WO2010147092A1 - ろう付け用フェライト系ステンレス鋼材および熱交換器部材 - Google Patents

ろう付け用フェライト系ステンレス鋼材および熱交換器部材 Download PDF

Info

Publication number
WO2010147092A1
WO2010147092A1 PCT/JP2010/060060 JP2010060060W WO2010147092A1 WO 2010147092 A1 WO2010147092 A1 WO 2010147092A1 JP 2010060060 W JP2010060060 W JP 2010060060W WO 2010147092 A1 WO2010147092 A1 WO 2010147092A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
less
stainless steel
steel material
ferritic stainless
Prior art date
Application number
PCT/JP2010/060060
Other languages
English (en)
French (fr)
Inventor
学 奥
定幸 中村
芳明 堀
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to EP10789467.7A priority Critical patent/EP2444509B1/en
Priority to PL10789467T priority patent/PL2444509T3/pl
Priority to US13/376,708 priority patent/US9932650B2/en
Priority to ES10789467T priority patent/ES2728876T3/es
Priority to CA2762899A priority patent/CA2762899C/en
Priority to CN2010800265055A priority patent/CN102459676B/zh
Publication of WO2010147092A1 publication Critical patent/WO2010147092A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element

Definitions

  • the present invention relates to a ferritic stainless steel material suitable for a heat exchanger member to which high-temperature brazing such as nickel brazing is applied, and a heat exchanger member brazed using the ferritic stainless steel material.
  • EGR exhaust Gas Recirculation exhaust gas recirculation
  • the EGR cooler In the EGR system, a device for cooling the exhaust gas to a temperature at which it can be circulated is required. This is the EGR cooler.
  • heat exchangers for the purpose of reducing CO 2 in combustion exhaust gas and reusing heat are also used in latent heat recovery devices for hot water heaters, etc. Secondary heat exchangers that can be reduced to 50 to 80 ° C have also been developed.
  • FIG. 1 and 2 schematically illustrate a general structure of a heat exchanger that recovers heat of exhaust gas.
  • a heat exchange section partitioned by two partition plates is provided in a part of the exhaust gas flow path constituted by the outer cylinder, and a heat exchanger that releases heat to the cooling water is configured in the section.
  • a vent pipe is joined to the partition plate at a location where a hole is provided, and exhaust gas flows through the vent pipe in the heat exchange section. Cooling water flows around the vent pipe.
  • Such a heat exchanger is composed of a metal member such as an outer cylinder, a partition plate, a vent pipe, or a fin in the vent pipe, and these members are joined by brazing.
  • a metal member such as an outer cylinder, a partition plate, a vent pipe, or a fin in the vent pipe, and these members are joined by brazing.
  • the brazing material copper brazing, copper alloy brazing, nickel brazing, iron brazing or the like is used.
  • the exhaust gas temperature on the side where the heat exchange section is entered may reach a maximum of about 800 ° C.
  • the temperature on the exit side may reach a maximum of about 200 ° C.
  • BNi-5, BNi-6, etc. are often applied.
  • the metal member that constitutes the heat exchanger is required to have the following characteristics.
  • the brazing property is good.
  • Good corrosion resistance in the usage environment For example, in automobile applications, corrosion resistance against snow melting salt is good. Particularly in EGR applications, the corrosion resistance against LLC (long life coolant; for example, ethylene glycol) is good. In water heater applications, the corrosion resistance when exposed to the outdoor environment is good.
  • Good corrosion resistance to cooling water heat medium. For example, in EGR applications, corrosion resistance to LLC (long life coolant; for example, ethylene glycol) is good.
  • austenitic stainless steels represented by SUS304 and SUS316 are mainly used as metal members of heat exchangers that recover the heat of exhaust gas.
  • Patent Document 1 describes an exhaust gas recirculation system component using austenitic stainless cast steel.
  • austenitic stainless steel has a large coefficient of thermal expansion, the oxide scale on the surface of the member generated at high temperature may peel off during cooling and flow into the pipe, or thermal fatigue failure may occur due to repeated heating and cooling.
  • Cheap Further improvement in high temperature strength is also desired.
  • the material cost is high because a large amount of expensive Ni is contained.
  • ferritic stainless steel has a smaller thermal expansion coefficient than austenitic steel grades, and the material cost is generally less expensive than austenitic steel grades.
  • Ferritic stainless steel is frequently used for exhaust manifolds and mufflers that constitute the exhaust gas path.
  • crystal grains are likely to be coarsened when exposed to high temperatures. For example, when subjected to high-temperature brazing such as 1100 ° C. or higher, ferritic stainless steel usually has abnormally coarsened crystal grains.
  • This coarsening is a phenomenon of abnormal grain growth in which the so-called secondary recrystallization in which fast-growing recrystallized grains grow by biting with other recrystallized grains in the progress of recrystallization progresses rapidly by high-temperature heating. Yes, this abnormal grain growth is called “coarse graining”.
  • the toughness is reduced. Further, in a portion where coarse crystal grains that penetrate the wall thickness exist, the crystal grains may drop off based on intergranular corrosion, and in this case, a through hole is opened in the member.
  • Patent Document 2 discloses a ferritic stainless steel for heat exchangers with good brazing properties.
  • this ferritic stainless steel is not intended for high-temperature brazing that is exposed to 1100 ° C. or higher. For example, improvement in nickel brazing and prevention of coarsening are still unsolved. is there.
  • the present invention provides a ferritic stainless steel material that is prevented from coarsening when exposed to high temperatures as described above as a heat exchanger member, and a ferritic stainless steel material that is not coarsened after brazing. It aims at providing the heat exchanger member which consists of.
  • the purpose is mass%, C: 0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 35%, Nb: 0.2 to 0.00. 8%, N: 0.03% or less, if necessary, one or more of Mo, Cu, V and W in total 4% or less, or one or more of Ti and Zr in total 0.5% 1 or more of Ni and Co in total or 5% or less, or Al: 6% or less, REM (rare earth element): 0.2% or less, Ca: 0.1% or less And the balance is Fe and inevitable impurities, preferably having a chemical composition in which the total content of C and N is 0.01% or more, and the area ratio of recrystallized grains generated by heating after cold working Achieved by brazing ferritic stainless steel material with a partially recrystallized structure of 10-80% Made.
  • the above steel materials are nickel brazing as defined in JIS Z3265, nickel brazing containing 35 mass% or more of Ni, copper brazing or copper alloy brazing as defined in JIS ZZ262, and iron brazing (35 wt% of iron).
  • % Of the brazing material wherein the ferrite crystal grains of the steel material do not penetrate the wall thickness and have an average crystal grain size of 500 ⁇ m or less.
  • a member is provided. Specifically, an outer cylinder, a partition plate, a vent pipe and the like constituting a heat exchanger that recovers the heat of exhaust gas can be exemplified.
  • the EGR cooler member of the motor vehicle formed by brazing using nickel brazing specified in JIS Z3265 or nickel brazing containing 35 mass% or more of Ni is particularly suitable.
  • the average grain size is calculated by calculating the equivalent circle diameter by measuring the area of each ferrite crystal grain in the metal structure of the cross section (L cross section) perpendicular to the thickness direction of the steel material and the cold working direction. The average value of equivalent circle diameters is used.
  • the observation area is a continuous area of 1 mm 2 or more. It can be measured using an image processing device.
  • a ferritic stainless steel material that can prevent coarsening when subjected to high temperature brazing such as nickel brazing.
  • high temperature brazing such as nickel brazing.
  • the inventors have conducted various studies on a technique for preventing coarsening of a ferritic stainless steel material that has undergone such mild processing during high-temperature heating.
  • the area ratio of the recrystallized grains area ratio of the recrystallized grains
  • the present inventors have found that coarsening can be remarkably prevented during high-temperature heating after undergoing mild molding.
  • the area ratio of the recrystallized grains is more preferably 30 to 70%.
  • “Recrystallized grains” are ferrite grains newly generated by heating performed after cold working. Here, this heat treatment is called “recrystallization heat treatment”.
  • the area ratio of the recrystallized grains is referred to as “recrystallization ratio”.
  • FIG. 4 shows 18Cr-1Mn-2Mo-0.65Nb-0.1Cu steel sheet with a cross-sectional structure (a) and (b) after recrystallization heat treatment and about 2% processing strain applied to these materials.
  • cross-sectional structures (c) and (d) when subjected to heat treatment equivalent to brazing, which is subjected to heating at 1175 ° C. for 30 minutes, are exemplified.
  • FIG. 4A shows a steel material corresponding to the present invention in which the area ratio (recrystallization ratio) of recrystallized grains generated by heating after cold working is about 50%.
  • the recrystallization rate can be measured by such an optical microscope structure observation.
  • FIG. 4C This observation surface is a cross section parallel to the rolling direction (L cross section), and in the crystal grains extended in the rolling direction by cold working, new crystal grains (recrystallized grains) generated by recrystallization heat treatment are seen, It exhibits a partially recrystallized structure.
  • FIG.4 (b) is a general annealing material with a recrystallization rate of 95% or more.
  • FIG. 4D coarsening occurs after the heat treatment corresponding to brazing.
  • ferrite grains that penetrate through the wall thickness.
  • the recrystallization rate can be measured as follows.
  • a metal structure is revealed by a mixed solution of hydrofluoric acid and nitric acid, a measurement region of 0.5 mm 2 or more is provided in the L cross section, and crystal grains existing in the measurement region (separated by the boundary line of the measurement region).
  • Including crystal grains are categorized into crystal grains in which a deformed structure (slip band) is observed and crystal grains that are not observed, and the percentage of the total area of “crystal grains in which no deformed structure is observed” in the measurement area (% ) And this value is taken as the recrystallization rate.
  • the recrystallization rate can be controlled by the cold working rate before the recrystallization heat treatment, the temperature and time of the recrystallization heat treatment.
  • the cold working rate before the recrystallization heat treatment is desirably in the range of 25 to 90%.
  • a recrystallization heat treatment for obtaining a partially recrystallized structure having a recrystallization rate of 10 to 80% Appropriate conditions are: recrystallization heat treatment temperature (material temperature): 900 to 1000 ° C., heat treatment time (“soaking time” in which the center of the material is maintained at a predetermined heat treatment time): 0 to 3 minutes be able to.
  • Fig. 5 shows the tensile strength of 18Cr-1Mn-2Mo-0.65Nb-0.1Cu steel that has been subjected to recrystallization heat treatment at various temperatures for 1 minute soaking using a cold rolled material with a processing rate of 75%.
  • solid line obtained by examining the elongation rate after the test and the material after the recrystallization heat treatment, approximately 2% processing strain was applied, and then subjected to heating at 1175 ° C. for 30 minutes.
  • the data (broken line) of the grain size G (JIS ⁇ G0552: 2005) after application is illustrated.
  • the white plot is a material of the present invention corresponding to a recrystallization rate of 10 to 80%
  • the black plot is a material having a recrystallization rate exceeding 80%.
  • the lower the temperature of the recrystallization heat treatment the smaller the recrystallization rate, and accordingly, the elongation rate of the material decreases.
  • an elongation of 10% can be sufficiently secured in the range of the recrystallization rate of 80% or less.
  • coarsening after high temperature brazing can be prevented.
  • C and N are elements that form Nb carbide / nitride when combined with Nb.
  • Nb is consumed by these precipitates and the solid solution Nb is reduced, the effect of improving the high temperature strength and the effect of suppressing the coarsening of the crystal grains due to the solid solution Nb are hindered. Therefore, in the present invention, the C content needs to be limited to 0.03% or less, and is preferably 0.025% or less. Further, the N content needs to be limited to 0.03% or less, and is preferably 0.025% or less.
  • Nb carbide / nitride can also contribute to the suppression of grain coarsening during high temperature brazing. Therefore, it is advantageous to secure a certain amount of C and N.
  • the total content of C and N is 0.01% by mass or more.
  • Si is an element that improves high-temperature oxidation characteristics.
  • excessive Si content hardens the ferrite phase and causes deterioration of workability.
  • nickel brazing property wetting property with a nickel brazing material
  • the Si content is limited to a range of more than 0.1 to 3%, and more preferably in a range of 0.3 to 2.5%.
  • the upper limit can also be regulated to 1.5%.
  • Mn is an element that improves high-temperature oxidation characteristics, particularly scale peel resistance. However, excessive addition promotes the formation of an austenite phase at high temperatures.
  • the Mn content is specified in the range of 0.1 to 2%.
  • Cr has the effect of stabilizing the oxidation resistance at high temperatures. For that purpose, it is necessary to ensure a Cr content of 10% or more. However, excessive Cr content impairs manufacturability and workability of the steel material. Therefore, the Cr content is limited to a range of 35% or less, and more preferably 25% or less.
  • Nb is an important element in the present invention, and effectively acts to suppress an increase in high-temperature strength and coarsening of crystal grains during high-temperature brazing.
  • the solid solution strengthening of Nb mainly contributes greatly, but the pinning effect by precipitates such as Fe 2 Nb (Laves) finely dispersed in the ferrite matrix and Fe 3 NbC (M6X) is also provided. It is considered that it works effectively to suppress coarsening of crystal grains. In order to fully exhibit these actions, it is important to secure the Nb content to 0.2% or more after restricting the C and N contents to the above ranges.
  • the Nb content in order to suppress the coarsening of crystal grains during high temperature brazing, it is effective to increase the Nb content, and it is preferable to set the Nb content to 0.3% or more, or even 0.4% or more.
  • the Nb content is limited to a range of 0.8% or less.
  • Mo, Cu, V, and W also contribute to improvement of high temperature strength mainly by solid solution strengthening. Therefore, one or more of these elements can be contained as necessary. In particular, it is more effective to secure a total content of these elements of 0.05% or more. However, when these elements are added excessively, the hot workability is adversely affected. Moreover, it becomes a factor which inhibits low temperature toughness. As a result of various studies, when adding one or more of Mo, Cu, V, and W, it is necessary to suppress the total content to 4% or less.
  • Ti and Zr combine with C and N to form fine precipitates, which are dispersed in the steel to improve the high temperature strength. Therefore, one or more of these elements can be contained as necessary. However, if any of these elements is contained in a large amount, it causes a decrease in hot workability and surface quality characteristics. Moreover, since it is an element that forms a strong oxide film on the surface of the steel material, the flow of the brazing material may be deteriorated by the oxide film. As a result of the study, when adding one or more of Ti and Zr, the total content needs to be suppressed to 0.5% or less. In particular, the total content is effectively in the range of 0.03 to 0.3%, and more preferably 0.03 to 0.25%.
  • Ni and Co are remarkably effective in suppressing toughness reduction when crystal grains are slightly coarsened by high-temperature brazing. These elements are also advantageous for improving the high temperature strength. Therefore, if necessary, one or more of these elements can be contained, and it is particularly effective to secure a total content of Ni and Co of 0.5% or more. However, excessive addition of Ni and Co is not preferable because it causes formation of an austenite phase in a high temperature range. When adding 1 or more types of Ni and Co, it is necessary to suppress the total content of Ni and Co in the range of 5% or less.
  • Al, REM (rare earth element), and Ca are elements that improve high-temperature oxidation characteristics.
  • one or more of these can be added as necessary.
  • it is more effective to secure a total content of Al, REM, and Ca of 0.01% or more.
  • it is necessary to suppress Al to 6% or less, REM to 0.2% or less, and Ca to 0.1% or less.
  • the ferritic stainless steel having the above composition has a level of no problem with respect to the corrosion resistance against snow melting salt, the corrosion resistance against LLC, and the corrosion resistance against condensed water as compared with the austenitic steel types used in conventional heat exchangers. It was confirmed.
  • the high temperature strength (0.2% proof stress) and scale peel resistance in the exhaust gas environment are improved over the austenitic steel grade.
  • the steel material of the present invention can be obtained by subjecting the ferritic stainless steel having the above composition to the above-described recrystallization heat treatment to obtain a partially recrystallized structure having a recrystallization rate of 10 to 80%.
  • This steel material is processed into a member such as an outer cylinder, a partition plate, a vent pipe, and a fin attached to the vent pipe that constitutes a heat exchanger that recovers the heat of exhaust gas. These members are joined by nickel brazing or the like to construct a heat exchanger.
  • the steel having the chemical composition shown in Table 1 was melted, and the resulting steel ingot was hot-forged into a round bar and a plate to be processed into a round bar having a diameter of 15 mm and a plate having a thickness of 30 mm.
  • the round bar was subjected to a solution treatment at a holding temperature set in the range of 1000 to 1100 ° C.
  • the plate is hot rolled into a hot rolled plate having a thickness of 4 mm, annealed, and then cold rolled to a plate thickness of 1 mm, and then the holding temperature is set within a range of 850 to 1100 ° C. Recrystallization heat treatment was performed as annealing to obtain materials having various recrystallization rates. Thereafter, except for some materials, cold rolling was performed at a mild processing rate (described in Table 2) that is likely to cause crystal grain coarsening during high-temperature brazing to obtain a test steel plate.
  • Steel No. N is an austenitic stainless steel.
  • the mass change per unit area was determined by dividing the mass change before and after the test (plus is increase, minus is decrease) by the surface area of the test piece before the test. If the absolute value of this mass change is 10 mg / cm 2 or less, it is evaluated that it has excellent high-temperature oxidation characteristics as a heat exchanger member, and those having a mass change of 5 mg / cm 2 or less are particularly excellent.
  • brazing (wetting) Two 10 mm ⁇ 20 mm brazing specimens were cut out from each test steel plate having a thickness of 1 mm. One of the test pieces was placed horizontally, and a paste-like brazing material was applied to the entire surface with a thickness of 0.5 mm. A test piece / brazing material / test piece three-layer laminate was constructed by stacking another test piece thereon, and this was placed in a vacuum furnace while keeping it horizontal. Heated for minutes. Take out the laminate after cooling, observe the surface of the test piece on the upper surface (the one where Ni brazing was not applied), and divide the area wetted with the brazing material by the total area of the test piece surface Thus, the brazing material coverage was obtained.
  • a brazing material covering rate of 50% or more was evaluated as A, 20% or more and less than 50% was evaluated as B, and less than 20% was evaluated as C.
  • the brazing material used was a 19 mass% Cr-10 mass% Si-71 mass% Ni composition (equivalent to BNi-5 in JIS Z3265).
  • the ferritic stainless steel material of the present invention example is superior to the austenitic stainless steel material of Comparative Example No. 28 in 0.2% proof stress at 700 ° C. and high temperature oxidation characteristics in repeated cycles. It was. It was confirmed that the brazing property (wetting property) and resistance to coarsening were good, and the heat exchanger member had sufficiently satisfactory characteristics.
  • Comparative Examples Nos. 21 to 25 satisfy the chemical composition defined in the present invention, but the recrystallization heat treatment temperature was inappropriate and the recrystallization rate exceeded 80%, resulting in coarse grains.
  • No. 26 had a high C content and a low Nb content, so the amount of dissolved Nb was insufficient, and the high temperature strength (0.2% proof stress at 700 ° C.) and the resistance to coarsening were inferior.
  • No. 27 since the Ti content was excessive, an oxide film was likely to be formed on the surface during brazing, and the brazing property was inferior.
  • No. 14 is an austenitic stainless steel material, and high-temperature strength (0.2% yield strength at 700 ° C.) was lower than other ferritic steel types. In addition, due to the large thermal expansion coefficient, the scale easily peeled off in repeated cycles, and the mass change became a large negative value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 熱交換器部材として高温ろう付けに曝された場合に粗粒化が防止されるフェライト系ステンレス鋼材を提供する。 質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~35%、Nb:0.2~0.8%、N:0.03%以下であり、必要に応じて、Mo、Cu、VおよびWの1種以上を合計4%以下、あるいはさらにTiおよびZrの1種以上を合計0.5%以下、あるいはさらにNiおよびCoの1種以上を合計5%以下、あるいはさらにAl:6%以下、REM(希土類元素):0.2%以下、Ca:0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物であり、冷間加工後の加熱によって生成した再結晶粒の面積率が10~80%である部分再結晶組織を有するろう付け用フェライト系ステンレス鋼材。

Description

ろう付け用フェライト系ステンレス鋼材および熱交換器部材
 本発明は、ニッケルろう付けなどの高温のろう付けが適用される熱交換器部材に適したフェライト系ステンレス鋼材、およびそれを用いてろう付け施工した熱交換器部材に関する。
 自動車をはじめとする内燃機関搭載車両では、排ガス中のNOX低減や燃費向上を目的として、EGR(Exhaust Gas Recirculation;排気ガス再循環)の手法が採用されることがある。これは、内燃機関から排出された排ガスの一部を取り出し、内燃機関の吸気側から再度吸気させる技術であり、主としてディーゼル機関で普及してきたが、近年ではガソリン機関にも適用されるようになってきた。
 EGRシステムにおいては、排ガスを循環可能な温度まで冷却する装置が必要となる。これがEGRクーラーである。
 また、給湯器の潜熱回収器などにおいても燃焼排ガス中のCO2低減と熱の再利用を目的とした熱交換器が使用されており、現行200℃程度で排出している燃焼ガスの温度を50~80℃まで低減させることができる二次熱交換器なども開発されている。
 図1、図2に、排ガスの熱を回収する熱交換器の一般的な構造を模式的に例示する。外筒で構成される排ガス流路の一部に2枚の仕切り板で仕切られた熱交換セクションが設けられ、そのセクションでは冷却水に熱を逃がす熱交換器が構成されている。仕切り板には穴を設けた箇所に通気管が接合されており、熱交換セクションでは通気管の中を排ガスが流れる。通気管の周囲には冷却水が流れるようになっている。通気管は金属製の単なるパイプで構成されるタイプ(図1)や、管の内部にフィンを設けたタイプ(図2)などがある。
 このような熱交換器は、外筒、仕切り板、通気管、あるいはさらに通気管内のフィンといった金属部材で構成され、それらの部材はろう付けによって接合される。ろう材としては銅ろう、銅合金ろう、ニッケルろう、鉄ろうなどが使用される。ただし、EGRクーラーなどでは熱交換セクション入り側の排ガス温度は最高800℃程度、出側の温度は最高200℃程度に達することがあるので、耐高温酸化性および高温強度に優れるニッケルろう(JIS Z3265のBNi-5、BNi-6など)が適用されることが多い。
 熱交換器を構成する金属部材には、以下のような特性が要求される。
(1)ろう付け性が良好であること。
(2)使用環境での耐食性が良好であること。例えば自動車用途では融雪塩に対する耐食性が良好でありること。特にEGR用途ではさらにLLC(ロングライフクーラント;例えばエチレングリコール)に対する耐食性が良好であること。給湯器用途では屋外環境に曝された場合の耐食性が良好であること。
(3)冷却水(熱媒体)に対する耐食性が良好であること。例えばEGR用途ではLLC(ロングライフクーラント;例えばエチレングリコール)に対する耐食性が良好であること。
(4)凝結水の結露に対する耐食性が良好であること。エンジン排ガスや燃焼排ガスに曝される部材では、運転中は排ガス出側付近に結露が生じやすく、運転後は排ガス接触箇所に結露が生じやすいからである。
(5)高温強度と耐高温酸化性が良好であること。排ガスの熱を回収する熱交換器は高温のガスに曝されるからである。
特開2003-193205号公報 特開平7-292446号公報
 上記の要求特性から、現在、排ガスの熱を回収する熱交換器の金属部材にはSUS304、SUS316に代表されるオーステナイト系ステンレス鋼が主として使用されている。例えば特許文献1には、オーステナイト系ステンレス鋳鋼を用いた排気ガス再循環系部品が記載されている。しかし、オーステナイト系ステンレス鋼は熱膨張係数が大きいため、高温で生成した部材表面の酸化スケールが冷却時に剥離して管路内に流入したり、加熱・冷却の繰り返しによる熱疲労破壊が生じたりしやすい。高温強度についても更なる改善が望まれる。また、高価なNiを多量に含有するため材料コストも高い。
 一方、フェライト系ステンレス鋼は熱膨張係数がオーステナイト系鋼種よりも小さく、また、材料コストも一般にオーステナイト系鋼種より安価である。排ガス経路を構成するエキゾーストマニホールドやマフラーなどにはフェライト系ステンレス鋼が多用されている。しかし、高温に曝されると結晶粒が粗大化しやすいという問題がある。例えば1100℃以上といった高温ろう付けに供されると、通常、フェライト系ステンレス鋼は結晶粒が異常に粗大化してしまう。この粗大化は、再結晶の進行過程で成長の速い再結晶粒が他の再結晶粒との食い合いによって成長するいわゆる二次再結晶が、高温加熱によって急激に進行する異常粒成長の現象であり、ここではこの異常粒成長を「粗粒化」と呼ぶ。粗粒化が起こったフェライト系ステンレス鋼材では、靱性が低下する。また肉厚を貫通するような粗大結晶粒が存在する部分では粒界腐食を基点として結晶粒が脱落することがあり、その場合には部材に貫通孔が開いてしまう。
 特許文献2には、ろう付け性の良い熱交換器用フェライト系ステンレス鋼が開示されている。しかし、このフェライト系ステンレス鋼は1100℃以上に曝されるような高温ろう付けを想定したものではなく、例えばニッケルろう付け性の改善や、その際の粗粒化防止に関しては未解決のままである。
 本発明は、熱交換器部材として上記のような高温に曝された場合に粗粒化が防止されるフェライト系ステンレス鋼材を提供すること、および、ろう付け後に粗粒化していないフェライト系ステンレス鋼材からなる熱交換器部材を提供することを目的とする。
 上記目的は、質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~35%、Nb:0.2~0.8%、N:0.03%以下であり、必要に応じて、Mo、Cu、VおよびWの1種以上を合計4%以下、あるいはさらにTiおよびZrの1種以上を合計0.5%以下、あるいはさらにNiおよびCoの1種以上を合計5%以下、あるいはさらにAl:6%以下、REM(希土類元素):0.2%以下、Ca:0.1%以下の1種以上を含有し、残部がFeおよび不可避的不純物であり、好ましくはCおよびNの合計含有量が0.01%以上である化学組成を有し、冷間加工後の加熱によって生成した再結晶粒の面積率が10~80%である部分再結晶組織を有するろう付け用フェライト系ステンレス鋼材によって達成される。
 また、本発明では上記の鋼材をJIS Z3265に規定されるニッケルろう、Niを35質量%以上含有するニッケルろう、JIS Z3262に規定される銅ろうまたは銅合金ろう、および鉄ろう(鉄を35質量%以上含有するろう材)のいずれかを用いてろう付けしてなる部材であって、当該鋼材のフェライト結晶粒が、肉厚を貫通せず、かつ平均結晶粒径500μm以下である熱交換器部材が提供される。具体的には排ガスの熱を回収する熱交換器を構成する外筒、仕切り板、通気管などが例示できる。また、特にJIS Z3265に規定されるニッケルろう、またはNiを35質量%以上含有するニッケルろうを用いてろう付けしてなる自動車のEGRクーラー部材が好適な対象となる。
 平均結晶粒径は、鋼材の肉厚方向および前記冷間加工の方向に垂直な断面(L断面)の金属組織において、個々のフェライト結晶粒の面積を測定して円相当径を算出し、それらの円相当径の平均値を用いる。観察領域は連続した1mm2以上の領域とする。画像処理装置を用いて測定することができる。
 本発明によれば、ニッケルろう付けのような高温ろう付けに供した場合に粗粒化が防止できるフェライト系ステンレス鋼材が提供された。この鋼材を用いることにより、オーステナイト系ステンレス鋼を部材に用いた従来の熱交換器に比べ、より熱疲労特性に優れ、酸化スケールの剥離が少なく、かつ材料コストの低い熱交換器が実現される。
排ガスの熱を回収する熱交換器の構造を模式的に例示した図。 通気管内にフィンを有するタイプの排ガスの熱を回収する熱交換器の構造を模式的に例示した図。 0~20%の範囲で引張歪を付与したフェライト系ステンレス鋼材を1175℃で30分間加熱した後の結晶粒度Gをプロットしたグラフ。 フェライト系ステンレス鋼材について、再結晶熱処理後の断面組織およびそれらの材料にろう付け相当熱処理を施した場合の断面組織を例示した光学顕微鏡写真。 フェライト系ステンレス鋼材について、再結晶熱処理温度と、伸び率およびろう付け相当熱処理を施した後の結晶粒度Gの関係を例示したグラフ。
 発明者らの調査によれば、例えば鋼板試料を単純に1100℃以上の高温(例えばニッケルろう付け温度域の1175℃)に加熱したときに粗粒化が生じない材料であっても、熱交換器部材に成形したのちにニッケルろう付けに供した際には粗粒化を生じて問題となることがあることがわかった。その原因として、高Crフェライト系鋼は、焼鈍後に0.5~10%程度の比較的軽微な加工を施した場合に、高温加熱時の粗粒化を起こしやすいという性質を有していることが考えられる。図3に発明者らが行った実験結果の一例を示す。これは、0~20%の範囲で引張歪を付与した18Cr-1Mn-2Mo-0.65Nb-0.1Cu鋼を1175℃で30分間加熱した後の結晶粒度G(JIS G0552:2005)をプロットしたものである。0.5~5%程度の軽度な加工を施した場合に最も粗粒化が生じやすいことがわかる。熱交換器のろう付けに供する部材(外筒、仕切り板、通気管など)は成形加工後に、このような軽度な加工を受けた部分を含んでいることが多く、これが粗粒化を助長する要因となっているものと考えられる。
 発明者らは、このような軽度な加工を受けたフェライト系ステンレス鋼材の高温加熱時の粗粒化を防止する手法について種々研究を行ってきた。その結果、素材を製造する段階の仕上焼鈍において、断面組織のうち再結晶粒の占める面積率(再結晶粒の面積率)が10~80%であるような部分再結晶組織としたとき、その後、軽度な成形加工を受けた後の高温加熱時に、粗粒化が顕著に防止できることを見出した。加工性を確保する観点から、再結晶粒の面積率は30~70%であることがより好ましい。「再結晶粒」は冷間加工後に行われる加熱によって新たに生じるフェライト結晶粒である。ここでは、この加熱処理を「再結晶熱処理」と呼ぶ。また上記の再結晶粒の面積率を「再結晶率」と呼ぶ。
 図4に、18Cr-1Mn-2Mo-0.65Nb-0.1Cu鋼の鋼板について、再結晶熱処理後の断面組織(a)(b)、および、それらの材料に約2%の加工歪を付与したのち1175℃×30分の加熱に供するという、ろう付け相当熱処理を施した場合の断面組織(c)(d)を例示する。図4(a)は、冷間加工後の加熱によって生成した再結晶粒の面積率(再結晶率)が約50%の本発明に相当する鋼材である。再結晶率はこのような光学顕微鏡組織観察によって測定することができる。この観察面は圧延方向に平行な断面(L断面)であり、冷間加工によって圧延方向に伸びた結晶粒の中に、再結晶熱処理によって生成した新しい結晶粒(再結晶粒)が見られ、部分再結晶組織を呈している。図4(c)に見られるように、ろう付けに相当する熱処理後において粗粒化は生じていない。一方、図4(b)は、再結晶率が95%以上の一般的な焼鈍材である。このような組織状態の鋼材の場合、図4(d)に見られるように、ろう付けに相当する熱処理後において粗粒化が生じる。肉厚を貫通しているフェライト結晶粒も存在する。
 具体的には、再結晶率は以下のようにして測定することができる。L断面において、フッ酸と硝酸の混合液により金属組織を現出させ、そのL断面に0.5mm2以上の測定領域を設け、測定領域に存在する結晶粒(測定領域の境界線により分断されている結晶粒を含む)を、変形組織(すべり帯)が観測される結晶粒と観測されない結晶粒に分類し、測定領域に占める「変形組織が観測されない結晶粒」の合計面積の割合(%)を求め、この値を再結晶率とする。
 再結晶率は、再結晶熱処理前の冷間加工率、再結晶熱処理の温度および時間によって制御することができる。再結晶熱処理前の冷間加工率は25~90%の範囲とすることが望ましい。この範囲の加工率を有する冷間加工材を用いることによって、再結晶熱処理で所定の再結晶率を精度良く実現するための制御が行い易くなる。鋼の成分組成によって多少変動するが、例えばNb含有フェライト系ステンレス鋼の場合、約75%の冷間圧延材の場合、再結晶率10~80%の部分再結晶組織を得るための再結晶熱処理の適正条件は、再結晶熱処理温度(材料温度):900~1000℃、熱処理時間(材料の中心部が所定の熱処理時間に維持される「均熱時間」):0~3分の範囲に見出すことができる。
 図5に、18Cr-1Mn-2Mo-0.65Nb-0.1Cu鋼の加工率75%の冷間圧延材を用いて種々の温度で均熱1分の再結晶熱処理を施した材料について、引張試験を行って伸び率を調べたデータ(実線)、および、再結晶熱処理後の材料について、約2%の加工歪を付与したのち1175℃×30分の加熱に供するという、ろう付け相当熱処理を施した後の結晶粒度G(JIS G0552:2005)のデータ(破線)を例示する。白抜きプロットが再結晶率10~80%に相当する本発明の材料、黒塗りプロットが再結晶率が80%を超える材料である。再結晶熱処理の温度が低くなるほど再結晶率が小さくなり、それに伴って当該材料の伸び率は低下する。熱交換器部材への加工を行うためには少なくとも10%程度の伸び率を有する材料を選択することが望ましいが、再結晶率80%以下の範囲において伸び率10%は十分に確保できる。また、再結晶率10~80%の材料を用いた場合、高温ろう付け後の粗粒化が防止できる。これに対し、再結晶熱処理の温度が高くなると再結晶率が80%を超え、一般的なフェライト系ステンレス鋼の焼鈍材と同様、伸び率(加工性)は良好である反面、高温ろう付け後の結晶粒度Gは-3となり、顕著な粗粒化が起こってしまう。本発明で規定する組成範囲の鋼では、いずれも同様の傾向が認められる。
 次に成分元素について説明する。成分組成における「%」は特に断らない限り「質量%」を意味する。
 C、Nは、Nbとの複合添加において、Nb炭化物・窒化物を形成する元素である。これらの析出物によってNbが消費され固溶Nbが減少すると、固溶Nbによる高温強度の向上効果および結晶粒粗大化の抑制効果が阻害される。したがって、本発明ではC含有量は0.03%以下に制限する必要があり、0.025%以下であることが好ましい。また、N含有量も0.03%以下に制限する必要があり、0.025%以下であることが好ましい。
 ただし、高温ろう付け時の結晶粒粗大化の抑制については、Nb炭化物・窒化物によるピン止め効果も寄与しうる。したがって、ある程度のC、N含有量を確保することが有利である。種々検討の結果、CとNの合計含有量を0.01質量%以上とすることが望ましい。個々の元素については、C:0.005質量%以上、N:0.005質量%以上を確保することがより好ましい。
 Siは、高温酸化特性を改善させる元素である。しかし、過剰のSi含有はフェライト相を硬質化させ、加工性劣化の要因となる。また、ニッケルろう付け性(ニッケルろう材との濡れ性)を劣化させる。種々検討の結果、Si含有量は0.1超え~3%の範囲に制限され、0.3~2.5%の範囲とすることがより好ましい。上限は1.5%に規制することもできる。
 Mnは、高温酸化特性、特に耐スケール剥離性を改善させる元素である。しかし、過剰に添加すると高温でのオーステナイト相の生成を助長させる。本発明では1100℃以上でのろう付け温度でオーステナイト相が生成しないフェライト単相系の成分組成とすることが望ましい。種々検討の結果、Mn含有量は0.1~2%の範囲に規定する。
 Crは、高温における耐酸化特性を安定させる作用を有する。そのためには10%以上のCr含有量を確保する必要がある。しかし、過剰のCr含有は製造性および鋼材の加工性を阻害する。したがって、Cr含有量は35%以下の範囲に制限され、25%以下とすることがより好ましい。
 Nbは、本発明において重要な元素であり、高温強度の上昇と高温ろう付け時の結晶粒粗大化の抑制に有効に作用する。高温強度の向上に関しては、主としてNbの固溶強化が大きく寄与するが、フェライトマトリクス中に微細に分散したFe2Nb(Laves)や、Fe3NbC(M6X)などの析出物によるピン止め効果も結晶粒粗大化の抑制に有効に作用すると考えられる。これらの作用を十分に発揮させるためには、C、N含有量を前記の範囲に規制した上で、Nb含有量を0.2%以上確保することが重要である。特に高温ろう付け時の結晶粒粗大化を抑制するためにはNb含有量を高めることが効果的であり、0.3%以上あるいはさらに0.4%以上のNb含有量とすることが好ましい。ただし、Nb含有量が多くなると、熱間加工性や鋼材の表面品質特性に悪影響を及ぼすようになる。したがって、Nb含有量は0.8%以下の範囲に制限される。
 Mo、Cu、V、Wも、主として固溶強化により高温強度の向上に寄与する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。特に、これらの元素の合計含有量を0.05%以上確保することがより効果的である。しかし、これらの元素を過剰に添加すると熱間加工性に悪影響を及ぼすようになる。また、低温靭性を阻害する要因にもなる。種々検討の結果、Mo、Cu、V、Wの1種以上を添加する場合は、その合計含有量を4%以下に抑える必要がある。
 Ti、ZrはCやNと結合して微細析出物を形成し、これが鋼中に分散することにより高温強度を向上させる作用を呈する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。しかし、これらの元素はいずれも、多量に含有させると熱間加工性や表面品質特性の低下を招く要因となる。また、鋼材表面に強固な酸化皮膜を形成する元素であるから、その酸化皮膜によりろう材の流れが悪くなることがある。検討の結果、Ti、Zrの1種以上を添加する場合は、その合計含有量を0.5%以下に抑える必要がある。特に、その合計含有量を0.03~0.3%の範囲とすることが効果的であり、0.03~0.25%とすることがより好ましい。
 Ni、Coは、高温ろう付けによって結晶粒が若干粗大化した場合において、靭性低下の抑制に著しく効果がある。また、これらの元素は高温強度の向上にも有利である。したがって、必要に応じてこれらの元素の1種以上を含有させることができ、特にNi、Coの合計含有量を0.5%以上確保することがより効果的である。しかし、Ni、Coの過剰添加は、高温域でのオーステナイト相の生成を招くので好ましくない。Ni、Coの1種以上を添加する場合は、NiとCoの合計含有量を5%以下の範囲に抑える必要がある。
 Al、REM(希土類元素)、Caは、高温酸化特性を向上させる元素であり、本発明では必要に応じてこれらの1種以上を添加することができる。特にAl、REM、Caの合計含有量を0.01%以上確保することがより効果的である。しかし、多量に添加すると靱性低下等により製造性が低下する。種々検討の結果、Alは6%以下、REMは0.2%以下、Caは0.1%以の範囲に抑える必要がある。
 以上の組成を有するフェライト系ステンレス鋼は、融雪塩に対する耐食性、LLCに対する耐食性、および凝結水に対する耐食性については、従来の熱交換器に使用されているオーステナイト系鋼種と比べ、問題のないレベルであることが確認された。排ガス環境における高温強度(0.2%耐力)および耐スケール剥離性については、オーステナイト系鋼種よりも改善されている。
 上記組成のフェライト系ステンレス鋼を前述の再結晶熱処理に供し、再結晶率10~80%の部分再結晶組織とすることによって、本発明の鋼材が得られる。この鋼材は、排ガスの熱を回収する熱交換器を構成する外筒、仕切り板、通気管、通気管の中に取り付けられるフィンなどの部材に加工される。これら部材は、ニッケルろう付けなどにより接合され、熱交換器が構築される。
 表1に示す化学組成の鋼を溶製し、得られた鋼塊を丸棒および板に熱間鍛造することにより、直径15mmの丸棒と、板厚30mmの板に加工した。丸棒には保持温度を1000~1100℃の範囲内に設定して溶体化処理を施した。板は熱間圧延にて板厚4mmの熱延板とし、これに焼鈍を施したのち、冷間圧延にて板厚1mmとし、次いで保持温度を850~1100℃の範囲内に設定して最終焼鈍として再結晶熱処理を施し、種々の再結晶率を有する材料を得た。その後、一部の材料を除き、高温ろう付け時に結晶粒粗大化が生じやすいとされる軽度の加工率(表2中に記載)にて冷間圧延を施し、供試鋼板とした。なお、鋼No.Nはオーステナイト系ステンレス鋼である。
Figure JPOXMLDOC01-appb-T000001
 得られた供試材を用いて以下の特性を調べた。
〔700℃における0.2%耐力〕
 溶体化処理後の丸棒から平行部の直径が10mmの高温引張試験片を作製し、常温で約2%の引張歪を付与した後、JIS G0567に準拠して700℃の高温引張試験を実施し、0.2%耐力を測定した。700℃における0.2%耐力が100N/mm2以上であるものは熱交換器として従来のオーステナイト系鋼種を上回る特性を呈することから、ここではそのような特性を具備するものを合格と判定した。
〔繰り返しサイクルでの高温酸化特性〕
 板厚1mmの供試鋼板から25mm×35mmの試料を切り出し、1175℃×30分のろう付け相当熱処理を施した後、全面を#400湿式研磨仕上とした高温酸化試験片を作製した。この試験片について、熱交換器部材としての繰り返し使用を模擬して、大気+60℃飽和水蒸気の雰囲気において「900℃×25分加熱→常温で10分間放冷」のサイクルを1000サイクル実施し、試験片の試験前と試験後の質量変化(プラスは増加、マイナスは減少)を試験前の試験片の表面積で除することにより、単位面積あたりの質量変化を求めた。この質量変化の絶対値が10mg/cm2以下であれば、熱交換器部材として優れた高温酸化特性を有していると評価され、5mg/cm2以下であるものは特に優れている。
〔ろう付け性(濡れ性)〕
 板厚1mmの供試鋼板から10mm×20mmのろう付け試験片を各鋼種2枚ずつ切り出した。うち1枚の試験片を水平に置いた状態で、その表面の全面にペースト状のろう材を0.5mm厚で塗布した。その上にもう1枚の試験片を重ね、試験片/ろう材/試験片の3層からなる積層体を構成し、これを水平に保ったまま真空炉に入れ、真空引き後に1175℃で30分加熱した。冷却後に積層体を取り出し、上面に重ねた方(Niろうを塗布しなかった方)の試験片表面を観察し、表面のうちろう材で濡れた面積を試験片表面の全面積で除することによりろう材被覆率を求めた。ろう材被覆率が50%以上のものをA、20%以上50%未満のものをB、20%未満のものをCと評価し、B評価以上を合格とした。なお、ろう材は19質量%Cr-10質量%Si-71質量%Ni組成のもの(JIS Z3265のBNi-5相当品)を使用した。
〔粗粒化に対する抵抗〕
 上記のNiろう付け性を評価した試験片について、その断面(圧延方向および板厚方向に平行な断面;L断面)の金属組織を光学顕微鏡で観察した。エッチングは弗酸+硝酸の混酸で行った。平均結晶粒径が200μm以下のものをA、200μm超え500μm以下のものをB、500μm超えのものをCと評価し、B評価以上を合格と判定した。なお、平均結晶粒径は前述の円相当径による平均値を用いた。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本発明例のフェライト系ステンレス鋼材は、比較例No.28のオーステナイト系ステンレス鋼材に比べ、700℃での0.2%耐力および繰り返しサイクルでの高温酸化特性に優れていた。ろう付け性(濡れ性)、粗粒化に対する抵抗も良好であり、熱交換器部材として十分満足できる特性を具備していることが確認された。
 これに対し比較例No.21~25は本発明で規定する化学組成を満たしているものの、再結晶熱処理温度が不適切であったことにより再結晶率が80%を超えており、粗粒化を防止することができなかった。No.26はC含有量が高く、かつNb含有量が低いために固溶Nb量が不足し、高温強度(700℃の0.2%耐力)および粗粒化に対する抵抗性能に劣った。No.27はTi含有量が過剰であったためろう付け時に表面に酸化膜が生じやすくなり、ろう付け性に劣った。No.14はオーステナイト系ステンレス鋼材であり、高温強度(700℃の0.2%耐力)が他のフェライト系鋼種より低レベルであった。また熱膨張係数が大きいことも影響して繰り返しサイクルではスケールが剥離しやすく、質量変化がマイナスの大きな値となった。

Claims (8)

  1.  質量%で、C:0.03%以下、Si:0.1超え~3%、Mn:0.1~2%、Cr:10~35%、Nb:0.2~0.8%、N:0.03%以下、残部がFeおよび不可避的不純物である化学組成を有し、冷間加工後の加熱によって生成した再結晶粒の面積率が10~80%である部分再結晶組織を有するろう付け用フェライト系ステンレス鋼材。
  2.  さらに、Mo、Cu、VおよびWの1種以上を合計4%以下の範囲で含有する化学組成を有する請求項1に記載のフェライト系ステンレス鋼材。
  3.  さらに、TiおよびZrの1種以上を合計0.5%以下の範囲で含有する化学組成を有する請求項1または2に記載のフェライト系ステンレス鋼材。
  4.  さらに、NiおよびCoの1種以上を合計5%以下の範囲で含有する化学組成を有する請求項1~3のいずれかに記載のフェライト系ステンレス鋼材。
  5.  さらに、Al:6%以下、REM(希土類元素):0.2%以下、Ca:0.1%以下の1種以上を含有する化学組成を有する請求項1~4のいずれかに記載のフェライト系ステンレス鋼材。
  6.  CおよびNの合計含有量が0.01%以上である請求項1~5のいずれかに記載のフェライト系ステンレス鋼材。
  7.  請求項1~6のいずれかに記載の鋼材をJIS Z3265に規定されるニッケルろう、Niを35質量%以上含有するニッケルろう、JIS Z3262に規定される銅ろうまたは銅合金ろう、および鉄ろうのいずれかを用いてろう付けしてなる部材であって、当該鋼材のフェライト結晶粒が、肉厚を貫通せず、かつ平均結晶粒径500μm以下である熱交換器部材。
  8.  前記熱交換器部材は、JIS Z3265に規定されるニッケルろう、またはNiを35質量%以上含有するニッケルろうを用いてろう付けしてなる自動車のEGRクーラーである請求項7に記載の熱交換器部材。
PCT/JP2010/060060 2009-06-15 2010-06-14 ろう付け用フェライト系ステンレス鋼材および熱交換器部材 WO2010147092A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10789467.7A EP2444509B1 (en) 2009-06-15 2010-06-14 Ferritic stainless steel material for brazing, and heat exchanger member
PL10789467T PL2444509T3 (pl) 2009-06-15 2010-06-14 Materiał z ferrytycznej stali nierdzewnej do lutowania twardego oraz element wymiennika ciepła
US13/376,708 US9932650B2 (en) 2009-06-15 2010-06-14 Ferritic stainless steel material for brazing and heat exchanger member
ES10789467T ES2728876T3 (es) 2009-06-15 2010-06-14 Material de acero inoxidable ferrítico para soldadura fuerte, y miembro intercambiador de calor
CA2762899A CA2762899C (en) 2009-06-15 2010-06-14 Ferritic stainless steel material for brazing and heat exchanger member
CN2010800265055A CN102459676B (zh) 2009-06-15 2010-06-14 钎焊用铁素体系不锈钢材及热交换器部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-142666 2009-06-15
JP2009142666A JP5349153B2 (ja) 2009-06-15 2009-06-15 ろう付け用フェライト系ステンレス鋼材および熱交換器部材

Publications (1)

Publication Number Publication Date
WO2010147092A1 true WO2010147092A1 (ja) 2010-12-23

Family

ID=43356410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060060 WO2010147092A1 (ja) 2009-06-15 2010-06-14 ろう付け用フェライト系ステンレス鋼材および熱交換器部材

Country Status (10)

Country Link
US (1) US9932650B2 (ja)
EP (1) EP2444509B1 (ja)
JP (1) JP5349153B2 (ja)
KR (1) KR101612696B1 (ja)
CN (1) CN102459676B (ja)
CA (1) CA2762899C (ja)
ES (1) ES2728876T3 (ja)
HU (1) HUE045271T2 (ja)
PL (1) PL2444509T3 (ja)
WO (1) WO2010147092A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287914A1 (en) * 2011-04-01 2014-09-25 Jfe Steel Corporation Stainless steel foil and catalyst carrier for exhaust gas purifying device using the foil
JP2018115359A (ja) * 2017-01-17 2018-07-26 日新製鋼株式会社 潜熱回収型熱交換器用ステンレス鋼
JP2018115360A (ja) * 2017-01-17 2018-07-26 日新製鋼株式会社 潜熱回収型熱交換器筐体用ステンレス鋼

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460899A4 (en) * 2009-07-27 2014-07-09 Nisshin Steel Co Ltd FERRITIC STAINLESS STEEL FOR EGR COOLER AND EGR COOLER
JP5786491B2 (ja) * 2011-06-28 2015-09-30 Jfeスチール株式会社 Egrクーラー用フェライト系ステンレス鋼
US20160031027A1 (en) * 2011-09-05 2016-02-04 Basf Corporation Method For Applying Brazing Material To Metal Honeycomb Matrix, Metal Honeycomb Matrix And Manufacturing Method Thereof
ES2703049T3 (es) 2012-03-26 2019-03-06 Nippon Steel & Sumitomo Metal Corp Acero inoxidable para pozos petrolíferos y tubería de acero inoxidable para pozos petrolíferos
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
CN102943217A (zh) * 2012-10-27 2013-02-27 无锡舜特精密合金板带有限公司 一种冷轧钢带及其生产方法
CN102943215A (zh) * 2012-10-27 2013-02-27 无锡舜特精密合金板带有限公司 双金属复合锯条用背材及其制备方法
KR20140087887A (ko) * 2012-12-31 2014-07-09 현대자동차주식회사 Egr 시스템용 페라이트계 스테인리스강
ES2784303T3 (es) 2013-03-29 2020-09-24 Nippon Steel Stainless Steel Corp Chapa de acero inoxidable ferrítico que tiene excelente soldabilidad, intercambiador de calor, chapa de acero inoxidable ferrítico para intercambiadores de calor, acero inoxidable ferrítico, acero inoxidable ferrítico para elementos de sistemas de suministro de combustible y elemento del sistema de suministro de combustible
CN103567662B (zh) * 2013-11-05 2015-12-09 中国航空工业集团公司北京航空材料研究院 一种获得高韧性钎焊接头的铁基钎料
CN103537821B (zh) * 2013-11-05 2016-01-06 中国航空工业集团公司北京航空材料研究院 一种高温钎焊用铁镍基钎料
CN106103773B (zh) 2014-03-20 2018-02-27 杰富意钢铁株式会社 铁素体类不锈钢及其制造方法
JP6295155B2 (ja) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼およびその製造方法、並びにフェライト系ステンレス鋼を部材とする熱交換器
EP3176280B1 (en) 2014-07-31 2020-09-02 JFE Steel Corporation Ferritic stainless steel and method for producing same
JP6159775B2 (ja) 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 耐排ガス凝縮水腐食性とろう付け性に優れたフェライト系ステンレス鋼及びその製造方法
US10458013B2 (en) 2014-12-24 2019-10-29 Jfe Steel Corporation Ferritic stainless steel and process for producing same
JP6150830B2 (ja) * 2015-03-06 2017-06-21 日新製鋼株式会社 Cuろう付け時の耐Cu粒界浸透性に優れたフェライト系ステンレス鋼およびろう継手
CN107406945B (zh) * 2015-03-26 2019-12-03 新日铁住金不锈钢株式会社 钎焊性优良的不锈钢
JP6370276B2 (ja) * 2015-08-17 2018-08-08 日新製鋼株式会社 高Al含有制振性フェライト系ステンレス鋼材および製造方法
JP6370275B2 (ja) * 2015-08-17 2018-08-08 日新製鋼株式会社 制振性フェライト系ステンレス鋼材および製造方法
FR3047254B1 (fr) 2016-02-02 2018-02-16 Vallourec Tubes France Composition d'aciers aux proprietes anti-cokage ameliorees
JP6418338B2 (ja) 2016-09-02 2018-11-07 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6841150B2 (ja) * 2017-04-28 2021-03-10 日本製鉄株式会社 耐熱部材用フェライト系ステンレス鋼板
US10428713B2 (en) 2017-09-07 2019-10-01 Denso International America, Inc. Systems and methods for exhaust heat recovery and heat storage
WO2019159606A1 (ja) 2018-02-14 2019-08-22 Jfeスチール株式会社 フェライト系ステンレス鋼
KR102389026B1 (ko) 2018-02-14 2022-04-20 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스강
JP7502041B2 (ja) * 2019-02-21 2024-06-18 株式会社神戸製鋼所 高Crフェライト系耐熱鋼用溶接材料
TWM603198U (zh) * 2020-03-13 2020-10-21 金欣實業有限公司 用於銲晶機的雙真空模組的爐面塊及爐面底座之組合
US20210404750A1 (en) * 2020-06-26 2021-12-30 Vacuum Process Engineering, Inc. Integrated hybrid compact fluid heat exchanger
CN112894200A (zh) * 2021-01-27 2021-06-04 新乡市和光科技有限公司 一种焊接用药芯焊丝及其制备方法
JP7140309B1 (ja) 2021-06-28 2022-09-21 Jfeスチール株式会社 フェライト系ステンレス鋼
WO2023276411A1 (ja) 2021-06-28 2023-01-05 Jfeスチール株式会社 フェライト系ステンレス鋼
CN116024475B (zh) * 2022-10-25 2024-03-22 北京酷捷科技有限公司 一种铬钼均热板及其制备方法和应用
CN115747654A (zh) * 2022-11-23 2023-03-07 成都先进金属材料产业技术研究院股份有限公司 一种抗高温氧化铁素体不锈钢及其制造方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292446A (ja) 1994-04-22 1995-11-07 Nippon Yakin Kogyo Co Ltd 熱交換器用フェライト系ステンレス鋼
JP2003193205A (ja) 2001-10-18 2003-07-09 Hitachi Metals Ltd 排気ガス再循環系部品
JP2007191739A (ja) * 2006-01-18 2007-08-02 Jfe Steel Kk 耐酸化性とろう付け性に優れる耐熱材料
JP2009007601A (ja) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd 集熱機器用フェライト系ステンレス鋼材
JP2009068102A (ja) * 2006-11-21 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP2009174040A (ja) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Egrクーラー用フェライト系ステンレス鋼およびegrクーラー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536568B2 (ja) * 1997-01-24 2004-06-14 Jfeスチール株式会社 耐熱性および溶接部のマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
EP1495831B1 (en) * 1997-10-09 2007-02-07 Calsonic Kansei Corporation Use of a nickel-based brazing material for bonding stainless-steel members for constituting an EGR cooler, process for producing an EGR cooler, EGR cooler
TW480288B (en) * 1999-12-03 2002-03-21 Kawasaki Steel Co Ferritic stainless steel plate and method
JP4185425B2 (ja) * 2002-10-08 2008-11-26 日新製鋼株式会社 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
JP4519505B2 (ja) * 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法
JP5420292B2 (ja) * 2008-05-12 2014-02-19 日新製鋼株式会社 フェライト系ステンレス鋼

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292446A (ja) 1994-04-22 1995-11-07 Nippon Yakin Kogyo Co Ltd 熱交換器用フェライト系ステンレス鋼
JP2003193205A (ja) 2001-10-18 2003-07-09 Hitachi Metals Ltd 排気ガス再循環系部品
JP2007191739A (ja) * 2006-01-18 2007-08-02 Jfe Steel Kk 耐酸化性とろう付け性に優れる耐熱材料
JP2009068102A (ja) * 2006-11-21 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP2009007601A (ja) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd 集熱機器用フェライト系ステンレス鋼材
JP2009174040A (ja) * 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Egrクーラー用フェライト系ステンレス鋼およびegrクーラー

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140287914A1 (en) * 2011-04-01 2014-09-25 Jfe Steel Corporation Stainless steel foil and catalyst carrier for exhaust gas purifying device using the foil
US9624563B2 (en) * 2011-04-01 2017-04-18 Jfe Steel Corporation Stainless steel foil and catalyst carrier for exhaust gas purifying device using the foil
JP2018115359A (ja) * 2017-01-17 2018-07-26 日新製鋼株式会社 潜熱回収型熱交換器用ステンレス鋼
JP2018115360A (ja) * 2017-01-17 2018-07-26 日新製鋼株式会社 潜熱回収型熱交換器筐体用ステンレス鋼

Also Published As

Publication number Publication date
JP5349153B2 (ja) 2013-11-20
ES2728876T3 (es) 2019-10-29
US9932650B2 (en) 2018-04-03
KR20120027293A (ko) 2012-03-21
PL2444509T3 (pl) 2019-10-31
JP2010285683A (ja) 2010-12-24
CN102459676B (zh) 2013-10-16
KR101612696B1 (ko) 2016-04-15
CA2762899A1 (en) 2010-12-23
CN102459676A (zh) 2012-05-16
EP2444509A1 (en) 2012-04-25
CA2762899C (en) 2016-10-11
EP2444509A4 (en) 2017-04-05
US20120085513A1 (en) 2012-04-12
HUE045271T2 (hu) 2019-12-30
EP2444509B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5349153B2 (ja) ろう付け用フェライト系ステンレス鋼材および熱交換器部材
JP5264199B2 (ja) フェライト系ステンレス鋼を用いたegrクーラー
WO2011013193A1 (ja) Egrクーラー用フェライト系ステンレス鋼およびegrクーラー
JP5420292B2 (ja) フェライト系ステンレス鋼
JP6270821B2 (ja) ろう付け性に優れたフェライト系ステンレス鋼板、熱交換器、熱交換器用フェライト系ステンレス鋼板、フェライト系ステンレス鋼、燃料供給系部材用フェライト系ステンレス鋼、及び燃料供給系部品
JP5390175B2 (ja) ろう付け性に優れたフェライト系ステンレス鋼
JP5846339B1 (ja) フェライト系ステンレス鋼およびその製造方法
JP5141296B2 (ja) 高温強度と靭性に優れるフェライト系ステンレス鋼
WO2011111871A1 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板並びに耐熱性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2009007601A (ja) 集熱機器用フェライト系ステンレス鋼材
JP2009041103A (ja) 排ガス再循環系部品用オーステナイト系ステンレス鋼およびその製造方法
JP5786491B2 (ja) Egrクーラー用フェライト系ステンレス鋼
JP4078881B2 (ja) 熱交換器用オーステナイト系ステンレス鋼板
JP2004269986A (ja) 薄肉ステンレス鋼板
JP2004136299A (ja) ろう材、クラッド材およびろう接構造物
JP6547927B1 (ja) フェライト系ステンレス鋼
JP7022633B2 (ja) 耐高温塩害特性に優れたフェライト系ステンレス鋼板及び自動車排気系部品
JP2009041102A (ja) 排ガス再循環系部品用Ni基合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026505.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2762899

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117028849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13376708

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010789467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9350/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE