WO2010122886A1 - Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film - Google Patents

Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film Download PDF

Info

Publication number
WO2010122886A1
WO2010122886A1 PCT/JP2010/055976 JP2010055976W WO2010122886A1 WO 2010122886 A1 WO2010122886 A1 WO 2010122886A1 JP 2010055976 W JP2010055976 W JP 2010055976W WO 2010122886 A1 WO2010122886 A1 WO 2010122886A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
conductive
thermoplastic resin
resin composition
conductivity
Prior art date
Application number
PCT/JP2010/055976
Other languages
French (fr)
Japanese (ja)
Inventor
達也 人見
道生 中田
山本 正規
一直 草野
角田 守男
渡部 健
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010068830A external-priority patent/JP5581767B2/en
Priority claimed from JP2010075982A external-priority patent/JP5585162B2/en
Priority claimed from JP2010075981A external-priority patent/JP5720104B2/en
Priority claimed from JP2010075979A external-priority patent/JP5565034B2/en
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201080017011.0A priority Critical patent/CN102395626B/en
Priority claimed from JP2010080936A external-priority patent/JP5593788B2/en
Publication of WO2010122886A1 publication Critical patent/WO2010122886A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a conductive polyamide resin composition and a conductive polyamide film obtained therefrom, and more specifically, by using polyamide 5X as a polyamide resin, excellent conductivity can be obtained with a small amount of a conductivity-imparting agent.
  • the present invention relates to a conductive polyamide resin composition and a conductive polyamide film which is formed from the conductive polyamide resin composition and has improved conductivity without impairing properties such as moldability (film forming property) and flexibility.
  • the present invention also relates to a conductive thermoplastic resin composition, a method for producing a conductive thermoplastic resin composition, and an injection molded product and an extrusion molded product obtained from the same.
  • the present invention relates to a thermoplastic resin composition having good conductivity by adding an agent.
  • the present invention relates to a conductive polyamide resin composition, a method for producing a conductive polyamide resin composition, and an injection-molded product and an extrusion-molded product obtained therefrom, and more specifically, a relatively small amount of a conductivity-imparting agent.
  • the addition relates to a conductive polyamide resin composition having good conductivity.
  • Polyamide resin has excellent mechanical properties such as moldability, chemical resistance, tensile strength, bending strength, and wear resistance, and is used in a wide range of fields such as electrical / electronic parts, mechanical parts, and automotive parts. Yes. *
  • conductive polyamide resin compositions obtained by imparting conductivity to electrically insulating polyamide resins have been used in electrostatic coating applications centered on automobile exterior materials, antistatic applications mainly in electrical and electronic parts, and conductive properties. It is used for applications.
  • Patent Document 1 reports a conductive polyamide resin composition having electrical conductivity suitable for an application such as an outer plate of an automobile, which is applied by electrostatic coating, and having excellent mechanical strength and molding processability. Yes.
  • conductive carbon black is blended with a polyamide resin such as polyamide 6 to impart conductivity.
  • a modified elastomer is blended with a polyamide resin in order to improve the impact resistance of the polyamide resin.
  • polyamide resins such as polyamide 6 and polyamide 66 have been used for the polyamide resins of these modified elastomer-blended polyamide resin compositions and conductivity imparting agent-blended polyamide resin compositions.
  • polyamide 6 and polyamide 66 have been used for the polyamide resins of these modified elastomer-blended polyamide resin compositions and conductivity imparting agent-blended polyamide resin compositions.
  • 5X is used.
  • the conductivity imparting agent added to the thermoplastic resin includes organic compounds such as ionic surfactants, nonionic surfactants, polymer antistatic agents having polyethylene glycol units and ionic functional groups, and the like.
  • organic compounds such as ionic surfactants, nonionic surfactants, polymer antistatic agents having polyethylene glycol units and ionic functional groups, and the like.
  • inorganic substances such as carbon black, carbon fiber, metal fiber, metal powder, and metal oxide are included.
  • conductive carbon black and hollow carbon fibrils are widely used because even when added in a relatively small amount, high conductivity is exhibited and a good appearance is obtained.
  • these conductivity-imparting agents improve the conductivity of the resin composition obtained when the blending amount is increased, but the moldability (film forming property) and mechanical properties are lowered. Therefore, in order to achieve both conductivity and other characteristics, it is desired that high conductivity can be obtained with a smaller amount of a conductivity-imparting agent.
  • an extremely high conductivity such as a volume specific resistance value of 1 ⁇ 10 3 ⁇ ⁇ cm or less is required. It is extremely difficult to achieve compatibility with formability (film formability) and mechanical properties.
  • thermoplastic resin composition having higher conductivity is desired by adding a small amount of the conductivity imparting agent.
  • the present invention provides a thermoplastic resin composition and a conductive polyamide resin that are excellent in conductivity without impairing properties such as moldability, mechanical properties, and flexibility, with a small amount of a conductivity-imparting agent. It is an object of the present invention to provide a composition and a conductive polyamide film formed therefrom.
  • polyamide 5X As the polyamide resin, the present inventors have obtained a conductive polyamide resin composition exhibiting excellent conductivity with a small blending amount of a conductivity-imparting agent and a moldability (film formation) formed therefrom. It was found that a polyamide film excellent in conductivity can be realized without impairing properties such as property) and flexibility.
  • thermoplastic resin a diamine mainly containing pentamethylenediamine and a dicarboxylic acid as monomer components.
  • polyamide 5X a polyamide resin having a structure corresponding to the body
  • thermoplastic resin composition having excellent electrical conductivity can be obtained without impairing properties such as moldability, mechanical properties, flexibility, etc., with the compounding amount of the agent.
  • the present inventors use polyamide 5X as a polyamide resin, and by blending a modified elastomer, with a small blending amount of a conductivity imparting agent, without impairing properties such as moldability and mechanical properties, Rather, it has been found that a polyamide resin composition having excellent electrical conductivity can be realized by obtaining an effect of improving impact resistance and flexibility by blending a modified elastomer.
  • this invention consists of the following.
  • a conductive polyamide resin composition containing a polyamide resin and a conductivity imparting agent The polyamide resin contains at least polyamide 5X, The ash residue of the conductive polyamide resin composition is 0.5% by weight or less, A conductive polyamide resin composition, wherein a volume specific resistance value of a film formed from the conductive polyamide resin composition is 1.0 ⁇ 10 8 ⁇ ⁇ cm or less.
  • the conductivity imparting agent is at least one selected from the group consisting of carbon black and hollow carbon fibrils.
  • the conductive polyamide resin composition according to item 1 or 2 wherein the polyamide resin has a terminal amino group concentration of 16 ⁇ eq / g to 100 ⁇ eq / g. 4). 4.
  • the electromagnetic wave shielding molded article according to item 10 wherein the thickness is 5 ⁇ m to 200 ⁇ m.
  • thermoplastic resin composition containing two or more types of thermoplastic resins and a conductivity imparting agent, wherein the thermoplastic resin contains at least polyamide 5X, Among the polyamides 5X, the polyamide 5X having the largest blending amount is referred to as “thermoplastic resin a”, Among the thermoplastic resins other than the thermoplastic resin a used in the conductive thermoplastic resin composition, when the thermoplastic resin with the largest blending amount is “thermoplastic resin b”, Conductive thermoplastic resin composition, wherein absolute value of difference between solubility parameter value of thermoplastic resin a and solubility parameter value of thermoplastic resin b is 0.2 or more and 3.7 or less object. 14 14.
  • thermoplastic resin composition according to any one of items 13 to 17, wherein a terminal amino group concentration of at least one of the thermoplastic resin a and the thermoplastic resin b is 16 ⁇ eq / g to 100 ⁇ eq / g.
  • Thermoplastic resin composition 19.
  • the above item 22 characterized in that the critical oxygen index (LOI) measured in accordance with JIS K-7201 is 26 or more and the flame retardancy in the UL-94 standard VTM test satisfies VTM-0.
  • thermoplastic resin having the largest blending amount among a certain “thermoplastic resin a” and a thermoplastic resin other than the thermoplastic resin a, and the absolute difference between the solubility parameter value and the solubility parameter value of the thermoplastic resin a
  • a thermoplastic resin composition comprising melt-kneading a thermoplastic resin component containing "thermoplastic resin b" having a value of 0.2 or more and 3.7 or less and the conductivity imparting agent.
  • Method. 26 At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 26.
  • thermoplastic resin composition as described in 25 above, wherein a thermoplastic resin component containing a melt is kneaded. 27. At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 27.
  • An injection molded product obtained by injection molding the conductive thermoplastic resin composition according to any one of items 13 to 24. 29. 29.
  • Polymer component comprising 85% by weight to 50% by weight of the following (A) component and 15% by weight to 50% by weight of the (B) component comprising at least one of the following (B-1) component and the following (B-2) component: And a conductivity-imparting agent, wherein the content of the conductivity-imparting agent is 15 to 200 parts by weight with respect to 100 parts by weight of the polymer component.
  • Modified polyolefin copolymer (B-2) component ⁇ , ⁇ -unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b
  • 36. The conductive polyamide resin composition as described in 35 above, wherein the temperature difference between the peak tops of the two endothermic peaks is 5 ° C. to 50 ° C. 37. 37.
  • Composition 43. 43. The conductive polyamide resin composition according to any one of items 34 to 42, wherein the ⁇ , ⁇ -unsaturated carboxylic acid is maleic anhydride. 44. A composition obtained by previously melt-kneading a part of the component (A) and the component (B), at least a part of the remaining part of the component (A) and the conductivity-imparting agent are previously melt-kneaded. 44. The conductive polyamide resin composition according to any one of items 34 to 43, wherein the conductive polyamide resin composition is mixed with a composition. 45. 45. A conductive injection-molded article obtained by injection molding the conductive polyamide resin composition according to any one of items 34 to 44. 46. 45.
  • the conductive polyamide resin composition of the present invention has higher conductivity than other polyamide resin compositions containing the same kind and the same amount of conductivity imparting agent.
  • the conductive polyamide film of the present invention is excellent in both conductivity and moldability (film forming property), and is used in a wide range of film and sheet fields including, for example, electric / electronic parts and automobile exterior materials. It can be done.
  • the conductive thermoplastic resin composition of the present invention has higher conductivity than a resin composition to which the same amount of conductivity-imparting agent is added.
  • the conductive thermoplastic resin composition of the present invention is excellent in moldability and mechanical properties, and can be used in a wide range of fields including, for example, electric / electronic parts and automobile exterior materials.
  • the compounding amount of the conductivity imparting agent is relatively small. Excellent conductivity can be obtained without impairing moldability, mechanical properties, etc. Even if the blending amount of the conductivity imparting agent is increased, the moldability ( The film-forming property is not impaired, and an effect of improving the impact resistance is also obtained.
  • the mechanism of action by which the excellent effects of the conductive polyamide resin composition, the conductive thermoplastic resin composition and the polyamide resin composition of the present invention are exhibited is considered as follows. That is, the polyamide 5X used in the present invention has a reactivity between the amide group of the polyamide resin and the reactive group of the conductivity-imparting agent as compared with polyamide 6 and polyamide 66 which are polyamide resins conventionally used in these. Due to the high and high affinity, a stable and good conductive network is formed in the polyamide 5X matrix by the conductivity imparting agent, and as a result, excellent conductivity is obtained.
  • the polyamide resin composition of the present invention has excellent conductivity with the following mechanism of action, particularly by using polyamide 5X having two endothermic peaks as measured by the differential scanning calorimetry (DSC) method. can get. That is, in the polyamide resin composition in which the conductivity imparting agent is dispersed in the matrix formed of the polyamide resin, the conductivity imparting agent is in the process of crystallizing the polyamide resin in the solidification process after melting. It is eliminated from the crystal part of the polyamide resin and fixed in the continuous phase of the amorphous part of the polyamide resin.
  • DSC differential scanning calorimetry
  • the polyamide resin constituting the continuous phase has two endothermic peaks
  • crystals are first generated at the endothermic peak temperature on the high temperature side of the polyamide resin, and then the endothermic peak on the low temperature side. Since crystals are generated at a temperature, the conductivity-imparting agent extruded to the amorphous part of the polyamide resin in the crystallization process on the high temperature side is then further extruded in the crystallization process on the low temperature side.
  • the stress imparted to the conductivity-imparting agent is dispersed twice, so that the conductivity-imparting agent dispersed in the matrix of the polyamide 5X is collected little by little.
  • the dispersion is carried out in an appropriate dispersion state suitable for forming a conductive network by the conductivity imparting agent without being excessively dispersed or excessively aggregating.
  • the polyamide 5X has higher reactivity between the amino group of the polyamide resin and the carboxylic acid group of the modified elastomer than the polyamide 6 and polyamide 66, which are polyamide resins used in the conventional polyamide resin composition. Since the bond between the amino group of the polyamide resin and the modified elastomer is excellent, the interfacial peeling between the polyamide resin and the modified elastomer upon impact is reduced, and excellent low temperature impact properties are obtained.
  • the polyamide resin first crystallizes during the solidification process from the time of melting.
  • the modified elastomer is removed from the crystal part of the polyamide resin, and is fixed in the continuous phase of the amorphous part of the polyamide resin while receiving the compressive stress.
  • the polyamide resin constituting the continuous phase has two endothermic peaks
  • crystals are first generated at the endothermic peak temperature on the high temperature side of the polyamide resin, and then the endothermic peak on the low temperature side. Since crystals are formed at a temperature, the modified elastomer in the dispersed phase is temporarily relieved between the crystallization on the high temperature side and the crystallization on the low temperature side, and is again subjected to compressive stress in the subsequent crystallization on the low temperature side.
  • the stress applied to the modified elastomer is dispersed twice, and the residual of the modified elastomer in the solidified polyamide resin due to stress relaxation that occurs between the crystallization on the high temperature side.
  • the stress becomes small, and excellent impact resistance can be obtained.
  • a part of the polyamide 5X as the component (A) and the modified elastomer of the component (B) are melt-kneaded in advance to obtain a composition (hereinafter sometimes referred to as “elastomer masterbatch”), while (A )
  • the remainder of the component polyamide 5X and the conductivity-imparting agent are previously melt-kneaded into a composition (hereinafter sometimes referred to as “conductive masterbatch”), and these are mixed to prepare a conductive polyamide. If it is a resin composition, the further outstanding electroconductivity and impact resistance will be obtained with the following action mechanisms.
  • a conductivity imparting agent such as carbon black
  • the reaction between both tends to be inhibited, and the modified elastomer is blended due to the reaction inhibition between the polyamide resin and the modified elastomer.
  • the effect of improving the impact resistance due to the above cannot be sufficiently obtained.
  • such a conductive material can be obtained by pre-melting and kneading the polyamide 5X and the modified elastomer in a system without a conductivity-imparting agent to form a master batch. Reaction inhibition by the property-imparting agent is prevented, and the desired impact resistance improving effect by the modified elastomer can be surely obtained.
  • a good conductivity network is formed in the conductive master batch by previously melt-kneading the conductivity imparting agent with the remainder of the polyamide 5X to form a master batch. That is, when the conductive masterbatch and the elastomer masterbatch are mixed to produce the conductive polyamide resin composition of the present invention, the conductivity imparting agent is unevenly distributed in the polyamide 5X phase derived from the conductive masterbatch, Unlike a composition obtained by simply mixing polyamide 5X, a conductivity imparting agent, and a modified elastomer, a high concentration region of the conductivity imparting agent is formed.
  • the conductivity-imparting agent is appropriately aggregated and appropriately dispersed to form a good conductive network of the conductivity-imparting agent.
  • the conductivity imparting effect due to the blending of the conductivity imparting agent is effectively exhibited.
  • the “polyamide 5X” used in the conductive polyamide resin composition and the thermoplastic resin composition of the present invention is a polycondensation obtained by a polycondensation reaction mainly using a diamine containing pentamethylenediamine and a dicarboxylic acid as monomer components.
  • the “diamine containing mainly pentamethylenediamine” means that a unit derived from pentamethylenediamine is contained in the polyamide 5X by 50% by weight or more as a diamine-derived unit constituting the polyamide 5X.
  • the content of units derived from pentamethylenediamine in the polyamide 5X is 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more.
  • diamines that can be used in addition to pentamethylenediamine as the diamine constituting the polyamide 5X include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1 , 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1, 15-diaminopentadecane, 1,16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-diaminononadecane, 1,20-d
  • dicarboxylic acid examples include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and brassle.
  • Aliphatic dicarboxylic acids such as acids, tetradecanedioic acid, pentadecanedioic acid and octadecanedioic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid Can be mentioned. These can use 1 type (s) or 2 or more types.
  • lactams examples include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid; and lactams such as ⁇ -caprolactam and ⁇ -laurolactam. These may use 1 type (s) or 2 or more types.
  • the terminal amino group concentration of the polyamide 5X is preferably 16 ⁇ eq / g to 100 ⁇ eq / g, more preferably 20 ⁇ eq / g to 90 ⁇ eq / g, and particularly preferably 25 ⁇ eq / g to 80 ⁇ eq / g.
  • the terminal amino group concentration is measured by the method described in the Examples section below.
  • the terminal amino group concentration of polyamide 5X By setting the terminal amino group concentration of polyamide 5X to 16 ⁇ eq / g or more, the reactivity with the reactive group of the conductivity imparting agent can be sufficiently obtained, and the improvement effect by incorporating the conductivity imparting agent is sufficient Can get to.
  • the terminal amino group concentration of the polyamide 5X is 100 ⁇ eq / g or less, the gel can be prevented from being formed.
  • the terminal amino group concentration of the polyamide 5X to 16 ⁇ eq / g or more, the reactivity with the modified elastomer of the component (B) constituting the polyamide resin composition of the present invention can be sufficiently obtained, and the modified elastomer The improvement effect by having mix
  • polyamide 5X In order to adjust the terminal amino group concentration of polyamide 5X, it is effective to finely adjust the raw material composition and blend a small amount of monocarboxylic acid or monoamine.
  • monocarboxylic acid or monoamine For example, in order to increase the terminal amino group concentration, it is possible to increase the number of moles of diamine in the feedstock more than the number of moles of dicarboxylic acid, or add a monoamine, while the concentration of terminal amino groups In order to reduce this, it is possible to make the number of moles of diamine in the feedstock smaller than the number of moles of dicarboxylic acid, or to add a monocarboxylic acid.
  • Examples of the monocarboxylic acid used for adjusting the terminal amino group concentration of polyamide 5X include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, and tetradecane. Examples include acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid.
  • Examples of monoamines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine. , Pentadecylamine, cetylamine and the like.
  • the molecular weight of polyamide 5X is not particularly limited and is appropriately selected depending on the purpose. From the viewpoint of practicality, the relative concentration of a solution dissolved in 98% sulfuric acid at 25 ° C. (concentration of polyamide 5X: 0.01 g / ml)
  • concentration of polyamide 5X 0.01 g / ml
  • the viscosity ( ⁇ r ) is usually in the range of 1.5 to 5.5, preferably 1.6 to 3.5, more preferably 1.8 to 3.0, particularly preferably 2.0 to 2.8. is there.
  • the relative viscosity of polyamide 5X is measured by the method described in the Examples section below.
  • the conductive polyamide resin, the conductive thermoplastic resin composition, and the polyamide resin composition of the present invention exhibit high conductivity with a small amount of a conductivity-imparting agent and are high by using polyamide 5X as the polyamide resin. Impact resistance performance is obtained. This mechanism of action is thought to be due to the difference in the crystal form of the polyamide, and is presumed as follows.
  • polyamide 5X tends to have ⁇ -type crystals, but commonly used polyamide 6, polyamide 66, etc. tend to have only ⁇ -type crystals.
  • the ⁇ -type crystal has a larger crystal size than the ⁇ -type crystal, easily interrupts the conductive path by the conductivity-imparting agent, and has a high elastic modulus, so that the impact resistance tends to deteriorate.
  • the ⁇ -type crystal of polyamide 5X does not have such a problem, and it can be considered that the conductivity development effect due to the blending of the conductivity-imparting agent is high and the impact performance is high because the conductive path can be maintained.
  • Conductivity imparting agent examples of the conductivity-imparting agent used in the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention include ionic surfactants, nonionic surfactants, and polyethylene glycol units or ionic functional groups. And organic compounds such as polymer antistatic agents having Moreover, for example, inorganic materials such as carbon black, carbon fiber, metal fiber, metal powder, and metal oxide are included. These may be used alone or in a combination of two or more in any combination and ratio.
  • conductive carbon black and hollow carbon fibrils are preferred because high conductivity is exhibited with a relatively small amount of addition, a good balance between conductivity and impact resistance is obtained, and a good appearance is obtained.
  • the conductive carbon black preferably has a dibutyl phthalate (DBP) oil absorption measured in accordance with ASTM D2414 of 30 ml / 100 g or more, and more preferably 100 ml / 100 g or more.
  • DBP dibutyl phthalate
  • acetylene black obtained by thermally decomposing acetylene gas or ketjen black produced by furnace-type incomplete combustion using crude oil as a raw material can be preferably exemplified.
  • These conductive carbon blacks usually have a form (structure) in which fine particles are connected, unlike carbon black for pigments added to paints or the like for the purpose of coloring.
  • the hollow carbon fibrils preferably have a dibutyl phthalate (DBP) oil absorption measured in accordance with ASTM D2414 of 100 ml / 100 g or more, and more preferably 200 ml / 100 g or more.
  • DBP dibutyl phthalate
  • the hollow carbon fibril has an outer region composed of an essentially continuous multilayer in which carbon atoms are regularly arranged, and an inner hollow region, and each layer and the hollow region are arranged substantially concentrically.
  • a cylindrical fibril is preferable.
  • the regularly arranged carbon atoms in the outer region are preferably in the form of graphite. More preferably, the hollow region has a diameter of 2 nm to 20 nm.
  • the hollow carbon fibrils are described in detail in, for example, Japanese Patent Publication No. Sho 62-500943 and US Pat. No. 4,663,230.
  • transition metal-containing particles such as iron-, cobalt-, and nickel-containing particles supported on alumina are used as carbon monoxide and hydrocarbons.
  • a carbon-containing gas such as 850 ° C. to 1200 ° C., and carbon generated by pyrolysis is grown into a fiber starting from a transition metal.
  • the said hollow carbon fibril can use what is marketed (for example, Hyperion Catalysis Co., Ltd., a brand name "graphite fibril").
  • conductive carbon black may be used, only hollow carbon fibrils may be used, or conductive carbon black and hollow carbon fibrils may be used in combination. Further, at least one of conductive carbon black and hollow carbon fibril may be used in combination with one or more of other conductivity-imparting agents.
  • the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention can contain various additives as necessary.
  • the additive include an antioxidant, a weathering agent, a release agent, a lubricant, a pigment, a dye, a crystal nucleating agent, a plasticizer, an antistatic agent, a flame retardant, a filler, and a reinforcing material.
  • antioxidant or heat stabilizer examples include hindered phenol compounds, hydroquinone compounds, phosphite compounds, and substituted products thereof.
  • weathering agent examples include resorcinol compounds, salicylate compounds, benzotriazole compounds, benzophenone compounds, hindered amine compounds, and the like.
  • Examples of the release agent or lubricant include aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisurea compounds, and polyethylene waxes.
  • Examples of the pigment include phthalocyanine and carbon black.
  • Examples of the dye include nigrosine and aniline black.
  • crystal nucleating agent examples include talc, silica, kaolin, and clay.
  • plasticizer examples include octyl p-oxybenzoate and N-butylbenzenesulfonamide.
  • antistatic agent examples include alkyl sulfate type anionic antistatic agents, quaternary ammonium salt type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, and betaine amphoteric antistatic agents.
  • the flame retardant examples include hydroxides such as melamine cyanurate, magnesium hydroxide and aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate and brominated epoxy resin. Moreover, the combination etc. of these brominated flame retardants and antimony trioxide are mentioned. *
  • filler examples include graphite, barium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, antimony oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide, zinc sulfide, zinc, lead, nickel, aluminum, copper, iron And particulate, needle-like and plate-like fillers such as stainless steel, bentonite, montmorillonite and synthetic mica.
  • Examples of the reinforcing material include glass fiber, glass flake, carbon fiber, boron nitride, potassium titanate, and aluminum borate.
  • the above additives may be used alone or in a combination of two or more in any combination and ratio.
  • the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention can be molded into a desired shape by any molding method such as injection molding, film molding, melt spinning, blow molding, and vacuum molding. it can.
  • the molded article include injection molded articles, films, sheets, filaments, tapered filaments, fibers, and the like.
  • injection molding The injection molding machine used for the injection molding of the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention is not particularly limited.
  • Nissei Resin Industry Co., Ltd .: NEX80 type, Toshiba Machine Co., Ltd .: IS80 etc. are mentioned.
  • the injection molding conditions at the time of injection molding are not particularly limited, and are appropriately selected from the range of molding conditions of the thermoplastic resin contained as a main component such as the thermoplastic resin a and the thermoplastic resin b to be used.
  • extrusion molding An extrusion molding method using the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention and the obtained extrusion molded product will be described.
  • the specific molding method of extrusion molding is not particularly limited, and for example, known methods such as flat film molding using a T die, water-cooled and air-cooled inflation film molding, tube molding, monofilament molding, and multifilament molding may be used. it can.
  • it does not specifically limit as an extrusion molding machine A common single screw and a twin screw extruder etc. can be used.
  • Conductive polyamide resin composition 2. a conductive thermoplastic resin composition;
  • the conductive polyamide resin composition will be described in detail.
  • the conductive polyamide resin composition of the present invention is a conductive polyamide resin composition containing a polyamide resin and a conductivity-imparting agent. Moreover, it is a conductive polyamide film comprising the same.
  • the “film” of the conductive polyamide film of the present invention means a “film” in a broad sense that includes a thin sheet such as “sheet”.
  • the conductive polyamide resin composition of the present invention comprises a polyamide resin and a conductivity imparting agent, the polyamide resin contains at least polyamide 5X, an ash residue is 0.5% by weight or less, and has a volume.
  • the specific resistance value is 1.0 ⁇ 10 8 ⁇ ⁇ cm or less.
  • Polyamide 5X preferably includes polyamide 56, polyamide 59, polyamide 510 and polyamide 56/6, more preferably polyamide 510.
  • One of these may be used alone, or two or more of those having different component compositions, terminal amino group concentrations and relative viscosities may be used in any combination and in any ratio.
  • the content of polyamide 5X is usually 50 parts by weight or more, preferably 60 parts by weight or more, more preferably 70 parts by weight or more, still more preferably 80 parts by weight or more, particularly preferably 90 parts by weight or more in 100 parts by weight of polyamide resin. is there. By setting it in this range, excellent conductivity can be obtained.
  • the content of the conductivity imparting agent in the conductive polyamide resin composition of the present invention is preferably 0.1% by weight to 65% by weight, more preferably 0.1% by weight to 60% by weight, and 1% by weight. % To 55% by weight is particularly preferred.
  • the content of hollow carbon fibrils is preferably 0.1 to 15% by weight.
  • the conductive carbon black content is preferably 10% by weight to 55% by weight.
  • Sufficient conductivity can be obtained by setting the content of the conductivity imparting agent in the conductive polyamide resin composition to 0.1% by weight or more. Moreover, it can prevent that a moldability (film forming property), a softness
  • the conductivity development effect of the above-described conductivity imparting agent is improved, and a small amount of the conductivity imparting agent is blended.
  • a good conductive polyamide film can be realized without impairing the film forming property and flexibility.
  • the volume resistivity value is 1 ⁇ 10 3 ⁇ ⁇ Excellent conductivity of cm or less can be obtained.
  • the conductive polyamide resin composition of the present invention is blended with the above-described various additives as necessary.
  • the content of the additive can be arbitrarily set within a range where a sufficient blending effect can be obtained. Since flexibility may be impaired, the total amount of other additives is preferably 60 parts by weight or less with respect to 100 parts by weight of polyamide 5X. It is necessary to.
  • the other additives are appropriately selected not only in the production process of the conductive polyamide resin composition but also in any stage from the production process such as the polycondensation process of polyamide 5X to the molding process of the conductive polyamide resin composition.
  • An addition amount and an addition process can be selected and added.
  • polymer components used in the conductive polyamide resin composition of the present invention include the other polymer components described above in 2-4. One of these other polymer components may be used alone, or two or more thereof may be used in any combination and in any ratio.
  • the blending amount is preferably 10 parts by weight or less as the total amount of the other polymer components with respect to 100 parts by weight of polyamide 5X. By setting it as 10 weight part or less, the fall of electroconductivity and the fall of a moldability (film forming property) can be prevented.
  • the other polymer components are not limited to the production process of the conductive polyamide resin composition, but at any stage from the production process such as the polycondensation process of polyamide 5X to the molding process of the conductive polyamide resin composition.
  • the addition amount and the addition process can be appropriately selected and added.
  • the ash residue is 0.5% by weight or less, more preferably 0.4% by weight or less, particularly preferably 0.2% by weight or less, and 0.1% by weight. Is most preferred.
  • the amount of the ash residue exceeds 0.5% by weight, for example, when a film is formed, the film appearance may be deteriorated and the moldability (film forming property) may be deteriorated.
  • the ash residue of the conductive polyamide resin composition is measured by the method described in the Examples section below.
  • the conductive polyamide resin composition of the present invention has a volume resistivity value of 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, preferably 1.0 ⁇ 10 5 ⁇ ⁇ cm or less, and 1.0 ⁇ 10 3 ⁇ ⁇ cm or less is more preferable.
  • volume specific resistance value of the conductive polyamide resin composition is larger than 1.0 ⁇ 10 8 ⁇ ⁇ cm, the highly conductive polyamide film of the present invention cannot be provided.
  • the volume specific resistance value of the conductive polyamide resin composition is measured by the method described in the section of Examples described later.
  • melt Viscosity In the conductive polyamide resin composition of the present invention, the melt viscosity at a temperature of 280 ° C. and a shear rate of 91.6 sec ⁇ 1 is preferably 100 Pa ⁇ s to 4000 Pa ⁇ s, more preferably 150 Pa ⁇ s to 3500 Pa ⁇ s. 200 Pa ⁇ s to 3000 Pa ⁇ s is particularly preferable.
  • melt viscosity of the conductive polyamide resin composition is measured by the method described in the Examples section below.
  • the conductive polyamide resin composition of the present invention comprises polyamide 5X as a polyamide resin, a conductivity imparting agent, and various additives and other additives that are appropriately blended as necessary.
  • the polymer can be produced by mixing with the above-mentioned known mixing means.
  • melt-kneading polyamide 5X and a conductivity imparting agent can be mentioned.
  • a part of polyamide 5X and a conductivity imparting agent are melt-kneaded in advance to obtain a mixture (referred to as “conductive agent masterbatch”), and then the conductive agent masterbatch and polyamide 5X. And a method of melt-kneading or dry blending the remainder.
  • a part of the polyamide 5X for producing the conductive agent masterbatch in advance and the remainder of the polyamide 5X mixed with the conductive agent masterbatch may be the same polyamide 5X or different polyamides 5X. Good.
  • a part of the polyamide 5X and a part of the conductivity imparting agent are previously melt-kneaded to obtain a conductive agent masterbatch (referred to as “conductive agent masterbatch 1”), and then the polyamide 5X And the remainder of the conductivity-imparting agent are melt-kneaded to form a conductive agent master batch (referred to as “conductive agent master batch 2”), and the conductive agent master batch 1 and the conductive agent master batch 2 are melt-kneaded or dried.
  • conductive agent masterbatch 1 a conductive agent masterbatch
  • conductive agent master batch 2 conductive agent master batch
  • a part of the polyamide 5X for producing the conductive agent master batch 1 and the remainder of the polyamide 5X for producing the conductive agent master batch 2 may be the same polyamide 5X or different polyamides 5X. .
  • a part of the conductivity imparting agent for producing the conductive agent master batch 1 and the remainder of the conductivity imparting agent for producing the conductive agent master batch 2 may be the same conductivity imparting agent. It may be a property-imparting agent.
  • the polyamide 5X not including the conductivity-imparting agent may be the same polyamide 5X as at least one of the polyamide 5X of the conductive agent masterbatch 1 and the polyamide 5X of the conductive agent masterbatch 2, or different. May be. Furthermore, you may use 3 or more types of electrically conductive agent masterbatches.
  • each electrically conductive agent masterbatch 2 or more types of polyamide 5X may be used, or 2 or more types of conductivity imparting agents may be used, and the conductivity imparting agent mixed with a conductive agent masterbatch is used. Two or more types of polyamide 5X may be used for the polyamide 5X not included.
  • polyamide 5X may be replaced with a general-purpose polyamide resin such as polyamide 6 or polyamide 66, but at least a polyamide resin for producing a conductive agent masterbatch by melt-kneading a conductivity imparting agent in advance is Polyamide 5X is preferable.
  • the kneading conditions preparation conditions for the conductive agent masterbatch
  • the remainder of the conductive agent masterbatch and the polyamide 5X are melted in advance when the polyamide 5X and the conductivity imparting agent are melt-kneaded.
  • the kneading conditions for kneading may be the conditions for melt kneading a general polyamide resin.
  • electroconductivity imparting agent mixed with the electroconductivity imparting agent content of a conductive polyamide resin composition to manufacture or a conductive agent masterbatch is included. It depends on the presence or absence of polyamide 5X.
  • the content of the conductivity-imparting agent is usually 0.1% to 65% by weight, preferably about 0.1% to 60% by weight.
  • the content of hollow carbon fibrils is preferably 0.1 to 15% by weight, and the content of conductive carbon black is preferably 10 to 55% by weight.
  • Conductive polyamide film The conductive polyamide film of the present invention is formed from the conductive polyamide resin composition, and the conductive polyamide resin composition is usually formed into a film by the known extrusion molding method described above. It is manufactured by.
  • the conductive polyamide film are not particularly limited, and include, for example, substitution of metal films that require electrical conductivity used for electric and electronic devices such as capacitors, lithium ion batteries, nickel metal hydride batteries, and the like. It is done. Furthermore, it is useful for, for example, a curing sheet for building or facility maintenance that requires antistatic performance.
  • the conductive polyamide film of the present invention is suitable for, for example, a curing sheet that covers floors, walls, and ceilings of a semiconductor manufacturing site where dust generation needs to be significantly reduced.
  • a conductive curing sheet that covers floors, walls, and ceilings of a semiconductor manufacturing site where dust generation needs to be significantly reduced.
  • the risk of fire due to static sparks can be significantly reduced by using a conductive curing sheet as well as antistatic properties.
  • the thickness of the conductive polyamide film of the present invention varies depending on the application and can be any thickness, but is usually 5 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m, and particularly preferably 30 ⁇ m. ⁇ 70 ⁇ m.
  • the thickness of the conductive polyamide film 5 ⁇ m or more it is possible to prevent the strength as a film (or sheet) from being excessively reduced. Moreover, it can prevent that the softness
  • the conductive polyamide resin composition of the present invention can be made into an electromagnetic wave shielding polyamide resin composition excellent in both electric field shielding properties and magnetic field shielding properties by blending a conductivity imparting agent with polyamide 5X.
  • the required values for the electric field shielding property and magnetic field shielding property of the conductive polyamide resin composition of the present invention are determined by the product test values according to the Electrical Appliance and Material Safety Law, and the frequency generated by the product and its strength are also determined. Although it is dependent, it is not a value that is generally determined, but is preferably ⁇ 10 dB or less.
  • the electric field wave shielding property and the magnetic field wave shielding property are measured by a measuring method of an example described later.
  • the conductive polyamide resin composition of the present invention has an electric field shielding property measured at a frequency of 5 to 800 MHz, usually ⁇ 15 dB or less, and a magnetic field shielding property measured at a frequency of 200 to 1000 MHz, usually ⁇ 15 dB or less. preferable.
  • the electromagnetic wave shielding resin composition can be formed into a molded product by extrusion molding or injection molding, and can be used for parts for automobiles / railway vehicles or parts for electric / electronic / OA.
  • the conductive thermoplastic resin composition of the present invention is a conductive thermoplastic resin composition containing two or more kinds of thermoplastic resins and a conductivity imparting agent.
  • the conductive thermoplastic resin composition of the present invention contains at least two types of thermoplastic resins and contains the polyamide 5X as an essential component.
  • the thermoplastic resin other than the polyamide 5X is not particularly limited, but it is preferable to use a polyamide resin other than the polyamide 5X in consideration of the effect of improving the miscibility and conductivity and the required physical properties.
  • the polyamide 5X includes various polyamides 5X depending on the carbon number (X) of the dicarboxylic acid to be used.
  • Polyamide 56, polyamide 59 and polyamide 510 are preferable, and among them, the polyamide 56 is particularly preferable because of a good balance of physical properties.
  • polyamide resin other than polyamide 5X the diamines and lactams described above can be used except for diamines and lactams other than pentamethylene diamine and ⁇ -valerolactam that give polyamide 5X.
  • dicarboxylic acid the above dicarboxylic acid can be used without any particular limitation.
  • polyamide resin other than polyamide 5X examples include polyamide 6 (so-called 6 nylon), polyamide 66 (so-called 6,6-nylon), polyamide 610 and polyamide 12 (so-called 12 nylon). *
  • thermoplastic resin other than polyamide resin In the thermoplastic resin composition of the present invention, a thermoplastic resin other than the above-mentioned “other polyamide resin” can be used as a thermoplastic resin other than the polyamide 5X as long as the effects of the present invention are not significantly impaired.
  • thermoplastic resin examples include polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polystyrene, ABS resin, SAN resin, and polyimide.
  • thermoplastic resin composition of the present invention has solubility parameter values (hereinafter referred to as “SP”) of two types of thermoplastic resins (thermoplastic resin a and thermoplastic resin b) selected from the thermoplastic resins contained in the composition.
  • SP solubility parameter values
  • thermoplastic resin a and thermoplastic resin b thermoplastic resins selected from the thermoplastic resins contained in the composition.
  • value The absolute value of the difference (hereinafter referred to as “value”) (hereinafter referred to as “ ⁇ SP value”) is in a specific range.
  • thermoplastic resin a and the thermoplastic resin b The procedure for selecting the thermoplastic resin a and the thermoplastic resin b is as follows (1) to (4).
  • the thermoplastic resin which comprises a conductive thermoplastic resin composition, it divides into two, polyamide 5X and other thermoplastic resins, and it totals based on each SP value (solubility parameter). At this time, if the SP value is the same even if the resin is different within the same category, the blending amount is added.
  • the polyamide 5X (group) having the maximum blending amount is selected from the polyamide 5X categories, and this is designated as "thermoplastic resin a" and its SP value is designated as "SP (a)".
  • thermoplastic resin a when there exist multiple polyamide 5X (group) which can become the largest compounding quantity, let all be the thermoplastic resin a.
  • the SP value at this time is the arithmetic average of the SP values of the polyamides 5X, and this is SP (a).
  • the thermoplastic resin (group) having the maximum blending amount is selected from all the polyamides 5X and the thermoplastic resins. “Thermoplastic resin b” is used, and the SP value is “SP (b)”.
  • thermoplastic resin b when there are a plurality of candidates for the thermoplastic resin (group) that can be the “thermoplastic resin b” (resin (group) having the same blending amount but different SP values), the SP (a The thermoplastic resin (group) in which the absolute value of the difference from) becomes smaller is referred to as “thermoplastic resin b”.
  • solubility parameter (SP value) The solubility parameter (SP value) is described in, for example, “2. Estimation of Fedor” described in Hideki Yamamoto “SP Value Basics / Applications and Calculation Methods”, pages 66 to 67 (2005, published by Information Technology Corporation). It can be calculated based on the “method”.
  • the SP value in the Fedor's estimation method is a value defined by the 1/2 power of (cohesive energy [J / mol]) / (molecular volume [cm 3 / mol]), and mainly the polymer to various solvents. A physical property value used to predict solubility. Moreover, it is generally considered that the substances having similar SP values have good compatibility.
  • the absolute value of the difference in SP value between the thermoplastic resin a and the thermoplastic resin b is 0.2 or more and 3.7 or less, and 0.5 or more and 3.2.
  • the following is preferable, 0.8 to 2.7 is more preferable, and 1.2 to 2.2 is particularly preferable.
  • the dispersion of the conductivity imparting agent can be prevented from becoming too good due to the thermoplastic resin phase approaching complete compatibility at the micro level. That is, it is difficult to form a connection, that is, a “conductive path”, and it is possible to prevent the conductivity from being lowered.
  • thermoplastic resin a and the thermoplastic resin b which are the main components of the thermoplastic resin composition, from being excessively lowered, and to be favorable.
  • a molded product can be obtained, and the surface of the molded product can be prevented from becoming uneven.
  • the crystal form ( ⁇ -type crystal) of polyamide 5X which is an essential component, has a smaller crystal size than the ⁇ -type crystal, and tends to block the conductive path by the conductivity-imparting agent.
  • a phase interface at a microscopic level is formed by the difference in SP value between the thermoplastic resin a and the thermoplastic resin b, and the conductivity imparting agent gathers at this interface portion, so that the conductive path is further increased. Since it becomes easy to form, it is estimated that favorable electroconductivity is shown.
  • Table shows the commonly used polyamide and the monomer composition, cohesive energy E (J / mol), molecular volume V (cm 3 / mol), and solubility parameter (SP value) of the polyamide used in Examples and Comparative Examples. 5 shows.
  • thermoplastic resin a As the thermoplastic resin a, the polyamide 56, the polyamide 59, the polyamide 510, and the polyamide 56/6 are preferably used as in the polyamide 5X, and the polyamide 56, the polyamide 510, and the polyamide 56/6 have a good balance of physical properties. Is particularly preferable.
  • thermoplastic resin b As the thermoplastic resin b, a polyamide resin is preferable, and a polyamide 5X is more preferable. Particularly preferred are polyamide 56, polyamide 59 and polyamide 510.
  • thermoplastic resin a and the thermoplastic resin b are different from each other and are selected from polyamide 510 and polyamide 56/6. That is, the combination of “thermoplastic resin a: thermoplastic resin b” is preferably at least one of “polyamide 510: polyamide 56/6” and “polyamide 56/6: polyamide 510”.
  • thermoplastic resin a and the thermoplastic resin b are main components in the conductive thermoplastic resin composition of the present invention.
  • the total amount of the thermoplastic resin a and the thermoplastic resin b is usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight of the thermoplastic resin contained in the conductive thermoplastic resin composition of the present invention.
  • the above is preferable.
  • a particularly preferred content is 90% by weight or more.
  • the content ratio of the thermoplastic resin a and the thermoplastic resin b in the conductive thermoplastic resin composition of the present invention is such that the thermoplastic resin a / thermoplastic resin b (weight ratio) is 10/90 to 90 / 10 is preferable, 20/80 to 80/20 is more preferable, and 30/70 to 70/30 is still more preferable. At this time, a combination in which the thermoplastic resin a is more than 50/50 is particularly preferable.
  • the terminal amino group concentration of at least one of the thermoplastic resin a and the thermoplastic resin b used in the present invention is preferably 16 ⁇ eq / g to 100 ⁇ eq / g, more preferably 20 ⁇ eq / g to 90 ⁇ eq / g, particularly It is preferably 25 ⁇ eq / g to 80 ⁇ eq / g, and particularly preferably 30 ⁇ eq / g to 70 ⁇ eq / g.
  • the terminal amino group concentration is measured by the method described in the Examples section below.
  • the molecular weights of the thermoplastic resin a and the thermoplastic resin b are not particularly limited, and are appropriately selected according to the purpose. From the viewpoint of practicality, the relative viscosity ( ⁇ rel) of a solution (concentration: 0.01 g / ml) of thermoplastic resin a and thermoplastic resin b dissolved in 98% sulfuric acid at 25 ° C. is usually 1.5. It is preferably in the range of -6.5, preferably 1.6-4.5, more preferably 1.8-4.0, particularly preferably 2.0-3.7.
  • a sufficient practical strength can be obtained by setting the relative viscosity to 1.5 or more. Moreover, by setting the relative viscosity to 5.5 or less, it is possible to prevent the moldability from being impaired due to a decrease in fluidity.
  • the relative viscosity of a solution (concentration: 0.01 g / ml) of the thermoplastic resin a dissolved in 98% sulfuric acid at 25 ° C. is set to ⁇ rel (a), and similarly the thermoplastic resin b
  • ⁇ rel (a) is preferably 3.0 or more, more preferably 3.2 or more, and still more preferably 3.4 or more. is there.
  • the content of the conductivity imparting agent in the conductive thermoplastic resin composition of the present invention is 0.01% to 65% by weight in 100% by weight of the conductive thermoplastic resin composition. More preferably, it is 0.05% to 60% by weight, still more preferably 0.1% to 55% by weight, particularly preferably 0.5% to 55% by weight, and particularly preferably 1% by weight. ⁇ 30% by weight.
  • Sufficient conductivity can be obtained by setting the content of the conductivity imparting agent to 0.01% by weight or more. In addition, by making the content 65% by weight or less, it is possible to prevent impact resistance and mechanical properties (strength, elongation) from excessively decreasing, and when products such as electric / electronic parts, automobile parts and films are obtained, It is possible to prevent the strength required for practical use from becoming insufficient.
  • additives described above can be blended in the conductive thermoplastic resin composition of the present embodiment, if necessary. Additives are appropriately selected for the additive and the addition process at any stage from the production (polycondensation and polymerization) of the thermoplastic resin used as a raw material to the molding of the conductive thermoplastic resin composition. Then, it may be added.
  • the conductive thermoplastic resin composition of the present invention can have sufficient flame retardancy by further containing a flame retardant.
  • the flame retardancy of the conductive thermoplastic resin composition of the present invention is such that the critical oxygen index (LOI) measured in accordance with JIS K-7201 is 26 or more, and the flame retardancy in the UL-94 standard VTM test is VTM. It is preferably ⁇ 0.
  • the flame retardant used in the present invention is not particularly limited, and a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and the like can be used. It is preferable to mix a flame retardant, and a phosphorus flame retardant is more preferable. Of the phosphoric flame retardants, phosphinates are particularly preferable.
  • the content of the flame retardant in the conductive thermoplastic resin composition of the present invention is preferably 10% by weight to 40% by weight and preferably 15% by weight to 40% by weight in 100% by weight of the conductive thermoplastic resin composition. % Is more preferable, and 15% by weight to 37% by weight is particularly preferable. By setting the content of the flame retardant within the range, sufficient flame retardancy can be obtained.
  • the conductive thermoplastic resin composition of the present invention has a thermoplastic resin a selected from the polyamide resin 5X and a solubility parameter different from that of the thermoplastic resin a. It can manufacture by mixing the thermoplastic resin b, the electroconductivity imparting agent, and various additives mix
  • the mixing means used for mixing is not particularly limited, and examples thereof include a melt kneading method using a kneader, a twin screw extruder, a single screw extruder, a tumbler, a super mixer, a dry blend method using a Henschel mixer and a Nauter mixer. Etc.
  • thermoplastic resin a a mixture
  • thermoplastic resin b a conductivity-imparting agent
  • desired additive a desired additive
  • Preliminary methods of the thermoplastic resin a and the thermoplastic resin b At least one and the conductivity-imparting agent are melt-kneaded to form a mixture (hereinafter sometimes referred to as “conductive agent masterbatch”), and then the balance of the mixture and at least one of the thermoplastic resin a and the thermoplastic resin b
  • conductive agent masterbatch a mixture
  • thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to obtain a mixture (conductive agent masterbatch)
  • the amount of the conductivity-imparting agent used is usually 0.05% by weight to 70% by weight per 100% by weight of the conductive agent master batch.
  • the range is preferably 0.1% to 50% by weight, more preferably 2% to 25% by weight.
  • the conditions for preparing the conductive agent master batch are not particularly limited, and may be conditions generally used when melt kneading at least one of the thermoplastic resin a and the thermoplastic resin b to be used. What is necessary is just to melt-knead at the temperature of 5 degreeC or more and 50 degrees C or less of melting
  • fusing point melting peak temperature measured by DSC
  • the above-mentioned “the remaining part of at least one of the thermoplastic resin a and the thermoplastic resin b” refers to the thermoplastic resin a and the thermoplastic resin a included in the conductive agent masterbatch from a predetermined blending amount. Since the final thermoplastic resin composition is produced by using the amount obtained by subtracting at least one of the thermoplastic resins b for subsequent melt-kneading or dry blending, the conductive agent master is used from the predetermined blending amount. It means the amount of each thermoplastic resin obtained by subtracting the amount of at least one of the thermoplastic resin a and the thermoplastic resin b contained in the batch. *
  • molded articles obtained using the conductive thermoplastic resin composition of the present invention preferably have a conductivity-imparting agent content of 0.01 wt% to 65 wt%, more preferably 0.05 wt%. % To 60% by weight, more preferably 0.1% to 55% by weight, particularly preferably 0.5% to 55% by weight, and particularly preferably 1% to 30% by weight.
  • volume resistivity can be reduced for example to a level such as 1.00 ⁇ 10 8 ⁇ ⁇ cm or less. This is a result that a lower volume specific resistance value can be obtained with a smaller content of the conductivity-imparting agent as compared with a molded product obtained using a conventional conductive thermoplastic resin composition.
  • injection-molded product Specific examples of the injection-molded product obtained from the conductive thermoplastic resin composition of the present invention include a front end module, a radiator mount, a body / bumper retainer, an intake manifold, a hinged clip (for example, an automobile part) Molded product with hinge), cable tie, resonator, air cleaner, engine cover, rocker cover, cylinder head cover, timing belt cover, gasoline tank, gasoline sub tank, radiator tank, intercooler tank, oil reservoir tank, oil pan, electric power steering gear, oil Underhood parts such as strainers, canisters, engine mounts, junction blocks, relay blocks, ECU cases, connectors, corrugated tubes and protectors; Exterior parts such as handle, fender, hood bulge, roof rail leg, door mirror stay, bumper, spoiler and wheel cover; cup holder, console box, accelerator pedal, clutch pedal, shift lever base, shift lever knob and electromagnetic shielding parts Examples include interior parts.
  • the injection-molded product obtained from the conductive thermoplastic resin composition of the present invention is
  • a front end module, a radiator mount, a body / bumper retainer and the like obtained from the conductive thermoplastic resin composition of the present invention are preferable applications because they can achieve stable conductivity and heat resistance.
  • the front end module and the radiator mount are parts conventionally made of steel, but are being replaced with resin for the purpose of reducing the weight of the vehicle.
  • these parts are made of resin using a general-purpose resin, the electrical conductivity is lost, and it is necessary to separately install a grounding wire harness.
  • a resin part molded using the conductive thermoplastic resin composition of the present invention it is not necessary to provide a ground, and it is possible to promote vehicle weight reduction by resinization.
  • extrusion-molded product obtained from the conductive thermoplastic resin composition of the present invention
  • fishing-related materials such as fishing lines and fishing nets, switches, ultra-small slide switches, dip switches, switch housings, lamp sockets , Cable ties, electrolytic capacitors, capacitor cases, motor internal film parts, heat-resistant containers, microwave oven parts, rice cooker parts, industrial curing sheets, printer ribbon guides, etc.
  • applications such as electrical product parts, computer related parts, facsimile / copier related parts and machine related parts are listed.
  • the extrusion-molded product obtained by using the conductive thermoplastic resin composition of the present invention is suitable for parts and members that require electrical conductivity and antistatic properties, and particularly covers floors, walls, and ceilings at semiconductor manufacturing sites.
  • dust generation can be remarkably reduced.
  • the sheets obtained from the conductive thermoplastic composition of the present invention are excellent in electromagnetic wave shielding characteristics, they are also suitable as an electromagnetic wave shielding material.
  • Conductive polyamide resin composition The conductive polyamide resin composition of the present invention comprises a polymer component and a conductivity-imparting agent.
  • the polymer component constituting the conductive polyamide resin composition of the present invention comprises the following component (A) polyamide 5X and at least one of the following component (B-1) and the following component (B-2) (B ) Component modified elastomer.
  • the content of the component (A) and the component (B) in the polymer component is as follows: (A) component: 85 to 50% by weight, (B) component: 15 to 50% by weight (however, the (A) component and the (B) component And 100% by weight in total.
  • the content in the polymer component By setting the content in the polymer component to the above range or more for the component (A) and not more than the above range for the component (B), it is possible to prevent the original properties of the polyamide resin from being impaired.
  • the component (A) is not more than the above range and the component (B) is not less than the above range, the amount of the modified elastomer becomes a sufficient amount, and the above-described effects by using the modified elastomer can be sufficiently obtained. .
  • Preferred blending ratios in the polymer component are (A) component: 80 to 50% by weight, (B) component: 20 to 50% by weight, more preferably (A) component: 70 to 55% by weight, and (B) component. : 30 to 45% by weight.
  • Component (A) used in the conductive polyamide resin composition of the present invention is a polycondensation obtained by a polycondensation reaction using polyamide 5X, that is, a diamine containing pentamethylenediamine and a dicarboxylic acid as monomer components. It is a polyamide resin having a structure corresponding to a condensate.
  • the polyamide 5X as the component (A) preferably has two endothermic peaks measured as the melting points by DSC (differential scanning calorimetry), and the temperature difference between the peak tops of the two endothermic peaks is 5 to 50 ° C. It is preferable that the temperature is 10 to 45 ° C.
  • the peak top temperature of each endothermic peak is preferably 180 to 280 ° C. on the high temperature side, more preferably 200 to 270 ° C., and preferably 150 to 250 ° C. on the low temperature side.
  • the temperature is preferably 160 to 250 ° C.
  • the endothermic peak is an endothermic peak that is observed when the sample is heated and melted once to eliminate the influence of the thermal history on the crystallinity and then heated again.
  • the temperature of the peak top of the endothermic peak can be obtained in the following manner.
  • the temperature is raised from 30 to 300 ° C. at a rate of 20 ° C./min, and the sample held at 300 ° C. for 3 minutes is completely dissolved, and then the temperature is lowered to 30 ° C. at a rate of 20 ° C./min.
  • the temperature is raised to 300 ° C. at a rate of 20 ° C./min, and the temperature of the peak top of the endothermic peak observed at the time of temperature rise is obtained.
  • the maximum temperature at the time of temperature rise may be appropriately adjusted according to the expected peak top temperature of the endothermic peak of the resin.
  • the peak top temperature of the endothermic peak (when two or more endothermic peaks exist, The temperature may be selected in the range of the peak top temperature of the endothermic peak on the high temperature side) + 50 ° C.
  • the presence of two endothermic peaks by the DSC method means that crystallization during molding proceeds in two stages, and as described above, modification of component (B) due to crystallization proceeding in two stages. Due to the stress relaxation effect of the elastomer, an excellent impact resistance improvement effect can be obtained.
  • the temperature difference between the peak tops of the two endothermic peaks is preferably 5 to 50 ° C., particularly 10 to 45 ° C.
  • the conductive polyamide resin composition of the present invention by using polyamide 5X as the polyamide resin, high conductivity is exhibited with a small amount of a conductivity-imparting agent, and high impact resistance is exhibited. This is considered to be due to the difference in crystal form of the polyamide resin, and is estimated as follows.
  • the polyamide 5X tends to have ⁇ -type crystals, but the conventionally used polyamide 6 and polyamide 66 etc. tend to have only ⁇ -type crystals. Since the ⁇ -type crystal has a larger crystal size than the ⁇ -type crystal, it tends to block the conduction path by the conductivity-imparting agent, and the conductivity tends to be low. Furthermore, the ⁇ -type crystal has a high elastic modulus. Therefore, the impact resistance tends to be difficult to improve. Since the polyamide 5X having ⁇ -type crystals does not have the above-described problems, it is considered that the effect of developing the conductivity by the addition of the conductivity imparting agent is high and the impact resistance is also improved.
  • the polyamide 5X used for the component (A) is particularly preferably polyamide 56, polyamide 59, polyamide 510, polyamide 56/6, and polyamide 512.
  • polyamide 5X may be used individually by 1 type, and 2 or more types of things from which a composition, molecular weight, a terminal amino group concentration, etc. differ may be mixed and used for arbitrary combinations and ratios.
  • Component (B) used in the present invention is a modified elastomer comprising any one or a mixture of the following components (B-1) and (B-2).
  • Component (B-1) graft polymerization of at least one of an ⁇ , ⁇ -unsaturated carboxylic acid and a derivative thereof onto an olefin copolymer obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • Modified polyolefin copolymer (B-2) component ⁇ , ⁇ -unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b
  • the derivative of ⁇ , ⁇ -unsaturated carboxylic acid is a derivative in a broad sense including an acid anhydride of ⁇ , ⁇ -unsaturated carboxylic acid.
  • ⁇ , ⁇ -unsaturated carboxylic acids at least one of ⁇ , ⁇ -unsaturated carboxylic acid and derivatives thereof is referred to as “ ⁇ , ⁇ -unsaturated carboxylic acids”.
  • Component (B-1) The component (B-1) used in the conductive polyamide resin composition of the present invention is an olefin copolymer obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the derivative of ⁇ , ⁇ -unsaturated carboxylic acid is a broad definition derivative containing an acid anhydride of ⁇ , ⁇ -unsaturated carboxylic acid.
  • ⁇ , ⁇ -unsaturated carboxylic acids at least one of ⁇ , ⁇ -unsaturated carboxylic acid and derivatives thereof is referred to as “ ⁇ , ⁇ -unsaturated carboxylic acids”.
  • the ⁇ -olefin copolymerized with ethylene is preferably one having 3 to 20 carbon atoms.
  • examples thereof include propylene, 1-butene, 1-hexene, 1-octene, 1-decene and 3-methylbutene-1, 4-methylpentene-1. Two or more of these may be used in combination.
  • linear ⁇ -olefins having 3 to 10 carbon atoms are preferable, propylene and 1-butene are more preferable, and propylene is particularly preferable.
  • olefin copolymer examples include ethylene-propylene copolymer (EPR) and ethylene-butene copolymer (EBR).
  • EPR ethylene-propylene copolymer
  • EBR ethylene-butene copolymer
  • the melt volume rate (MVR) of the olefin copolymer is preferably 0.1 to 400 g / 10 minutes, and more preferably 0.2 to 200 g / 10 minutes.
  • the MVR in the present invention is a value measured at a temperature of 180 ° C. and a load of 21.17 N in accordance with JIS K7210 standard.
  • ⁇ , ⁇ -unsaturated carboxylic acids examples include, for example, (anhydrous) maleic acid, (anhydrous) itaconic acid, chloro (anhydrous) maleic acid, (anhydrous) citraconic acid, butenyl ( Anhydrous) succinic acid and tetrahydro (anhydride) phthalic acid, and their acid halides, amides, imides, C1-20 alkyl and glycol esters.
  • (anhydrous) indicates anhydrous unsaturated carboxylic acid or unsaturated carboxylic acid.
  • ⁇ , ⁇ -unsaturated carboxylic acids or acid anhydrides thereof are preferable, and (anhydrous) maleic acid or (anhydrous) itaconic acid, particularly maleic anhydride is more preferable. Two or more of these may be used in combination.
  • the amount of ⁇ , ⁇ -unsaturated carboxylic acids grafted onto the olefin copolymer is preferably 0.05 to 5 weights as the amount of ⁇ , ⁇ -unsaturated carboxylic acids per 100 parts by weight of the olefin copolymer. Parts, more preferably 0.1 to 3 parts by weight.
  • High impact strength can be obtained by setting the graft polymerization amount to 0.05 parts by weight or more. Further, when the graft polymerization amount is 5 parts by weight or less, the fluidity at the time of molding is improved and the molding of a thin molded product tends to be facilitated.
  • the amount of graft polymerization of ⁇ , ⁇ -unsaturated carboxylic acids to the olefin copolymer can be changed by changing the amount of ⁇ , ⁇ -unsaturated carboxylic acids charged to the olefin copolymer during the production of the modified polyolefin copolymer. Can be adjusted.
  • radical generator In the graft polymerization reaction, a radical generator may be added together with ⁇ , ⁇ -unsaturated carboxylic acids.
  • examples of the radical generator include organic peroxides and azo compounds.
  • organic peroxides include, for example, tert-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1,3,3-tetramethyl Hydroperoxides such as butyl hydroperoxide, p-menthane hydroperoxide and diisopropylbenzene hydroperoxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, di-tert- Dialkyl peroxides such as butyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane and dicumyl peroxide, 2,2-bis-tert- Butyl peroxybutane, 2 Peroxyketals such as 2-bis-tert-butylperoxyoctane, 1,1-bis-tert-but
  • azo compound examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile). ), 1-[(1-cyano-1-methylethyl) azo] formamide, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4,4-trimethylpentane) And 2,2′-azobis (2-methylpropane) and the like.
  • radical generators having a half-life temperature at 10 hours of preferably 190 ° C. or lower, more preferably 120 ° C. or higher, in terms of dimensional stability and impact resistance.
  • the amount of the radical generator used is preferably in the range of 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the olefin copolymer. Further preferred. By making the amount of the radical generator used 0.01 parts by weight or more, a sufficient graft polymerization amount is obtained by the olefin copolymer, and by making it 10 parts by weight or less, the molecular weight of the olefin copolymer is increased. It tends to be easy to manufacture without becoming too small.
  • the radical generator can be dissolved and mixed in an organic solvent or the like. Moreover, what mix
  • the modified polyolefin copolymer of component (B-1) can be prepared by a conventionally known method as a method for changing the olefin copolymer to reactivity.
  • a method for changing the olefin copolymer to reactivity For example, it can be produced by a method in which a predetermined amount of an olefin copolymer, ⁇ , ⁇ -unsaturated carboxylic acid, radical generator and the like are weighed and uniformly mixed and then melt-kneaded.
  • Examples of the mixing device include a tumbler blender, a ribbon blender, a V-type blender, and a Henschel mixer.
  • Examples of the melt kneader include a mixing roll, a kneader, a Banbury mixer, a Brabender plastograph, a single screw and a twin screw extruder, and the like.
  • the melt kneading temperature depends on the half-life temperature of the radical generator, but is usually selected in the range of 120 to 300 ° C, preferably in the range of 150 to 280 ° C.
  • the kneading time is usually 0.1 to 30 minutes, preferably 0.5 to 10 minutes, depending on the kneading temperature, the type of radical generator, the amount added, and the like.
  • the modified polyolefin copolymer of component (B-1) includes maleic anhydride graft polymerized ethylene-propylene copolymer (maleic anhydride modified EPR), maleic anhydride graft polymerized ethylene-butene copolymer (maleic anhydride).
  • Modified EBR is preferable because it can satisfy the mechanical strength and toughness in a well-balanced manner.
  • Component (B-2) used in the conductive polyamide resin composition of the present invention is a block copolymer comprising a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b. It is a modified block copolymer obtained by graft polymerization of ⁇ , ⁇ -unsaturated carboxylic acids to a hydrogenated product.
  • the “hydrogenated product of a block copolymer” is a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b, and the aliphatic unsaturation of the block b by hydrogenation. It means a block copolymer having a reduced number of groups.
  • the arrangement structure of the block a and the block b may be any structure such as a linear structure and a branched structure. Moreover, among these structures, a random chain derived from a random copolymer portion of a vinyl aromatic compound and a conjugated diene compound may be included in part.
  • the abb type block copolymer may contain an abb type diblock structure. Two or more hydrogenated products of these block copolymers may be used in combination.
  • Preferred examples of the vinyl aromatic compound constituting the vinyl aromatic compound polymer block a include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl xylene, and the like, and more preferred is styrene.
  • Preferred examples of the conjugated diene compound constituting the conjugated diene compound block b include 1,3-butadiene and 2-methyl-1,3-butadiene.
  • the proportion of the repeating unit derived from the vinyl aromatic compound in the hydrogenated block copolymer is preferably in the range of 10 to 70% by mole, more preferably in the range of 10 to 40% by mole, based on all repeating units. A range of 15 to 25 mol% is more preferable.
  • the thermal stability tends to be improved, and is less susceptible to oxidative degradation during the production and molding of the resin composition. Moreover, it exists in the tendency for impact resistance to improve by setting it as 70 mol% or less.
  • the proportion of unsaturated bonds derived from the conjugated diene compound and remaining without hydrogenation in the aliphatic chain portion in the block copolymer is preferably 20% or less of all bonds in the molecule. 10% or less is more preferable.
  • the aromatic unsaturated bond derived from the vinyl aromatic compound may be hydrogenated, but the ratio of the hydrogenated aromatic unsaturated bond is 25% or less of all the bonds in the molecule. It is preferable.
  • a styrene-ethylene-butylene-styrene copolymer in which the conjugated diene compound as a monomer constituting the conjugated diene compound polymer block b is 1,3-butadiene is used.
  • SEBS styrene-ethylene-butylene-styrene copolymer
  • SEPS styrene-ethylene-propylene-styrene copolymer
  • the number average molecular weight of the hydrogenated product of the block copolymer is preferably in the range of 50,000 to 180,000, more preferably 55,000 to 160,000, and particularly preferably 60,000 to 140,000.
  • the number average molecular weight 50,000 or more the impact resistance and dimensional stability of the finally obtained resin composition are excellent, and further, the appearance of the molded product obtained from the resin composition is made good. Can do.
  • the number average molecular weight is 180,000 or less because the fluidity of the finally obtained resin composition is improved and the molding process becomes easy.
  • Component (B-2) is a modified block copolymer obtained by graft polymerization of ⁇ , ⁇ -unsaturated carboxylic acids to the hydrogenated product of the block copolymer.
  • a radical generator may be used in combination with the ⁇ , ⁇ -unsaturated carboxylic acids.
  • examples of the ⁇ , ⁇ -unsaturated carboxylic acids and radical generator include the component (B-1) described above.
  • the compounds used in the production of can be used, and the graft polymerization reaction can also be carried out in the same manner as the component (B-1).
  • the above components (B-1) and (B-2) may be used alone or in a combination of two or more in any combination and ratio.
  • one or more of the component (B-1) and one or more of the component (B-2) may be mixed and used.
  • the content of the conductivity imparting agent in the conductive polyamide resin composition of the present invention varies depending on the type of the conductivity imparting agent used and the required degree of conductivity. 15) to 200 parts by weight, particularly 20 to 175 parts by weight, and particularly preferably 25 to 150 parts by weight, based on 100 parts by weight of the total of the polymer components. If the blending amount of the conductivity imparting agent is too small, sufficient conductivity cannot be obtained, and if it is too large, the original properties of the polyamide resin such as moldability and mechanical properties are impaired.
  • additives described above can be blended in the polyamide resin composition of the present invention, if necessary. If the blending amount of these additives is too small, the blending effect cannot be sufficiently obtained, but if too large, the moldability and mechanical properties are impaired, so the sum of the components (A) and (B)
  • the total amount of additives is preferably 30 parts by weight or less with respect to 100 parts by weight, and in particular, the inorganic additive is preferably in an amount that satisfies the ash residue described below.
  • additives can be blended in any of the manufacturing process of the component (A) and the component (B) used in the present invention, the manufacturing process of the conductive polyamide resin composition of the present invention, and the molding process. .
  • the conductive polyamide resin composition of this invention can mix
  • Other polymer components include polyamide resins other than polyamide 5X, elastomers other than the component (B), polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN Examples thereof include resins and polystyrene. These other polymer components may be used alone or in a combination of two or more in any combination and ratio.
  • the blending amount is preferably 1 part by weight or less as the total amount of the other polymer components with respect to 100 parts by weight of the total of the component (A) and the component (B). By setting it as 1 weight part or less, it can prevent that the effect of the (A) component and (B) component which are used by this invention is impaired.
  • the said other polymer component is mix
  • the conductive polyamide resin composition of the present invention has an ash residue of 0.5% by weight or less.
  • the ash residue of the conductive polyamide resin composition 0.5% by weight or less, it is possible to prevent the film appearance from deteriorating and the moldability (film forming property) from deteriorating.
  • the ash residue of the conductive polyamide resin composition is measured by the method described in the Examples section below.
  • the conductive polyamide resin composition of the present invention preferably has a volume resistivity value of 1.00 ⁇ 10 8 ⁇ ⁇ cm or less, more preferably 1.0 ⁇ 10 5 ⁇ ⁇ cm or less, 1.0 ⁇ 10 3 ⁇ ⁇ cm or less is particularly preferable. Further, it is usually 1 ⁇ 10 0 ⁇ ⁇ cm or more.
  • volume resistivity value of the conductive polyamide resin composition By setting the volume resistivity value of the conductive polyamide resin composition to 1.00 ⁇ 10 8 ⁇ ⁇ cm or less, it is possible to obtain a highly conductive polyamide resin composition that is excellent in conductivity and is an object of the present invention. it can.
  • the volume specific resistance value of the conductive polyamide resin composition is measured by the method described in the section of Examples below.
  • a part of the component (A) and the component (B) are melt-kneaded in advance to form an elastomer masterbatch, and the remainder of the component (A) and the conductivity-imparting agent are previously melted. It is preferable to knead to make a conductive masterbatch, and to mix the elastomer masterbatch and the conductive masterbatch, preferably dry blend, to obtain a conductive polyamide resin composition.
  • additives and other polymer components may be blended in any of the master batches, or may be mixed separately from the master batch.
  • the conductive polyamide resin composition of the present invention can be produced by the following mixing procedure.
  • -(A) component, (B) component, and a conductivity imparting agent are melt-kneaded.
  • -A conductive master batch obtained by melt-kneading the component (A) and the conductivity-imparting agent and component (B) are melt-kneaded or dry blended.
  • the polyamide 5X as the component (A) used for the production of the elastomer masterbatch and the polyamide 5X as the component (A) used for the production of the conductive masterbatch may be the same or different.
  • the component (A) and the component (B) mixed with these master batches may be the same as or different from the master batch.
  • the conditions for melt-kneading the above matrix and each component may be general polyamide resin melt-kneading conditions.
  • the temperature at the peak top of the endothermic peak measured by DSC of the polyamide 5X used (endothermic peak is 2).
  • the temperature is about 5 to 50 ° C. higher than the higher temperature).
  • the mixing means for dry blending is not particularly limited, and examples thereof include a tumbler, a super mixer, a Henschel mixer, and a Nauter mixer.
  • Molded products Various molded products obtained using the conductive polyamide resin composition of the present invention have a conductivity imparting agent content of 100 parts by weight in total of polymer components composed of (A) component and (B) component.
  • the content is preferably 15 to 200 parts by weight, more preferably 20 to 175 parts by weight, and particularly preferably 25 to 150 parts by weight.
  • volume resistivity can be reduced for example to a level such as 1.00 ⁇ 10 8 ⁇ ⁇ cm or less. This is a result that a lower volume specific resistance value can be obtained with a smaller content of the conductivity-imparting agent compared to a molded product obtained using a conventional conductive polyamide resin composition.
  • the thickness of the extrusion sheet formed by extruding the conductive polyamide resin composition of the present invention into a sheet form varies depending on the application, and may be any thickness. However, it is usually 5 to 200 ⁇ m, preferably 10 to 150 ⁇ m, more preferably 20 to 100 ⁇ m, and particularly preferably 30 to 70 ⁇ m. If this thickness is excessively thin, the strength as a sheet or film tends to decrease, such being undesirable. On the other hand, since the softness
  • the molded product formed by molding the conductive polyamide resin composition of the present invention has mechanical properties such as the chemical resistance and bending elastic modulus inherent in the polyamide resin, and is excellent in conductivity and impact resistance. Yes, industrially as part or all of film, sheet, automobile, railway vehicle parts, computer parts, mobile phone parts, home appliance parts, and various electric / electronic / OA parts Very useful.
  • Tm Melting point of polyamide resin
  • both ends of a tensile test piece according to ASTM-D638 are cut with pruning scissors, a 12.7 mm x 50 mm x 3 mm thick strip is cut out, and both ends of the strip A test piece was prepared by applying a silver paste (12.7 mm ⁇ 3 mm) and air-drying at 23 ° C. for 30 minutes.
  • the measurement was performed by measuring the resistance between both end surfaces coated with the silver paste, calculating the volume resistivity, and setting this as the volume resistivity value.
  • the measuring instrument used was “Loresta EP” manufactured by Mitsubishi Chemical Analytech Co., Ltd. and “Hiresta UP” manufactured by Mitsubishi Chemical Analytech Co., Ltd. When the volume resistivity value was 10 6 ⁇ ⁇ cm or less, “Loresta EP” was used, and when exceeding that, “Hiresta UP” was used. An ESP type probe was used. “Hiresta UP” used the ring method, charged at 500 V for 1 minute, and adopted the value 1 minute after the start of measurement.
  • a sample of 100 mm ⁇ 100 mm was cut out from the sample film using a cutter, a silver paste was applied to both ends thereof, and air-dried at 23 ° C. for 30 minutes was used as a sample.
  • the volume resistivity was calculated by measuring the resistance between both end faces to which this silver paste was applied, and this was used as the volume resistivity value.
  • the same apparatus as the case of the said injection molded product was used, and resistance measurement was implemented similarly.
  • Ash residue About 10 g of the polyamide resin composition sample was accurately weighed and burned in an electric furnace at 700 ° C. for 5 hours, and the amount of ash residue was weighed and displayed in weight%.
  • Electromagnetic wave shielding ⁇ Measurement with injection molded piece> Using an injection molding machine (manufactured by Sumitomo Heavy Industries, SH100, clamping force 100T), resin temperature (measured temperature of purge resin): 260 ° C., mold temperature: 80 ° C., length 100 mm, width 100 mm, thickness A 2 mm molded product was injection molded, and the resulting injection molded product was bonded with 5 sheets of commercially available two-component epoxy adhesive, and “TR-17301A” and “R3361A” manufactured by Advantest Co., Ltd.
  • the electric field wave shielding property at frequencies of 10, 100, 200, 600, and 1000 MHz and the magnetic field wave shielding property at frequencies of 400, 600, 800, and 1000 MHz were measured.
  • VTM test Vertical combustion test
  • Modified Elastomer Preparation of Modified Elastomer
  • component (B) used in Examples 3-1 to 3-20 and Comparative Examples 3-1 to 3-7.
  • m-EBR maleic anhydride-modified EBR “Modic AP730T” (hereinafter referred to as “modified EBR”) manufactured by Mitsubishi Chemical Corporation.
  • Pentamethylenediamine was prepared by the following operation.
  • cadaverine / adipate aqueous solution was prepared by the following method using lysine / adipate as a raw material.
  • E. E. coli JM109 / pCAD1 was pre-cultured in 10 flasks containing LB medium, and then 1 L of the culture solution was inoculated into a 200 L jar fermenter containing 99 L of LB medium, and aerated at 0.5 vvm, 35 ° C., 250 rpm. Stirring culture was performed. Six hours after the start of the culture, the whole culture solution was inoculated into a 5 m 3 volume culture tank containing 3 m 3 of 2 ⁇ LB medium and further cultured. The culture conditions in the 5 m 3 volume culture tank were aeration volume of 0.5 vvm and 35 ° C.
  • the rotational speed of stirring was adjusted in the range of 60 rpm to 100 rpm so that the dissolved oxygen concentration had a sufficiently high value.
  • sterilized IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • 0.5 mM final concentration of 0.5 mM
  • the cells were collected from the culture solution using an Alfa Laval separator.
  • the wet weight of the collected cells was 36.9 kg.
  • the wet cells were suspended in 160 L of a 10 mM sodium acetate solution, and then recovered again with a sharp press centrifuge at 15,000 rpm and a feed rate of 1.0 L / min. 18.7 kg of wet cells Acquired the body.
  • Adipic acid was added to a 50% (w / v) lysine base solution (manufactured by Kyowa Hakko Kogyo Co., Ltd.) to a pH of 6.0 to prepare a concentrated solution of lysine / adipate.
  • a substrate solution (3 m 3 ) was prepared so as to have a lysine concentration of 60 g / L, and placed in a 5 m 3 culture tank. Pyridoxal phosphate was added to the substrate solution to 0.1 mM, and The reaction was started by adding E. coli JM109 / pCAD1 cells so that the OD660 was 0.5.
  • the reaction conditions were 37 ° C., 0.5 vvm aeration, and 70 rpm.
  • the pH of the solution during the reaction was controlled to be 6.5 by adding a slurry in which 250 kg of adipic acid was suspended in 400 L of ion-exchanged water. Further, a concentrated substrate solution (600 L) having a lysine concentration of 318 g / L was continuously fed at about 130 L / hour from the start, and the entire amount was added within about 4.5 hours. The reaction was further continued for a total of 22 hours. At the end of the reaction, the residual concentration of lysine was 0.03 g / L or less, and almost 100% of lysine was converted to cadaverine.
  • UF membrane module ACP-3053 manufactured by Asahi Kasei Kogyo Co., Ltd.
  • Asahi Kasei Kogyo Co., Ltd. that cuts the molecular weight of 13,000 or more after inactivating the cells (80 ° C., 30 minutes) is used for the solution after the reaction (about 4 m 3 )
  • High molecular weight impurities were removed through
  • the recovery rate by UF treatment was 99.3%.
  • an aqueous cadaverine / adipate solution containing approximately equimolar amounts of cadaverine and adipic acid was obtained.
  • the activated cadaverine / adipate aqueous solution after the activated carbon treatment was charged into a 2 m 3 stirring tank, and concentration was started at a jacket temperature of 110 ° C., an internal temperature of 57 ° C., and a vacuum degree of 140 Torr to 150 Torr. Concentration was appropriately performed while charging the cadaverine / adipate aqueous solution after the activated carbon treatment.
  • the weight of the concentrate was 918.4 kg, and the cadaverine adipate concentration was 63.5% by weight.
  • the cadaverine concentration in the cadaverine / adipate aqueous solution such as the concentrated solution was calculated from titration up to the inflection point of pH by titrating with 1N HCl aqueous solution.
  • concentration of adipic acid in the cadaverine / adipate aqueous solution such as the concentrated solution was titrated with 1N-NaOH aqueous solution and calculated from the titration amount up to the inflection point of pH.
  • an automatic titrator (GT-06 manufactured by Mitsubishi Chemical Corporation) was used.
  • cadaverine adipate (pentamethylenediamine adipate) having a water content of about 15% by weight was obtained as a seed crystal.
  • demineralized water 100 kg
  • pentamethylenediamine adipate 250 kg having a water content of about 15% by weight were charged into a 1 m 3 stainless steel container previously purged with nitrogen and dissolved by stirring.
  • a 25% by weight aqueous sodium hydroxide solution (273.8 kg) was charged into the solution and neutralized (that is, pentamethylenediamine was desalted to give a free amine).
  • the sodium hydroxide aqueous solution was charged into the solution, the internal temperature of the solution was adjusted so as not to exceed 70 ° C.
  • polyamide resins used in Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-13 were produced by the following methods (1-1) to (1-13).
  • Polyamide 6 had a relative viscosity ( ⁇ r ) of 2.8, a melting point (Tm) of 224 ° C., and a terminal amino group concentration of 60 ⁇ eq / g.
  • Polyamide 12 had a relative viscosity ( ⁇ r ) of 2.8, a melting point (Tm) of 182 ° C., and a terminal amino group concentration of 56 ⁇ eq / g.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the polycondensation reaction was completed when the pressure was further reduced and the predetermined stirring power set lower than that in the production of the polyamide 6 was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
  • Polyamide 510 had a relative viscosity ( ⁇ r ) of 2.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 43 ⁇ eq / g.
  • this polyamide 510 is referred to as “polyamide 510 (43)”.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide 510 (terminal amino group concentration: 43 ⁇ eq / g) was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
  • Polyamide 510 had a relative viscosity ( ⁇ r ) of 2.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 15 ⁇ eq / g.
  • this polyamide 510 is referred to as “polyamide 510 (15)”.
  • Polyamide 510 (relative viscosity 4.5, terminal amino group concentration 23 ⁇ eq / g) Put pentamethylene diamine, sebacic acid, and demineralized water into a container so that the concentration is 50% by weight and a quantity of 100 kg pentamethylene diamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate. And 135 g of pentamethylenediamine were put in a container, and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the polycondensation reaction was terminated when the pressure was further reduced and a predetermined stirring power set higher than that in the production of the polyamide 6 was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
  • Polyamide 510 had a relative viscosity ( ⁇ r ) of 4.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 23 ⁇ eq / g.
  • this polyamide 510 is referred to as “polyamide 510 (23)”.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure is further reduced and the polycondensation reaction is reached when a predetermined stirring power set lower than that during the production of the polyamide 510 (terminal amino group concentration 43 ⁇ eq / g) is reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C.
  • Polyamide 510 had a relative viscosity ( ⁇ r ) of 2.0, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 55 ⁇ eq / g.
  • this polyamide 510 is referred to as “polyamide 510 (55)”.
  • the jacket temperature was adjusted to 285 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 275 ° C.
  • the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 66.
  • Polyamide 66 had a relative viscosity ( ⁇ r ) of 2.8, a melting point (Tm) of 264 ° C., and a terminal amino group concentration of 51 ⁇ eq / g.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure is further reduced to higher than that in the production of the polyamide 6, and the polyamide 510 (relative viscosity ( ⁇ r ) 4.5, terminal amino group concentration 23 ⁇ eq / g) is produced.
  • the polycondensation reaction was terminated when a predetermined stirring power lower than that was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets.
  • Polyamide 56/6 had a relative viscosity ( ⁇ r ) of 3.5, a melting point (Tm) of 224 ° C., and a terminal amino group concentration of 40 ⁇ eq / g.
  • the hexamethylenediamine / adipate aqueous solution was concentrated until the temperature and pressure of the contents reached 150 ° C. and 0.15 MPa.
  • the internal temperature of the autoclave (a) reached 245 ° C.
  • the hexamethylenediamine / adipate aqueous solution in the autoclave (b) was transferred to the autoclave (a).
  • the jacket temperature was adjusted to 250 ° C.
  • the pressure of the autoclave (a) was adjusted to 0.20 MPa
  • the contents were heated to 240 ° C.
  • the polycondensation reaction was terminated when the pressure was further reduced and a predetermined stirring power was reached.
  • Polyamide 610 (terminal amino group concentration: 44 ⁇ eq / g) Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of hexamethylenediamine / sebacate aqueous solution. Further, disodium hydrogen phosphite pentahydrate 3.48 g was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide 510 (terminal amino group concentration: 43 ⁇ eq / g) was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under the conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610.
  • Polyamide 610 had a relative viscosity ( ⁇ r ) of 2.5, a melting point (Tm) of 222 ° C., and a terminal amino group concentration of 44 ⁇ eq / g.
