WO2010150397A1 - 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法 - Google Patents

正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法 Download PDF

Info

Publication number
WO2010150397A1
WO2010150397A1 PCT/JP2009/061706 JP2009061706W WO2010150397A1 WO 2010150397 A1 WO2010150397 A1 WO 2010150397A1 JP 2009061706 W JP2009061706 W JP 2009061706W WO 2010150397 A1 WO2010150397 A1 WO 2010150397A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
battery
electrode plate
electrode active
Prior art date
Application number
PCT/JP2009/061706
Other languages
English (en)
French (fr)
Inventor
匠 玉木
隆行 白根
裕明 今西
和宏 大川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/379,108 priority Critical patent/US20120107685A1/en
Priority to CN2009801599173A priority patent/CN102460779A/zh
Priority to PCT/JP2009/061706 priority patent/WO2010150397A1/ja
Priority to KR1020117030667A priority patent/KR101390548B1/ko
Priority to JP2011519451A priority patent/JP5375959B2/ja
Publication of WO2010150397A1 publication Critical patent/WO2010150397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode plate including a base and a positive electrode active material layer formed on the base, a battery using the positive electrode plate, a vehicle equipped with the battery, and a battery-equipped device. Moreover, it is related with the manufacturing method of such a positive electrode plate.
  • Patent Document 1 discloses an active material layer (positive electrode active material layer) using only a carboxymethyl cellulose (hereinafter also referred to as CMC) as a binder on a conductive layer (carbon coat layer).
  • CMC carboxymethyl cellulose
  • a positive electrode a positive electrode plate
  • the positive electrode active material layer is formed on the carbon coat layer, there is an advantage that the peel strength of the positive electrode active material layer can be increased.
  • the structure of CMC used in the binder changes in the presence of an alkaline substance such as a lithium composite oxide. Thereby, the viscosity of CMC becomes low compared with other binders, such as a polyethylene oxide (henceforth PEO), for example. For this reason, when manufacturing the positive electrode plate described in Patent Document 1, the viscosity of the active material paste in which CMC (binder), positive electrode active material particles, conductive material and solvent are kneaded is reduced.
  • Patent Document 1 also exemplifies, for example, polytetrafluoroethylene (hereinafter also referred to as PTFE) in addition to CMC as a binder for the positive electrode active material layer.
  • PTFE polytetrafluoroethylene
  • the PTFE particles and the conductive material easily form aggregates in the active material paste.
  • acetylene black is used as the conductive material, the PTFE particles are not dispersed in the active material paste, and some of them form a relatively large aggregate (particle size: 50 ⁇ m or more) together with acetylene black. End up.
  • the peel strength of the positive electrode active material layer is higher when PTFE is not included, and the battery resistance change rate (battery resistance value is the initial battery resistance value of the battery. It has been found that it can also be kept small.
  • the present invention has been made in view of such knowledge, and has a positive electrode active material layer with high peel strength and suppressed increase in battery resistance, a battery using this positive electrode plate, and this battery.
  • An object is to provide a vehicle equipped with a battery and a battery-equipped device. Moreover, it aims at providing the manufacturing method of the positive electrode plate which can manufacture a positive electrode active material layer appropriately.
  • One aspect of the present invention is a positive electrode plate comprising a conductive substrate and a positive electrode active material layer formed on the substrate and including positive electrode active material particles, a conductive material, and a binder,
  • the binder is a positive electrode plate made of only polyethylene oxide or made of only polyethylene oxide and carboxymethyl cellulose.
  • a battery using a positive electrode plate having a positive electrode active material layer using only PEO as a binder or only PEO and CMC is used as a positive electrode active material layer using PTFE together with PEO and CMC as a binder. It has been found that the peel strength of the positive electrode active material layer is high and the rate of change in battery resistance can be reduced as compared with a battery equipped with a battery. In addition, such a battery has a high peel strength and a low battery resistance change rate even compared to the battery of Patent Document 1, that is, a battery using only CMC as a binder.
  • the positive electrode plate described above has a positive electrode active material than a positive electrode active material layer using PTFE as a binder and a positive electrode active material layer using only CMC as a binder.
  • the peel strength of the material layer can be improved, and an increase in battery resistance can be suppressed.
  • the positive electrode active material layer aggregates derived from PTFE are not formed in the active material paste. That is, in this positive electrode plate, the formation of such aggregates is prevented, and the active material paste is uniformly applied to the substrate. Therefore, the battery characteristics can be stabilized by using this positive electrode plate.
  • Examples of the conductive material included in the positive electrode active material layer include the above-described carbon powder and metal powder such as nickel powder.
  • Examples of the positive electrode active material particles include lithium transition metal composite oxide particles such as lithium cobaltate, lithium nickelate, and lithium manganate, and iron olivine compounds.
  • the positive electrode plate described above may be a positive electrode plate in which a carbon coat layer containing carbon powder is interposed between the base and the positive electrode active material layer.
  • the carbon coat layer is interposed between the base and the positive electrode active material layer, the binding force between the base and the positive electrode active material layer can be reliably increased.
  • carbon black such as acetylene black, furnace black, and ketjen black, graphite powder, etc. are mentioned, for example.
  • the binding material may be a positive electrode plate made of only polyethylene oxide and carboxymethyl cellulose.
  • a battery using a positive electrode plate including a positive electrode active material layer containing only PEO and CMC as a binder is more than a battery using a positive electrode plate including a positive electrode active material layer containing only PEO as a binder. It has been found that the battery resistance change rate can be reduced. From this, if the above-mentioned positive electrode plate is used for a battery, it can be set as the battery which suppressed the increase in battery resistance.
  • the positive electrode active material layer may be a positive electrode plate containing 1 wt% each of the polyethylene oxide and the carboxymethyl cellulose.
  • a battery using a positive electrode plate having a positive electrode active material layer containing 1 wt% of PEO and CMC as a binder includes not only a battery using a positive electrode active material layer containing only CMC but also only PEO. It has been found that the battery resistance change rate can be made smaller than that of a battery using a positive electrode active material layer. This is because the coating amount of the positive electrode active material particles is small with CMC alone, and the surface of the positive electrode active material particles is deteriorated. Conversely, with PEO alone, the coverage of the positive electrode active material particles becomes large, and the area involved in the battery reaction in the surface area of the particles becomes narrow, and the inside of the positive electrode active material particles deteriorates when charging and discharging are repeated as a battery. It is thought that it is easy to do. From this, if the above-mentioned positive electrode plate is used for a battery, it can be set as the battery which suppressed the increase in battery resistance.
  • another aspect of the present invention is a battery using the positive electrode plate described above.
  • the above-described positive electrode plate is used for the battery described above, a battery having high peel strength of the positive electrode active material layer and suppressing an increase in battery resistance can be obtained.
  • another aspect of the present invention is a vehicle in which the battery described above is mounted and the electric energy from the battery is used for all or part of the power source.
  • the above-mentioned vehicle is equipped with the above-described battery, that is, the battery using the above-mentioned positive electrode plate, it can be a vehicle in which deterioration of driving performance is suppressed.
  • the vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • a vehicle that uses electric energy from a battery as a whole or a part of a power source.
  • an electric vehicle a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electric vehicle Examples include assist bicycles and electric scooters.
  • the other aspect of this invention is a battery mounting apparatus which mounts the battery mentioned above and uses the electrical energy by this battery as all or one part of an energy source.
  • the above-described battery-equipped device is equipped with the above-described battery, that is, a battery using the above-described positive electrode plate, it can be a battery-equipped device in which deterioration of characteristics is suppressed.
  • a battery mounting apparatus what is necessary is just an apparatus which mounts a battery and uses this as all or one part of an energy source, for example, a personal computer, a mobile telephone, a battery-powered electric tool, an uninterruptible power supply, etc. And various home appliances driven by batteries, office equipment, and industrial equipment.
  • another aspect of the present invention is a positive electrode plate comprising a conductive substrate and a positive electrode active material layer formed on the substrate and including positive electrode active material particles, a conductive material, and a binder.
  • the binder is made of polyethylene oxide alone or polyethylene oxide and carboxymethyl cellulose, and the positive electrode active material particles, the conductive material, and the active material paste kneaded with the binder are mixed with the substrate.
  • a positive electrode active material in which a positive electrode active material layer is formed by applying an active material paste using only PEO as a binder or using only PEO and CMC to a substrate and drying it. A layer forming step; For this reason, the positive electrode plate which has favorable peel strength and formed the positive electrode active material layer which maintained the appropriate shape in the base
  • PEO has higher alkali resistance than CMC.
  • CMC carbonate-semiconductor
  • the positive electrode plate includes a carbon coat layer containing carbon powder interposed between the base body and the positive electrode active material layer, and the positive electrode active material plate.
  • the material layer forming step may be a method for manufacturing a positive electrode plate in which the active material paste is applied on the carbon coat layer formed on the substrate in advance.
  • the positive electrode plate manufacturing method described above in the positive electrode active material layer forming step, since the coating is performed on the carbon coat layer formed on the substrate, the binding force between the formed positive electrode active material layer and the substrate is reliably increased. can do.
  • the positive electrode plate manufacturing method described above includes a filter passing step of passing the kneaded active material paste through a filter having a collection efficiency of 90% of 50 ⁇ m or less prior to the positive electrode active material layer forming step.
  • a method for manufacturing the electrode plate is preferable.
  • the above-described positive electrode plate manufacturing method includes the above-described filter passing step, so that foreign matters can be removed by the filter and foreign matters can be efficiently removed without clogging by aggregates.
  • the collection efficiency 90% is a thing of 50 micrometers or less, Specifically, the multilayer roll of a nonwoven fabric made from a polypropylene or polyethylene, the single layer pleat of a nonwoven fabric, a thread wound filter etc. are mentioned.
  • FIG. 1 is a perspective view of a battery according to Embodiment 1.
  • FIG. 3 is a perspective view of a negative electrode plate according to Embodiment 1.
  • FIG. 2 is a perspective view of a positive electrode plate according to Embodiment 1.
  • FIG. It is an expanded sectional view (A section of Drawing 3) of the positive electrode board of Embodiment 1.
  • 2 is a perspective view of a positive electrode plate according to Embodiment 1.
  • FIG. 2 is a perspective view of a positive electrode plate according to Embodiment 1.
  • FIG. 3 is an explanatory diagram of a positive electrode active material layer forming step of the positive electrode plate according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a positive electrode active material layer forming step of the positive electrode plate according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a positive electrode active material layer forming step of the positive electrode plate according to the first embodiment.
  • FIG. 3 is an explanatory diagram of a positive electrode active material layer forming step of the positive electrode plate according to the first embodiment. It is explanatory drawing of the vehicle concerning Embodiment 2.
  • FIG. It is explanatory drawing of the battery mounting apparatus concerning Embodiment 3.
  • FIG. 1 shows a perspective view of the battery 1 of the first embodiment.
  • the battery 1 is a wound lithium ion secondary battery including a power generating element 20 having a negative electrode plate 40 and a separator 50 in addition to the positive electrode plate 30 and an electrolyte solution (not shown) (see FIG. 1).
  • a power generation element 20 and an electrolytic solution are accommodated in a rectangular box-shaped battery case 10.
  • the battery case 10 has a battery case body 11 and a sealing lid 12 both made of aluminum. Of these, the battery case main body 11 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 10 and the power generation element 20.
  • the sealing lid 12 has a rectangular plate shape, and closes the opening of the battery case body 11 and is welded to the battery case body 11.
  • the positive electrode terminal portion 71 ⁇ / b> A and the negative electrode terminal portion 72 ⁇ / b> A located at the distal ends are penetrated through the sealing lid 12. 1 protrudes from the lid surface 12a facing upward.
  • An insulating member 75 made of an insulating resin is interposed between the positive terminal 71A and the negative terminal 72A and the sealing lid 12 to insulate each other.
  • a rectangular plate-shaped safety valve 77 is also sealed on the sealing lid 12.
  • an organic electrolytic solution in which LiPF 6 is added as a solute and a concentration of lithium ions is 1 mol / l.
  • the power generating element 20 is formed by winding a strip-shaped negative electrode plate 40 and a positive electrode plate 30 into a flat shape via a strip-shaped separator 50 made of polyethylene (see FIG. 1).
  • the positive electrode plate 30 and the negative electrode plate 40 of the power generation element 20 are respectively joined to a plate-like positive current collector 71 or negative current collector 72 bent in a crank shape.
  • the negative electrode plate 40 of the power generation element 20 has a strip shape extending in the longitudinal direction DA, a copper foil 48 made of copper, and a first foil main surface 48 a and a second foil main body of the copper foil 48. It has two negative electrode active material layers 41 and 41 laminated on the surface 48b, and a ceramic coat layer 42 formed on the negative electrode active material layers 41 and 41, respectively.
  • the ceramic coat layer 42 is made of alumina and polyvinylidene fluoride (PVDF). With this ceramic coat layer 42, even when the separator 50 contracts or breaks due to a short circuit due to a small hole or foreign matter in the separator 50, it is possible to prevent the short circuit point from being widened.
  • PVDF polyvinylidene fluoride
  • the negative electrode active material layer 41 includes a negative electrode active material (not shown) made of graphite, a binder (not shown) made of carboxymethylcellulose (CMC), and styrene butadiene rubber (SBR, not shown).
  • a negative electrode active material made of graphite
  • a binder made of carboxymethylcellulose (CMC)
  • SBR styrene butadiene rubber
  • the positive electrode plate 30 constituting the power generation element 20 will be described with reference to FIGS.
  • the positive electrode plate 30 has a strip shape extending in the longitudinal direction DA, an aluminum foil 38 made of aluminum, and main surfaces of the aluminum foil 38 (first foil main surface 38a, second foil).
  • Carbon coat layers 37, 37 formed on the main surface 38b) and a positive electrode active material layer 31 formed on the carbon coat layer 37 are provided.
  • the carbon coat layer 37 has a thickness of 2 ⁇ m and includes polyvinylidene fluoride (PVDF) (not shown) in addition to the carbon powder CP made of acetylene black.
  • PVDF polyvinylidene fluoride
  • This carbon coat layer 37 prevents the active material paste 31P (described later) from contacting the aluminum foil 38 and generating corrosion when forming the cathode active material layer 31 (described later). Plays an auxiliary role in physical contact with 31.
  • the positive electrode active material layer 31 of the positive electrode plate 30 includes CMC as the first binder 32A and PEO as the second binder 32B, as described below, while polytetrafluoroethylene. (PTFE) is not included. For this reason, there is a concern about a decrease in peel strength of the positive electrode active material layer 31 on the aluminum foil 38.
  • PTFE polytetrafluoroethylene.
  • the positive electrode active material layer 31 does not include PTFE, and the positive electrode active material particles 36 made of LiNi 0.82 Co 0.15 Al 0.03 O 2 and acetylene black.
  • the positive electrode active material layer 31 is kneaded by adding ion-exchanged water AQ to the positive electrode active material particles 36, the first binder 32A, the second binder 32B, and the conductive material 35.
  • the active material paste 31P is applied, dried, and further compressed.
  • Inventors performed the evaluation test about the characteristic (battery capacity and battery resistance) of the battery 1 mentioned above.
  • a new (initial) battery 1 that was just manufactured was tested. Specifically, as a battery capacity evaluation test, for a battery 1 that has been charged with constant current until the voltage between terminals reaches 4.1 V (full charge voltage) at a current value of 1 C, the voltage between terminals at a current value of 1 C Constant current discharge was performed until the voltage reached 2.5 V, and the discharged amount of electricity (battery capacity) was measured.
  • the terminal voltage is 3.537 V (the state of charge (SOC) is equivalent to 30% (2.5 to 4.1 V) at a current value of 1 C. (When the battery capacity in the voltage range of 100% is assumed to be 100%)), and then the battery is charged while keeping the voltage constant while gradually decreasing the current value from 1C to 0.02C (constant voltage) charging). After a 30-second pause, constant current discharge was performed at a current value of 30 C, and the voltage value at 10 seconds after the start of discharge was measured. The battery resistance value at this time was calculated according to Ohm's law.
  • the battery 1 subjected to the above test was subjected to a cycle test in which constant current charging and constant current discharging (current value is 1C for both) were repeated in a voltage range of 2.5 to 4.1V. Specifically, 2000 cycles were repeated continuously, with one set of charging / discharging as one cycle. Thereafter, the battery resistance value of the battery 1 was measured in the same manner as described above. Then, the battery resistance change rate of the battery 1 after the cycle test was calculated. This battery resistance change rate is obtained by dividing the battery resistance value after the cycle test by the battery resistance value at the time of a new article (initial) before the cycle test.
  • the inventors measured the peel strength of the positive electrode active material layer 31 of the positive electrode plate 30 in the battery 1. Specifically, using a tensile tester (not shown), the positive electrode plate 30 is fixed with a double-sided tape having sufficiently higher adhesive strength than the peel strength, and the positive electrode active material layer 31 is placed in a direction perpendicular to the positive electrode plate 30. The strength when pulled was measured.
  • the batteries 101 and 201 as other examples and the batteries C1 and C2 as comparative examples are also manufactured, and the evaluation test of these characteristics and the measurement of the peel strength of the positive electrode plate are performed in the same manner as the battery 1. went.
  • the battery 101 according to Example 2 is a positive electrode plate having a positive electrode active material layer 131 using only the second binder 32B (PEO) as a binder in addition to the positive electrode active material particles 36 and the conductive material 35. 130 is used (see FIGS. 1 and 5).
  • the battery 201 according to Example 3 was replaced with the positive electrode active material particles 36 made of LiCoO 2 instead of the positive electrode active material particles 36 made of LiNi 0.82 Co 0.15 Al 0.03 O 2 used in the battery 1.
  • the battery C1 according to Comparative Example 1 includes a positive electrode containing PTFE in addition to the positive electrode active material particles 36, the conductive material 35, the first binder 32A (CMC), and the second binder 32B (PEO).
  • a positive electrode plate having an active material layer was used.
  • the battery C2 according to Comparative Example 2 includes a positive electrode plate having a positive electrode active material layer using only the first binder 32A (CMC) as a binder in addition to the positive electrode active material particles 36 and the conductive material 35. Using.
  • Table 1 shows the test results of these batteries 1, 101, 201 and comparative batteries C1, C2.
  • the peel strength of the positive electrode active material layer in the positive electrode plate is a relative value (%) based on the peel strength of the positive electrode active material layer in the positive electrode plate used in the comparative battery C1.
  • the battery resistance change rates of the batteries 1, 101 and 201 are all smaller than that of the comparative battery C1. From this, it can be seen that the battery resistance change rate can be reduced in the battery using the positive electrode plate having the positive electrode active material layer not containing PTFE, rather than including PTFE. Furthermore, the peel strengths of the positive electrode active material layers 31, 131, and 231 in the positive electrode plates 30, 130, and 230 used for the batteries 1, 101, and 201, respectively, are relatively higher than those of the comparative battery C1. From this, it can be seen that the positive electrode active material layer not containing PTFE can have higher peel strength than containing PTFE.
  • the battery resistance change rates of the batteries 1, 101, 201 are all smaller than the comparative battery C2. Therefore, a positive electrode active material using only PEO (battery 1) or only PEO and CMC (batteries 101 and 201) as a binder rather than using only CMC as a binder (comparative battery C2). It turns out that the battery using the positive electrode plate which has a layer can make the battery resistance change rate small. Further, the peel strengths of the positive electrode active material layers 31, 131, and 231 included in the positive electrode plates 30, 130, and 230 used in the batteries 1, 101, and 201, respectively, are relatively higher than those of the comparative battery C2. From this, it can be seen that the positive electrode active material layer using only PEO or only PEO and CMC can have higher peel strength than using only CMC as the binder.
  • the positive electrode plates 30, 130, and 230 of the batteries 1, 101, and 201 have a comparative battery C 1, that is, a battery having a positive electrode active material layer using PTFE as a binder, and a comparative battery C 2,
  • the peel strength of the positive electrode active material layer 31 can be improved and the increase in battery resistance can be suppressed as compared with the case where the positive electrode active material layer using only CMC is used as the binder.
  • the positive electrode active material layer 31 including only PEO and CMC as the binder is provided. It can be seen that the battery 1 using the positive electrode plate 30 can have a lower rate of battery resistance change than the battery 101 using the positive electrode plate 130 having the positive electrode active material layer 131 containing only PEO as the binder.
  • the battery 201 of Example 3 in which LiCoO 2 was used as the positive electrode active material was also compared with the battery 101 in Example 2 in which the positive electrode active material was LiCoO 2 (details of characteristics are not shown). It has been found that the battery resistance change rate can be reduced. Therefore, it can be seen that it is more preferable to use the positive electrode plates 30 and 230 having the positive electrode active material layer using the binder composed only of PEO and CMC.
  • the battery resistance change rate of the battery 1 is smaller than the battery resistance change rate of the battery 101 as well as the comparative batteries C1 and C2. Therefore, it is particularly preferable to use the positive electrode plate 30 having the positive electrode active material layer 31 containing 1 wt% each of the first binder 32A (CMC) and the second binder 32B (PEO) as the binder. I understand that. This is because the coating amount of the positive electrode active material particles is small with CMC alone, and the surface of the positive electrode active material particles is deteriorated.
  • the coverage of the positive electrode active material particles becomes large, and the area involved in the battery reaction in the surface area of the particles becomes narrow, and the inside of the positive electrode active material particles deteriorates when charging and discharging are repeated as a battery. It is thought that it is easy to do. Further, the battery 1 using the positive electrode plate 30 having the positive electrode active material layer containing 1 wt% of PEO and CMC, respectively, can further suppress the increase in battery resistance.
  • the carbon coat layer 37 is formed on the aluminum foil 38.
  • 30 parts by weight of acetylene black forming the carbon powder CP and PVDF / NMP solution having a solid content of 13% obtained by mixing PVDF with n-methylpyrrolidone (NMP) were used.
  • NMP n-methylpyrrolidone
  • This carbon coat layer paste (not shown) was applied to both surfaces (first foil main surface 38a, second foil main surface 38b) of an aluminum foil 38 having a thickness of 15 ⁇ m with a gravure coater, and then dried.
  • a carbon coat layer 37 was formed.
  • a kneader 900 including a mixing tank 901 and a stirring blade 902 that stirs the contents stored in the mixing tank 901 while shearing is used.
  • the positive electrode active material layer forming step includes a coating step using the coating device 700 shown in FIG. 7 and a pressing step using the press device 800 shown in FIG.
  • the coating apparatus 700 includes an unwinding unit 701, a die 710, a heater 730, a winding unit 702, and a plurality of auxiliary rollers 740 (see FIG. 7).
  • the die 710 includes a metal paste holding unit 711 that stores therein the active material paste 31P that has passed through the filter 910, and the active material paste 31P that is held in the paste holding unit 711 in the carbon coat layer 37. And a discharge port 712 that continuously discharges toward the end.
  • the discharge port 712 is slit-shaped in the width direction of the aluminum foil 38 so as to discharge the active material paste 31P in a band shape onto the carbon coat layers 37, 37 formed on both surfaces of the aluminum foil 38 moving in the longitudinal direction DA. It opens parallel to the depth direction in FIG.
  • the heater 730 heats the aluminum foil 38 and the active material paste 31P applied to the aluminum foil 38.
  • the drying of the active material paste 31 ⁇ / b> P applied to the carbon coat layer 37 proceeds gradually, and when it has passed through the heater 730, the active material
  • the paste 31P is completely dried, that is, the ion-exchanged water AQ in the active material paste 31P is completely evaporated.
  • the belt-shaped aluminum foil 38 (thickness: 15 ⁇ m) wound around the unwinding portion 701 is moved in the longitudinal direction DA. Carbon coat layers 37 and 37 are applied in advance on both surfaces of the aluminum foil 38.
  • An active material paste 31 ⁇ / b> P is applied to the carbon coat layer 37 on the aluminum foil 38 with a die 710. Thereafter, the active material paste 31P was dried with a heater 730 to form an uncompressed active material layer 31B.
  • the single-side supported aluminum foil 38 ⁇ / b> K in which the uncompressed active material layer 31 ⁇ / b> B is supported on the carbon coat layer 37 on one side is temporarily wound around the winding unit 702.
  • the active material paste 31P is applied to the carbon coat layer 37 on the side of the single-side supported aluminum foil 38K (aluminum foil 38) on which the uncompressed active material layer 31B is not supported. Apply. Then, the active material paste 31P is completely dried by the heater 730. Thus, an active material laminate 30B before pressing, in which the uncompressed active material layers 31B and 31B are laminated on the carbon coat layers 37 and 37 on both sides of the aluminum foil 38, respectively, is produced.
  • the press device 800 includes an unwinding unit 801, a press roller 810, a winding unit 802, and a plurality of auxiliary rollers 820.
  • the above-mentioned active material laminated plate 30B before pressing is passed between the two pressing rollers 810 and 810 from the unwinding portion 801 and compressed in the thickness direction DT.
  • a positive electrode plate 30 is obtained in which two compressed positive electrode active material layers 31 and 31 are laminated on both sides of the aluminum foil 38 (see FIGS. 3 and 4).
  • the inventors investigated the change in the viscosity of the active material paste with the passage of time (standing time) after production.
  • the standing time is 0h ( Immediately after production), the respective viscosities at 24 h, 48 h, 72 h and 96 h were measured.
  • the active material paste (comparative paste EP) containing only the first binder 32A (CMC) as the binder has a standing time of 0h (immediately after production), 24h, 48h. Each viscosity at the time was also measured.
  • the E-type viscosity meter VM shown in FIG. 9 was used for the measurement of the viscosity of each active material paste.
  • This E-type viscometer VM has a cone plate VMC having a conical shape on one side (14 mm outer diameter and cone angle of 3 °) that can rotate around an axis AX, and a planar base perpendicular to the axis AX. It is a rotational viscometer having VMB.
  • the active material paste 31P immediately after the production was placed on a base VMB of the E-type viscometer VM in a thermostat at 30 ° C. so that the gap was 100 ⁇ m.
  • the cone plate VMC was moved from above the active material paste 31P until the tip of the cone plate VMC contacted the base VMB. Thereafter, the cone plate VMC was rotated at a constant speed with a shear rate (rotational speed) of 1 rpm around the axis AX, and the viscosity of the active material paste 31P was measured. Furthermore, the viscosities when the standing time was 24 h, 48 h, 72 h, and 96 h were also measured. For the comparative paste EP of the comparative example, the viscosity at the time when the standing time was 0h, 24h, and 48h was measured in the same manner as the active material paste 31P. These results are shown in FIG.
  • the graph in FIG. 10 is a graph showing changes in the viscosity of each active material paste depending on the length of the standing time.
  • the standing time is 0 h, that is, when compared immediately after fabrication, the viscosity of the active material paste 31P is higher than the viscosity of the comparative paste EP. From this, it is understood that the viscosity of the active material paste can be improved by using not only CMC but also PEO as the binder of the active material paste.
  • the active material paste 31P using PEO and CMC as the binder is applied on the carbon coat layer 37 in the above-described coating process, the active material paste 31P is not dried until it is dried by the heater 730. It is possible to prevent the occurrence of problems such as spreading beyond the range of application or flowing down from the aluminum foil 38. That is, in the manufacturing method of the first embodiment, the positive electrode plate 30 in which the positive electrode active material layer 31 maintaining an appropriate shape is formed on the aluminum foil 38 (carbon coat layer 37) can be manufactured.
  • the positive electrode active material layer forming step since it is applied onto the carbon coat layer 37 formed on the aluminum foil 38, the positive electrode active material layer 31 and the aluminum foil 38 are formed by the anchor effect of the carbon coat layer 37. The binding force of can be reliably increased.
  • the viscosity of each of the active material paste 31 ⁇ / b> P and the comparative paste EP decreases as the standing time increases. This is because the positive electrode active material particles 36 contained in any paste (active material paste 31P, comparative paste EP) show alkalinity, and accordingly, the viscosity of CMC gradually decreases with time. It is thought that. However, in the active material paste 31P, the rate of viscosity decrease (the viscosity change amount divided by the standing time) is smaller than that of the comparative paste EP. That is, the active material paste 31P has a gradual decrease in viscosity over time. This is presumably because PEO in the active material paste 31P has higher alkali resistance than CMC, and the viscosity of the PEO is maintained in the active material paste 31P.
  • the active material paste 31P when used in the above-described coating process, the change in the viscosity of the active material paste 31P with time is small, and even when many positive electrode plates 30 are manufactured, the thickness of the positive electrode active material layer 31 and the like. Thus, the positive electrode plate 30 can be manufactured efficiently.
  • a negative electrode plate 40 was manufactured separately from the positive electrode plate 30 described above. Specifically, 98 parts by weight of graphite powder, 81 parts by weight of a 1.23 wt% CMC aqueous solution (that is, 1 part by weight of CMC), and 4 parts by weight of ion-exchanged water were mixed. Further, 70 parts by weight of ion exchange water was added and uniformly kneaded, and then 1 part by weight of styrene butadiene rubber (SBR) was added and stirred to prepare a negative electrode paste (not shown).
  • SBR styrene butadiene rubber
  • the above-described negative electrode paste was applied to both surfaces of a copper foil 48 having a thickness of 10 ⁇ m with a die coater, then dried, and pressed together with the copper foil 48 to form a negative electrode active material layer 41.
  • a ceramic paste was applied onto the negative electrode active material layer 41 using a well-known gravure coater and dried to obtain a ceramic coat layer 42.
  • the negative electrode plate 40 is completed (see FIG. 2).
  • a power generation element 20 is obtained by winding a 20 ⁇ m separator 50 between the positive electrode plate 30 and the negative electrode plate 40 manufactured as described above. Further, the positive electrode current collecting member 71 and the negative electrode current collecting member 72 are welded to the positive electrode plate 30 (aluminum foil 38) and the negative electrode plate 40 (copper foil 48), respectively, inserted into the battery case body 11, and an electrolyte solution (not shown). Then, the battery case body 11 is sealed by welding with the sealing lid 12. Thus, the battery 1 is completed (see FIG. 1).
  • the positive electrode plate 30 In the manufacturing method of the positive electrode plate 30 according to the first embodiment, only the first binder 32A (CMC) and the second binder 32B (PEO) are used as the binder without including PTFE.
  • An active material paste 31P is applied to an aluminum foil 38 (on the carbon coat layer 37) and dried to form the positive electrode active material layer 31. For this reason, the positive electrode plate 30 of the battery 1 which has the favorable peel strength and can suppress the increase in the battery resistance can be manufactured.
  • the positive electrode plate 30 including the positive electrode active material layer 31 using only the first binder 32A (CMC) and the second binder 32B (PEO) as the binder for the battery 1, there is also an advantage that an increase in the battery resistance can be suppressed (see Table 1 described above). Further, since PTFE is not included in the active material paste 31P, the active material paste 31P can be thinly and uniformly applied without generating aggregates in the active material paste 31P.
  • the active material paste 31P does not contain PTFE. For this reason, the aggregate by the electrically conductive material 35 which consists of PTFE particle
  • the manufacturing method of the positive electrode plate 130 of the battery 101 according to Example 2 and the manufacturing method of the positive electrode plate 230 of the battery 201 according to Embodiment 3 are the active processes used in the coating process of the positive electrode active material layer forming process. Since the material paste is the same as the above-described method for manufacturing the positive electrode plate 30 of the battery 1 and is otherwise the same, the description thereof is omitted.
  • the active material paste 131P is formed using the kneader 900 shown in FIG. Specifically, 87 parts by weight of the positive electrode active material particles 36, 10 parts by weight of the conductive material 35, 1 part by weight of the second binder 32B (PEO), and 85 parts by weight of ion-exchanged water AQ, Each was put into a mixing tank 901 of one kneader 900 and mixed using a stirring blade 902. Thereby, a uniform active material paste 131P is obtained.
  • the active material paste 131P produced by the kneader 900 is passed through the filter 910 to remove foreign matters mixed in the active material paste 131P.
  • the coating step of the positive electrode active material layer forming step of the positive electrode plate 130 in the battery 101 the carbon coat layer 37 formed on both surfaces of the aluminum foil 38 using the die 710 of the coating apparatus 700 shown in FIG. 37, the active material paste 131P is applied.
  • the active material paste 231P is formed using the kneader 900 shown in FIG. Specifically, 87 parts by weight of the positive electrode active material particles 236 made of LiCoO 2 , 10 parts by weight of the conductive material 35, and the first binder 32A (CMC), which are different from the positive electrode active material particles 36 of the battery 1 described above. Then, 1 part by weight of the second binder 32B (PEO) and 85 parts by weight of ion-exchanged water AQ were put into the mixing tank 901 of the first kneader 900, and mixed using the stirring blade 902. Thereby, a uniform active material paste 231P is obtained.
  • the active material paste 231P made by the kneader 900 is passed through the filter 910 to remove foreign matters mixed in the active material paste 231P.
  • the active material paste 231 ⁇ / b> P is applied to any of 37.
  • vehicle 400 is provided with a plurality of the batteries 1 described above.
  • vehicle 400 is a hybrid vehicle that is driven by using engine 440, front motor 420, and rear motor 430 together.
  • the vehicle 400 includes a vehicle body 490, an engine 440, a front motor 420, a rear motor 430, a cable 450, an inverter 460, and an assembled battery 410 having a plurality of batteries 1, 101, 201 therein. is doing.
  • the vehicle 400 according to the second embodiment is equipped with the batteries 1, 101, 201 described above, that is, the batteries 1, 101, 201 using the positive electrode plates 30, 130, 230 described above, the driving performance is improved. It can be set as the vehicle 400 which suppressed degradation.
  • the hammer drill 500 of the third embodiment is equipped with the battery pack 510 including the batteries 1, 101, 201 described above, and as shown in FIG. 14, a battery-equipped device having the battery pack 510 and the main body 520. It is.
  • the battery pack 510 is detachably accommodated in the pack accommodating portion 521 of the main body 520 of the hammer drill 500.
  • the hammer drill 500 according to the third embodiment is equipped with the batteries 1, 101, 201 described above, that is, the batteries 1, 101, 201 using the positive electrode plates 30, 130, 230 described above. It can be set as the hammer drill 500 which suppressed deterioration.
  • acetylene black is used as the carbon powder included in the carbon coat layer.
  • carbon black such as furnace black or ketjen black, graphite powder, or the like other than acetylene black may be used. good.
  • the electrically conductive material which consists of acetylene black was used for the positive electrode plate, you may use things other than acetylene black among the carbon powder mentioned above, metal powders, such as nickel powder, etc., for example.
  • nickel cobalt lithium lithium was used for the positive electrode active material particles, for example, other lithium transition metal composite oxides such as lithium cobaltate, lithium nickelate, and lithium manganate, and iron olivine compounds may also be used. good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

 正極活物質層の剥離強度が高く、電池抵抗の増加を抑制した正電極板、さらにはこの正電極板を用いた電池、この電池を搭載した車両、電池搭載機器を提供することを、また、正極活物質層を適切に製造できる正電極板の製造方法を提供することを課題とする。正電極板30は、導電性を有する基体38と、基体に形成してなり、正極活物質粒子36、導電材35及び結着材32A,32Bを含む正極活物質層31と、を備え、結着材は、ポリエチレンオキサイドのみ、又は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなる。

Description

正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法
 本発明は、基体と、この基体に形成した正極活物質層と、を備える正電極板、この正電極板を用いた電池、この電池を搭載した車両及び電池搭載機器に関する。また、そのような正電極板の製造方法に関する。
 近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
 このような電池に関して、例えば、特許文献1には、導電層(カーボンコート層)の上に、カルボキシメチルセルロース(以下、CMCともいう)のみを結着材とした活物質層(正極活物質層)を備える正極(正電極板)が開示されている。
特開2006-4739号公報
 上述の電池では、カーボンコート層上に正極活物質層を形成するため、正極活物質層の剥離強度を高くできる利点がある。しかしながら、結着材に用いるCMCは、例えば、リチウム複合酸化物などアルカリ性を示す物質の存在下では、そのCMCの構造が変化してしまう。これにより、CMCの粘度が、例えば、ポリエチレンオキサイド(以下、PEOともいう)等、他の結着材に比して低くなる。このため、特許文献1に記載の正電極板を製造する際に、CMC(結着材)、正極活物質粒子、導電材及び溶媒を混練した活物質ペーストの粘度も低くなり、この活物質ペースト中で活物質が沈降したり、これを基体上に塗布しても、乾燥するまでに、活物質ペーストが塗布の範囲よりも広がったり、基体上から活物質ペーストが流れ落ちる等の不具合が生じる虞がある。
 さらに、活物質ペースト中に存在するCMCの粘度が、時間の経過と共に極端に低下してしまう。このため、正電極板を製造するに当たっては、活物質ペーストを混練後、速やかに塗布しなければならない。また、混練後しばらく時間が経った活物質ペーストは粘度が低下して、塗布の工程に用いることができない。かくして、正電極板を生産(製造)する場合の効率が悪くなる不具合があった。
 また、特許文献1には、正極活物質層の結着材として、例えば、CMCのほかにポリテトラフルオロエチレン(以下、PTFEともいう)も例示されている。しかしながら、このPTFEを結着材に用いて活物質ペーストを作製すると、活物質ペースト内で、PTFE粒子と導電材とが凝集体を形成しやすい。例えば、導電材にアセチレンブラックを用いた場合、このPTFE粒子は活物質ペースト内で分散せずに、その一部がアセチレンブラックと共に、比較的大きな凝集体(粒径:50μm以上)を形成してしまう。
 このような凝集体を含んだ活物質ペーストを塗布して正電極板を製造すると、例えば、凝集体が点在してしまい、この活物質ペーストを基体に薄く一様に塗布できないので、充放電に伴う反応が正極活物質層の部位によってばらつき、正電極板、ひいてはこれを用いた電池の特性が安定しない。また、異物除去のため、この活物質ペーストをフィルタに通すことがあるが、凝集体が生じていると、フィルタが凝集体により目詰まりを起こしやすく、活物質ペーストの通過量を減少させるので、生産性が低下する不具合もある。
 また、CMC、PEOと共にPTFEを用いた場合に比して、PTFEを含まない方が正極活物質層の剥離強度が高く、電池抵抗変化率(電池抵抗値を、電池の初期の電池抵抗値で割ったもの)も小さく抑えることができることが判ってきた。
 本発明は、かかる知見に鑑みてなされたものであって、正極活物質層の剥離強度が高く、電池抵抗の増加を抑制した正電極板、さらにはこの正電極板を用いた電池、この電池を搭載した車両、電池搭載機器を提供することを目的とする。また、正極活物質層を適切に製造できる正電極板の製造方法を提供することを目的とする。
 本発明の一態様は、導電性を有する基体と、上記基体に形成してなり、正極活物質粒子、導電材及び結着材を含む正極活物質層と、を備える正電極板であって、上記結着材は、ポリエチレンオキサイドのみ、又は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなる正電極板である。
 ところで、結着材としてPEOのみを、或いは、PEO及びCMCのみを用いた正極活物質層を備える正電極板を用いた電池は、結着材にPEO及びCMCと共にPTFEを用いた正極活物質層を備えた電池に比して、正極活物質層の剥離強度が高く、また、電池抵抗変化率を小さくできることが判ってきた。
 また、そのような電池は、特許文献1の電池、即ち、結着材にCMCのみを用いた電池に比しても、剥離強度を高く、また、電池抵抗変化率を小さくできる。
 かくして、上述の正電極板は、結着材にPTFEを用いた正極活物質層を備えたものより、また、結着材にCMCのみを用いた正極活物質層を備えたものより、正極活物質層の剥離強度を向上でき、電池抵抗の増加を抑制できる。
 また、この正極活物質層の形成にあたり、活物質ペースト内に、PTFE由来の凝集体が形成されない。つまり、この正電極板では、そのような凝集体の形成を防止して、活物質ペーストが基体に均一に塗布される。従って、この正電極板を用いることで電池の特性を安定させることができる。
 なお、正極活物質層に含む導電材としては、例えば、上述した炭素粉体や、ニッケル粉末等の金属粉体などが挙げられる。
 また、正極活物質粒子は、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物粒子や、鉄オリビン化合物が挙げられる。
 さらに、上述の正電極板であって、前記基体と前記正極活物質層との間に、炭素粉体を含むカーボンコート層を介在させてなる正電極板とすると良い。
 上述の正電極板では、基体と正極活物質層との間にカーボンコート層を介在させてなるので、基体と正極活物質層との間の結着力を確実に大きくすることができる。
 なお、カーボンコート層に含む炭素粉体としては、例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラックや、グラファイト粉末等が挙げられる。
 さらに、上述のいずれかの正電極板であって、前記結着材は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなる正電極板とすると良い。
 結着材としてPEO及びCMCのみを含んだ正極活物質層を備える正電極板を用いた電池は、結着材としてPEOのみを含んだ正極活物質層を備える正電極板を用いた電池よりも、その電池抵抗変化率を小さくできることが判ってきた。このことから、上述の正電極板を電池に用いれば、電池抵抗の増加を抑制した電池にすることができる。
 さらに、上述の正電極板であって、前記正極活物質層は、前記ポリエチレンオキサイド及び前記カルボキシメチルセルロースをそれぞれ1wt%ずつ含む正電極板とすると良い。
 結着材としてPEO及びCMCをそれぞれ1wt%ずつ含む正極活物質層を備える正電極板を用いた電池が、CMCのみを含んだ正極活物質層を用いた電池だけでなく、PEOのみを含んだ正極活物質層を用いた電池よりも、その電池抵抗変化率を小さくできることが判ってきた。これは、CMCのみでは正電極活物質粒子の被覆量が小さく、正極活物質粒子の表面が劣化してしまう。逆に、PEOのみでは正極活物質粒子の被覆量が大きくなって、粒子の表面積のうち電池反応に関与する面積が狭くなって、電池として充放電を繰り返すと正電極活物質粒子の内部が劣化しやすいからであると考えられる。このことから、上述の正電極板を電池に用いれば、電池抵抗の増加を抑制した電池にすることができる。
 或いは、本発明の他の態様は、前述した正電極板を用いた電池である。
 上記の電池は、前述した正電極板を用いているので、正極活物質層の剥離強度が高く、電池抵抗の増加を抑制した電池とすることができる。
 或いは、本発明の他の態様は、前述した電池を搭載し、この電池による電気エネルギを動力源の全部又は一部に使用する車両である。
 上記の車両は、前述した電池、即ち、前述の正電極板を用いた電池を搭載しているので、駆動性能の劣化を抑制した車両とすることができる。
 なお、車両としては、電池による電気エネルギを動力源の全部又は一部に使用する車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。
 或いは、本発明の他の態様は、前述した電池を搭載し、この電池による電気エネルギをエネルギ源の全部又は一部として使用する電池搭載機器である。
 上述の電池搭載機器は、前述した電池、即ち、前述の正電極板を用いた電池を搭載しているので、特性の劣化を抑制した電池搭載機器とすることができる。
 なお、電池搭載機器としては、電池を搭載し、これをエネルギ源の全部又は一部として使用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。
 或いは、本発明の他の態様は、導電性を有する基体と、上記基体に形成してなり、正極活物質粒子、導電材及び結着材を含む正極活物質層と、を備える正電極板の製造方法であって、上記結着材は、ポリエチレンオキサイドのみ、又は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなり、上記正極活物質粒子、上記導電材及び上記結着材を混練した活物質ペーストを上記基体に塗布し乾燥させて、上記正極活物質層を形成する正極活物質層形成工程、を備える正電極板の製造方法である。
 上述の正電極板の製造方法では、結着材にPEOのみを、又は、PEO及びCMCのみを用いた活物質ペーストを、基体に塗布し、乾燥させて正極活物質層を形成する正極活物質層形成工程を備える。このため、良好な剥離強度を有し、適切な形状を維持した正極活物質層を基体に形成した正電極板を製造できる。
 また、PEOは、CMCよりも高い耐アルカリ性を有する。このため、結着材にPEOのみ、又は、PEO及びCMCのみを用いた場合には、アルカリ性を示す正極活物質粒子と混ぜた場合でも、時間の経過と共に活物質ペーストに生じる粘度の低下が、CMCのみを用いた場合に比して緩やかである。このため、正電極板の製造において、例えば、予め製造しておいた活物質ペーストを順次基体に塗布しても、活物質ペーストの粘度の変化が少なく、正極活物質層の厚みなどにばらつきが生じにくく、また、効率良く正電極板を製造できる。
 しかも、結着材として、PEOのみを、或いは、PEO及びCMCのみを用いた正極活物質層を備える正電極板を電池に用いることで、その電池抵抗の増加を抑制できる利点もある。また、活物質ペーストにPTFEを含まないので、活物質ペーストに凝集体が生じずに、活物質ペーストを薄く一様に塗布することができる。
 さらに、上述の正電極板の製造方法であって、上記正電極板は、前記基体と前記正極活物質層との間に、炭素粉体を含むカーボンコート層を介在させてなり、前記正極活物質層形成工程は、前記活物質ペーストを、予め上記基体上に形成した上記カーボンコート層上に塗布する正電極板の製造方法とすると良い。
 上述の正電極板の製造方法において、正極活物質層形成工程では、基体上に形成したカーボンコート層上に塗布するので、形成した正極活物質層と基体との間の結着力を確実に大きくすることができる。
 さらに、上述の正電極板の製造方法であって、前記正極活物質層形成工程に先立ち、混練後の活物質ペーストを、捕集効率90%が50μm以下のフィルタに通すフィルタ通過工程を備える正電極板の製造方法とすると良い。
 上述の正電極板の製造方法では、上述のフィルタ通過工程を備えるので、フィルタによる異物の除去が可能な上、凝集体による目詰まりもなく、効率的に異物を除去できる。
 なお、フィルタとしては、捕集効率90%が50μm以下のものであり、具体的には、ポリプロピレン又はポリエチレン製の不織布の多層ロール、不織布の単層プリーツ、糸巻きフィルタなどが挙げられる。
実施形態1にかかる電池の斜視図である。 実施形態1の負電極板の斜視図である。 実施形態1の正電極板の斜視図である。 実施形態1の正電極板の拡大断面図(図3のA部)である。 実施形態1の正電極板の斜視図である。 実施形態1の正電極板の斜視図である。 実施形態1の正電極板の正極活物質層形成工程の説明図である。 実施形態1の正電極板の正極活物質層形成工程の説明図である。 粘度計の説明図である。 放置時間の長さによる、活物質ペーストの粘度の変化を示すグラフである。 実施形態1の正電極板の正極活物質層形成工程の説明図である。 実施形態1の正電極板の正極活物質層形成工程の説明図である。 実施形態2にかかる車両の説明図である。 実施形態3にかかる電池搭載機器の説明図である。
1,101,201 電池
30,130,230 正電極板
31,131,231 正極活物質層
31P,131P,231P 活物質ペースト
32A 第1結着材(結着材)
32B 第2結着材(結着材)
35 導電材
36,236 正極活物質粒子
37 カーボンコート層
38 アルミ箔(基体)
CP 炭素粉体
400 車両
500 ハンマードリル(電池搭載機器)
910 フィルタ
 (実施形態1)
 次に、本発明の実施形態1について、図面を参照しつつ説明する。
 まず、本実施形態1にかかる正電極板30を用いてなる電池1(実施例1)について説明する。図1に実施例1の電池1の斜視図を示す。
 この電池1は、正電極板30のほかに負電極板40及びセパレータ50を有する発電要素20、及び、図示しない電解液を備える捲回形のリチウムイオン二次電池である(図1参照)。この電池1は、発電要素20及び電解液(図示しない)を矩形箱状の電池ケース10に収容している。この電池ケース10は、共にアルミニウム製の電池ケース本体11及び封口蓋12を有する。このうち電池ケース本体11は有底矩形箱形であり、この電池ケース10と発電要素20との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。
 また、封口蓋12は矩形板状であり、電池ケース本体11の開口を閉塞して、この電池ケース本体11に溶接されている。この封口蓋12には、発電要素20と接続している正極集電部材71及び負極集電部材72のうち、それぞれ先端に位置する正極端子部71A及び負極端子部72Aが貫通しており、図1中、上方に向く蓋表面12aから突出している。これら正極端子部71A及び負極端子部72Aと封口蓋12との間には、それぞれ絶縁性の樹脂からなる絶縁部材75が介在し、互いを絶縁している。さらに、この封口蓋12には矩形板状の安全弁77も封着されている。
 また、図示しない電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを、体積比でEC:EMC:DMC=1:3:3に調整した混合有機溶媒に、溶質としてLiPFを添加し、リチウムイオンを1mol/lの濃度とした有機電解液である。
 また、発電要素20は、帯状の負電極板40及び正電極板30が、ポリエチレンからなる帯状のセパレータ50を介して扁平形状に捲回されてなる(図1参照)。なお、この発電要素20の正電極板30及び負電極板40はそれぞれ、クランク状に屈曲した板状の正極集電部材71又は負極集電部材72と接合している。
 発電要素20のうち負電極板40は、図2に示すように、長手方向DAに延びる帯状で、銅からなる銅箔48と、この銅箔48の第1箔主面48a及び第2箔主面48b上にそれぞれ積層配置した2つの負極活物質層41,41と、これら負極活物質層41,41上に形成されてなるセラミックコート層42とを有している。
 このうち、セラミックコート層42は、アルミナ及びポリフッ化ビニリデン(PVDF)からなる。このセラミックコート層42により、セパレータ50の***や異物による短絡に伴い、セパレータ50の収縮や破壊が起きた場合でも、その短絡点を広げないようにすることができる。また、負極活物質層41は、グラファイトからなる負極活物質(図示しない)、カルボキシルメチルセルロース(CMC)からなる結着材(図示しない)、及び、スチレンブタジエンラバー(SBR、図示しない)を含む。なお、スチレンブタジエンラバーは、ペーストに用いるとCMCに比して高い結着作用を呈するので、負極活物質層を形成するにあたり、その形状を適切に保持することができる。
 本実施形態1では、負極活物質層41内における、これらの重量比を、負極活物質:結着材:SBR=98:1:1とした。
 次いで、上述の発電要素20を構成する正電極板30について、図3,4を参照しつつ説明する。
 この正電極板30は、図3,4に示すように、長手方向DAに延びる帯状で、アルミニウムからなるアルミ箔38と、このアルミ箔38の主面(第1箔主面38a,第2箔主面38b)上にそれぞれ形成したカーボンコート層37,37と、このカーボンコート層37上に形成された正極活物質層31とを有している。
 このうちカーボンコート層37は、厚さ2μmで、アセチレンブラックからなる炭素粉体CPの他、図示しないポリフッ化ビニリデン(PVDF)を含む。なおカーボンコート層37内における、これらの重量比(固形分比)を、炭素粉体CP:PVDF=30:70とした。
 このカーボンコート層37は、後述する正極活物質層31の形成の際、後述の活物質ペースト31Pがアルミ箔38に接触して腐食を発生するのを防止し、アルミ箔38と正極活物質層31との物理的接触の補助的役割を果たす。
 また、正電極板30の正極活物質層31には、次述するように、第1結着材32AであるCMC、及び、第2結着材32BであるPEOを含む一方、ポリテトラフルオリエチレン(PTFE)は含んでいない。このため、アルミ箔38上に、この正極活物質層31の剥離強度の低下が懸念される。しかしながら、本実施形態1では、アルミ箔38上にカーボンコート層37を有するため、カーボンコート層37のアンカー効果により、アルミ箔38と正極活物質層31との間の結着力を確実に大きくすることができる。従って、このカーボンコート層37上に形成した正極活物質層31の剥離強度を高くし、安定して正極活物質層31をアルミ箔38に保持することができる。
 本実施形態1のうち、実施例1にかかる正極活物質層31は、PTFEを含まず、LiNi0.82Co0.15Al0.03からなる正極活物質粒子36、及び、アセチレンブラックからなる導電材35のほか、結着材として第1結着材32A(CMC)、及び、第2結着材32B(PEO)のみを含む(図3,4参照)。また、正極活物質層31内における、これらの重量比は、正極活物質粒子36:導電材35:第1結着材32A:第2結着材32B=87:10:1:1とした。
 なお、この正極活物質層31は、後に詳述するが、正極活物質粒子36、第1結着材32A、第2結着材32B及び導電材35に、イオン交換水AQを加えて混練した活物質ペースト31Pを塗布し、乾燥させて、さらにこれを圧縮したものである。
 発明者らは、上述した電池1の特性(電池容量及び電池抵抗)についての評価試験を行った。
 まず、電池1のうち、製造して間もない新品(初期)の電池1について試験を行った。具体的には、電池容量の評価試験として、1Cの電流値で端子間電圧が4.1V(満充電電圧)になるまで定電流充電をした電池1について、1Cの電流値で端子間電圧が2.5Vになるまで定電流放電を行い、放電した電気量(電池容量)を測定した。また、電池抵抗の評価試験では、上述の電池容量の試験の後に、1Cの電流値で、端子間電圧が3.537V(充電状態(SOC)が30%に相当(2.5~4.1Vの電圧範囲における電池容量を100%としたとき))になるまで充電し、その後、その電圧を一定に保ちつつ電流値を1Cから0.02Cまで徐々に小さくしながら充電を行った(定電圧充電)。30秒間の休止の後、30Cの電流値で定電流放電し、放電開始後10秒目の電圧の値を測定した。この時点での電池抵抗値をオームの法則により算出した。
 上述の試験を行った電池1について、2.5~4.1Vの電圧範囲で定電流充電及び定電流放電(電流値はいずれも1C)を繰り返すサイクル試験を実施した。具体的には、1組の充放電を1サイクルとして、2000サイクルを連続して繰り返した。
 その後、電池1の電池抵抗値を、上述と同様にして測定した。そして、サイクル試験後における電池1の電池抵抗変化率を算出した。この電池抵抗変化率は、サイクル試験後の電池抵抗値を、サイクル試験前の、新品(初期)時の電池抵抗値で割ったものである。
 また、発明者らは、電池1における正電極板30の正極活物質層31の剥離強度について測定した。具体的には、図示しない引張試験機を用いて、剥離強度よりも十分粘着性の高い両面テープで正電極板30を固定し、この正電極板30に垂直な方向に正極活物質層31を引っ張ったときの強度を測定した。
 そのほか、他の実施例である電池101,201、比較例である電池C1,C2も製作し、これらの特性についての評価試験、及び、正電極板の剥離強度の測定を、電池1と同様に行った。
 このうち実施例2にかかる電池101は、正極活物質粒子36及び導電材35のほか、結着材として第2結着材32B(PEO)のみを用いた正極活物質層131を有する正電極板130を用いている(図1,5参照)。この正極活物質層131内における、これらの重量比は、正極活物質粒子36:導電材35:第2結着材32B=87:10:2とした。
 また、実施例3にかかる電池201は、電池1で用いた、LiNi0.82Co0.15Al0.03からなる正極活物質粒子36に代えて、LiCoOからなる正極活物質粒子236を用いた正極活物質層231を有する正電極板230を用いた(図1,6参照)。この正極活物質層内における、これらの重量比は、正極活物質粒子236:導電材35:第1結着材32A:第2結着材32B=87:10:1:1とした。
 また、比較例1にかかる電池C1は、正極活物質粒子36、導電材35、第1結着材32A(CMC)、及び、第2結着材32B(PEO)の他に、PTFEを含む正極活物質層を有する正電極板を用いた。この正極活物質層内における、これらの重量比は、正極活物質粒子36:導電材35:第1結着材32A:第2結着材32B:PTFE=87:10:1:1:1とした。
 また、比較例2にかかる電池C2は、正極活物質粒子36及び導電材35のほか、結着材として第1結着材32A(CMC)のみを用いた正極活物質層を有する正電極板を用いた。この正極活物質層内における、これらの重量比は、正極活物質粒子36:導電材35:第1結着材32A=87:10:2とした。
 これら電池1,101,201及び比較電池C1,C2の試験結果を表1に示す。
 なお、正電極板における正極活物質層の剥離強度は、比較電池C1に用いた正電極板における正極活物質層の剥離強度を基準として、相対値(%)を示してある。
Figure JPOXMLDOC01-appb-T000001
 
 表1によれば、電池1,101,201の電池抵抗変化率は、いずれも比較電池C1のそれより小さい。このことから、PTFEを含むよりも、このPTFEを含まない正極活物質層を有する正電極板を用いた電池の方が、その電池抵抗変化率を小さくできることが判る。
 さらに、電池1,101,201にそれぞれ用いた正電極板30,130,230における正極活物質層31,131,231の剥離強度は、いずれも比較電池C1のそれよりも相対的に高い。このことから、PTFEを含むよりも、このPTFEを含まない正極活物質層の方が、その剥離強度を高くできることが判る。
 また、電池1,101,201と、比較電池C2とを比較すると、電池1,101,201の電池抵抗変化率はいずれも、比較電池C2より小さい。このことから、結着材にCMCのみを用いる(比較電池C2)よりも、結着材にPEOのみ(電池1)、又は、PEO及びCMCのみ(電池101,201)を用いた、正極活物質層を有する正電極板を用いた電池は、その電池抵抗変化率を小さくできることが判る。
 さらに、電池1,101,201にそれぞれ用いた正電極板30,130,230が有する正極活物質層31,131,231の剥離強度が、いずれも比較電池C2のそれよりも相対的に高い。このことから、結着材にCMCのみを用いるより、PEOのみ、又は、PEO及びCMCのみを用いた正極活物質層の方が、その剥離強度を高くできることが判る。
 かくして、電池1,101,201の正電極板30,130,230は、比較電池C1、即ち、結着材にPTFEを用いた正極活物質層を備えたものより、また、比較電池C2、即ち、結着材にCMCのみを用いた正極活物質層を備えたものより、正極活物質層31の剥離強度を向上でき、電池抵抗の増加を抑制できる。
 また、表1によれば、正極活物質層に同じ正極活物質粒子36を用いた電池1と電池101とを比較すると、結着材としてPEO及びCMCのみを含んだ正極活物質層31を有する正電極板30を用いた電池1が、結着材としてPEOのみを含んだ正極活物質層131を有する正電極板130を用いた電池101よりも、その電池抵抗変化率を小さくできることが判る。
 なお、LiCoOを正極活物質とした実施例3の電池201についても、実施例2の電池101における、正極活物質をLiCoOとした電池(特性の詳細は示さない)に比して、その電池抵抗変化率を小さくできることが判っている。
 従って、PEO及びCMCのみからなる結着材を用いた正極活物質層を有する正電極板30,230を用いるのがより好ましいことが判る。
 また、電池1の電池抵抗変化率は、比較電池C1,C2のみならず、電池101の電池抵抗変化率に比しても小さい。このことから、結着材として第1結着材32A(CMC)及び第2結着材32B(PEO)をそれぞれ1wt%ずつ含む正極活物質層31を有する正電極板30を用いるのが特に良いことが判る。これは、CMCのみでは正電極活物質粒子の被覆量が小さく、正極活物質粒子の表面が劣化してしまう。逆に、PEOのみでは正極活物質粒子の被覆量が大きくなって、粒子の表面積のうち電池反応に関与する面積が狭くなって、電池として充放電を繰り返すと正電極活物質粒子の内部が劣化しやすいからであると考えられる。
 また、PEO及びCMCをそれぞれ1wt%ずつ含む正極活物質層を有する正電極板30を用いた電池1は、電池抵抗の増加をより抑制できる。
 次に、本実施形態1にかかる正電極板30を用いた電池1の製造方法について、図面を参照しつつ説明する。
 まず、アルミ箔38にカーボンコート層37を形成する。この工程では、炭素粉体CPをなす30重量部のアセチレンブラックと、PVDFをn-メチルピロリドン(NMP)で混合した、固形分率13%のPVDF/NMP溶液とを用いて、アセチレンブラック及びPVDFの固形分比が30:70になるように均一に混合して、図示しないカーボンコート層用ペーストを作製した。
 このカーボンコート層用ペースト(図示しない)を、厚さが15μmのアルミ箔38の両面(第1箔主面38a,第2箔主面38b)にグラビアコータで塗布し、その後に乾燥させて、カーボンコート層37を形成した。
 次いで、正極活物質粒子36、導電材35、第1結着材32A及び第2結着材32Bを混練して活物質ペースト31Pを形成する工程について、図7を参照しつつ説明する。
 この工程では、混合槽901と、この混合槽901内に収容した収容物を、剪断しつつ攪拌する攪拌羽根902とを備える混練機900を用いる。
 この工程では、正極活物質粒子36を87重量部、導電材35を10重量部、第1結着材32AをなすCMCを1重量部、第2結着材32BをなすPEOを1重量部、及び、イオン交換水AQを85重量部を、第1混練機900の混合槽901にそれぞれ投入し、攪拌羽根902を用いて混合した。これにより、均一な活物質ペースト31Pを得る。
 次いで、混練後の活物質ペースト31Pを、フィルタ910に通すフィルタ通過工程について、図7を参照しつつ説明する。このフィルタ通過工程で用いるフィルタ910は、ポリプロピレン製の不織布の多層ロールフィルタ(捕集効率90%=40μm)からなり、上述の混練機900と、次述する塗工装置700のダイ710との間に位置する。
 このフィルタ通過工程では、混練機900でできた活物質ペースト31Pをフィルタ910に通す。これにより、活物質ペースト31P内に混在している異物を除去する。なお、フィルタ910を通過した活物質ペースト31Pは、ダイ710のペースト保持部711に収容される。
 次いで、正極活物質粒子36、導電材35、第1結着材32A及び第2結着材32Bを混練した活物質ペースト31Pを、上述のカーボンコート層37上に塗布させ乾燥させて、正極活物質層31を形成する正極活物質層形成工程について、図7を参照しつつ説明する。なお、この正極活物質層形成工程は、図7に示す塗工装置700を用いる塗工工程と、図8に示すプレス装置800を用いるプレス工程とを含む。
 まず、塗工装置700を用いる塗工工程について説明する。この塗工装置700は、巻出し部701、ダイ710、ヒータ730、巻取り部702、及び、複数の補助ローラ740を備えている(図7参照)。
 このうち、ダイ710は、フィルタ910を通過した活物質ペースト31Pを内部に貯留してなる金属製のペースト保持部711と、このペースト保持部711に保持した活物質ペースト31Pをカーボンコート層37に向かって連続的に吐出する吐出口712とを有する。
 この吐出口712は、スリット状で、長手方向DAに移動するアルミ箔38の両面に形成したカーボンコート層37,37上に、帯状に活物質ペースト31Pを吐出するべく、アルミ箔38の幅方向(図7中、奥行き方向)に平行に開口している。
 また、ヒータ730は、アルミ箔38、及び、このアルミ箔38に塗布された活物質ペースト31Pを加熱する。これにより、2つのヒータ730,730の間を移動している間に、このカーボンコート層37に塗布された活物質ペースト31Pの乾燥が徐々に進み、ヒータ730を通過し終えたときには、活物質ペースト31Pは全乾燥、即ち、活物質ペースト31P内のイオン交換水AQが全て蒸発している。
 次いで、塗工工程について説明する。
 まず、巻出し部701に捲回した、帯状のアルミ箔38(厚さ:15μm)を長手方向DAに移動させる。なお、このアルミ箔38の両面には、カーボンコート層37,37が予め塗布されている。そのアルミ箔38上のカーボンコート層37に、ダイ710により活物質ペースト31Pを塗布する。
 その後、この活物質ペースト31Pをヒータ730で乾燥させ未圧縮活物質層31Bとした。そして、この未圧縮活物質層31Bを片側のカーボンコート層37上に担持した片面担持アルミ箔38Kを、一旦巻取り部702に巻き取る。
 次に、この塗工装置700を再度用いて、上述の片面担持アルミ箔38K(アルミ箔38)の、未圧縮活物質層31Bを担持していない側のカーボンコート層37に、活物質ペースト31Pを塗布する。そして、この活物質ペースト31Pをヒータ730で全乾燥させる。かくして、アルミ箔38の両面のカーボンコート層37,37上に未圧縮活物質層31B,31Bをそれぞれ積層配置した、プレス前の活物質積層板30Bが作製される。
 次いで、正極活物質層形成工程のうち、プレス装置800を用いるプレス工程について図8を参照しつつ説明する。
 プレス装置800は、巻出し部801、プレスローラ810、巻取り部802及び複数の補助ローラ820を備えている。このプレス装置800により、巻出し部801から上述のプレス前の活物質積層板30Bを、2つのプレスローラ810,810の間に通して、厚み方向DTに圧縮する。
 かくして、アルミ箔38の両側に、圧縮済みの2つの正極活物質層31、31を積層してなる正電極板30を得る(図3,4参照)。
 ところで、発明者らは、作製からの時間の経過(放置時間)による、活物質ペーストの粘度の変化について調査した。
 具体的には、上述の活物質ペースト31P、即ち、結着材として第1結着材32A(CMC)及び第2結着材32B(PEO)を含む活物質ペースト31Pについて、放置時間が0h(製作直後)、24h、48h、72h、96hの時点における各粘度を測定した。
 一方、この活物質ペースト31Pの比較として、結着材として第1結着材32A(CMC)のみを含む活物質ペースト(比較ペーストEP)について、放置時間が0h(製作直後)、24h、48hの時点における各粘度についても測定した。
 なお、各活物質ペーストの粘度の測定には、図9に示すE型粘度計VMを用いた。このE型粘度計VMは、軸芯AXを中心に回転可能な、片面が円錐形状のコーンプレートVMC(外径が14mm、コーン角度が3°)と、軸芯AXに垂直な平面形状の基盤VMBとを有する回転粘度計である。
 活物質ペースト31Pの粘度の測定では、まず、30℃の恒温槽内で、E型粘度計VMの基盤VMB上に、作製直後の活物質ペースト31Pを、ギャップが100μmとなるように配置した。そして、その活物質ペースト31Pの上方からコーンプレートVMCを、このコーンプレートVMCの先端が基盤VMBに当接するまで移動させた。その後、コーンプレートVMCを、軸芯AXを中心とした1rpmの剪断速度(回転速度)で定速回転させて、活物質ペースト31Pの粘度を測定した。さらに、放置時間が24h,48h,72h,96hの時点での粘度も測定した。
 比較例の比較ペーストEPについても、活物質ペースト31Pと同様にして、放置時間が0h,24h,48hの時点での粘度を測定した。これらの結果について、図10に示す。
 図10のグラフは、放置時間の長さによる、各活物質ペーストの粘度の変化を示したグラフである。
 まず、放置時間が0h、即ち、作製直後について比較すると、活物質ペースト31Pの粘度は、比較ペーストEPの粘度よりも高い。このことから、活物質ペーストの結着材として、CMCのみならず、PEOをも用いることで、活物質ペーストの粘度を向上させうることが判る。
 従って、結着材としてPEO及びCMCを用いた活物質ペースト31Pを、上述の塗工工程において、カーボンコート層37上に塗布しても、ヒータ730で乾燥させるまでに、この活物質ペースト31Pが塗布の範囲よりも広がったり、アルミ箔38上から流れ落ちる等の不具合が発生するのを防止できる。即ち、本実施形態1の製造方法では、適切な形状を維持した正極活物質層31をアルミ箔38(カーボンコート層37)上に形成した正電極板30を製造できる。
 また、正極活物質層形成工程では、アルミ箔38上に形成したカーボンコート層37上に塗布させるので、カーボンコート層37のアンカー効果により、形成した正極活物質層31とアルミ箔38との間の結着力を確実に大きくすることができる。
 また、図10のグラフによれば、活物質ペースト31P、及び、比較ペーストEPとも、放置時間が長くなるに従って、各々の粘度が低下する。これは、いずれのペースト(活物質ペースト31P,比較ペーストEP)に含まれる正極活物質粒子36がアルカリ性を示すため、これに伴ってCMCの粘度が、時間の経過とともに徐々に低下していくためであると考えられる。
 但し、活物質ペースト31Pにおいては、粘度の低下速度(粘度の変化量を放置時間で除したもの)が、比較ペーストEPのそれよりも小さい。即ち、活物質ペースト31Pは、粘度の経時的な低下が緩やかである。これは、活物質ペースト31P中のPEOが、CMCに比して高い耐アルカリ性を有しており、活物質ペースト31P中でPEOの粘度が維持されるためであると考えられる。
 従って、活物質ペースト31Pを、前述の塗工工程で用いると、活物質ペースト31Pの粘度の経時的な変化が少なく、正電極板30を多数製造する場合でも、正極活物質層31の厚みなどにばらつきが生じにくく、また、効率良く正電極板30を製造できる。
 また、上述の正電極板30とは別に、負電極板40を製作した。具体的には、グラファイト粉末を98重量部と、1.23wt%のCMC水溶液を81重量部(即ち、CMCを1重量部)と、イオン交換水を4重量部とを混合した。さらにイオン交換水を70重量部追加し均一に混練した後、スチレンブタジエンラバー(SBR)を1重量部加えて攪拌し、負極ペースト(図示しない)を作製した。一方、アクリル樹脂をNMPで混合した固形分率10%のアクリル樹脂/NMP溶液を用いて、アルミナと結着材とを、これらの固形分比がアルミナ:結着材=95:5で均一に混合して、図示しないセラミックペーストを製作した。
 まず、厚さが10μmの銅箔48の両面に、上述の負極ペーストをダイコータで塗布し、その後に乾燥させ、これを銅箔48と共にプレスして、負極活物質層41を形成した。この負極活物質層41上に、周知のグラビアコータを用いてセラミックペーストを塗布し、これを乾燥させてセラミックコート層42とした。かくして、負電極板40ができあがる(図2参照)。
 上述のように作製した正電極板30と負電極板40との間に、20μmのセパレータ50を介在させて捲回し、発電要素20とする。さらに、正電極板30(アルミ箔38)及び負電極板40(銅箔48)にそれぞれ正極集電部材71及び負極集電部材72を溶接し、電池ケース本体11に挿入し、図示しない電解液を注入後、封口蓋12で電池ケース本体11を溶接で封口する。かくして、電池1が完成する(図1参照)。
 本実施形態1にかかる正電極板30の製造方法では、PTFEを含むことなく、結着材として第1結着材32A(CMC)、及び、第2結着材32B(PEO)のみを用いた活物質ペースト31Pを、アルミ箔38(カーボンコート層37上)に塗布し、乾燥させて正極活物質層31を形成する正極活物質層形成工程を備える。このため、前述した表1の電池1、即ち、良好な剥離強度を有し、その電池抵抗の増加を抑制できる電池1の正電極板30を製造できる。
 しかも、結着材として第1結着材32A(CMC)、及び、第2結着材32B(PEO)のみを用いた正極活物質層31を備える正電極板30を電池1に用いることで、その電池抵抗の増加を抑制できる利点もある(前述した表1参照)。また、活物質ペースト31PにPTFEを含まないので、活物質ペースト31P中に凝集体が生じずに、活物質ペースト31Pを薄く一様に塗布することができる。
 また、活物質ペースト31PにはPTFEを含まない。このため、活物質ペースト31P内で、PTFE粒子、及び、アセチレンブラックからなる導電材35による凝集体が形成されない。
 この正電極板30の製造方法では、上述のフィルタ通過工程を備えるので、フィルタ910による異物の除去が可能な上、上述の凝集体による目詰まりがなく、効率的に異物を除去できる。
 なお、実施例2にかかる電池101の正電極板130の製造方法、及び、実施形態3にかかる電池201の正電極板230の製造方法は、正極活物質層形成工程の塗工工程で用いる活物質ペーストが、上述の電池1の正電極板30の製造方法と異なり、それ以外については同じであるので、説明を省略する。
 正電極板130の製造方法では、図11に示す混練機900を用いて、活物質ペースト131Pを形成する。具体的には、正極活物質粒子36を87重量部、導電材35を10重量部、第2結着材32B(PEO)を1重量部、及び、イオン交換水AQを85重量部を、第1混練機900の混合槽901にそれぞれ投入し、攪拌羽根902を用いて混合した。これにより、均一な活物質ペースト131Pを得る。
 次いで、フィルタ通過工程では、図11に示すフィルタ910を用いて、混練機900でできた活物質ペースト131Pをフィルタ910に通し、活物質ペースト131P内に混在している異物を除去する。
 電池101における正電極板130の正極活物質層形成工程のうちの塗工工程では、図11に示す塗工装置700のダイ710を用いて、アルミ箔38の両面に形成したカーボンコート層37,37のいずれかに、活物質ペースト131Pを塗布する。
 また、正電極板230の製造方法では、図12に示す混練機900を用いて、活物質ペースト231Pを形成する。具体的には、上述の電池1の正極活物質粒子36とは異なる、LiCoOからなる正極活物質粒子236を87重量部、導電材35を10重量部、第1結着材32A(CMC)、第2結着材32B(PEO)を1重量部、及び、イオン交換水AQを85重量部を、第1混練機900の混合槽901にそれぞれ投入し、攪拌羽根902を用いて混合した。これにより、均一な活物質ペースト231Pを得る。
 次いで、フィルタ通過工程では、図12に示すフィルタ910を用いて、混練機900でできた活物質ペースト231Pをフィルタ910に通し、活物質ペースト231P内に混在している異物を除去する。
 電池201における正電極板230の正極活物質層形成工程のうちの塗工工程では、図12に示す塗工装置700のダイ710を用いて、アルミ箔38の両面に形成したカーボンコート層37,37のいずれかに、活物質ペースト231Pを塗布する。
 (実施形態2)
 本実施形態2にかかる車両400は、前述した電池1を複数搭載したものである。具体的には、図13に示すように、車両400は、エンジン440、フロントモータ420及びリアモータ430を併用して駆動するハイブリッド自動車である。この車両400は、車体490、エンジン440、これに取り付けられたフロントモータ420、リアモータ430、ケーブル450、インバータ460、及び、複数の電池1,101,201を自身の内部に有する組電池410を有している。
 本実施形態2にかかる車両400は、前述した電池1,101,201、即ち、前述の正電極板30,130,230を用いた電池1,101,201を搭載しているので、駆動性能の劣化を抑制した車両400とすることができる。
 (実施形態3)
 また、本実施形態3のハンマードリル500は、前述した電池1,101,201を含むバッテリパック510を搭載したものであり、図14に示すように、バッテリパック510、本体520を有する電池搭載機器である。なお、バッテリパック510はハンマードリル500の本体520のうちパック収容部521に脱着可能に収容されている。
 本実施形態3にかかるハンマードリル500は、前述した電池1,101,201、即ち、前述の正電極板30,130,230を用いた電池1,101,201を搭載しているので、特性の劣化を抑制したハンマードリル500とすることができる。
 以上において、本発明を実施形態1~実施形態3に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1では、カーボンコート層に含む炭素粉体として、アセチレンブラックを用いたが、例えば、アセチレンブラック以外の、ファーネスブラック、ケッチェンブラック等のカーボンブラックや、グラファイト粉末等を用いても良い。また、正電極板にアセチレンブラックからなる導電材を用いたが、例えば、上述した炭素粉体のうち、アセチレンブラック以外のものや、ニッケル粉末等の金属粉末などを用いても良い。
 また、正極活物質粒子にニッケルコバルト酸リチウムを用いたが、例えば、このほかの、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物や、鉄オリビン化合物を用いても良い。

Claims (10)

  1.  導電性を有する基体と、
     上記基体に形成してなり、正極活物質粒子、導電材及び結着材を含む正極活物質層と、を備える
    正電極板であって、
     上記結着材は、ポリエチレンオキサイドのみ、又は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなる
    正電極板。
  2. 請求項1に記載の正電極板であって、
     前記基体と前記正極活物質層との間に、炭素粉体を含むカーボンコート層を介在させてなる
    正電極板。
  3. 請求項1又は請求項2に記載の正電極板であって、
     前記結着材は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなる
    正電極板。
  4. 請求項3に記載の正電極板であって、
     前記正極活物質層は、前記ポリエチレンオキサイド及び前記カルボキシメチルセルロースをそれぞれ1wt%ずつ含む
    正電極板。
  5. 請求項1~請求項4のいずれか一項に記載の正電極板を用いた電池。
  6. 請求項5に記載の電池を搭載し、この電池による電気エネルギを動力源の全部又は一部に使用する車両。
  7. 請求項5に記載の電池を搭載し、この電池による電気エネルギをエネルギ源の全部又は一部として使用する電池搭載機器。
  8.  導電性を有する基体と、
     上記基体に形成してなり、正極活物質粒子、導電材及び結着材を含む正極活物質層と、を備える
    正電極板の製造方法であって、
     上記結着材は、ポリエチレンオキサイドのみ、又は、ポリエチレンオキサイド及びカルボキシメチルセルロースのみからなり、
     上記正極活物質粒子、上記導電材及び上記結着材を混練した活物質ペーストを上記基体に塗布し乾燥させて、上記正極活物質層を形成する正極活物質層形成工程、を備える
    正電極板の製造方法。
  9. 請求項8に記載の正電極板の製造方法であって、
     上記正電極板は、
      前記基体と前記正極活物質層との間に、炭素粉体を含むカーボンコート層を介在させてなり、
     前記正極活物質層形成工程は、
      前記活物質ペーストを、予め上記基体に形成した上記カーボンコート層上に塗布する
    正電極板の製造方法。
  10. 請求項8又は請求項9に記載の正電極板の製造方法であって、
     前記正極活物質層形成工程に先立ち、
     混練後の活物質ペーストを、捕集効率90%が50μm以下のフィルタに通すフィルタ通過工程を備える
    正電極板の製造方法。
PCT/JP2009/061706 2009-06-26 2009-06-26 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法 WO2010150397A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/379,108 US20120107685A1 (en) 2009-06-26 2009-06-26 Electropostive plate, battery, vehicle battery-mounted device, and electropositive plate manufacturing method
CN2009801599173A CN102460779A (zh) 2009-06-26 2009-06-26 正电极板、电池、车辆、电池搭载机器、和正电极板的制造方法
PCT/JP2009/061706 WO2010150397A1 (ja) 2009-06-26 2009-06-26 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法
KR1020117030667A KR101390548B1 (ko) 2009-06-26 2009-06-26 정 전극판, 전지, 및 정 전극판의 제조 방법
JP2011519451A JP5375959B2 (ja) 2009-06-26 2009-06-26 正電極板、電池、及び、正電極板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/061706 WO2010150397A1 (ja) 2009-06-26 2009-06-26 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法

Publications (1)

Publication Number Publication Date
WO2010150397A1 true WO2010150397A1 (ja) 2010-12-29

Family

ID=43386190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061706 WO2010150397A1 (ja) 2009-06-26 2009-06-26 正電極板、電池、車両、電池搭載機器、及び、正電極板の製造方法

Country Status (5)

Country Link
US (1) US20120107685A1 (ja)
JP (1) JP5375959B2 (ja)
KR (1) KR101390548B1 (ja)
CN (1) CN102460779A (ja)
WO (1) WO2010150397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009423A (ja) * 2010-05-28 2012-01-12 Semiconductor Energy Lab Co Ltd 蓄電装置及びその作製方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070661B2 (ja) * 2014-09-10 2017-02-01 トヨタ自動車株式会社 正極合剤、正極、固体電池及びそれらの製造方法
CN106229477A (zh) * 2016-08-12 2016-12-14 中航锂电(洛阳)有限公司 正极活性材料、制备方法及应用
KR102258090B1 (ko) * 2016-09-06 2021-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
CN107482223B (zh) * 2017-09-29 2021-06-08 清华大学 锂离子电池电极材料组合物、锂离子电池及其电极浆料的制备方法
JP6699689B2 (ja) * 2018-06-27 2020-05-27 トヨタ自動車株式会社 負極の製造方法、負極および非水電解液二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055798A (ja) * 1996-08-08 1998-02-24 Fuji Elelctrochem Co Ltd シート状電極
JPH10340740A (ja) * 1997-06-09 1998-12-22 Yuasa Corp リチウム電池
JPH11162446A (ja) * 1997-11-26 1999-06-18 Yuasa Corp 単位電池とこれを用いた蓄電池装置
JP2001266890A (ja) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池及びその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083260B2 (ja) * 1997-07-09 2008-04-30 松下電器産業株式会社 非水電解液二次電池の電極板の製造方法
US6544688B1 (en) * 2000-09-20 2003-04-08 Moltech Corporation Cathode current collector for electrochemical cells
US7351498B2 (en) * 2001-04-10 2008-04-01 Mitsubishi Materials Corporation Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
JP3952749B2 (ja) * 2001-11-19 2007-08-01 株式会社デンソー リチウム電池用電極の製造方法およびリチウム電池用電極
JP3960193B2 (ja) * 2001-12-20 2007-08-15 株式会社デンソー リチウム二次電池用電極及びリチウム二次電池並びにその製造方法
US20080226986A1 (en) * 2004-02-16 2008-09-18 Kentaro Nakahara Power Storage Device
JP2008159355A (ja) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd コイン型リチウム電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055798A (ja) * 1996-08-08 1998-02-24 Fuji Elelctrochem Co Ltd シート状電極
JPH10340740A (ja) * 1997-06-09 1998-12-22 Yuasa Corp リチウム電池
JPH11162446A (ja) * 1997-11-26 1999-06-18 Yuasa Corp 単位電池とこれを用いた蓄電池装置
JP2001266890A (ja) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池及びその製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009423A (ja) * 2010-05-28 2012-01-12 Semiconductor Energy Lab Co Ltd 蓄電装置及びその作製方法

Also Published As

Publication number Publication date
KR101390548B1 (ko) 2014-04-30
KR20120020184A (ko) 2012-03-07
JPWO2010150397A1 (ja) 2012-12-06
JP5375959B2 (ja) 2013-12-25
US20120107685A1 (en) 2012-05-03
CN102460779A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5561559B2 (ja) リチウム二次電池の製造方法
US9608258B2 (en) Battery manufacturing method
WO2013094100A1 (ja) 二次電池用正極およびこれを用いた二次電池
JP5375959B2 (ja) 正電極板、電池、及び、正電極板の製造方法
JP2008108649A (ja) 車両用リチウム二次電池正極の製造方法
JP2016103433A (ja) 非水電解質二次電池用負極の製造方法
JP2012022858A (ja) 電極の製造方法
KR20200030518A (ko) 전지의 제조 방법
JP5880964B2 (ja) 非水電解質二次電池
JP2013062089A (ja) リチウムイオン二次電池
JP2011028898A (ja) リチウム二次電池用の正極とその製造方法
JP5682793B2 (ja) リチウム二次電池およびその製造方法
JP5807807B2 (ja) リチウムイオン二次電池の正極板の製造方法
JP2012156061A (ja) 二次電池とその製造方法
JP2012256544A (ja) 二次電池用電極の製造方法
JP5679206B2 (ja) リチウムイオン二次電池用負極の製造方法およびリチウムイオン二次電池の製造方法
JP2012059532A (ja) 二次電池の製造方法
JP2013161689A (ja) 二次電池用電極とその製造方法
JP5862928B2 (ja) リチウムイオン二次電池用正極の製造方法
JP2017152122A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5725356B2 (ja) 二次電池用電極の製造方法
JP2011003511A (ja) 正電極板の製造方法、電池、車両及び電池搭載機器
JP2010211975A (ja) 二次電池用の電極の製造方法
JP2016062832A (ja) 二次電池の製造方法
JP2011134589A (ja) 二次電池用電極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159917.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519451

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13379108

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117030667

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846529

Country of ref document: EP

Kind code of ref document: A1