inlet (6)
A saline solution having a concentration of 0.01 mol / liter was passed through the flask, and was allowed to flow out from the liquid outlet (7) in a drained state.

【0042】食塩水通液時の流速をそれぞれ 1.0ml/mi
n、10ml/minとしたときの積算通液量と出口液食塩濃
度との関係を図5に示す。なお流速は、2枚の活性炭層
(2), (2)を構成する繊維状活性炭の合計量10g当りの
流速である。
The flow rate when passing saline solution was 1.0 ml / mi
FIG. 5 shows the relationship between the integrated flow rate and the outlet salt concentration when n and 10 ml / min. The flow rate is two activated carbon beds
(2) This is the flow rate per 10 g of the total amount of the fibrous activated carbon constituting (2).

【0043】図5から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下すること、また流速 1.0ml/min
の場合の食塩除去率がすぐれているのみならず、流速を
10ml/minとしても食塩除去率が大きいことがわかる。
From FIG. 5, it can be seen that the outlet salt concentration is sharply reduced by applying a constant voltage of 1 volt, and the flow rate is 1.0 ml / min.
It can be seen that not only the salt removal rate in case (1) is excellent but also the salt removal rate is large even when the flow rate is set to 10 ml / min.

【0044】[0044]

【発明の効果】作用の項でも述べたように、本発明の通
液型電気二重層コンデンサにおいては、フラットな活性
炭層(2), (2)を用いると共に、各部材を配置して圧締し
た平板形状の構造としてあるため、活性炭層(2), (2)を
均等に圧縮でき、通液時の液の偏流を効果的に防止する
ことができる。そのため、イオン性物質の除去率の安定
化が図られ、しかもその除去率を極限にまで高めること
ができる。また大型化しても全体の厚さが薄いため、こ
れを並列に多段に並べて大容量化することも容易であ
る。よって本発明により、工業的規模での液体の処理が
可能となる。
As described in the section of operation, in the flow-through type electric double layer capacitor of the present invention, the flat activated carbon layers (2) and (2) are used, and the members are arranged and pressed. Because of the flat plate-shaped structure, the activated carbon layers (2) and (2) can be compressed uniformly, and the drift of the liquid during passage can be effectively prevented. Therefore, the removal rate of the ionic substance is stabilized, and the removal rate can be increased to the limit. In addition, since the overall thickness is small even when the size is increased, it is easy to increase the capacity by arranging them in parallel in multiple stages. Thus, the present invention enables the treatment of liquids on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の通液型電気二重層コンデンサの分解図
である。
FIG. 1 is an exploded view of a flow-through type electric double layer capacitor of the present invention.

【図2】図1の通液型電気二重層コンデンサの組み立て
図である。
FIG. 2 is an assembly diagram of the liquid-permeation type electric double layer capacitor of FIG. 1;

【図3】処理例1において、食塩水通液時の流速をそれ
ぞれ 0.9ml/min、 9.1ml/minとしたときの積算通液量と
出口液食塩濃度との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the integrated flow rate and the outlet salt concentration when the flow rates of the saline solution are 0.9 ml / min and 9.1 ml / min, respectively, in Processing Example 1.

【図4】処理例2において、図2の通液型電気二重層コ
ンデンサに食塩水を通液し、定電圧印加とショートとを
交互に繰り返したときの積算通液量と出口液食塩濃度と
の関係を示したグラフである。
FIG. 4 is a graph showing a flow rate of a saline solution in the electric double-layer capacitor of FIG. 2 and a cumulative flow rate and an outlet salt concentration when a constant voltage application and a short circuit are alternately repeated. 5 is a graph showing the relationship of FIG.

【図5】処理例3において、食塩水通液時の流速をそれ
ぞれ 1.0ml/min、10ml/minとしたときの積算通液量と
出口液食塩濃度との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between the integrated flow rate and the outlet salt concentration when the flow rates of the saline solution are set to 1.0 ml / min and 10 ml / min, respectively, in Processing Example 3.

【図6】本発明の平板形状の通液型電気二重層コンデン
サを用いてイオン性物質を含む液体の処理を行うときの
原理図である。
FIG. 6 is a principle diagram when a liquid containing an ionic substance is processed using the flat-plate, liquid-flow type electric double layer capacitor of the present invention.

【符号の説明】[Explanation of symbols]

(1) …セパレータ、(2) …活性炭層、(3) …集電極、(3
a)…端子、(3b)…通液孔、(4) …押え板、(5) …ガスケ
ット、(6) …液入口、(7) …液出口、(8) …ボルト孔、
(9) …ボルト・ナット
(1) ... separator, (2) ... activated carbon layer, (3) ... collector electrode, (3
a) Terminal, (3b) Liquid hole, (4) Holding plate, (5) Gasket, (6) Liquid inlet, (7) Liquid outlet, (8) Bolt hole,
(9)… bolts and nuts

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気絶縁性多孔質通液性シートからなるセ
パレータ(1) を挟んで、高比表面積活性炭を主材とする
活性炭層(2), (2)を配置し、その活性炭層(2), (2)の外
側に集電極(3), (3)を配置し、さらにその集電極(3),
(3)の外側に押え板(4), (4)を配置した構成を有する平
板形状の通液型電気二重層コンデンサ。
An activated carbon layer (2) mainly composed of activated carbon having a high specific surface area is disposed with a separator (1) made of an electrically insulating porous liquid-permeable sheet interposed therebetween. Collector electrodes (3), (3) are arranged outside of (2), (2), and the collector electrodes (3), (3),
A flat-plate, liquid-flow type electric double-layer capacitor having a configuration in which the holding plates (4) and (4) are arranged outside the (3).
【請求項2】集電極(3), (3)と押え板(4), (4)との間に
枠状のガスケット(5), (5)を介在させてなる請求項1記
載の通液型電気二重層コンデンサ。
2. The communication device according to claim 1, wherein frame-like gaskets (5) are interposed between the collecting electrodes (3) and (3) and the holding plates (4) and (4). Liquid type electric double layer capacitor.
【請求項3】請求項1の平板形状の通液型電気二重層コ
ンデンサにイオン性物質を含む液体を通液しながら、集
電極(3), (3)への直流定電圧の印加と、両集電極(3),
(3)間のショートまたは逆接続とを交互に繰り返すこと
を特徴とする液体の処理方法。
3. Applying a constant DC voltage to the collecting electrodes (3), (3) while passing a liquid containing an ionic substance through the plate-shaped liquid-flow type electric double layer capacitor of claim 1; Double collector electrode (3),
(3) A method for treating a liquid, comprising alternately repeating short-circuiting or reverse connection between the liquids.
JP13935493A 1993-05-17 1993-05-17 Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same Expired - Fee Related JP3302443B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13935493A JP3302443B2 (en) 1993-05-17 1993-05-17 Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
PCT/US1994/005364 WO1994026669A1 (en) 1993-05-17 1994-05-12 A planar, flow-through, electric, double-layer capacitor and method of treating fluids with the capacitor
US08/379,493 US5538611A (en) 1993-05-17 1994-05-12 Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13935493A JP3302443B2 (en) 1993-05-17 1993-05-17 Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same

Publications (2)

Publication Number Publication Date
JPH06325983A JPH06325983A (en) 1994-11-25
JP3302443B2 true JP3302443B2 (en) 2002-07-15

Family

ID=15243380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13935493A Expired - Fee Related JP3302443B2 (en) 1993-05-17 1993-05-17 Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same

Country Status (2)

Country Link
JP (1) JP3302443B2 (en)
WO (1) WO1994026669A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049901A (en) 2016-11-02 2019-05-09 미쓰비시덴키 가부시키가이샤 Water treatment device and water treatment method
KR20190116495A (en) 2017-03-28 2019-10-14 미쓰비시덴키 가부시키가이샤 Assembly method and water treatment method of water treatment device, water treatment system, water treatment device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620597A (en) * 1990-04-23 1997-04-15 Andelman; Marc D. Non-fouling flow-through capacitor
US5425858A (en) * 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
GB2332210B (en) * 1997-12-10 2000-07-19 Toshiba Kk Processing method of waste water and processing apparatus thereof
US6781817B2 (en) 2000-10-02 2004-08-24 Biosource, Inc. Fringe-field capacitor electrode for electrochemical device
JP2003039070A (en) * 2001-07-27 2003-02-12 Kurita Water Ind Ltd Device and method for producing desalted water
EP1939143A4 (en) 2005-09-27 2011-05-25 Tanah Process Ltd Ion concentration regulation method and ion concentration regulation apparatus
EP2109587A1 (en) * 2007-02-01 2009-10-21 General Electric Company Desalination method and device comprising supercapacitor electrodes
CN101980968B (en) 2008-03-25 2012-10-31 棚氏处理有限公司 Portable hardness regulating device for regulating hardness of potable water
CN101615512B (en) * 2008-06-24 2013-02-06 通用电气公司 Super-capacitor device and manufacturing method thereof
GB0822816D0 (en) * 2008-12-15 2009-01-21 Enpar Technologies Inc Electrostatic water filtration (esf) system and methid
JP5687620B2 (en) * 2009-06-23 2015-03-18 クラレケミカル株式会社 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
GB0921953D0 (en) * 2009-12-16 2010-02-03 Enpar Technologies Inc Flow-through electro static water filter
CN102060359B (en) * 2010-11-12 2012-02-08 北京化工大学 Capacitive desalination module
NL2007600C2 (en) * 2011-10-14 2013-04-16 Voltea Bv Method of producing an apparatus for removal of ions and apparatus for removal of ions.
CA2880444C (en) * 2012-08-03 2018-01-02 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. De-ionization treatment device and method for operating de-ionization treatment device
JP5622294B2 (en) * 2012-12-26 2014-11-12 和弘 林 Mass transfer process between electrodes in electrolyte is accelerated by voltage application
JP2016135459A (en) * 2013-05-15 2016-07-28 シャープ株式会社 Functional water generator
EP3037389B1 (en) 2014-12-24 2018-05-16 IDROPAN DELL'ORTO DEPURATORI S.r.l. Apparatus for purifying a fluid and method for the attainment thereof
WO2016186596A2 (en) * 2015-05-20 2016-11-24 Bayram Edip A production method
TR201506030A1 (en) * 2015-05-20 2016-12-21 Edip Bayram A water purification system
JPWO2020039676A1 (en) * 2018-08-23 2021-08-12 株式会社寿ホールディングス Water treatment equipment and manufacturing method of ion concentration adjusted water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658674A (en) * 1966-02-28 1972-04-25 Standard Oil Co Ohio Process for demineralization of water
US5192432A (en) * 1990-04-23 1993-03-09 Andelman Marc D Flow-through capacitor
US5200068A (en) * 1990-04-23 1993-04-06 Andelman Marc D Controlled charge chromatography system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049901A (en) 2016-11-02 2019-05-09 미쓰비시덴키 가부시키가이샤 Water treatment device and water treatment method
US10961135B2 (en) 2016-11-02 2021-03-30 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
KR20190116495A (en) 2017-03-28 2019-10-14 미쓰비시덴키 가부시키가이샤 Assembly method and water treatment method of water treatment device, water treatment system, water treatment device
US11667551B2 (en) 2017-03-28 2023-06-06 Mitsubishi Electric Corporation Water treatment device, water treatment system, method of assembling water treatment device, and water treatment method

Also Published As

Publication number Publication date
JPH06325983A (en) 1994-11-25
WO1994026669A1 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
US5538611A (en) Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor
JP4286931B2 (en) Liquid-permeable capacitor and liquid processing method using the same
US6413409B1 (en) Flow-through capacitor and method of treating liquids with it
Farmer et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes
US5425858A (en) Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
CN102060359B (en) Capacitive desalination module
US9233860B2 (en) Supercapacitor and method for making the same
JP3893740B2 (en) Electrolytic capacitor type desalting apparatus and desalting method
WO1994026669B1 (en) A planar, flow-through, electric, double-layer capacitor and method of treating fluids with the capacitor
US6798639B2 (en) Fluid deionization flow through capacitor systems
JP2004537411A (en) Movable electrode flow-through capacitor
JP5342468B2 (en) Liquid-flowing capacitor and method of operating the same
WO2007142722A2 (en) Electrochemical capacitive concentration and deactivation of actinide nuclear materials
JP2002273439A (en) Desalting method and device therefor
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2002336863A (en) Method and apparatus for making desalted water
JP2003200164A (en) Winding and liquid passing type condenser for removing charged matter from liquid and liquid treatment apparatus
JP2002336865A (en) Desalting apparatus and desalting method
JP4148628B2 (en) Liquid purification process
JP2002336859A (en) Desalted water making method
JP2002210468A (en) Demineralizing device and demineralizing method
JP2002273437A (en) Desalting device
JP2001058182A (en) Method and apparatus for passing liquid into liquid passing type capacitor
JP2002210334A (en) Apparatus for desalting and method for desalting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees