WO2010134354A1 - 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置 - Google Patents

炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置 Download PDF

Info

Publication number
WO2010134354A1
WO2010134354A1 PCT/JP2010/003439 JP2010003439W WO2010134354A1 WO 2010134354 A1 WO2010134354 A1 WO 2010134354A1 JP 2010003439 W JP2010003439 W JP 2010003439W WO 2010134354 A1 WO2010134354 A1 WO 2010134354A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cathode electrode
carbon film
carbon
film
Prior art date
Application number
PCT/JP2010/003439
Other languages
English (en)
French (fr)
Inventor
太田一朗
Original Assignee
昭和電工Hdシンガポール ピーティイー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工Hdシンガポール ピーティイー リミテッド filed Critical 昭和電工Hdシンガポール ピーティイー リミテッド
Priority to JP2011514347A priority Critical patent/JP5681624B2/ja
Priority to US13/321,758 priority patent/US9111566B2/en
Priority to CN201080021848.2A priority patent/CN102428515B/zh
Priority to SG2011086626A priority patent/SG176210A1/en
Publication of WO2010134354A1 publication Critical patent/WO2010134354A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a carbon film forming method, a magnetic recording medium manufacturing method, and a carbon film forming apparatus.
  • the Wintester style is a CSS (Contact Start-Stop) system in which the basic operation from the start to the stop of the magnetic head is the contact sliding-floating-contact sliding with respect to the magnetic recording medium. It has become the mainstream of hard disk drives. With this technique, contact sliding of the magnetic head on the magnetic recording medium cannot be avoided.
  • CSS Contact Start-Stop
  • the protective film High sliding durability and excellent flatness that can protect the magnetic recording layer of the magnetic recording medium are required. Further, in order to reduce the spacing loss between the magnetic recording medium and the magnetic head, it is required that the thickness of the protective film is as thin as possible, for example, 30 mm or less. Thus, the protective film is strongly required to be thin, dense and tough as well as smooth.
  • a film mainly made of carbon (hereinafter referred to as a carbon film) has been adopted from a comprehensive viewpoint such as film formability and durability.
  • the characteristics of the carbon film such as hardness, density, and dynamic friction coefficient, are clearly reflected in the CSS characteristics or corrosion resistance characteristics of the magnetic recording medium.
  • the carbon film is formed by a sputtering method, a CVD method, an ion beam evaporation method, or the like.
  • the durability of the carbon film formed by the sputtering method may be insufficient when the film thickness is, for example, 100 mm or less.
  • the carbon film formed by the CVD method has low surface smoothness, and when the film thickness is reduced, the coverage of the surface of the magnetic recording medium may be reduced, which may cause corrosion of the magnetic recording medium. .
  • a carbon film formed by an ion beam evaporation method can be made to have a higher hardness, higher smoothness, and a denser film than a carbon film formed by a sputtering method or a CVD method.
  • Patent Document 1 discloses an example of a method for forming a carbon film by an ion beam evaporation method.
  • Patent Document 1 relates to a CVD apparatus and a method for manufacturing a magnetic recording medium, and discloses an ion beam evaporation method using a hot filament and a plasma CVD apparatus.
  • a hydrocarbon-based source gas is plasma-treated by discharge between a heated filament-shaped cathode and an anode in a film forming chamber in a vacuum atmosphere. Put it in a state.
  • the carbon ions and carbon radicals generated by exciting and decomposing the source gas are accelerated and collided with the negatively-potentially formed film surface of the substrate disposed so as to face the cathode, resulting in high hardness.
  • a carbon film is stably formed.
  • a disk-shaped substrate having a circular opening at the center is usually used as the substrate.
  • the carbon film thickness at the edge portion of the opening is thicker than other portions.
  • One of the causes of this tendency is that plasma containing carbon ions is concentrated and irradiated on the edge portion of the opening to increase the carbon ion concentration, and the temperature of the edge portion of the opening is the other portion. It was considered that the growth rate of the carbon film was increased.
  • Patent Document 1 describes a configuration in which a film thickness correction plate for correcting the film thickness is arranged on the film forming surface side of the substrate. Specifically, a coin-shaped shielding plate (film thickness correction plate) is installed on the film forming surface side of the opening of the substrate. As a result, the plasma density and carbon ion concentration in the vicinity of the opening of the substrate are lowered, the growth rate of the carbon film at the edge of the opening of the substrate is lowered, and the carbon film is flattened and smoothed.
  • the carbon film is not sufficiently flattened and smoothed.
  • the carbon ions involved in the formation of the carbon film are not only the flight components that arrive at the film formation surface of the substrate from the direction perpendicular to the film formation surface of the substrate, but also the film formation of the substrate by flying from other directions.
  • the flight component that arrives at the surface is also included. Therefore, even if the coin-shaped shielding plate is arranged, a part of flight components of carbon ions to be shielded wrap around the coin-shaped shielding plate to form a carbon film on the substrate, and the edge of the opening The film thickness of the partial carbon film was increased.
  • An object is to provide a method for manufacturing a medium.
  • the present invention employs the following configuration. That is, (1) A central opening in a film forming chamber comprising a filamentary cathode electrode, an anode electrode provided around the cathode electrode, and a substrate holder disposed at a position spaced from the cathode electrode A disk-shaped substrate having one surface facing the cathode electrode and disposed on the substrate holder, and a columnar member having a diameter greater than the diameter of the central opening and a height greater than the diameter, The central axis is coaxial with the central axis of the substrate, and one circular surface is directed to the cathode electrode, and the other circular surface is parallel to the one surface of the substrate, and is separated from the cathode electrode and the substrate. And arranging the process, Forming a carbon film on one surface of the substrate by flowing carbon ions from the cathode electrode side toward the substrate side after evacuating the film formation chamber. Method.
  • the center opening of the substrate is circular, and the diameter of the columnar member is 1 to 1.5 times the diameter of the center opening of the substrate.
  • a method for forming the carbon film according to the description (3) The method for forming a carbon film according to (1) or (2), wherein the height of the columnar member is not less than 3 times and not more than 6 times the diameter of the columnar member.
  • a film forming chamber capable of depressurization, a filamentary cathode electrode disposed in the film forming chamber, an anode electrode disposed around the cathode electrode, and a position spaced apart from the cathode electrode
  • a substrate holder a cylindrical member disposed between the substrate holder and the cathode electrode, a first power source for heating the cathode electrode by energization, and a discharge between the cathode electrode and the anode electrode
  • a third power source for providing a potential difference between the cathode electrode or the anode electrode and the substrate holder.
  • the central opening of the substrate is circular, the diameter of the cylindrical member is 1 to 1.5 times the diameter of the central opening of the substrate, and the height of the cylindrical member is The cylindrical member has a diameter not less than 3 times and not more than 6 times, a separation distance between the columnar member and the substrate is not less than 5 mm and not more than 40 mm, and the columnar member is disposed at a non-ground potential.
  • a carbon film forming method, a carbon film forming apparatus, and a method for manufacturing a magnetic recording medium having a high recording density which can form a carbon film having high flatness and smoothness and having a high hardness and a high density are provided. be able to.
  • a disk-shaped substrate having a central opening is disposed with one surface thereof facing the cathode electrode, and then a diameter larger than the diameter of the central opening and a height higher than the diameter.
  • the central axis is coaxial with the central axis of the substrate, one circular surface faces the cathode electrode, and the other circular surface is parallel to one surface of the substrate. It is the structure to arrange. Therefore, the ion beam or plasma itself can be rectified to increase the concentration of carbon ions flying in the direction perpendicular to one surface of the substrate, and the plasma density, and the wraparound of carbon ions can be suppressed, resulting in flatness and smoothness.
  • High, high hardness and dense carbon film can be formed. Further, by suppressing the concentration of the ion beam and the plasma to the central opening of the substrate and preventing the temperature rise at the edge of the central opening of the substrate, the carbon film at the edge of the central opening of the substrate By reducing the growth rate, it is possible to form a dense carbon film with high flatness and smoothness and high hardness.
  • the method for producing a magnetic recording medium of the present invention has a structure having a step of forming a carbon film on the magnetic layer by using the carbon film forming method described above. Therefore, it is possible to form a carbon film having high flatness and smoothness as a protective film with a high hardness and a high hardness. By reducing the thickness of the protective film and reducing the flying height of the magnetic head, A magnetic recording medium having a high recording density can be manufactured.
  • the carbon film forming apparatus of the present invention has a cylindrical member disposed between the substrate holder and the cathode electrode. Therefore, the ion beam and the plasma itself can be rectified to increase the concentration and plasma density of carbon ions flying in the direction perpendicular to one surface of the substrate, and the wraparound of carbon ions can be suppressed, resulting in high flatness and smoothness. High density and dense carbon film can be formed. Further, by suppressing the concentration of the ion beam and the plasma to the central opening of the substrate and preventing the temperature rise at the edge of the central opening of the substrate, the carbon film at the edge of the central opening of the substrate By reducing the growth rate, it is possible to form a dense carbon film with high flatness and smoothness and high hardness.
  • the carbon film formation apparatus of this invention it is a schematic diagram which shows an example of the direction of the magnetic field which a permanent magnet applies, and its magnetic force line.
  • the carbon film formation apparatus of this invention it is a schematic diagram which shows an example of the direction of the magnetic field which a permanent magnet applies, and its magnetic force line.
  • the carbon film formation apparatus of this invention it is a schematic diagram which shows an example of the direction of the magnetic field which a permanent magnet applies, and its magnetic force line.
  • FIG. 1 It is sectional drawing which shows another example of the magnetic recording medium manufactured using the manufacturing method of the magnetic recording medium of this invention. It is sectional drawing which shows an example of the magnetic recording / reproducing apparatus provided with the magnetic recording medium manufactured using the manufacturing method of the magnetic recording medium of this invention. It is an enlarged view of the carrier of an in-line type film-forming apparatus. It is a top view which shows an example of the in-line-type film-forming apparatus used for the manufacturing method of the magnetic recording medium of this invention. It is a side view which shows an example of the carrier of the in-line-type film-forming apparatus used for the manufacturing method of the magnetic recording medium of this invention. It is process sectional drawing which shows an example of the manufacturing method of the magnetic-recording medium shown in FIG.
  • FIG. 1 is a schematic diagram showing a carbon film forming apparatus according to an embodiment of the present invention. As shown in FIG.
  • a carbon film forming apparatus (film forming apparatus) 121 is a film forming apparatus using an ion beam evaporation method.
  • Filamentary cathode electrode 104 provided in film formation chamber 101, anode electrode 105 provided around cathode electrode 104, substrate holder 102 disposed at a position spaced from cathode electrode 104, and film formation
  • a first introduction pipe (hereinafter referred to as source gas introduction pipe) 103 connected to the wall surface of the chamber 101 and an exhaust pipe 110 are provided.
  • the anode electrode provided around the cathode electrode means that the anode electrode is disposed around the cathode electrode located at the center, and discharge is caused between the cathode electrode and the anode electrode.
  • Any configuration can be used.
  • Conditions such as number, size, type and position can be selected arbitrarily.
  • preferable cathode electrode conditions are cylindrical, a square shape using a parallel plate, a polygonal shape, a hemisphere with a hollow inside and a shape with the opening facing the substrate, or a cone with a hollow inside and a bottom at the substrate. For example, the shape toward the side.
  • the filament-like cathode electrode can be an electrode generally known as a filament electrode, and examples thereof include a coil shape, a linear shape, and a shape meandering in a plane.
  • the substrate holder 102 supports the substrate D so that one surface (film formation surface) 131 a of the substrate D faces the cathode electrode 104.
  • a cylindrical shield (hereinafter referred to as a cylindrical member) 133 is separated so that one circular surface 133a faces the cathode electrode 104 and the other circular surface 133b is parallel to one surface 131a of the substrate D. Has been placed.
  • the film forming chamber 101 is hermetically configured by a chamber wall 101a.
  • An exhaust pipe 110 is connected to the film forming chamber 101, and the inside can be evacuated under reduced pressure through a vacuum pump (not shown) connected to the exhaust pipe 110.
  • a first power source 106 that heats the cathode electrode 104 by energization
  • a second power source 107 that generates a discharge between the cathode electrode 104 and the anode electrode 105
  • a third power source 108 is disposed between the anode electrode 105 and the substrate D to apply a voltage to provide a potential difference.
  • the first power source 106 is an AC power source connected to the cathode electrode 104 and can supply power to the cathode electrode 104 when the carbon film is formed.
  • the first power source 106 is not limited to an AC power source, and a DC power source may be used.
  • the second power source 107 is a DC power source whose negative electrode side is connected to the cathode electrode 104 and whose positive electrode side is connected to the anode electrode 105, and is discharged between the cathode electrode 104 and the anode electrode 105 when the carbon film is formed. Can be generated.
  • the third power source 108 is a DC power source whose positive electrode side is connected to the anode electrode 105 and whose negative electrode side is connected to the holder 102, and the anode electrode 105 and the substrate D held by the holder 102 when the carbon film is formed. A potential difference is applied between the two. Note that the third power supply 108 may have a configuration in which the positive electrode side is connected to the cathode electrode 104.
  • the voltage applied by operating the first power supply 106 to the third power supply 108 is not particularly limited, and is preferably set as appropriate according to the size of the substrate D.
  • the first power source 106 has a voltage in the range of 10 to 100 V and a current of 5 to 5 in terms of direct current or alternating current. It is preferable to set in the range of 50A.
  • the second power supply 107 preferably has a voltage in the range of 50 to 300 V and a current in the range of 10 to 5000 mA.
  • the third power source 108 has a voltage in the range of 30 to 500 V and a current in the range of 10 to 200 mA.
  • a gas (hereinafter referred to as source gas) G containing carbon is introduced into the film forming chamber 101 from the source gas introduction pipe 103.
  • the source gas G include a gas containing hydrocarbon.
  • the source gas G may be composed only of hydrocarbons. If necessary, the hydrocarbon may be a hydrocarbon containing other elements such as nitrogen and fluorine.
  • the hydrocarbon it is preferable to use one or more lower hydrocarbons among lower saturated hydrocarbons, lower unsaturated hydrocarbons or lower cyclic hydrocarbons.
  • the term “lower” refers to a case of 1 to 10 carbon atoms.
  • lower saturated hydrocarbons examples include methane, ethane, propane, butane, and octane.
  • lower unsaturated hydrocarbons include isoprene, ethylene, propylene, butylene, and butadiene.
  • examples of the lower cyclic hydrocarbon include benzene, toluene, xylene, styrene, naphthalene, cyclohexane, and cyclohexadiene.
  • a mixed gas in which an inert gas such as Ar, He, H 2 , N 2, and O 2 or a hydrogen gas is contained in the source gas G.
  • the mixing ratio of the hydrocarbon and the inert gas in the mixed gas is preferably in the range of 2: 1 to 1: 100 (volume ratio) of hydrocarbon: inert gas, and 1.5: 1 More preferably, the ratio is ⁇ 1: 75 (volume ratio), and more preferably 1: 1 to 1:50 (volume ratio).
  • a cylindrical permanent magnet 109 is preferably provided outside the film formation chamber 101 so as to surround the anode electrode 105.
  • the permanent magnet 109 is preferably arranged so as to surround at least a part of a region (hereinafter referred to as excitation space R) that ionizes the source gas G and accelerates the ionized gas (hereinafter referred to as ion beam).
  • excitation space R a region that ionizes the source gas G and accelerates the ionized gas
  • ion beam ionized gas
  • Conditions such as the number, size, magnetic force, shape and position of the permanent magnets can be arbitrarily selected. It is preferable to arrange a large number of permanent magnets in a rotationally symmetric manner with respect to the axis connecting the anode electrode and the substrate in order to make the magnetic field distribution uniform in the ion acceleration region.
  • a disk-shaped substrate having a circular opening (hereinafter referred to as a central opening) 131c at the center is used. As shown in FIG. 1, the diameter of the central opening 131c is a d 2.
  • a preferred substrate for the magnetic recording medium can be arbitrarily selected.
  • the cylindrical member 133 is a cylindrical member whose diameter d 1 is larger than the diameter d 2 of the central opening 131 c of the substrate D, and the height l of the cylindrical member 133 is larger than the diameter d 1 of the cylindrical member 133. is there.
  • the columnar member 133 is disposed between the substrate D and the cathode electrode 104 so that one circular surface 133 a faces the cathode electrode 104. Further, the other circular surface 133b of the columnar member 133 is arranged in parallel to the one surface 131a of the substrate D and is separated from the one surface 131a of the substrate D. Furthermore, the central axis C 2 of the columnar member 133 is disposed so as to be coaxial with the central axis C 1 of the substrate D.
  • the diameter d 1 of the columnar member 133 is preferably 1 to 1.5 times the diameter d 2 of the central opening 131 c of the substrate D.
  • the diameter d 1 of the cylindrical member 133 is preferably 1 to 1.5 times the diameter d 2 of the central opening 131 c of the substrate D.
  • the height l of the columnar member 133 is preferably not less than 3 times and not more than 6 times the diameter d 1 of the columnar member 133. More preferably, it is 3.5 times or more and 5 times or less.
  • the effect of rectifying the ion beam and the plasma can be expressed more significantly.
  • the concentration of the ion beam and plasma in the central opening 131c of the substrate D is further prevented, and the carbon ion concentration and plasma density flying in the direction perpendicular to the one surface 131a of the substrate D are further increased, thereby further flatness.
  • the height l of the cylindrical member 133 is less than 3 times the diameter d 1 of the cylindrical member 133, the more carbon ions other than flight component to fly on one surface 131a perpendicular to the direction of the substrate D, carbon ions As a result, the carbon film becomes thicker around the central opening 131c of the substrate D. Conversely, if the height l of the cylindrical member 133 is greater than 6 times the diameter d 1 of the cylindrical member 133, the rectification of the ion beam and plasma becomes excessive.
  • Distance d 3 between the cylindrical member 133 and the substrate D is preferably 5mm or more 40mm or less. Among these, it is more preferable that it is 20 mm or less. Distance by the d 3 and 5mm or more 40mm or less, and more flattening and smoothing the film thickness of the edge portion 131d of the carbon film of the central opening 131c of the substrate D between the cylindrical member 133 and the substrate D In addition, a dense carbon film with high hardness can be formed.
  • the carbon radical to reach the portion 131d of the edge of the central opening 131c of the substrate D by the cylindrical member 133 is deactivated
  • the hardness of the carbon film deposited on the edge portion 131d of the central opening 131c of the substrate D decreases.
  • the distance d 3 between the cylindrical member 133 and the substrate D exceeds 40mm, the reduced shielding effect of the cylindrical member 133, the portion 131d of the edge of the central opening 131c of the substrate D
  • the flatness and smoothness of the carbon film formed on the substrate are reduced.
  • the cylindrical member 133 is arranged at a non-ground potential (floating potential).
  • a non-ground potential floating potential
  • the flight of carbon ions can be prevented from being inhibited, and the carbon ion can be irradiated perpendicularly to the one surface 131a of the substrate D.
  • the carbon film forming apparatus shown in FIG. 1 is configured to form a carbon film only on one surface 131a of the substrate D.
  • two apparatuses similar to those for forming a carbon film only on one surface 131a of the substrate D are prepared and arranged on both sides of the substrate D in the film forming chamber 101 so that both surfaces 131a and 131b of the substrate D are disposed.
  • a carbon film may be formed.
  • the columnar member 133 is not limited to the columnar member that is a circle having the same shape as one surface and multiple surfaces shown in the present embodiment, and other columnar members can be seen.
  • a polygonal column such as a quadrangular column or a pentagonal column, or a truncated cone may be used.
  • the diameter d 1 and the height l indicate the maximum dimensions. That is, in the case of a square pole, the length of the diagonal line of the bottom is d 1. In the case of the truncated cone, the diameter of the larger surface diameter becomes d 1.
  • the height l greater than d 1 and, using a member that the d 1 greater than the diameter d 2 of the central opening 131c of the substrate D.
  • the columnar member (cylindrical member) as described above is most preferable as the columnar member 133.
  • the carbon film forming method according to the embodiment of the present invention is carried out using the carbon film forming apparatus according to the embodiment of the present invention, and includes a columnar member arranging step and a carbon film forming step. .
  • symbol is attached
  • ⁇ Cylindrical member arrangement process> First, in a film forming chamber 101 including a filamentary cathode electrode 104, an anode electrode 105 provided around the cathode electrode 104, and a substrate holder 102 disposed at a position separated from the cathode electrode 104. Then, the disc-shaped substrate D having the central opening 131c is installed on the substrate holder 102 so that the one surface 131a faces the cathode electrode 104.
  • the columnar member 133 is disposed between the substrate D and the cathode electrode 104.
  • one circular surface 133a of the columnar member 133 is directed to the cathode electrode 140, and the other circular surface 133b is parallel to the one surface 131a of the substrate D and separated from the one surface 131a of the substrate D.
  • 133 is arranged.
  • the central axis C 2 of the columnar member 133 is arranged so as to be coaxial with the central axis C 1 of the substrate D.
  • the vacuum pump connected to the exhaust pipe 110 is operated to depressurize the film formation chamber 101.
  • the degree of pressure reduction is selected as necessary from the viewpoint of productivity, but a higher degree of vacuum is more preferable.
  • the source gas G is introduced into the deposition chamber 101 from the source gas introduction pipe 103 connected to the deposition chamber 101.
  • electric power is supplied from the first power source 106, and the filament-shaped cathode electrode 104 is energized and heated to generate thermal plasma.
  • the second power source 107 is operated to discharge between the cathode electrode 104 and the anode electrode 105 to generate plasma.
  • the source gas G is excited and decomposed to form carbon ions.
  • the carbon ion may include a carbon radical.
  • the heating temperature of the cathode electrode by energization heating is arbitrarily set, but a higher temperature is preferable in order to increase the decomposition and excitation power of the source gas G at the cathode electrode.
  • a voltage is applied between the cathode electrode 104 or the anode electrode 105 and the substrate D by the third power source 108 to give a potential difference, and the carbon ions are accelerated toward the substrate D having a negative potential.
  • the one surface 131a of the substrate D is irradiated.
  • the carbon ions collide with one surface 131a of the substrate D to form a carbon film. Since the carbon ions are in an excited high energy state, a flat carbon film and smoothness are high, and a high-hardness and dense carbon film is formed.
  • a columnar member 133 is installed on the one surface 131a side of the substrate D so as to shield the central opening 131c.
  • the ion beam and plasma flowing around the cylindrical member 133 are rectified, and the ion beam and plasma are prevented from concentrating on the central opening 131c of the substrate D.
  • the plasma density and the carbon ion density around the central opening 131c of the substrate 131 are reduced, and the central opening 131c of the substrate 131 is reduced. Reduce the growth rate of the carbon film around.
  • the concentration of the ion beam and plasma on the central opening 131c of the substrate D by preventing the concentration of the ion beam and plasma on the central opening 131c of the substrate D, the temperature rise of the edge portion 131d (edge portion) of the central opening 131c of the substrate d is prevented, and the center of the substrate d is prevented.
  • the growth rate of the carbon film in the edge portion 131d of the opening 131c is reduced, and a high-hardness and dense carbon film with high flatness and smoothness is formed.
  • the concentration of carbon ions and plasma density flying in the direction perpendicular to the one surface 131a of the substrate D are increased, and the formation of a carbon film with low hardness due to the wraparound of carbon ions is suppressed. As a result, a dense carbon film having high flatness and smoothness and high hardness is formed.
  • a magnetic field is applied to the excitation space R, which is a region for accelerating the carbon ions, by a permanent magnet 109.
  • the ion density of the carbon ions acceleratedly irradiated toward the one surface 131a of the substrate D can be increased, and a flatter and smoother, higher hardness and dense carbon film is formed.
  • the film thickness of the carbon film is preferably 5 nm or less, and more preferably 3 nm or less. By forming the carbon film as thin as 5 nm or less, the distance between the magnetic head and the magnetic layer is shortened, and the recording density of the magnetic recording medium can be improved.
  • the lower limit of the film thickness of the carbon film is preferably set to a lower limit that satisfies the ability to protect the magnetic recording medium.
  • FIG. 2A to 2C are schematic views showing examples of the magnetic field applied by the permanent magnet provided in the film forming apparatus shown in FIG. 1 and the direction of the lines of magnetic force thereof.
  • FIG. 2A shows an example in which a permanent magnet 109 is arranged around the chamber wall 101a of the film forming chamber 101 so that the south pole is on the substrate D side and the north pole is on the cathode electrode 104 side.
  • 2B shows an example in which a permanent magnet 109 is arranged around the chamber wall 101a of the film forming chamber 101 so that the S pole is on the cathode electrode 104 side and the N pole is on the substrate D side.
  • FIG. 2C a plurality of permanent magnets 109 are arranged around the chamber wall 101a of the film forming chamber 101, in which the directions of the N pole and the S pole are alternately switched between the inner peripheral side and the outer peripheral side. An example is shown.
  • the magnetic force lines M generated by the permanent magnets 109 are almost parallel to the acceleration direction of carbon ions (hereinafter referred to as ion beams) B that are accelerated and irradiated near the center of the film forming chamber 101. It becomes. Then, the ion beam B can be rectified so as to be along the direction of the magnetic force lines M generated by the permanent magnet 109, that is, in a direction perpendicular to the one surface 131 a of the substrate D, and the columnar member 133. The wraparound to the back side can be reduced.
  • ion beams carbon ions
  • the carbon ions of the ion beam B have a magnetic moment
  • the ion beam B is concentrated near the center of the excitation space R in the film forming chamber 101 by the magnetic field generated by the permanent magnet 109 and contributes to the formation of the carbon film.
  • the ion density of the carbon ions can be increased, and a flatter and smoother, higher hardness and dense carbon film can be formed.
  • FIG. 3 is a cross-sectional view showing an example of a magnetic recording medium manufactured by using the magnetic recording medium manufacturing method according to the embodiment of the present invention.
  • the magnetic recording medium 122 is configured by sequentially laminating a magnetic layer 810, a protective layer 84, and a lubricating film 85 on both surfaces of a nonmagnetic substrate 80.
  • the magnetic layer 810 is formed by sequentially laminating a soft magnetic layer 81, an intermediate layer 82, and a recording magnetic layer 83 from the nonmagnetic substrate 80 side.
  • the protective layer 84 is formed on the magnetic layer 810.
  • the protective layer 84 is a high-hardness and dense carbon film formed by using the carbon film forming method according to the embodiment of the present invention. Therefore, even if the thickness of the protective layer 84 is reduced to, for example, about 2 nm or less, the effect as the protective film can be maintained.
  • the distance between the magnetic recording medium 122 and the magnetic head can be set narrow by reducing the thickness of the protective layer 84. Thereby, the recording density of the magnetic recording medium 2 can be increased. Further, since the protective layer 84 is a high hardness and dense carbon film, the corrosion resistance of the magnetic recording medium 2 can be improved.
  • the nonmagnetic substrate 80 is made of an Al alloy substrate such as an Al—Mg alloy mainly composed of Al, ordinary soda glass, aluminosilicate glass, crystallized glass, silicon, titanium, ceramics, and various resins. Any substrate can be used as long as it is a non-magnetic substrate.
  • Al alloy substrate such as an Al—Mg alloy mainly composed of Al, ordinary soda glass, aluminosilicate glass, crystallized glass, silicon, titanium, ceramics, and various resins. Any substrate can be used as long as it is a non-magnetic substrate.
  • an Al alloy substrate a glass substrate such as crystallized glass, or a silicon substrate.
  • the average surface roughness (Ra) of these substrates is preferably 1 nm or less, more preferably 0.5 nm or less, and particularly preferably 0.1 nm or less.
  • the magnetic layer 810 may be an in-plane magnetic layer for an in-plane magnetic recording medium or a perpendicular magnetic layer for a perpendicular magnetic recording medium, but a perpendicular magnetic layer is preferable in order to achieve a higher recording density.
  • the magnetic layer 810 is preferably formed from an alloy mainly composed of Co.
  • the magnetic layer 810 for perpendicular magnetic recording media for example, soft magnetic FeCo alloys (FeCoB, FeCoSiB, FeCoZr, FeCoZrB, FeCoZrBCu, etc.), FeTa alloys (FeTaN, FeTaC, etc.), and Co alloys (CoTaZr, CoZrNB, A layer in which a soft magnetic layer 81 made of CoB, etc.), an intermediate layer 82 made of Ru, etc., and a recording magnetic layer 83 made of 70Co-15Cr-15Pt alloy or 70Co-5Cr-15Pt-10SiO 2 alloy are used. it can.
  • soft magnetic FeCo alloys FeCoB, FeCoSiB, FeCoZr, FeCoZrB, FeCoZrBCu, etc.
  • FeTa alloys FeTaN, FeTaC, etc.
  • Co alloys CoTaZr, CoZrNB, A layer in which a soft magnetic layer 81 made of CoB, etc.),
  • an orientation control film made of Pt, Pd, NiCr, NiFeCr or the like may be laminated between the soft magnetic layer 81 and the intermediate layer 82.
  • the magnetic layer 810 for the in-plane magnetic recording medium a laminate of a nonmagnetic CrMo underlayer and a ferromagnetic CoCrPtTa magnetic layer can be used.
  • the total thickness of the magnetic layer 810 is 3 nm or more and 20 nm or less, preferably 5 nm or more and 15 nm or less.
  • the magnetic layer 810 may be formed so as to obtain sufficient head input / output according to the type of magnetic alloy used and the laminated structure.
  • the film thickness of the magnetic layer 810 requires a certain thickness of the magnetic layer in order to obtain a certain level of output during reproduction, while parameters indicating recording / reproduction characteristics deteriorate as the output increases. Therefore, it is necessary to set an optimum film thickness.
  • a fluorinated liquid lubricant such as perfluoroether (PFPE) and a solid lubricant such as fatty acid can be used.
  • PFPE perfluoroether
  • the lubricating layer 85 is formed with a thickness of 1 to 4 nm.
  • a method for applying the lubricant a conventionally known method such as a dipping method or a spin coating method may be used.
  • FIG. 4 is a cross-sectional view showing another example of a magnetic recording medium manufactured using the magnetic recording medium manufacturing method according to the embodiment of the present invention.
  • the magnetic recording medium 123 is configured by sequentially laminating a magnetic layer 810, a protective layer 84, and a lubricating film 85 on both surfaces of a nonmagnetic substrate 80.
  • the protective layer 84 is formed on the magnetic layer 810.
  • the magnetic layer 810 is formed by sequentially laminating the soft magnetic layer 81 and / or the intermediate layer 82 and the recording magnetic layer 83 from the nonmagnetic substrate 80 side.
  • the magnetic recording pattern 83a is formed by being separated by the nonmagnetic region 83b, so that a so-called discrete type magnetic recording medium is obtained.
  • the discrete type magnetic recording medium includes a so-called patterned medium in which the magnetic recording pattern 83a is arranged with a certain regularity for each bit, a medium in which the magnetic recording pattern 83a is arranged in a track shape, and other magnetic fields.
  • the recording pattern 83a may be a medium including a servo signal pattern or the like.
  • the discrete magnetic recording medium has a recording magnetic layer formed by providing a mask layer on the surface of the recording magnetic layer 83 and then exposing a portion not covered by the mask layer to a reactive plasma treatment or an ion irradiation treatment.
  • a part of 83 is modified from a magnetic material to a nonmagnetic material to form a nonmagnetic region 83b.
  • FIG. 5 is a cross-sectional view showing an example of a magnetic recording / reproducing apparatus equipped with a magnetic recording medium manufactured by using the magnetic recording medium manufacturing method according to the embodiment of the present invention.
  • the magnetic recording / reproducing apparatus is a hard disk (drive) apparatus (hereinafter, HDD apparatus).
  • the magnetic recording / reproducing apparatus 124 includes a magnetic recording medium (hereinafter referred to as a magnetic disk) 96 manufactured by using the magnetic recording medium manufacturing method according to the embodiment of the present invention, and a medium driving unit 97 that rotationally drives the magnetic disk 96.
  • a magnetic head 98 for recording / reproducing information on the magnetic disk 96, a head drive unit 99 for driving the magnetic head 98 to an arbitrary position, and a magnetic recording / reproducing signal processing system 100 are provided.
  • the input data is processed to send a (magnetic) recording signal to the magnetic head 98, and the reproducing signal from the magnetic head 98 is processed to output data.
  • a method of manufacturing a magnetic recording medium according to an embodiment of the present invention includes a step of forming a magnetic layer on at least one surface of a nonmagnetic substrate (magnetic layer forming step), and forming the carbon film described above on the magnetic layer. Forming a carbon film using the method (carbon film forming step).
  • a magnetic recording medium mounted on an HDD device is used by using an in-line film forming apparatus that performs film forming processing while sequentially transferring a substrate to be formed between a plurality of film forming chambers.
  • the case of manufacturing will be described as an example. First, an in-line film forming apparatus will be described.
  • FIG. 7 is a schematic plan view showing an example of an in-line film forming apparatus (magnetic recording medium manufacturing apparatus) used in the magnetic recording medium manufacturing method according to the embodiment of the present invention.
  • the in-line type film forming apparatus 125 includes a robot base 1, a substrate cassette transfer robot 3 placed on the robot base 1, a substrate supply robot chamber 2 adjacent to the robot base 1, A substrate supply robot 34 disposed in the substrate supply robot chamber 2, a substrate mounting chamber 52 adjacent to the substrate supply robot chamber 2, corner chambers 4, 7, 14, 17 for rotating the carrier 25, and each corner chamber 4 , 7, 14, 17, processing chambers 5, 6, 8-13, 15, 16, 18-21, substrate removal chamber 53 disposed adjacent to processing chamber 20, and substrate mounting chamber
  • the ashing chamber 3A disposed between the substrate removal chamber 53 and the substrate removal chamber 53, the substrate removal robot chamber 22 disposed adjacent to the substrate removal chamber 53, and the substrate removal robot chamber 22 And the installed substrate removal robot 49, and a plurality of carriers 25 to be transported between these chambers is schematically configured
  • Each chamber 2, 52, 4 to 21, 53, 3A is connected to two adjacent walls, respectively, and a gate valve 55 to the connecting portion of each chamber 2, 52, 4 to 21, 53, 3A. 72 is provided.
  • a gate valve 55 to the connecting portion of each chamber 2, 52, 4 to 21, 53, 3A. 72 is provided.
  • Each room becomes an independent sealed space.
  • Each chamber 2, 52, 4 to 20, 53, 3A is connected to a vacuum pump (not shown), and each chamber is decompressed by the operation of the vacuum pump.
  • Each corner chamber 4, 7, 14, 17 is a chamber for changing the moving direction of the carrier 25, and a mechanism for rotating the carrier 25 to move to the next film forming chamber is provided inside.
  • Each of the chambers 5, 6, 8 to 13, 15, 16, and 18 to 20 is a processing chamber.
  • Each processing chamber is connected to a processing gas supply pipe (not shown), and the processing gas supply pipe is provided with a valve for controlling opening and closing. By opening / closing the valves and pump gate valves 55 to 72, the supply of gas from the processing gas supply pipe, the pressure in each processing chamber, and the discharge of the gas can be controlled.
  • the chambers 5, 6, 8 to 13, 15, 16 are processing chambers for forming a magnetic layer.
  • This processing chamber is provided with a mechanism for forming a magnetic layer comprising a soft magnetic layer 81, an intermediate layer, and a recording magnetic layer on both surfaces of a nonmagnetic substrate.
  • a magnetic layer forming step is performed in these processing chambers.
  • the chambers 18 to 20 are processing chambers for forming a protective layer.
  • the processing chamber is provided with an apparatus having the same configuration as the film forming apparatus (ion beam evaporation apparatus) shown in FIG. A carbon film forming process is performed in these processing chambers.
  • a processing chamber for patterning the mask layer a processing chamber for performing reactive plasma processing or ion irradiation processing, a processing chamber for removing the mask layer, and the like may be added. Thereby, the discrete type magnetic recording medium shown in FIG. 4 can be manufactured.
  • the substrate cassette transfer robot 3 supplies the nonmagnetic substrate to the substrate supply robot chamber 2 from the cassette in which the nonmagnetic substrate 80 before film formation is stored, and removes the film after the film removal in the substrate removal robot chamber 22.
  • the nonmagnetic substrate (magnetic recording medium) is taken out.
  • An opening to the air lock chamber and members 51 and 55 'for opening and closing the opening are provided on one side wall of the substrate supply robot chamber and the substrate removal robot chambers 2 and 22, respectively.
  • a non-magnetic substrate before film formation is mounted on the carrier 25 using the substrate supply robot 34.
  • the nonmagnetic substrate (magnetic recording medium) after film formation mounted on the carrier 25 is removed using the substrate removal robot 49.
  • the ashing chamber 3 ⁇ / b> A ashes the carrier 25 transported from the substrate removal chamber 53 and then transports the carrier 25 to the substrate mounting chamber 52.
  • FIG. 8 is a side view showing an example of the carrier of the in-line film forming apparatus.
  • FIG. 6 is an enlarged side view of the carrier shown in FIG.
  • the carrier 25 has a support base 26 and a substrate mounting portion 27 provided on the upper surface of the support base 26.
  • the two nonmagnetic substrates mounted on the substrate mounting portion 27 are the first film-forming substrate 23 and the second film-forming substrate, respectively.
  • a substrate 24 is shown.
  • the substrate mounting portion 27 is slightly larger in diameter than the plate body 28 having a thickness of about 1 to several times the thickness of the first and second film formation substrates 23 and 24 and the outer periphery of the film formation substrates 23 and 24.
  • the circular through hole 29 is formed, and a plurality of support members 30 provided around the through hole 29 and projecting toward the inside of the through hole 29 are configured.
  • the first and second film-formation substrates 23 and 24 are fitted into the through holes 29, and the support members 30 are engaged with the edges thereof, so that the film-formation substrates 23 and 24 are placed vertically (the substrates 23 and 24). Is maintained in a state in which the main surface is parallel to the direction of gravity.
  • the main surfaces of the first and second film-forming substrates 23 and 24 mounted on the carrier 25 are supported so as to be substantially orthogonal to the upper surface of the support base 26 and on the same surface. Arranged in parallel with the upper surface of the table 26.
  • each of the processing chambers 5, 6, 9, and 19 is provided with two support tables 26 across the carrier 25 along the transport direction.
  • the processing chambers 8, 10 to 13, 15, 16, 18, and 20 have the same configuration.
  • 36 is a vacuum pump for evacuating the processing chamber
  • 38 and 46 are carrier stop positions for processing the left substrate placed on the carrier
  • 39 and 47 are placed on the carrier. It means the carrier stop position for processing the right substrate.
  • a film forming process or the like is performed on the first film forming substrate 23 on the left side of the carrier 25. I do.
  • the carrier 25 moves to the second processing position indicated by the broken line in FIG. 7, and the carrier 25 stops at the second processing position with respect to the second film-forming substrate 24 on the right side of the carrier 25.
  • a film forming process is performed.
  • the carrier 25 does not need to be moved.
  • a film forming process or the like can be simultaneously performed on the first and second film forming substrates 23 and 24 held by the carrier 25.
  • the first and second film formation substrates 23 and 24 are removed from the carrier 25, and only the carrier 25 on which the carbon film is deposited is transferred into the ashing chamber 3A. Then, oxygen plasma is generated in the ashing chamber 3A using oxygen gas introduced from an arbitrary location in the ashing chamber 3A. The oxygen plasma is brought into contact with the carbon film deposited on the surface of the carrier 25 to decompose and remove the carbon film into CO or CO 2 gas.
  • the non-magnetic substrate 80 is attached to the carrier 25 using the inline-type film forming apparatus 125, and then the soft magnetic layer 81 is formed on both surfaces of the non-magnetic substrate 80 while being sequentially transferred between a plurality of processing chambers.
  • the magnetic layer 810 composed of the intermediate layer 82 and the recording magnetic layer 83, and the protective layer 84 are sequentially stacked.
  • a part of the magnetic characteristics of the recording magnetic layer 83 is modified by performing a reactive plasma treatment or an ion irradiation treatment on the recording magnetic layer 83, and preferably Is modified from a magnetic material to a non-magnetic material to form a magnetic recording pattern 83a composed of the remaining magnetic material.
  • the recording magnetic layer 83 is removed by etching to form a magnetic recording pattern 83a made of the remaining magnetic material.
  • the lubricating film 85 is formed on the outermost surface of the substrate W after film formation by using a coating apparatus (not shown), whereby the above FIG. Can be obtained.
  • the discrete type magnetic recording medium shown in FIG. 4 can be manufactured through the steps shown in FIGS.
  • both surfaces of the nonmagnetic substrate 80 are preferably processed simultaneously, but in FIGS. 9 to 17, the nonmagnetic substrate 80 to be processed is processed. Only one side is illustrated.
  • this discrete type magnetic recording medium When manufacturing this discrete type magnetic recording medium, first, as shown in FIG. 9, after the soft magnetic layer 81 and the intermediate layer 82 are sequentially laminated on both surfaces of the nonmagnetic substrate 80, the recording magnetic layer is formed by sputtering. 83 is formed.
  • a mask layer 87 is formed on the recording magnetic layer 83.
  • the mask layer 87 is made of Ta, W, Ta nitride, W nitride, Si, SiO 2 , Ta 2 O 5 , Re, Mo, Ti, V, Nb, Sn, Ga, Ge, As, and Ni. It is preferable to use a material containing one or more selected from the group. Moreover, among these substances, it is more preferable to use one or more selected from As, Ge, Sn, and Ga. More preferably, any one or more selected from Ni, Ti, V and Nb is used, and most preferably any one or more selected from Mo, Ta and W are used. is there.
  • the shielding property against milling ions by the mask layer 87 can be improved, and the formation characteristics of the magnetic recording pattern 83a can be improved. Furthermore, these materials facilitate dry etching using a reactive gas. Therefore, when the mask layer 87 is removed, residues can be reduced and contamination on the surface of the magnetic recording medium can be reduced.
  • the mask layer 87 when the mask layer 87 is formed, it is necessary to pattern the mask layer 87 using, for example, a nanoimprint method or a photolithography method. That is, when patterning the mask layer 87 by a nanoimprint method, a photolithography method, or the like, since a liquid resist may be used, it is difficult to perform these methods with the in-line film forming apparatus 125.
  • the nonmagnetic substrate 80 formed up to the recording magnetic layer 83 is once taken out from the in-line film forming apparatus 125.
  • a resist layer 88 is formed on the mask layer 87 by using a preferable method for the nonmagnetic substrate 80 taken out from the in-line film forming apparatus 125.
  • a material that is curable by radiation irradiation For example, a novolak resin, an acrylate ester, an ultraviolet curable resin such as an alicyclic epoxy, or the like can be used.
  • the negative pattern of the magnetic recording pattern 83a is transferred to the resist layer 88 using a stamp 89.
  • the stamp 89 is preferably made of glass or resin that is highly permeable to ultraviolet rays.
  • the stamp 89 may be, for example, a metal plate such as Ni formed with a negative pattern corresponding to a fine recording track using a method such as electron beam drawing.
  • the material of the stamp 89 is not particularly limited as long as it has a hardness and durability that can withstand the above process.
  • the resist layer 88 is irradiated with arbitrarily selected radiation.
  • the radiation referred to here is a broad concept of electromagnetic waves such as heat rays, visible rays, ultraviolet rays, X-rays, and gamma rays. It is arbitrarily selected according to the material used. Examples of the material that is curable by radiation irradiation include a thermosetting resin for heat rays and an ultraviolet curable resin for ultraviolet rays.
  • the stamp 89 is pressed against the resist layer 88 in a state where the fluidity of the resist layer 88 is high, and the resist layer 88 is pressed in the pressed state. Is preferably irradiated with radiation. Accordingly, after the resist layer 88 is cured, the stamp 89 is separated from the resist layer 88, whereby the shape of the stamp 89 can be transferred to the resist layer 88 with high accuracy.
  • a method of irradiating the resist layer 88 with radiation while the stamp 89 is pressed against the resist layer 88 can be arbitrarily selected.
  • a method of irradiating radiation from the opposite side of the stamp 89, that is, the non-magnetic substrate 80 side a method of selecting a substance capable of transmitting radiation to the constituent material of the stamp 89, and irradiating radiation from the stamp 89 side, stamp 89
  • the shape of the stamp 89 can be accurately transferred to the resist layer 88.
  • sagging of the edge portion of the mask layer 87 is eliminated. It is possible to improve the shielding property against the implanted ions with respect to 87 and to improve the formation characteristics of the magnetic recording pattern 83a by the mask layer 87.
  • the thickness of the remaining portion 88a of the resist layer 88 after the pattern is transferred to the resist layer 88 using the stamp 89 is preferably in the range of 0 to 10 nm. This eliminates sagging of the edge portion of the mask layer 87 in the patterning process using the mask layer 87, which will be described later, improves the shielding property against milling ions by the mask layer 87, and accurately forms the recess 83c in the recording magnetic layer 83. can do. In addition, the formation characteristics of the magnetic recording pattern 83a by the mask layer 87 can be improved.
  • a servo signal pattern such as a burst pattern, a gray code pattern, and a preamble pattern can be formed in addition to a track pattern for recording normal data.
  • the non-magnetic substrate 80 processed so far is put into the in-line type film forming apparatus 125 again. Then, after the nonmagnetic substrate 80 is attached to the carrier 4, the resist to which the pattern is transferred is transferred, for example, in the processing chamber of the in-line film forming apparatus 125 while sequentially transporting the nonmagnetic substrate 80 attached to the carrier 4.
  • the mask layer 87 is patterned using the layer 88 as shown in FIG.
  • the surface of the recording magnetic layer 83 exposed by the patterning of the mask layer 87 is partially ion milled in the processing chamber of the in-line type film forming apparatus 125 to thereby form the recess 83c.
  • the depth d of the recess 83c provided in the recording magnetic layer 83 is preferably in the range of 0.1 nm to 15 nm, and more preferably in the range of 1 to 10 nm.
  • the removal depth d by ion milling is less than 0.1 nm, the removal effect of the recording magnetic layer 83 described above does not appear.
  • the removal depth is greater than 15 nm, the surface smoothness of the magnetic recording medium is deteriorated, and the flying characteristics of the magnetic head are deteriorated when the magnetic recording / reproducing apparatus is manufactured.
  • the magnetic characteristics of the recording magnetic layer 83 are modified. Compared with the case where the surface of the recording magnetic layer 83 is exposed to reactive plasma or reactive ions without providing the concave portion 83c, the pattern contrast between the magnetic recording pattern 83a and the nonmagnetic region 83b becomes clearer, and the magnetic The S / N of the recording medium can be improved.
  • the reason for this is that by removing the surface layer portion of the recording magnetic layer 83, the surface is cleaned and activated, the reactivity with reactive plasma and reactive ions is increased, and the recording magnetic layer It is considered that defects such as vacancies were introduced into the surface layer portion 83, and reactive ions easily entered the recording magnetic layer 83 through the defects.
  • the reactive plasma used for the modification to the non-magnetic material can be arbitrarily selected, and examples include inductively coupled plasma (ICP), reactive ion plasma (RIE), and reactive ion plasma (RIE).
  • ICP inductively coupled plasma
  • RIE reactive ion plasma
  • RIE reactive ion plasma
  • examples of the reactive ions include reactive ions existing in the inductively coupled plasma and the reactive ion plasma described above.
  • the inductively coupled plasma a high temperature plasma obtained by generating a plasma by applying a high voltage to a gas and generating Joule heat due to an eddy current inside the plasma by a high frequency variable magnetic field can be exemplified.
  • the inductively coupled plasma has a high electron density, and the magnetic properties of the recording magnetic layer 83 can be improved over a large area with high efficiency compared to the case of manufacturing a discrete magnetic recording medium using a conventional ion beam. It can be carried out.
  • the reactive ion plasma is a highly reactive plasma in which a reactive gas such as O 2 , SF 6 , CHF 3 , CF 4 , or CCl 4 is added to the plasma.
  • a reactive gas such as O 2 , SF 6 , CHF 3 , CF 4 , or CCl 4 is added to the plasma.
  • the recording magnetic layer 83 is modified by exposing the formed recording magnetic layer 83 to the reactive plasma. This modification is performed in the reactive plasma with the magnetic metal constituting the recording magnetic layer 83. It is preferably realized by reaction with atoms or ions.
  • the reaction means that atoms in the reactive plasma enter the magnetic metal, change the crystal structure of the magnetic metal, change the composition of the magnetic metal, oxidize the magnetic metal, Examples include nitriding and silicification of magnetic metals.
  • the recording magnetic layer 83 it is preferable to oxidize the recording magnetic layer 83 by containing oxygen atoms in the reactive plasma and reacting the magnetic metal constituting the recording magnetic layer 83 with the oxygen atoms in the reactive plasma.
  • By partially oxidizing the recording magnetic layer 83 it is possible to efficiently reduce the residual magnetization and coercive force of the oxidized portion.
  • the time for forming the magnetic recording pattern 83a by reactive plasma can be shortened.
  • halogen atoms in the reactive plasma.
  • F atom as the halogen atom.
  • the halogen atom may be added to the reactive plasma together with the oxygen atom, or may be added to the reactive plasma without using the oxygen atom.
  • oxygen atoms or the like by adding oxygen atoms or the like to the reactive plasma, the magnetic metal constituting the recording magnetic layer 83 reacts with oxygen atoms or the like, so that the magnetic characteristics of the recording magnetic layer 83 can be improved. At this time, such a reaction can be further promoted by containing halogen atoms in the reactive plasma.
  • the halogen atoms can react with the magnetic alloy to improve the magnetic characteristics of the recording magnetic layer 83.
  • fluorine is preferably used for such a reaction.
  • the halogen atoms in the reactive plasma etch the foreign matter formed on the surface of the recording magnetic layer 83, thereby cleaning the surface of the recording magnetic layer 83, and the recording magnetic layer. It is considered that the reactivity of 83 is increased. It is also conceivable that the surface of the cleaned recording magnetic layer 83 reacts with halogen atoms with high efficiency.
  • the mask layer 87 is formed in the two processing chambers of the in-line type film forming apparatus 125.
  • the removal of the resist layer 88 and the mask layer 87 can be arbitrarily selected. For example, dry etching, reactive ion etching, ion milling, and wet etching can be used.
  • a protective layer 84 is formed on the surface of the recording magnetic layer 83 in the two processing chambers of the in-line type film forming apparatus 125.
  • the protective layer 84 may be formed by using the carbon film forming method described above. That is, the columnar member 133 may be disposed apart from one surface of the nonmagnetic substrate 80, the film formation chamber may be evacuated, and carbon ions may be flown to form a protective film made of a carbon film.
  • the lubricating film 85 is formed on the outermost surface of the nonmagnetic substrate 80 by using a coating apparatus (not shown).
  • the lubricant used for the lubricant film 85 include a fluorine-based lubricant, a hydrocarbon-based lubricant, and a mixture thereof.
  • the lubricant film 85 is usually formed with a thickness of 1 to 4 nm.
  • a carbon film forming method includes a filamentary cathode electrode 104, an anode electrode 105 provided around the cathode electrode 104, and a substrate disposed at a position separated from the cathode electrode 104.
  • a disk-shaped substrate D having a central opening 131c is disposed on the substrate holder with one surface 131a facing the cathode electrode 104, and the central opening 131c the diameter d 2 than the diameter of d 1, a cylindrical member having a diameter d 1 or more height l, and the central axis C 2 to the central axis C 1 and coaxial substrate D, and, one circular face 133a Facing the cathode electrode 104 and arranging the other circular surface 133b away from the cathode electrode and the substrate so as to be parallel to the one surface of the substrate D; After evacuating the chamber 101, by flowing carbon ions toward the cathode electrode 104 side to the substrate D side, it is configured to have a step of forming a carbon film on a surface of a substrate D, a.
  • the ion beam or plasma itself is rectified to increase the concentration of carbon ions and the plasma density flying in the direction perpendicular to the one surface 131a of the substrate D, thereby suppressing the wraparound of the carbon ions, and flatness and smoothness. And a high-hardness and dense carbon film can be formed. Further, by suppressing the concentration of the ion beam and the plasma on the central opening 131c of the substrate D and preventing the temperature of the edge portion 131d of the central opening 131c of the substrate D from increasing, the central opening 131c of the substrate D is prevented. The growth rate of the carbon film at the edge portion 131d can be reduced, and a dense carbon film with high flatness and smoothness and high hardness can be formed.
  • the central opening of the substrate is circular, and the diameter d 1 of the columnar member 133 is one times the diameter d 2 of the central opening 131 c of the substrate D. Since the configuration is less than 1.5 times, the columnar member 133 can be arranged so as to shield only the edge portion (edge portion) 131d of the central opening 131c of the substrate D. The film thickness of the carbon film of the edge part 131d of the part 131c can be further flattened and smoothed.
  • Forming method of the preferred embodiment is a carbon film of the present invention, the height l of the cylindrical member 133, because the configuration is within 6-fold 3-fold or more the diameter d 1 of the cylindrical member 133, an ion beam and plasma The effect of rectifying is more remarkably exhibited, and the concentration of the ion beam and the plasma on the central opening 131c of the substrate D is further prevented, and the concentration of carbon ions and the plasma density flying in the direction perpendicular to the one surface 131a of the substrate D Thus, it is possible to form a dense carbon film having higher flatness and smoothness, high hardness and high hardness.
  • a preferred method of forming the carbon film is an embodiment of the present invention, the distance d 2 between the cylindrical member 133 and the substrate D is, since the configuration is 5mm or more 40mm or less, the edge of the central opening 131c of the substrate D The thickness of the portion 131d of the carbon film can be further flattened and smoothed, and a high hardness and dense carbon film can be formed.
  • the method for forming a carbon film according to a preferred embodiment of the present invention is a configuration in which the cylindrical member 133 is arranged at a non-ground potential, so that the flight of carbon ions can be prevented from being inhibited, and the carbon ions are formed on the substrate D.
  • the surface 131a perpendicularly, it is possible to form a dense carbon film with high flatness and smoothness and high hardness.
  • a carbon ion generated from a raw material gas containing carbon by heating the cathode electrode 104 and discharging between the cathode electrode 104 and the anode electrode 105 is converted into a cathode electrode.
  • 104 or the anode electrode 105 and the substrate D are applied with a voltage and accelerated from the cathode electrode 104 side to the substrate D side to form the ion beam. Therefore, the flatness and smoothness are high, A dense carbon film with hardness can be formed.
  • the source gas containing carbon introduced into the film formation chamber 101 is heated by the cathode electrode 104 and discharged between the cathode electrode 104 and the anode electrode 105. And since it is the structure which forms the said carbon ion, flatness and smoothness are high, and it can form a high-hardness and dense carbon film.
  • a voltage is applied between the cathode electrode 104 or the anode electrode 105 and the substrate D to apply the carbon ions from the cathode electrode 104 side to the substrate D side. Therefore, it is possible to form a high-hardness and dense carbon film with high flatness and smoothness.
  • the permanent magnet 109 is disposed so as to surround the anode electrode 105, a carbon film having higher flatness and smoothness, higher hardness and denseness is formed. it can.
  • a method of manufacturing a magnetic recording medium uses a step of forming a magnetic layer 810 on at least one surface of a nonmagnetic substrate 80 and a method for forming a carbon film on the magnetic layer 810 as described above.
  • a carbon film forming step the carbon film can be formed as a protective film 84 with a high flatness and smoothness, a high hardness and a dense carbon film, and the protective film 84 is made thin. By reducing the flying height of the magnetic head, a magnetic recording medium having a high recording density can be manufactured.
  • a carbon film forming apparatus includes a deposition chamber 101 that can be decompressed, a filamentary cathode electrode 104 disposed in the deposition chamber 101, and a cathode electrode 104.
  • the anode electrode 105, the substrate holder 102 disposed at a position separated from the cathode electrode 104, the columnar member 133 disposed between the substrate holder 102 and the cathode electrode 104, and the cathode electrode 104 are heated by energization.
  • the central opening 131c of the substrate D is prevented.
  • the growth rate of the carbon film at the edge portion 131d can be reduced, and a dense carbon film with high flatness and smoothness and high hardness can be formed.
  • Example 1 First, as a non-magnetic substrate (hereinafter referred to as a substrate), a disc-shaped substrate (outer diameter 95 mm, central opening diameter 25 mm) having an opening in the center of an outer diameter of 3.5 inches is prepared as an aluminum substrate. did. Next, in an arbitrary processing chamber provided in the in-line film forming apparatus shown in FIG. 7, a soft magnetic layer made of FeCoB having a film thickness of 60 nm and a film are formed on both surfaces of a substrate mounted on a carrier made of A5052 aluminum alloy.
  • a soft magnetic layer made of FeCoB having a film thickness of 60 nm and a film are formed on both surfaces of a substrate mounted on a carrier made of A5052 aluminum alloy.
  • a magnetic layer was formed by sequentially laminating an intermediate layer made of Ru having a thickness of 10 nm and a recording magnetic layer made of a 70Co-5Cr-15Pt-10SiO 2 alloy having a thickness of 15 nm.
  • the substrate on which the magnetic layer was formed was transferred to a processing chamber provided in the in-line film forming apparatus shown in FIG. 7 and having the same apparatus configuration as that of the film forming apparatus shown in FIG.
  • a chamber wall made of SUS304 having a cylindrical shape with an outer diameter of 180 mm and a length of 250 mm is used. It was.
  • a coiled cathode electrode made of tungsten having a length of about 30 mm and a cylindrical anode electrode surrounding the cathode electrode were provided.
  • an SUS304 material having an outer diameter of 140 mm and a length of 40 mm was used.
  • a cylindrical permanent magnet was arranged so as to surround the periphery of the chamber wall.
  • the permanent magnet had an inner diameter of 185 mm and a length of 40 mm, and was arranged so that the anode electrode was located at the center, the S pole was on the substrate side, and the N pole was on the cathode electrode side.
  • the total magnetic force of this permanent magnet was 50 G (5 mT).
  • the distance between the cathode electrode and the substrate was 160 mm. Then, on both sides of the substrate, a copper cylindrical member having a diameter of 26 mm and a length of 100 mm, with the central axis being coaxial with the central axis of the substrate, one circular surface is directed to the cathode electrode, The other circular surface was placed parallel to one surface of the substrate, and was placed 10 mm away from the cathode electrode.
  • the cylindrical member was held by three rods made of SUS304 having a diameter of 3 mm attached to the processing chamber wall.
  • a protective layer made of a carbon film was formed on the magnetic layers formed on both surfaces of the substrate as follows. First, a source gas composed of toluene gasified from a gas introduction tube was introduced into the film forming chamber under a gas flow rate of 2.9 SCCM. Then, on the surface of the substrate and the other under the film forming conditions of reaction pressure 0.3 Pa, cathode power 225 W (AC 22.5 V, 10 A), voltage 75 V between cathode electrode and anode electrode, current 1650 mA, ion acceleration voltage 200 V, 60 mA. A carbon film having a thickness of 3.5 nm was formed on each magnetic layer on the surface. Thereafter, the magnetic recording medium (Example 1) on which the carbon film was formed was taken out.
  • a source gas composed of toluene gasified from a gas introduction tube was introduced into the film forming chamber under a gas flow rate of 2.9 SCCM. Then, on the surface of the substrate and the other under the film forming conditions of reaction pressure 0.3
  • ⁇ Film thickness measurement> First, the average film thickness of the carbon film formed on both surfaces of the magnetic recording medium (Example 1) on which the carbon film was formed was measured using a known film thickness measuring device. Next, the average film thickness of the carbon film at the edge of the central opening of the substrate (position 3 mm on the outer peripheral side from the central opening of the substrate) was measured. The average film thickness at the edge of the central opening of the substrate was about 4% thicker than the average film thickness of the carbon film.
  • Magnetic recording media (Examples 2 to 12) on which carbon films were formed were produced in the same manner as in Example 1 except that the conditions shown in Table 1 were used. Thereafter, the film thickness was measured in the same manner as in Example 1.
  • Example 1 A magnetic recording medium (Comparative Example 1) on which a carbon film is formed is manufactured in the same manner as in Example 1 except that a coin-shaped shield having a height of 3 mm and a diameter of 26 is used 10 mm away from the cathode electrode. did. Thereafter, the film thickness was measured in the same manner as in Example 1. The average film thickness at the edge of the central opening of the substrate was about 12% thicker than the average film thickness of the carbon film.
  • Example 2 A magnetic recording medium (Comparative Example 2) on which a carbon film was formed was manufactured in the same manner as in Example 1 except that the diameter of the columnar member was 24 mm, which was less than 25 mm in the diameter of the central opening of the substrate. Thereafter, the film thickness was measured in the same manner as in Example 1. The results obtained are summarized in Table 1.
  • the carbon film forming method, carbon film forming apparatus, and magnetic recording medium manufacturing method of the present invention have high flatness and smoothness, can form a high-hardness and dense carbon film, and improve the magnetic recording density. In the industry that manufactures and uses recording media, there is a possibility of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 フィラメント状のカソード電極と、前記カソード電極の周囲に設けられたアノード電極と、前記カソード電極から離間された位置に配置された基板ホルダと、を備えた成膜室内で、中央開口部を有する円盤状の基板を、その一面を前記カソード電極と対向させて基板ホルダに配置するとともに、前記中央開口部の径以上の直径と、前記直径以上の高さとを有する円柱状部材を、その中心軸を前記基板の中心軸と同軸にし、かつ、一の円形面を前記カソード電極に向け、他の円形面を前記基板の一面に平行となるように、前記カソード電極及び前記基板から離間して配置する工程と、前記成膜室内を排気した後に、前記カソード電極側から前記基板側へ向けて炭素イオンを流して、前記基板の一面に炭素膜を形成する工程とを有することを特徴とする炭素膜の形成方法。

Description

炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置
 本発明は、炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置に関する。
 本願は、2009年5月22日に、日本に出願された特願2009-124515号に基づき優先権を主張し、その内容をここに援用する。
 近年、ハードディスクドライブ(HDD)等に用いられる磁気記録媒体の分野では、記録密度の向上が著しい。前記記録密度は、驚異的な速度で伸び続け、最近10年間で100倍程度となっている。
 前記記録密度の向上を支える技術は多岐にわたるが、磁気ヘッドと磁気記録媒体との間における摺動特性の制御技術を、キーテクノロジーの一つとして挙げることができる。
 上記摺動特性の制御技術の一つに、ウインテェスター様式と呼ばれる技術がある。ウインテェスター様式は、磁気ヘッドの起動から停止までの基本動作を、磁気記録媒体に対して接触摺動-浮上-接触摺動としたCSS(接触起動停止(Contact Start Stop))方式としたものであり、ハードディスクドライブの主流となっている。この技術では、磁気記録媒体上での磁気ヘッドの接触摺動は避けることができない。
 そのためこの技術では、磁気ヘッドと磁気記録媒体との間でのトライボロジー(tribology:摩擦、摩耗及び潤滑のメカニズムなどを扱う学問領域)の問題は、宿命的な技術課題となって現在に至っている。
 そして、磁気記録媒体の磁性膜上に積層される保護膜を改善する努力が続けられている。この媒体の表面(保護膜表面)における耐摩耗性及び耐摺動性は、磁気記録媒体の信頼性を向上させる大きな柱となっている。
 前記保護膜には、磁気記録媒体の記録密度の向上を図るために磁気ヘッドの飛行高さ(フライングハイト)を低減した際に、前記磁気記録媒体と磁気ヘッドとが偶発的な接触しても、磁気記録媒体の磁気記録層を保護できるような、高い摺動耐久性や、優れた平坦性が要求される。また、磁気記録媒体と磁気ヘッドとのスペーシングロスを低減するためには、前記保護膜の厚さをできるだけ薄く、例えば30Å以下の膜厚にすることが要求される。このように、前記保護膜に対しては、平滑性は勿論のこと、薄く、緻密で且つ強靭であることが強く求められている。
 前記保護膜の材料としては、様々な材料が提案されているが、成膜性や耐久性等の総合的な見地から、主に、炭素からなる膜(以下、炭素膜)が採用されている。なお、前記炭素膜の硬度、密度および動摩擦係数等の特性は、磁気記録媒体のCSS特性または耐コロージョン特性に如実に反映される。
 前記炭素膜は、スパッタリング法、CVD法およびイオンビーム蒸着法等によって形成されている。しかしながら、スパッタリング法で形成した炭素膜は、例えば100Å以下の膜厚とした場合に、その耐久性が不十分となるおそれがある。また、CVD法で形成した炭素膜は、表面の平滑性が低く、膜厚を薄くした場合に、磁気記録媒体の表面の被覆率が低下して、磁気記録媒体のコロージョンを発生させるおそれがある。
 一方、イオンビーム蒸着法で形成した炭素膜は、スパッタリング法やCVD法で形成した炭素膜に比べて、より高硬度で、平滑性がより高く、より緻密な膜とすることができる。特許文献1には、イオンビーム蒸着法による炭素膜の形成方法の一例が開示されている。
 特許文献1は、CVD装置および磁気記録媒体の製造方法に関するものであり、熱フィラメントとプラズマCVD装置を用いたイオンビーム蒸着法が開示されている。
 特許文献1に記載されているように、イオンビーム蒸着法では、真空雰囲気下の成膜室内で、通電加熱されたフィラメント状カソードとアノードとの間の放電により、炭化水素系の原料ガスをプラズマ状態にする。前記原料ガスを励起分解することにより発生した炭素イオン及び炭素ラジカルは、前記カソードと対向するように配置させた、マイナス電位とされた基板の成膜面に加速衝突され、その結果、硬度の高い炭素膜が安定して成膜される。
 前記基板としては、通常、中央に円形の開口部を有する円盤状の基板を用いる。しかしながら、特許文献1に記載のイオンビーム蒸着法を用いて前記基板上に炭素膜を成膜した場合、前記開口部の縁の部分の炭素膜の膜厚がそれ以外の部分に比べて厚くなる傾向があった。この傾向の原因の一つとして、前記開口部の縁の部分に炭素イオンを含むプラズマが集中して照射されて炭素イオン濃度が高まるとともに、前記開口部の縁の部分の温度がそれ以外の部分に比べて高くなり、炭素膜の成長速度が高まることが考えられた。
 不均一な厚さの発生を防ぐため、特許文献1には、基板の成膜面側に膜厚を補正するための膜厚補正板を配置する構成が記載されている。具体的には、基板の開口部の成膜面側にコイン状の遮蔽板(膜厚補正板)を設置する。これにより、基板の開口部付近のプラズマ密度や炭素イオン濃度を下げ、基板の開口部の縁の部分の炭素膜の成長速度を下げて、炭素膜の平坦化及び平滑化を図っている。
 しかし、特許文献1に記載の膜厚補正板を配置しても、炭素膜の平坦化及び平滑化は十分ではなかった。すなわち、炭素膜の形成に関与する炭素イオンには、基板の成膜面に垂直な方向から基板の成膜面に到着する飛行成分ばかりではなく、それ以外の方向から飛行して基板の成膜面に到着する飛行成分も含まれている。そのため、前記コイン状の遮蔽板を配置したとしても、遮蔽したい炭素イオンの一部の飛行成分が前記コイン状の遮蔽板を回り込んで基板に炭素膜を形成してしまい、開口部の縁の部分の炭素膜の膜厚を厚くしていた。
 このように開口部の縁の部分の炭素膜の膜厚がそれ以外の部分に比べて厚くなると、炭素膜の平坦性及び平滑性が失われる。その結果、磁気記録媒体と磁気ヘッドとの距離を低減させることが困難となり、磁気記録媒体の記録密度を向上させることができないという問題を発生させた。
 炭素イオンの回り込みを防ぐため、前記コイン状の遮蔽板の直径を大きくすると、基板の開口部の縁の部分には失活した炭素ラジカルが達して硬度の低い炭素膜が形成された。硬度の低い炭素膜は磁気記録媒体の保護膜としての機能を十分発揮できず、開口部の縁の部分から磁性層の腐食が発生して、磁気記録媒体の信頼性が低減した。
特開2000-226659号公報
 本発明は、上記事情を鑑みてなされたもので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる炭素膜の形成方法、炭素膜の形成装置及び記録密度の高い磁気記録媒体の製造方法を提供することを目的とする。
 上記の目的を達成するために、本発明は以下の構成を採用した。すなわち、
  (1) フィラメント状のカソード電極と、前記カソード電極の周囲に設けられたアノード電極と、前記カソード電極から離間された位置に配置された基板ホルダと、を備えた成膜室内で、中央開口部を有する円盤状の基板を、その一面を前記カソード電極と対向させて基板ホルダに配置するとともに、前記中央開口部の径以上の直径と、前記直径以上の高さとを有する円柱状部材を、その中心軸を前記基板の中心軸と同軸にし、かつ、一の円形面を前記カソード電極に向け、他方の円形面を前記基板の前記一面に平行となるように、前記カソード電極及び前記基板から離間して配置する工程と、
前記成膜室内を排気した後に、前記カソード電極側から前記基板側へ向けて炭素イオンを流して、前記基板の一面に炭素膜を形成する工程と、を有することを特徴とする炭素膜の形成方法。
  (2) 前記基板の中央開口部が円形であり、前記円柱状部材の直径が、前記基板の中央開口部の径の1倍以上1.5倍未満であることを特徴とする(1)に記載の炭素膜の形成方法。
  (3) 前記円柱状部材の高さが、前記円柱状部材の直径の3倍以上6倍以内であることを特徴とする(1)または(2)に記載の炭素膜の形成方法。
  (4) 前記円柱状部材と前記基板との間の離間距離が、5mm以上40mm以下であることを特徴とする(1)~(3)のいずれかに記載の炭素膜の形成方法。
  (5) 前記円柱状部材を非接地電位にして配置することを特徴とする(1)~(4)のいずれかに記載の炭素膜の形成方法。
  (6) 前記成膜室内に導入した炭素を含む原料ガスを、前記カソード電極で加熱するとともに、前記カソード電極と前記アノード電極との間で放電して、前記炭素イオンを形成することを特徴とする(1)~(5)のいずれかに記載の炭素膜の形成方法。
  (7) 前記炭素イオンを、前記カソード電極又は前記アノード電極と前記基板との間に電圧を印加して、前記カソード電極側から前記基板側へ向けて加速することを特徴とする(1)~(6)のいずれかに記載の炭素膜の形成方法。
  (8) 前記アノード電極を取り囲んで、永久磁石を配置することを特徴とする(1)~(8)のいずれかに記載の炭素膜の形成方法。
  (9) 非磁性基板の少なくとも一面に磁性層を形成する工程と、前記磁性層上に(1)~(8)のいずれかに記載の炭素膜の形成方法を用いて炭素膜を形成する工程と、を有することを特徴とする磁気記録媒体の製造方法。
  (10) 減圧可能な成膜室と、前記成膜室内に配置されたフィラメント状のカソード電極と、前記カソード電極の周囲に配置されたアノード電極と、前記カソード電極から離間された位置に配置された基板ホルダと、前記基板ホルダと前記カソード電極との間に配置された円柱状部材と、前記カソード電極を通電により加熱する第1の電源と、前記カソード電極と前記アノード電極との間で放電を生じさせる第2の電源と、前記カソード電極又は前記アノード電極と前記基板ホルダとの間に電位差を与える第3の電源と、を有することを特徴とする炭素膜の形成装置。
(11)前記基板の中央開口部が円形であり、前記円柱状部材の直径が、前記基板の中央開口部の径の1倍以上1.5倍未満であり、前記円柱状部材の高さが、前記円柱状部材の直径の3倍以上6倍以内であり、前記円柱状部材と前記基板との間の離間距離が5mm以上40mm以下であり、前記円柱状部材を非接地電位にして配置されている、(10)に記載の炭素膜の形成装置。
 上記の構成によれば、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる炭素膜の形成方法、炭素膜の形成装置及び記録密度の高い磁気記録媒体の製造方法を提供することができる。
本発明の炭素膜の形成方法は、中央開口部を有する円盤状の基板を、その一面をカソード電極と対向させて配置した後、前記中央開口部の径以上の直径と、前記直径以上の高さとを有する円柱状部材を、その中心軸を前記基板の中心軸と同軸とするとともに、一の円形面を前記カソード電極に向け、他の円形面を前記基板の一面に平行となるように離間して配置する構成である。よって、イオンビームやプラズマそのものを整流して、基板の一面に垂直な方向に飛行する炭素イオン濃度、及びプラズマ密度を上げることができ、炭素イオンの回り込みを抑制して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。また、基板の中央開口部へのイオンビーム及びプラズマの集中を抑制して、基板の中央開口部の縁の部分の温度上昇を防止することにより、基板の中央開口部の縁の部分の炭素膜の成長速度を低減して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の磁気記録媒体の製造方法は、磁性層上に、先に記載の炭素膜の形成方法を用いて炭素膜を形成する工程を有する構成である。よって、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を保護膜として形成することができ、前記保護膜の膜厚を薄くして、磁気ヘッドの浮上高さを低減することにより、記録密度の高い磁気記録媒体を製造することができる。
 本発明の炭素膜の形成装置は、基板ホルダとカソード電極との間に配置された円柱状部材を有する構成である。よって、イオンビームやプラズマそのものを整流して、基板の一面に垂直な方向に飛行する炭素イオン濃度及びプラズマ密度を上げることができ、炭素イオンの回り込みを抑制して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。また、基板の中央開口部へのイオンビーム及びプラズマの集中を抑制して、基板の中央開口部の縁の部分の温度上昇を防止することにより、基板の中央開口部の縁の部分の炭素膜の成長速度を低減して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
本発明の炭素膜の形成装置の一例を示す概略模式図である。 本発明の炭素膜の形成装置で、永久磁石が印加する磁場とその磁力線の方向の一例を示す模式図である。 本発明の炭素膜の形成装置で、永久磁石が印加する磁場とその磁力線の方向の一例を示す模式図である。 本発明の炭素膜の形成装置で、永久磁石が印加する磁場とその磁力線の方向の一例を示す模式図である。 本発明の磁気記録媒体の製造方法を用いて製造される磁気記録媒体の一例を示す断面図である。 本発明の磁気記録媒体の製造方法を用いて製造される磁気記録媒体の別の一例を示す断面図である。 本発明の磁気記録媒体の製造方法を用いて製造される磁気記録媒体を具備した磁気記録再生装置の一例を示す断面図である。 インライン式成膜装置のキャリアの拡大図である。 本発明の磁気記録媒体の製造方法に用いられるインライン式成膜装置の一例を示す平面図である。 本発明の磁気記録媒体の製造方法に用いられるインライン式成膜装置のキャリアの一例を示す側面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。 図4に示す磁気記録媒体の製造方法の一例を示す工程断面図である。
<<炭素膜の形成装置>>
 以下、本発明を実施するための好ましい形態について説明する。なお本発明はこれら例のみに限られるものではない。本発明の要旨を逸脱しない範囲で、材料や数や位置や大きさや長さや数値などの、変更や追加や省略をする事ができる。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 図1は、本発明の実施形態である炭素膜の形成装置を示す概略模式図である。
 図1に示すように、本発明の実施形態である炭素膜の形成装置(成膜装置)121には、イオンビーム蒸着法を用いた成膜装置であり、減圧可能な成膜室101と、成膜室101内に備えられたフィラメント状のカソード電極104と、カソード電極104の周囲に設けられたアノード電極105と、カソード電極104から離間された位置に配置された基板ホルダ102と、成膜室101の壁面に接続された第1の導入管(以下、原料ガス導入管)103と、排気管110と、が備えられている。なお本発明において、カソード電極の周囲に設けられたアノード電極とは、中心に位置するカソード電極の周りに離間して配置されていることを意味し、カソード電極とアノード電極との間で放電が生じる構成であれば良い。任意に数、大きさ、種類や位置などの条件を選択できる。例えば、好ましいカソード電極の条件は、円筒状、平行平板を用いたロの字、多角形状、内部をくりぬいた半球で開口部を基板側に向けた形状、あるいは内部をくりぬいた円錐で底部を基板側に向けた形状などである。また本発明においてフィラメント状のカソード電極とは、一般的にフィラメント電極として知られている電極を使用でき、例えばコイル状、直線状、平面に蛇行した形状などが挙げられる。
 また、基板ホルダ102には、基板Dが、基板Dの一面(成膜面)131aがカソード電極104と対向するように支持されている。さらに、円柱状の遮蔽物(以下、円柱状部材)133が、一の円形面133aがカソード電極104に向けられ、他の円形面133bが基板Dの一面131aに平行となるように離間されて配置されている。
<成膜室101>
 成膜室101は、チャンバ壁101aによって気密に構成されている。また、成膜室101には排気管110が接続されており、排気管110に接続された真空ポンプ(図示略)を通じて内部を減圧排気可能とされている。
<第1~第3の電源>
 成膜室101の外部には、カソード電極104を通電により加熱する第1の電源106と、カソード電極104とアノード電極105との間で放電を生じさせる第2の電源107と、カソード電極104又はアノード電極105と基板Dとの間に電圧を印加して電位差を与える第3の電源108と、が配置されている。
 第1の電源106は、カソード電極104に接続された交流電源であり、炭素膜の成膜時にカソード電極104に電力を供給することができる。なお、第1の電源106は、交流電源に限られるものではなく、直流電源を用いてもよい。
 第2の電源107は、-電極側がカソード電極104に接続され、+電極側がアノード電極105に接続された直流電源であり、炭素膜の成膜時にカソード電極104とアノード電極105との間で放電を生じさせることができる。
 第3の電源108は、+電極側がアノード電極105に接続され、-電極側がホルダ102に接続された直流電源であり、炭素膜の成膜時にアノード電極105とホルダ102に保持された基板Dとの間に電位差を付与する。なお、第3の電源108は、+電極側がカソード電極104に接続された構成としてもよい。
 なお、第1の電源106~第3の電源108を操作して印加する電圧は、特に限定されるものではなく、基板Dのサイズに応じて適宜設定することが好ましい。
 たとえば、基板Dが円盤状であり、そのサイズが外径3.5インチである場合には、第1の電源106は、その電圧を10~100Vの範囲とし、電流を直流又は交流で5~50Aの範囲に設定することが好ましい。また、第2の電源107は、その電圧を50~300Vの範囲とし、電流を10~5000mAの範囲に設定することが好ましい。さらに、第3の電源108は、その電圧を30~500Vの範囲とし、電流を10~200mAの範囲に設定することが好ましい。
<原料ガス>
 原料ガス導入管103から、成膜室101内には、炭素を含む気体(以下、原料ガス)Gが導入される。
 原料ガスGとしては、炭化水素を含むガスを挙げることができる。原料ガスGは炭化水素だけから構成されてもよい。必要に応じて、炭化水素は、その他の元素、例えば窒素やフッ素などを含む炭化水素であってもよい。前記炭化水素としては、低級飽和炭化水素、低級不飽和炭化水素または低級環式炭化水素のうちいずれか1種又は2種以上の低級炭化水素を用いることが好ましい。なお、ここでいう低級とは、炭素数が1~10の場合を指す。
 前記炭化水素の炭素数が10を超える場合には、ガス導入管103から原料ガスGとして供給することが困難となることに加え、放電時に原料ガスGに含まれる炭化水素の分解が進行しににくくなり、基板上に形成した炭素膜が、強度に劣る高分子成分を多く含む膜となる。
 低級飽和炭化水素としては、メタン、エタン、プロパン、ブタン、及びオクタン等を挙げることができる。また、低級不飽和炭化水素としては、イソプレン、エチレン、プロピレン、ブチレン、及びブタジエン等を挙げることができる。さらにまた、低級環式炭化水素としては、ベンゼン、トルエン、キシレン、スチレン、ナフタレン、シクロヘキサン、及びシクロヘキサジエン等を挙げることができる。
 さらに、原料ガスGに、Ar,He、H、N及びO等の不活性ガスや水素ガスなどを含有させた、混合ガス等を用いることが好ましい。また、この混合ガスにおける炭化水素と不活性ガス等との混合割合は、炭化水素:不活性ガスを2:1~1:100(体積比)の範囲とすることが好ましく、1.5:1~1:75(体積比)とすることがより好ましく、1:1~1:50(体積比)の範囲とすることが更に好ましい。これにより、成膜室101内でのプラズマの発生を誘発することができ、高硬度の耐久性の高い炭素膜を形成することができる。
<永久磁石>
 成膜室101の外部には、アノード電極105を取り囲むように、円筒状の永久磁石109が備えられる事が好ましい。永久磁石109は、原料ガスGをイオン化し、前記イオン化した気体(以下、イオンビーム)を加速する領域(以下、励起空間R)の少なくとも一部を取り囲むように配置されることが好ましい。これにより、カソード電極104とアノード電極105又は基板Dとの間で磁場を印加して、基板Dの一面131aに向かって加速照射される炭素イオンのイオン密度を高めることができる。永久磁石の数、サイズ、磁力、形状及び位置などの条件は、任意に選択できる。永久磁石はアノード電極と基板とを結ぶ軸に対して回転対称形に多数を配置するのが、イオンの加速領域での磁場の分布を均一化する上で好ましい。 
<基板>
 基板Dとしては、中央に円形の開口部(以下、中央開口部)131cを有する円盤状の基板が用いられる。図1に示すように、中央開口部131cの直径はdとされている。
 なお、磁気記録媒体用の基板としては好ましいものを任意選択でき、外径0.85インチの基板(外径21.6mm、中央開口部径6mm)、外径1.9インチの基板(外径48mm、中央開口部径12mm)、外径2.5インチの基板(外径65mm、中央開口部径20mm)、外径3.5インチの基板(外径95mm、中央開口部径25mm)などを例示できる。
<円柱状部材>
 円柱状部材133は、その直径dが基板Dの中央開口部131cの直径dより大きく、円柱状部材133の高さlが、円柱状部材133の直径dより大きい円柱状の部材である。
 円柱状部材133は、一の円形面133aがカソード電極104に向けられるように、基板Dとカソード電極104との間に配置されている。また、円柱状部材133の他の円形面133bは、基板Dの一面131aに平行に配置され、かつ、基板Dの一面131aから離間されている。さらに、円柱状部材133の中心軸Cは、基板Dの中心軸Cと同軸となるように配置されている。
 円柱状部材133の直径dは、基板Dの中央開口部131cの直径dの1倍以上1.5倍未満であることが好ましい。
 円柱状部材133の直径dを基板Dの中央開口部131cの直径dの1倍以上1.5倍未満とすることにより、基板Dの中央開口部131cの縁の部分131dのみを遮蔽するように、円柱状部材133を配置することができ、基板Dの中央開口部131cの縁の部分131dの炭素膜の膜厚をより平坦化及び平滑化することができる。
 円柱状部材133の直径dが基板Dの中央開口部131cの直径dの1倍未満の場合には、円柱状部材133の遮蔽効果がなくなり、基板Dの中央開口部131cの縁の部分131dに成膜される炭素膜の平坦性及び平滑性が低減する。
 逆に、円柱状部材133の直径dが基板Dの中央開口部131cの直径dの1.5倍を超える場合には、円柱状部材133の遮蔽効果が大きくなりすぎ、基板Dの中央開口部131cの縁の部分131dに炭素膜が析出しなくなる、あるいは薄すぎる炭素膜部分が形成される。
 円柱状部材133の高さlは、円柱状部材133の直径dの3倍以上6倍以内であることが好ましい。より好ましくは3.5倍以上5倍以内である。
 円柱状部材133の高さlを、円柱状部材133の直径dの3倍以上6倍以内とすることにより、イオンビーム及びプラズマを整流する効果をより顕著に発現させることができる。これにより、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中をより防止するとともに、基板Dの一面131aに垂直な方向に飛行する炭素イオン濃度、プラズマ密度をより上げて、より平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 円柱状部材133の高さlが円柱状部材133の直径dの3倍未満の場合には、基板Dの一面131aと垂直な方向に飛行する飛行成分以外の炭素イオンが多くなり、炭素イオンの回り込みにより炭素膜の膜厚が基板Dの中央開口部131cの周辺で厚くなる。
 逆に、円柱状部材133の高さlが円柱状部材133の直径dの6倍を超える場合には、イオンビーム及びプラズマの整流が過度となる。その結果、円柱状部材133の周囲を流れるイオンビーム及びプラズマ密度が低下して、プラズマ空間である励起空間Rにおける炭素イオンの励起力が低下して、基板Dの一面131a上に形成する炭素膜の硬度を低下させる。
 円柱状部材133と基板Dとの間の離間距離dは、5mm以上40mm以下であることが好ましい。その中でも20mm以下であることがより好ましい。
 円柱状部材133と基板Dとの間の離間距離dを5mm以上40mm以下とすることにより、基板Dの中央開口部131cの縁の部分131dの炭素膜の膜厚をより平坦化及び平滑化することができるとともに、高硬度で緻密な炭素膜を形成できる。
 円柱状部材133と基板Dとの間の離間距離dが5mm未満である場合には、円柱状部材133によって基板Dの中央開口部131cの縁の部分131dに達する炭素ラジカルが失活して、基板Dの中央開口部131cの縁の部分131dに析出する炭素膜の硬度が低下する。
 逆に、円柱状部材133と基板Dとの間の離間距離dが40mmを超える場合には、円柱状部材133の遮蔽効果が低下して、基板Dの中央開口部131cの縁の部分131dに形成される炭素膜の平坦性及び平滑性が低減する。
 円柱状部材133は非接地電位(フローティング電位)にして配置することが好ましい。円柱状部材133を非接地電位(フローティング電位)にして配置することにより、炭素イオンの飛行を阻害しないようにすることができ、炭素イオンを基板Dの一面131aに垂直に照射することができる。
 なお、図1に示す炭素膜の形成装置では、基板Dの一面131aにのみ炭素膜を成膜する構成となっている。しかしながら、基板Dの一面131aにのみ炭素膜を成膜する場合と同様の装置を2つ用意し、成膜室101内の基板Dを挟んだ両側に配置して、基板Dの両面131a、131bに炭素膜を成膜する構成としてもよい。
 本発明において、円柱状部材133は、本実施形態で示した一面と多面が同形の円である円柱部材に限定されるわけではなく、その他の柱状部材も含見えるものとする。例えば、四角柱もしくは五角柱などの多角柱または円錐台などを用いてもよい。
 多角柱または円錐台を用いた場合には、直径d及び高さlは最大寸法を示す。すなわち、四角柱の場合には、底面の対角線の長さがdとなる。また、円錐台の場合には、直径の大きい面の直径がdとなる。そして、いずれの場合も、高さlをdより大きくし、かつ、dを基板Dの中央開口部131cの直径dより大きくした部材を用いる。
 しかし、これらの中で前述のような円柱部材(円筒部材)が円柱状部材133として最も好ましい。
<<炭素膜の形成方法>>
 次に、本発明の実施形態である炭素膜の形成方法について説明する。
 本発明の実施形態である炭素膜の形成方法は、本発明の実施形態である炭素膜の形成装置を用いて実施されるものであり、円柱状部材配置工程と、炭素膜形成工程とを有する。なお、本発明の実施形態である炭素膜の形成装置で示した部材と同一の部材については同一の符号を付して説明する。
<円柱状部材配置工程>
 まず、フィラメント状のカソード電極104と、カソード電極104の周囲に設けられたアノード電極105と、前記カソード電極104から離間された位置に配置された基板ホルダ102と、を備えた成膜室101内で、基板ホルダ102に、一面131aがカソード電極104と対向するように、中央開口部131cを有する円盤状の基板Dを設置する。
 次に、基板Dとカソード電極104との間に、円柱状部材133を配置する。このとき、円柱状部材133の一の円形面133aをカソード電極140に向けるとともに、他の円形面133bを基板Dの一面131aに平行にして、基板Dの一面131aから離間させて、円柱状部材133を配置する。また、円柱状部材133の中心軸Cを基板Dの中心軸Cと同軸となるように配置する。
<炭素膜形成工程>
 まず、排気管110に接続された真空ポンプを稼動して、成膜室101内を減圧する。なお減圧の程度は生産性の観点から必要に応じて選択されるが、高真空度であるほど好ましい。
 次に、成膜室101に接続された原料ガス導入管103から成膜室101内に原料ガスGを導入する。
 次に、第1の電源106から電力を供給して、フィラメント状のカソード電極104を通電加熱して、熱プラズマを発生させる。また、第2の電源107を操作して、カソード電極104とアノード電極105との間で放電させてプラズマを発生させる。これにより、原料ガスGを励起分解して、炭素イオンを形成する。前記炭素イオンには炭素ラジカルが含まれる場合もある。通電加熱によるカソード電極の加熱温度は任意に設定されるが、カソード電極での原料ガスGの分解、励起力を高めるためには高温であるほど好ましい。
 次に、第3の電源108によりカソード電極104又はアノード電極105と基板Dとの間に電圧を印加して、電位差を与えて、前記炭素イオンを、マイナス電位とした基板Dに向かって加速させ、基板Dの一面131aに照射する。前記炭素イオンは、基板Dの一面131aに衝突して、炭素膜を形成する。なお、前記炭素イオンは、励起された高いエネルギー状態にあるので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜が形成される。
 基板Dの一面131a側には、中央開口部131cを遮蔽するように、円柱状部材133を設置されている。これにより、円柱状部材133の周囲を流れるイオンビーム及びプラズマそのものが整流され、イオンビーム及びプラズマが基板Dの中央開口部131cに集中することが防止される。そして、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中を防止することにより、基板131の中央開口部131cの周辺のプラズマ密度、炭素イオン密度を低下させ、基板131の中央開口部131cの周辺の炭素膜の成長速度を下げる。
 また、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中を防止することにより、基板dの中央開口部131cの縁の部分131d(エッジ部分)の温度上昇が防止され、基板dの中央開口部131cの縁の部分131dの炭素膜の成長速度を低減されて、平坦性及び平滑性が高く、高硬度で緻密な炭素膜が形成される。
 さらにまた、イオンビームやプラズマそのものを整流することにより、基板Dの一面131aに垂直な方向に飛行する炭素イオン濃度、プラズマ密度が高められ、炭素イオンの回り込みによる硬度の低い炭素膜の形成が抑制されて、平坦性及び平滑性が高く、高硬度で緻密な炭素膜が形成される。
 なお、前記炭素イオンを加速する領域である励起空間Rには、永久磁石109によって磁場が印加されている。これにより、基板Dの一面131aに向かって加速照射される前記炭素イオンのイオン密度を高めることができ、より平坦性及び平滑性が高く、より高硬度で緻密な炭素膜が形成される。
 炭素膜の膜厚は5nm以下とすることが好ましく、3nm以下とすることがより好ましい。炭素膜の膜厚は5nm以下と薄く形成することにより、磁気ヘッドと磁性層との距離が短くなり、磁気記録媒体の記録密度を向上させることができる。炭素膜の膜厚の下限は、磁気記録媒体への保護能力が満足される下限に設定するのが好ましい。
<永久磁石が印加する磁場とその磁力線>
 図2A~2Cは、図1に示した成膜装置に備えた永久磁石が印加する磁場とその磁力線の方向の例を示す模式図である。
 図2Aには、成膜室101のチャンバ壁101aの周囲に、S極が基板D側、N極がカソード電極104側となるように永久磁石109が配置されている例が示される。また、図2Bには、成膜室101のチャンバ壁101aの周囲に、S極がカソード電極104側、N極が基板D側となるように永久磁石109が配置されている例が示される。さらに、図2Cには、成膜室101のチャンバ壁101aの周囲に、N極とS極との向きを内周側と外周側とで交互に入れ替えた複数の永久磁石109が配置されている例が示される。
 図2A~2Cに示したいずれの構成でも、永久磁石109によって生じた磁力線Mは、成膜室101の中央付近で、加速照射される炭素イオン(以下、イオンビーム)Bの加速方向とほぼ平行となる。そして、永久磁石109によって生じた磁力線Mの方向に沿うように、すなわち、基板Dの一面131aに垂直な方向が主となるように、イオンビームBを整流することができ、円柱状部材133の裏側への回り込みを少なくすることができる。
 また、イオンビームBの炭素イオンは磁気モーメントを有するので、永久磁石109によって生じた磁場によって、成膜室101内の励起空間R内の中央付近に集中され、炭素膜形成に寄与するイオンビームBの炭素イオンのイオン密度を高めることができ、より平坦性及び平滑性が高く、より高硬度で緻密な炭素膜が形成される。
<<磁気記録媒体の製造方法>>
 まず、磁気記録媒体及び磁気記録再生装置について説明する。
<磁気記録媒体>
 図3は、本発明の実施形態である磁気記録媒体の製造方法を用いて製造される磁気記録媒体の一例を示す断面図である。
 図3に示すように、磁気記録媒体122は、非磁性基板80の両面にそれぞれ磁性層810と、保護層84と、潤滑膜85とが順次積層されて構成されている。また、磁性層810は、非磁性基板80側から軟磁性層81、中間層82、記録磁性層83が順次積層されてなる。
<保護層>
 保護層84は、磁性層810上に形成されている。保護層84は、本発明の実施形態である炭素膜の形成方法を用いて形成された高硬度で緻密な炭素膜である。そのため、保護層84の膜厚を、たとえば2nm程度以下まで薄くしても、保護膜としての効果を保つことができる。
 磁気記録媒体122をハードディスクドライブ装置(HDD装置)などに搭載した場合には、保護層84の膜厚を薄くすることにより、磁気記録媒体122と磁気ヘッドとの距離を狭く設定することができる。これにより、磁気記録媒体2の記録密度を高めることができる。また、保護層84は高硬度で緻密な炭素膜であるので、磁気記録媒体2の耐コロージョン性を高めることができる。
<非磁性基板>
 非磁性基板80としては、Alを主成分とした例えばAl-Mg合金等のAl合金基板や、通常のソーダガラス、アルミノシリケート系ガラス、結晶化ガラス類、シリコン、チタン、セラミックス、各種樹脂からなる基板など、非磁性基板であれば任意のものを用いることができる。
 その中でも、Al合金基板や、結晶化ガラス等のガラス製基板、またはシリコン基板を用いることが好ましい。また、これら基板の平均表面粗さ(Ra)は、1nm以下であることが好ましく、さらに好ましくは0.5nm以下であり、その中でも特に0.1nm以下であることが好ましい。
<磁性層>
 磁性層810は、面内磁気記録媒体用の面内磁性層でも、垂直磁気記録媒体用の垂直磁性層でもかまわないが、より高い記録密度を実現するためには垂直磁性層が好ましい。
 また、磁性層810は、主としてCoを主成分とする合金から形成するのが好ましい。例えば、垂直磁気記録媒体用の磁性層810としては、例えば軟磁性のFeCo合金(FeCoB、FeCoSiB、FeCoZr、FeCoZrB、FeCoZrBCuなど)、FeTa合金(FeTaN、FeTaCなど)、及びCo合金(CoTaZr、CoZrNB、CoBなど)等からなる軟磁性層81と、Ru等からなる中間層82と、70Co-15Cr-15Pt合金や70Co-5Cr-15Pt-10SiO合金からなる記録磁性層83とを積層したものを利用できる。また、軟磁性層81と中間層82との間に、Pt、Pd、NiCr、またはNiFeCrなどからなる配向制御膜を積層してもよい。
 一方、面内磁気記録媒体用の磁性層810としては、非磁性のCrMo下地層と強磁性のCoCrPtTa磁性層とを積層したものを利用できる。
 磁性層810の全体の厚さは、3nm以上20nm以下、好ましくは5nm以上15nm以下とする事が好ましい。磁性層810は使用する磁性合金の種類と積層構造に合わせて、十分なヘッド出入力が得られるように形成すればよい。磁性層810の膜厚は、再生の際に一定以上の出力を得るにはある程度以上の磁性層の膜厚が必要であり、一方で記録再生特性を表す諸パラメーターは出力の上昇とともに劣化するのが通例であるため、最適な膜厚に設定する必要がある。
<潤滑膜>
 潤滑膜85に用いる潤滑剤としては、パーフルオロエーテル(PFPE)等の弗化系液体潤滑剤、及び、脂肪酸等の固体潤滑剤などを用いることができる。通常は1~4nmの厚さで潤滑層85を形成する。潤滑剤の塗布方法としては、ディッピング法やスピンコート法など従来公知の方法を使用すればよい。
 図4は、本発明の実施形態である磁気記録媒体の製造方法を用いて製造される磁気記録媒体の別の一例を示す断面図である。
 図4に示すように、磁気記録媒体123は、非磁性基板80の両面に磁性層810と、保護層84と、潤滑膜85とが順次積層されて構成されている。保護層84は、磁性層810上に形成されている。また、磁性層810は、非磁性基板80側から、軟磁性層81および/または中間層82、記録磁性層83が順次積層されてなる。さらに、記録磁性層83では、磁気記録パターン83aが非磁性領域83bによって分離されて形成されており、いわゆるディスクリート型の磁気記録媒体とされている。
 前記ディスクリート型の磁気記録媒体は、磁気記録パターン83aが1ビットごとに一定の規則性をもって配置された、いわゆるパターンドメディアや、磁気記録パターン83aがトラック状に配置されたメディアや、その他、磁気記録パターン83aがサーボ信号パターン等を含むメディアであってもよい。
 前記ディスクリート型の磁気記録媒体は、記録磁性層83の表面にマスク層を設けた後、前記マスク層に覆われていない箇所を反応性プラズマ処理やイオン照射処理等に曝すことによって、記録磁性層83の一部を磁性体から非磁性体に改質して、非磁性領域83bを形成して作製する。
<磁気記録再生装置>
 図5は、本発明の実施形態である磁気記録媒体の製造方法を用いて製造された磁気記録媒体を搭載した磁気記録再生装置の一例を示す断面図である。前記磁気記録再生装置は、ハードディスク(ドライブ)装置(以下、HDD装置)である。
 磁気記録再生装置124は、本発明の実施形態である磁気記録媒体の製造方法を用いて製造された磁気記録媒体(以下、磁気ディスク)96と、磁気ディスク96を回転駆動させる媒体駆動部97と、磁気ディスク96に情報を記録再生する磁気ヘッド98と、磁気ヘッド98を任意の位置に駆動するヘッド駆動部99と、磁気記録再生信号処理系100と、を備えている。磁気記録再生信号処理系100では、入力されたデータを処理して(磁気)記録信号を磁気ヘッド98に送り、磁気ヘッド98からの再生信号を処理してデータを出力する。
<磁気記録媒体の製造方法>
 次に、本発明の実施形態である磁気記録媒体の製造方法について説明する。
 本発明の実施形態である磁気記録媒体の製造方法は、非磁性基板の少なくとも一面に磁性層を形成する工程(磁性層形成工程)と、前記磁性層上に、先に記載の炭素膜の形成方法を用いて炭素膜を形成する工程(炭素膜形成工程)と、を有する。
 なお、本実施形態では、複数の成膜室の間で成膜対象となる基板を順次搬送させながら成膜処理を行うインライン式成膜装置を用いて、HDD装置に搭載される磁気記録媒体を製造する場合を例に挙げて説明する。
 まず、インライン式成膜装置について説明する。
<インライン式成膜装置>
 図7は、本発明の実施形態である磁気記録媒体の製造方法で用いるインライン式成膜装置(磁気記録媒体の製造装置)の一例を示す平面模式図である。
 図7に示すように、インライン式成膜装置125は、ロボット台1と、ロボット台1上に截置された基板カセット移載ロボット3と、ロボット台1に隣接する基板供給ロボット室2と、基板供給ロボット室2内に配置された基板供給ロボット34と、基板供給ロボット室2に隣接する基板取り付け室52と、キャリア25を回転させるコーナー室4、7、14、17と、各コーナー室4、7、14、17の間に配置された処理チャンバ5、6、8~13、15、16、18~21と、処理チャンバ20に隣接して配置された基板取り外し室53と、基板取り付け室52との基板取り外し室53との間に配置されたアッシング室3Aと、基板取り外し室53に隣接して配置された基板取り外しロボット室22と、基板取り外しロボット室22内に設置された基板取り外しロボット49と、これら各室の間で搬送される複数のキャリア25とを有して概略構成されている。また図中、31は、基板供給ロボット室2、基板取り外しロボット室22内に基板を搬入、搬出するためのエアロック室を意味する。符号54は基板取り外し室と処理チャンバーとの間のゲートバルブを意味する。
 各室2、52、4~21、53、3Aは、隣接する2つの壁部にそれぞれ接続されており、各室2、52、4~21、53、3Aの接続部にはゲートバルブ55~72が設けられている。そして、ゲートバルブ55~71が閉状態のとき、各室内はそれぞれ独立の密閉空間となる。また、各室2、52、4~20、53、3Aには、それぞれ真空ポンプ(図示略)が接続されており、真空ポンプの動作によって、各室内は減圧状態となされる。
 各コーナー室4、7、14、17は、キャリア25の移動方向を変更する室であり、内部には、キャリア25を回転させて次の成膜室に移動させる機構が設けられている。
 各室5、6、8~13、15、16、18~20は、処理チャンバである。各処理チャンバには、処理用ガス供給管(図示略)が接続されており、前記処理用ガス供給管には開閉を制御するバルブが設けられている。
 前記バルブ及びポンプ用のゲートバルブ55~72を開閉操作することにより、処理用ガス供給管からのガスの供給、各処理チャンバ内の圧力およびガスの排出を制御することができる。
 前記処理チャンバのうち、各室5、6、8~13、15、16が、磁性層を形成するための処理チャンバである。この処理チャンバには、非磁性基板の両面に、軟磁性層81、中間層及び記録磁性層からなる磁性層を成膜する機構が備えられている。これらの処理チャンバで磁性層形成工程を行う。
 また、前記処理チャンバのうち、各室チャンバ18~20が、保護層を形成するための処理チャンバである。この処理チャンバには、図1に示した成膜装置(イオンビーム蒸着装置)と同様の構成を備えた装置が備えられている。これらの処理チャンバで炭素膜形成工程を行う。
 なお、必要に応じて、マスク層をパターニングする処理チャンバや、反応性プラズマ処理又はイオン照射処理を実施する処理チャンバ、マスク層を除去する処理チャンバなどを追加してもよい。これにより、図4に示したディスクリート型の磁気記録媒体を製造することができる。
 基板カセット移載ロボット3は、成膜前の非磁性基板80が収納されたカセットから、基板供給ロボット室2に非磁性基板を供給するとともに、基板取り外しロボット室22で取り外された成膜後の非磁性基板(磁気記録媒体)を取り出す。この基板供給ロボット室及び基板取り外しロボット室2、22の一側壁には、エアロック室への開口と、この開口を開閉する部材51、55’が設けられている。
 基板取り付け室52の内部では、基板供給ロボット34を用いて成膜前の非磁性基板がキャリア25に装着される。一方、基板取り外し室53の内部では、基板取り外しロボット49を用いて、キャリア25に装着された成膜後の非磁性基板(磁気記録媒体)が取り外される。アッシング室3Aは、基板取り外し室53から搬送されたキャリア25のアッシングを行った後、キャリア25を基板取り付け室52へと搬送させる。
 図8は、インライン式成膜装置のキャリアの一例を示す側面図である。また、図6は、図8に示したキャリアの拡大側面図である。
 図6及び図8に示すように、キャリア25は、支持台26と、支持台26の上面に設けられた基板装着部27と、を有している。
 なお、本実施形態では、基板装着部27を2基搭載した構成のため、これら基板装着部27に装着される2枚の非磁性基板は、それぞれ第1成膜用基板23及び第2成膜用基板24として示されている。
 基板装着部27は、第1及び第2成膜用基板23、24の厚さの1~数倍程度の厚さを有する板体28と、成膜用基板23、24の外周より若干大径となされた円形状の貫通穴29と、貫通穴29の周囲に設けられ、該貫通穴29の内側に向かって突出する複数の支持部材30と、を有して構成されている。
 貫通穴29には第1及び第2成膜用基板23、24が嵌め込まれ、その縁部に支持部材30が係合することによって、成膜用基板23、24が縦置き(基板23,24の主面が重力方向と平行となる状態)に保持される。これにより、キャリア25に装着された第1及び第2成膜用基板23、24の主面は、支持台26の上面に対して略直交し、且つ、略同一面上となるように、支持台26の上面に並列して配置される。
 図8に示すように、処理チャンバ5、6、9、19のそれぞれには、搬送方向にそって、キャリア25を挟んで2つの支持台26が備えられている。なお、図7では省略しているが、処理チャンバ8、10~13、15、16、18、20も同様の構成とされている。図中、36は処理チャンバを排気するための真空ポンプを、38、46はキャリアに載置された左側の基板を処理するためのキャリアの停止位置を、39、47は キャリアに載置された右側の基板を処理するためのキャリアの停止位置を意味する。
 処理の際には、例えば、まず、図8中の実線で示す第1処理位置にキャリア25が停止した状態で、このキャリア25の左側の第1成膜用基板23に対して成膜処理等を行う。
 次に、キャリア25が図7中の破線で示す第2処理位置に移動して、この第2処理位置にキャリア25が停止した状態で、キャリア25の右側の第2成膜用基板24に対して成膜処理等を行う。
 なお、キャリア25を挟んだ両側に、それぞれ第1及び第2成膜用基板23、24に対向した、4つの処理装置がある場合は、キャリア25の移動は不要となる。キャリア25に保持された第1及び第2成膜用基板23、24に対して同時に成膜処理等を行うことができる。
 成膜後は、第1及び第2成膜用基板23、24をキャリア25から取り外し、炭素膜が堆積したキャリア25のみをアッシング室3A内へと搬送する。
 そして、アッシング室3Aの任意の箇所から導入した酸素ガスを用いて、アッシング室3A内に酸素プラズマを発生させる。
 前記酸素プラズマをキャリア25の表面に堆積した炭素膜に接触させて、炭素膜をCOやCOガスに分解して除去する。
 次に、上記図7に示すインライン式成膜装置125(磁気記録媒体の製造装置)を用いて、上記図4に示すディスクリート型の磁気記録媒体を製造する工程を説明する。
 まず、上記インライン式成膜装置125を用いて、非磁性基板80をキャリア25に取り付けた後、複数の処理チャンバの間で順次搬送させながら、この非磁性基板80の両面に、軟磁性層81、中間層82、記録磁性層83により構成される磁性層810と、保護層84とを順次積層する。
 また、記録磁性層83を成膜した後に、この記録磁性層83に対して、反応性プラズマ処理又はイオン照射処理を行うことによって、記録磁性層83の一部の磁気特性を改質し、好ましくは磁性体から非磁性体に改質して、残存した磁性体からなる磁気記録パターン83aを形成する。又は、記録磁性層83の一部をエッチングにより除去し、残存した磁性体からなる磁気記録パターン83aを形成する。
 さらに、上記インライン式成膜装置125を用いた後は、図示を省略する塗布装置を用いて、成膜後の被処理基板Wの最表面に潤滑膜85を成膜することによって、上記図9に示す磁気記録媒体を得ることができる。
 具体的に、上記図4に示すディスクリート型の磁気記録媒体は、図9~図17に示す工程を経ることによって製造することができる。なお、図4に示す磁気記録媒体を得る工程では、実際は非磁性基板80の両面を好ましくは同時に処理することになるが、図9~図17においては、処理が施される非磁性基板80の片面のみを図示するものとする。
 このディスクリート型の磁気記録媒体を製造する際は、先ず、図9に示すように、非磁性基板80の両面に、軟磁性層81及び中間層82を順次積層した後に、スパッタ法により記録磁性層83を形成する。
 次に、図10に示すように、記録磁性層83の上にマスク層87を形成する。このマスク層87には、Ta、W、Ta窒化物、W窒化物、Si、SiO、Ta、Re、Mo、Ti、V、Nb、Sn、Ga、Ge、As、Niからなる群から選ばれる何れか1種又は2種以上を含む材料を用いることが好ましい。また、これらの物質の中で、As、Ge、Sn、及びGaから選ばれる何れか1種又は2種以上を用いることがより好ましい。さらに好ましくはNi、Ti、V、Nbから選ばれる何れか1種又は2種以上を用いることであり、最も好ましくはMo、Ta、Wから選ばれる何れか1種又は2種以上を用いることである。
 このような材料を用いることにより、マスク層87によるミリングイオンに対する遮蔽性を向上させ、磁気記録パターン83aの形成特性を向上させることができる。さらに、これらの物質は、反応性ガスを用いたドライエッチングが容易となるため、マスク層87を除去する際に、残留物を減らし、磁気記録媒体の表面における汚染を減少させることができる。
 ところで、上記マスク層87を形成する際は、例えばナノインプリント法やフォトリソグラフィ法などを用いてマスク層87をパターニングする必要がある。すなわち、ナノインプリント法やフォトリソグラフィ法などによりマスク層87をパターニングする際は、液体状のレジストを使用する場合があるため、これらの方法をインライン式成膜装置125で行うことは困難である。
 このため、本実施形態では、記録磁性層83まで形成した非磁性基板80をインライン式成膜装置125から一旦取り出す。そして、このインライン式成膜装置125から取り出された非磁性基板80に対しては、図11に示すように、マスク層87の上に好ましい方法を用いてレジスト層88を形成する。レジスト層88には、放射線照射により硬化性を有する材料を用いることが好ましく、例えば、ノボラック系樹脂、アクリル酸エステル類、及び脂環式エポキシ類等の紫外線硬化樹脂などを用いることができる。
 次に、図12に示すように、スタンプ89を用いて、レジスト層88に磁気記録パターン83aのネガパターンを転写する。なお、図12中における矢印は、スタンプ89の動きを示している。このスタンプ89には、紫外線に対して透過性の高いガラス又は樹脂を用いることが好ましい。また、スタンプ89には、例えば、Niなどの金属プレートに、電子線描画などの方法を用いて微細な記録トラックに対応したネガパターンを形成したものを使用することができる。なお、スタンプ89は、上記プロセスに耐え得る硬度及び耐久性を有するものであれば、その材質について特に限定されるものではない。
 スタンプ89を用いてレジスト層88にパターンを転写する工程中又はこの工程後に、レジスト層88を硬化させるために、レジスト層88に任意に選択される放射線を照射する。なお、ここで言う放射線とは、熱線、可視光線、紫外線、X線、及びガンマ線等の広い概念の電磁波のことである。使用される材料に応じて任意に選択される。また、放射線照射により硬化性を有する材料とは、例えば、熱線に対しては熱硬化樹脂、紫外線に対しては紫外線硬化樹脂がある。
 特に、スタンプ89を用いてレジスト層88にパターンを転写する工程においては、レジスト層88の流動性が高い状態で、このレジスト層88にスタンプ89を押圧し、その押圧した状態で、レジスト層88に放射線を照射することが好ましい。これにより、レジスト層88を硬化させた後、このレジスト層88からスタンプ89を離すことにより、スタンプ89の形状を精度良く、レジスト層88に転写することができる。
 レジスト層88にスタンプ89を押圧した状態で、このレジスト層88に放射線を照射する方法としては任意に選択できる。例えば、スタンプ89の反対側、すなわち非磁性基板80側から放射線を照射する方法や、スタンプ89の構成材料に放射線を透過できる物質を選択し、このスタンプ89側から放射線を照射する方法、スタンプ89の側面から放射線を照射する方法、熱線のように固体に対して伝導性の高い放射線を用いて、スタンプ89又は非磁性基板80を介して、熱伝導により放射線を照射する方法などを用いることができる。
 このような方法を用いることにより、レジスト層88にスタンプ89の形状を精度良く転写することが可能となり、マスク層87のパターニング工程において、マスク層87のエッジの部分のダレを無くし、このマスク層87に対する注入イオンに対する遮蔽性を向上させ、また、マスク層87による磁気記録パターン83aの形成特性を向上させることができる。
 また、スタンプ89を用いてレジスト層88にパターンを転写した後のレジスト層88の残部88aにおける厚みは、0~10nmの範囲とすることが好ましい。これにより、後述するマスク層87を用いたパターニング工程において、マスク層87のエッジ部分のダレを無くし、マスク層87によるミリングイオンに対する遮蔽性を向上させ、記録磁性層83に凹部83cを精度良く形成することができる。また、マスク層87による磁気記録パターン83aの形成特性を向上させることができる。
 なお、上記スタンプ89を用いることによって、通常のデータを記録するトラックパターンの他にも、例えば、バーストパターンや、グレイコードパターン、プリアンブルパターンといったサーボ信号のパターンも形成することができる。
 次に、ここまで処理した非磁性基板80を再び上記インライン式成膜装置125に投入する。そして、非磁性基板80をキャリア4に取り付けた後、このキャリア4に取り付けられた非磁性基板80を順次搬送しながら、例えば上記インライン式成膜装置125の処理チャンバにおいて、パターンが転写されたレジスト層88を用いて、図13に示すように、マスク層87をパターニングする。
 次に、図14に示すように、上記インライン式成膜装置125の処理チャンバにおいて、マスク層87のパターニングによって露出された記録磁性層83の表面を部分的にイオンミリング処理することによって凹部83cを形成する。この記録磁性層83に設けた凹部83cの深さdは、0.1nm~15nmの範囲とすることが好ましく、より好ましくは1~10nmの範囲である。イオンミリングによる除去深さdが0.1nmより少ない場合は、上述した記録磁性層83の除去効果が現れない。また、除去深さが15nmより大きくなると、磁気記録媒体の表面平滑性が悪化し、磁気記録再生装置を製造した際の磁気ヘッドの浮上特性が悪くなる。
 次に、図15に示すように、上記インライン式成膜装置125の3つの処理チャンバにおいて、記録磁性層83のうち、マスク層87に覆われていない箇所に対し、反応性プラズマ処理又は反応性イオン照射処理を行って、記録磁性層83を構成する磁性体を非磁性体に改質する。これにより、記録磁性層83に磁気記録パターン83aと非磁性領域83bとを形成することができる。
 なお、本実施形態のように、上記凹部83cを設けてから、記録磁性層83の表面を反応性プラズマや反応性イオンに曝して、この記録磁性層83の磁気特性を改質させた場合には、上記凹部83cを設けず記録磁性層83の表面を反応性プラズマや反応性イオンに曝した場合に比べて、磁気記録パターン83aと非磁性領域83bとのパターンのコントラストがより鮮明となり、磁気記録媒体のS/Nを向上させることができる。この理由としては、記録磁性層83の表層部を除去することにより、その表面の清浄化及び活性化が図られ、反応性プラズマや反応性イオンとの反応性が高まったこと、また記録磁性層83の表層部に空孔等の欠陥が導入され、その欠陥を通じて記録磁性層83に反応性イオンが侵入しやすくなったと考えられる。
 非磁性体への改質に使用される反応性プラズマは任意に選択でき、誘導結合プラズマ(ICP;Inductively Coupled Plasma)や反応性イオンプラズマ(RIE;Reactive Ion Plasma)がなどを例示することができる。また、反応性イオンとしては、上述した誘導結合プラズマ、反応性イオンプラズマ内に存在する反応性のイオンを例示することができる。
 誘導結合プラズマとしては、気体に高電圧をかけることによってプラズマ化し、さらに高周波数の変動磁場によってそのプラズマ内部に渦電流によるジュール熱を発生させることによって得られる高温のプラズマを例示することができる。誘導結合プラズマは、電子密度が高く、従来のイオンビームを用いてディスクリート型の磁気記録媒体を製造する場合に比べ、記録磁性層83に対して、広い面積に高い効率で磁気特性の改質を行うことができる。
 反応性イオンプラズマとは、プラズマ中にO、SF、CHF、CF、CCl等の反応性ガスを加えた反応性の高いプラズマのことである。このようなプラズマを用いることにより、記録磁性層83の磁気特性の改質をより高い効率で実現することできる。
 本発明では、成膜された記録磁性層83を反応性プラズマに曝すことによって記録磁性層83を改質するが、この改質は、記録磁性層83を構成する磁性金属と反応性プラズマ中の原子又はイオンとの反応により実現することが好ましい。
 この場合、反応とは、磁性金属に反応性プラズマ中の原子等が侵入し、磁性金属の結晶構造が変化すること、磁性金属の組成が変化すること、磁性金属が酸化すること、磁性金属が窒化すること、磁性金属が珪化することなどを例示することができる。
 特に、反応性プラズマに酸素原子を含有させ、記録磁性層83を構成する磁性金属と反応性プラズマ中の酸素原子とを反応させることにより、記録磁性層83を酸化させることが好ましい。記録磁性層83を部分的に酸化させることにより、酸化部分の残留磁化及び保磁力等を効率良く低減させることが可能となる。また、反応性プラズマによって磁気記録パターン83aを形成する時間を短縮することができる。
 また、反応性プラズマには、ハロゲン原子を含有させることが好ましい。特に、ハロゲン原子として、F原子を用いることが好ましい。ハロゲン原子は、酸素原子と一緒に反応性プラズマ中に添加して用いてもよく、また酸素原子を用いずに反応性プラズマ中に添加してもよい。上述したように、反応性プラズマ中に酸素原子等を加えることにより、記録磁性層83を構成する磁性金属と酸素原子等が反応して記録磁性層83の磁気特性を改質することができる。このとき、反応性プラズマ中にハロゲン原子を含有させることによって、このような反応を更に促進させることができる。
 一方、反応性プラズマ中に酸素原子を添加していない場合においても、ハロゲン原子が磁性合金と反応して、記録磁性層83の磁気特性を改質させることが可能である。特に、このような反応には、フッ素を用いることが好ましい。この理由の詳細は明らかではないが、反応性プラズマ中のハロゲン原子が、記録磁性層83の表面に形成している異物をエッチングし、これにより記録磁性層83の表面が清浄化し、記録磁性層83の反応性が高まることが考えられる。また、清浄化した記録磁性層83の表面とハロゲン原子とが高い効率で反応することが考えられる。
 次に、図16に示すように、上記インライン式成膜装置125の2つの処理チャンバにおいて、レジスト層88を除去した後、上記インライン式成膜装置125の2つの処理チャンバにおいて、マスク層87を除去する。レジスト層88及びマスク層87の除去は任意に選択でき、例えばドライエッチングや、反応性イオンエッチング、イオンミリング、及び湿式エッチングなどを用いることができる。
 次に、図17に示すように、上記インライン式成膜装置125の2つの処理チャンバにおいて、記録磁性層83の表面上に保護層84を形成する。この保護層84の形成には、上述の炭素膜の形成方法を用いればよい。すなわち、円柱状部材133を非磁性基板80の一面と離間して配置し、成膜室内を排気し、炭素イオンを流して、炭素膜からなる保護膜を形成すればよい。
 上記インライン式成膜装置125を用いた後は、図示を省略する塗布装置を用いて、非磁性基板80の最表面に潤滑膜85を成膜する。この潤滑膜85に用いる潤滑剤としては、フッ素系潤滑剤、炭化水素系潤滑剤及びこれらの混合物などを挙げることができ、通常1~4nmの厚さで潤滑膜85を形成する。
 以上の工程を経ることによって、上記図4に示すディスクリート型の磁気記録媒体を製造することができる。
 本発明の好ましい実施形態である炭素膜の形成方法は、フィラメント状のカソード電極104と、カソード電極104の周囲に設けられたアノード電極105と、カソード電極104から離間された位置に配置された基板ホルダ102と、を備えた成膜室101内で、中央開口部131cを有する円盤状の基板Dを、その一面131aをカソード電極104と対向させて基板ホルダに配置するとともに、中央開口部131cの径d以上の直径dと、直径d以上の高さlとを有する円柱状部材を、その中心軸Cを基板Dの中心軸Cと同軸にし、かつ、一の円形面133aをカソード電極104に向け、他の円形面133bを基板Dの前記一面に平行となるように、前記カソード電極及び前記基板から離間して配置する工程と、成膜室101内を排気した後に、カソード電極104側から基板D側へ向けて炭素イオンを流して、基板Dの一面に炭素膜を形成する工程と、を有する構成である。よって、イオンビームやプラズマそのものを整流して、基板Dの一面131aに垂直な方向に飛行する炭素イオン濃度、プラズマ密度を上げることができ、炭素イオンの回り込みを抑制して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。また、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中を抑制して、基板Dの中央開口部131cの縁の部分131dの温度上昇を防止することにより、基板Dの中央開口部131cの縁の部分131dの炭素膜の成長速度を低減して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、前記基板の中央開口部が円形であり、円柱状部材133の直径dが、基板Dの中央開口部131cの径dの1倍以上1.5倍未満である構成なので、基板Dの中央開口部131cの縁の部分(エッジ部分)131dのみを遮蔽するように、円柱状部材133を配置することができ、基板Dの中央開口部131cの縁の部分131dの炭素膜の膜厚をより平坦化及び平滑化することができる。
 本発明の好ましい実施形態である炭素膜の形成方法は、円柱状部材133の高さlが、円柱状部材133の直径dの3倍以上6倍以内である構成なので、イオンビーム及びプラズマを整流する効果をより顕著に発現させて、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中をより防止するとともに、基板Dの一面131aに垂直な方向に飛行する炭素イオン濃度、プラズマ密度をより上げて、より平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、円柱状部材133と基板Dとの間の離間距離dが、5mm以上40mm以下である構成なので、基板Dの中央開口部131cの縁の部分131dの炭素膜の膜厚をより平坦化及び平滑化することができるとともに、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、円柱状部材133を非接地電位にして配置する構成なので、炭素イオンの飛行を阻害しないようにすることができ、炭素イオンを基板Dの一面131aに垂直に照射して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、カソード電極104の加熱と、カソード電極104とアノード電極105との間の放電により炭素を含む原料ガスから生成された炭素イオンを、カソード電極104又はアノード電極105と基板Dとの間に電圧を印加して、カソード電極104側から基板D側へ向けて加速して前記イオンビームを形成する構成なので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、成膜室101内に導入した炭素を含む原料ガスを、カソード電極104で加熱するとともに、カソード電極104とアノード電極105との間で放電して、前記炭素イオンを形成する構成なので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である炭素膜の形成方法は、前記炭素イオンを、カソード電極104又はアノード電極105と基板Dとの間に電圧を印加して、カソード電極104側から基板D側へ向けて加速する構成なので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 本発明の実施形態である炭素膜の形成方法は、アノード電極105を取り囲むように、永久磁石109を配置する構成なので、より平坦性及び平滑性が高く、より高硬度で緻密な炭素膜を形成できる。
 本発明の好ましい実施形態である磁気記録媒体の製造方法は、非磁性基板80の少なくとも一面に磁性層810を形成する工程と、磁性層810上に、先に記載の炭素膜の形成方法を用いて炭素膜を形成する工程と、を有する構成なので、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を保護膜84として形成することができ、保護膜84の膜厚を薄くして、磁気ヘッドの浮上高さを低減することにより、記録密度の高い磁気記録媒体を製造することができる。
 本発明の好ましい実施形態である炭素膜の形成装置は、減圧可能な成膜室101と、成膜室101内に配置されたフィラメント状のカソード電極104と、カソード電極104の周囲に配置されたアノード電極105と、カソード電極104から離間された位置に配置された基板ホルダ102と、基板ホルダ102とカソード電極104との間に配置された円柱状部材133と、カソード電極104を通電により加熱する第1の電源106と、カソード電極104とアノード電極105との間で放電を生じさせる第2の電源107と、カソード電極104又はアノード電極105と前記基板ホルダ102との間に電位差を与える第3の電源108と、を有する構成である。よって、円柱状部材133が、イオンビームやプラズマそのものを整流して、基板Dの一面131aに垂直な方向に飛行する炭素イオン濃度、プラズマ密度を上げることができ、炭素イオンの回り込みを抑制して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。また、基板Dの中央開口部131cへのイオンビーム及びプラズマの集中を抑制して、基板Dの中央開口部131cの縁の部分131dの温度上昇を防止することにより、基板Dの中央開口部131cの縁の部分131dの炭素膜の成長速度を低減して、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成できる。
 以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。
(実施例1)
 まず、非磁性基板(以下、基板)として外径3.5インチの中央に開口部のある円盤状の基板(外径95mm、中央開口部径25mm)でNiPめっきが施されたアルミニウム基板を用意した。
 次に、図7に示すインライン式成膜装置に備えられた任意の処理チャンバで、A5052アルミ合金製のキャリアに装着された基板の両面に、膜厚60nmのFeCoBからなる軟磁性層と、膜厚10nmのRuからなる中間層と、膜厚15nmの70Co-5Cr-15Pt-10SiO合金からなる記録磁性層とを順次積層してなる磁性層を形成した。
 次に、図7に示すインライン式成膜装置に備えられ、図1に示す成膜装置と同様の装置構成を基板の両面側に備える処理チャンバに、磁性層を形成した基板を搬送した。
 図1に示す成膜装置と同様の装置構成を基板の両面側に備える処理チャンバとしては、チャンバ壁の材質がSUS304であり、外径が180mm、長さが250mmの円筒形状を有するものを用いた。
 また、処理チャンバ内には、長さ約30mmのタングステンからなるコイル状のカソード電極と、カソード電極の周囲を囲む円筒状のアノード電極とを設けた。アノード電極としては、材質がSUS304であり、外径が140mm、長さが40mmであるものを用いた。
 また、チャンバ壁の周囲を囲むように、円筒状の永久磁石を配置した。永久磁石としては、内径が185mm、長さが40mmであり、その中心にアノード電極が位置するように、かつ、S極が基板側、N極がカソード電極側となるように配置した。この永久磁石のトータル磁力は50G(5mT)であった。
 また、カソード電極と基板との距離は160mmとした。
 そして、基板の両面側に、直径が26mm、長さが100mmの銅製の円柱状部材を、その中心軸を基板の中心軸と同軸となるようにして、一の円形面をカソード電極に向け、他の円形面を基板の一面に平行になるようにして、カソード電極から10mm離間させて配置した。なお、円柱状部材は、処理チャンバ壁に取り付けた直径3mmのSUS304製のロッド3本により保持した。
 次に、基板の両面に形成された磁性層上にそれぞれ炭素膜からなる保護層を、以下のようにして形成した。
 まず、ガス導入管からガス化したトルエンからなる原料ガスを成膜室内に、ガス流量2.9SCCMの条件で導入した。そして、反応圧力0.3Pa、カソード電力225W(AC22.5V、10A)、カソード電極とアノード電極間の電圧75V、電流1650mA、イオンの加速電圧200V、60mAの成膜条件で、基板の一面及び他面の磁性層上にそれぞれ炭素膜を膜厚3.5nmで形成した。
 その後、炭素膜を形成した磁気記録媒体(実施例1)を取り出した。
<膜厚測定>
 まず、公知の膜厚測定装置を用いて、炭素膜を形成した磁気記録媒体(実施例1)の両面に形成した炭素膜の平均膜厚を測定した。
 次に、基板の中央開口部の縁の部分(基板の中央開口部から3mm外周側の位置)の炭素膜の平均膜厚を測定した。
 炭素膜の平均膜厚に対して、基板の中央開口部の縁の部分の平均膜厚は約4%厚かった。
(実施例2~12)
 表1に示す条件としたほかは実施例1と同様にして、炭素膜を形成した磁気記録媒体(実施例2~12)を製造した。その後、実施例1と同様に膜厚測定を行った。
(比較例1)
 高さが3mm、直径が26のコイン状の遮蔽物をカソード電極から10mm離間させて用いたほかは、実施例1と同様にして、炭素膜を形成した磁気記録媒体(比較例1)を製造した。その後、実施例1と同様に膜厚測定を行った。炭素膜の平均膜厚に対して、基板の中央開口部の縁の部分の平均膜厚は約12%厚かった。 
(比較例2)
 円柱状部材の直径を、基板の中央開口部径25mm未満の24mmとしたほかは、実施例1と同様にして、炭素膜を形成した磁気記録媒体(比較例2)を製造した。その後、実施例1と同様に膜厚測定を行った。
 得られた結果については、表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 本発明の炭素膜の形成方法、炭素膜の形成装置及び磁気記録媒体の製造方法は、平坦性及び平滑性が高く、高硬度で緻密な炭素膜を形成でき、磁気記録密度を向上させた磁気記録媒体を製造及び利用する産業において、利用可能性がある。
1 基板カセット移載ロボット台
2 基板供給ロボット室
3 基板カセット移載ロボット
3A アッシング室
4、7、14、17 コーナー室
5、6、8~13、15、16、18~20 処理チャンバ
22 基板取り外しロボット室
23 第1成膜用基板
24 第2成膜用基板
25 キャリア
26 支持台
27 基板装着部
28 板体
29 円形状の貫通穴
30 支持部材
34 基板供給ロボット
49 基板取り外しロボット
52 基板取り付け室
53 基板取り外し室
55~72 ゲートバルブ
80 非磁性基板
81 軟磁性層
82 中間層
83 記録磁性層
83a 磁気記録パターン
83b 非磁性領域
83c 凹部
84 保護層
85 潤滑膜
87 マスク層
88 レジスト層
88a 残部
89 スタンプ
96 磁気記録媒体(磁気ディスク)
97 媒体駆動部
98 磁気ヘッド
99 ヘッド駆動部
100 磁気記録再生信号処理系
101 成膜室
101a チャンバ壁
102 基板ホルダ
103 原料ガス導入管
104 カソード電極
105 アノード電極
106 第1の電源
107 第2の電源
108 第3の電源
109 永久磁石
110 排気管
121 成膜装置
122、123 磁気記録媒体
124 磁気記録再生装置(HDD装置)
125 インライン成膜装置
131a 一面
131b 他面
131c 中央開口部
131d 縁の部分(エッジ部分)
133 円柱状部材
133a 一の円形面
133b 他の円形面
810 磁性層
B イオンビーム(炭素を含むガス)
D 基板
G 原料ガス
M 磁力線
R 励起空間。

Claims (11)

  1.  フィラメント状のカソード電極と、前記カソード電極の周囲に設けられたアノード電極と、前記カソード電極から離間された位置に配置された基板ホルダと、を備えた成膜室内で、中央開口部を有する円盤状の基板を、その一面を前記カソード電極と対向させて基板ホルダに配置するとともに、
     前記中央開口部の径以上の直径と、前記直径以上の高さとを有する円柱状部材を、その中心軸を前記基板の中心軸と同軸にし、かつ、一の円形面を前記カソード電極に向け、他の円形面を前記基板の一面に平行となるように、前記カソード電極及び前記基板から離間して配置する工程と、
     前記成膜室内を排気した後に、前記カソード電極側から前記基板側へ向けて炭素イオンを流して、前記基板の一面に炭素膜を形成工程と、を有することを特徴とする炭素膜の形成方法。
  2.  前記基板の中央開口部が円形であり、前記円柱状部材の直径が、前記基板の中央開口部の径の1倍以上1.5倍未満であることを特徴とする請求項1に記載の炭素膜の形成方法。
  3.  前記円柱状部材の高さが、前記円柱状部材の直径の3倍以上6倍以内であることを特徴とする請求項1に記載の炭素膜の形成方法。
  4.  前記円柱状部材と前記基板との間の離間距離が、5mm以上40mm以下であることを特徴とする請求項1に記載の炭素膜の形成方法。
  5.  前記円柱状部材を非接地電位にして配置することを特徴とする請求項1に記載の炭素膜の形成方法。
  6.  前記成膜室内に導入した炭素を含む原料ガスを、前記カソード電極で加熱するとともに、前記カソード電極と前記アノード電極との間で放電して、前記炭素イオンを形成することを特徴とする請求項1に記載の炭素膜の形成方法。
  7.  前記炭素イオンを、前記カソード電極又は前記アノード電極と前記基板との間に電圧を印加して、前記カソード電極側から前記基板側へ向けて加速することを特徴とする請求項1に記載の炭素膜の形成方法。
  8.  前記アノード電極を取り囲むように、永久磁石を配置することを特徴とする請求項1に記載の炭素膜の形成方法。
  9.  非磁性基板の少なくとも一面に磁性層を形成する工程と、
     前記磁性層上に、請求項1に記載の炭素膜の形成方法を用いて炭素膜を形成する工程と、を有することを特徴とする磁気記録媒体の製造方法。
  10.  減圧可能な成膜室と、
     前記成膜室内に配置されたフィラメント状のカソード電極と、
     前記カソード電極の周囲に配置されたアノード電極と、
     前記カソード電極から離間された位置に配置された基板ホルダと、
     前記基板ホルダと前記カソード電極との間に配置された円柱状部材と、
     前記カソード電極を通電により加熱する第1の電源と、
     前記カソード電極と前記アノード電極との間で放電を生じさせる第2の電源と、
     前記カソード電極又は前記アノード電極と前記基板ホルダとの間に電位差を与える第3の電源と、を有することを特徴とする炭素膜の形成装置。
  11. 前記基板の中央開口部が円形であり、前記円柱状部材の直径が、前記基板の中央開口部の径の1倍以上1.5倍未満であり、前記円柱状部材の高さが、前記円柱状部材の直径の3倍以上6倍以内であり、前記円柱状部材と前記基板との間の離間距離が5mm以上40mm以下であり、前記円柱状部材を非接地電位にして配置されている、請求項10に記載の炭素膜の形成装置。
PCT/JP2010/003439 2009-05-22 2010-05-21 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置 WO2010134354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011514347A JP5681624B2 (ja) 2009-05-22 2010-05-21 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置
US13/321,758 US9111566B2 (en) 2009-05-22 2010-05-21 Carbon film forming method, magnetic-recording-medium manufacturing method, and carbon film forming apparatus
CN201080021848.2A CN102428515B (zh) 2009-05-22 2010-05-21 碳膜的形成方法、磁记录介质的制造方法和碳膜的形成装置
SG2011086626A SG176210A1 (en) 2009-05-22 2010-05-21 Carbon film forming method, magnetic-recording-medium manufacturing method, and carbon film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-124515 2009-05-22
JP2009124515 2009-05-22

Publications (1)

Publication Number Publication Date
WO2010134354A1 true WO2010134354A1 (ja) 2010-11-25

Family

ID=43126043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003439 WO2010134354A1 (ja) 2009-05-22 2010-05-21 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置

Country Status (5)

Country Link
US (1) US9111566B2 (ja)
JP (1) JP5681624B2 (ja)
CN (1) CN102428515B (ja)
SG (1) SG176210A1 (ja)
WO (1) WO2010134354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019368A (ja) * 2017-07-14 2019-02-07 アドバンストマテリアルテクノロジーズ株式会社 プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991099B2 (en) 2014-12-05 2018-06-05 Seagate Technology Llc Filament holder for hot cathode PECVD source
US11251019B2 (en) * 2016-12-15 2022-02-15 Toyota Jidosha Kabushiki Kaisha Plasma device
JP6863199B2 (ja) 2017-09-25 2021-04-21 トヨタ自動車株式会社 プラズマ処理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207575A (ja) * 1985-03-11 1986-09-13 Hitachi Ltd 円板状被成膜基板両面への同時スパッタリング方法およびその装置
JPH0379768A (ja) * 1989-08-23 1991-04-04 Tdk Corp ダイヤモンド様薄膜の製造方法及び装置
JPH0813143A (ja) * 1994-06-24 1996-01-16 Hitachi Ltd プラズマ処理方法及び処理装置
JP2000226659A (ja) * 1999-02-02 2000-08-15 Mitsubishi Chemicals Corp Cvd装置および磁気記録媒体の製造方法
JP2001220681A (ja) * 2000-02-07 2001-08-14 Anelva Corp プラズマcvd装置及び薄膜形成方法
JP2003030823A (ja) * 2001-07-12 2003-01-31 Fuji Electric Co Ltd 磁気記録媒体の製造方法および製造装置
JP2005023403A (ja) * 2003-07-01 2005-01-27 Fuji Electric Device Technology Co Ltd 硬質カーボン膜の形成方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799583B2 (ja) 1986-11-15 1995-10-25 株式会社クボタ スパツタリングによる磁気デイスク基板の製膜方法
US5185067A (en) 1989-07-10 1993-02-09 Tdk Corporation Process for manufacturing diamond-like thin film
US5169452A (en) * 1990-05-14 1992-12-08 Tdk Corporation Apparatus for the synthesis of diamond-like thin films
JP3213029B2 (ja) 1991-11-20 2001-09-25 株式会社日立製作所 ディスク基板用プラズマ処理装置およびその処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207575A (ja) * 1985-03-11 1986-09-13 Hitachi Ltd 円板状被成膜基板両面への同時スパッタリング方法およびその装置
JPH0379768A (ja) * 1989-08-23 1991-04-04 Tdk Corp ダイヤモンド様薄膜の製造方法及び装置
JPH0813143A (ja) * 1994-06-24 1996-01-16 Hitachi Ltd プラズマ処理方法及び処理装置
JP2000226659A (ja) * 1999-02-02 2000-08-15 Mitsubishi Chemicals Corp Cvd装置および磁気記録媒体の製造方法
JP2001220681A (ja) * 2000-02-07 2001-08-14 Anelva Corp プラズマcvd装置及び薄膜形成方法
JP2003030823A (ja) * 2001-07-12 2003-01-31 Fuji Electric Co Ltd 磁気記録媒体の製造方法および製造装置
JP2005023403A (ja) * 2003-07-01 2005-01-27 Fuji Electric Device Technology Co Ltd 硬質カーボン膜の形成方法および装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019368A (ja) * 2017-07-14 2019-02-07 アドバンストマテリアルテクノロジーズ株式会社 プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法
JP7219941B2 (ja) 2017-07-14 2023-02-09 ジャパンクリエイト株式会社 プラズマcvd装置、磁気記録媒体の製造方法及び成膜方法

Also Published As

Publication number Publication date
JP5681624B2 (ja) 2015-03-11
CN102428515B (zh) 2014-12-17
SG176210A1 (en) 2011-12-29
JPWO2010134354A1 (ja) 2012-11-08
US20120128895A1 (en) 2012-05-24
US9111566B2 (en) 2015-08-18
CN102428515A (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
JP2010027175A (ja) 炭素膜の形成方法、磁気記録媒体の製造方法、及び炭素膜の形成装置
US9196284B2 (en) In-line type film forming apparatus and method for manufacturing magnetic recording medium
JP2009283107A (ja) テトラヘドラル・アモルファス・カーボン膜を主体とする保護膜および該保護膜を有する磁気記録媒体
JP5681624B2 (ja) 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置
US20110059235A1 (en) Method for producing magnetic recording medium and producing apparatus thereof
JP5427572B2 (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法
US20110056908A1 (en) Method and apparatus for manufacturing magnetic recording medium
US10134435B2 (en) Carbon film forming apparatus, carbon film forming method, and magnetic recording medium manufacturing method
JP2010225238A (ja) 炭素膜の形成方法、磁気記録媒体の製造方法及び炭素膜の形成装置
JP5172484B2 (ja) 磁気記録媒体の製造方法及び成膜装置
US20100015356A1 (en) In-line film forming apparatus and manufacturing method of magnetic recording medium
JP5566734B2 (ja) 炭素膜の形成方法及び磁気記録媒体の製造方法
JP5328462B2 (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法
US20150170698A1 (en) Carbon film forming apparatus, carbon film forming method, and magnetic recording medium manfacturing method
JP2010205323A (ja) 炭素膜の形成方法及び磁気記録媒体の製造方法
JP2011065714A (ja) 炭素膜の形成方法、磁気記録媒体の製造方法、及び炭素膜の形成装置
JP2010192056A (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP2010198659A (ja) 処理装置、インライン式成膜装置、磁気記録媒体の製造方法
JP2011023087A (ja) インライン式成膜装置及び磁気記録媒体の製造方法
JP2011023086A (ja) 磁気記録媒体の製造方法及び製造装置
JP2011065715A (ja) 炭素膜の形成方法及び磁気記録媒体の製造方法
JP2010088970A (ja) 処理装置、磁気記録媒体の製造方法、磁気記録媒体及び磁気記録再生装置
JP2010244640A (ja) 処理装置及びインライン式成膜装置
JP2011192325A (ja) 炭素膜の形成方法、磁気記録媒体、及び磁気記録再生装置
JP2010280982A (ja) マグネトロンスパッタ装置、インライン式成膜装置、磁気記録媒体の製造方法、磁気記録再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021848.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13321758

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10777590

Country of ref document: EP

Kind code of ref document: A1