WO2010133369A1 - Transfektionsverfahren für nicht-virale genliefersysteme mit verbesserter wirksamkeit durch blockierung des angeborenen immunsystems - Google Patents

Transfektionsverfahren für nicht-virale genliefersysteme mit verbesserter wirksamkeit durch blockierung des angeborenen immunsystems Download PDF

Info

Publication number
WO2010133369A1
WO2010133369A1 PCT/EP2010/003105 EP2010003105W WO2010133369A1 WO 2010133369 A1 WO2010133369 A1 WO 2010133369A1 EP 2010003105 W EP2010003105 W EP 2010003105W WO 2010133369 A1 WO2010133369 A1 WO 2010133369A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
antibody
delivery system
protein
kinase
Prior art date
Application number
PCT/EP2010/003105
Other languages
English (en)
French (fr)
Inventor
Roland KLÖSEL
Stephan KÖNIG
Original Assignee
Biontex Laboratories Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biontex Laboratories Gmbh filed Critical Biontex Laboratories Gmbh
Publication of WO2010133369A1 publication Critical patent/WO2010133369A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • the innate immune system The innate immune system
  • Immune responses of the body (Luke A. et al., Spectrum of Science, August 2005, pages 68-75) against an infectious or immunological challenge differentiate between innate immunity and acquired immune response. ,
  • the acquired immune defense is trained only when an infection with pathogens. It has a kind of memory, so that in a second infection by the same pathogen usually no longer comes to the onset of the disease. Vaccines are based on this principle. If only the acquired immune defense were present, the organism would be completely unprotected before the first infection. However, this is not the case, as there is another very original immune defense called innate immune defense, found from the fly Drosophila to mammals, and even plants.
  • the innate immune defense is the first defense front against pathogens and represents an evolutionarily very old system.
  • PRRs pattern recognition receptors
  • PAMPs pathogen-associated molecular patterns
  • DAMPS danger-associated molecular patterns
  • the PRRs can be divided into two groups, the so-called “endocytic PRRs” and the “signaling PRRs".
  • the “endocityc PRRs” do not trigger signal transduction but endocytosis and phagocytosis.
  • “Signaling PRRs” include the membrane-bound toll-like receptors (TLRs) (Heine H. et al., Int. Arch. Allergy Immunol. 2003; 130; 180-192 and Uematsu S. et al., J. Biol. Chem. 2007, May 25; 282 (21); 15319-23), the cytoplasmic NOD-like receptors and RNA helicases that specifically recognize PAMPs and initiate corresponding inflammatory and immune responses, thereby preventing the organism between "self” and “not.” NOD-like receptors and RNA helicases are ubiquitously expressed in the cytosol.
  • TLRs membrane-bound toll-like receptors
  • NOD-like receptors Inohara N, Nu ⁇ ez G., Nat Rev Immunol., 2003 May; 3 (5): 371-82)
  • NODs Approximately 20 of these proteins were found in the genome of mammals and can be divided into two major groups, so-called NODs and NALPs. Others are CIITA, IPAF and BIRC1. These receptors recognize endogenous and microbial molecules or stress signals and form oligomers that activate inflammatory molecules such as NF-kB, cytokines or caspases. The NOD-like receptors are also known under other names (eg CATERPILLER or CLR). NODs
  • NOD1 and NOD2 are the ligands currently known.
  • NOD1 detects a peptidoglycan of Gram-negative bacteria (meso-DAP).
  • NOD2 detects a muramyldipetide (MDP) of Gram-positive and Gram-negative bacteria.
  • MDP muramyldipetide
  • NODs feed the signal transduction pathway of NF-kB pathway and MAP kinases via the kinase RIP2. They got their name because they contain a nucleotide-binding oligomerization domain that binds Nukteotidtriphosphate. Nalps
  • NALPs Like NODs, NALPs also have a nucleotide-binding oligomerization domain. Currently, 14 members of this family are known. Some of these receptors also know what they detect. For example, NALP3 detects bacterial DNA, MDP, ATP, toxins, dsRNA, paramyoxy viruses and uric acid crystals. RNA helicases
  • RNA helicases such as RIG-I and MDA5. These helicases control antiviral programs.
  • RIG-I retinoic inducible gene I
  • Mda5 melanoma-differentiation-associated gene 5
  • the receptors are able to detect single-stranded RNA with a triphosphate residue at the 5 'position as well as dsRNA.
  • RIG-l-like helicases A group with similar properties as RIG-I is termed RIG-l-like helicases summarized.
  • the membrane-bound PRRs include, in particular, the mannose receptor and the toll-like receptors.
  • the mannose receptor is found mainly on the surface of macrophages and dendritic cells. It binds carbohydrates found on the surface of infectious microorganisms and triggers endocytosis and phagocytosis of the same.
  • TLRs Toll-like receptors
  • Toll-like receptors were first discovered in the mid-1990s (Zimmer A. et al., PNAS, 1999; 96 (10), 5780-5785). The name is derived from a protein found in Drosophila Melanogaster by Christiane Nüsslein-Volhard, which you called "Toll.” TLR proteins are similar to this type and are referred to as “Toll-Iike” proteins. These are transmembrane proteins with an extracellular, "leucine-rich repeat" domain (LRR) as well as a cytoplasmic domain that is homologous to that of the IL-1 R family may respond to extracellular or endosomal PAMPs.
  • LRR leucine-rich repeat
  • the different TLRs selectively respond to different molecular viral and bacterial components and control gene activation through a signal transduction cascade. This is done first via so-called adapter molecules and subsequently via kinases which finally activate transcription factors (eg NF-kB and the IRF families) by phosphorylating the same or corresponding intracellular inhibitors of these transcription factors. Finally, in addition to a large number of specific genes that have an antimicrobial effect, so-called cytokines are produced. Cytokines are again necessary stimulators for the acquired immune defense and thus also a link between innate and acquired immune defense.
  • transcription factors eg NF-kB and the IRF families
  • TLRs 13 different TLRs are known (11 of them in mammals), the number of which is sufficient for the detection of all pathogens, ranging from bacteria to fungi to the virus.
  • the receptors recognize all the pathogens common structures, and sometimes also several components at the same time, without these structurally similar.
  • the TLR4 recognizes lipopolysaccharides, but also taxol. So far it is not known how the TLRs can do that.
  • the TLRs differ little from species to species.
  • TLR1 forms a heterodimer with TLR2, is the receptor of triacylated lipoprotein and
  • TLR2 is the receptor for certain peptidoglycans, lipopeptides, glycolipids and various bacteria.
  • TLR3 Detects long dsRNA, as occurs in virus replication in infected cells.
  • TLR4 is the receptor for lipopolysaccharides (LPS, also endotoxins), various envelope glycoproteins (also of viruses) and taxol.
  • LPS lipopolysaccharides
  • TLR4 receptor requires an additional membrane-bound protein (TLR assisting protein) for its function.
  • CD14 binds eg. the LPS and deliver it to the TLR4 receptor. Binding to CD14 alone does not trigger a signal transduction cascade.
  • TLR5 is the receptor of flagellin, a major constituent of hostages (flagellae), with which bacteria move.
  • TLR6 forms a heterodimer with TLR2, is the receptor of diacylated lipoprotein and certain peptidoglycans.
  • CD36 membrane-bound protein CD36
  • TLR7 & TLR8 are receptors for imidazoquinolines and ssRNA / dsRNA, e.g. of RNA viruses.
  • TLR9 is the receptor for bacterial DNA, or for non-methylated CpG motifs that accumulates in bacterial DNA (20 times more abundant than in mammalian cells). The CpG motif is highly methylated in mammalian cells, allowing it to be distinguished. Similar to bacterial DNA also applies to viral DNA, which is also detected by TLR9. About the immunostimulatory property of bacterial DNA reported in the early 80s, the group around Dr. med. Tokunaga. When Associated receptor was from the group around Dr. med. Shizuo Akira identified the TLR9 receptor (elucidation of the roles of Toll receptors and their signal transduction cascades by gene targeting, Robert Koch Lecture by Dr. Shizuo Akira, General Press Release 2002, www.robert-koch.stattung.de).
  • TLR2 Virtually every body cell has TLRs depending on their differentiation. In immune cells, they are often expressed very strongly. TLR2, 4, 5 and 6 are located, for example: in particular in the plasma membranes of monocytes, natural killer cells, mast cells or myotonic dendritic cells, 7, 8, and 9 are in particular in endosomes of immune cells (Siegmund-Schultze N., www.aeticianblatt. de). Activation of the immune response therefore requires intracellular uptake via endocytosis and maturation of the endosomes. Signal transmission begins here in an endosomal compartment. For TLR 3 there is evidence that it is in the plasma membranes, but there are also representations in the literature that assume endosomal localization. TLRs often act in pairs and occur in different combinations of different cell types. signal transduction:
  • TLR3 The signal transduction pathways of the different TLRs (Perry AK et al; Cell Research 2005; 15 (6); 407-422 and Kawai T. et al., J. Biochem; 2007; 141; 137-145) are in part similar, but suggest There are also larger differences, so that in the end different gene expression and thus different biological reactions occur. With the exception of TLR3, all TLRs pass their signal to the adapter protein MyD88. MyD88 plays a critical role in signal transduction via the TLR / interleukin-1 receptor.
  • the cytosolic domain of the TLRs is highly similar to that of the interleukin-1 receptor and is therefore also referred to as the Toll / IR-1 receptor domain (TIR).
  • MyD88-deficient splenocytes showed e.g. no reactions to interleukin-1, LPS or CpG DNA.
  • signaling molecules such as NF-kB or MAP kinases was observed in MyD88 deficient cells in response to TLR2, TLR7, TLR9 ligands. This is a clear indication of the complete dependency of the TLRs (except TLR3) of MyD88 for their signal forwarding.
  • Other adapter molecules are e.g.
  • TIRAP Toll Interleukin-i Receptor domain-containing adapter protein (TLR1, TLR2, TLR4 and TLR6), Mal (MyD88 adapter-like), TRIF (TLR3 and TLR4), TRAF6 (TLR1 to 9) and TRAM (TLR4).
  • a corresponding signal transduction cascade usually begins with a receptor on the cell surface with a cytosolic domain, which passes its signal on assignment with a suitable ligand via cytosolic adapter molecules to kinases that activate transcription factors via cascade.
  • the activated transcription factors localize in the nucleus and trigger the expression of proteins, mostly cytokines.
  • TLR1 / TLR2, TLR2 / TLR2, TLR2 / TLR6 The receptors that occur in corresponding pairs trigger the same signal transduction cascades when occupied with suitable ligands.
  • the transcription factors NF-kB and AP-1 are activated, the especially lead to the expression of cytokines.
  • the adapter molecules RAC-1, TIRAP, MyD88 and TRAF6 are involved in the signal transmission.
  • the kinases involved are at least IRAK1, IRAK4, TAK1, PI3K, IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK and MKKs.
  • the receptor requires the membrane-bound protein CD14 for its full function.
  • CD14 binds appropriate agonists and leads you to the receptor. This triggers the activation of the transcription factors NF-kB, AP-1, IRF3 and IRF7 in the assignment with suitable ligands and in turn leads in particular to the expression of cytokines.
  • the adapter molecules TIRAP, MyD88, TRAM, TRIF, TRAF3, TRAF6, NAP1 and RIP1 are involved in the signal transmission.
  • the kinases involved are at least IRAK1, IRAK4, TAK1, IKKalpha, IKKbeta, IKKgamma, IKKepsilon, TBK1, ERK1, ERK2, JNK, p38 MAPK, MEK1, MEK2 and MKKs.
  • the receptor ultimately solves the activation of the transcription factors NF-kB and AP-1, which lead in particular to the expression of cytokines.
  • the adapter molecules MyD88 and TRAF6 are involved in the signal transmission.
  • the kinases involved are at least IRAK1, IRAK4, TAK1, IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK and MKKs.
  • the receptors finally resolve the activation of the transcription factors NF-kB and AP-1, which lead in particular to the expression of cytokines.
  • the adapter molecules MyD88 and TRAF6 are involved in the signal transmission.
  • As kinases at least IRAK1, IRAK4, TAK1, IKKalpha, IKKbeta, IKKgamma and MKKs are involved.
  • the receptor triggers the activation of the transcription factors NF-kB, AP-1, IRF3 and IRF7 in the assignment with suitable ligands, in turn, in particular, cytokines are increasingly expressed.
  • the adapter molecules TRIF, TRAF6, TRAF3, NAP1 and RIP1 are involved in the signal transmission.
  • As kinases at least IRAK1, IRAK4, TAK1, IKKalpha, IKKbeta, IKKgamma, IKKepsilon, TBK1, PKR, PI K3, JNK, p38 MAPK and MKKs are involved.
  • the receptors in the assignment with suitable ligands ultimately trigger the activation of the transcription factors NF-kB, AP-1, IRF1, IRF5 and IRF7, again in particular cytokines are increasingly expressed ..
  • the adapter molecules MyD88, TRAF6 and TRAF3 involved.
  • IRAK1, IRAK4, TAK1, IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK and MKKs are involved.
  • G protein-coupled receptors can also be attributed in part to the innate immune system, since they have a strong regulating effect on it. They are found only in eukaryotes and have as ligands a variety of substances, including hormones, lipids, proteins, pheromones, but also small peptides. When a ligand binds to the receptor, a so-called G protein is activated by a change in the conformation of the receptor. The further course of the signal transduction depends on the G-protein. Significantly, many components of the signal transduction pathways of the TLRs and the GPCRs are identical.
  • Cytokines are multifunctional signaling substances. These are sugary proteins that have a regulatory function for the growth and differentiation of body cells. Some of them are therefore also referred to as growth factors. Many cytokines also play an important role in immunological reactions and are therefore also called mediators. cytokines are secreted by the cells into the surrounding medium and stimulate other cells if they have an appropriate receptor. Often, the cytokine expression is controlled by the PRR signal transduction cascades. There are five main groups of cytokines:
  • IFN Interferons
  • Interferons instruct cells to produce proteins that complicate or prevent viral infection. Also, interferons may have antitumoral activity.
  • Interleukins serve in particular the communication of immune defense cells with one another and thereby increase the coordination in the defense of pathogens and the fight against tumors
  • Colony stimulating factors are formed in the kidney. These are growth factors for blood cells
  • TNF Tumor Necrosis Factors
  • TNFs The most important function of TNFs is to regulate the activity of different immune cells. They are mainly released by macrophages. TNFs can stimulate cell death (apoptosis), cell proliferation, cell differentiation and release of other cytokines.
  • Chemokines are chemoattractants that cause cells with matching receptors to migrate through chemotaxis to the source of chemokines
  • interferons IFN
  • the first interferon of this type was found by Isaacs and Lindemann in 1957 (Isaacs, A. et al., J. Proc Lond B. Biol., 147, 258-267). The name therefore stems from that protein interferes with the replication of viruses.
  • Type I interferons are key cytokines that elicit antiviral cell responses, establish "antiviral status,” and stimulate immune system cells to produce an antiviral response, often resulting in the release of cytokine-derived TLR signaling cascades, and, in particular, type I interferons also not infected directly by a virus cells in an antiviral status, so "warned”.
  • Part of the antiviral response of the cells is the enhanced expression of 2 ', 5'-oligoadenylate synthase (OAS) and protein kinase R (PKR). Both are activated by dsRNA.
  • OFAS 2 ', 5'-oligoadenylate synthase
  • PSR protein kinase R
  • OAS then generates from ATP 2 ', 5' oligoadenylate, which in turn activates the ribonuclease RNaseL, which degrades the cell's own RNA.
  • the PKR in turn, phas- phorylates the translation-essential initiation factor elF2, which then undergoes an inactive complex with elF2B to stop transcription. Both effects counteract viral proliferation.
  • ribonuclease Rnasen
  • deoxyribonucleases Dnasen
  • Dnasen deoxyribonucleases
  • Dnasen his especially the human Dnasen Dnase 1, Dnase 2, Dnase1 / L2, Dnase1 / L3 and Dnase 2like acid Dnase called.
  • the adaptive immune system is activated by triggering the maturation of dendritic cells, activating the B cell antibody response, and the T cell response. Lymphocytes and monocytes are recruited to the site of infection by induced chemokines.
  • interleukins and tumor necrosis factors also have a strong influence on the innate immune defense and therefore represent cytosolic constituents of the innate immune defense according to the invention.
  • Stress can also trigger signal transduction pathways leading to antiviral status. These signal transduction cascades cross the signal transduction cascades of the TLR. Stress-signaling pathways:
  • Cellular stress can be triggered by:
  • TNFalpha biological and chemical agents
  • chemotherapeutic agents eg TNFalpha, chemotherapeutic agents
  • Cell is used in the present application in both the singular and plural, i. "Cells”, uses and defines in all cases a single cell, multiple cells or a cell population.
  • the cells respond to stress with complex changes in signal chain activity involving specific MEK, MSK and MAP kinases and various transcription factors (eg NF-kB), apoptosis regulators and cell cycle regulators.
  • GTP-binding proteins Ros / Rho family
  • the innate immune response occurs both intracellularly and intercellularly.
  • a cell affected by contact with a pathogen triggers signal transduction cascades via PRRs, such as TLRs and RLHs, thereby altering the physiological status and expression profile of the cell.
  • PRRs such as TLRs and RLHs
  • there is an intercellular response in which the cell affected by contact with a pathogen "informs" other cells, which were not exposed to direct contact with the corresponding pathogen, of the "infection" with the pathogen Contact with a pathogen released cell cytokines, which are detected by cytokine receptors, which are located on the other cells not coming into contact with the pathogen.
  • Binding of the cytokines to the cytokine receptors triggers a signal transduction cascade in the cells that were not exposed to direct contact with the pathogen, with the result that their physiological status and expression profile also change, although they are not directly in contact with the pathogen came.
  • the change of the physiological status and the expression profile of the cells is intended to ward off the pathogenic attack and to ensure the survival of the cells.
  • Transfection ie the introduction of genetic material into a eukaryotic cell, in particular a mammalian cell, is today a method that has become indispensable in modern research (Domb AJ, Review in Molecules, 2005; 10; 34 and Xiang G; Keun -Sik K., Dexi L., Review in The AAPS Journal; 2007; 9 (1) Article 9; http://www.aapsj.org). Without this method, a clarification of the function of different genes would be much more difficult. Not to be forgotten is the possibility to faithfully produce proteins of eukaryotic origin, as the correct posttranslational modification by the eukaryotic cell, unlike previously used prokaryotic cells, is ensured.
  • viruses as carrier systems. Since the introduction of DNA or RNA into foreign cells is an integral part of the multiplication cycle of the viruses, this ability has been refined by a natural, evolutionary process in the history of the virus to such an extent that to date there are no more effective gene carriers.
  • the naturally occurring viruses are genetically engineered to lose their ability to reproduce and be pathogenic, yet infect a cell with recombinant genetic material. Because viruses, except for genetic material, consist essentially of proteins, they offer the immune system a large attack surface. The immune system has developed strategies to resist these invaders in an evolutionary adjustment process. Therefore, the body's immune response is cited as a particularly significant factor in failed gene therapy studies.
  • the currently available gene delivery methods can be divided into the two main groups of viral systems and non-viral systems.
  • the non-viral systems can in turn be differentiated into chemical and physical methods.
  • cationic polymers are, for example, poly-L-lysine (PLL), (EP 388758) polyethylenimine (PEI), (JP Behr et al., Proc. Natl. Acad. Sci. USA; 1995; 92; 7297 (WO 9602655), diethylaminoethyldextran (DEAE), (SC De Smedt et al., Phar Res .; 2000; 17; 113), Starburst Dendrimer (PAMAM), (Szoka FC et al., Bioconjug. Chem., 1996; 7; 703; WO 9502397), chitosan derivatives (Wu Guang Liu et al., J.
  • cationic polymers are e.g. Superfect, Polyfect (Qiagen), ExGen ⁇ OO (Biomol) and jetPEI (Qbiogene).
  • known cationic lipids are, for example, DOTMA (US 4946787), DOTAP (Leventis et al., Biochim., Biophys., Acta, 1990, 1023, 124), DOGS (EP 394111 ), DOSPA (WO 9405624), DOSPER (WO 97002419), DMRIE (US 5264618) or DC-Chol (Huang et al; Biochem Biophys Res Commun, 1991; 179; 280; WO 9640067).
  • Such or similar lipids are usually formulated in ethanolic aqueous buffer solutions as micelles or liposomes.
  • colipids e.g., DOPE
  • lipids are usually formulated in ethanolic aqueous buffer solutions as micelles or liposomes.
  • colipids e.g., DOPE
  • they are commercially available as reagents, such as Lipofectin, Lipofectamin, Lipofectamine 2000 (Invitrogen), Fugene (Roche), Effectene (Qiagen), Transfectam (Promega), Metafectene (Biontex) etc. available.
  • Cationic lipids and cationic polymers spontaneously form so-called lipoplexes or polyplexes in the presence of DNA or RNA due to the opposing charge ratios.
  • the nucleic acid is condensed by the compensation of the negative charge on the phosphate radical, so minimized in size.
  • the transfection efficiency of lipoplexes or polyplexes depends on a variety of parameters. The most important are the ratio of genetic material to cationic component in the preparation of the lipo / polyplexes, ionic strength during lipo / polyplexe production, absolute amount of lipo / polyplexes per cell, cell type, cell proliferation status, cell physiological status, cell division rate, incubation time etc. These Influence parameters are an expression of a complicated transfection process in which the lipo / polyplexes or the genetic material contained must overcome a multitude of cellular barriers.
  • the first barrier is the outer negatively charged cell membrane. It is believed that transfection-active lipoplexes must have a net positive charge and reach the inside of the cell by adsorptive endocytosis or liquid phase endocytosis.
  • endocytosis which is an active transport process of the cell
  • material on the cell surface with cell membrane is encased and internalized as a vesicle (endosome).
  • lysosomes which contain a complex mixture of enzymes, the substances contained in the endosomes are broken down. Because of the low pH required for this degradation, endosomes have proton pumps that pump protons into the endosomes until a proper pH is achieved. To maintain charge neutrality, chloride ions flow into the endosomes to the same extent.
  • DNA is released from the lipoplex in the cytosol because attempts to achieve protein expression by microinjection of lipoplexes directly into the nucleus failed. It appears that the DNA bound in the lipoplexes is inaccessible to the transcriptional apparatus.
  • antisense molecules or siRNA directed against mRNA the biological site of action is reached and the duration of the effect depends essentially on the concentration of cytosolic RNases and the rate of release from the lipo / polyplexes.
  • DNA can not enter the cell nucleus, which is called the "nuclear barrier," but it arrives at its site of action during cell division, resulting in the expression of proteins.
  • non-viral methods based on chemical methods include systems which carry a DNA-binding moiety as well as a ligand capable of triggering receptor-mediated endocytosis (example transferrin infection).
  • the most important example of a non-viral method based on a physical process is electroporation.
  • the cells to be transfected are placed between two electrodes, to which a typical voltage profile is applied.
  • the cells are exposed to an intense electrical impulse (pulse), which leads to a reversible opening (pores) of the cell membrane.
  • pulse ie voltage curve
  • the pulse ie voltage curve as one of the most important success parameters must be optimized for each cell type.
  • electroporators eg, Eppendorf / Multiporator, US 6008038, Biorad / Genpulser, US 4750100, Genetronics Inc., US 5869326, BTX / ECM series
  • electroporators eg, Eppendorf / Multiporator, US 6008038, Biorad / Genpulser, US 4750100, Genetronics Inc., US 5869326, BTX / ECM series
  • the cells are suspended in an electroporation buffer, transferred to an electroporated electroporation cuvette along with the DNA / RNA to be transfected, and exposed to one or more pulses.
  • other important parameters are the nature of the buffer, the temperature, the cell concentration and the DNA concentration.
  • the cells are allowed for a short time Regeneration of the cell membrane. Subsequently, the cells are sown in a culture vessel and cultivated as usual.
  • magnetofection which uses DNA-binding molecules on magnetic nanoparticles to enrich DNA on the surface of cells via a magnetic field gradient and to trigger endocytosis
  • the innate immune system of eukaryotes may present a significant barrier to non-viral gene delivery systems.
  • the reason is that the eukaryotic innate immune system is able to recognize foreign genetic material via Toll Like receptors and initiate signal transduction cascades that trigger an antiviral state of cell populations.
  • non-viral carrier systems or their synthetic components such as cationic lipids can by the innate immune system by various Receptors are recognized as foreign and change the state of the cell.
  • Such an antiviral or altered state of a cell also provides a barrier to transfection with a non-viral gene delivery system that is difficult or impossible to overcome.
  • a traditional method of injecting molecules of all kinds, including proteins, into a cell is to insert the molecule (s) into the inner aqueous environment of
  • liposomes that are taken up by cells by endocytosis.
  • the lipids used are one
  • HIV-1 TAT the Drosophila Antennapedia homeodomain or the "DNA binding
  • penatratin 1 is a commercial product derived from a 16
  • Amino acid peptide exists. It corresponds to the third helix of the homeodomain of the
  • Antennapediaproteins In order to covalently attach it to a protein or peptide, it is provided with an N-terminal pyrydyl disulfide group that reacts with a free one
  • Peptides or lipids form non-covalent complexes that can penetrate into the cell.
  • An example of such a peptide is the commercialized Chariot TM from Active Motif (US 6841535). It is a 2843 dalton peptide that complexes with peptides, proteins and antibodies. This complex formation is based on hydrophilic and hydrophobic interactions. The underlying peptide has a mainly positively charged amino acids existing hydrophilic domain and a hydrophobic domain, so similar to amphiphilic compounds. After intemalization, this complex dissociates and releases the biologically active macromolecule. Since also works at low temperatures, for example 4 0 C, the process is assumed that the recording process as in the PTDs of endocytosis is independent. This is a gentle method because the macromolecule is not exposed to the harsh conditions of this uptake mechanism, which is reflected in the high transfer rate of up to 95% of the macromolecule used. The delivery process takes less than 2 hours.
  • BioPORTER TM is the lipid composition BioPORTER TM from Gene Therapy Systems (O. Zelphati et al., J. Biol. Chem., 2001, 276, 35103-35110, US 2003/0008813, US 2003/0054007 and EP 1133465). This is based on a cationic lipid and a colipid (DOPE). Even with BioPORTER TM, large proteins and antibodies can be introduced into cells while retaining their full biological activity. It is assumed that postively charged bioporter / protein complexes are formed, which are taken up by cells via endocytosis. Similar products are Pro-Deliverl TM or AB-Deliverln TM from OZ Biosciences or Pulsin TM from Polyplus.
  • Electroporation and microinjection are physical methods by which biologically active peptides and proteins can be introduced into cells.
  • the object of the invention is to provide a method which allows a more efficient transfection. Furthermore, the task is to influence the physiological status of the cell population as little as possible, ie the protein Ideally, the expression profile of the cell population should only change with respect to proteins whose genes have been introduced into the cell or whose expression should be reduced or blocked by the introduced genetic material.
  • transfection comprising the steps: (a) introduction of at least one antibody in the
  • a cytosol of a eukaryotic cell wherein the at least one antibody restricts, neutralizes or blocks at least one biological function of a cytosolic component of the innate immune system;
  • the term "at least" or "at least” herein means one or more.
  • the introduction of at least one antibody into the cytosol of a eukaryotic cell is to be understood so that one antibody or several different antibodies can be introduced into the cytosol of the eukaryotic cell. If various antibodies are introduced into the cytosol of the eukaryotic cell, these various antibodies may restrict, neutralize or block a biological function of a single cytosolic component or each of different cytosolic components of the innate immune system.
  • the step (a) and / or the step (b) of the transfection method can be carried out in vivo or in vitro.
  • the step (a) of the transfection method can be performed in a time interval of 0.01 to 48 hours before the step (b), preferably in a time interval of 0.01 to 12 hours, most preferably in a time interval of 2 to 5 hours before step (b).
  • step (a) at least one antibody can be introduced into the cytosol of a eukaryotic cell which is directed against at least one domain of a transmembrane receptor projecting into the cytosol, the transmembrane receptor being selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, TLR13, IFN type I receptor, IFN receptor, TNF receptor, IL receptor, IL-1 receptor, G protein-coupled receptor and mannose Receptor.
  • step (a) at least one antibody can be introduced into the cytosol of a eukaryotic cell which is directed against at least one cytoplasmic receptor, the receptor being selected from NOD-like receptors, NODS, NOD1, NOD2, NALPS, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11, NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1, RNA helicases, RIG-I, RIG-I-like receptors, and Mda5.
  • NOD-like receptors NODS, NOD1, NOD2, NALPS, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11, NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1, RNA helicases, RIG-I, RIG-I-like receptors, and
  • step (a) at least one antibody can be introduced into the cytosol of a eukaryotic cell which is directed against at least one adapter molecule, the adapter molecule being selected from MyD88, TRAF1, TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1, RAC-1, RIP-1 and FADD.
  • the adapter molecule being selected from MyD88, TRAF1, TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1, RAC-1, RIP-1 and FADD.
  • step (a) at least one antibody can be introduced into the cytosol of a eukaryotic cell which is directed against at least one kinase, wherein the kinase is selected from kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKKdelta, IKKepsilon, IKKi, IKKg, IRAK1, IRAK4, PI3K, JNK, JNK1, JNK2, p28MAPK, MKKs, ERK-1, ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1, MEK2, MEK5, MSK1, RIP-2, TBK-1, TAK-1, IRF kinase, MAP kinase, MAPK kinase, MAPKK kinase, MAPKKK kinase, MKK4 / SEK, MKK5, MKK7, p38
  • step (a) at least one antibody into the cytosol of a eukaryotic cell which is directed against at least one transcription factor, wherein the transcription factor is selected from NF-kB, AP-1, IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 and STAT2.
  • step (a) at least one antibody can be introduced into the cytosol of a eukaryotic cell resistant to IkB, 2'5'-oligoadenylate synthase, G proteins, Raf, Ras, Rnase, RnaseL, Dnasen, Dnase 1, Dnase 2 , Dnasei / L2, Dnasei / L3 or Dnase 2like acid Dnase.
  • the at least one antibody in step (a), may preferably be used in an amount of 0.01 to 5 picograms, preferably in an amount of 0.01 to 0.5 picograms, most preferably in an amount of 0.01 to 0, 05 picogram into the cytosol of the eukaryotic cell.
  • a protein delivery system to be used in step (a) for introducing the at least one antibody into the cytosol of a eukaryotic cell.
  • the protein delivery system may comprise a cationic lipid, a cationic polymer, a cationic protein, a cationic protein having hydrophobic moieties, or a compound having an antibody binding domain capable of inducing receptor-mediated endocytosis and / or membrane transfer; or it may be used as a protein delivery system electroporation, microinjection, magnetoprotection, ultrasound, ballistic method or hydrodynamic method.
  • the protein delivery system according to the invention may comprise a cationic protein having hydrophobic moieties, the cationic protein having hydrophobic moieties Proportions may comprise a peptide of 16 to 30 amino acids having a hydrophobic portion of at least 4 amino acids and a hydrophilic portion of up to 12 amino acids having a plurality of cationic amino acids, optionally separated by a spacer sequence of up to 10 amino acids.
  • Chariot can be used as the protein delivery system.
  • the protein delivery system according to the invention may comprise a cationic lipid carrying a polylysine head group whose primary amino groups are optionally derivatized by an acid to amides.
  • the protein delivery system may be Bioporter, BioTrek, ABdeliverin or prodeliverin.
  • the non-viral gene delivery system in step (b) may comprise a cationic lipid, a cationic polymer, a cationic protein, or a compound having a DNA and / or RNA binding domain and receptor-mediated endocytosis and / or membrane transfer can trigger; or a physical method such as electroporation, microinjection, magnetofection, ultrasound, ballistic method or hydrodynamic method may be employed as the non-viral gene delivery system.
  • the non-viral gene delivery system may comprise a cationic polymer selected from a linear or branched polyethyleneimine and / or a cationic dendrimer.
  • the non-viral gene delivery system comprises a cationic lipid with a polyamine head group and / or the colipid DOPE.
  • the non-viral gene delivery system in step (b) Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP , Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGen®, Gene Juice, a member of the TransIT series, Transfast, a member of the Tfx series, Gene Shuttle, Duofect, Superfect, Effectene, Polyfect, Dosper, X-treme genes Q2, Extreme Gene siRNA, escort series representative, Lipotaxi, Geneporter, Geneporter 2, Genesil
  • the protein delivery system may be identical to the non-viral gene delivery system.
  • modified or unmodified ssDNA modified or unmodified dsDNA, modified or unmodified ssRNA, modified or unmodified dsRNA and / or modified or unmodified siRNA can be used.
  • the invention further provides a composition comprising at least three of the following components (1) to (4):
  • a protein delivery system capable of transporting a biologically active antibody into the cytosol of a cell; (4) at least one antibody which restricts, neutralizes or blocks the biological function of a cytosolic component of the innate immune system.
  • composition according to the invention can be used to carry out the transfection method proposed here.
  • kit of parts which comprises at least three of the following components (1) to (4):
  • composition or kit of parts of the invention may contain as component (4) an antibody directed against at least one cytosolic domain of a transmembrane receptor, wherein the transmembrane receptor is selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 , TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, TLR13, IFN type I receptor, IFN receptor, TNF receptor, IL receptor, IL-1 receptor, G protein coupled receptor and mannose receptor ,
  • composition according to the invention or the kit of parts according to the invention may also contain as component (4) an antibody which is directed against at least one cytoplasmic receptor, the receptor being selected from NOD-like receptors, NODS, NOD1, NOD2, NALPS, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11, NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1, RNA helicases, RIG-I, RIG-I-like receptors, and Mda5.
  • an antibody which is directed against at least one cytoplasmic receptor, the receptor being selected from NOD-like receptors, NODS, NOD1, NOD2, NALPS, NALP1, NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11, NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1, RNA
  • composition according to the invention or the kit of parts according to the invention as component (4) can contain an antibody which is directed against at least one adapter molecule, the adapter molecule being selected from MyD88, TRAF1, TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1, RAC-1, RIP-1 and FADD.
  • the adapter molecule being selected from MyD88, TRAF1, TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1, RAC-1, RIP-1 and FADD.
  • composition according to the invention or the kit of parts according to the invention as component (4) can contain an antibody which is directed against at least one kinase, wherein the kinase is selected from kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKKdelta, IKKepsilon, IKKi, IKKg, IRAK1, IRAK4, PI3K, JNK, JNK1, JNK2, p28MAPK, MKKs, ERK-1, ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1, MEK2, MEK5, MSK1, RIP-2, TBK-1, TAK-1, IRF kinase, MAP kinase, MAPK kinase, MAPKK kinase, MAPKKK kinase, MKK4 / SEK, MKK5, MKK7, p38 MAP kinase, wherein
  • composition according to the invention or the kit of parts according to the invention can also contain as component (4) an antibody which is directed against at least one transcription factor, the transcription factor being selected from NF-kB, AP-1, IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 and STAT2.
  • composition according to the invention or the kit of parts according to the invention can also contain, as component (4), an antibody which is resistant to IkB, 2'5'-oligoadenylate synthase, G proteins, Raf, Ras, Rnase, RnaseL, Dnasen, Dnase 1, Dnase 2 , Dnasei / L2, Dnasei / L3 or Dnase 2like acid Dnase.
  • the composition of the invention or the kit of parts as component (3) may contain a protein delivery system comprising a cationic lipid, a cationic polymer, a cationic protein, a cationic protein having hydrophobic moieties, or a compound has an antibody binding domain and can induce receptor-mediated endocytosis and / or membrane transfer.
  • a protein delivery system comprising a cationic lipid, a cationic polymer, a cationic protein, a cationic protein having hydrophobic moieties, or a compound has an antibody binding domain and can induce receptor-mediated endocytosis and / or membrane transfer.
  • composition of the invention or the kit of parts according to the invention as component (3) may contain a protein delivery system comprising a peptide of 16 to 30 amino acids with a hydrophobic portion of at least 4 amino acids and a hydrophilic portion of up to 12 amino acids with a plurality of cationic Amino acids optionally separated by a spacer sequence of up to 10 amino acids.
  • composition according to the invention or the kit of parts according to the invention as component (3) may preferably contain the protein delivery system Chariot.
  • composition or kit of parts of the invention may contain as component (3) a protein delivery system comprising a cationic lipid bearing a polylysine head group whose primary amino groups are optionally derivatized by an acid to amides.
  • composition according to the invention or the kit of parts according to the invention as component (3) may contain the protein delivery system Bioporter, BioTrek, ABdeliverin or prodeliverin.
  • composition according to the invention or the kit of parts according to the invention as component (1) may preferably contain a non-viral gene delivery system which comprises a cationic lipid, a cationic polymer, a cationic protein and / or a compound comprising a DNA and / or RNA. having binding domain and can induce receptor-mediated endocytosis and / or membrane transfer.
  • the composition according to the invention or the kit of parts according to the invention may preferably contain as component (1) a non-viral gene delivery system comprising a linear or branched polyethyleneimine; and / or a cationic dendrimer; and / or a cationic lipid having a polyamine head group and / or colipid DOPE.
  • the composition according to the invention or the kit of parts as component (1) may contain a non-viral gene delivery system comprising Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP, Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGen500, Gene Juice, a TransIT range member, Transfast, a Tfx series member, Gene Shuttle, Duofect, Superfect , Effectene, Polyfect, Dosper, X-treme Gene Q2, Extreme Gene siRNA, escort series representative, Lipotaxi, Geneporter, Geneporter 2, Genesilencer, Neuroporter, jetPEI, jetSI, Interferin, Fecturin, Perfectin, Dharmafect, siPort Amine, siPort Li
  • component (1) and the component (3) in the composition according to the invention or the kit of parts according to the invention are identical.
  • composition according to the invention or the kit of parts according to the invention as component (2) may preferably contain genetic material which comprises modified or unmodified ssDNA, modified or unmodified dsDNA, modified or unmodified ssRNA, modified or unmodified dsRNA and / or modified or unmodified siRNA.
  • all components may be present separately or the components may be present as a combination of 2, 3 or 4 components, the remaining components of the combination being present separately or as a further combination of 2 components.
  • the components can either be separated from each other e.g. in glass or plastic containers that are packaged together, or the components can be provided in pairs or more in appropriate containers.
  • compositions comprising one of the above-mentioned inventive compositions.
  • kits of parts which comprises one of the abovementioned kit of parts according to the invention.
  • composition according to the invention or a kit of parts according to the invention can be used for the treatment of a disease by gene therapy.
  • the invention may be cystic fibrosis, muscular dystrophy, phenylketonuria, maple syrup disease, propionic acidemia, methylmalonic acidemia,
  • Adenosine deaminase deficiency hypercholesterolemia, hemophilia, beta-thalassemia, cancer, viral disease, degeneration of the macula, amyotrophic lateral sclerosis, and / or inflammatory disease.
  • several of the abovementioned antibodies for at least partial suppression of the immune defense can be combined with one another, ie it is possible to use two, three or more components of component (4). It is likewise possible to use several of the abovementioned components (1) and / or (2) and / or (3).
  • the innate immune defense can be neutralized or blocked, at least partially suppressed, by at least one antibody which restricts a component of the innate immune defense.
  • antibody as used herein includes polyclonal, monoclonal and all types of recombinant antibodies. It is crucial that the antibody binds to the component of the innate immune system in such a way that its biological function is eliminated as far as possible.
  • the cytosolic constituents of the innate immune system are all proteins
  • antibodies or antibodies derived from antibodies are used against these proteins.
  • the antibodies or derivatives derived therefrom with protein delivery systems, which are suitable for the cytosoplasmic transport of biologically active antibodies are introduced into the cells.
  • antibodies are suitable which are capable of blocking the cytosol components of the innate immune system in their biological activity. As a rule, these must therefore be directed against the cytosolic constituents of the innate immune system of the cells which are to be transfected. So if it is a human cell, then the antibody must usually be directed against the human cytosolic components of the innate immune system. In some cases, the antibodies are due to the great similarity of the cytosolic components of the innate It is also cross-reactive from different species, that is, although an antibody has been developed against a target from one species, it also exhibits its properties against a similar target from another species. Ideally, for in vivo applications, antibodies from cells of the same species to be transfected are used because they are little or not immunogenic in this case.
  • antibodies which have been obtained based on an immunization of organisms.
  • the antibodies may also have been prepared recombinantly and, for example, on the expression of recombinant antibody DNA or parts thereof, for example. in bacteria or bacteriophages (eg HuCaI technology, Morphosys).
  • the antibody is highly affine, the antibody can be polyclonal as well as monoclonal, or antibody-derived derivatives, ie, the antibody can be modified to its properties
  • the Fc fragment can be cleaved off, since the binding to the antigen is exclusively due to the Fab fragments (Fab antibodies), for example monovalent or bivalent mini-antibodies are obtained, and it can also be a trifunctional
  • the antibody may also be tagged for purification, detection or fusion with other molecules. If the antibody is to be used e.g. easier to detect, it can be labeled with a fluorescent dye.
  • the antibodies of the invention are not limited to any isoform.
  • the transfection result can be improved and / or undesired changes in the expression profile, such as. reduce or avoid the antiviral status of a transfected cell.
  • cytoplasmic components are blocked.
  • multiple antibodies to different cytoplasmic components can be combined to utilize additive effects and / or synergistic effects.
  • the method is combined with the blocking of components of the innate immune system, which is not based on antibodies.
  • blocking may also be based on siRNA, shRNA, inhibitors, ribozymes or aptamers.
  • the method is combined with the blocking of components of the innate immune system based on antibodies and non-cytoplasmic components in their biological function.
  • An example is the blockade of the extracellular and / or endosomal domains of TLR receptors by antibodies.
  • the present invention can also be used to perform transfections without altering the expression profile of the cells to an undesired extent. This is of particular interest in in vivo applications because activation of the immune system is often a problem here.
  • Anti-MyD88 antibody (rabbit, anti-human, polyclonal), USBiological Cat No .: M9755-
  • the antibody is purified before the experiment according to the instructions of the manufacturer with the Protein-G SpinTrap columns.
  • the eluate obtained is measured photometrically at 280 nm (Antibodies: A Laboratory Manual, Edward Harlow, David Lane, CSHL Press, 1988, p 673) and the antibody concentration is adjusted to 0.1 ⁇ g / ⁇ l by dilution with PBS (phospate buffered saline) ,
  • HeIa cells are sown in a 48 well plate. In this case, a cell count of 1, 0 x 10 5 is seeded in 250 ul complete culture medium (10% FCS) per well. The mixture is then incubated for 24 h in a CO 2 incubator (10%).
  • 0.5 ⁇ g (0.5 ⁇ l) pCMVIacZ plasmid solution is diluted in 15 ⁇ l PBS.
  • 2 ⁇ l Metafectene Pro are also diluted in 15 ⁇ l PBS.
  • the solutions are combined and incubated for 15 minutes at room temperature.
  • the lipoplex solution is then applied to the cells and incubated in a CO 2 incubator (10%).
  • the reporter gene assay ( ⁇ -galactosidase assay) and protein determination (BCA assay) are performed according to the manufacturer's instructions.
  • the cells are lysed with the lysis buffer of the ⁇ -galactosidase assay kit. Subsequently, a part is used in the BCA assay. The remainder is available for the ⁇ -galactosidase assay.
  • the plates are developed in the ⁇ -galactosidase assay until a yellow color with an absorbance of 1-2 with a microplate reader is measured and then immediately stopped. The incubation period is then noted. The values are read out again and the mean value is calculated for the double test.
  • the relative transfection efficiencies are determined by the amount of protein per
  • Galactosidase amount is normalized to a unit of time (second)
  • TLRs activation of TLRs before and during transfection depends on many factors. Depending on the expression profile of the target cell can eg. a particular sensitivity of the cells to be given to certain PAMPs. Further, different gene delivery systems and different genetic material can activate different TLRs. Even different DNA sequences can influence the transfection results depending on the CpG content. Last but not least, contaminants also play a role that should not be underestimated. For example, DNA of bacterial origin may be contaminated with LPS or flagellin or RNA. ssRNA can be contaminated with dsRNA and thus, in addition to TLR7 / 8, also respond to TLR3 and vice versa. Different treatment of the cells can lead to different results through stress signal transduction cascades. In summary, different blocking strategies may be required for different transfection experiments.
  • the invention can be used for therapeutic purposes.
  • the invention may be useful for gene therapy of, for example, cystic fibrosis, muscular dystrophy, phenylketonuria, maple syrup disease, propionic acidemia, methylmalonic acidemia, adenosine deaminase deficiency, hypercholesterolemia,
  • DNA fragments can be effectively brought into cells by means of the invention, in which this DNA can develop the desired effect without leading to undesired side effects.
  • the desired effect may be the replacement of missing or defective DNA regions or the inhibition of DNA regions (for example by antisense DNA / RNA or siRNA) which cause the disease in the diseased cell type.
  • tumor-suppressing genes can be used in cancer therapy or by introducing cholesterol-regulating genes, a contribution to the prevention of heart and blood vessel diseases are made.
  • DNA encoding ribozymes, siRNA or shRNA can be introduced into diseased cells.
  • the translation of the DNA produces active ribozymes or siRNA, which catalytically cleave m-RNA at specific sites and thus prevent transcription.
  • viral mRNA can be cleaved without affecting another cellular mRNA.
  • the multiplication cycle of viruses HAV, herpes, hepatitis B and C, respiratory syncytial virus
  • Other diseases specifically targeted for treatment with siRNA include age-related macular degeneration (eye disease), liver cancer, solid tumors, amyotrophic lateral sclerosis and inflammatory diseases.
  • transfection for example, for the production of cancer vaccines plays an increasingly important role. Thus, that is also possible application for the invention.
  • Another application may be found, for example, in vaccination methods which function on the basis of the expression of DNA encoding immunogenic peptides in the human and animal body.
  • lipid / DNA complexes are used as vaccines.
  • the introduction of DNA into the body cells leads to the expression of the immunogenic peptide and thus triggers the adaptive immune response.
  • exemplary but in no way limiting definitions are listed according to the invention:
  • Amount of protein expression of a cell population as a result of transfection processes with genetic material encoding, inter alia, this expressed protein or extent of knockdown of protein expression of a cell population as a result of transfection processes with genetic material capable of triggering such knockdown in particular siRNA or Ribozymes or DNA encoding shRNA or ribozymes or proportion of cells of a total population of cells that demonstrates the biological activity of the introduced genetic material as a result of transfection processes.
  • the physiological status of the cell population should be influenced as little as possible, ie the protein expression profile of the cell population should ideally only change with respect to the proteins whose genes have been introduced into the cell or whose expression is reduced or prevented by the introduced genetic material should.
  • Non-viral gene delivery system is a non-viral gene delivery system
  • Non-viral gene delivery systems are not produced by recombination of genetic material from naturally occurring viruses. They are able to infect genetic material into eukaryotic cells.
  • the non-viral gene delivery systems are physical methods and chemical methods. Physical methods locate at least the genetic material near the cell, in particular use physical Method, however, energy supply, in particular in the form of thermal, kinetic, electrical or other energy to mediate transport of the genetic material through the cell membrane.
  • Chemical methods are based either on a chemical modification or derivatization of the nucleic acids, which in particular make them cell-permeable, or consist in particular of substances which bind DNA and can mediate transport through the cell membrane. In particular, these use electrostatic forces or hydrogen bonds to bind the nucleic acids.
  • the transport of DNA through the cell membrane occurs through an active transport mechanism of the cell, endocytosis.
  • Substances having these properties contain, in particular, cationic lipids, cationic polymers, cationic peptides or also molecules which have a domain which can bind DNA or RNA and at the same time have a second domain which contains a ligand recognized by a receptor also on the cell surface and causes endocytosis by this recognition process.
  • the substances can also be specially formulated, in particular as micelles or liposomes and also consist of several components, in particular with different functions.
  • a protein delivery system is capable of infecting proteins into eukaryotic cells.
  • the protein delivery methods are physical methods and chemical methods. Physical methods locate at least the protein in the vicinity of the cell, but in particular, physical methods use energy input, especially in the form of thermal, kinetic, electrical, or other energy to mediate transport of the protein across the cell membrane.
  • Chemical methods are based either on a chemical modification or derivatization of the proteins, which in particular make them cell-permeable, or consist in particular of substances which can not covalently bind proteins and mediate transport through the cell membrane. In particular, these use for binding the electrostatic forces, hydrohilic and / or hydrophobic interactions or also Hydrogen bonds.
  • the transport of proteins across the cell membrane occurs through an active transport mechanism of the cell, endocytosis.
  • Substances which exhibit these properties contain, in particular, cationic lipids, cationic polymers, cationic peptides, cationic peptides having a hydrophobic domain, or even molecules which have a domain capable of binding proteins and at the same time have a second domain which contains a ligand which belongs to a Receptor also the cell surface is detected and triggers endocytosis by this recognition process.
  • the substances can also be specially formulated, in particular as micelles or liposomes and also consist of several components, in particular with different functions.
  • the transport can also be done by a passive transport through the cell membrane, so a membrane transfer.
  • Membrane transfer is the passage of a molecule from one side of a cell membrane and the other
  • the antibody can be obtained by immunizing an organism or by recombinant methods.
  • the antibody can cleave off parts that are not necessary for binding. Such fragments can also be obtained by recombinant methods.
  • additional moieties may also be introduced into the antibody to facilitate purification, detection, or fusion with other molecules
  • the term "antibody” includes any of the above-listed types of antibodies, particularly polyclonal or monoclonal antibodies obtained by immunization, eg IgA, IgD, IdE, IgG, IgM, IgY and IgW, and all kinds of recombinant antibodies.
  • the innate immune defense sets itself apart from the acquired or adaptive immune defense in that it fends off a pathogen, without ever having to come into contact with the pathogen to train the immune system.
  • the innate immune defense is characteristic of most cell types.
  • the innate immune defense uses the recognition of pathogens attributable molecular structures by receptors.
  • these receptors initiate signal transduction cascades, which in particular result in expression of many cell-owned genes and phosphorylation of important proteins in a changed physiological status (eg, "antiviral status") of the cells directly affected Cytokines are also secreted.
  • Affected cells notify about these messenger substances (cytokines) unaffected cells and trigger there a changed physiological status (eg "antiviral status"), whereby the cytokines dock to cytokine receptors of the other cells and in turn trigger a signal transduction cascade.
  • cytokines messenger substances
  • antiviral status e.g "antiviral status”
  • the introduction of genetic material into eukaryotic cells takes place outside of a living organism, especially in vessels suitable for the cultivation of eukaryotic cells.
  • peptides or proteins into eukaryotic cells takes place in a living organism.
  • peptides or proteins into eukaryotic cells takes place outside a living organism, especially in vessels suitable for the cultivation of eukaryotic cells.
  • Natural nucleic acids that have been modified by modification in their properties. These modifications may be, in particular, chemical changes, which in particular relate to the phosphate scaffold, the sugars or bases, which should in particular increase the stability of the nucleic acids to nucleases and ribonucleases.
  • molecules labels
  • molecules can be covalently or non-covalently attached to the nucleic acids, which lead to new properties of the nucleic acids, in particular to optical traceability by fluorescence labels or labels, which determine the nucleic acids to a particular location eg. in the core in the cell conduct (localization elements) or labels, the Passage of nucleic acids through membranes mediate and so make nucleic acids cell-like example.
  • siRNA short interfering RNA
  • Short dsRNA (up to 28 bp) that can cause the knock-down of a protein through RNA interference.
  • shRNA short hairpin RNA
  • Short ssRNA that has complementary regions at the 3'-end and the 5'-end and thereby hybridizes via hydrogen bonding and forms a hairpin structure.
  • shRNA can cause the knock-down of a protein by RNA interference.
  • Molecule that is able to detect a substance (agonist) and thus trigger a biological reaction.
  • receptors are um
  • Non-covalent interactions are electrostatic forces and hydrogen bonds.
  • the information on the presence of this substance is converted into a signal and transmitted via a chain of molecules by signal transduction.
  • the signal generated by the receptor is taken up by adapter molecules and, in particular, carried on via kinases, in particular to transcription factors.
  • the transcription factors stimulate the expression of genes that mediate the biological response.
  • Molecules in particular proteins, which are capable of recognizing molecular structures, in particular other proteins, and influencing their biological action by binding.
  • AP-1 Activated protein-1
  • BIRC-1 Baculoviral IAP repeat-containing 1
  • ERK Extracellular-signal Regulated Kinase
  • FADD Fas Associated Protein with Death Domain
  • IkB inhibitory-binding protein kB
  • IKKi IKK epsilon
  • IL interleukin
  • IPAF Apaf-1-related protein
  • IRAK1 interleukin 1 receptor-associated kinase 1
  • IRAK4 interleukin-1 receptor-associated kinase 4
  • IRF interferon regulating factor
  • IRF kinase interferon-regulating factor kinase
  • JNK c-Jun N-terminal kinase
  • TIRAP MyD88-adapter-like
  • MAPK mitogen activated protein kinase
  • MAPKK mitogen activated protein kinase kinase
  • MAPKKK mitogen activated protein kinase kinase kinase
  • Mda5 melanoma differentiation-associated gene-5 protein
  • MEK MAPK / ERK kinase
  • MKK mitogen-activated protein kinase kinase
  • MSK mitogen and stress activated kinase
  • MyD88 myeloid differentiation factor 88
  • NALP-2 NIGHT-LRR and pyrin domain-containing protein 2
  • NALPS NIGHT-LRR and pyrin domain-containing proteins
  • NAP1 Nck-associated protein 1
  • NF-kB nuclear factor kappaB
  • NOD nucleotide-binding oligomerization domain containing protein
  • PDK1 phosphoinositide-dependent protein kinase 1
  • PDK2 phosphoinositide-dependent protein kinase 1
  • PI 3K phosphoinositol 3-kinase
  • Raf proteins "rapidly growing fibrosarcoma" proteins
  • RIG-I retinoic acid inducible gene I
  • R1 P1 receptor-interacting protein 1
  • Rnase ribonuclease
  • SEK stress-activated protein / Erk kinase
  • TAK1 Transforming growth factor- ⁇ -activated kinase
  • TLR toll-like receptor
  • TNF tumor necrosis factor
  • TRAF TNF receptor-associated factor
  • TRAF33 TNF receptor-associated factor 3
  • TRAF6 TNF receptor-associated factor 6
  • TRAM TRIF-related adapter molecule
  • TRIF Toll / IL-1 receptor domain-containing adapter inducing interferon-b adapter protein

Abstract

Das angeborene Immunsystem von Eukaryoten ist in der Lage, über "Pattern Recognition Receptors" (PRRs) zellfremdes Material zu erkennen und Abwehrmaßnahmen einzuleiten. Der generierte Abwehrzustand ist auch eine Barriere für nicht-virale Genliefersysteme. Wird die biologische Funktion einzelner oder mehrerer cytoplasmatischer Komponenten der angeborenen Immunabwehr durch einen Antikörper blockiert, lassen sich Transfektionseffizienzen von nicht-viralen Genliefersystemen steigern und unerwünschte Änderungen des Expressionsprofils vermeiden. Dazu wird der Antikörper vor oder während der Transfektion durch ein Proteinliefersystem in die Zelle verbracht.

Description

TRANSFECTIONSVERFAHREN FÜR NICHT-VIRALE GENLIEFERSYSTEME MIT VERBESSERTER WIRKSAMKEIT DURCH BLOCKIERUNG DES ANGEBORENEN IMMUNSYSTEMS
Stand der Technik
Das angeborene Immunsystem
Bei Immunantworten des Körpers (Luke A. et al.; Spektrum der Wissenschaft, August 2005, Seiten 68-75) gegen eine infektiöse oder immunologische Herausforderung unterscheidet man zwischen der angeborenen (innate immunity) und der erworbenen Immunantwort (antigen-specific acquired immunity).
Die erworbene Immunabwehr wird erst bei einer Infektion mit Krankheitserregern ausgebildet. Sie besitzt eine Art Gedächtnis, sodass es bei einer zweiten Infektion durch denselben Erreger in der Regel nicht mehr zum Ausbruch der Krankheit kommt. Auf diesem Prinzip beruhen Impfstoffe. Gäbe es nur die erworbene Immunabwehr wäre der Organismus vor der ersten Infektion völlig ungeschützt. Das ist jedoch nicht der Fall, da es noch eine weitere sehr ursprüngliche Immunabwehr gibt, die als angeborene Immunabwehr bezeichnet wird und von der Fliege Drosophila bis zu Säugetieren, ja sogar bei Pflanzen gefunden wird.
Die angeborene Immunabwehr ist die erste Abwehrfront gegen Krankheitserreger und stellt ein evolutionär sehr altes System dar. Bei der angeborenen Immunabwehr werden über so genannte „Pattern Recognition Receptors" (PRRs) „pathogen- associated molecular patterns" (PAMPs) oder „danger-associated molecular patterns (DAMPS), erkannt. Diese Muster-Erkennungsrezeptoren sind also in der Lage molekulare Muster zu erkennen, die eindeutig mikrobiellen Pathogenen oder auch zellulärem Stress zugeordnet werden können.
Die PRRs können in zwei Gruppen aufgeteilt werden, die sogenannten „endocytic PRRs" und die „signaling PRRs". Die „endocityc PRRs" lösen keine Signaltransduktion aus, sondern Endocytose und Phagocytose.
Zu den „signaling PRRs" gehören die membrangebunden Toll-like Rezeptoren (TLRs) (Heine H. et al.; Int. Arch. Allergy Immunol. 2003; 130; 180-192 und Uematsu S. et al., J. Biol. Chem. 2007, May 25; 282 (21 ); 15319 -23), die cytoplasmatischen NOD-like Rezeptoren und RNA Helikasen, die spezifisch PAMPs erkennen und entsprechende Entzündungs- sowie Immunreaktionen einleiten. Dadurch kann der Organismus zwischen „selbst" und „nicht selbst" unterscheiden. NOD-like Rezeptoren und RNA-Helikasen werden ubiquitär im Zytosol exprimiert.
Zytoplasmatische PRRs
NOD-like Rezeptoren (Inohara N, Nuήez G.;Nat Rev Immunol. 2003 May;3(5) : 371-82)
Annähern 20 dieser Proteine wurden im Genom von Säugern gefunden und können in zwei Hauptgruppen unterteilt werden, sogenannte NODs und NALPs. Weitere sind CIITA, IPAF und BIRC1. Diese Rezeptoren erkennen endogene und mikrobielle Moleküle oder Stress Signale und formen Oligomere, die inflammatorische Moleküle, wie NF-kB, Zytokine oder Caspasen aktivieren. Die NOD-like Rezeptoren sind auch unter anderen Namen (zB. CATERPILLER oder CLR) bekannt. NODs
Nur für NOD1 und NOD2 sind die Liganden derzeit bekannt. NOD1 detektiert ein Peptidoglykan von gramnegativen Bakterien (meso-DAP). NOD2 detektiert ein Muramyldipetid (MDP) von grampositiven und gramnegativen BAkterien. NODs speisen den Signaltransduktionsweg von NF-kB Pathway und MAP-Kinasen über die Kinase RIP2. Ihren Namen erhielten sie, da sie eine Nukleotidbindende Oligomerisierungs-Domäne enthalten, die Nukteotidtriphosphate bindet. NALPS
Wie NODs besitzen auch NALPs eine Nukleotidbindende Oligomerisierungs- Domäne. Derzeit sind 14 Angehörige dieser Familie bekannt. Von einigen dieser Rezeptoren ist auch bekannt, was sie detektieren. So detektiert z.B. NALP3 bakterielle DNA, MDP, ATP, Toxine, dsRNA, Paramyoxyviren und Harnsäurekristalle. RNA-Helikasen
Die Erkennung viraler ds und ssRNA ist Aufgabe der RNA-Helikasen, wie RIG-I und MDA5. Diese Helikasen steuern antivirale Programme. RIG-I (retinoic inducible gene I) ist ein intrazellulärer Rezeptor des angeborenen Immunsystems (Perry A.K. et al; Cell Research 2005; 15(6); 407-422 und Kawai T. et al.; J. Biochem; 2007; 141 ; 137- 145). Ein weiterer solcher Rezeptor ist Mda5 (melanoma-differentiation-associated gene 5) Die Rezeptoren sind in der Lage, einzelsträngige RNS mit einem Triphosphatrest an 5'-Position sowie dsRNA zu detektieren. Damit sind sie in der Lage, zwischen zelleigenen und viralen Ribonukleinsäuren zu unterscheiden. Wird fremde RNA erkannt, wird über eine Signaltransduktionskaskade eine Immunantwort ausgelöst und am Ende Interferon des Typs I produziert. Wie diese Signaltransduktionskaskade genau funktioniert ist noch nicht vollständig aufgeklärt. Man vermutet jedoch die Beteiligung der Adaptermoleküle FADD und TRAF6, der Kinasen TBK1 , IKK-i, IKKgamma, IKKalpha und IKKbeta, sowie der Transkriptionsfaktoren NF-kB, IRF3, IRF 7. Eine Gruppe mit ähnlichen Eigenschaften wie RIG-I wird unter dem Begriff RIG-l-like Helikasen zusammengefasst.
Membrangebundene PRRs
Zu den membrangebundenen PRRs zählen insbesondere der Mannose-Rezeptor und die Toll-like-Rezeptoren. Der Mannose Rezeptor findet sich in der Hauptsache auf der Oberfläche von Makrophagen und dentritischen Zellen. Er bindet Kohlenhydrate, die sich auf der Oberfläche von infektiösen Mikroorganismen befinden und löst Endozytose und Phagozytose deselbigen aus.
Toll-like Rezeptoren (TLRs)
Toll-like Rezeptoren wurden erstmals in der Mitte der 1990er Jahre entdeckt (Zimmer A. et al.; PNAS, 1999; 96(10), 5780-5785). Der Name ist abgeleitet von einem in Drosophila Melanogaster von Christiane Nüsslein-Volhard gefundenem Protein, das Sie „Toll" nannte. TLR-Proteine ähneln diesem Typus und werden damit als „Toll- Iike"-Proteine bezeichnet. Dabei handelt es sich um Transmembranproteine mit einer extrazellulären, „leucin-reichen repeat" Domäne (LRR) wie auch einer zytoplasmatischen Domäne, die derjenigen der IL-1 R Familie homolog ist. Die TLRs können auf extrazelluläre oder endosomale PAMPs reagieren. Die verschiedenen TLRs reagieren selektiv auf verschiedene molekulare virale und bakterielle Komponenten und steuern über eine Signaltransduktionskaskade eine entsprechende Aktivierung von Genen. Dies geschieht zunächst über so genannte Adaptermoleküle und darauf folgend über Kinasen, die schließlich Transkriptionsfaktoren (z.B. NF-kB und die IRF-Familien) durch Phosphorylierung derselben oder entsprechender intrazellulärer Inhibitoren dieser Transkriptionsfaktoren aktivieren. Letztendlich werden neben einer Vielzahl spezifischer Gene, die eine antimikrobielle Wirkung haben, so genannte Zytokine produziert. Zytokine sind wiederum notwendige Stimulatoren für die erworbene Immunabwehr und damit auch ein Bindeglied zwischen angeborener und erworbener Immunabwehr.
Bisher sind 13 verschiedene TLRs bekannt (davon 11 bei Säugetieren), deren Anzahl ausreichend ist für die Erkennung aller pathogenen Erreger, angefangen von Bakterien über Pilze bis zu den Viren. Die Rezeptoren erkennen dabei allen Erregern gemeinsame Strukturen, des Weiteren mitunter auch mehrere Bestandteile gleichzeitig, ohne dass diese sich strukturell ähneln. Beispielsweise erkennt der TLR4 Lipopolysaccharide, aber auch Taxol. Bisher ist nicht bekannt wie die TLRs das leisten können. Die TLRs unterscheiden sich von Spezies zu Spezies nur wenig.
Bisher sind folgende Gruppen von Molekülen als Liganden der TLRs bekannt, die zu einer Auslösung von Signaltransduktionskaskaden führen:
TLR1 : bildet mit TLR2 ein Heterodimer, ist der Rezeptor von triacyliertem Lipoprotein und
Zymosan aus Hefen.
TLR2: ist der Rezeptor für bestimmte Peptidoglykane, Lipopeptide, Glykolipide und verschiedener Bakterien. TLR3: erkennt lange dsRNA, wie Sie bei einer Virusreplikation in infizierten Zellen vorkommt.
TLR4: ist der Rezeptor für Lipopolysaccharide (LPS, auch Endotoxine), verschiedene Hüllglykoproteine (auch von Viren) und Taxol. LPS sind Bestandteile von Bakterienzellwänden. Der TLR4 Rezeptor benötigt für seine Funktion ein zusätzliches membrangebundenes Protein (TLR assistierendes Protein). Dabei bindet CD14 zB. das LPS und führt es dem TLR4 Rezeptor zu. Die Bindung an CD14 alleine löst dabei keine Signaltransduktionskaskade aus.
TLR5: ist der Rezeptor von Flagellin, einem Hauptbestandteil der Geiseln (Flagellae), mit welchen sich Bakterien fortbewegen.
TLR6: bildet mit TLR2 ein Heterodimer, ist der Rezeptor von diacyliertem Lipoprotein und bestimmten Peptidoglykanen. Ein spezielles Lipoprotein (MALP-2 = macrophage- activating lipopeptide) wird mittels Unterstützung durch das membrangebundene Protein CD36 detektiert (TLR assistierendes Protein).
TLR7&TLR8: sind Rezeptoren für Imidazochinolinen und von ssRNA/dsRNA z.B. von RNA-Viren.
TLR9: ist der Rezeptor für bakterielle DNA, bzw. für nicht methylierte CpG Motive, die in bakterieller DNA gehäuft (20 x häufiger als in Säugerzellen) auftritt. Das CpG Motiv ist in Säugerzellen stark methyliert, wodurch es unterschieden werden kann. Ähnliches wie für bakterielle DNA gilt auch für virale DNA, die auch von TLR9 detektiert wird. Über die immunstimulatorische Eigenschaft von bakterieller DNA berichtete schon Anfang der 80er Jahre die Gruppe um Dr. Tokunaga. Als zugehöriger Rezeptor wurde von der Gruppe um Dr. Shizuo Akira der TLR9 Rezeptor identifiziert (Aufklärung der Rollen von Toll-Rezeptoren und ihrer Signaltransduktionskaskaden mittels Gen-Targeting, Robert-Koch-Vorlesung von Dr. Shizuo Akira, Allgemeine Presseinformation 2002; www.robert-koch.stiftung.de).
TLR10:
Ligand noch nicht bekannt
TLR11 :
Ist Rezeptor für das urpathogene Bakterium Escherichia coli und dem Profilin- ähnlichen Protein des Urtierchens Toxoplasma gondii
TLR12:
Funktion und Ligand noch unbekannt
TLR13:
Funktion und Ligand noch unbekannt
Lokalisation der TLR:
Praktisch jede Körperzelle besitzt TLRs in Abhängigkeit ihrer Differenzierung. In Immunzellen weren sie häufig besonders stark exprimiert. TLR2, 4, 5 und 6 sitzen z.B: insbesondere in den Plasmamembranen von Monozyten, natürlichen Killerzellen, Mastzellen oder myaloiden dendritischen Zellen, 7, 8, und 9 befinden sich insbesondere in Endosomen von Immunzellen (Siegmund-Schultze N., www.aerzteblatt.de). Die Aktivierung der Immunantwort erfordert daher eine intrazelluläre Aufnahme über Endozytose und eine Reifung der Endosomen. Die Signalweiterleitung beginnt hier in einem endosomalen Kompartiment. Für TLR 3 gibt es Hinweise, dass er sich in den Plasmamembranen befindet, allerdings gibt es auch Darstellungen in der Literatur die von einer endosomalen Lokalisation ausgehen. TLRs agieren häufig paarweise und treten bei unterschiedlichen Zelltypen in unterschiedlichen Kombinationen auf. Signaltransduktionskaskaden:
Die Signaltransduktionswege der unterschiedlichen TLRs (Perry A.K. et al; Cell Research 2005; 15(6); 407-422 und Kawai T. et al.; J. Biochem; 2007; 141 ; 137-145) sind teilweise zwar ähnlich, weisen aber durchaus auch größere Unterschiede auf, sodass es am Ende zu einer unterschiedlichen Genexpression und damit unterschiedlichen biologischen Reaktionen kommt. Mit Ausnahme von TLR3 geben alle TLRs ihr Signal an das Adapterprotein MyD88 weiter. MyD88 spielt eine entscheidende Rolle bei der Signalübermittlung über den TLR/lnterleukin-1 Rezeptor. Die zytosolische Domäne der TLRs zeigt hohe Ähnlichkeit zu der des lnterleukin-1 Rezeptors und wird daher auch als Toll/IR-1 Rezeptor Domäne (TIR) bezeichnet. MyD88-defiziente Splenozyten zeigten z.B. keine Reaktionen auf lnterleukin-1 , LPS oder CpG-DNA. Außerdem wurde bei MyD88 defizienten Zellen in Reaktion auf TLR2, TLR7, TLR9-Liganden keine Aktivierung von Signalmolekülen, wie NF-kB oder MAP Kinasen beobachtet. Das ist ein deutlicher Hinweis auf die vollständige Abhängigkeit der TLRs (außer TLR3) von MyD88 für deren Signalweiterleitung. Andere Adaptermoleküle sind z.B. TIRAP (Toll-lnterleukin-i-Rezeptor(TIR)-Domäne enthaltendes Adapterprotein (TLR1 , TLR2, TLR4 und TLR6), Mal (MyD88-adapter- like), TRIF (TLR3 und TLR4), TRAF6 (TLR1 bis 9) und TRAM (TLR4).
Welche Proteine neben den Adaptermolekülen noch mitwirken hängt vom jeweiligen TLR ab. Allgemein und vereinfacht dargestellt beginnt eine entsprechende Signaltransduktionskaskade in der Regel mit einem Rezeptor an der Zelloberfläche mit einer zytosolischen Domäne, der sein Signal bei Belegung mir einem passenden Liganden über zytosolische Adaptermoleküle an Kinasen weiterleitet, die über Kaskaden Transkriptionsfaktoren aktivieren. Die aktivierten Transkriptionsfaktoren lokalisieren im Kern und lösen die Expression von Proteinen, meistens Zytokinen aus.
Signaltransduktionskaskade über TLR1/TLR2, TLR2/TLR2, TLR2/TLR6 Die Rezeptoren, die in entsprechenden Paaren auftreten, lösen bei der Belegung mit passenden Liganden die gleichen Signaltransduktionskaskaden aus. Letztendlich werden unter anderem die Transkriptionsfaktoren NF-kB und AP-1 aktiviert, die insbesondere zur Expression von Zytokinen führen. Dabei sind bei der Signalübertragung die Adaptermoleküle RAC-1 , TIRAP, MyD88 und TRAF6 beteiligt. Als Kinasen sind mindestens IRAK1 , IRAK4, TAK1 , PI 3K, IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK und MKKs beteiligt.
Signaltransduktionskaskade über TLR4
Der Rezeptor benötigt das membrangebundene Protein CD14 für seine volle Funktion. CD14 bindet entsprechende Agonisten und führt Sie dem Rezeptor zu. Dieser löst bei der Belegung mit passenden Liganden letztendlich die Aktivierung der Transkriptionsfaktoren NF-kB, AP- 1 , IRF3 und IRF7 aus und führt wiederum insbesondere zur Expression von Zytokinen. Dabei sind bei der Signalübertragung die Adaptermoleküle TIRAP, MyD88, TRAM, TRIF, TRAF3, TRAF6, NAP1 und RIP1 beteiligt. Als Kinasen sind mindestens IRAK1 , IRAK4, TAK1 , IKKalpha, IKKbeta, IKKgamma, IKKepsilon, TBK1 , ERK1 , ERK2, JNK, p38 MAPK, MEK1 , MEK2 und MKKs beteiligt.
Signaltransduktionskaskade über TLR5
Der Rezeptor löst bei der Belegung mit passenden Liganden letztendlich die Aktivierung der Transkriptionsfaktoren NF-kB und AP-1 , die insbesondere zur Expression von Zytokinen führen. Dabei sind bei der Signalübertragung die Adaptermoleküle MyD88 und TRAF6 beteiligt. Als Kinasen sind mindestens IRAK1 , IRAK4, TAK1 , IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK und MKKs beteiligt.
Signaltransduktionskaskade über TLR10, 11 ,12,13
Die Rezeptoren lösen bei der Belegung mit passenden Liganden letztendlich die Aktivierung der Transkriptionsfaktoren NF-kB und AP-1 , die insbesondere zur Expression von Zytokinen führen. Dabei sind bei der Signalübertragung die Adaptermoleküle MyD88 und TRAF6 beteiligt. Als Kinasen sind mindestens IRAK1 , IRAK4, TAK1 , IKKalpha, IKKbeta, IKKgamma und MKKs beteiligt.
Signaltransduktionskaskade über TLR3: Der Rezeptor löst bei der Belegung mit passenden Liganden letztendlich die Aktivierung der Transkriptionsfaktoren NF-kB, AP-1 , IRF3 und IRF7 aus, wobei wiederum insbesondere Zytokine verstärkt exprimiert werden. Dabei sind bei der Signalübertragung die Adaptermoleküle TRIF, TRAF6, TRAF3, NAP1 und RIP1 beteiligt. Als Kinasen sind mindestens IRAK1 , IRAK4, TAK1 , IKKalpha, IKKbeta, IKKgamma, IKKepsilon, TBK1 , PKR, PI K3, JNK, p38 MAPK und MKKs beteiligt.
Signaltransduktionskaskaden über TLR7, TLR8 und TLR9
Die Rezeptoren, lösen bei der Belegung mit passenden Liganden letztendlich die Aktivierung der Transkriptionsfaktoren NF-kB, AP-1 , IRF1 , IRF5 und IRF7 aus, wobei wiederum insbesondere Zytokine verstärkt exprimiert werden.. Dabei sind bei der Signalübertragung die Adaptermoleküle MyD88, TRAF6 und TRAF3 beteiligt. Als Kinasen sind IRAK1 , IRAK4, TAK1 , IKKalpha, IKKbeta, IKKgamma, JNK, p38 MAPK und MKKs beteiligt.
Eine weitere große Gruppe von transmembranständiger Rezeptoren, die sogenannten G-Protein- gekoppelten Rezeptoren (GPCRs), können teilweise ebenfalls dem angeborenen Immunsystem zugerechnet werden, da diese darauf stark regulierend einwirken. Sie kommen nur in Eukarioten vor und haben als Liganden eine Vielzahl von Stoffen, darunter auch Hormone, Lipide, Proteine, Pheromone, aber auch kleine Peptide. Bindet ein Ligand an den Rezeptor, wird durch eine Änderung der Konformation des Rezeptors ein sogenanntes G-Protein aktiviert. Der weitere Verlauf der Signaltransduktion hängt von dem G-Protein ab. Bezeichnend ist, dass viele Komponenten der Signaltransduktionpfade der TLRs und der GPCRs identisch sind.
Zytokine/Cytokines:
Zytokine sind multifunktionale Signalstoffe. Es handelt sich dabei um zuckerhaltige Proteine, die eine regulierende Funktion für das Wachstum und die Differerenzierung von Körperzellen haben. Einige von ihnen werden daher auch als Wachstumsfaktoren bezeichnet. Viele Zytokine spielen zudem eine wichtige Rolle bei immunologischen Reaktionen und werden daher auch Mediatoren genannt. Zytokine werden von den Zellen durch Sekretion in das umgebende Medium abgegeben und stimulieren andere Zellen, wenn diese einen passenden Rezeptor besitzen. Häufig wird die Espression der Zytokine durch die PRR-Signaltransduktionskaskaden gesteuert. Man unterscheidet 5 Hauptgruppen von Zytokinen:
1. lnterferone (IFN)
Interferone weisen Zellen an, Proteine zu bilden, die eine virale Infektion erschweren oder unterbinden. Auch können Interferone antitumorale Wirkung haben.
2. Interleukine (IL)
Interleukine dienen insbesondere der Kommunikation von Immunabwehrzellen untereinander und erhöhen dadurch die Koordination bei der Abwehr von Krankheitserregern und der Tumorbekämpfung
3. Koloniestimulierende Faktoren
Koloniestimulierende Faktoren werden in der Niere gebildet. Es handelt sich um Wachstumsfaktoren für Blutkörperchen
4. Tumornekrosefaktoren (TNF)
Die wichtigste Funktion von TNFs ist, die Aktivität verschiedener Immunzellen zu regeln. Sie werden hauptsächlich von Makrophagen ausgeschüttet. TNFs können den Zelltod (Apoptose), Zeilproliferation, Zelldifferenzierung und Ausschüttung anderer Zytokine anregen.
5. Chemokine
Chemokine sind Chemoattraktoren, die Zellen mit passenden Rezeptoren veranlassen durch Chemotaxis zur Quelle der Chemokine zu wandern
Von besonderer Bedeutung als Mediatoren für immunologische Prozesse sind die Interferone (IFN), insbesondere die Interferone vom Typ I. Das erste Interferon dieser Art wurde 1957 von Isaacs und Lindemann gefunden (Isaacs, A. et al.; J. Proc. R. Soc. Lond. B. Biol. Sei. 147, 258-267). Der Name rührt daher, dass dieses Protein mit der Replikation von Viren interferiert. Typ I Interferone sind Schlüsselzytokine, die eine antivirale Antwort von Zellen auslösen, einen „antiviralen Status" etablieren und Zellen des Immunsystems zu einer antiviralen Antwort stimulieren. Häufig enden TLR-Signaltransduktionskaskaden in der Ausschüttung von Zytokinen und insbesonderes von Interferonen des Typs I. Dadurch werden auch nicht direkt von einem Virus infizierte Zellen in einen antiviralen Status versetzt, also „gewarnt". Ein Teil der antiviralen Antwort der Zellen besteht in der verstärkten Expression von 2',5'-Oligoadenylatsynthase (OAS) und Proteinkinase R (PKR). Beide werden durch dsRNA aktiviert. OAS generiert dann aus ATP 2', 5' Oligoadenylat, das wiederum die Ribonuklease RNaseL aktiviert, welche die zelleigene RNA degradiert. Die PKR wiederum phasphoryliert den für die Translation essentiellen Initiationsfaktor elF2, der daraufhin einen inaktiven Komplex mit elF2B eingeht, so dass es zum Erliegen der Transkription kommt. Beide Effekte wirken einer Virusproliferation entgegen.
Entsprechend der Aktivierung von RNaseL bei einem viralen Angriff sind Ribonuklease (Rnasen) und Desoxyribonukleasen (Dnasen) allgemein als Bestandteil des angeborenen Immunsystems augzufassen. Als Dnasen seine die insbesonders die humanen Dnasen Dnase 1 , Dnase 2, Dnase1/L2, Dnase1/L3 und Dnase 2like acid Dnase genannt.
Zusätzlich wird das adaptive Immunsystem aktiviert, indem die Reifung von dendritischen Zellen ausgelöst, die Antikörperantwort der B Zellen und die T Zellantwort aktiviert wird. Es werden Lymphozyten und Monozyten durch induzierte Chemokine zum Ort der Infektion rekrutiert.
Neben den Interferonen wirken auch die Interleukine und die Tumornekrosefaktoren stark auf die angeborene Immunabwehr ein und stellen daher erfindungsgemäße cytosolische Bestandteile der angeborenen Immunabwehr dar.
Auch Stress kann Signaltransduktionswege anstossen, die in einen antiviralen Status münden. Diese Signaltransduktionkaskaden kreuzen die Signaltransduktionkaskaden der TLR. Stress-Signaltransduktionswege:
Zellulärer Stress kann ausgelöst werden, durch:
-Hitze/Kälte
-UV
-mechanische Beanspruchung /Scherkräfte
-Sauerstoffmangel
-Nährstoffmangel
-Osmotischer Stress
-Oxidativer Stress/Freie Radikale
-Entzündungen
-biologische und chemische Agentien (zB. TNFalpha, Chemotherapeutika)
Der Begriff "Zelle" wird in der vorliegenden Anmeldung sowohl im Singular als auch im Plural, d.h. "Zellen", verwendet und definiert in allen Fällen eine einzelne Zelle, mehrere Zellen oder eine Zellpopulation.
Die Zellen reagieren auf Stress mit komplexen Veränderungen in der Aktivität von Signalketten, an welchen spezifische MEK, MSK und MAP Kinasen und verschiedene Transkriptionsfaktoren (zB. NF-kB), Apoptoseregulatoren und Zellzyklus-regulatoren beteiligt sind. GTP-bindende Proteine (Ras/Rho-Familie), die an der Membran gebunden sind, spielen bei der Reaktion der Zellen auf zellulären Stress eine besondere Rolle.
Die angeborene Immunantwort erfolgt sowohl intrazellulär als auch interzellulär. Bei der intrazellulären Antwort löst eine durch einen Kontakt mit einem Pathogen betroffene Zelle über PRRs, wie beispielsweise TLRs und RLHs, Signaltransduktionskaskaden aus, wodurch sich der physiologische Status und das Expressionsprofil der Zelle ändern. Daneben gibt es eine interzelluläre Antwort, bei der die durch einen Kontakt mit einem Pathogen betroffene Zelle andere Zellen, die keinem direkten Kontakt mit dem entsprechenden Pathogen ausgesetzt waren, von der "Infektion" mit dem Pathogen „informiert". Dabei werden von der durch einen Kontakt mit einem Pathogen betroffenen Zelle Zytokine freigesetzt, die von Zytokinrezeptoren, welche sich auf den anderen nicht mit dem Pathogen in Kontakt gekommen Zellen befinden, detektiert werden. Durch die Bindung der Zytokine an die Zytokinrezeptoren wird eine Signaltransduktionskaskade in den Zellen, die keinem direkten Kontakt mit dem Pathogen ausgesetzt waren, ausgelöst, mit der Folge, dass sich auch deren physiologischer Status und Expressionsprofil ändert, obwohl sie mit dem Pathogen nicht direkt in Berührung gekommen sind. Die Änderung des physiologischen Status und des Expressionsprofils der Zellen soll dabei den pathogenen Angriff abwehren und das Überleben der Zellen sichern.
Genliefermethoden
Die Transfektion, d.h. das Einbringen von genetischem Material in eine eukariotische Zelle, insbesondere eine Säugerzelle, ist heute eine Methode, die aus der modernen Forschung nicht mehr wegzudenken ist (Domb A. J.; Review in Molecules; 2005; 10; 34 und Xiang G; Keun-Sik K.; Dexi L.; Review in The AAPS Journal; 2007; 9(1 ) Article 9; http://www.aapsj.org). Ohne diese Methode wäre eine Aufklärung der Funktion verschiedener Gene wesentlich erschwert. Nicht zu vergessen ist die Möglichkeit, auf diesem Wege Proteine eukariotischen Ursprungs originalgetreu herzustellen, da die korrekte posttranslationale Modifikation durch die eukariotische Zelle, im Gegensatz zu früher häufig verwendeten prokariotischen Zellen, sichergestellt wird. Des Weiteren wird für die nahe Zukunft erwartet, dass insbesondere das Einbringen von genetischem Material in humane Zellen, also die Gentherapie, Einzug in die moderne Medizin in Form klinisch getesteter Verfahren und Therapien halten wird. Das Einbringen von genetischem Material ermöglicht es z.B. in einer eukariotischen Zelle zerstörte DNA Bereiche zu ersetzen und somit Fehlfunktionen zu beheben. Des Weiteren können Suizidgene eingeschleust werden, die beispielsweise Krebszellen zum „Selbstmord" zwingen. Aber auch das Stilllegen (Knock-down) von Genen kann erreicht werden, indem beispielsweise siRNA (small interfering RNA), Ribozyme oder Antisense Moleküle zum Einsatz kommen. Mit der Möglichkeit, auf den genetischen Steuerungsapparat der Zelle zugreifen zu können, steht dem Menschen daher ein wertvolles Mittel zur Verfügung, sein Verständnis aber auch seinen Einfluss auf die natürlich ablaufenden Prozesse in einer Zelle zu vermehren.
In den vergangenen Jahren erlangte die Erforschung so genannter Genliefermethoden (Gene Delivery Systems), die sowohl in vitro als auch in vivo eingesetzt werden können, enorme Bedeutung, da jenen große Chancen eingeräumt werden, der Gentherapie zum Durchbruch zu verhelfen. Ein Schwerpunkt der Gentherapieforschung besteht darin, Viren als Carriersysteme zu nutzen. Da das Einbringen von DNA oder RNA in Fremdzellen ein integraler Bestandteil des Vermehrungszyklus der Viren ist, wurde diese Fähigkeit durch einen natürlichen, evolutiven Prozess in der Entwicklungsgeschichte der Viren soweit verfeinert, dass es bis heute keine effektiveren Gen-Carrier gibt. Die natürlich vorkommenden Viren werden gentechnisch so manipuliert, dass sie Ihre Fähigkeit zur Reproduktion und ihre Pathogenität verlieren, jedoch eine Zelle mit rekombinant eingebrachtem genetischem Material infizieren können. Da Viren außer aus genetischem Material im Wesentlichen aus Proteinen bestehen, bieten Sie dem Immunsystem allerdings eine große Angriffsfläche. Dabei hat das Immunsystem in einem ebenso evolutionären Anpassungsprozess Strategien entwickelt, sich diesen Eindringlingen zur Wehr zu setzen. Daher wird die Immunantwort des Körpers als ein besonders bedeutender Faktor bezüglich gescheiterter Gentherapiestudien genannt.
Die gegenwärtig zur Verfügung stehenden Genliefermethoden können in die zwei Hauptgruppen virale Systeme und nicht-virale Systeme unterteilt werden. Die nichtviralen Systeme können wiederum in chemische und physikalische Methoden unterschieden werden.
Von den nicht-viralen Systemen, die auf chemischen Methoden beruhen, sind insbesondere solche erwähnenswert, die auf kationischen Lipiden (sog. Lipofektion) oder kationischen Polymeren (sog. Polyfektion) beruhen. Deren Effizienz liegt in der Regel weit hinter den viralen Systemen.
Allseits bekannte kationische Polymere sind beispielsweise Poly-L-Lysin (PLL), (EP 388758) Polyethylenimin (PEI), (J. P. Behr et al.; Proc. Natl. Acad. Sei. USA; 1995;92;7297 (WO 9602655), Diethylaminoethyldextran (DEAE), (S. C. De Smedt et al.; Phar. Res.; 2000; 17; 113), Starburst Dendrimere (PAMAM), (F. C. Szoka et al.; Bioconjug. Chem.; 1996; 7; 703; WO 9502397), Chitosanderivate (W. Guang Liu et al.; J. Control. Release; 2002; 83; 1 ) oder auch Polydimethylaminoethylmethacrylate (P. van de Wetering et al.; J. Gene Med.; 1999; 1 ; 156; WO 9715680). Auch die weit verbreitete Ca-Phosphat-Präzipitationsmethode nutzt in weiterem Sinne ein „kationisches Polymer" und kann daher zu dieser Gruppe gezählt werden.
Kommerziell erhältliche Produkte solcher kationischer Polymere sind z.B. Superfect, Polyfect (Qiagen), ExGenδOO (Biomol) und jetPEI (Qbiogene). Ebenso bekannte kationische Lipide (J. P. Behr; Bioconjugate Chem.; 1994; 5; 382) sind beispielsweise DOTMA (US 4946787), DOTAP (Leventis et al.; Biochim. Biophys. Acta; 1990; 1023; 124), DOGS (EP 394111), DOSPA (WO 9405624), DOSPER (WO 97002419), DMRIE (US 5264618) oder DC-Chol (Huang et al; Biochem. Biophys. Res. Commun.; 1991 ; 179; 280; WO 9640067). Solche oder ähnliche Lipide werden als solche oder in Kombination mit so genannten Colipiden (z.B. DOPE) in der Regel in ethanolischen, wässrigen Pufferlösungen als Micellen oder Liposomen formuliert. Als solche, oder auch als Öl oder Festsubstanz zur Eigenformulierung sind sie als kommerziell erhältliche Reagenzien, wie Lipofectin, Lipofectamin, Lipofectamine 2000 (Invitrogen), Fugene (Roche), Effectene (Qiagen), Transfectam (Promega), Metafectene (Biontex) etc. erhältlich.
Kationische Lipide und kationische Polymere bilden in Anwesenheit von DNA oder RNA aufgrund der gegenläufigen Ladungsverhältnisse spontan so genannte Lipoplexe oder Polyplexe. Die Nukleinsäure wird dabei durch die Kompensation der negativen Ladung am Phosphatrest kondensiert, also in ihrer Größe minimiert. Im Allgemeinen hängt die Transfektionseffizienz von Lipoplexen oder Polyplexen von einer Vielzahl von Parametern ab. Die wichtigsten sind das Mengenverhältnis von genetischem Material zu kationischer Komponente bei der Herstellung der Lipo/Polyplexe, lonenstärke während der Herstellung der Lipo/Polyplexe, Absolutmenge von Lipo/Polyplexen pro Zelle, Zelltyp, Proliferationszustand der Zellen, physiologischer Status der Zellen, Zellteilungsrate, Inkubationszeit etc. Diese Einflussparameter sind Ausdruck eines komplizierten Transfektionsgeschehens, bei der die Lipo/Polyplexe bzw. die enthaltenen genetischen Materialien eine Vielzahl von zellulären Barrieren überwinden müssen.
Die erste Barriere stellt die äußere negativ geladene Zellmembran dar. Es wird angenommen, dass transfektionsaktive Lipoplexe eine positive Nettoladung haben müssen und durch adsorptive Endocytose oder Flüssigphasenendocytose in das Innere der Zelle gelangen. Durch die Endocytose, die einen aktiven Transportprozess der Zelle darstellt, wird Material auf der Zelloberfläche mit Zellmembran ummantelt und als Vesikel (Endosom) internalisiert. Durch Verschmelzung mit so genannten Lysosomen, die ein komplexes Gemisch von Enzymen beinhalten, werden die in den Endosomen enthaltenen Stoffe abgebaut. Da zu diesem Abbau ein niedriger pH-Wert nötig ist, besitzen Endosomen Protonenpumpen, die solange Protonen in die Endosomen pumpen, bis ein entsprechender pH-Wert erreicht wird. Um Ladungsneutralität zu wahren, strömen im gleichen Ausmaß Chloridionen in die Endosomen.
Viele moderne kationische Lipide oder Polymere besitzen aus diesem Grund Puffereigenschaften. Auf diese Weise wird der niedrige pH-Wert nicht erreicht und es kommt zu einem Eintrag an Ionen in die Endosomen, der die Endosomen durch den entstehenden osmotischen Druck zum Platzen bringt. Auf diese Weise gelangen diese Lipo/Polyplexe in das Cytosol. Da auch eine Reihe transfektionsaktiver Lipide und Polymere ohne Puffereigenschaften bekannt sind, muss ein weiterer Mechanismus existieren, der die Lipo/Polyplexe in das Cytosol gelangen lässt. Man vermutet zumindest im Falle der Lipide eine Fusion der beteiligten Membranen und damit einhergehend eine Destabilisierung. Ob dabei vorwiegend der Lipoplex oder die enthaltende DNA/RNA als solches in das Cytosol gelangt ist unklar. Es wird jedoch vermutet, dass die DNA im Cytosol aus dem Lipoplex freigesetzt wird, da Versuche scheiterten, durch Mikroinjektion von Lipoplexen direkt in den Zellkern eine Proteinexpression zu erreichen. Es scheint, als ob die in den Lipoplexen gebundene DNA dem Transkriptionsapparat nicht zugänglich ist. Handelt es sich um gegen mRNA gerichtete Antisense Moleküle oder siRNA, ist der biologische Wirkort erreicht und die Dauer der Wirkung hängt im wesentlichen von der Konzentration cytosolischer RNasen und der Rate der Freisetzung aus den Lipo/Polyplexen ab. DNA kann als solche nicht in den Zellkern eindringen, was als „Nuclear Barrier" bezeichnet wird. Sie gelangt allerdings während der Zellteilung an ihren Wirkort und führt so zur Expression von Proteinen.
Als weitere nicht-virale Methoden, die auf chemischen Methoden basieren, seien Systeme genannt, die einen DNA-bindenden Molekülteil sowie einen Liganden tragen, der rezeptorvermittelte Endozytose auszulösen vermag (Beispiel Transferrinfektion).
Das bedeutendste Beispiel einer nicht-viralen Methode, die auf einem physikalischen Verfahren beruht, stellt die Elektroporation dar. Dabei werden die zu transfizierenden Zellen zwischen zwei Elektroden verbracht, an die ein typischer Spannungsverlauf angelegt wird. Auf diese Weise werden die Zellen einem intensiven elektrischen Stromstoß (Puls) ausgesetzt, der zur einer reversiblen Öffnung (Poren) der Zellmembran führt. Durch diese Poren können Substanzen, wie z.B. genetisches Material, die sich in unmittelbarer Umgebung der Poren befinden in die Zelle eindringen. Der Puls (also Spannungsverlauf) als einer der wichtigsten Erfolgsparameter muss für jeden Zelltyp optimiert werden. Es gibt inzwischen einige kommerzielle Anbieter für Elektroporatoren (z.B. Eppendorf/Multiporator, US 6008038, Biorad/Genpulser, US 4750100, Genetronics Inc., US 5869326, BTX/ECM Serie), die speziell für eukariotische Zellen entwickelt wurden und eine Anpassung der Pulsparameter an den jeweiligen Zelltyp erlauben. Tatsächlich gibt es inzwischen auch Vorrichtungen die eine in vivo Applikation möglich machen. Bei der in vitro Anwendung werden die Zellen in einem Elektroporationspuffer suspendiert, zusammen mit der zu transfizierenden DNA/RNA in eine mit Elektroden versehene Elektroporationsküvette verbracht und einem oder mehreren Pulsen ausgesetzt. Neben dem Spannungsverlauf sind weitere wichtige Parameter die Beschaffenheit des Puffers, die Temperatur, die Zellkonzentration und die DNA-Konzentration. Nach dem die Zellen dem Puls ausgesetzt wurden, lässt man ihnen eine kurze Zeit zur Regeneration der Zellmembran. Anschließend werden die Zellen in ein Kulturgefäß ausgesäht und wie üblich kultiviert.
Als weitere physikalische Methoden seien Mikroinjektion, Hydrodynamische Methoden, ballistische Methoden (Genegun) oder Methoden, die Ultraschall benutzen genannt oder auch die Injektion nackter DNA in verschiedene Organe, die zu geringer Expression der entsprechenden Gene führt.
Zu den Verfahren die physikalische Methoden als auch chemische Methoden vereinen, zählt insbesondere auch die Magnetofektion, die DNA-bindende Moleküle auf magnetischen Nanoteilchen nutzt um über eine magnetischen Feldgradienten DNA auch der Oberfläche von Zellen anzureichern und Endozytose auszulösen
Den enormen Möglichkeiten, die das Einbringen von genetischem Material in eine eukariotische Zelle mit sich bringt, steht ein Arsenal von Methoden gegenüber, die nur unbefriedigende Leistungsfähigkeit aufweisen. Die jeweils spezifisch auftretenden Mängel bis dato vorhandener Methoden betreffen im Wesentlichen die wichtigen Parameter Effizienz, Toxizität, Immunogenität, Targeting, Restriktion bzgl. der Größe des genetischen Materials, Möglichkeiten der in vivo/in vitro Anwendung, Möglichkeit von High-Throughput-Anwendungen, Gefahrenpotential, Einfachheit der Methode und Kosten der Methode. Kein Verfahren ist in der Lage, alle diese Parameter ausreichend zu erfüllen. Dem Fehlen eines geeigneten Gen- Carriersystems wird zugeschrieben, dass sich bis heute trotz erheblicher Forschungsaufwendungen keine auf Gentherapie beruhende medizinische Therapie etablieren konnte.
Insbesondere kann das angeborene Immunsystem von Eukaryoten eine erhebliche Barriere für nicht-virale Genliefersysteme darstellen. Der Grund dafür ist, dass das angeborene Immunsystem von Eukaryoten in der Lage ist, über Toll Like Rezeptoren fremdes genetisches Material zu erkennen und Signaltransduktionskaskaden anzustoßen, die einen antiviralen Zustand von Zellpopulationen auslösen. Aber auch nicht-virale Carriersysteme bzw. deren synthetische Bestandteile wie z B. kationische Lipide können durch das angeborene Immunsystem durch verschiedenste Rezeptoren als fremd erkannt werden und den Zustand der Zelle ändern. Ein derartiger antiviraler oder auch veränderter Zustand einer Zelle stellt auch eine Barriere für die Transfektion mit einem nicht-viralen Genliefersystem dar, die kaum bzw. nicht überwunden werden kann.
So zeigten beispielsweise repetitive Lipofektionsversuche, bei denen zunächst eine Transfektion mit einer spezifisch gegen ein bestimmtes Protein gerichteten siRNA durchgeführt wurde und anschließend eine Plasmidtransfektion mit einem Reportergen folgte, dass der Transfektionserfolg der Plasmidtransfektion ausblieb, obwohl die Zellen einen gesunden Eindruck machten. Nur bei sehr geringen siRNA Mengen konnte eine geringe Menge des Reporterproteins detektiert werden.
Um auszuschließen, dass es sich um einen OFF-Target-Effekt der spezifischen siRNA handelt, wurde der Versuch mit einer unspezifischen siRNA wiederholt, die gegen das humane Erbgut „geblastet" wurde. Das Ergebnis blieb jedoch dasselbe.
Da bekannt ist, dass auch die Proliferation der Zellen einen Einfluss bei der Lipofektion hat, wurde untersucht, ob die Zellen in Ihrem Proliferationsverhalten durch die Vortransfektion mit siRNA beeinträchtigt wurden. Dabei konnte festgestellt werden, dass die Proliferationsraten bei höheren siRNA Mengen sinken, jedoch eine ausreichende Proliferation bei den Experimenten gegeben, war, als die der Vortransfektion folgende Plasmidtransfektion fehlschlug. Es schien, als ob die Zellen sich überraschenderweise gegen die zweite Transfektion wehren können.
Mit repetitiven Transfektionsversuchen, bei denen zwei Plasmidtransfektionen hintereinander geschaltet wurden, konnte ein ähnliches Ergebnis erhalten werden, wenn auch nicht mit der oben genannten Deutlichkeit. Der zweite Transfektionschritt war häufig entweder sehr ineffizient oder kontraproduktiv. Auch hier wurden ähnliche Untersuchungen, wie oben genannt, durchgeführt, um sicherzustellen, dass es sich nicht um toxische Effekte handelt. Weitere Untersuchungen zeigten, dass es zur Aussschüttung von Interferonen kam. Protein bzw. Antikörperliefermethoden
Eine althergebrachte Methode Moleküle aller Art, so auch Proteine, in eine Zelle einzuschleusen ist es, das/die Molekül(e) in das innere wässrige Milieu von
Liposomen einzuschliessen, die von Zellen durch Endocytose aufgenommen werden. In der Regel handelt es sich bei den dazu verwendeten Lipiden um eine
Mischung aus Phospholipiden.
Zur Lieferung von Proteinen steht aber auch eine Reihe von moderneren, zum Teil auch kommerzialisierten Methoden zur Verfügung (S. L. Schwarze et al., Trends Cell
Biol., 2000, 10, 290-295; T Yoshikawa et al., Biochem Biophys Res Commun, 2008,
366(2), 408-13; R Suzuki et al., Biol Pharm Bull, 2007, 30(4), 758-62; L Hasadsri et al., J Biol Chem, 2009, 284(11 ), 6972-6981 ; N Kurata et al., J Biochem, 2008,
144(6), 701-707).
Ein Teil dieser Methoden basiert auf einer kovalenten Verknüpfung des zu transportierenden Proteins oder Peptides mit verschiedenen Peptidsequenzen wie
HIV-1 TAT, der Drosophila Antennapedia Homeodomäne oder dem „DNA binding
Protein" VP22 aus dem Herpes Simplex Virus-1. Solche aus 10-35 Aminosäuren bestehenden Peptide, von denen mittlererweile auch künstliche hergestellt werden konnten, werden auch „Protein Transduction Domäne" (PTD) oder „Membran
Transport Signal" bezeichnet. Entsprechende kovalente Verknüpfungen werden durch chemische „Crosslinker" oder durch die Erzeugung eines rekombinanaten
Gesamtproteins erreicht.
Penatratin 1 beispielsweise ist ein kommerzielles Produkt, dass aus einem 16
Aminosäurepeptid besteht. Es entspricht der dritten Helix der Homeodomäne des
Antennapediaproteins. Um es kovalent an ein Protein oder Peptid zu binden ist es mit einer N-terminalen Pyrydyldisufidgruppe versehen, das sich mit einer freien
Thiolgruppe kuppeln lässt. Die Methoden die PTDs nutzen sind in der Regel auf
Peptide oder kleinere Proteine beschränkt.
Es gibt aber auch andere Methoden, die auch in der Lage sind große Proteine und
Antikörper in eukariotische Zellen einzuschleusen
Diese Methoden verzichten auf eine kovalente Verknüpfung und basieren auf
Peptiden oder Lipiden. Diese bilden nicht-kovalente Komplexe die in die Zell eindringen können. Ein Beispiel für ein solches Peptid ist das kommerzialisierte Chariot™ von Active Motif (US 6841535). Es handelt sich um ein 2843 Dalton Peptid, das mit Peptiden, Proteinen und Antikörper Komplexe eingeht. Diese Komplexbildung beruht auf hydrophilen und hydrophoben Wechselwirkungen. Das zugrundeliegende Peptid besitzt eine in der Hauptsache auch positiv geladenen Aminosäuren bestehende hydrophile Domän und eine hydrophobe Domäne, ähnelt also amphiphilien Verbindungen. Nach der Intemalisierung dissoziiert dieser Komplex und gibt das biologisch aktive Makromolekül frei. Da der Prozess auch bei niedrigen Temperaturen von beispielsweise 40C funktioniert wird angenommen, dass der Aufnahmeprozess wie bei den PTDs von der Endocytose unabhängig ist. Dadurch handelt es sich um eine schonende Methode, da das Makromolekül nicht den harten Bedingungen dieses Aufnahmemechanismusses ausgesetzt wird, was sich in der hohen Transfermenge von bis zu 95 % des eingesetzten Makromoleküls spiegelt. Der Lieferprozess dauert dabei weniger als 2 Stunden.
Ein anderes Beispiel ist die Lipidzusammensetzung BioPORTER™ von Gene Therapy Systems (O. Zelphati et al, J. Biol. Chem. 2001 , 276, 35103-35110; US 2003/0008813, US 2003/0054007 und EP 1133465). Diese basiert auf einem kationischen Lipid und einem Colipid (DOPE). Auch mit BioPORTER™ können große Proteine und Antikörper unter Erhalt ihrer vollen biologischen Aktivität in Zellen eingeschleust werden. Dabei wird angenommen, dass postiv geladene Bioporter/Proteinkomplexe gebildet werden, die von Zellen über Endocytose aufgenommen werden. Ähnliche Produkte sind Pro-Deliverln™ bzw. AB-Deliverln™ der Firma OZ Biosciences oder Pulsin™ der Firma Polyplus.
Elektroporation und Mikroinjektion sind physikalische Methoden mit welchen auch biologisch aktive Peptide und Proteine in Zellen eingebracht werden können.
Beschreibung der Erfindung
Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, das eine effizientere Transfektion ermöglicht. Weiter stellt sich die Aufgabe den physiologischen Status der Zellpopulation so wenig wie möglich zu beeinflussen, d.h. das Protein- Expressionsprofil der Zellpopulation sollte sich idealerweise nur bezüglich der Proteine ändern, deren Gene in die Zelle eingeschleust wurden oder deren Expression durch das eingeschleuste genetische Material herabgesetzt oder blockiert werden sollte.
Diese Aufgabe wird erfindungsgemäß gelöst durch Transfektionsverfahren , umfassend die Schritte: (a) Einbringen von mindestens einem Antikörper in das
Cytosol einer eukariotischen Zelle, wobei der mindestens eine Antikörper zumindest eine biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert; und
(b) Transfektion der eukariotischen Zelle mit dem mindestens einen in das Cytosol eingebrachten Antikörper mit genetischem Material, wobei für die Transfektion ein nicht-virales Genliefersystem eingesetzt wird.
Der Begriff "mindestens" oder "zumindest" bedeutet vorliegend ein oder mehrere. Beispielsweise ist das Einbringen von mindestens einem Antikörper in das Cytosol einer eukariotischen Zelle so zu verstehen, dass ein Antikörper oder mehrere verschiedene Antikörper in das Cytosol der eukariotischen Zelle eingebracht werden kann/können. Sofern verschiedene Antikörper in das Cytosol der eukariotischen Zelle eingebracht werden, können diese verschiedenen Antikörper eine biologische Funktion einer einzigen cytosolischen Komponente oder jeweils von unterschiedlichen cytosolischen Komponenten des angeborenen Immunsystems einschränken, neutralisieren oder blockieren.
Der Schritt (a) und/oder der Schritt (b) des Transfektionsverfahrens kann/können in vivo oder in vitro durchgeführt werden.
Bevorzugt kann der Schritt (a) des Transfektionsverfahrens in einem Zeitintervall von 0,01 bis 48 Stunden vor dem Schritt (b), bevorzugt in einem Zeitintervall von 0,01 bis 12 Stunden, am meisten bevorzugt in einem Zeitintervall von 2 bis 5 Stunden vor dem Schritt (b) durchgeführt werden.
Ferner kann erfindungsgemäß in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht werden, der gegen zumindest eine in das Cytosol ragende Domäne eines Transmembranrezeptors gerichtet ist, wobei der Transmembranrezeptor ausgewählt ist aus TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 , TLR12, TLR13, I F N-Typ-I -Rezeptor, IFN- Rezeptor, TNF-Rezeptor, IL-Rezeptor, IL-1 Rezeptor, G-Protein gekoppelter Rezeptor und Mannose-Rezeptor.
Weiterhin kann erfindungsgemäß in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht werden, der gegen zumindest einen cytoplasmatischen Rezeptor gerichtet ist, wobei der Rezeptor ausgewählt ist aus NOD-like Rezeptoren, NODS, NOD1 , NOD2, NALPS, NALP1 , NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11 , NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1 , RNA Helikasen, RIG-I, RIG-l-like Rezeptoren und Mda5.
Auch kann erfindungsgemäß in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht werden, der gegen zumindest ein Adaptermolekül gerichtet ist, wobei das Adaptermolekül ausgewählt ist aus MyD88, TRAF1 , TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1 , RAC-1 , RIP-1 und FADD.
Weiter kann erfindungsgemäß in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht werden, der gegen zumindest eine Kinase gerichtet ist, wobei die Kinase ausgewählt ist aus Kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKK delta, IKKepsilon, IKKi, IKKg, IRAK1 , IRAK4, PI 3K, JNK, JNK1 , JNK2, p28MAPK, MKKs, ERK-1 , ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1 , MEK2, MEK5, MSK 1 , RIP-2, TBK-1 , TAK-1 , IRF-Kinase, MAP Kinase, MAPK Kinase, MAPKK Kinase, MAPKKK Kinase, MKK4/SEK, MKK5, MKK7, p38 MAP Kinase, p38/RK MAP Kinase, p30/RK MAP Kinase, JAK, PKB Kinase, PDK1 , PDK2 und MSKL
Auch ist es erfindungsgemäß möglich, in Schritt (a) mindestens einen Antikörper in das Cytosol einer eukariotischen Zelle einzubringen, der gegen zumindest einen Transkriptionsfaktor gerichtet ist, wobei der Transkriptionsfaktor ausgewählt ist aus NF-kB, AP-1 , IRF1 , IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 und STAT2.
Ferner kann erfindungsgemäß in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht werden, der gegen IkB, 2'5'- Oligoadenylatsynthase, G-Proteine, Raf, Ras, Rnasen, RnaseL, Dnasen, Dnase 1 , Dnase 2, Dnasei /L2, Dnasei /L3 oder Dnase 2like acid Dnase gerichtet ist.
Bevorzugt kann erfindungsgemäß in Schritt (a) der mindestens eine Antikörper in einer Menge von 0,01 bis 5 Pikogramm, bevorzugt in einer Menge von 0,01 bis 0,5 Pikogramm, am meisten bevorzugt in einer Menge von 0,01 bis 0,05 Pikogramm in das Cytosol der eukariotischen Zelle eingebracht werden.
Ferner ist es erfindungsgemäß bevorzugt, dass in Schritt (a) für das Einbringen des mindestens einen Antikörpers in das Cytosol einer eukariotischen Zelle ein Proteinliefersystem eingesetzt wird.
Erfindungsgemäß kann das Proteinliefersystem ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein, ein kationisches Protein mit hydrophoben Anteilen oder eine Verbindung umfassen, die eine antikörperbindende Domäne aufweist und rezeptorvermittelte Endocytose und/oder einen Membrantransfer auslösen kann; oder es kann als Proteinliefersystem Elektroporation, Mikroinjektion, Magnetoproteofektion, Ultraschall, ein ballistisches Verfahren oder ein hydrodynamisches Verfahren eingesetzt werden.
Bevorzugt kann das Proteinliefersystem erfindungsgemäß ein kationisches Protein mit hydrophoben Anteilen umfassen, wobei das kationische Protein mit hydrophoben Anteilen ein Peptid aus 16 bis 30 Aminosäuren mit einem hydrophoben Anteil von wenigstens 4 Aminosäuren und einem hydrophilen Anteil von bis zu 12 Aminosäuren mit einer Mehrzahl von kationischen Aminosäuren, die optional durch eine Spacersequenz von bis zu 10 Aminosäuren voneinander getrennt sind, umfassen kann.
In einer bevorzugten Ausführungsform kann als Proteinliefersystem Chariot eingesetzt werden.
Weiter kann das Proteinliefersystem erfindungsgemäß ein kationisches Lipid umfassen, das eine Polylysin-Kopfgruppe trägt, deren primäre Aminogruppen optional durch eine Säure zu Amiden derivatisiert sind.
In einer bevorzugten Ausführungsform kann als Proteinliefersystem Bioporter, BioTrek, ABdeliverin oder Prodeliverin eingesetzt werden.
Bei dem erfindungsgemäßen Transfektionsverfahren kann das nicht-virale Genliefersystem in Schritt (b) ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein oder eine Verbindung umfassen, die eine DNA und/oder RNA- bindende Domäne aufweist und rezeptorvermittelte Endozytose und/oder einen Membrantransfer auslösen kann; oder es kann ein physikalisches Verfahren wie Elektroporation, Mikroinjektion, Magnetofektion, Ultraschall, ein ballistisches Verfahren oder ein hydrodynamisches Verfahren als nicht-virales Genliefersystem eingesetzt werden.
Auch kann bei dem erfindungsgemäßen Transfektionsverfahren das nicht-virale Genliefersystem ein kationisches Polymer umfassen, das ausgewählt ist aus einem linearen oder verästelten Polyethylenimin und/oder einem kationischen Dendrimer.
Ferner ist es erfindungsgemäß möglich, dass das nicht-virale Genliefersystem ein kationisches Lipid mit einer Polyamin-Kopfgruppe und/oder dem Colipid DOPE umfasst. Bevorzugt kann bei dem erfindungsgemäßen Transfektionsverfahren das nicht-virale Genliefersystem in Schritt (b) Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP, Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGenδOO, Gene Juice, einen Vertreter der TransIT-Reihe, Transfast, einen Vertreter der Tfx-Reihe, Gene Shuttle, Duofect, Superfect, Effectene, Polyfect, Dosper, X-treme Gene Q2, Extreme Gene siRNA, einen Vertreter der Escort-Reihe, Lipotaxi, Geneporter, Geneporter 2, Genesilencer, Neuroporter, jetPEI, jetSI, Interferin, Fecturin, Perfectin, Dharmafect, siPort Amine, siPort Lipid, Ribojuice, Transmessenger, Eufectin, siFector, sureFector, uniFector, Transfectin, siLentfect, Rotifect, MATra, Gene Trans, einen Vertreter der TransPass-Reihe, RNAiFect, Transmessenger, GeneEraser, Megafectin, Transfectam, Codebreaker, HiPerfect, Arrestin oder entsprechende Inhaltsstoffe umfassen.
Weiterhin kann bei dem erfindunsgemäßen Transfektionsverfahren das Proteinliefersystem mit dem nicht-viralen Genliefersystem identisch sein.
Bevorzugt kann bei dem erfindungsgemäßen Transfektionsverfahren als genetisches Material für die Transfektion in Schritt (b) modifizierte oder unmodifizierte ssDNA, modifizierte oder unmodifizierte dsDNA, modifizierte oder unmodifizierte ssRNA, modifizierte oder unmodifizierte dsRNA und/oder modifizierte oder unmodifizierte siRNA eingesetzt werden.
Erfindungsgemäß wird ferner eine Zusammensetzung bereitgestellt, die zumindest drei der folgenden Komponenten (1 ) bis (4) umfasst:
(1 ) ein nicht-virales Genliefersystem;
(2) genetisches Material;
(3) ein Proteinliefersystem, das einen biologisch aktiven Antikörper in das Cytosol einer Zelle transportieren kann; (4) mindestens einen Antikörper, der die biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert.
Vorteilhaft kann die erfindungsgemäße Zusammensetzung zur Durchführung des hier vorgeschlagenen Transfektionsverfahrens eingesetzt werden.
Weiterhin wird erfindungsgemäß ein Kit of parts bereitgestellt, der zumindest drei der folgenden Komponenten (1 ) bis (4) umfasst:
(1 ) ein nicht-virales Genliefersystem;
(2) genetisches Material;
(3) ein Proteinliefersystem, das einen biologisch aktiven Antikörper in das Cytosol einer Zelle transportieren kann;
(4) mindestens einen Antikörper, der die biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert.
Die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts kann als Komponente (4) einen Antikörper enthalten, der gegen zumindest eine in das Cytosol ragende Domäne eines Transmembranrezeptors gerichtet ist, wobei der Transmembranrezeptor ausgewählt ist aus TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 , TLR12, TLR13, I F N-Typ-I -Rezeptor, IFN- Rezeptor, TNF-Rezeptor, IL-Rezeptor, IL-1 Rezeptor, G-Protein gekoppelter Rezeptor und Mannose-Rezeptor.
Die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts kann als Komponente (4) auch einen Antikörper enthalten, der gegen zumindest einen cytoplasmatischen Rezeptor gerichtet ist, wobei der Rezeptor ausgewählt ist aus NOD-like Rezeptoren, NODS, NOD1 , NOD2, NALPS, NALP1 , NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11 , NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1 , RNA Helikasen, RIG-I, RIG-l-like Rezeptoren und Mda5. Weiterhin kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (4) einen Antikörper enthalten, der gegen zumindest ein Adaptermolekül gerichtet ist, wobei das Adaptermolekül ausgewählt ist aus MyD88, TRAF1 , TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1 , RAC-1 , RIP-1 und FADD.
Ferner kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (4) einen Antikörper enthalten, der gegen zumindest eine Kinase gerichtet ist, wobei die Kinase ausgewählt ist aus Kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKK delta, IKKepsilon, IKKi, IKKg, IRAK1 , IRAK4, PI 3K, JNK, JNK1 , JNK2, p28MAPK, MKKs, ERK-1 , ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1 , MEK2, MEK5, MSK 1 , RIP-2, TBK-1 , TAK-1 , IRF-Kinase, MAP Kinase, MAPK Kinase, MAPKK Kinase, MAPKKK Kinase, MKK4/SEK, MKK5, MKK7, p38 MAP Kinase, p38/RK MAP Kinase, p30/RK MAP Kinase, JAK, PKB Kinase, PDK1 , PDK2 und MSK1.
Die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts kann als Komponente (4) auch einen Antikörper enthalten, der gegen zumindest einen Transkriptionsfaktor gerichtet ist, wobei der Transkriptionsfaktor ausgewählt ist aus NF-kB, AP-1 , IRF1 , IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 und STAT2.
Die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts kann als Komponente (4) ferner einen Antikörper enthalten, der gegen IkB, 2'5'- Oligoadenylatsynthase, G-Proteine, Raf, Ras, Rnasen, RnaseL, Dnasen, Dnase 1 , Dnase 2, Dnasei /L2, Dnasei /L3 oder Dnase 2like acid Dnase gerichtet ist.
Bevorzugt kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (3) ein Proteinliefersystem enthalten, welches ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein, ein kationisches Protein mit hydrophoben Anteilen oder eine Verbindung umfasst, die eine antikörperbindende Domäne aufweist und rezeptorvermittelte Endocytose und/oder einen Membrantransfer auslösen kann.
Weiterhin kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (3) ein Proteinliefersystem enthalten, welches ein Peptid aus 16 bis 30 Aminosäuren mit einem hydrophoben Anteil von wenigstens 4 Aminosäuren und einem hydrophilen Anteil von bis zu 12 Aminosäuren mit einer Mehrzahl von kationischen Aminosären, die optional durch eine Spacersequenz von bis zu 10 Aminosäuren voneinander getrennt sind, umfasst.
Vorzugsweise kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (3) das Proteinliefersystem Chariot enthalten.
In einer bevorzugten Ausführungsform kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (3) ein Proteinliefersystem enthalten, welches ein kationisches Lipid umfasst, das eine Polylysin-Kopfgruppe trägt, deren primäre Aminogruppen optional durch eine Säure zu Amiden derivatisiert sind.
Ferner kann in einer bevorzugten Ausführungsform die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (3) das Proteinliefersystem Bioporter, BioTrek, ABdeliverin oder Prodeliverin enthalten.
Bevorzugt kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (1 ) ein nicht-virales Genliefersystem enthalten, welches ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein und/oder eine Verbindung umfasst, die eine DNA und/oder RNA-bindende Domäne aufweist und rezeptorvermittelte Endozytose und/oder Membrantransfer auslösen kann. Die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts kann als Komponente (1 ) bevorzugt ein nicht-virales Genliefersystem enthalten, welches ein lineares oder verästeltes Polyethylenimin; und/oder ein kationisches Dendrimer; und/oder ein kationisches Lipid mit einer Polyamin-Kopfgruppe und/oder Colipid DOPE umfasst.
In einer bevorzugten Ausführungsform kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (1 ) ein nicht-virales Genliefersystem enthalten, welches Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP, Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGen500, Gene Juice, einen Vertreter der TransIT-Reihe, Transfast, einen Vertreter der Tfx-Reihe, Gene Shuttle, Duofect, Superfect, Effectene, Polyfect, Dosper, X-treme Gene Q2, Extreme Gene siRNA, einen Vertreter der Escort-Reihe, Lipotaxi, Geneporter, Geneporter 2, Genesilencer, Neuroporter, jetPEI, jetSI, Interferin, Fecturin, Perfectin, Dharmafect, siPort Amine, siPort Lipid, Ribojuice, Transmessenger, Eufectin, siFector, sureFector, uniFector, Transfectin, siLentfect, Rotifect, MATra, Gene Trans, einen Vertreter der TransPass-Reihe, RNAiFect, Transmessenger, GeneEraser, Megafectin, Transfectam, Codebreaker, HiPerfect, Arrestin oder entsprechende Inhaltsstoffe umfasst.
Weiterhin ist es erfindungsgemäß möglich, dass die Komponente (1 ) und die Komponente (3) in der erfindungsgemäßen Zusammensetzung oder dem erfindungsgemäßen Kit of parts identisch sind.
Bevorzugt kann die erfindungsgemäße Zusammensetzung oder der erfindungsgemäße Kit of parts als Komponente (2) genetisches Material enthalten, welches modifizierte oder unmodifizierte ssDNA, modifizierte oder unmodifizierte dsDNA, modifizierte oder unmodifizierte ssRNA, modifizierte oder unmodifizierte dsRNA und/oder modifizierte oder unmodifizierte siRNA umfasst. In einer bevorzugten Ausführungsform des erfindungsgemäßen Kit of parts können alle Komponenten getrennt voneinander vorliegen, oder die Komponenten als Kombination von 2, 3 oder 4 Komponenten vorliegen, wobei die jeweils verbleibenden Komponenten der Kombination getrennt oder als weitere Kombination von 2 Komponenten vorliegen.
So können die Komponenten entweder getrennt voneinander z.B. in Glas- oder Plastikbehälter vorliegen, die gemeinsam verpackt sind, oder die Komponenten können zu zweit oder zu mehreren in entsprechenden Behältern bereitgestellt werden.
Erfindungsgemäß wird weiterhin eine pharmazeutische Zusammensetzung bereitgestellt, die eine der vorstehend genannten erfindungsgemäßen Zusammensetzungen umfasst.
Erfindungsgemäß wird ferner ein pharmazeutischer Kit of parts bereitgestellt, der einen der vorstehend genannten erfindungsgemäßen Kit of parts umfasst.
Erfindungsgemäß kann eine erfindungsgemäße Zusammensetzung oder ein erfindungsgemäßer Kit of parts zur Behandlung einer Krankheit durch Gentherapie verwendet werden.
Bei der Krankheit, die mit einer erfindungsgemäßen Zusammensetzung oder einem erfindungsgemäßen Kit of parts behandelt werden kann, kann es sich erfindungsgemäß um cystische Fibrose, Muskeldystrophie, Phenylketonurie, Ahornsirupkrankheit, Propionazidämie, Methylmalonazidämie,
Adenosindeaminasemangel, Hypercholesterinämie, Hämophilie, ß-Thalassämie, Krebs, eine Viruserkrankung, eine Degeneration der Macula, Amyotropische Lateral- Sklerose und/oder eine Entzündungserkrankung handeln. In einer bevorzugten Ausführungsform können mehrere der vorstehend genannten Antikörper zur zumindest teilweisen Unterdrückung der Immunabwehr miteinander kombiniert werden, d.h. es können zwei, drei oder mehrere Komponenten der Komponente (4) eingesetzt werden. Ebenso ist es möglich mehrere der vorstehend genannten Komponenten (1 ) und/oder (2) und/oder (3) einzusetzen.
Bei dem erfindungsgemäßen Verfahren kann die angeborene Immunabwehr durch mindestens einen Antikörper, der eine Komponente der angeborenen Immunabwehr einschränkt, neutralisiert oder blockiert, zumindest teilweise unterdrückt werden. Der Begriff "Antikörper" umfasst vorliegend polyklonale, monoklonale und alle Arten von rekombinanten Antikörpern. Entscheidend ist, dass der Antikörper so an die Komponente des angeborenen Immunsystems bindet, dass dessen biologische Funktion möglichst ausgeschaltet wird.
Da es sich bei den cytosolischen Bestandteilen des angeborenen Immunsystems allesamt um Proteine handelt, werden erfindungsgemäß Antikörper, oder aber von Antikörpern abgeleitete Derivate gegen diese Proteine eingesetzt. Dabei werden die Antikörper oder davon abgeleitete Derivate mit Proteinliefersystemen, die sich zum cytosoplasmatischen Transport von biologisch aktiven Antikörpern eignen, in die Zellen verbracht werden.
Dabei sind erfindungsgemäß Antikörper geeignet, die in der Lage sind die cytosolschen Bestandteile des angeborenen Immunsystems in ihrer biologischen Wirkung zu blockieren. Diese müssen in der Regel also gegen die cytosolischen Bestandteile des angeborenen Immunsystems der Zellen gerichtet sein, die transfiziert werden sollen. Handelt es sich also um eine humane Zelle, so muss der Antikörper sich in der Regel gegen die humanen cytosolischen Bestandteile des angeborenen Immunsystems richten. In manchen Fällen sind die Antikörper wegen der großen Ähnlichkeit der cytosolischen Bestandteile des angeborenen Immunsystems aus verschiedenen Spezies auch kreuzreaktiv, d.h. obwohl ein Antikörper gegen ein Target von einer Spezies entwickelt wurde, zeigt er seine Eigenschaften auch gegen ein ähnliches Target aus einer anderen Spezies. Idealerweise werden für in vivo Anwendungen Antikörper aus Zellen derselben Spezies, die transfiziert werden soll verwendet, da sie in diesem Falle wenig oder nicht immunogen sind.
Es müssen nicht grundsätzlich Antikörper verwendet werden, die basierend auf einer Immunisierung von Organismen gewonnen wurden. Die Antikörper können auch rekombinant hergestellt worden sein und beispielsweise auf der Expression von rekombinierter Antikörper-DNA oder Teilen davon zB. in Bakterien oder Bakteriophagen basieren (zB. HuCaI Technologie, Morphosys). Sollen sie an menschlichen Zellen eingesetzt werden, können sie „humanisiert" sein. Idealerweise ist der Antikörper hochaffin. Der Antikörper kann polyklonal als auch monoklonal sein. Es können auch von Antikörpern abgeleitete Derivate eingesetzt werden, d.h. der Antikörper kann modifiziert sein, um seine Eigenschaften zu verändern. Beispielsweise kann das Fc-Fragment abgespalten werden, da die Bindung an das Antigen ausschliesslich durch die Fab-Fragmente (Fab-Antikörper) zustande kommen. Man erhält dann beispeilsweise monovalente oder bivalente Mini- Antikörper. Es kann sich auch um einen trifunktionellen Antikörper handeln. Der Antikörper kann auch mit einem „Tag" versehen sein, das eine Reinigung, Detektion oder Fusion mit anderen Molekülen ermöglichen soll. Will man den Antikörper z.B. leichter detektieren, kann er mit einem Fluoreszenzfarbstoff gelabelt sein. Er kann auch mit hydrophoben Gruppen (wie zB. Polyethylenglykol) modifiziert sein, um seine Verankerung in Membranen und/oder Liposomen zu erleichtern, werden. Es können auch mehrere Modifikationen an einem Antikörper vorgenommen werden. Weiter muss der Antikörper frei von Zusatzstoffen sein, die eine Anwendung an lebenden Zellen verbieten (zB. bestimmte Konservierungstoffe). Die erfindungsgemäßen Antikörper sind nicht auf irgendeine Isoform beschränkt.
Durch die zumindest teilweise Unterdrückung der angeborenen Immunabwehr, d.h. eine cytosolische Komponente der angeborenen Immunabwehr wird in ihrer biologischen Funktion blockiert, lässt sich das Transfektionsergebnis verbessern und/oder unerwünschte Änderungen des Expressionsprofils, wie zB. den „antiviralen Status einer transfizierten Zelle verringern oder vermeiden.
In einer bevorzugten Ausführung der Erfindung werden mehrere der vorstehend erwähnten Komponenten des angeborenen Immunsystems blockiert. So können beispielsweise mehrere Antikörper gegen unterschiedliche cytoplasmatische Komponenten kombiniert werden, um additive Effekte und/oder Synergieeffekte zu nutzen.
In einer weiteren bevorzugten Ausführung der Erfindung wird das Verfahren mit der Blockierung von Komponenten des angeborenen Immunsytems, die nicht auf Antikörpern beruht, kombiniert. Beispielsweise kann eine Blockierung auch auf siRNA, shRNA, Inhibitoren, Ribozymen oder Aptameren beruhen.
In einer weiteren bevorzugten Ausführung der Erfindung wird das Verfahren mit der Blockierung von Komponenten des angeborenen Immunsytems, die auf Antikörper beruht, und nicht cytoplasmatische Bestandteile in ihrer biologischen Funktion blockiert, kombiniert. Ein Beispiel ist die Blockade der extrazellulären und/oder endosomalen Domänen von TLR Rezeptoren durch Antikörper.
Die vorliegende Erfindung kann auch dazu genutzt werden Transfektionen durchzuführen, ohne das Expression profil der Zellen in einem ungewünschten Ausmaß zu verändern. Von besonderem Interesse ist dies bei in vivo Anwendungen, da hier die Aktivierung des Immunsystems häufig ein Problem darstellt.
Beispiel
Material:
HeIa Zellen
48-WeII Platte, Greiner Bio-one, Nr. 677180
Reaktionsgefäße, Peske, 1 ,5 ml PP, Prodnr.: 677180
DMEM, PAA, Kat-nr. E15-883 FCS Mykoplex, PAA Kat-nr. A15-105
Metafectene Pro, Biontex Laboratories, T040-1.0 pCMV-lacZ, Plasmidfactory, PF 462-060207, c=1 mg/ml in WFI
Anti-MyD88-Antikörper, (rabbit, anti-human, polyclonal), USBiological Katnr.: M9755-
09, purity: serum, liquid ß-Galktosidase Assay Kit, Stratagene
BCA Protein Assay Kit, Thermo Scientific, Prodnr.: 23227
ABdeliverin, OZ Bioscience, Katnr.: AI20050
Protein G SpinTrap, GE Healthcare, Produktnummer: 28-9031-34
Der Antikörper wird vor dem Versuch nach den Vorgaben des Herstellers mit den Protein-G SpinTrap Säulchen aufgereinigt. Das erhaltene Eluat wird photometrisch bei 280 nm vermessen (Antibodies: A Laboratory Manual, Edward Harlow, David Lane, CSHL Press, 1988, S 673) und die Antikörperkonzentration durch Verdünnung mit PBS (phospate buffered saline) auf 0,1 μg/μl eingestellt.
1. Versuchstag:
Es werden HeIa Zellen in einer 48 Well Platte ausgesäht. Dabei wird eine Zellzahl von 1 ,0 x 105 in 250 μl komplettem Kulturmedium (10% FCS) pro Well ausgesät. Anschließend wird 24 h in einem CO2-lnkubator (10%) inkubiert.
2. Versuchtag:
Proteofektion der Zellen mit dem Antikörper
Es sollen folgende Mengen Antikörper pro Well jeweils zweimal getestet werden:
0/1 , 2/1 ,3/1 ,4/1 ,5/1 ,6/1 ,7/1 , 8 μg
Vorgehensweise für ein Well: Der in PBS verdünnte Antikörper wird in einem
Reaktiongefäß vorgelegt und pro μg Antikörper 0,5 μl ABdeliverin zupipettiert. Nach einer Inkubationszeit von 10-15 Minuten bei Raumtemperatur werden 50μl DMEM zugegeben, und die AB-Lipoplexlösung auf die Zellen eines Wells gegeben.
Nach 5 h Inkubation in einem CO2-lnkubator (10%) wird das Medium gegen komplettes frisches Kulturmedium gewechselt. Direkt anschliessend wird transfiziert. Transfektion der Zellen mit der DNA:
Vorgehensweise für ein Well: 0,5 μg (0,5 μl) pCMVIacZ-Plasmidlösung wird in 15 μl PBS verdünnt. 2μl Metafectene Pro werden ebenfalls in 15 μl PBS verdünnt. Die Lösungen werden vereinigt und 15 Minuten bei Raumtemperatur inkubiert. Anschliessend wird die Lipoplexlösung auf die Zellen gegeben und in einem CO2- Inkubator (10%) inkubiert.
4.Versuchstag
Ungefähr 48 h nach der Transfektion werden der Reportergenassay (ß- Galaktosidase Assay) und die Proteinbestimmung (BCA Assay) nach den Vorgaben der Hersteller durchgeführt. Die Zellen werden dazu mit dem Lysispuffer des ß- Galaktosidase Assay Kits lysiert. Anschliessend wird ein Teil im BCA Assay eingesetzt. Der Rest steht für den ß-Galaktosidase Assay zu Verfügung. Die Platten werden bei dem ß Galaktosidase-Assay so lange entwickelt, bis eine Gelbfärbung mit einer Absorbtion von 1-2 mit einem Mikroplate-Reader gemessen wird und anschliessend sofort gestoppt. Die Inkubationszeit wird anschliessend notiert. Die Werte werden nochmals ausgelesen und für die doppelt durchgeführten Test der Mittelwert gebildet.
Bei einer Entwicklungszeit von 8 Minuten wurden folgende Absorptionsmittelwerte erhalten:
Figure imgf000038_0001
Für die entsprechenden Mittelwerte der Proteinmengen in μg wurden folgende Werte erhalten:
Figure imgf000038_0002
Die relativen Transfektionseffizienzen werden durch die auf die Proteinmenge pro
Well bezogene relative ß-Galaktosidase-Menge bestimmt. Als Maß für die
Galaktosidase-Menge dient der auf eine Zeiteinheit (Sekunde) normierte
Absorptionswert.
Man erhält dadurch eine spezifische Absorption ABS/(mgProtein*sek):
Figure imgf000039_0001
Eine graphische Darstellung dieser Ergebnisse ist in Fig. 1 gezeigt.
Es ist einleuchtend, das beispielsweise die Aktivierung der TLRs vor und während der Transfektion von vielen Faktoren abhängt. Je nach Expressionsprofil der Zielzelle kann dabei zB. eine besondere Empfindlichkeit der Zellen gegenüber bestimmten PAMPs gegeben sein. Weiter können unterschiedliche Genliefersysteme und unterschiedliches genetisches Material unterschiedliche TLRs aktivieren. Selbst unterschiedliche DNA Sequenzen können je nach CpG Gehalt Einfluss auf die Transfektionsergebnisse nehmen. Nicht zuletzt spielen auch Verunreinigungen eine nicht zu unterschätzende Rolle. So kann DNA bakteriellen Ursprungs beispielsweise mit LPS oder Flagellin oder RNA verunreinigt sein. ssRNA kann mit dsRNA verunreinigt sein und damit ausser TLR7/8 auch TLR3 ansprechen und umgekehrt. Unterschiedliche Behandlung der Zellen kann durch Stress- Signaltransduktionkaskaden zu unterschiedlichen Ergebnissen führen. Zusammenfasst kann gesagt werden, dass für unterschiedliche Transfektionsexperimente unterschiedliche Blockierungsstrategien erforderlich sein können.
Wie bereits ausgeführt, kann die Erfindung zu Therapiezwecken eingesetzt werden. Insbesondere kann die Erfindung für die Gentherapie von zum Beispiel Cystischer Fibrose, Muskeldystrophie, Phenylketonurie, Ahornsirupkrankheit, Propionazidämie, Methylmalonazidämie, Adenosindeaminasemangel, Hypercholesterinämie,
Hämophilie, ß-Thalassämie und Krebs genutzt werden. Gentherapeutische Behandlungsmethoden sind weiters interessant, wenn Hormone, Wachstumsfaktoren, Cytotoxine oder immunomodulierend wirkende Proteine im Organismus synthetisiert werden sollen. Für die oben genannten Zwecke können DNA-Fragmente mittels der Erfindung effektiv in Zellen gebracht werden, in denen diese DNA die gewünschte Wirkung entfalten kann ohne dabei zu unerwünschten Nebenwirkungen zu führen. Die gewünschte Wirkung kann der Ersatz fehlender oder defekter DNA-Bereiche oder die Inhibition von DNA-Bereichen (zum Beispiel durch Antisense-DNA / RNA oder siRNA), die die Erkrankung auslösen, im erkrankten Zelltyp sein. Auf diese Weise können z.B. tumorunterdrückende Gene in der Krebs- Therapie eingesetzt werden oder durch die Einführung cholesterolregulierender Gene ein Beitrag zur Vorbeugung von Herz- und Blutgefäßkrankheiten geleistet werden. Weiters kann DNA, welche Ribozyme, siRNA oder shRNA kodiert in erkrankte Zellen eingeschleust werden. Die Translation der DNA erzeugt aktive Ribozyme oder siRNA, die an spezifischen Stellen m-RNA katalytisch spalten und auf diese Weise die Transkription verhindern. Auf diese Weise kann zum Beispiel virale m-RNA gespalten werden, ohne eine andere zelluläre m-RNA in Mitleidenschaft zu ziehen. Der Vermehrungszyklus von Viren (HIV, Herpes, Hepatitis B und C, respiratorisches Syncytial Virus) kann auf diesem Wege unterbrochen werden. Weitere Erkrankungen, die speziell über die Behandlung mit siRNA geheilt werden sollen sind die altersbedingte Degeneration der Macula (Augenerkrankung), Leberkrebs, solide Tumoren, Amyotropische Lateral-Sklerose und Entzündungserkrankungen. Auch in der Krebstherapie spielt Transfektion beispielsweise zur Herstellung von Krebsvakzinen eine immer größer werdende Rolle. Damit ist jene auch mögliches Anwendungsgebiet für die Erfindung.
Eine weitere Anwendung kann die Erfindung zum Beispiel in Impfverfahren finden, die auf der Basis der Expression von DNA, welche immunogene Peptide kodiert, im Körper von Mensch und Tier funktionieren. Dazu werden z.B. Lipid / DNA-Komplexe als Impfstoffe benutzt. Die Einschleusung der DNA in die Körperzellen führt zur Expression des immunogenen Peptids und löst somit die adaptive Immunantwort aus. Im Folgenden werden erfindungsgemäß beispielhafte, aber keinesfalls beschränkende Definitionen aufgeführt:
Transfektion:
Einschleusen von genetischem Material in eine eukariotische Zelle.
Proteofektion
Einschleusen von Peptiden und Proteinen in eine eukariotische Zelle
Transfektionsergebnis/Transfektionseffizienz
Menge einer Proteinexpression einer Zellpopulation in Folge von Transfektionsprozessen mit genetischem Material, welches unter anderem dieses exprimierte Protein codiert oder Ausmaß eines Knock-downs einer Proteinexpression einer Zellpopulation in Folge von Transfektionsprozessen mit genetischem Material, welches einen solchen Knock-Down auslösen kann, insbesondere siRNA oder Ribozyme oder DNA, die für shRNA oder Ribozyme codiert oder Anteil der Zellen einer Gesamtpopulation von Zellen, die die biologische Wirksamkeit des eingeschleusten genetischen Materials in Folge von Transfektionsprozessen zeigt. Gleichzeitig soll der physiologische Status der Zellpopulation so wenig wie möglich beeinflusst werden, das heisst das Protein-Expressionsprofil der Zellpopulation soll sich idealerweise nur bezüglich der Proteine ändern, deren Gene in die Zelle eingeschleust wurden oder deren Expression durch das eingeschleuste genetisches Material herabgesetzt oder verhindert werden soll.
Nicht-virales Genliefersystem:
Nicht-virale Genliefersysteme werden nicht durch Rekombination genetischen Materials von natürlich vorkommenden Viren erzeugt. Sie sind in der Lage genetisches Material in eukariotische Zellen einzuschleusen. Insbesondere handelt es sich bei den nicht-viralen Genliefersystemen um physikalische Methoden und chemische Methoden. Physikalische Methoden lokalisieren mindestens das genetische Material in der Nähe der Zelle, insbesondere nutzen physikalische Verfahren jedoch Energiezufuhr insbesondere in Form von thermischer, kinetischer, elektrischer oder sonstiger Energie um einen Transport des genetischen Materials durch die Zellmembran zu vermitteln. Chemische Methoden beruhen entweder auf einer chemischen Veränderung oder Derivatisierung der Nukleinsäuren, die sie insbesondere zellgängig machen oder bestehen insbesondere aus Stoffen, die DNA binden und einen Transport durch die Zellmembran vermitteln können. Insbesondere nutzen diese zur Bindung der Nukleinsäuren elektrostatische Kräfte oder Wasserstoffbrückenbindungen. Wiederum insbesondere geschieht der Transport der DNA durch die Zellmembran durch einen aktiven Transportmechanismus der Zelle, der Endozytose. Stoffe, die diese Eigenschaften aufweisen enthalten insbesondere kationische Lipide, kationische Polymere, kationische Peptide oder auch Moleküle die eine Domäne haben, die DNA oder RNA binden kann und zugleich eine zweite Domäne haben, die eine Liganden enthält, der von einem Rezeptor auch der Zelloberfläche erkannt wird und durch diesen Erkennungsprozess Endozytose auslöst. Die Stoffe können auch besonders formuliert sein, insbesondere als Micellen oder Liposomen und auch aus mehreren Komponenten insbesondere mit unterschiedlicher Funktion bestehen.
Proteinliefersystem
Ein Proteinliefersystem ist in der Lage Proteine in eukariotische Zellen einzuschleusen. Insbesondere handelt es sich bei den Proteinliefermethoden um physikalische Methoden und chemische Methoden. Physikalische Methoden lokalisieren mindestens das Protein in der Nähe der Zelle, insbesondere nutzen physikalische Verfahren jedoch Energiezufuhr insbesondere in Form von thermischer, kinetischer, elektrischer oder sonstiger Energie um einen Transport des Proteins durch die Zellmembran zu vermitteln. Chemische Methoden beruhen entweder auf einer chemischen Veränderung oder Derivatisierung der Proteine, die sie insbesondere zellgängig machen oder bestehen insbesondere aus Stoffen, die Proteine nicht kovalent binden und einen Transport durch die Zellmembran vermitteln können. Insbesondere nutzen diese zur Bindung der elektrostatische Kräfte, hydrohile und/oder hydrophobe Wechselwirkungen oder auch Wasserstoffbrückenbindungen. Wiederum insbesondere geschieht der Transport der Proteine durch die Zellmembran durch einen aktiven Transportmechanismus der Zelle, der Endozytose. Stoffe, die diese Eigenschaften aufweisen enthalten insbesondere kationische Lipide, kationische Polymere, kationische Peptide, kationische Peptide mit einer hydrophoben Domäne oder auch Moleküle die eine Domäne haben, die Proteine binden kann und zugleich eine zweite Domäne haben, die eine Liganden enthält, der von einem Rezeptor auch der Zelloberfläche erkannt wird und durch diesen Erkennungsprozess Endozytose auslöst. Die Stoffe können auch besonders formuliert sein, insbesondere als Micellen oder Liposomen und auch aus mehreren Komponenten insbesondere mit unterschiedlicher Funktion bestehen. Der Transport kann aber auch durch einen passiven Transport durch die Zellmembran, also einem Membrantransfer geschehen.
Membrantransfer
Membrantransfer ist der Durchtritt eines Moleküls von einer Seite einer Zellmembran auch die andere
Antikörper
Protein, das aufgrund nicht kovalenter Bindungen an ein anderes Protein oder proteinreiches Molekül bindet. Der Antikörper kann durch Immunisierung eines Organismus oder durch rekombinate Methoden gewonnen werden. Vom Antikörper können Teile, die nicht zur Bindung notwendig sind, abgespalten werden. Solche Fragmente können auch durch rekombinante Methoden gewonnen werden. Es können aber auch zusätzliche Molekülteile („Tags") in den Antikörper eingeführt werden, um eine Reinigung, Detektion oder Fusion mit anderen Molekülen zu ermöglichen. In der vorliegenden Anmeldung umfasst der Begriff "Antikörper" alle vorstehend aufgeführten Arten von Antikörpern, insbesondere polyklonale oder monoklonale Antikörper, die durch Immunisierung gewonnen wurden, z.B. IgA, IgD, IdE, IgG, IgM, IgY und IgW, und alle Arten von rekombinanten Antikörpern. Gentherapie
Therapie zur Heilung oder Linderung von Krankheiten bei der als Wirkstoff modifizierte oder un modifizierte Nukleinsäuren eingesetzt werden.
Angeborene Immunabwehr
Die angeborene Immunabwehr grenzt sich von der erworbenen oder adaptiven Immunabwehr dahingehen ab, dass sie einen Erreger abwehrt, ohne dass es vorher jemals zu einem Kontakt mit dem Erreger gekommen sein muss, um das Immunsystem zu schulen. Die angeborene Immunabwehr ist den meisten Zelltypen zu eigen.
Die angeborene Immunabwehr nutzt die Erkennung von Pathogenen zuzuordnenden molekularen Strukturen durch Rezeptoren. Diese Rezeptoren stoßen insbesondere Signaltransduktionskaskaden an, die insbesondere durch Expression vieler zelleigener Gene und Phosphorylierung wichtiger Proteine in einem geänderten physiologischen Status (zB. „antiviralen Status") der direkt betroffenen Zellen münden. Zusätzlich werden Zytokine ausgeschüttet.
Betroffene Zellen benachrichtigen über diese Botenstoffe (Zytokine) nichtbetroffene Zellen und lösen auch dort einen geänderten physiologischen Status (zB. „Antiviralen Status") aus. Dabei docken die Zytokine an Zytokin-Rezeptoren der anderen Zellen an und lösen wiederum eine Signaltransduktionskaskade aus.
Antiviraler Status
Status von Zellen, der sich dadurch auszeichnet, dass die Zelle versucht die mögliche biologische Wirksamkeit von fremdem genetischen Material durch Gegenmaßnahmen zu unterbinden.
Transfektion in vivo
Das Einschleusen von genetischem Material in eukariotische Zellen findet in einem lebenden Organismus statt. Transfektion in vitro
Das Einschleusen von genetischem Material in eukariotische Zellen findet außerhalb eines lebenden Organismus statt, insbesondere in Gefäßen, die sich zur Kultivierung von eukahotischen Zellen eignen.
Proteofektion in vivo
Das Einschleusen von Peptiden oder Proteinen in eukariotische Zellen findet in einem lebenden Organismus statt.
Proteofektion in vitro
Das Einschleusen von Peptiden oder Proteinen in eukariotische Zellen findet außerhalb eines lebenden Organismus statt, insbesondere in Gefäßen, die sich zur Kultivierung von eukariotischen Zellen eignen.
Genetisches Material
Nukleinsäuren, insbesondere Ribonukleinsäuren oder Desoxyribonukleinsäuren, die insbesondere aus zwei wenigstens teilweise komplementären Strängen (doppelsträngig = ds) bestehen z.B. dsDNA und dsRNA, oder die insbesondere aus einem Strang (einzelsträngig = ss) besteht, z.B. ssDNA und ssRNA, der teilweise komplentäre Bereiche aufweisen kann, die über Wasserstoffbrückenbindung miteinander verbunden sein können.
Modifiziertes genetisches Material
Natürliche Nukleinsäuren die durch Modifikation in ihren Eigenschaften verändert wurden. Dabei können diese Modifikationen insbesondere chemische Veränderungen sein, die insbesondere das Phaphatgerüst, die Zucker oder Basen betreffen, was insbesondere die Stabilität der Nukleinsäuren gegen Nukleasen und Ribonukleasen erhöhen soll. Weiters können Moleküle (Labels) an die Nukleinsäuren kovalent oder nicht-kovalent angeheftet werden, die zu neuen Eigenschaften der Nukleinsäuren führen, insbesondere zu optischer Verfolgbarkeit durch Fluoreszenzlabels oder Labels, die die Nukleinsäuren zu einen bestimmen Ort zB. in den Kern in der Zelle dirigieren (Lokalisationselemente) oder Labels, die den Durchtritt von Nukleinsäuren durch Membranen vermitteln und so Nukleinsäuren beispielsweise zellgängig machen.
siRNA (short interfering RNA):
Kurze dsRNA (bis 28 bp) die durch RNA-I nterferenz den Knock-Down eines Proteins bewirken kann.
shRNA (short hairpin RNA):
Kurze ssRNA, die am 3'-Ende und am 5'-Ende komplementäre Bereiche besitzt und dadurch über Wasserstoffbrückenbindung hybridisieren und eine Haarnadelstruktur ausbilden kann. shRNA kann durch RNA-Interferenz den Knock-Down eines Proteins bewirken.
Rezeptor:
Molekül, das in der Lage ist einen Stoff (Agonist) zu detektieren und damit eine biologische Reaktion auslöst, Insbesondere handelt es sich bei Rezeptoren um
Proteine.
Blockierung:
Verhinderung der biologischen Funktion, insbesondere von Proteinen.
Unterdrückung:
Unterbrechung des Kommunikationsnetzes der Immunabwehr, d.h. von einer oder mehreren eine Immunantwort auslösenden Signaltransduktionskaskade(n), der angeborenen Immunabwehr. Durch diese Unterbrechung wird die Immunabwehr geschwächt, wodurch sich die Immunantwort verringert. Zusätzlich die direkte Verhinderung der letzendlichen biologischen Reaktion, zB. die Expression antiviral wirkender Proteine. DNA/RNA-bindende Domäne:
Bereich in einem Molekül das DNA kovalent oder über nicht kovalente Wechselwirkungen gebunden trägt, insbesondere sind die nicht kovalenten Wechselwirkungen elektrostatische Kräfte und Wasserstoffbrückenbindungen.
Signaltransduktionskaskade
Ausgehend von einem Rezeptor, der die Anwesenheit eines Stoffes durch Anlagerung dieses Stoffes an den Rezeptor detektiert, wird die Information über die Anwesenheit dieses Stoffes in ein Signal umgewandelt und über eine Kette von Molekülen durch Signaltransduktion weitergetragen. Am Ende steht eine biologische Reaktion. Insbesondere wird das durch den Rezeptor erzeugte Signal von Adaptermolekülen aufgenommen und insbesondere über Kinasen insbesondere an Transkriptionsfaktoren weitergetragen. Die Transkriptionsfaktoren stimulieren die Expression von Genen, die die biologische Reaktion vermitteln.
Knock-down
Abschwächung oder Ausschaltung der Translation einer mRNA zu einem Protein bei der Proteinbiosynthese.
Antikörper
Moleküle, insbesondere Proteine, die in der Lage sind molekulare Strukturen, insbesondere andere Proteine, zu erkennen und durch Bindung dessen biologische Wirkung beeinflussen.
Adaptermoleküle
Moleküle die ein Signal von Rezeptoren übernehmen und die speziesübergreifend in
Gruppen nach ihrer Funktion zusammengefasst werden. Abkürzungen
AP-1 = Activated protein-1
BIRC-1 = baculoviral IAP repeat-containing 1
CIITA = class Il transactivator
Dnase = Desoxyribonuklease
ERK = Extracellular-signal Regulated Kinase
FADD = Fas-Associated protein with Death Domain
IFN = Interferon
IkB = Inhibitory-binding protein kB
IKK = IkappaBKinase = inhibitory-binding protein KB kinase
IKKa = lkkalpha= I Kappa Kalpha = IKK1
IKKb = IKKbeta = I Kappa Kbeta = IKK2
IKKd = IKKdelta = I Kappa Kdelta
IKKe = IKKepsilon = I Kappa Kepsilon
IKKg = IKK gamma = I Kappa Kgamma= IKK3
IKKi = IKK epsilon
IL = Interleukin
IPAF = Apaf-1-related protein
IRAK1 = Interleukin 1 Receptor-Associated Kinase 1
IRAK4 = interleukin-1 receptor-associated kinase 4
IRF = Interferon regulating Factor
IRF Kinase = Interferon regulating Factor Kinase
JAK = Janus activated Kinaste
JNK = c-Jun N-terminal Kinase
Mal = TIRAP= MyD88-adapter-like
MAP = Mitogen activated Protein
MAPK = Mitogen activated Protein Kinase
MAPKK = Mitogen activated Protein Kinase Kinase
MAPKKK = Mitogen activated Protein Kinase Kinase Kinase
Mda5 = melanoma differentiation-associated gene-5 protein
MEK = MAPK/ERK kinase
MKK = Mitogen-activated protein kinase kinase MSK = Mitogen and stress activated kinase
MyD88 = Myeloid differentiation factor 88
NALP-2 = NACHT-LRR- and pyrin domain-containing protein 2
NALPS = NACHT-LRR- and pyrin domain-containing proteins
NAP1 = Nck-associated protein 1
NEMO = IKK gamma
NF-kB = Nuclear Factor kappaB
NOD = nucleotide-binding oligomerization domain containing protein
PDK1 = Phosphoinositide-dependend Protein Kinase 1
PDK2 = Phosphoinositide-dependend Protein Kinase 1
PI 3K = Phosphoinositol-3-Kinase
PKB = Protein Kinase B
PKR = Protein Kinase R = Protein Kinase RNA-activated
Rad = Ras-related C3 botulinum toxin Substrate 1
Raf Proteine= "rapidly growing fibrosarcoma" Proteine
Ras = "rat sarcoma" Protein
RIG-I = retinoic acid inducible gene I
Rl P1 = Receptor-interacting protein 1
Rnase = Ribonuklease
SEK = stress-activated protein/Erk kinase
STAT = Signal Transducers and Activators of Transcription
TAK1 = Transforming growth factor-ß-activated kinase
TBK1 = IKKd= TANK-binding Kinase
TIRAP = Mal =Toll-interleukin 1 receptor (TIR) domain-containing adapter protein
TLR = Toll-like Receptor
TNF = Tumor Nekrose Faktor
TRAF = TNF receptor-associated factor
TRAF33 = TNF receptor-associated factor 3
TRAF6 = TNF receptor-associated factor 6
TRAM = TRIF-related adaptor molecule
TRIF = Toll/IL-1 receptor domain-containing adaptor inducing interferon-b adaptor protein

Claims

Ansprüche
1. Transfektionsverfahren, umfassend die Schritte:
(a) Einbringen von mindestens einem Antikörper in das Cytosol einer eukariotischen Zelle, wobei der mindestens eine Antikörper zumindest eine biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert; und
(b) Transfektion der eukariotischen Zelle mit dem mindestens einen in das Cytosol eingebrachten Antikörper mit genetischem Material, wobei für die Transfektion ein nicht-virales Genliefersystem eingesetzt wird.
2. Transfektionsverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Schritt (a) und/oder der Schritt (b) in vivo oder in vitro durchgeführt wird.
3. Transfektionsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schritt (a) in einem Zeitintervall von 0,01 bis 48 Stunden vor dem Schritt (b), bevorzugt in einem Zeitintervall von 0,01 bis 12 Stunden, am meisten bevorzugt in einem Zeitintervall von 2 bis 5 Stunden vor dem Schritt (b) durchgeführt wird.
4. Transfektionsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen zumindest eine in das Cytosol ragende Domäne eines Transmembranrezeptors gerichtet ist, wobei der Transmembranrezeptor ausgewählt ist aus TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 , TLR12, TLR13, IFN-Typ-I-Rezeptor, IFN- Rezeptor, TNF-Rezeptor, IL-Rezeptor, IL-1 Rezeptor, G-Protein gekoppelter Rezeptor und Mannose-Rezeptor.
5. Transfektionsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen zumindest einen cytoplasmatischen Rezeptor gerichtet ist, wobei der Rezeptor ausgewählt ist aus NOD-like Rezeptoren, NODS, NOD1 , NOD2, NALPS, NALP1 , NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11 , NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1 , RNA Helikasen, RIG-I, RIG-l-like Rezeptoren und Mda5.
6. Transfektionsverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen zumindest ein Adaptermolekül gerichtet ist, wobei das Adaptermolekül ausgewählt ist aus MyD88, TRAF1 , TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1 , RAC-1 , RIP-1 und FADD.
7. Transfektionsverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen zumindest eine Kinase gerichtet ist, wobei die Kinase ausgewählt ist aus Kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKK delta, IKKepsilon, IKKi, IKKg, IRAK1 , IRAK4, PI 3K, JNK, JNK1 , JNK2, P28MAPK, MKKs, ERK-1 , ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1 , MEK2, MEK5, MSK 1 , RIP-2, TBK-1 , TAK-1 , IRF-Kinase, MAP Kinase, MAPK Kinase, MAPKK Kinase, MAPKKK Kinase, MKK4/SEK, MKK5, MKK7, p38 MAP Kinase, p38/RK MAP Kinase, p30/RK MAP Kinase, JAK, PKB Kinase, PDK1 , PDK2 und MSKL
8. Transfektionsverfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen zumindest einen Transkriptionsfaktor gerichtet ist, wobei der Transkriptionsfaktor ausgewählt ist aus NF-kB, AP-1 , IRF1 , IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 und STAT2.
9. Transfektionsverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in Schritt (a) mindestens ein Antikörper in das Cytosol einer eukariotischen Zelle eingebracht wird, der gegen IkB, 2'5'-Oligoadenylatsynthase, G- Proteine, Raf, Ras, Rnasen, RnaseL, Dnasen, Dnase 1 , Dnase 2, Dnase1/L2, Dnasei /L3 oder Dnase 2like acid Dnase gerichtet ist.
10. Transfektionsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in Schritt (a) der mindestens eine Antikörper in einer Menge von 0,01 bis 5 Pikogramm, bevorzugt in einer Menge von 0,01 bis 0,5 Pikogramm, am meisten bevorzugt in einer Menge von 0,01 bis 0,05 Pikogramm in das Cytosol der eukariotischen Zelle eingebracht wird.
11. Transfektionsverfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in Schritt (a) für das Einbringen des mindestens einen Antikörpers in das Cytosol einer eukariotischen Zelle ein Proteinliefersystem eingesetzt wird.
12. Transfektionsverfahren nach Anspruch 11 , dadurch gekennzeichnet, dass das Proteinliefersystem ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein, ein kationisches Protein mit hydrophoben Anteilen oder eine Verbindung umfasst, die eine antikörperbindende Domäne aufweist und rezeptorvermittelte Endocytose und/oder einen Membrantransfer auslösen kann; oder als Proteinliefersystem Elektroporation, Mikroinjektion, Magnetoproteofektion, Ultraschall, ein ballistisches Verfahren oder ein hydrodynamisches Verfahren eingesetzt wird.
13. Transfektionsverfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Proteinliefersystem ein kationisches Protein mit hydrophoben Anteilen umfasst, wobei das kationische Protein mit hydrophoben Anteilen ein Peptid aus 16 bis 30 Aminosäuren mit einem hydrophoben Anteil von wenigstens 4 Aminosäuren und einem hydrophilen Anteil von bis zu 12 Aminosäuren mit einer Mehrzahl von kationischen Aminosäuren, die optional durch eine Spacersequenz von bis zu 10 Aminosäuren voneinander getrennt sind, umfasst.
14. Transfektionsverfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, das als Proteinliefersystem Chariot eingesetzt wird.
15. Transfektionsverfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Proteinliefersystem ein kationisches Lipid umfasst, das eine Polylysin- Kopfgruppe trägt, deren primäre Aminogruppen optional durch eine Säure zu Amiden derivatisiert sind.
16. Transfektionsverfahren nach einem der Ansprüche 11 bis 13 und 15, dadurch gekennzeichnet, dass als Proteinliefersystem Bioporter, BioTrek, ABdelivehn oder Prodeliverin eingesetzt wird.
17. Transfektionsverfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das nicht-virale Genliefersystem in Schritt (b) ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein oder eine Verbindung umfasst, die eine DNA und/oder RNA-bindende Domäne aufweist und rezeptorvermittelte Endozytose und/oder einen Membrantransfer auslösen kann; oder als nicht-virales Genliefersystem Elektroporation, Mikroinjektion, Magnetofektion, Ultraschall, ein ballistisches Verfahren oder ein hydrodynamisches Verfahren eingesetzt wird.
18. Transfektionsverfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das nicht-virale Genliefersystem ein kationisches Polymer umfasst, das ausgewählt ist aus einem linearen oder verästelten Polyethylenimin und/oder einem kationischen Dendrimer.
19. Transfektionsverfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das nicht-virale Genliefersystem ein kationisches Lipid mit einer Polyamin-Kopfgruppe und/oder dem Colipid DOPE umfasst.
20. Transfektionsverfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass in Schritt (b) das nicht-virale Genliefersystem Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP, Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGen500, Gene Juice, einen Vertreter der TransIT-Reihe, Transfast, einen Vertreter der Tfx-Reihe, Gene Shuttle, Duofect, Superfect, Effectene, Polyfect, Dosper, X-treme Gene Q2, Extreme Gene siRNA, einen Vertreter der Escort-Reihe, Lipotaxi, Geneporter, Geneporter 2, Genesilencer, Neuroporter, jetPEI, jetSI, Interfehn, Fecturin, Perfectin, Dharmafect, siPort Amine, siPort Lipid, Ribojuice, Transmessenger, Eufectin, siFector, sureFector, uniFector, Transfectin, siLentfect, Rotifect, MATra, Gene Trans, einen Vertreter der TransPass-Reihe, RNAiFect, Transmessenger, GeneEraser, Megafectin, Transfectam, Codebreaker, HiPerfect, Arrestin oder entsprechende Inhaltsstoffe umfasst.
21. Transfektionsverfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Proteinliefersystem mit dem nicht-viralen Genliefersystem identisch ist.
22. Transfektionsverfahren nach einem der Ansprüche 1 bis 21 , dadurch gekennzeichnet, dass als genetisches Material für die Transfektion in Schritt (b) modifizierte oder unmodifizierte ssDNA, modifizierte oder unmodifizierte dsDNA, modifizierte oder unmodifizierte ssRNA, modifizierte oder unmodifizierte dsRNA und/oder modifizierte oder unmodifizierte siRNA eingesetzt wird.
23. Zusammensetzung, die zumindest drei der folgenden Komponenten (1 ) bis (4) umfasst:
(1 ) ein nicht-virales Genliefersystem;
(2) genetisches Material;
(3) ein Proteinliefersystem, das einen biologisch aktiven Antikörper in das Cytosol einer Zelle transportieren kann;
(4) mindestens einen Antikörper, der die biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert.
24. Kit of parts, der zumindest drei der folgenden Komponenten (1 ) bis (4) umfasst:
(1 ) ein nicht-virales Genliefersystem;
(2) genetisches Material;
(3) ein Proteinliefersystem, das einen biologisch aktiven Antikörper in das Cytosol einer Zelle transportieren kann;
(4) mindestens einen Antikörper, der die biologische Funktion einer cytosolischen Komponente des angeborenen Immunsystems einschränkt, neutralisiert oder blockiert.
25. Zusammensetzung oder Kit of parts nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass als Komponente (4) ein Antikörper enthalten ist, der gegen zumindest eine in das Cytosol ragende Domäne eines Transmembranrezeptors gerichtet ist, wobei der Transmembranrezeptor ausgewählt ist aus TLR1 , TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11 , TLR12, TLR13, IFN- Typ-I-Rezeptor, IFN-Rezeptor, TNF-Rezeptor, IL-Rezeptor, IL-1 Rezeptor, G-Protein gekoppelter Rezeptor und Mannose-Rezeptor.
26. Zusammensetzung oder Kit of parts nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass als Komponente (4) ein Antikörper enthalten ist, der gegen zumindest einen cytoplasmatischen Rezeptor gerichtet ist, wobei der Rezeptor ausgewählt ist aus NOD-like Rezeptoren, NODS, NOD1 , NOD2, NALPS, NALP1 , NALP2, NALP3, NALP4, NALP5, NALP6, NALP7, NALP8, NALP9, NALP10, NALP11 , NALP12, NALP13, NALP14, CIITA, IPAF, BIRC-1 , RNA Helikasen, RIG-I, RIG-l-like Rezeptoren und Mda5.
27. Zusammensetzung oder Kit of parts nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, dass als Komponente (4) ein Antikörper enthalten ist, der gegen zumindest ein Adaptermolekül gerichtet ist, wobei das Adaptermolekül ausgewählt ist aus MyD88, TRAF1 , TRAF2, TRAF3, TRAF6, TRAM, TIRAP, TRIF, NAP-1 , RAC-1 , RIP-1 und FADD.
28. Zusammensetzung oder Kit of parts nach einem der Ansprüche 23 bis 27, dadurch gekennzeichnet, dass als Komponente (4) ein Antikörper enthalten ist, der gegen zumindest eine Kinase gerichtet ist, wobei die Kinase ausgewählt ist aus Kinase PKR, IKKalpha, IKKbeta, IKKgamma, IKK delta, IKKepsilon, IKKi, IKKg, IRAK1 , IRAK4, PI 3K1 JNK, JNK1 , JNK2, p28MAPK, MKKs, ERK-1 , ERK2, ERK3, ERK4, ERK5, ERK6, ERK7, ERK8, MEK1 , MEK2, MEK5, MSK 1 , RIP-2, TBK-1 , TAK-1 , IRF-Kinase, MAP Kinase, MAPK Kinase, MAPKK Kinase, MAPKKK Kinase, MKK4/SEK, MKK5, MKK7, p38 MAP Kinase, p38/RK MAP Kinase, p30/RK MAP Kinase, JAK, PKB Kinase, PDK1 , PDK2 und MSK1.
29. Zusammensetzung oder Kit of parts nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, dass als Komponente (4) ein Antikörper enthalten ist, der gegen zumindest einen Transkriptionsfaktor gerichtet ist, wobei der Transkriptionsfaktor ausgewählt ist aus NF-kB, AP-1 , IRF1 , IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, STAT1 und STAT2.
30. Zusammensetzung oder Kit of parts nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, dass'als Komponente (4) ein Antikörper enthalten ist, der gegen IkB, 2'5'-Oligoadenylatsynthase, G-Proteine, Raf, Ras, Rnasen, RnaseL, Dnasen, Dnase 1 , Dnase 2, Dnase1/L2, Dnase1/L3 oder Dnase 2like acid Dnase gerichtet ist.
31. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 30, dadurch gekennzeichnet, dass als Komponente (3) ein Proteinliefersystem enthalten ist, welches ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein, ein kationisches Protein mit hydrophoben Anteilen oder eine Verbindung umfasst, die eine antikörperbindende Domäne aufweist und rezeptorvermittelte Endocytose und/oder einen Membrantransfer auslösen kann.
32. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 31 , dadurch gekennzeichnet, dass als Komponente (3) ein Proteinliefersystem enthalten ist, welches ein Peptid aus 16 bis 30 Aminosäuren mit einem hydrophoben Anteil von wenigstens 4 Aminosäuren und einem hydrophilen Anteil von bis zu 12 Aminosäuren mit einer Mehrzahl von kationischen Aminosären, die optional durch eine Spacersequenz von bis zu 10 Aminosäuren voneinander getrennt sind, umfasst.
33. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 32, dadurch gekennzeichnet, dass als Komponente (3) das Proteinliefersystem Chariot enthalten ist.
34. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 31 , dadurch gekennzeichnet, dass als Komponente (3) ein Proteinliefersystem enthalten ist, welches ein kationisches Lipid umfasst, das eine Polylysin-Kopfgruppe trägt, deren primäre Aminogruppen optional durch eine Säure zu Amiden derivatisiert sind, umfasst.
35. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 31 und 34, dadurch gekennzeichnet, dass als Komponente (3) das Proteinliefersystem Bioporter, BioTrek, ABdeliverin oder Prodeliverin enthalten ist.
36. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 35, dadurch gekennzeichnet, dass als Komponente (1 ) ein nicht-virales Genliefersystem enthalten ist, welches ein kationisches Lipid, ein kationisches Polymer, ein kationisches Protein und/oder eine Verbindung umfasst, die eine DNA und/oder RNA-bindende Domäne aufweist und rezeptorvermittelte Endozytose und/oder Membrantransfer auslösen kann.
37. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 36, dadurch gekennzeichnet, dass als Komponente (1 ) ein nicht-virales Genliefersystem enthalten ist, welches ein lineares oder verästeltes Polyethylenimin; und/oder ein kationisches Dendrimer; und/oder ein kationisches Lipid mit einer Polyamin-Kopfgruppe und/oder Colipid DOPE umfasst.
38. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 37, dadurch gekennzeichnet, dass als Komponente (1 ) ein nicht-virales Genliefersystem enthalten ist, welches Lipofectin, Lipofectamine, Lipofectamine 2000, Lipofectamine RNAiMAX, Freestyle MAX, Optifect, DMRIE-C, 293fect, Oligofectamine, Metafectene, Metafectene Pro, Metafectene Easy, Fugene, DOTAP, Cellfectin, Cytofectene, CellPhect, Gene Limo, Clonfectin, ExGenδOO, Gene Juice, einen Vertreter der TransIT-Reihe, Transfast, einen Vertreter der Tfx-Reihe, Gene Shuttle, Duofect, Superfect, Effectene, Polyfect, Dosper, X-treme Gene Q2, Extreme Gene siRNA, einen Vertreter der Escort-Reihe, Lipotaxi, Geneporter, Geneporter 2, Genesilencer, Neuroporter, jetPEI, jetSI, Interferin, Fecturin, Perfectin, Dharmafect, siPort Amine, siPort Lipid, Ribojuice, Transmessenger, Eufectin, siFector, sureFector, uniFector, Transfectin, siLentfect, Rotifect, MATra, Gene Trans, einen Vertreter der TransPass-Reihe, RNAiFect, Transmessenger, GeneEraser, Megafectin, Transfectam, Codebreaker, HiPerfect, Arrestin oder entsprechende Inhaltsstoffe umfasst.
39. Zusammsetzung und/oder Kit of Parts nach einem der Ansprüche 23 bis 38, dadurch gekennzeichnet, dass das die Komponente (1 ) und die Komponente (3) identisch sind.
40. Zusammensetzung oder Kit of parts nach mindestens einem der Ansprüche 23 bis 39, dadurch gekennzeichnet, dass als Komponente (2) genetisches Material enthalten ist, welches modifizierte oder unmodifizierte ssDNA, modifizierte oder u n modifizierte dsDNA, modifizierte oder unmodifizierte ssRNA, modifizierte oder unmodifizierte dsRNA und/oder modifizierte oder unmodifizierte siRNA umfasst.
41. Kit of parts nach einem der Ansprüche 24 bis 40, wobei alle Komponenten getrennt voneinander vorliegen, oder die Komponenten als Kombination von 2, 3 oder 4 Komponenten vorliegen, wobei die jeweils verbleibenden Komponenten der Kombination getrennt oder als weitere Kombination von 2 Komponenten vorliegen.
42. Pharmazeutische Zusammensetzung, die eine Zusammensetzung nach einem der Ansprüche 23 bis 40 umfasst.
43. Pharmazeutischer Kit of parts, der einen Kit of parts nach einem der Ansprüche 24 bis 41 umfasst.
44. Verwendung einer Zusammensetzung oder eines Kit of parts nach einem der Ansprüche 23 bis 43 zur Behandlung einer Krankheit durch Gentherapie.
45. Verwendung nach Anspruch 44, dadurch gekennzeichnet, dass es sich bei der Krankheit um cystische Fibrose, Muskeldystrophie, Phenylketonurie, Ahornsirupkrankheit, Propionazidämie, Methylmalonazidämie, Adenosindeaminasemangel, Hypercholesterinämie, Hämophilie, ß-Thalassämie, Krebs, eine Viruserkrankung, eine Degeneration der Macula, Amyotropische Lateral- Sklerose und/oder eine Entzündungserkrankung handelt.
PCT/EP2010/003105 2009-05-20 2010-05-20 Transfektionsverfahren für nicht-virale genliefersysteme mit verbesserter wirksamkeit durch blockierung des angeborenen immunsystems WO2010133369A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022035.6 2009-05-20
DE102009022035 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010133369A1 true WO2010133369A1 (de) 2010-11-25

Family

ID=42713404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003105 WO2010133369A1 (de) 2009-05-20 2010-05-20 Transfektionsverfahren für nicht-virale genliefersysteme mit verbesserter wirksamkeit durch blockierung des angeborenen immunsystems

Country Status (1)

Country Link
WO (1) WO2010133369A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019341A1 (de) 2016-07-26 2018-02-01 Karl Rosa Transfektionsverfahren mit nicht-viralen genliefersystemen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094983A2 (en) * 2001-05-16 2002-11-28 The Children's Hospital Of Philadelphia Dna-antibody complexes to enhance gene transfer
US20050153910A1 (en) * 2002-06-12 2005-07-14 Misako Matsumoto Antibody and inhibitor and transformation method and transformation kit using the same
WO2009065618A2 (de) * 2007-11-22 2009-05-28 Biontex Laboratories Gmbh Verbesserung von transfektionsergebnissen nicht-viraler genliefersysteme durch beeinflussung des angeborenen immunsystems
DE102007056488A1 (de) * 2007-11-22 2009-07-23 Biontex Laboratories Gmbh Steigerung von Transfektionseffizienzen nicht-viraler Genliefersysteme durch Blockierung des angeborenen Immunsystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094983A2 (en) * 2001-05-16 2002-11-28 The Children's Hospital Of Philadelphia Dna-antibody complexes to enhance gene transfer
US20050153910A1 (en) * 2002-06-12 2005-07-14 Misako Matsumoto Antibody and inhibitor and transformation method and transformation kit using the same
WO2009065618A2 (de) * 2007-11-22 2009-05-28 Biontex Laboratories Gmbh Verbesserung von transfektionsergebnissen nicht-viraler genliefersysteme durch beeinflussung des angeborenen immunsystems
DE102007056488A1 (de) * 2007-11-22 2009-07-23 Biontex Laboratories Gmbh Steigerung von Transfektionseffizienzen nicht-viraler Genliefersysteme durch Blockierung des angeborenen Immunsystems

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
0. ZELPHATI ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 35103 - 35110
DOMB A. J., REVIEW IN MOLECULES, vol. 10, 2005, pages 34
F.C. SZOKA ET AL., BIOCONJUG. CHEM., vol. 7, 1996, pages 703
HEINE H. ET AL., INT. ARCH. ALLERGY IMMUNOL., vol. 130, 2003, pages 180 - 192
HUANG ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 179, 1991, pages 280
INOHARA N; NUNEZ G., NAT REV IMMUNOL., vol. 3, no. 5, May 2003 (2003-05-01), pages 371 - 82
ISAACS, A. ET AL., J. PROC. R. SOC. LOND. B. BIOL. SCI., vol. 147, pages 258 - 267
J. P. BEHR, BIOCONJUGATE CHEM., vol. 5, 1994, pages 382
J.P. BEHR ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7297
KAWAI T. ET AL., J. BIOCHEM, vol. 141, 2007, pages 137 - 145
KONDO ET AL: "Efficient delivery of antibody into living cells using a novel HVJ envelope vector system", JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V.,AMSTERDAM, NL LNKD- DOI:10.1016/J.JIM.2007.12.008, vol. 332, no. 1-2, 11 January 2008 (2008-01-11), pages 10 - 17, XP022527821, ISSN: 0022-1759 *
L HASADSRI ET AL., J BIOL CHEM, vol. 284, no. 11, 2009, pages 6972 - 6981
LEVENTIS ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1023, 1990, pages 124
LUKE A. ET AL., SPEKTRUM DER WISSENSCHAFT, August 2005 (2005-08-01), pages 68 - 75
N KURATA ET AL., J BIOCHEM, vol. 144, no. 6, 2008, pages 701 - 707
P. VAN DE WETERING ET AL., J. GENE MED., vol. 1, 1999, pages 156
PERRY A.K. ET AL., CELL RESEARCH, vol. 15, no. 6, 2005, pages 407 - 422
R SUZUKI ET AL., BIOL PHARM BULL, vol. 30, no. 4, 2007, pages 758 - 62
S. C. DE SMEDT ET AL., PHAR. RES., vol. 17, 2000, pages 113
S.L. SCHWARZE ET AL., TRENDS CELL BIOL., vol. 10, 2000, pages 290 - 295
T YOSHIKAWA ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 366, no. 2, 2008, pages 408 - 13
UEMATSU S. ET AL., J. BIOL. CHEM., vol. 282, no. 21, 25 May 2007 (2007-05-25), pages 15319 - 23
W. GUANG LIU ET AL., J. CONTROL. RELEASE, vol. 83, 2002, pages 1
XIANG G; KEUN-SIK K.; DEXI L., REVIEW IN THE AAPS JOURNAL, vol. 9, no. 1, 2007, Retrieved from the Internet <URL:http://www.aapsj.org>
ZIMMER A. ET AL., PNAS, vol. 96, no. 10, 1999, pages 5780 - 5785

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019341A1 (de) 2016-07-26 2018-02-01 Karl Rosa Transfektionsverfahren mit nicht-viralen genliefersystemen
DE102016113714A1 (de) 2016-07-26 2018-02-01 Rosa Karl Transfektionsverfahren mit nicht-viralen Genliefersystemen

Similar Documents

Publication Publication Date Title
EP2212425A2 (de) Verbesserung von transfektionsergebnissen nicht-viraler genliefersysteme durch beeinflussung des angeborenen immunsystems
CN101346393B (zh) 修饰的siRNA分子及其应用
US20110045001A1 (en) Transfection results of non-viral gene delivery systems by influencing of the innate immune system
RU2523596C2 (ru) Одноцепочечная кольцевая рнк и способ ее получения
EP3199633B1 (de) Herabregulation der genexpression mittels nukleinsäure-beladener virus-ähnlicher partikel
Xiang et al. Bacterial magnetic particles (BMPs)‐PEI as a novel and efficient non‐viral gene delivery system
CN107980004A (zh) 用于医治疾病的外泌体的用途
EP2523692B1 (de) Biologisch wirksame moleküle zur beeinflussung von virus-, bakterien-, parasiten-infizierten zellen und/oder tumorzellen und verfahren zu deren anwendung
CN105579464A (zh) 能够再活化p53突变体的肽
CN108779074A (zh) 植物病毒移动蛋白和其使用方法
EP1251835A2 (de) Verschliessen von bakterienghosts
Molla et al. Combinatorial synthesis of a lipidoid library by thiolactone chemistry: in vitro screening and in vivo validation for siRNA delivery
TW200930811A (en) Transfection reagent and method for enhancing transfection efficiency
WO2018019341A1 (de) Transfektionsverfahren mit nicht-viralen genliefersystemen
WO2010133369A1 (de) Transfektionsverfahren für nicht-virale genliefersysteme mit verbesserter wirksamkeit durch blockierung des angeborenen immunsystems
US20190307901A1 (en) Method for enhanced nucleic acid transfection using a peptide
DE19952983A1 (de) Verfahren zum Transfer von molekularen Substanzen mit prokaryontischen nukleinsäurebindenden Proteinen
CN102517332B (zh) Egf修饰的pamam自组装转基因组合物及其制备方法与应用
DE102007056488A1 (de) Steigerung von Transfektionseffizienzen nicht-viraler Genliefersysteme durch Blockierung des angeborenen Immunsystems
EP2484765A1 (de) Zelltransfektion unter RAB37-Mangel oder -Hemmung
WO2001078785A2 (de) Wirkstoff-konjugate mit intrazellulär wirksamen liganden
DE102008016275A1 (de) Verbesserung von Transfektionsergebnissen nicht-viraler Genliefersysteme durch Blockierung des angeborenen Immunsystems
DE102008023913A1 (de) Verbesserung von Transfektionsergebnissen nicht-viraler Genliefersysteme durch Beeinflussung des angeborenen Immunsystems
KR20150129873A (ko) 유전체 약물 전달용 나노입자 및 이의 제조방법
EP3490608A1 (de) Transfektionsverfahren mit nicht-viralen genliefersystemen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10722612

Country of ref document: EP

Kind code of ref document: A1