  • this polyamide 610 is referred to as “polyamide 610 (44)”.
  • Polyamide 610 (terminal amino group concentration: 37 ⁇ eq / g) Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of hexamethylenediamine / sebacate aqueous solution. Further, disodium hydrogen phosphite pentahydrate 3.48 g was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under the conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610.
  • Polyamide 610 had a relative viscosity ( ⁇ r ) of 2.8, a melting point (Tm) of 222 ° C., and a terminal amino group concentration of 37 ⁇ eq / g.
  • this polyamide 610 is referred to as “polyamide 610 (37)”.
  • Polyamide 510 (terminal amino group concentration: 35 ⁇ eq / g) Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added.
  • the raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
  • Polyamide 510 had a relative viscosity ( ⁇ r ) of 2.5, endothermic peak temperatures of 176 ° C. and 219 ° C., and a terminal amino group concentration of 35 ⁇ eg / g.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets.
  • the pellets from which unreacted substances were removed were dried at 120 ° C.
  • Polyamide 56/6 had a relative viscosity ( ⁇ r ) of 3.5 and a terminal amino group concentration of 38 ⁇ eg / g.
  • the endothermic peak temperatures were 250 ° C. and 180 ° C.
  • the polyamide resins used in Examples 2-1 to 2-21 and Comparative Examples 2-1 to 2-9 were produced by the following methods (2-1) to (2-14).
  • Polyamide 6 (PA6) Polyamide 6 was obtained in the same manner as in (1-1) above.
  • the obtained polyamide 6 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 224 ° C.
  • Polyamide 12 (PA12) Polyamide 12 was obtained in the same manner as in (1-2) above. Polyamide 12 obtained had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 182 ° C.
  • the obtained polyamide 56 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 255 ° C.
  • Polyamide 59 (PA59) Pentamethylenediamine, azelaic acid, and demineralized water are put in a container so that a concentration of 50% by weight and 100 kg of pentamethylenediamine azelaic acid solution is obtained, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. In addition, the mixture was dissolved under a nitrogen atmosphere to obtain an aqueous raw material solution. Thereafter, polyamide 59 (PA59) was obtained in the same manner as in the method for producing polyamide 56 in (2-3) above. The obtained polyamide 59 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 210 ° C.
  • Polyamide 510 (PA510) Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that a 100 kg pentamethylenediamine / sebacate aqueous solution with a concentration of 50% by weight is added, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. Thereafter, polyamide 510 (PA510) was obtained in the same manner as in the production method of polyamide 56 in (2-3) above. The obtained polyamide 510 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 218 ° C.
  • Polyamide 66 (PA66) Polyamide PA66 was obtained in the same manner as in the above (1-7). The obtained polyamide 66 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 264 ° C.
  • Polyamide 610 (PA610) Polyamide 610 (PA610) was obtained in the same manner as in the above (1-10). The obtained polyamide 610 had a relative viscosity ( ⁇ rel) of 2.8 and a melting point (Tm) of 222 ° C.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C.
  • the pressure was further reduced, and the polycondensation reaction was terminated when a predetermined stirring power set lower than that of the polyamide (2-5) was reached.
  • the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510-2.
  • Polyamide 510-2 obtained had a terminal amino group concentration of 43 ⁇ eq / g, a relative viscosity ( ⁇ rel) of 2.5, and a melting point (Tm) of 218 ° C.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide (510) of (2-10) was reached.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510-3.
  • Polyamide 510-3 obtained had a terminal amino group concentration of 15 ⁇ eq / g, a relative viscosity ( ⁇ rel) of 2.5, and a melting point (Tm) of 218 ° C.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the polycondensation reaction is terminated when the pressure reaches a predetermined stirring power set higher than that in the production of the polyamide 510 of (2-5). did.
  • the pressure was restored with nitrogen
  • the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the resulting pellets using 1.5 times the amount of boiling water.
  • the pellets from which the unreacted substances were removed were dried at 120 ° C.
  • Polyamide 56 / 6-1 obtained had a terminal amino group concentration of 45 ⁇ eq / g, a relative viscosity ( ⁇ rel) of 3.5, and a melting point (Tm) of 224 ° C.
  • the raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that of the polyamide 510-2 of (2-10) was reached.
  • the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the resulting pellets using 1.5 times the amount of boiling water.
  • Polyamide 56 / 6-2 obtained had a terminal amino group concentration of 40 ⁇ eq / g, a relative viscosity ( ⁇ rel) of 2.5, and a melting point (Tm) of 224 ° C.
  • Polyamide 610-2 (PA610-2, the viscosity of the “polyamide 610” is adjusted to be low) Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that a concentration of 50% by weight is 100 kg of hexamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C.
  • the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that of the polyamide (2-10) 510-2 was reached.
  • the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
  • the obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610-2.
  • Polyamide 610-2 obtained had a terminal amino group concentration of 44 ⁇ eq / g, a relative viscosity ( ⁇ rel) of 2.5, and a melting point (Tm) of 224 ° C.
  • the polyamide resins used in Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-7 were produced by the following methods (3-1) to (3-6).
  • Polyamide 6 was obtained in the same manner as in (1-1) above.
  • the obtained polyamide 6 had a relative viscosity ( ⁇ r ) of 2.8, an endothermic peak temperature of 224 ° C., and a terminal amino group concentration of 32 ⁇ eq / g.
  • Polyamide 56 was obtained in the same manner as in (2-3) above.
  • the obtained polyamide 56 had a relative viscosity ( ⁇ r ) of 2.8, endothermic peak temperatures of 232 ° C. and 255 ° C., and a terminal amino group concentration of 33 ⁇ eq / g.
  • Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added.
  • the raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump.
  • the jacket temperature was adjusted to 280 ° C.
  • the autoclave pressure was adjusted to 1.47 MPa
  • the contents were heated to 270 ° C.
  • the obtained polyamide 510 had a relative viscosity ( ⁇ r ) of 2.5, endothermic peak temperatures of 176 ° C. and 219 ° C., and a terminal amino group concentration of 35 ⁇ eg / g.
  • Polyamide 59 was obtained in the same manner as in (2-4) above. Polyamide 59 obtained had a relative viscosity ( ⁇ r ) of 2.8, endothermic peak temperatures of 190 ° C. and 210 ° C., and a terminal amino group concentration of 32 ⁇ eq / g.
  • Polyamide 66 was obtained in the same manner as in (1-7) above.
  • the obtained polyamide 66 had a relative viscosity ( ⁇ r ) of 2.8, an endothermic peak temperature of 264 ° C., and a terminal amino group concentration of 35 ⁇ eg / g.
  • the conductivity imparting agent hollow carbon fibrils and conductive carbon black were used.
  • the hollow carbon fibril carbon nanotube MC-4 manufactured by Mitsubishi Chemical Co., Ltd. having a DBP oil absorption of 256 ml / 100 g was used.
  • conductive carbon black “Ketjen Black EC600JD” (hereinafter referred to as “CB1”) manufactured by Lion Corporation having a DBP oil absorption of 495 ml / 100 g, and “Carbon” manufactured by Mitsubishi Chemical Co., Ltd. having a DBP oil absorption of 140 ml / 100 g.
  • Black # 3230MJ (hereinafter referred to as“ CB2 ”) was used.
  • the “# 3230MJ” is a conductive carbon black produced by furnace incomplete combustion using crude oil as a raw material.
  • Conductive carbon black is expressed as “CB”, “Ketjen Black EC600JD” manufactured by Lion Corporation having a DBP oil absorption amount of 495 ml / 100 g is “CB1”, and “Mitsubishi Chemical Corporation” having a DBP oil absorption amount of 140 ml / 100 g “ “Carbon black # 3230MJ” is denoted as “CB2”.
  • Examples 1-1 to 1-10, Comparative Examples 1-1 to 1-13 Conductive agent masterbatch 1 and base polyamide shown in Tables 1 to 4 and base polyamide (in Example 1-4, further conductive agent masterbatch 2) were dry blended using a rotary tumbler at a blending weight ratio shown in Tables 1 to 4, A blend (conductive polyamide resin composition) was obtained.
  • the blend (excluding Examples 1-7 and 1-10) was extruded at a cylinder temperature of 270 ° C. with a 40 mm diameter single-screw extruder equipped with a 600 mm wide T-die at the tip, a die temperature of 275 ° C., and a roll temperature of 60 ° C.
  • Example 1-1 Comparative Example 1-12, it was found that it is preferable to use a polyamide 5X having a terminal amino group concentration of 16 ⁇ eq / g or more.
  • Example 2-1 to 2-21, Comparative Examples 2-1 to 2-9 (Examples 2-1 to 2-6, Examples 2-9 to 2-10, Comparative Examples 2-1 to 2-3, Comparative Example 2-7, Comparative Example 2-8)
  • Conductive agent masterbatch shown in Table 6 and polyamide resin (base PA) are blended as shown in Table 6 and dry blended using a rotary tumbler to make a blended product, which is compliant with ASTM-D638.
  • the injection molding was carried out at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd .: NEX80 type) equipped with the tensile test piece mold.
  • the volume resistivity value was measured using the obtained injection molded product (tensile test piece). The results are shown in Table 6.
  • Example 2-7 Example 2-8, Examples 2-13 to 2-18, Comparative Example 2-5, Comparative Example 2-9
  • the conductive agent master batches shown in Table 6 Table 7 for Examples 2-15 to 2-18
  • polyamide resin (base PA) are shown in Table 6 (Table 7 for Examples 2-15 to 2-18).
  • the blend shown in FIG. 1 was dry blended using a rotary tumbler to obtain a blended product, and then the blended product was used at a cylinder temperature of 270 ° C. using a 40 mm diameter single screw extruder equipped with a 600 mm wide T die at the tip. Extrusion and extrusion at a die temperature of 275 ° C. and a roll temperature of 60 ° C.
  • Example 2-11 The conductive agent masterbatch shown in Table 6 and the polyamide resin (base PA) were blended as shown in Table 6, using a twin screw extruder (TEX-30 ⁇ manufactured by Nippon Steel) and a cylinder temperature of 265 ° C. and a screw speed of 200 rpm. The mixture is melt-kneaded at a discharge rate of 20 kg / hour to obtain a kneaded product, and the kneaded product is cylinderized by an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd .: NEX80 type) equipped with a tensile test piece mold conforming to ASTM-D638. Injection molding was performed at a temperature of 260 ° C and a mold temperature of 80 ° C. The volume resistivity value was measured using the obtained injection molded product (tensile test piece). The results are shown in Table 6.
  • Example 2-12 The conductive agent masterbatch shown in Table 6 and the polyamide resin (base PA) were blended as shown in Table 6, using a twin screw extruder (TEX-30 ⁇ manufactured by Nippon Steel) and a cylinder temperature of 265 ° C. and a screw speed of 200 rpm. The mixture was melt-kneaded at a discharge rate of 20 kg / hour to obtain a kneaded product, and the kneaded product was extruded at a cylinder temperature of 270 ° C. with a T-die having a width of 600 mm at the tip, and the die temperature was 275 ° C. The film was extruded at a temperature of 60 ° C. into a flat film having a thickness of 50 ⁇ m. The volume resistivity value of this flat film was measured. The results are shown in Table 6.
  • Examples 2-19 to 2-21 A flame retardant masterbatch, a conductive agent masterbatch, and a polyamide resin (base PA) shown in Table 8 are dry blended using a rotary tumbler with the composition shown in Table 8 to form a blend, and the blend is injection molded.
  • a tensile test piece mold conforming to ASTM-D638 was mounted at a cylinder temperature of 270 ° C. using a machine (Nissei Plastic Industrial Co., Ltd .: NEX80 type), and injection molding was performed at a mold temperature of 80 ° C.
  • the flame retardancy and volume resistivity of the obtained injection molded product (tensile test piece) were measured. The results are shown in Table 8.
  • thermoplastic resin (polyamide resin) a As shown in Tables 6 to 8, a thermoplastic resin (polyamide resin) a, a thermoplastic resin (polyamide resin) b having a solubility parameter different from that of the thermoplastic resin a, and a conductivity-imparting agent (conductive carbon black) / Hollow carbon fibril), the thermoplastic resin a is polyamide 5X, and the difference between the solubility parameter SP (a) of the thermoplastic resin a and the solubility parameter SP (b) of the thermoplastic resin b
  • the conductive thermoplastic resin compositions (Example 2-1 to Example 2-18) having an absolute value in the range of 0.2 to 3.7 can be used for both injection molded products and extruded products. It was found that the volume resistivity was low and the conductivity was high. Furthermore, the flame retardancy is also excellent.
  • thermoplastic resin a is not polyamide 5X as in the conductive resin compositions shown in Comparative Examples 2-1 to 2-9 in Table 6, or when the ⁇ SP value does not satisfy the above range, the volume-specific It was found that a molded article having a good resistance value could not be obtained.
  • thermoplastic resin having a terminal amino group concentration satisfying the scope of the present invention a thermoplastic resin having a terminal amino group concentration satisfying the scope of the present invention, a molded product having a low volume resistivity value was obtained.
  • Examples 3-1 to 3-20, Comparative examples 3-1 to 3-11] (Examples 3-1 to 3-12, Comparative example 3-1)
  • the elastomer masterbatch and conductive masterbatch shown in Table 9 were dry blended using a rotary tumbler at the mixing ratio shown in Table 9 to form a blended product, and then a predetermined test piece was molded using the blended product. Or it evaluated by performing extrusion molding. The results are shown in Table 9.
  • Examples 3-13 to 3-20, Comparative Examples 3-2 to 3-11 Using the polyamide resin shown in Table 10, a polyamide resin, a modified elastomer (modified EBR), and a conductivity-imparting agent (CB) are mixed into a twin-screw extruder (TEX manufactured by Nippon Steel Works) so that the blending ratio shown in Table 10 is obtained.
  • TEX twin-screw extruder
  • a kneaded material is melt-kneaded at a cylinder temperature of 265 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 20 kg / hour to form a kneaded material, and a predetermined test piece is molded or extruded using the kneaded material and evaluated. Went.
  • Table 10 The results are shown in Table 10.
  • the molded article molded by using the conductive thermoplastic resin composition and conductive polyamide resin composition of the present invention and the conductive polyamide film of the present invention have good conductivity, and the vehicle by resinizing automobile parts. It becomes possible to promote weight reduction.
  • molded articles formed using the conductive thermoplastic resin composition and conductive polyamide resin composition of the present invention and the conductive polyamide film of the present invention are suitable for parts and members that require conductivity and antistatic properties. It is suitable, and is useful for reducing dust generation at semiconductor manufacturing sites and preventing fires due to static sparks during electrostatic coating.
  • the sheets obtained from the conductive thermoplastic composition and conductive polyamide resin composition of the present invention are also effective when used as an electromagnetic shielding material.

Abstract

(1) A conductive polyamide resin composition which comprises a polyamide resin comprising a polyamide having a structure corresponding to a polycondensation product obtained by polycondensation in which a diamine comprising pentamethylenediamine and a dicarboxylic acid are used as monomer ingredients (hereinafter referred to as "polyamide 5X") and a conductivity-imparting agent, wherein the conductive polyamide resin composition has an ash content within a specific range and a film formed from the conductive polyamide resin composition has a volume resistivity within a specific range; (2) a conductive thermoplastic resin composition which comprises a thermoplastic resin (a) selected from polyamide resins 5X, a thermoplastic resin (b) having a solubility parameter different from that of the thermoplastic resin (a), and a conductivity-imparting agent; and (3) a conductive polyamide resin composition which comprises the polyamide 5X and a modified elastomer in specific amounts.

Description

導電性熱可塑性樹脂組成物、導電性ポリアミド樹脂組成物及び導電性ポリアミドフィルムConductive thermoplastic resin composition, conductive polyamide resin composition, and conductive polyamide film
 本発明は、導電性ポリアミド樹脂組成物及びこれより得られる導電性ポリアミドフィルムに係り、詳しくは、ポリアミド樹脂としてポリアミド5Xを用いることにより、少ない導電性付与剤の配合量で、優れた導電性を示す導電性ポリアミド樹脂組成物及びそれより形成される、成形性(製膜性)や柔軟性等の特性を損なうことなく、導電性の向上を図った導電性ポリアミドフィルムに関する。 The present invention relates to a conductive polyamide resin composition and a conductive polyamide film obtained therefrom, and more specifically, by using polyamide 5X as a polyamide resin, excellent conductivity can be obtained with a small amount of a conductivity-imparting agent. The present invention relates to a conductive polyamide resin composition and a conductive polyamide film which is formed from the conductive polyamide resin composition and has improved conductivity without impairing properties such as moldability (film forming property) and flexibility.
 また、本発明は、導電性熱可塑性樹脂組成物、導電性熱可塑性樹脂組成物の製造方法、及びこれより得られる射出成形品並びに押出成形品に係り、詳しくは、比較的少量の導電性付与剤の添加により、良好な導電性を有する熱可塑性樹脂組成物に関する。 The present invention also relates to a conductive thermoplastic resin composition, a method for producing a conductive thermoplastic resin composition, and an injection molded product and an extrusion molded product obtained from the same. The present invention relates to a thermoplastic resin composition having good conductivity by adding an agent.
さらに、本発明は、導電性ポリアミド樹脂組成物、導電性ポリアミド樹脂組成物の製造方法、及びこれより得られる射出成形品並びに押出成形品に係り、詳しくは、比較的少量の導電性付与剤の添加により、良好な導電性を有する導電性ポリアミド樹脂組成物に関する。 Furthermore, the present invention relates to a conductive polyamide resin composition, a method for producing a conductive polyamide resin composition, and an injection-molded product and an extrusion-molded product obtained therefrom, and more specifically, a relatively small amount of a conductivity-imparting agent. The addition relates to a conductive polyamide resin composition having good conductivity.
ポリアミド樹脂は、成形性、耐薬品性、引っ張り強さ、曲げ強さ等の機械的性質や、耐摩耗性等に優れ、電気・電子部品、機械部品、自動車部品等広範な分野で使用されている。  Polyamide resin has excellent mechanical properties such as moldability, chemical resistance, tensile strength, bending strength, and wear resistance, and is used in a wide range of fields such as electrical / electronic parts, mechanical parts, and automotive parts. Yes. *
 また近年では、電気絶縁性であるポリアミド樹脂に導電性を付与した導電性ポリアミド樹脂組成物が、自動車外装材を中心とした静電塗装用途、電気・電子部品を中心とした静電気防止用途、導電用途等に用いられている。 Moreover, in recent years, conductive polyamide resin compositions obtained by imparting conductivity to electrically insulating polyamide resins have been used in electrostatic coating applications centered on automobile exterior materials, antistatic applications mainly in electrical and electronic parts, and conductive properties. It is used for applications.
 例えば特許文献1には、自動車の外板など、静電塗装により塗装される用途に好適な導電性を有すると共に、機械的強度、成形加工性に優れた導電性ポリアミド樹脂組成物が報告されている。この特許文献1に記載される発明では、ポリアミド6等のポリアミド樹脂に導電性カーボンブラックを配合して導電性を付与している。 For example, Patent Document 1 reports a conductive polyamide resin composition having electrical conductivity suitable for an application such as an outer plate of an automobile, which is applied by electrostatic coating, and having excellent mechanical strength and molding processability. Yes. In the invention described in Patent Document 1, conductive carbon black is blended with a polyamide resin such as polyamide 6 to impart conductivity.
 また、例えば特許文献2,3にはポリアミド樹脂の耐衝撃性を改善するために、ポリアミド樹脂に変性エラストマーを配合することが行われている。 Also, for example, in Patent Documents 2 and 3, a modified elastomer is blended with a polyamide resin in order to improve the impact resistance of the polyamide resin.
従来、これらの変性エラストマー配合ポリアミド樹脂組成物や導電性付与剤配合ポリアミド樹脂組成物のポリアミド樹脂には、ポリアミド6、ポリアミド66等の一般的なポリアミド樹脂が用いられており、本発明で用いるポリアミド5Xが用いられた例はない。 Conventionally, general polyamide resins such as polyamide 6 and polyamide 66 have been used for the polyamide resins of these modified elastomer-blended polyamide resin compositions and conductivity imparting agent-blended polyamide resin compositions. There is no example where 5X is used.
日本国特開2004-182866号公報Japanese Unexamined Patent Publication No. 2004-182866 日本国特公第4018139号公報Japanese Patent Special Publication No. 4018139 日本国特開昭62-59653号公報Japanese Unexamined Patent Publication No. Sho 62-59653
 一般に、熱可塑性樹脂に添加される導電性付与剤としては、イオン性界面活性剤、非イオン性界面活性剤、ポリエチレングリコール単位やイオン性官能基を有する高分子帯電防止剤等の有機化合物の他に、カーボンブラック、炭素繊維、金属繊維、金属粉未、金属酸化物等の無機物等が挙げられる。特に、比較的少量の添加でも、高い導電性が発現し、良好な外観が得られることから、導電性カーボンブラックや中空炭素フィブリルが広く使用されている。 In general, the conductivity imparting agent added to the thermoplastic resin includes organic compounds such as ionic surfactants, nonionic surfactants, polymer antistatic agents having polyethylene glycol units and ionic functional groups, and the like. In addition, inorganic substances such as carbon black, carbon fiber, metal fiber, metal powder, and metal oxide are included. In particular, conductive carbon black and hollow carbon fibrils are widely used because even when added in a relatively small amount, high conductivity is exhibited and a good appearance is obtained.
 しかしながら、これらの導電性付与剤は、その配合量を増加させると得られる樹脂組成物の導電性は向上するものの、成形性(製膜性)や機械的特性が低下する。そのため、導電性とその他の特性とを両立させるには、より少ない導電性付与剤の配合で高い導電性が得られることが望まれている。しかし、例えば、コンデンサーやリチウムイオン電池等に使用される導電性フィルムにおいては、体積固有抵抗値が1×10Ω・cm以下というような極めて高い導電性が要求されているため、導電性と成形性(製膜性)や機械的特性等との両立は極めて困難な状況である。 However, these conductivity-imparting agents improve the conductivity of the resin composition obtained when the blending amount is increased, but the moldability (film forming property) and mechanical properties are lowered. Therefore, in order to achieve both conductivity and other characteristics, it is desired that high conductivity can be obtained with a smaller amount of a conductivity-imparting agent. However, for example, in a conductive film used for a capacitor, a lithium ion battery or the like, an extremely high conductivity such as a volume specific resistance value of 1 × 10 3 Ω · cm or less is required. It is extremely difficult to achieve compatibility with formability (film formability) and mechanical properties.
 また、成形性(製膜性)や機械的特性の問題点を補うために、低下した耐衝撃性を向上するためにエラストマーを配合すると、今度は成形品の強度、剛性が低下する等の問題が発生する。さらに、これらの導電性付与剤は熱可塑性樹脂に比べ高価であり、経済性の観点からも、少量の導電性付与剤の添加で、より高い導電性を有する熱可塑性樹脂組成物が望まれている。 In addition, if an elastomer is added to improve the reduced impact resistance in order to compensate for the problems of moldability (film forming property) and mechanical properties, the strength and rigidity of the molded product will decrease. Will occur. Furthermore, these conductivity imparting agents are more expensive than thermoplastic resins, and from the viewpoint of economy, a thermoplastic resin composition having higher conductivity is desired by adding a small amount of the conductivity imparting agent. Yes.
 したがって、本発明は、少量の導電性付与剤の配合量で、成形性、機械的特性、柔軟性等の特性を損なうことなく、導電性に優れた、熱可塑性樹脂組成物、導電性ポリアミド樹脂組成物およびそれから形成される導電性ポリアミドフィルムを提供することを課題とするものである。 Therefore, the present invention provides a thermoplastic resin composition and a conductive polyamide resin that are excellent in conductivity without impairing properties such as moldability, mechanical properties, and flexibility, with a small amount of a conductivity-imparting agent. It is an object of the present invention to provide a composition and a conductive polyamide film formed therefrom.
 本発明者らは、ポリアミド樹脂としてポリアミド5Xを用いることにより、少ない導電性付与剤の配合量で、優れた導電性を示す導電性ポリアミド樹脂組成物及びそれより形成される、成形性(製膜性)や柔軟性等の特性を損なうことなく、導電性に優れたポリアミドフィルムを実現することができることを見出した。 By using polyamide 5X as the polyamide resin, the present inventors have obtained a conductive polyamide resin composition exhibiting excellent conductivity with a small blending amount of a conductivity-imparting agent and a moldability (film formation) formed therefrom. It was found that a polyamide film excellent in conductivity can be realized without impairing properties such as property) and flexibility.
 また、本発明者らは、上記課題を解決すべく鋭意検討した結果、熱可塑性樹脂として、主としてペンタメチレンジアミンを含むジアミンとジカルボン酸とを単量体成分として用いる重縮合反応により得られる重縮合体に相当する構造を有するポリアミド樹脂(以下「ポリアミド5X」と称す。)を用い、さらに特定の2種類の熱可塑性樹脂の溶解度パラメータ値の差を特定の範囲とすることで、少ない導電性付与剤の配合量で、成形性、機械的特性、柔軟性等の特性を損なうことなく、導電性に優れた熱可塑性樹脂組成物が得られることを見出した。 In addition, as a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a polycondensation obtained by a polycondensation reaction using, as a thermoplastic resin, a diamine mainly containing pentamethylenediamine and a dicarboxylic acid as monomer components. Use of a polyamide resin having a structure corresponding to the body (hereinafter referred to as “polyamide 5X”), and further setting the difference in solubility parameter value between two specific thermoplastic resins within a specific range provides little conductivity. It has been found that a thermoplastic resin composition having excellent electrical conductivity can be obtained without impairing properties such as moldability, mechanical properties, flexibility, etc., with the compounding amount of the agent.
 さらにまた、本発明者らは、ポリアミド樹脂としてポリアミド5Xを用いると共に、変性エラストマーを配合することにより、少ない導電性付与剤の配合量で、成形性や機械的特性等の特性を損なうことなく、むしろ変性エラストマーの配合で耐衝撃性や柔軟性の改善効果を得た上で、導電性に優れたポリアミド樹脂組成物を実現することができることを見出した。 Furthermore, the present inventors use polyamide 5X as a polyamide resin, and by blending a modified elastomer, with a small blending amount of a conductivity imparting agent, without impairing properties such as moldability and mechanical properties, Rather, it has been found that a polyamide resin composition having excellent electrical conductivity can be realized by obtaining an effect of improving impact resistance and flexibility by blending a modified elastomer.
 本発明者らは、上記知見に基づき本発明を完成させた。すなわち、本発明は以下よりなる。
1.ポリアミド樹脂と導電性付与剤とを含有する導電性ポリアミド樹脂組成物であって、
 該ポリアミド樹脂が、ポリアミド5Xを少なくとも含み、
 該導電性ポリアミド樹脂組成物の灰分残渣が0.5重量%以下であり、
該導電性ポリアミド樹脂組成物から成形されたフィルムの体積固有抵抗値が1.0×10Ω・cm以下であることを特徴とする導電性ポリアミド樹脂組成物。
2.前記導電性付与剤がカーボンブラック及び中空炭素フィブリルからなる群より選ばれた少なくとも1種であることを特徴とする前項1に記載の導電性ポリアミド樹脂組成物。
3.前記ポリアミド樹脂の末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする前項1又は2に記載の導電性ポリアミド樹脂組成物。
4.前記導電性ポリアミド樹脂組成物中の導電性付与剤の含有量が0.1重量%~65重量%であることを特徴とする前項1乃至3のいずれか1項に記載の導電性ポリアミド樹脂組成物。
5.前記導電性ポリアミド樹脂組成物の、温度280℃、剪断速度91.6sec-1における溶融粘度が100Pa・s~4000Pa・sであることを特徴とする前項1乃至4のいずれか1項に記載の導電性ポリアミド樹脂組成物。
6.前項1乃至5のいずれか1項に記載の導電性ポリアミド樹脂組成物から成形された導電性ポリアミドフィルム。
7.厚みが5μm~200μmであることを特徴とする前項6に記載の導電性ポリアミドフィルム。
8.周波数5MHz~800MHzにおいて測定した電界シールド性が-10dB以下かつ周波数200MHz~1000MHzにおいて測定した磁界シールド性が-10dB以下であることを特徴とする前項1乃至5のいずれか1項に記載の導電性ポリアミド樹脂組成物。
9.前項8に記載の導電性ポリアミド樹脂組成物を射出成形してなる電磁波シールド性成形品。
10.前項8に記載の導電性ポリアミド樹脂組成物を押出成形してなる電磁波シールド性成形品。
11.厚みが5μm~200μmであることを特徴とする前項10に記載の電磁波シールド性成形品。
12.少なくともその一部が前項9乃至11のいずれか1項に記載の成形品で構成されていることを特徴とする自動車・鉄道車両用部品又は電気・電子・OA用部品。
13.二種類以上の熱可塑性樹脂と導電性付与剤とを含有する導電性熱可塑性樹脂組成物であって、該熱可塑性樹脂が、ポリアミド5Xを少なくとも含み、
 該ポリアミド5Xの中で、最も配合量の多いポリアミド5Xを「熱可塑性樹脂a」とし、
 該導電性熱可塑性樹脂組成物に用いられる、該熱可塑性樹脂a以外の熱可塑性樹脂の中で、最も配合量の多い熱可塑性樹脂を「熱可塑性樹脂b」としたとき、
 該熱可塑性樹脂aの溶解度パラメータ値と、該熱可塑性樹脂bの溶解度パラメータ値との差の絶対値が、0.2以上、3.7以下であることを特徴とする導電性熱可塑性樹脂組成物。
14.前記ポリアミド5Xが、ポリアミド56、ポリアミド59、ポリアミド510及びポリアミド56/6からなる群より選ばれる少なくとも1種であることを特徴とする前項13に記載の導電性熱可塑性樹脂組成物。
15.前記熱可塑性樹脂aがポリアミド56、ポリアミド59、ポリアミド510及びポリアミド56/6からなる群より選ばれる1種であることを特徴とする前項13又は14に記載の導電性熱可塑性樹脂組成物。
16.前記熱可塑性樹脂bがポリアミド5Xであることを特徴とする前項13乃至15のいずれか1項に記載の導電性熱可塑性樹脂組成物。
17.前記熱可塑性樹脂aと前記熱可塑性樹脂bとは、それぞれ異なり、かつポリアミド510及びポリアミド56/6から選ばれるものであることを特徴とする前項13乃至16のいずれか1項に記載の導電性熱可塑性樹脂組成物。
18.前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の樹脂の末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする前項13乃至17のいずれか1項に記載の導電性熱可塑性樹脂組成物。
19.前記熱可塑性樹脂aの相対粘度をηrel(a)、前記熱可塑性樹脂bの相対粘度をηrel(b)とした場合に、これらの相対粘度が下記式を満たすことを特徴とする前項13乃至18のいずれか1項に記載の導電性熱可塑性樹脂組成物。
ηrel(a)>ηrel(b)  ηrel(a)≧3.0
20.前記導電性熱可塑性樹脂組成物の総量を100重量%としたとき、前記導電性付与剤の含有量が0.01重量%~65重量%であることを特徴とする前項13乃至19のいずれか1項に記載の導電性熱可塑性樹脂組成物。
21.前記導電性付与剤が導電性カーボンブラック及び中空炭素フィブリルからなる群より選ばれる少なくとも1種であることを特徴とする前項13乃至20のいずれか1項に記載の導電性熱可塑性樹脂組成物。
22.更に難燃剤を含有配合されていることを特徴とする前項13乃至21のいずれか1項に記載の導電性熱可塑性樹脂組成物。
23.JIS K-7201に準拠して測定した臨界酸素指数(LOI)が26以上であり、かつUL-94規格VTM試験での難燃性がVTM-0を満足することを特徴とする前項22に記載の導電性熱可塑性樹脂組成物。
24.前記難燃剤が、フォスフィン酸塩類から選ばれる少なくとも1種であることを特徴とする前項22又は23に記載の導電性熱可塑性樹脂組成物。
25.ポリアミド5Xを少なくとも含む二種類以上の熱可塑性樹脂と、導電性付与剤とを含有する導電性熱可塑性樹脂組成物の製造方法であって、該ポリアミド5Xの中で最も配合量の多いポリアミド5Xである「熱可塑性樹脂a」と該熱可塑性樹脂a以外の熱可塑性樹脂の中で最も配合量が多い熱可塑性樹脂であり、その溶解度パラメータ値と前記熱可塑性樹脂aの溶解度パラメータ値の差の絶対値が0.2以上3.7以下である「熱可塑性樹脂b」を含む熱可塑性樹脂成分と、前記導電性付与剤とを溶融混練することを特徴とする導電性熱可塑性樹脂組成物の製造方法。
26.前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方と前記導電性付与剤とを溶融混練して混合物とし、次いで、該混合物と前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とを溶融混練することを特徴とする前項25に記載の導電性熱可塑性樹脂組成物の製造方法。
27.前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方と前記導電性付与剤とを溶融混練して混合物とし、次いで、該混合物と前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とをドライブレンドすることを特徴とする前項26に記載の導電性熱可塑性樹脂組成物の製造方法。
28.前項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を射出成形して得られる射出成形品。
29.射出成形品の体積固有抵抗値が1.00×10Ω・cm以下であることを特徴とする前項28に記載の射出成形品。
30.前項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を押出成形して得られる押出成形品。
31.前項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を押出成形して得られる導電性フィルム。
32.厚さが5μm~200μmであることを特徴とする前項31に記載の導電性フィルム。
33.体積固有抵抗値が1.0×10Ω・cm以下であることを特徴とする前項31又は32に記載の導電性フィルム。
34.下記(A)成分85重量%~50重量%と、下記(B-1)成分及び下記(B-2)成分の少なくとも一方からなる(B)成分15重量%~50重量%とからなるポリマー成分と、導電性付与剤とを含み、該導電性付与剤の含有量がポリマー成分100重量部に対して15重量部~200重量部であることを特徴とする導電性ポリアミド樹脂組成物。
 (A)成分:ポリアミド5X
 (B-1)成分:エチレンと炭素数3以上のα-オレフィンとを共重合させてなるオレフィン系共重合体に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ポリオレフィン系共重合体
 (B-2)成分:ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとを含むブロック共重合体の水素添加物に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ブロック共重合体
35.前記ポリアミド5Xは、示差走査熱量測定法による測定で2つの吸熱ピークを有することを特徴とする前項34に記載の導電性ポリアミド樹脂組成物。
36.前記2つの吸熱ピークのピークトップの温度差が5℃~50℃であることを特徴とする前項35に記載の導電性ポリアミド樹脂組成物。
37.前記ポリアミド5Xの末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする前項34乃至36のいずれか1項に記載の導電性ポリアミド樹脂組成物。
38.前記ポリアミド5Xが、ポリアミド56、ポリアミド59、ポリアミド510、ポリアミド512及びポリアミド56/6からなる群から選ばれる少なくとも1種であることを特徴とする前項34乃至37のいずれか1項に記載の導電性ポリアミド樹脂組成物。
39.前記導電性付与剤がカーボンブラック及び中空炭素フィブリルからなる群より選ばれる少なくとも1種であることを特徴とする前項34乃至38のいずれか1項に記載の導電性ポリアミド樹脂組成物。
40.灰分残渣が0.5重量%以下であり、体積固有抵抗値が1×10Ω・cm以下であることを特徴とする前項34乃至39のいずれか1項に記載の導電性ポリアミド樹脂組成物。
41.前記(B-1)成分におけるオレフィン系共重合体がエチレン-ブテン共重合体及びエチレン-プロピレン共重合体の少なくとも一方であることを特徴とする前項34乃至40のいずれか1項に記載の導電性ポリアミド樹脂組成物。
42.前記(B-2)成分におけるブロック共重合体の水素添加物がスチレン-エチレン-ブチレン-スチレン共重合体であることを特徴とする前項34乃至41のいずれか1項に記載の導電性ポリアミド樹脂組成物。
43.前記α,β-不飽和カルボン酸が無水マレイン酸であることを特徴とする前項34乃至42のいずれか1項に記載の導電性ポリアミド樹脂組成物。
44.前記(A)成分の一部と前記(B)成分とを予め溶融混練してなる組成物と、前記(A)成分の残部の少なくとも一部と前記導電性付与剤とを予め溶融混練してなる組成物とを混合してなることを特徴とする前項34乃至43のいずれか1項に記載の導電性ポリアミド樹脂組成物。
45.前項34乃至44のいずれか1項に記載の導電性ポリアミド樹脂組成物を射出成形して得られる導電性射出成形品。
46.前項34乃至44のいずれか1項に記載の導電性ポリアミド樹脂組成物を押出成形してなる導電性押出成形品。
47.シート状であることを特徴とする前項46に記載の導電性押出成形品。
48.少なくともその一部が前項45乃至47のいずれか1項に記載の成形品で構成されていることを特徴とする、自動車若しくは鉄道車両用部品又は電気、電子若しくはOA用部品。
Based on the above findings, the present inventors have completed the present invention. That is, this invention consists of the following.
1. A conductive polyamide resin composition containing a polyamide resin and a conductivity imparting agent,
The polyamide resin contains at least polyamide 5X,
The ash residue of the conductive polyamide resin composition is 0.5% by weight or less,
A conductive polyamide resin composition, wherein a volume specific resistance value of a film formed from the conductive polyamide resin composition is 1.0 × 10 8 Ω · cm or less.
2. 2. The conductive polyamide resin composition according to item 1, wherein the conductivity imparting agent is at least one selected from the group consisting of carbon black and hollow carbon fibrils.
3. 3. The conductive polyamide resin composition according to item 1 or 2, wherein the polyamide resin has a terminal amino group concentration of 16 μeq / g to 100 μeq / g.
4). 4. The conductive polyamide resin composition according to any one of items 1 to 3, wherein a content of the conductivity imparting agent in the conductive polyamide resin composition is 0.1 wt% to 65 wt%. object.
5). 5. The conductive polyamide resin composition according to any one of items 1 to 4, wherein the melt viscosity at a temperature of 280 ° C. and a shear rate of 91.6 sec −1 is 100 Pa · s to 4000 Pa · s. A conductive polyamide resin composition.
6). 6. A conductive polyamide film formed from the conductive polyamide resin composition according to any one of items 1 to 5.
7). 7. The conductive polyamide film as described in 6 above, which has a thickness of 5 μm to 200 μm.
8). 6. The conductivity according to any one of items 1 to 5 above, wherein the electric field shielding property measured at a frequency of 5 MHz to 800 MHz is −10 dB or less and the magnetic field shielding property measured at a frequency of 200 MHz to 1000 MHz is −10 dB or less. Polyamide resin composition.
9. An electromagnetic wave shielding molded article obtained by injection molding of the conductive polyamide resin composition according to item 8 above.
10. An electromagnetic wave shielding molded article obtained by extrusion molding the conductive polyamide resin composition according to item 8 above.
11. 11. The electromagnetic wave shielding molded article according to item 10, wherein the thickness is 5 μm to 200 μm.
12 An automobile / railway vehicle component or an electric / electronic / OA component, wherein at least a part thereof is formed of the molded product according to any one of items 9 to 11.
13. A conductive thermoplastic resin composition containing two or more types of thermoplastic resins and a conductivity imparting agent, wherein the thermoplastic resin contains at least polyamide 5X,
Among the polyamides 5X, the polyamide 5X having the largest blending amount is referred to as “thermoplastic resin a”,
Among the thermoplastic resins other than the thermoplastic resin a used in the conductive thermoplastic resin composition, when the thermoplastic resin with the largest blending amount is “thermoplastic resin b”,
Conductive thermoplastic resin composition, wherein absolute value of difference between solubility parameter value of thermoplastic resin a and solubility parameter value of thermoplastic resin b is 0.2 or more and 3.7 or less object.
14 14. The conductive thermoplastic resin composition as described in 13 above, wherein the polyamide 5X is at least one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510 and polyamide 56/6.
15. 15. The conductive thermoplastic resin composition according to item 13 or 14, wherein the thermoplastic resin a is one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510, and polyamide 56/6.
16. 16. The conductive thermoplastic resin composition according to any one of items 13 to 15, wherein the thermoplastic resin b is polyamide 5X.
17. The conductive material according to any one of items 13 to 16, wherein the thermoplastic resin a and the thermoplastic resin b are different from each other and are selected from polyamide 510 and polyamide 56/6. Thermoplastic resin composition.
18. 18. The conductivity according to any one of items 13 to 17, wherein a terminal amino group concentration of at least one of the thermoplastic resin a and the thermoplastic resin b is 16 μeq / g to 100 μeq / g. Thermoplastic resin composition.
19. The preceding items 13 to 18, wherein when the relative viscosity of the thermoplastic resin a is ηrel (a) and the relative viscosity of the thermoplastic resin b is ηrel (b), these relative viscosities satisfy the following formulas: The conductive thermoplastic resin composition according to any one of the above.
ηrel (a)> ηrel (b) ηrel (a) ≧ 3.0
20. Any one of the items 13 to 19 above, wherein when the total amount of the conductive thermoplastic resin composition is 100% by weight, the content of the conductivity imparting agent is 0.01% by weight to 65% by weight. 2. The conductive thermoplastic resin composition according to item 1.
21. 21. The conductive thermoplastic resin composition according to any one of items 13 to 20, wherein the conductivity imparting agent is at least one selected from the group consisting of conductive carbon black and hollow carbon fibrils.
22. The conductive thermoplastic resin composition according to any one of items 13 to 21, further comprising a flame retardant.
23. 23. The above item 22 characterized in that the critical oxygen index (LOI) measured in accordance with JIS K-7201 is 26 or more and the flame retardancy in the UL-94 standard VTM test satisfies VTM-0. Conductive thermoplastic resin composition.
24. 24. The conductive thermoplastic resin composition according to item 22 or 23, wherein the flame retardant is at least one selected from phosphinates.
25. A method for producing a conductive thermoplastic resin composition comprising at least two types of thermoplastic resins containing at least polyamide 5X and a conductivity imparting agent, wherein the polyamide 5X has the largest amount of the polyamide 5X. It is a thermoplastic resin having the largest blending amount among a certain “thermoplastic resin a” and a thermoplastic resin other than the thermoplastic resin a, and the absolute difference between the solubility parameter value and the solubility parameter value of the thermoplastic resin a Production of a conductive thermoplastic resin composition comprising melt-kneading a thermoplastic resin component containing "thermoplastic resin b" having a value of 0.2 or more and 3.7 or less and the conductivity imparting agent. Method.
26. At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 26. A method for producing a conductive thermoplastic resin composition as described in 25 above, wherein a thermoplastic resin component containing a melt is kneaded.
27. At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 27. A method for producing a conductive thermoplastic resin composition as described in 26 above, wherein dry blending is performed with a thermoplastic resin component comprising
28. 25. An injection molded product obtained by injection molding the conductive thermoplastic resin composition according to any one of items 13 to 24.
29. 29. The injection-molded article according to item 28 above, wherein the volume resistivity value of the injection-molded article is 1.00 × 10 8 Ω · cm or less.
30. 25. An extrusion molded product obtained by extrusion molding the conductive thermoplastic resin composition according to any one of items 13 to 24.
31. 25. A conductive film obtained by extrusion molding the conductive thermoplastic resin composition according to any one of items 13 to 24.
32. 32. The conductive film according to item 31, wherein the thickness is 5 μm to 200 μm.
33. 33. The conductive film according to the item 31 or 32, wherein the volume resistivity value is 1.0 × 10 8 Ω · cm or less.
34. Polymer component comprising 85% by weight to 50% by weight of the following (A) component and 15% by weight to 50% by weight of the (B) component comprising at least one of the following (B-1) component and the following (B-2) component: And a conductivity-imparting agent, wherein the content of the conductivity-imparting agent is 15 to 200 parts by weight with respect to 100 parts by weight of the polymer component.
(A) Component: Polyamide 5X
Component (B-1): graft polymerization of at least one of an α, β-unsaturated carboxylic acid and its derivative onto an olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. Modified polyolefin copolymer (B-2) component: α, β-unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b A modified block copolymer obtained by graft polymerization of at least one of a carboxylic acid and a derivative thereof 35. 35. The conductive polyamide resin composition according to item 34, wherein the polyamide 5X has two endothermic peaks as measured by a differential scanning calorimetry method.
36. 36. The conductive polyamide resin composition as described in 35 above, wherein the temperature difference between the peak tops of the two endothermic peaks is 5 ° C. to 50 ° C.
37. 37. The conductive polyamide resin composition according to any one of items 34 to 36, wherein the polyamide 5X has a terminal amino group concentration of 16 μeq / g to 100 μeq / g.
38. 38. The electrical conductivity according to any one of items 34 to 37, wherein the polyamide 5X is at least one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510, polyamide 512, and polyamide 56/6. -Soluble polyamide resin composition.
39. 39. The conductive polyamide resin composition according to any one of items 34 to 38, wherein the conductivity imparting agent is at least one selected from the group consisting of carbon black and hollow carbon fibrils.
40. 40. The conductive polyamide resin composition according to any one of items 34 to 39, wherein the ash residue is 0.5% by weight or less and the volume resistivity value is 1 × 10 8 Ω · cm or less. .
41. 41. The conductive material according to any one of items 34 to 40, wherein the olefin copolymer in the component (B-1) is at least one of an ethylene-butene copolymer and an ethylene-propylene copolymer. -Soluble polyamide resin composition.
42. 42. The conductive polyamide resin according to any one of items 34 to 41, wherein the hydrogenated block copolymer in the component (B-2) is a styrene-ethylene-butylene-styrene copolymer. Composition.
43. 43. The conductive polyamide resin composition according to any one of items 34 to 42, wherein the α, β-unsaturated carboxylic acid is maleic anhydride.
44. A composition obtained by previously melt-kneading a part of the component (A) and the component (B), at least a part of the remaining part of the component (A) and the conductivity-imparting agent are previously melt-kneaded. 44. The conductive polyamide resin composition according to any one of items 34 to 43, wherein the conductive polyamide resin composition is mixed with a composition.
45. 45. A conductive injection-molded article obtained by injection molding the conductive polyamide resin composition according to any one of items 34 to 44.
46. 45. A conductive extruded product obtained by extruding the conductive polyamide resin composition according to any one of items 34 to 44.
47. 47. The conductive extruded product according to 46 above, which is in the form of a sheet.
48. 48. A part for an automobile or a railway vehicle, or a part for electric, electronic, or OA, characterized in that at least a part thereof is formed of the molded product according to any one of items 45 to 47.
 本発明の導電性ポリアミド樹脂組成物は、同種および同量の導電性付与剤を配合した他のポリアミド樹脂組成物と比較して、より高い導電性を有するものである。また、本発明の導電性ポリアミドフィルムは、導電性と成形性(製膜性)が共に優れており、例えば、電気・電子部品や、自動車外装材をはじめとする広範囲のフィルム、シート分野に利用できるものである。 The conductive polyamide resin composition of the present invention has higher conductivity than other polyamide resin compositions containing the same kind and the same amount of conductivity imparting agent. In addition, the conductive polyamide film of the present invention is excellent in both conductivity and moldability (film forming property), and is used in a wide range of film and sheet fields including, for example, electric / electronic parts and automobile exterior materials. It can be done.
 また、本発明の導電性熱可塑性樹脂組成物は、同量の導電性付与剤を添加した樹脂組成物と比較して、より高い導電性を有するものである。本発明の導電性熱可塑性樹脂組成物は、成形性および機械的特性に優れており、例えば、電気・電子部品や、自動車外装材をはじめとする広範囲の分野に利用できるものである。 Also, the conductive thermoplastic resin composition of the present invention has higher conductivity than a resin composition to which the same amount of conductivity-imparting agent is added. The conductive thermoplastic resin composition of the present invention is excellent in moldability and mechanical properties, and can be used in a wide range of fields including, for example, electric / electronic parts and automobile exterior materials.
 さらにまた、ポリアミド樹脂としてポリアミド5Xを用い、導電性付与剤と共に特定の変性エラストマーを配合してなる本発明のポリアミド樹脂組成物によれば、比較的少ない導電性付与剤の配合量で、従って、成形性や機械的特性等を損なうことなく、優れた導電性を得ることができ、また、導電性付与剤の配合量を多くした場合であっても、変性エラストマーの配合による効果で成形性(製膜性)が損なわれることはなく、また耐衝撃性の改善効果も得られる。 Furthermore, according to the polyamide resin composition of the present invention obtained by using polyamide 5X as a polyamide resin and blending a specific modified elastomer with a conductivity imparting agent, the compounding amount of the conductivity imparting agent is relatively small. Excellent conductivity can be obtained without impairing moldability, mechanical properties, etc. Even if the blending amount of the conductivity imparting agent is increased, the moldability ( The film-forming property is not impaired, and an effect of improving the impact resistance is also obtained.
 本発明の導電性ポリアミド樹脂組成物、導電性熱可塑性樹脂組成物およびポリアミド樹脂組成物によるこのような優れた効果が奏される作用機構については次のように考えられる。即ち、本発明に用いるポリアミド5Xは、従来これらに用いられているポリアミド樹脂であるポリアミド6やポリアミド66等に比べて、ポリアミド樹脂のアミド基と導電性付与剤の反応性基との反応性が高く、親和性が高いことにより、ポリアミド5Xのマトリックス中に導電性付与剤による安定かつ良好な導電性のネットワークが形成され、この結果、優れた導電性が得られる。 The mechanism of action by which the excellent effects of the conductive polyamide resin composition, the conductive thermoplastic resin composition and the polyamide resin composition of the present invention are exhibited is considered as follows. That is, the polyamide 5X used in the present invention has a reactivity between the amide group of the polyamide resin and the reactive group of the conductivity-imparting agent as compared with polyamide 6 and polyamide 66 which are polyamide resins conventionally used in these. Due to the high and high affinity, a stable and good conductive network is formed in the polyamide 5X matrix by the conductivity imparting agent, and as a result, excellent conductivity is obtained.
 また、本発明のポリアミド樹脂組成物については、特に、示差走査熱量測定(DSC)法による測定で2つの吸熱ピークを有するポリアミド5Xを用いることにより、次のような作用機構で優れた導電性が得られる。即ち、ポリアミド樹脂により形成されたマトリックス中に、導電性付与剤が分散したポリアミド樹脂組成物中にあっては、溶融時からの固化過程において、ポリアミド樹脂が結晶化する過程で導電性付与剤はポリアミド樹脂の結晶部から排斥され、ポリアミド樹脂の非晶部の連続相内に固定化される。 In addition, the polyamide resin composition of the present invention has excellent conductivity with the following mechanism of action, particularly by using polyamide 5X having two endothermic peaks as measured by the differential scanning calorimetry (DSC) method. can get. That is, in the polyamide resin composition in which the conductivity imparting agent is dispersed in the matrix formed of the polyamide resin, the conductivity imparting agent is in the process of crystallizing the polyamide resin in the solidification process after melting. It is eliminated from the crystal part of the polyamide resin and fixed in the continuous phase of the amorphous part of the polyamide resin.
 ここで、連続相を構成するポリアミド樹脂が2つの吸熱ピークを持つ場合、溶融時からの固化過程において、まずポリアミド樹脂の高温側の吸熱ピーク温度で結晶が生成し、次に低温側の吸熱ピーク温度で結晶が生成するので、高温側の結晶化過程において、ポリアミド樹脂の非晶部へ押し出された導電性付与剤は、次いで低温側の結晶化過程において、更に押し出されるようになる。 Here, when the polyamide resin constituting the continuous phase has two endothermic peaks, in the solidification process from the time of melting, crystals are first generated at the endothermic peak temperature on the high temperature side of the polyamide resin, and then the endothermic peak on the low temperature side. Since crystals are generated at a temperature, the conductivity-imparting agent extruded to the amorphous part of the polyamide resin in the crystallization process on the high temperature side is then further extruded in the crystallization process on the low temperature side.
 このように、溶融時からの固化過程において、導電性付与剤が受ける応力が2度に分散することにより、ポリアミド5Xのマトリックス中に分散している導電性付与剤は少しずつ集められ、マトリックス中において、過度に分散しすぎることなく、また、過度に凝集しすぎることなく、導電性付与剤による導電性のネットワークを形成するに好適な適度な分散状態で、分散する。この結果、従来のポリアミド6等の汎用のポリアミド樹脂に導電性付与剤を配合した場合に比べて、同種同等量の配合であっても、成形品内で良好な導電性ネットワークが効率的に形成されるようになり、優れた導電性が得られるようになる。 Thus, in the solidification process from the time of melting, the stress imparted to the conductivity-imparting agent is dispersed twice, so that the conductivity-imparting agent dispersed in the matrix of the polyamide 5X is collected little by little. In this case, the dispersion is carried out in an appropriate dispersion state suitable for forming a conductive network by the conductivity imparting agent without being excessively dispersed or excessively aggregating. As a result, compared to conventional polyamide 6 and other general-purpose polyamide resins with a conductivity-imparting agent, a good conductive network can be efficiently formed even in the same type of equivalent amount. As a result, excellent conductivity can be obtained.
 同様に、ポリアミド5Xは、従来のポリアミド樹脂組成物に用いられているポリアミド樹脂であるポリアミド6およびポリアミド66等に比べて、ポリアミド樹脂のアミノ基と変性エラストマーのカルボン酸基との反応性が高く、ポリアミド樹脂のアミノ基と変性エラストマーとの結合性に優れるため、衝撃を受けたときのポリアミド樹脂と変性エラストマーとの界面剥離が低減され、優れた低温衝撃性が得られる。 Similarly, the polyamide 5X has higher reactivity between the amino group of the polyamide resin and the carboxylic acid group of the modified elastomer than the polyamide 6 and polyamide 66, which are polyamide resins used in the conventional polyamide resin composition. Since the bond between the amino group of the polyamide resin and the modified elastomer is excellent, the interfacial peeling between the polyamide resin and the modified elastomer upon impact is reduced, and excellent low temperature impact properties are obtained.
 また、特に、DSC法による測定で2つの吸熱ピークを有するポリアミド5Xにあっては、次のような作用機構で優れた低温衝撃性の向上効果が得られる。 Particularly, in the case of polyamide 5X having two endothermic peaks as measured by the DSC method, an excellent effect of improving low temperature impact can be obtained by the following mechanism.
 即ち、ポリアミド樹脂により形成された連続相中に、変性エラストマーが分散相を形成するポリマーアロイにあっては、溶融時からの固化過程において、まずポリアミド樹脂が結晶化する。この過程で変性エラストマーはポリアミド樹脂の結晶部から排斥され、圧縮応力を受けたままポリアミド樹脂の非晶部の連続相内に固定化される。 That is, in a polymer alloy in which a modified elastomer forms a dispersed phase in a continuous phase formed of a polyamide resin, the polyamide resin first crystallizes during the solidification process from the time of melting. In this process, the modified elastomer is removed from the crystal part of the polyamide resin, and is fixed in the continuous phase of the amorphous part of the polyamide resin while receiving the compressive stress.
 ここで、連続相を構成するポリアミド樹脂が2つの吸熱ピークを持つ場合、溶融時からの固化過程において、まずポリアミド樹脂の高温側の吸熱ピーク温度で結晶が生成し、次に低温側の吸熱ピーク温度で結晶が生成するので、高温側の結晶化と低温側の結晶化との間で分散相の変性エラストマーは一旦応力緩和し、その後の低温側の結晶化で再度圧縮応力を受ける。このように、溶融時からの固化過程において、変性エラストマーが受ける応力が2度に分散し、かつ、高温側の結晶化との間で起こる応力緩和により、固化したポリアミド樹脂内の変性エラストマーの残留応力は小さいものとなり、優れた耐衝撃性を得ることができる。 Here, when the polyamide resin constituting the continuous phase has two endothermic peaks, in the solidification process from the time of melting, crystals are first generated at the endothermic peak temperature on the high temperature side of the polyamide resin, and then the endothermic peak on the low temperature side. Since crystals are formed at a temperature, the modified elastomer in the dispersed phase is temporarily relieved between the crystallization on the high temperature side and the crystallization on the low temperature side, and is again subjected to compressive stress in the subsequent crystallization on the low temperature side. Thus, in the solidification process from the time of melting, the stress applied to the modified elastomer is dispersed twice, and the residual of the modified elastomer in the solidified polyamide resin due to stress relaxation that occurs between the crystallization on the high temperature side. The stress becomes small, and excellent impact resistance can be obtained.
 特に、(A)成分であるポリアミド5Xの一部と(B)成分の変性エラストマーとを予め溶融混練して組成物(以下「エラストマーマスターバッチ」と称す場合がある。)とし、一方、(A)成分のポリアミド5Xの残部と導電性付与剤とを予め溶融混練して組成物(以下「導電性マスターバッチ」と称す場合がある。)とし、これらを混合することにより調製された導電性ポリアミド樹脂組成物であれば、次のような作用機構でより一層優れた導電性及び耐衝撃性が得られる。 In particular, a part of the polyamide 5X as the component (A) and the modified elastomer of the component (B) are melt-kneaded in advance to obtain a composition (hereinafter sometimes referred to as “elastomer masterbatch”), while (A ) The remainder of the component polyamide 5X and the conductivity-imparting agent are previously melt-kneaded into a composition (hereinafter sometimes referred to as “conductive masterbatch”), and these are mixed to prepare a conductive polyamide. If it is a resin composition, the further outstanding electroconductivity and impact resistance will be obtained with the following action mechanisms.
 即ち、ポリアミド樹脂と変性エラストマーとの反応系にカーボンブラック等の導電性付与剤が存在すると、両者の反応を阻害する傾向があり、ポリアミド樹脂と変性エラストマーとの反応阻害で、変性エラストマーを配合したことによる耐衝撃性の改善効果を十分に得ることができなくなるが、ポリアミド5Xと変性エラストマーとを導電性付与剤の存在しない系で予め溶融混練してマスターバッチ化することにより、このような導電性付与剤による反応阻害が防止され、変性エラストマーによる所期の耐衝撃性改善効果を確実に得ることが可能となる。 That is, if a conductivity imparting agent such as carbon black is present in the reaction system between the polyamide resin and the modified elastomer, the reaction between both tends to be inhibited, and the modified elastomer is blended due to the reaction inhibition between the polyamide resin and the modified elastomer. The effect of improving the impact resistance due to the above cannot be sufficiently obtained. However, such a conductive material can be obtained by pre-melting and kneading the polyamide 5X and the modified elastomer in a system without a conductivity-imparting agent to form a master batch. Reaction inhibition by the property-imparting agent is prevented, and the desired impact resistance improving effect by the modified elastomer can be surely obtained.
 一方、導電性付与剤をポリアミド5Xの残部と予め溶融混練してマスターバッチ化することにより、この導電性マスターバッチ内で良好な導電性ネットワークが形成される。即ち、導電性マスターバッチとエラストマーマスターバッチとを混合して本発明の導電性ポリアミド樹脂組成物を製造すると、導電性付与剤は導電性マスターバッチ由来のポリアミド5X相内に偏在するようになり、単にポリアミド5Xと導電性付与剤と変性エラストマーとを混合した組成物とは異なり、導電性付与剤の高濃度領域が形成されるようになる。 On the other hand, a good conductivity network is formed in the conductive master batch by previously melt-kneading the conductivity imparting agent with the remainder of the polyamide 5X to form a master batch. That is, when the conductive masterbatch and the elastomer masterbatch are mixed to produce the conductive polyamide resin composition of the present invention, the conductivity imparting agent is unevenly distributed in the polyamide 5X phase derived from the conductive masterbatch, Unlike a composition obtained by simply mixing polyamide 5X, a conductivity imparting agent, and a modified elastomer, a high concentration region of the conductivity imparting agent is formed.
 しかして、この導電性付与剤が偏在する領域内において、導電性付与剤が適度に凝集すると共に適度に分散することにより、導電性付与剤の良好な導電性ネットワークを形成する。この結果、導電性付与剤の配合による導電性付与効果が有効に発揮される。 However, in the region where the conductivity-imparting agent is unevenly distributed, the conductivity-imparting agent is appropriately aggregated and appropriately dispersed to form a good conductive network of the conductivity-imparting agent. As a result, the conductivity imparting effect due to the blending of the conductivity imparting agent is effectively exhibited.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
[ポリアミド5X]
 本発明の導電性ポリアミド樹脂組成物および熱可塑性樹脂組成物に用いる「ポリアミド5X」とは、主としてペンタメチレンジアミンを含むジアミンとジカルボン酸とを単量体成分として用いる重縮合反応により得られる重縮合体に相当する構造を有するポリアミド樹脂をいう。
[Polyamide 5X]
The “polyamide 5X” used in the conductive polyamide resin composition and the thermoplastic resin composition of the present invention is a polycondensation obtained by a polycondensation reaction mainly using a diamine containing pentamethylenediamine and a dicarboxylic acid as monomer components. A polyamide resin having a structure corresponding to a body.
(ジアミン)
 前記「主としてペンタメチレンジアミンを含むジアミン」とは、ポリアミド5Xを構成するジアミン由来の単位として、ペンタメチレンジアミン由来の単位が、ポリアミド5X中に50重量%以上含まれることを言う。ポリアミド5X中のペンタメチレンジアミン由来の単位の含有量は、50重量%以上であり、70重量%以上が好ましく、80重量%以上がより好ましい。
(Diamine)
The “diamine containing mainly pentamethylenediamine” means that a unit derived from pentamethylenediamine is contained in the polyamide 5X by 50% by weight or more as a diamine-derived unit constituting the polyamide 5X. The content of units derived from pentamethylenediamine in the polyamide 5X is 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more.
 ポリアミド5Xを構成するジアミンとして、ペンタメチレンジアミン以外に使用できるジアミンは、例えばエチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、1,15-ジアミノペンタデカン、1,16-ジアミノヘキサデカン、1,17-ジアミノヘプタデカン、1,18-ジアミノオクタデカン、1,19-ジアミノノナデカン、1,20-ジアミノエイコサンおよび2-メチル-1,5-ジアミノペンタン等の脂肪族ジアミン;シクロヘキサンジアミン等の脂環式ジアミン;キシリレンジアミン等の芳香族ジアミン、等が挙げられる。これらは1種又は2種以上を用いることができる。 Examples of diamines that can be used in addition to pentamethylenediamine as the diamine constituting the polyamide 5X include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1 , 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, 1, 15-diaminopentadecane, 1,16-diaminohexadecane, 1,17-diaminoheptadecane, 1,18-diaminooctadecane, 1,19-diaminononadecane, 1,20-diaminoeicosane and 2-methyl-1,5 -Aliphatic diamines such as diaminopentane; Alicyclic diamines such as hexanediamine, aromatic diamines of xylylenediamine, and the like. These can use 1 type (s) or 2 or more types.
(ジカルボン酸)
 一方、ポリアミド5Xを構成するジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、ペンタデカン二酸およびオクタデカン二酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸およびナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらは1種又は2種以上を用いることができる。
(Dicarboxylic acid)
On the other hand, examples of the dicarboxylic acid constituting the polyamide 5X include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and brassle. Aliphatic dicarboxylic acids such as acids, tetradecanedioic acid, pentadecanedioic acid and octadecanedioic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid Can be mentioned. These can use 1 type (s) or 2 or more types.
 また、ポリアミド5Xを構成するその他の単量体成分として、一分子中にアミノ基とカルボキシル基を有するアミノ酸、或いは開環することによってポリアミド構成単位を与えることができるラクタム類を併用することもできる。当該ラクタム類としては、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸等のアミノ酸;ε-カプロラクタムおよびω-ラウロラクタム等のラクタムが挙げられる。これらは1種又は2種以上を用いてもよい。 Further, as other monomer components constituting the polyamide 5X, amino acids having an amino group and a carboxyl group in one molecule, or lactams that can give a polyamide constituent unit by ring opening can be used in combination. . Examples of the lactams include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid; and lactams such as ε-caprolactam and ω-laurolactam. These may use 1 type (s) or 2 or more types.
(末端アミノ基濃度)
 ポリアミド5Xの末端アミノ基濃度は16μeq/g~100μeq/gが好ましく、20μeq/g~90μeq/gがより好ましく、25μeq/g~80μeq/gが特に好ましい。末端アミノ基濃度は、後述の実施例の項に記載される方法で測定する。
(Terminal amino group concentration)
The terminal amino group concentration of the polyamide 5X is preferably 16 μeq / g to 100 μeq / g, more preferably 20 μeq / g to 90 μeq / g, and particularly preferably 25 μeq / g to 80 μeq / g. The terminal amino group concentration is measured by the method described in the Examples section below.
 ポリアミド5Xの末端アミノ基濃度を16μeq/g以上とすることにより、導電性付与剤の反応性基との反応性を十分に得ることができ、導電性付与剤を配合したことによる改善効果を十分に得ることができる。ポリアミド5Xの末端アミノ基濃度を100μeq/g以下とすることによりゲルが生成するのを防ぐことができる。 By setting the terminal amino group concentration of polyamide 5X to 16 μeq / g or more, the reactivity with the reactive group of the conductivity imparting agent can be sufficiently obtained, and the improvement effect by incorporating the conductivity imparting agent is sufficient Can get to. When the terminal amino group concentration of the polyamide 5X is 100 μeq / g or less, the gel can be prevented from being formed.
 また、ポリアミド5Xの末端アミノ基濃度を16μeq/g以上とすることにより、本発明のポリアミド樹脂組成物を構成する(B)成分の変性エラストマーとの反応性を十分に得ることができ、変性エラストマーを配合したことによる改善効果を十分に得ることができる。 Further, by setting the terminal amino group concentration of the polyamide 5X to 16 μeq / g or more, the reactivity with the modified elastomer of the component (B) constituting the polyamide resin composition of the present invention can be sufficiently obtained, and the modified elastomer The improvement effect by having mix | blended can fully be acquired.
 ポリアミド5Xの末端アミノ基濃度を調整するためには、仕込原料組成の微調整やモノカルボン酸やモノアミンを少量配合することが効果的である。例えば、末端アミノ基濃度を増加するためには仕込原料中のジアミンのモル数をジカルボン酸のモル数より多くするか、またはモノアミンを添加しておくことで可能であり、一方、末端アミノ基濃度を減少させるためには、仕込原料中のジアミンのモル数をジカルボン酸のモル数より少なくするか、またはモノカルボン酸を添加することにより可能である。 In order to adjust the terminal amino group concentration of polyamide 5X, it is effective to finely adjust the raw material composition and blend a small amount of monocarboxylic acid or monoamine. For example, in order to increase the terminal amino group concentration, it is possible to increase the number of moles of diamine in the feedstock more than the number of moles of dicarboxylic acid, or add a monoamine, while the concentration of terminal amino groups In order to reduce this, it is possible to make the number of moles of diamine in the feedstock smaller than the number of moles of dicarboxylic acid, or to add a monocarboxylic acid.
 ポリアミド5Xの末端アミノ基濃度の調整に用いるモノカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸およびオクタデカン酸等が挙げられる。また、モノアミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミンおよびセチルアミン等が挙げられる。 Examples of the monocarboxylic acid used for adjusting the terminal amino group concentration of polyamide 5X include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, and tetradecane. Examples include acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid. Examples of monoamines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine. , Pentadecylamine, cetylamine and the like.
(分子量)
 ポリアミド5Xの分子量は特に限定されず、目的に応じて適宜選択されるが、実用性の観点から、25℃における98%硫酸に溶解した溶液(ポリアミド5Xの濃度:0.01g/ml)の相対粘度(η)で、通常1.5~5.5、好ましくは1.6~3.5、さらに好ましくは1.8~3.0、特に好ましくは2.0~2.8の範囲である。ポリアミド5Xの、相対粘度は、後述の実施例の項に記載される方法で測定する。
(Molecular weight)
The molecular weight of polyamide 5X is not particularly limited and is appropriately selected depending on the purpose. From the viewpoint of practicality, the relative concentration of a solution dissolved in 98% sulfuric acid at 25 ° C. (concentration of polyamide 5X: 0.01 g / ml) The viscosity (η r ) is usually in the range of 1.5 to 5.5, preferably 1.6 to 3.5, more preferably 1.8 to 3.0, particularly preferably 2.0 to 2.8. is there. The relative viscosity of polyamide 5X is measured by the method described in the Examples section below.
 ポリアミド5Xの相対粘度を1.5以上とすることにより、十分な実用的強度を得ることができる。また、相対粘度を5.5以下とすることにより、流動性の低下により成形加工性が損なわれるのを防ぐことができる。 Sufficient practical strength can be obtained by setting the relative viscosity of the polyamide 5X to 1.5 or more. Moreover, by setting the relative viscosity to 5.5 or less, it is possible to prevent the moldability from being impaired due to a decrease in fluidity.
 本発明の導電性ポリアミド樹脂、導電性熱可塑性樹脂組成物及びポリアミド樹脂組成物は、ポリアミド樹脂としてポリアミド5Xを用いることにより、導電性付与剤の少量配合での高い導電性が発現し、かつ高い耐衝撃性能が得られる。この作用機構は、ポリアミドの結晶形態の差異によるものと考えられ、次のように推定される。 The conductive polyamide resin, the conductive thermoplastic resin composition, and the polyamide resin composition of the present invention exhibit high conductivity with a small amount of a conductivity-imparting agent and are high by using polyamide 5X as the polyamide resin. Impact resistance performance is obtained. This mechanism of action is thought to be due to the difference in the crystal form of the polyamide, and is presumed as follows.
 即ち、ポリアミド5Xはγ型結晶を有する傾向にあるが、一般的に使用されているポリアミド6、ポリアミド66等はα型結晶のみを有する傾向にある。α型結晶はγ型結晶に比べて結晶サイズが大きく、導電性付与剤による導電経路を遮断し易くなり、結晶の弾性率も高いため、耐衝撃性が悪くなる傾向にある。ポリアミド5Xのγ型結晶はこのような問題がなく、導電経路を維持し得ることにより、導電性付与剤の配合による導電性の発現効果が高く、かつ衝撃性能が高くなるものと考えられる。 That is, polyamide 5X tends to have γ-type crystals, but commonly used polyamide 6, polyamide 66, etc. tend to have only α-type crystals. The α-type crystal has a larger crystal size than the γ-type crystal, easily interrupts the conductive path by the conductivity-imparting agent, and has a high elastic modulus, so that the impact resistance tends to deteriorate. The γ-type crystal of polyamide 5X does not have such a problem, and it can be considered that the conductivity development effect due to the blending of the conductivity-imparting agent is high and the impact performance is high because the conductive path can be maintained.
[導電性付与剤]
 本発明の導電性ポリアミド樹脂組成物及び導電性熱可塑性樹脂組成物に用いる導電性付与剤としては、例えば、イオン性界面活性剤、非イオン性界面活性剤、およびポリエチレングリコール単位またはイオン性官能基を有する高分子帯電防止剤等の有機化合物が挙げられる。また、例えば、カーボンブラック、炭素繊維、金属繊維、金属粉未および金属酸化物等の無機物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
[Conductivity imparting agent]
Examples of the conductivity-imparting agent used in the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention include ionic surfactants, nonionic surfactants, and polyethylene glycol units or ionic functional groups. And organic compounds such as polymer antistatic agents having Moreover, for example, inorganic materials such as carbon black, carbon fiber, metal fiber, metal powder, and metal oxide are included. These may be used alone or in a combination of two or more in any combination and ratio.
 特に、比較的少量の添加で、高い導電性が発現し、かつ導電性と耐衝撃性のバランスに優れると共に良好な外観が得られることから、導電性カーボンブラック、中空炭素フィブリルが好ましい。なお、導電性カーボンブラックや中空炭素フィブリルは、配合に先立ってジェットミルやスーパーミキサー等の高速粉砕機を用いて粉砕しておくことが好ましい。  In particular, conductive carbon black and hollow carbon fibrils are preferred because high conductivity is exhibited with a relatively small amount of addition, a good balance between conductivity and impact resistance is obtained, and a good appearance is obtained. In addition, it is preferable to grind | pulverize conductive carbon black and a hollow carbon fibril using high-speed grinders, such as a jet mill and a super mixer, prior to blending. *
(導電性カーボンブラック)
 本発明で好ましく使用する導電性付与剤の一つとして、導電性カーボンブラックが挙げられる。導電性カーボンブラックは、ASTM D2414に準拠して測定されるジブチルフタレー卜(DBP)吸油量が、30ml/100g以上であることが好ましく、100ml/100g以上であることがより好ましい。
(Conductive carbon black)
One of the conductivity imparting agents preferably used in the present invention is conductive carbon black. The conductive carbon black preferably has a dibutyl phthalate (DBP) oil absorption measured in accordance with ASTM D2414 of 30 ml / 100 g or more, and more preferably 100 ml / 100 g or more.
 導電性カーボンブラックとしては、例えば、アセチレンガスを熱分解して得られるアセチレンブラック、または原油を原料としファーネス式不完全燃焼によって製造されるケッチェンブラック等が好適に挙げられる。これらの導電性カーボンブラックは、ペイント等に着色目的で加える顔料用カーボンブラックとは異なり、通常微細な粒子が連なった形態(ストラクチャ)を有している。 As the conductive carbon black, for example, acetylene black obtained by thermally decomposing acetylene gas or ketjen black produced by furnace-type incomplete combustion using crude oil as a raw material can be preferably exemplified. These conductive carbon blacks usually have a form (structure) in which fine particles are connected, unlike carbon black for pigments added to paints or the like for the purpose of coloring.
(中空炭素フィブリル)
 本発明で好ましく使用する導電性付与剤の一つとして、中空炭素フィブリルが挙げられる。中空炭素フィブリルは、ASTM D2414に準拠して測定されるジブチルフタレー卜(DBP)吸油量が、100ml/100g以上であることが好ましく、200ml/100g以上であることがより好ましい。 
(Hollow carbon fibril)
One of the conductivity-imparting agents preferably used in the present invention is hollow carbon fibrils. The hollow carbon fibrils preferably have a dibutyl phthalate (DBP) oil absorption measured in accordance with ASTM D2414 of 100 ml / 100 g or more, and more preferably 200 ml / 100 g or more.
 中空炭素フィブリルとしては、規則的に炭素原子が配列した本質的に連続的な多層からなる外側領域と、内部中空領域とを有し、各層と中空領域とが実質的に同心に配置され、本質的に円筒状のフィブリルが好適に挙げられる。当該外側領域の規則的に配列した炭素原子が黒鉛状であることが好ましい。また、前記中空領域の直径が2nm~20nmの範囲のものがより好ましい。 The hollow carbon fibril has an outer region composed of an essentially continuous multilayer in which carbon atoms are regularly arranged, and an inner hollow region, and each layer and the hollow region are arranged substantially concentrically. In particular, a cylindrical fibril is preferable. The regularly arranged carbon atoms in the outer region are preferably in the form of graphite. More preferably, the hollow region has a diameter of 2 nm to 20 nm.
 前記中空炭素フィブリルは、例えば、日本国特表昭62-500943号公報や、米国特許第4,663,230号明細書等に詳細に記載されている。その製法としては、後者の米国特許明細書に詳細に記載されているように、例えば、アルミナを支持体とする鉄、コバルトおよびニッケル含有粒子等の遷移金属含有粒子を、一酸化炭素および炭化水素等の炭素含有ガスと、850℃~1200℃の高温で接触させ、熱分解によって生じた炭素を、遷移金属を起点として、繊維状に成長させる方法が挙げられる。また、前記中空炭素フィブリルは、市販されているもの(例えば、ハイペリオン・カタリシス社、商品名「グラファイト・フィブリル」)を使用することができる。 The hollow carbon fibrils are described in detail in, for example, Japanese Patent Publication No. Sho 62-500943 and US Pat. No. 4,663,230. As described in detail in the latter US patent specification, for example, transition metal-containing particles such as iron-, cobalt-, and nickel-containing particles supported on alumina are used as carbon monoxide and hydrocarbons. And a carbon-containing gas such as 850 ° C. to 1200 ° C., and carbon generated by pyrolysis is grown into a fiber starting from a transition metal. Moreover, the said hollow carbon fibril can use what is marketed (for example, Hyperion Catalysis Co., Ltd., a brand name "graphite fibril").
 本発明において、導電性付与剤は、導電性カーボンブラックのみを用いてもよく、中空炭素フィブリルのみを用いてもよく、また導電性カーボンブラックと中空炭素フィブリルとを併用してもよい。更には導電性カーボンブラック及び中空炭素フィブリルの少なくとも一方と、その他の導電性付与剤の1種又は2種以上とを組み合わせて用いてもよい。 In the present invention, as the conductivity imparting agent, only conductive carbon black may be used, only hollow carbon fibrils may be used, or conductive carbon black and hollow carbon fibrils may be used in combination. Further, at least one of conductive carbon black and hollow carbon fibril may be used in combination with one or more of other conductivity-imparting agents.
[添加剤]
 本発明の導電性ポリアミド樹脂組成物及び導電性熱可塑性樹脂組成物は、必要に応じて、各種の添加剤を配合することができる。添加剤としては、例えば、酸化防止剤、耐候剤、離型剤、滑剤、顔料、染料、結晶核剤、可塑剤、帯電防止剤、難燃剤、充填剤および強化材等が挙げられる。
[Additive]
The conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention can contain various additives as necessary. Examples of the additive include an antioxidant, a weathering agent, a release agent, a lubricant, a pigment, a dye, a crystal nucleating agent, a plasticizer, an antistatic agent, a flame retardant, a filler, and a reinforcing material.
 酸化防止剤又は熱安定剤としては、例えば、ヒンダードフェノール系化合物、ヒドロキノン系化合物およびホスファイト系化合物並びにこれらの置換体等が挙げられる。耐候剤としては、例えば、レゾルシノール系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物およびヒンダードアミン系化合物等が挙げられる。    Examples of the antioxidant or heat stabilizer include hindered phenol compounds, hydroquinone compounds, phosphite compounds, and substituted products thereof. Examples of the weathering agent include resorcinol compounds, salicylate compounds, benzotriazole compounds, benzophenone compounds, hindered amine compounds, and the like. *
 離型剤又は滑剤としては、例えば、脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素化合物およびポリエチレンワックス等が挙げられる。顔料としては、例えば、フタロシアニンおよびカーボンブラック等が挙げられる。染料としては、例えば、ニグロシンおよびアニリンブラック等が挙げられる。 Examples of the release agent or lubricant include aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisurea compounds, and polyethylene waxes. Examples of the pigment include phthalocyanine and carbon black. Examples of the dye include nigrosine and aniline black.
 結晶核剤としては、例えば、タルク、シリカ、カオリンおよびクレー等が挙げられる。可塑剤としては、例えば、p-オキシ安息香酸オクチルおよびN-ブチルベンゼンスルホンアミド等が挙げられる。 Examples of the crystal nucleating agent include talc, silica, kaolin, and clay. Examples of the plasticizer include octyl p-oxybenzoate and N-butylbenzenesulfonamide.
 帯電防止剤としては、例えば、アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレート等の非イオン系帯電防止剤およびベタイン系両性帯電防止剤等が挙げられる。  Examples of the antistatic agent include alkyl sulfate type anionic antistatic agents, quaternary ammonium salt type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, and betaine amphoteric antistatic agents. Etc. *
 難燃剤としては、例えば、メラミンシアヌレート、水酸化マグネシウムおよび水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート並びに臭素化エポキシ樹脂が挙げられる。また、これらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等が挙げられる。  Examples of the flame retardant include hydroxides such as melamine cyanurate, magnesium hydroxide and aluminum hydroxide, ammonium polyphosphate, brominated polystyrene, brominated polyphenylene oxide, brominated polycarbonate and brominated epoxy resin. Moreover, the combination etc. of these brominated flame retardants and antimony trioxide are mentioned. *
 充填剤としては、例えば、グラファイト、硫酸バリウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化アンチモン、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉄、硫化亜鉛、亜鉛、鉛、ニッケル、アルミニウム、銅、鉄、ステンレス、ベントナイト、モンモリロナイトおよび合成雲母等の、粒子状、針状および板状充填材が挙げられる。 Examples of the filler include graphite, barium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, antimony oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide, zinc sulfide, zinc, lead, nickel, aluminum, copper, iron And particulate, needle-like and plate-like fillers such as stainless steel, bentonite, montmorillonite and synthetic mica.
 強化材としては、例えば、ガラス繊維、ガラスフレーク、炭素繊維、窒化硼素、チタン酸カリウムおよび硼酸アルミニウム等が挙げられる。 Examples of the reinforcing material include glass fiber, glass flake, carbon fiber, boron nitride, potassium titanate, and aluminum borate.
 前記添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 The above additives may be used alone or in a combination of two or more in any combination and ratio.
[成形品の製造方法]
 本発明の導電性ポリアミド樹脂組成物および導電性熱可塑性樹脂組成物は、射出成形、フィルム成形、溶融紡糸、ブロー成形、および真空成形等の任意の成形方法により、所望の形状に成形することができる。成形品としては、例えば、射出成形品、フィルム、シート、フィラメント、テーパードフィラメントおよび繊維等が挙げられる。
[Production method of molded products]
The conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention can be molded into a desired shape by any molding method such as injection molding, film molding, melt spinning, blow molding, and vacuum molding. it can. Examples of the molded article include injection molded articles, films, sheets, filaments, tapered filaments, fibers, and the like.
(射出成形)
 本発明の導電性ポリアミド樹脂組成物および導電性熱可塑性樹脂組成物の射出成形に用いる射出成形機は、特に限定されず、例えば日精樹脂工業株式会社製:NEX80型、や東芝機械株式会社製:IS80等が挙げられる。射出成形の際の射出成形条件は特に限定されず、用いる熱可塑性樹脂a、熱可塑性樹脂b等の主成分として含まれる熱可塑性樹脂の成形条件の範囲から適宜選択される。
(injection molding)
The injection molding machine used for the injection molding of the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention is not particularly limited. For example, Nissei Resin Industry Co., Ltd .: NEX80 type, Toshiba Machine Co., Ltd .: IS80 etc. are mentioned. The injection molding conditions at the time of injection molding are not particularly limited, and are appropriately selected from the range of molding conditions of the thermoplastic resin contained as a main component such as the thermoplastic resin a and the thermoplastic resin b to be used.
(押出成形)
 本発明の導電性ポリアミド樹脂組成物および導電性熱可塑性樹脂組成物を用いる押出成形方法及び得られる押出成形品について説明する。押出成形の具体的な成形方法は特に限定されず、例えば、Tダイを用いたフラットフィルム成形、水冷および空冷インフレーションフィルム成形、チューブ成形、モノフィラメント成形並びにマルチフィラメント成形等の公知の方法を用いることができる。また押出成形機としては、特に限定されず、一般的な単軸および二軸押出機等を用いることができる。
(Extrusion molding)
An extrusion molding method using the conductive polyamide resin composition and the conductive thermoplastic resin composition of the present invention and the obtained extrusion molded product will be described. The specific molding method of extrusion molding is not particularly limited, and for example, known methods such as flat film molding using a T die, water-cooled and air-cooled inflation film molding, tube molding, monofilament molding, and multifilament molding may be used. it can. Moreover, it does not specifically limit as an extrusion molding machine, A common single screw and a twin screw extruder etc. can be used.
 以下、本発明の、1.導電性ポリアミド樹脂組成物、2.導電性熱可塑性樹脂組成物、3.導電性ポリアミド樹脂組成物について詳述する。 Hereinafter, according to the present invention, 1. 1. Conductive polyamide resin composition, 2. a conductive thermoplastic resin composition; The conductive polyamide resin composition will be described in detail.
1.導電性ポリアミド樹脂組成物
 本発明の導電性ポリアミド樹脂組成物は、ポリアミド樹脂と導電性付与剤とを含有する導電性ポリアミド樹脂組成物である。又、それからなる導電性ポリアミドフィルムである。なお、本発明の導電性ポリアミドフィルムの「フィルム」とは、「シート」等の薄板状のものも包含する広義の「フィルム」を意味する。
1. Conductive polyamide resin composition The conductive polyamide resin composition of the present invention is a conductive polyamide resin composition containing a polyamide resin and a conductivity-imparting agent. Moreover, it is a conductive polyamide film comprising the same. In addition, the “film” of the conductive polyamide film of the present invention means a “film” in a broad sense that includes a thin sheet such as “sheet”.
1-1.導電性ポリアミド樹脂組成物
 本発明の導電性ポリアミド樹脂組成物は、ポリアミド樹脂と導電性付与剤とを含み、該ポリアミド樹脂がポリアミド5Xを少なくとも含み、灰分残渣が0.5重量%以下で、体積固有抵抗値が1.0×10Ω・cm以下であることを特徴とする。
1-1. Conductive polyamide resin composition The conductive polyamide resin composition of the present invention comprises a polyamide resin and a conductivity imparting agent, the polyamide resin contains at least polyamide 5X, an ash residue is 0.5% by weight or less, and has a volume. The specific resistance value is 1.0 × 10 8 Ω · cm or less.
 ポリアミド5Xとしては、好ましくはポリアミド56、ポリアミド59、ポリアミド510およびポリアミド56/6が挙げられ、より好ましくはポリアミド510である。これらは1種を単独で用いてもよく、また、異なる成分組成、末端アミノ基濃度、相対粘度のものの2種以上を任意の組み合わせ及び任意の比率で混合して用いてもよい。 Polyamide 5X preferably includes polyamide 56, polyamide 59, polyamide 510 and polyamide 56/6, more preferably polyamide 510. One of these may be used alone, or two or more of those having different component compositions, terminal amino group concentrations and relative viscosities may be used in any combination and in any ratio.
 ポリアミド5Xの含有量はポリアミド樹脂100重量部中、通常50重量部以上、好ましくは60重量部以上、より好ましくは70重量部以上、更に好ましくは80重量部以上、特に好ましくは90重量部以上である。当該範囲とすることで優れた導電性を得ることができる。 The content of polyamide 5X is usually 50 parts by weight or more, preferably 60 parts by weight or more, more preferably 70 parts by weight or more, still more preferably 80 parts by weight or more, particularly preferably 90 parts by weight or more in 100 parts by weight of polyamide resin. is there. By setting it in this range, excellent conductivity can be obtained.
1-1-1.導電性付与剤
 本発明の導電性ポリアミド樹脂組成物における導電性付与剤の含有量は、0.1重量%~65重量%が好ましく、0.1重量%~60重量%がより好ましく、1重量%~55重量%が特に好ましい。特に、中空炭素フィブリルの含有量は0.1重量%~15重量%とすることが好ましい。また、導電性カーボンブラックの含有量は10重量%~55重量%とすることが好ましい。
1-1-1. Conductivity imparting agent The content of the conductivity imparting agent in the conductive polyamide resin composition of the present invention is preferably 0.1% by weight to 65% by weight, more preferably 0.1% by weight to 60% by weight, and 1% by weight. % To 55% by weight is particularly preferred. In particular, the content of hollow carbon fibrils is preferably 0.1 to 15% by weight. The conductive carbon black content is preferably 10% by weight to 55% by weight.
 導電性ポリアミド樹脂組成物中の導電性付与剤の含有量を0.1重量%以上とすることにより十分な導電性を得ることができる。また、65重量%以下とすることで、成形性(製膜性)や柔軟性等が損なわれるのを防ぐことができる。 Sufficient conductivity can be obtained by setting the content of the conductivity imparting agent in the conductive polyamide resin composition to 0.1% by weight or more. Moreover, it can prevent that a moldability (film forming property), a softness | flexibility, etc. are impaired by setting it as 65 weight% or less.
 特に本発明の導電性ポリアミド樹脂組成物にポリアミド樹脂としてポリアミド5Xを用いることにより、前述の導電性付与剤の導電性発現効果が向上し、導電性付与剤の少量配合で、従って、成形性(製膜性)や柔軟性等を損なうことなく、良好な導電性ポリアミドフィルムを実現することができる。このことにより、導電性ポリアミド樹脂組成物中の導電性付与剤の含有量が、特に30重量%以下、例えば3重量%~30重量%であっても、体積固有抵抗値1×10Ω・cm以下の優れた導電性を得ることができる。 In particular, by using polyamide 5X as the polyamide resin in the conductive polyamide resin composition of the present invention, the conductivity development effect of the above-described conductivity imparting agent is improved, and a small amount of the conductivity imparting agent is blended. A good conductive polyamide film can be realized without impairing the film forming property and flexibility. Thus, even when the content of the conductivity imparting agent in the conductive polyamide resin composition is 30% by weight or less, for example, 3% by weight to 30% by weight, the volume resistivity value is 1 × 10 3 Ω · Excellent conductivity of cm or less can be obtained.
1-1-2.その他の添加剤
 本発明の導電性ポリアミド樹脂組成物には、必要に応じて、上記した各種の添加剤が配合される。添加剤の含有量は、十分な配合効果が得られる範囲において任意に設定することができるが、その配合量が多過ぎるとポリアミド樹脂本来の特性が損なわれたり、成形性(製膜性)や柔軟性が損なわれるおそれがあるので、ポリアミド5X100重量部に対してその他の添加剤の合計で60重量部以下であることが好ましく、特に、無機系添加剤については、後述の灰分残渣を満たす量とする必要がある。
1-1-2. Other additives The conductive polyamide resin composition of the present invention is blended with the above-described various additives as necessary. The content of the additive can be arbitrarily set within a range where a sufficient blending effect can be obtained. Since flexibility may be impaired, the total amount of other additives is preferably 60 parts by weight or less with respect to 100 parts by weight of polyamide 5X. It is necessary to.
 その他の添加剤は、導電性ポリアミド樹脂組成物の製造工程のみならず、ポリアミド5Xの重縮合工程等の製造工程から、導電性ポリアミド樹脂組成物の成形工程までの間の任意の段階で適宜その添加量、添加工程を選択して添加することができる。 The other additives are appropriately selected not only in the production process of the conductive polyamide resin composition but also in any stage from the production process such as the polycondensation process of polyamide 5X to the molding process of the conductive polyamide resin composition. An addition amount and an addition process can be selected and added.
1-1-3.他のポリマー成分
 本発明の導電性ポリアミド樹脂組成物に用いる他のポリマー成分としては、2-4において上記した他のポリマー成分が挙げられる。これらの他のポリマー成分は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び任意の比率で併用してもよい。
1-1-3. Other Polymer Components Other polymer components used in the conductive polyamide resin composition of the present invention include the other polymer components described above in 2-4. One of these other polymer components may be used alone, or two or more thereof may be used in any combination and in any ratio.
 前記他のポリマー成分を配合する場合、その配合量はポリアミド5X100重量部に対して他のポリマー成分の合計量として10重量部以下とすることが好ましい。10重量部以下とすることで、導電性の低下や成形性(製膜性)の低下を防ぐことができる。 When the other polymer component is blended, the blending amount is preferably 10 parts by weight or less as the total amount of the other polymer components with respect to 100 parts by weight of polyamide 5X. By setting it as 10 weight part or less, the fall of electroconductivity and the fall of a moldability (film forming property) can be prevented.
 なお、他のポリマー成分は、導電性ポリアミド樹脂組成物の製造工程のみならず、ポリアミド5Xの重縮合工程等の製造工程から、導電性ポリアミド樹脂組成物の成形工程までの間の任意の段階で適宜その添加量、添加工程を選択して添加することができる。 The other polymer components are not limited to the production process of the conductive polyamide resin composition, but at any stage from the production process such as the polycondensation process of polyamide 5X to the molding process of the conductive polyamide resin composition. The addition amount and the addition process can be appropriately selected and added.
1-1-4.灰分残渣
 本発明の導電性ポリアミド樹脂組成物は、灰分残渣が0.5重量%以下であり、0.4重量%以下がより好ましく、0.2重量%以下が特に好ましく、0.1重量%が最も好ましい。
1-1-4. Ash Residue In the conductive polyamide resin composition of the present invention, the ash residue is 0.5% by weight or less, more preferably 0.4% by weight or less, particularly preferably 0.2% by weight or less, and 0.1% by weight. Is most preferred.
 灰分残渣の量が0.5重量%を超えると例えばフィルムとした場合、フィルム外観が悪化し、成形性(製膜性)が悪くなる可能性がある。導電性ポリアミド樹脂組成物の灰分残渣は、後述の実施例の項に記載される方法で測定される。 If the amount of the ash residue exceeds 0.5% by weight, for example, when a film is formed, the film appearance may be deteriorated and the moldability (film forming property) may be deteriorated. The ash residue of the conductive polyamide resin composition is measured by the method described in the Examples section below.
1-1-5.体積固有抵抗値
 本発明の導電性ポリアミド樹脂組成物は、体積固有抵抗値が1.0×10Ω・cm以下であり、1.0×10Ω・cm以下が好ましく、1.0×10Ω・cm以下がより好ましい。当該導電性ポリアミド樹脂組成物の体積固有抵抗値は、低い程導電性に優れ、通常1×10-2Ω・cm以上である。
1-1-5. Volume resistivity value The conductive polyamide resin composition of the present invention has a volume resistivity value of 1.0 × 10 8 Ω · cm or less, preferably 1.0 × 10 5 Ω · cm or less, and 1.0 × 10 3 Ω · cm or less is more preferable. The lower the volume specific resistance value of the conductive polyamide resin composition, the better the conductivity, and it is usually 1 × 10 −2 Ω · cm or more.
 前記導電性ポリアミド樹脂組成物の体積固有抵抗値が1.0×10Ω・cmよりも大きいと、本発明の高導電性のポリアミドフィルムを提供し得ない。導電性ポリアミド樹脂組成物の体積固有抵抗値は、後述の実施例の項に記載される方法で測定される。 When the volume specific resistance value of the conductive polyamide resin composition is larger than 1.0 × 10 8 Ω · cm, the highly conductive polyamide film of the present invention cannot be provided. The volume specific resistance value of the conductive polyamide resin composition is measured by the method described in the section of Examples described later.
1-1-6.溶融粘度
 本発明の導電性ポリアミド樹脂組成物は、温度280℃、剪断速度91.6sec-1における溶融粘度が100Pa・s~4000Pa・sであることが好ましく、150Pa・s~3500Pa・sがより好ましく、200Pa・s~3000Pa・sが特に好ましい。
1-1-6. Melt Viscosity In the conductive polyamide resin composition of the present invention, the melt viscosity at a temperature of 280 ° C. and a shear rate of 91.6 sec −1 is preferably 100 Pa · s to 4000 Pa · s, more preferably 150 Pa · s to 3500 Pa · s. 200 Pa · s to 3000 Pa · s is particularly preferable.
 前記溶融粘度を100Pa・s以上とすることにより、良好なフィルム成形性が得られる。また、溶融粘度を4000Pa・s以下とすることにより、樹脂圧力の上昇により押出機モーターへの負荷が増加して樹脂の押出が困難になるのを防ぐことができる。 Favorable film moldability can be obtained by setting the melt viscosity to 100 Pa · s or more. Further, by setting the melt viscosity to 4000 Pa · s or less, it is possible to prevent the resin from being difficult to be extruded due to an increase in the load on the extruder motor due to an increase in the resin pressure.
 前記導電性ポリアミド樹脂組成物の溶融粘度は、後述の実施例の項に記載される方法で測定される。 The melt viscosity of the conductive polyamide resin composition is measured by the method described in the Examples section below.
1-2.導電性ポリアミド樹脂組成物の製造方法
 本発明の導電性ポリアミド樹脂組成物は、ポリアミド樹脂としてのポリアミド5Xと、導電性付与剤と、さらに必要に応じて適宜配合される各種の添加剤や他の重合体、を上記した公知の混合手段で混合することで製造することができる。
1-2. Method for Producing Conductive Polyamide Resin Composition The conductive polyamide resin composition of the present invention comprises polyamide 5X as a polyamide resin, a conductivity imparting agent, and various additives and other additives that are appropriately blended as necessary. The polymer can be produced by mixing with the above-mentioned known mixing means.
 具体的には、例えば、ポリアミド5Xと導電性付与剤とを溶融混練する方法が挙げられる。 Specifically, for example, a method of melt-kneading polyamide 5X and a conductivity imparting agent can be mentioned.
 また、他の方法として、予めポリアミド5Xの一部と導電性付与剤とを溶融混練して、混合物(「導電剤マスターバッチ」と称す。)とし、次いで、該導電剤マスターバッチと、ポリアミド5Xの残部とを溶融混練又はドライブレンドする方法が挙げられる。 As another method, a part of polyamide 5X and a conductivity imparting agent are melt-kneaded in advance to obtain a mixture (referred to as “conductive agent masterbatch”), and then the conductive agent masterbatch and polyamide 5X. And a method of melt-kneading or dry blending the remainder.
 この場合、予め導電剤マスターバッチを製造するポリアミド5Xの一部と、その後、導電剤マスターバッチと混合するポリアミド5Xの残部とは同一のポリアミド5Xであってもよく、異なるポリアミド5Xであってもよい。 In this case, a part of the polyamide 5X for producing the conductive agent masterbatch in advance and the remainder of the polyamide 5X mixed with the conductive agent masterbatch may be the same polyamide 5X or different polyamides 5X. Good.
 また、他の方法としては、予めポリアミド5Xの一部と導電性付与剤の一部とを溶融混練して導電剤マスターバッチ(「導電剤マスターバッチ1」と称す。)とし、次いで、ポリアミド5Xの残部と導電性付与剤の残部とを溶融混練して導電剤マスターバッチ(「導電剤マスターバッチ2」と称す。)とし、導電剤マスターバッチ1と導電剤マスターバッチ2を溶融混練、又はドライブレンドする方法が挙げられる。 As another method, a part of the polyamide 5X and a part of the conductivity imparting agent are previously melt-kneaded to obtain a conductive agent masterbatch (referred to as “conductive agent masterbatch 1”), and then the polyamide 5X And the remainder of the conductivity-imparting agent are melt-kneaded to form a conductive agent master batch (referred to as “conductive agent master batch 2”), and the conductive agent master batch 1 and the conductive agent master batch 2 are melt-kneaded or dried. The method of blending is mentioned.
 この場合、導電剤マスターバッチ1を製造するポリアミド5Xの一部と、導電剤マスターバッチ2を製造するポリアミド5Xの残部とは同一のポリアミド5Xであってもよく、異なるポリアミド5Xであってもよい。 In this case, a part of the polyamide 5X for producing the conductive agent master batch 1 and the remainder of the polyamide 5X for producing the conductive agent master batch 2 may be the same polyamide 5X or different polyamides 5X. .
 同様に、導電剤マスターバッチ1を製造する導電性付与剤の一部と、導電剤マスターバッチ2を製造する導電性付与剤の残部とは同一の導電性付与剤であってもよく、異なる導電性付与剤であってもよい。 Similarly, a part of the conductivity imparting agent for producing the conductive agent master batch 1 and the remainder of the conductivity imparting agent for producing the conductive agent master batch 2 may be the same conductivity imparting agent. It may be a property-imparting agent.
 更に、上記の導電剤マスターバッチ1及び導電剤マスターバッチ2を、導電性付与剤を含まないポリアミド5Xと溶融混練又はドライブレンドする方法が挙げられる。 Furthermore, a method of melt-kneading or dry blending the conductive agent masterbatch 1 and the conductive agent masterbatch 2 described above with polyamide 5X not containing a conductivity-imparting agent can be mentioned.
 この場合において、導電性付与剤を含まないポリアミド5Xは、導電剤マスターバッチ1のポリアミド5X及び導電剤マスターバッチ2のポリアミド5Xの少なくとも一方と同一のポリアミド5Xであってもよく、異なるものであってもよい。更には、3種以上の導電剤マスターバッチを用いてもよい。 In this case, the polyamide 5X not including the conductivity-imparting agent may be the same polyamide 5X as at least one of the polyamide 5X of the conductive agent masterbatch 1 and the polyamide 5X of the conductive agent masterbatch 2, or different. May be. Furthermore, you may use 3 or more types of electrically conductive agent masterbatches.
 また、各々の導電剤マスターバッチの製造において、2種以上のポリアミド5Xを用いたり、2種以上の導電性付与剤を用いたりしてもよく、導電剤マスターバッチに混合する導電性付与剤を含まないポリアミド5Xについても2種以上のポリアミド5Xを用いてもよい。 Moreover, in manufacture of each electrically conductive agent masterbatch, 2 or more types of polyamide 5X may be used, or 2 or more types of conductivity imparting agents may be used, and the conductivity imparting agent mixed with a conductive agent masterbatch is used. Two or more types of polyamide 5X may be used for the polyamide 5X not included.
 また、ポリアミド5Xの一部をポリアミド6、ポリアミド66等の汎用のポリアミド樹脂に置換してもよいが、少なくとも導電性付与剤を予め溶融混練して導電剤マスターバッチを製造するためのポリアミド樹脂はポリアミド5Xであることが好ましい。 In addition, a part of the polyamide 5X may be replaced with a general-purpose polyamide resin such as polyamide 6 or polyamide 66, but at least a polyamide resin for producing a conductive agent masterbatch by melt-kneading a conductivity imparting agent in advance is Polyamide 5X is preferable.
 上記導電剤マスターバッチを製造する際に、予めポリアミド5Xと導電性付与剤とを溶融混練する際の混練条件(導電剤マスターバッチの調製条件)および導電剤マスターバッチとポリアミド5Xの残部とを溶融混練する際の混練条件は、一般的なポリアミド樹脂を溶融混練する場合の条件でよい。例えば、使用するポリアミド5Xの融点(DSCにて測定した融解ピーク温度)よりも5℃~50℃程度高い温度設定で溶融混練をすることが好ましい。 When manufacturing the conductive agent masterbatch, the kneading conditions (preparation conditions for the conductive agent masterbatch) and the remainder of the conductive agent masterbatch and the polyamide 5X are melted in advance when the polyamide 5X and the conductivity imparting agent are melt-kneaded. The kneading conditions for kneading may be the conditions for melt kneading a general polyamide resin. For example, it is preferable to perform melt kneading at a temperature setting higher by about 5 ° C. to 50 ° C. than the melting point of the polyamide 5X used (melting peak temperature measured by DSC).
 また、導電剤マスターバッチ中の導電性付与剤含有量には特に制限はなく、製造する導電性ポリアミド樹脂組成物の導電性付与剤含有量や導電剤マスターバッチと混合する導電性付与剤を含まないポリアミド5Xの有無によっても異なる。 Moreover, there is no restriction | limiting in particular in electroconductivity imparting agent content in a conductive agent masterbatch, The electroconductivity imparting agent mixed with the electroconductivity imparting agent content of a conductive polyamide resin composition to manufacture or a conductive agent masterbatch is included. It depends on the presence or absence of polyamide 5X.
 導電性付与剤の含有量は、通常0.1重量%~65重量%、特に0.1重量%~60重量%程度とすることが好ましい。特に、中空炭素フィブリルの含有量は0.1重量%~15重量%とし、導電性カーボンブラックの含有量は10重量%~55重量%とすることが好ましい。 The content of the conductivity-imparting agent is usually 0.1% to 65% by weight, preferably about 0.1% to 60% by weight. In particular, the content of hollow carbon fibrils is preferably 0.1 to 15% by weight, and the content of conductive carbon black is preferably 10 to 55% by weight.
1-3.導電性ポリアミドフィルム
 本発明の導電性ポリアミドフィルムは、前記導電性ポリアミド樹脂組成物から形成されたものであり、通常、該導電性ポリアミド樹脂組成物を上記した公知の押出成形方法によりフィルム成形することにより製造される。
1-3. Conductive polyamide film The conductive polyamide film of the present invention is formed from the conductive polyamide resin composition, and the conductive polyamide resin composition is usually formed into a film by the known extrusion molding method described above. It is manufactured by.
 導電性ポリアミドフィルムの具体例としては、特に限定されず、例えば、コンデンサーをはじめとした電気電子デバイスやリチウムイオン電池やニッケル水素電池等に使用される導電性が必要な金属フィルムの代替等が挙げられる。更には帯電防止性能が必要とされる、例えば建築ないし設備メンテナンス用養生シート等に有用である。 Specific examples of the conductive polyamide film are not particularly limited, and include, for example, substitution of metal films that require electrical conductivity used for electric and electronic devices such as capacitors, lithium ion batteries, nickel metal hydride batteries, and the like. It is done. Furthermore, it is useful for, for example, a curing sheet for building or facility maintenance that requires antistatic performance.
 特に本発明の導電性ポリアミドフィルムは、例えば、発塵を著しく低減する必要がある半導体製造現場の床、壁および天井を覆う養生シートに好適である。また、静電塗装を行う車両および航空機の塗装現場では、帯電防止性はもとより導電性を有する養生シートを用いることで、静電気のスパークによる火災の危険性を大幅に低減できる。 Particularly, the conductive polyamide film of the present invention is suitable for, for example, a curing sheet that covers floors, walls, and ceilings of a semiconductor manufacturing site where dust generation needs to be significantly reduced. In addition, in vehicles and aircraft painting sites where electrostatic coating is performed, the risk of fire due to static sparks can be significantly reduced by using a conductive curing sheet as well as antistatic properties.
 本発明の導電性ポリアミドフィルムの厚みは、その用途に応じて異なり、任意の厚さとすることができるが、通常5μm~200μm、好ましくは10μm~150μm、より好ましくは20μm~100μm、特に好ましくは30μm~70μmである。 The thickness of the conductive polyamide film of the present invention varies depending on the application and can be any thickness, but is usually 5 μm to 200 μm, preferably 10 μm to 150 μm, more preferably 20 μm to 100 μm, and particularly preferably 30 μm. ~ 70 μm.
 導電性ポリアミドフィルムの厚みを5μm以上とすることで、フィルム(またはシート)としての強度が過度に低下するのを防ぐことができる。また、導電性ポリアミドフィルムの厚みを200μm以下とすることで、フィルム(あるいはシート)としての柔軟性が低下するのを防ぐことができる。 By making the thickness of the conductive polyamide film 5 μm or more, it is possible to prevent the strength as a film (or sheet) from being excessively reduced. Moreover, it can prevent that the softness | flexibility as a film (or sheet | seat) falls by the thickness of a conductive polyamide film being 200 micrometers or less.
 また、本発明の導電性ポリアミド樹脂組成物は、ポリアミド5Xに導電性付与剤を配合することにより、電界シールド性と磁界シールド性とが共に優れる電磁波シールド性ポリアミド樹脂組成物とすることができる。 Further, the conductive polyamide resin composition of the present invention can be made into an electromagnetic wave shielding polyamide resin composition excellent in both electric field shielding properties and magnetic field shielding properties by blending a conductivity imparting agent with polyamide 5X.
 本発明の導電性ポリアミド樹脂組成物の電界波シールド性および磁界波シールド性は、電気用品安全法による製品試験値によって必要値が定められており、また製品から発生する周波数やその強さにも依存するため一概に決められる値ではないが、-10dB以下であることが好ましい。電界波シールド性および磁界波シールド性は後述する実施例の測定方法により測定する。 The required values for the electric field shielding property and magnetic field shielding property of the conductive polyamide resin composition of the present invention are determined by the product test values according to the Electrical Appliance and Material Safety Law, and the frequency generated by the product and its strength are also determined. Although it is dependent, it is not a value that is generally determined, but is preferably −10 dB or less. The electric field wave shielding property and the magnetic field wave shielding property are measured by a measuring method of an example described later.
 また、本発明の導電性ポリアミド樹脂組成物は、周波数5~800MHzにおいて測定した電界シールド性が通常-15dB以下、かつ周波数200~1000MHzにおいて測定した磁界シールド性が通常-15dB以下であることがより好ましい。 Further, the conductive polyamide resin composition of the present invention has an electric field shielding property measured at a frequency of 5 to 800 MHz, usually −15 dB or less, and a magnetic field shielding property measured at a frequency of 200 to 1000 MHz, usually −15 dB or less. preferable.
 さらにまた、前記電磁波シールド樹脂組成物は、押出成形や射出成形により成形品とすることができ、自動車・鉄道車両用部品又は電気・電子・OA用部品に使用できる。 Furthermore, the electromagnetic wave shielding resin composition can be formed into a molded product by extrusion molding or injection molding, and can be used for parts for automobiles / railway vehicles or parts for electric / electronic / OA.
2.導電性熱可塑性樹脂組成物
 本発明の導電性熱可塑性樹脂組成物は、二種類以上の熱可塑性樹脂と導電性付与剤とを含有する導電性熱可塑性樹脂組成物である。
2. Conductive thermoplastic resin composition The conductive thermoplastic resin composition of the present invention is a conductive thermoplastic resin composition containing two or more kinds of thermoplastic resins and a conductivity imparting agent.
2-1.熱可塑性樹脂
 本発明の導電性熱可塑性樹脂組成物は、少なくとも二種類の熱可塑性樹脂を含み、上記ポリアミド5Xを必須成分として含む。ポリアミド5X以外の熱可塑性樹脂としては、特に限定はされないが、混和性や導電性の向上効果、および求められる物性等を考慮すれば、ポリアミド5X以外のポリアミド樹脂を用いるのが好適である。
2-1. Thermoplastic Resin The conductive thermoplastic resin composition of the present invention contains at least two types of thermoplastic resins and contains the polyamide 5X as an essential component. The thermoplastic resin other than the polyamide 5X is not particularly limited, but it is preferable to use a polyamide resin other than the polyamide 5X in consideration of the effect of improving the miscibility and conductivity and the required physical properties.
(ポリアミド5X)
 ポリアミド5Xとしては、用いるジカルボン酸の炭素数(X)によって種々のポリアミド5Xがあるが、ポリアミド56、ポリアミド59およびポリアミド510が好ましく、中でもポリアミド56が物性のバランスが良好であるため特に好ましい。
(Polyamide 5X)
The polyamide 5X includes various polyamides 5X depending on the carbon number (X) of the dicarboxylic acid to be used. Polyamide 56, polyamide 59 and polyamide 510 are preferable, and among them, the polyamide 56 is particularly preferable because of a good balance of physical properties.
(その他のポリアミド樹脂)
 ポリアミド5X以外のポリアミド樹脂としては、ポリアミド5Xを与えることになるペンタメチレンジアミンおよびδ-バレロラクタム以外のジアミンやラクタム類を除いては、上述したジアミン類やラクタム類を用いることができる。また、ジカルボン酸としては上記のジカルボン酸を特に制限なく用いることができる。
(Other polyamide resins)
As the polyamide resin other than polyamide 5X, the diamines and lactams described above can be used except for diamines and lactams other than pentamethylene diamine and δ-valerolactam that give polyamide 5X. Further, as the dicarboxylic acid, the above dicarboxylic acid can be used without any particular limitation.
 このような、ポリアミド5X以外のポリアミド樹脂としては、例えば、ポリアミド6(いわゆる6ナイロン)、ポリアミド66(いわゆる6,6-ナイロン)、ポリアミド610およびポリアミド12(いわゆる12ナイロン)などが例示できる。  Examples of such a polyamide resin other than polyamide 5X include polyamide 6 (so-called 6 nylon), polyamide 66 (so-called 6,6-nylon), polyamide 610 and polyamide 12 (so-called 12 nylon). *
(ポリアミド樹脂以外の熱可塑性樹脂)
 本発明の熱可塑性樹脂組成物においては、ポリアミド5X以外の熱可塑性樹脂として、本発明の効果を著しく阻害しない範囲で、上記「その他のポリアミド樹脂」以外の熱可塑性樹脂を用いることができる。
(Thermoplastic resin other than polyamide resin)
In the thermoplastic resin composition of the present invention, a thermoplastic resin other than the above-mentioned “other polyamide resin” can be used as a thermoplastic resin other than the polyamide 5X as long as the effects of the present invention are not significantly impaired.
 前記熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリスチレン、ABS樹脂、SAN樹脂およびポリイミド等が挙げられる。  Examples of the thermoplastic resin include polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polystyrene, ABS resin, SAN resin, and polyimide. *
2-2.熱可塑性樹脂aおよび熱可塑性樹脂b
 本発明の導電性熱可塑性樹脂組成物は、該組成物に含まれる熱可塑性樹脂から選定される2種類の熱可塑性樹脂(熱可塑性樹脂aおよび熱可塑性樹脂b)の溶解度パラメータ値(以下「SP値」と記す)の差の絶対値(以下「△SP値」と記す)が特定の範囲にあることを特徴としている。
2-2. Thermoplastic resin a and thermoplastic resin b
The conductive thermoplastic resin composition of the present invention has solubility parameter values (hereinafter referred to as “SP”) of two types of thermoplastic resins (thermoplastic resin a and thermoplastic resin b) selected from the thermoplastic resins contained in the composition. The absolute value of the difference (hereinafter referred to as “value”) (hereinafter referred to as “ΔSP value”) is in a specific range.
(熱可塑性樹脂aと熱可塑性樹脂bの選定)
 熱可塑性樹脂aおよび熱可塑性樹脂bを選定する手順は以下の(1)~(4)の通りである。
(1)導電性熱可塑性樹脂組成物を構成する熱可塑性樹脂について、ポリアミド5Xと、それ以外の熱可塑性樹脂との二つに分けて、それぞれのSP値(溶解度パラメータ)に基づいて集計する。この時同じ区分内であれば樹脂が異なっていてもSP値が同じであれば、その配合量を合算する。
(2)ポリアミド5Xの区分の中で、最大の配合量のポリアミド5X(群)を選択し、これを「熱可塑性樹脂a」とし、そのSP値を「SP(a)」とする。なお、最大の配合量となり得るポリアミド5X(群)が複数存在する場合は、その全てを熱可塑性樹脂aとする。この時のSP値は、各ポリアミド5XのSP値の算術平均を取り、これをSP(a)とする。
(3)次に、上記(2)で選定した熱可塑性樹脂aを除いて、全てのポリアミド5X及び熱可塑性樹脂の中から、最大の配合量の熱可塑性樹脂(群)を選択し、これを「熱可塑性樹脂b」とし、そのSP値を「SP(b)」とする。
(4)上記(3)において、「熱可塑性樹脂b」となり得る熱可塑性樹脂(群)の候補が複数ある場合(配合量が同一でSP値が異なる樹脂(群))は、前記SP(a)との差の絶対値が、より小さくなる熱可塑性樹脂(群)を、「熱可塑性樹脂b」とする。
(Selection of thermoplastic resin a and thermoplastic resin b)
The procedure for selecting the thermoplastic resin a and the thermoplastic resin b is as follows (1) to (4).
(1) About the thermoplastic resin which comprises a conductive thermoplastic resin composition, it divides into two, polyamide 5X and other thermoplastic resins, and it totals based on each SP value (solubility parameter). At this time, if the SP value is the same even if the resin is different within the same category, the blending amount is added.
(2) The polyamide 5X (group) having the maximum blending amount is selected from the polyamide 5X categories, and this is designated as "thermoplastic resin a" and its SP value is designated as "SP (a)". In addition, when there exist multiple polyamide 5X (group) which can become the largest compounding quantity, let all be the thermoplastic resin a. The SP value at this time is the arithmetic average of the SP values of the polyamides 5X, and this is SP (a).
(3) Next, except for the thermoplastic resin a selected in the above (2), the thermoplastic resin (group) having the maximum blending amount is selected from all the polyamides 5X and the thermoplastic resins. “Thermoplastic resin b” is used, and the SP value is “SP (b)”.
(4) In the above (3), when there are a plurality of candidates for the thermoplastic resin (group) that can be the “thermoplastic resin b” (resin (group) having the same blending amount but different SP values), the SP (a The thermoplastic resin (group) in which the absolute value of the difference from) becomes smaller is referred to as “thermoplastic resin b”.
(溶解度パラメータ(SP値))
 溶解度パラメータ(SP値)は、例えば、山本秀樹著「SP値基礎・応用と計算方法」第66頁~第67頁(2005年、株式会社情報機構発行)に記載の、「2.Fedorの推算法」に基づき算出できる。Fedorの推算法におけるSP値は、(凝集エネルギー[J/mol])/(分子容[cm/mol])の1/2乗で定義される値であり、主として、ポリマーの各種溶媒への溶解性を予測するのに用いられる物性値である。また、SP値が近似する物質同士は、相溶性が良好となると一般的に考えられている。
(Solubility parameter (SP value))
The solubility parameter (SP value) is described in, for example, “2. Estimation of Fedor” described in Hideki Yamamoto “SP Value Basics / Applications and Calculation Methods”, pages 66 to 67 (2005, published by Information Technology Corporation). It can be calculated based on the “method”. The SP value in the Fedor's estimation method is a value defined by the 1/2 power of (cohesive energy [J / mol]) / (molecular volume [cm 3 / mol]), and mainly the polymer to various solvents. A physical property value used to predict solubility. Moreover, it is generally considered that the substances having similar SP values have good compatibility.
 本発明の導電性熱可塑性樹脂組成物は、熱可塑性樹脂aと熱可塑性樹脂bのそれぞれのSP値の差の絶対値が0.2以上3.7以下であり、0.5以上3.2以下が好ましく、0.8以上2.7以下がより好ましく、1.2以上2.2以下が特に好ましい。 In the conductive thermoplastic resin composition of the present invention, the absolute value of the difference in SP value between the thermoplastic resin a and the thermoplastic resin b is 0.2 or more and 3.7 or less, and 0.5 or more and 3.2. The following is preferable, 0.8 to 2.7 is more preferable, and 1.2 to 2.2 is particularly preferable.
 △SP値を、0.2以上とすることで、熱可塑性樹脂相がミクロレベルで完全相溶に近づくことにより導電性付与剤の分散が良くなり過ぎるのを防ぐことができ、導電性付与剤のつながり、即ち「導電パス」が形成しにくくなり導電性が低くなるのを防ぐことができる。 By setting the ΔSP value to 0.2 or more, the dispersion of the conductivity imparting agent can be prevented from becoming too good due to the thermoplastic resin phase approaching complete compatibility at the micro level. That is, it is difficult to form a connection, that is, a “conductive path”, and it is possible to prevent the conductivity from being lowered.
 また、△SP値を、3.7以下とすることにより、熱可塑性樹脂組成物の主成分である熱可塑性樹脂aと熱可塑性樹脂bとの相溶性が過度に低下するのを防ぎ、良好な成形品が得ることができ、成形品表面が不均一になるのを防ぐことができる。 Further, by setting the ΔSP value to 3.7 or less, it is possible to prevent the compatibility between the thermoplastic resin a and the thermoplastic resin b, which are the main components of the thermoplastic resin composition, from being excessively lowered, and to be favorable. A molded product can be obtained, and the surface of the molded product can be prevented from becoming uneven.
 本発明の導電性熱可塑性樹脂組成物は、必須成分であるポリアミド5Xの結晶形態(γ型結晶)はα型結晶に比べて結晶サイズが小さく、導電性付与剤による導電性経路を遮断する傾向が低くなり、かつ上記の熱可塑性樹脂aおよび熱可塑性樹脂bのSP値差によって微視的レベルでの相界面が形成され、この界面部分に導電性付与剤が集まることで、更に導電経路が形成されやすくなることから、良好な導電性を示すと推定される。 In the conductive thermoplastic resin composition of the present invention, the crystal form (γ-type crystal) of polyamide 5X, which is an essential component, has a smaller crystal size than the α-type crystal, and tends to block the conductive path by the conductivity-imparting agent. And a phase interface at a microscopic level is formed by the difference in SP value between the thermoplastic resin a and the thermoplastic resin b, and the conductivity imparting agent gathers at this interface portion, so that the conductive path is further increased. Since it becomes easy to form, it is estimated that favorable electroconductivity is shown.
 一般的に使用されているポリアミド、及び実施例、比較例で使用したポリアミドのモノマー構成、凝集エネルギーE(J/mol)、分子容V(cm/mol)、溶解度パラメータ(SP値)を表5に示す。 Table shows the commonly used polyamide and the monomer composition, cohesive energy E (J / mol), molecular volume V (cm 3 / mol), and solubility parameter (SP value) of the polyamide used in Examples and Comparative Examples. 5 shows.
(熱可塑性樹脂a)
 熱可塑性樹脂aとしては、上記ポリアミド5Xと同様、好ましくはポリアミド56、ポリアミド59、ポリアミド510及びポリアミド56/6が挙げられ、中でもポリアミド56、ポリアミド510及びポリアミド56/6が、物性のバランスが良好であるため特に好ましい。
(Thermoplastic resin a)
As the thermoplastic resin a, the polyamide 56, the polyamide 59, the polyamide 510, and the polyamide 56/6 are preferably used as in the polyamide 5X, and the polyamide 56, the polyamide 510, and the polyamide 56/6 have a good balance of physical properties. Is particularly preferable.
(熱可塑性樹脂b)
 熱可塑性樹脂bとしては、ポリアミド樹脂が好ましく、ポリアミド5Xであることが更に好ましい。特に好ましいのはポリアミド56、ポリアミド59およびポリアミド510である。
(Thermoplastic resin b)
As the thermoplastic resin b, a polyamide resin is preferable, and a polyamide 5X is more preferable. Particularly preferred are polyamide 56, polyamide 59 and polyamide 510.
 特に、熱可塑性樹脂aと前記熱可塑性樹脂bとが、それぞれ異なり、かつポリアミド510及びポリアミド56/6から選ばれるものであることが好ましい。即ち、「熱可塑性樹脂a:熱可塑性樹脂b」の組み合わせが、「ポリアミド510:ポリアミド56/6」および「ポリアミド56/6:ポリアミド510」の少なくとも一方であることが好ましい。 Particularly, it is preferable that the thermoplastic resin a and the thermoplastic resin b are different from each other and are selected from polyamide 510 and polyamide 56/6. That is, the combination of “thermoplastic resin a: thermoplastic resin b” is preferably at least one of “polyamide 510: polyamide 56/6” and “polyamide 56/6: polyamide 510”.
 熱可塑性樹脂aとおよび熱可塑性樹脂bは、本発明の導電性熱可塑性樹脂組成物における主な成分である。熱可塑性樹脂aとおよび熱可塑性樹脂bの総量は、本発明の導電性熱可塑性樹脂組成物に含まれる熱可塑性樹脂の通常60重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上であることが好ましい。特に好ましい含有量は90重量%以上である。 The thermoplastic resin a and the thermoplastic resin b are main components in the conductive thermoplastic resin composition of the present invention. The total amount of the thermoplastic resin a and the thermoplastic resin b is usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight of the thermoplastic resin contained in the conductive thermoplastic resin composition of the present invention. The above is preferable. A particularly preferred content is 90% by weight or more.
 また、本発明の導電性熱可塑性樹脂組成物における、熱可塑性樹脂aと熱可塑性樹脂bとの含有割合は、熱可塑性樹脂a/熱可塑性樹脂b(重量比)が、10/90~90/10であることが好ましく、20/80~80/20がより好ましく、30/70~70/30が更に好ましい。この時、50/50よりも熱可塑性樹脂aが多くなる組み合わせが、特に好ましい。  The content ratio of the thermoplastic resin a and the thermoplastic resin b in the conductive thermoplastic resin composition of the present invention is such that the thermoplastic resin a / thermoplastic resin b (weight ratio) is 10/90 to 90 / 10 is preferable, 20/80 to 80/20 is more preferable, and 30/70 to 70/30 is still more preferable. At this time, a combination in which the thermoplastic resin a is more than 50/50 is particularly preferable. *
(末端アミノ基濃度)
 本発明に用いる熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方の樹脂の末端アミノ基濃度は、16μeq/g~100μeq/gであるのが好ましく、更に好ましくは20μeq/g~90μeq/g、特に好ましくは25μeq/g~80μeq/g、中でも特に好ましくは30μeq/g~70μeq/である。末端アミノ基濃度は、後述の実施例の項に記載される方法で測定する。
(Terminal amino group concentration)
The terminal amino group concentration of at least one of the thermoplastic resin a and the thermoplastic resin b used in the present invention is preferably 16 μeq / g to 100 μeq / g, more preferably 20 μeq / g to 90 μeq / g, particularly It is preferably 25 μeq / g to 80 μeq / g, and particularly preferably 30 μeq / g to 70 μeq / g. The terminal amino group concentration is measured by the method described in the Examples section below.
 前記末端基アミノ基濃度を16μeq/g以上とすることにより、導電性が低下するのを防ぐことができる。末端アミノ基濃度を100μeq/g以下とすることでゲルが生成するのを防ぐことができる。また、末端基アミノ基濃度を前記範囲内とすることにより、導電性とゲル生成抑制とのバランスが良好になる。 It is possible to prevent the conductivity from being lowered by setting the terminal group amino group concentration to 16 μeq / g or more. Generation of a gel can be prevented by setting the terminal amino group concentration to 100 μeq / g or less. Moreover, the balance of electroconductivity and gel production | generation suppression becomes favorable by making terminal group amino group density | concentration into the said range.
(相対粘度)
 熱可塑性樹脂a及び熱可塑性樹脂bの分子量は特に限定されず、目的に応じて適宜選択される。実用性の観点から、熱可塑性樹脂a及び熱可塑性樹脂bの25℃における98%硫酸に溶解した溶液(濃度:0.01g/ml)の相対粘度(ηrel)は、いずれも、通常1.5~6.5、好ましくは1.6~4.5、更に好ましくは1.8~4.0、特に好ましくは2.0~3.7の範囲であることが好ましい。 
(Relative viscosity)
The molecular weights of the thermoplastic resin a and the thermoplastic resin b are not particularly limited, and are appropriately selected according to the purpose. From the viewpoint of practicality, the relative viscosity (ηrel) of a solution (concentration: 0.01 g / ml) of thermoplastic resin a and thermoplastic resin b dissolved in 98% sulfuric acid at 25 ° C. is usually 1.5. It is preferably in the range of -6.5, preferably 1.6-4.5, more preferably 1.8-4.0, particularly preferably 2.0-3.7.
 前記相対粘度を1.5以上とすることにより、十分な実用的強度を得ることができる。また、相対粘度を5.5以下とすることにより、流動性の低下により成形加工性が損なわれるのを防ぐことができる。 A sufficient practical strength can be obtained by setting the relative viscosity to 1.5 or more. Moreover, by setting the relative viscosity to 5.5 or less, it is possible to prevent the moldability from being impaired due to a decrease in fluidity.
 また、高い導電性を得るためには、熱可塑性樹脂aの25℃における98%硫酸に溶解した溶液(濃度:0.01g/ml)の相対粘度をηrel(a)、同様に熱可塑性樹脂bの相対粘度をηrel(b)とした場合に、ηrel(a)>ηrel(b)かつηrel(a)≧3.0であることが好ましい。 In order to obtain high conductivity, the relative viscosity of a solution (concentration: 0.01 g / ml) of the thermoplastic resin a dissolved in 98% sulfuric acid at 25 ° C. is set to ηrel (a), and similarly the thermoplastic resin b When the relative viscosity of ηrel (b) is ηrel (b), it is preferable that ηrel (a)> ηrel (b) and ηrel (a) ≧ 3.0.
 さらに、フィルムやモノフィラメント等の押出用途に使用する場合は、成形性の観点から、ηrel(a)は、好ましくは3.0以上、より好ましくは3.2以上、更に好ましくは3.4以上である。 Furthermore, when used for extrusion applications such as films and monofilaments, from the viewpoint of moldability, ηrel (a) is preferably 3.0 or more, more preferably 3.2 or more, and still more preferably 3.4 or more. is there.
2-3.導電性付与剤
 本発明の導電性熱可塑性樹脂組成物における導電性付与剤の含有量は、該導電性熱可塑性樹脂組成物100重量%中、0.01重量%~65重量%とするのが好ましく、より好ましくは0.05重量%~60重量%、更に好ましくは0.1重量%~55重量%であり、特に好ましくは0.5重量%~55重量%、中でも特に好ましくは1重量%~30重量%である。
2-3. Conductivity imparting agent The content of the conductivity imparting agent in the conductive thermoplastic resin composition of the present invention is 0.01% to 65% by weight in 100% by weight of the conductive thermoplastic resin composition. More preferably, it is 0.05% to 60% by weight, still more preferably 0.1% to 55% by weight, particularly preferably 0.5% to 55% by weight, and particularly preferably 1% by weight. ~ 30% by weight.
 導電性付与剤の含有量を0.01重量%以上とすることにより、十分な導電性を得ることができる。また、含有量を65重量%以下とすることにより、耐衝撃性や機械物性(強度、伸び)が過度に低下するのを防ぎ、電気・電子部品、自動車部品およびフィルム等の製品とした時に、実用上求められる強度が不十分となるのを防ぐことができる。 Sufficient conductivity can be obtained by setting the content of the conductivity imparting agent to 0.01% by weight or more. In addition, by making the content 65% by weight or less, it is possible to prevent impact resistance and mechanical properties (strength, elongation) from excessively decreasing, and when products such as electric / electronic parts, automobile parts and films are obtained, It is possible to prevent the strength required for practical use from becoming insufficient.
2-4.添加剤
 本実施の導電性熱可塑性樹脂組成物には、必要に応じて、上記した各種の添加剤を配合することができる。添加剤は、原料となる熱可塑性樹脂を製造(重縮合、重合)する工程から、導電性熱可塑性樹脂組成物の成形に至るまでの任意の段階で、その添加量、添加工程等を適宜選択して、添加すればよい。
2-4. Additives Various additives described above can be blended in the conductive thermoplastic resin composition of the present embodiment, if necessary. Additives are appropriately selected for the additive and the addition process at any stage from the production (polycondensation and polymerization) of the thermoplastic resin used as a raw material to the molding of the conductive thermoplastic resin composition. Then, it may be added.
2-5.難燃性の付与
 本発明の導電性熱可塑性樹脂組成物は更に難燃剤を含有させることにより、十分な難燃性を有することが出来る。本発明の導電性熱可塑性樹脂組成物の難燃性は、JIS K-7201に準拠して測定した臨界酸素指数(LOI)が26以上、かつUL-94規格VTM試験での難燃性がVTM-0とすることが好ましい。
2-5. Addition of flame retardancy The conductive thermoplastic resin composition of the present invention can have sufficient flame retardancy by further containing a flame retardant. The flame retardancy of the conductive thermoplastic resin composition of the present invention is such that the critical oxygen index (LOI) measured in accordance with JIS K-7201 is 26 or more, and the flame retardancy in the UL-94 standard VTM test is VTM. It is preferably −0.
 本発明で用いる難燃剤としては特に制限はなく、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤等を用いることができるが、特にポリアミド樹脂に適することから、ハロゲン系難燃剤又はリン系難燃剤を配合することが好ましく、リン系難燃剤が更に好ましい。又、リン系難燃剤の中でも、フォスフィン酸塩類が取り分けて好ましい。 The flame retardant used in the present invention is not particularly limited, and a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and the like can be used. It is preferable to mix a flame retardant, and a phosphorus flame retardant is more preferable. Of the phosphoric flame retardants, phosphinates are particularly preferable.
 本発明の導電性熱可塑性樹脂組成物における難燃剤の含有量は、該導電性熱可塑性樹脂組成物100重量%中、10重量%~40重量%とするのが好ましく、15重量%~40重量%がより好ましく、15重量%~37重量%が特に好ましい。難燃剤の含有量を当該範囲とすることにより、十分な難燃性を得ることができる。 The content of the flame retardant in the conductive thermoplastic resin composition of the present invention is preferably 10% by weight to 40% by weight and preferably 15% by weight to 40% by weight in 100% by weight of the conductive thermoplastic resin composition. % Is more preferable, and 15% by weight to 37% by weight is particularly preferable. By setting the content of the flame retardant within the range, sufficient flame retardancy can be obtained.
2-6.導電性熱可塑性樹脂組成物の製造方法
 本発明の導電性熱可塑性樹脂組成物は、前述した通り、ポリアミド樹脂5Xから選定される熱可塑性樹脂a、該熱可塑性樹脂aとは異なる溶解度パラメータを有する熱可塑性樹脂b、導電性付与剤、及び必要に応じて配合される各種の添加剤を混合することにより製造することができる。 
2-6. Production method of conductive thermoplastic resin composition As described above, the conductive thermoplastic resin composition of the present invention has a thermoplastic resin a selected from the polyamide resin 5X and a solubility parameter different from that of the thermoplastic resin a. It can manufacture by mixing the thermoplastic resin b, the electroconductivity imparting agent, and various additives mix | blended as needed.
(混合手段)
 混合のために用いる混合手段としては特に制限はなく、例えば、ニーダーや二軸押出機、単軸押出機等を用いる溶融混練方法、タンブラー、スーパーミキサー並びにヘンシェルミキサーおよびナウターミキサーを用いるドライブレンド方法等が挙げられる。 
(Mixing means)
The mixing means used for mixing is not particularly limited, and examples thereof include a melt kneading method using a kneader, a twin screw extruder, a single screw extruder, a tumbler, a super mixer, a dry blend method using a Henschel mixer and a Nauter mixer. Etc.
(混合方法)
 具体的な混合方法としては、例えば以下のような方法が挙げられる。
(1)前記熱可塑性樹脂a、前記熱可塑性樹脂b、導電性付与剤及び所望の添加剤を、一括して溶融混練又はドライブレンドする方法
(2)予め熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方と導電性付与剤とを溶融混練して混合物(以下、「導電剤マスターバッチ」と記すことがある)とし、次いで、該混合物と熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とを溶融混練する方法
(3)予め熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方と導電性付与剤とを溶融混練して混合物(導電剤マスターバッチ)とし、次いで、該混合物と前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とをドライブレンドする方法
(Mixing method)
Specific examples of the mixing method include the following methods.
(1) A method of melt-kneading or dry blending the thermoplastic resin a, the thermoplastic resin b, a conductivity-imparting agent, and a desired additive all together (2) Preliminary methods of the thermoplastic resin a and the thermoplastic resin b At least one and the conductivity-imparting agent are melt-kneaded to form a mixture (hereinafter sometimes referred to as “conductive agent masterbatch”), and then the balance of the mixture and at least one of the thermoplastic resin a and the thermoplastic resin b (3) In advance, at least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to obtain a mixture (conductive agent masterbatch), A method of dry blending the mixture and a thermoplastic resin component containing the remainder of at least one of the thermoplastic resin a and the thermoplastic resin b
 上記(2)又は(3)の導電剤マスターバッチを用いる方法においては、上記導電性付与剤の使用量は、前記導電剤マスターバッチ100重量%あたり、通常0.05重量%~70重量%の範囲、好ましくは、0.1重量%~50重量%の範囲、より好ましくは2重量%~25重量%の範囲とするのが好ましい。 In the method using the conductive agent master batch of (2) or (3), the amount of the conductivity-imparting agent used is usually 0.05% by weight to 70% by weight per 100% by weight of the conductive agent master batch. The range is preferably 0.1% to 50% by weight, more preferably 2% to 25% by weight.
 また上記導電剤マスターバッチを調製するときの条件としては、特に制限されず、用いる熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方を溶融混練する場合に一般的に用いられる条件でよく、例えば、使用する熱可塑性樹脂の融点(DSCにて測定した融解ピーク温度)の5℃以上、50℃以下の温度で溶融混練をすればよい。 The conditions for preparing the conductive agent master batch are not particularly limited, and may be conditions generally used when melt kneading at least one of the thermoplastic resin a and the thermoplastic resin b to be used. What is necessary is just to melt-knead at the temperature of 5 degreeC or more and 50 degrees C or less of melting | fusing point (melting peak temperature measured by DSC) of the thermoplastic resin to be used.
 なお、上記「前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部」とは、導電剤マスターバッチを用いる場合、所定の配合量から、導電剤マスターバッチに含まれる熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方の分を差し引いた分を、その後の溶融混練又はドライブレンドに用いて最終的な熱可塑性樹脂組成物を製造することになるため、当該所定の配合量から導電剤マスターバッチに含まれる熱可塑性樹脂a及び熱可塑性樹脂bの少なくとも一方の量を差し引いた、それぞれの熱可塑性樹脂の量を言うものである。  In addition, when using a conductive agent masterbatch, the above-mentioned “the remaining part of at least one of the thermoplastic resin a and the thermoplastic resin b” refers to the thermoplastic resin a and the thermoplastic resin a included in the conductive agent masterbatch from a predetermined blending amount. Since the final thermoplastic resin composition is produced by using the amount obtained by subtracting at least one of the thermoplastic resins b for subsequent melt-kneading or dry blending, the conductive agent master is used from the predetermined blending amount. It means the amount of each thermoplastic resin obtained by subtracting the amount of at least one of the thermoplastic resin a and the thermoplastic resin b contained in the batch. *
2-7.成形品
 本発明の導電性熱可塑性樹脂組成物を用いて得られる各種の成形品は、導電性付与剤の含有量が好ましくは0.01重量%~65重量%、より好ましくは0.05重量%~60重量%、更に好ましくは0.1重量%~55重量%であり、特に好ましくは0.5重量%~55重量%、中でも特に好ましくは1重量%~30重量%である。
2-7. Molded Articles Various molded articles obtained using the conductive thermoplastic resin composition of the present invention preferably have a conductivity-imparting agent content of 0.01 wt% to 65 wt%, more preferably 0.05 wt%. % To 60% by weight, more preferably 0.1% to 55% by weight, particularly preferably 0.5% to 55% by weight, and particularly preferably 1% to 30% by weight.
 前記範囲で導電性付与剤を含有することで、体積固有抵抗値が、例えば1.00×10Ω・cm以下のようなレベルまで低減できる。これは、従来の導電性熱可塑性樹脂組成物を用いて得られる成形品と比べて、より少ない導電性付与剤含有量で、より低い体積固有抵抗値が得られる結果となっている。 By containing the conductive agent in the range, volume resistivity can be reduced for example to a level such as 1.00 × 10 8 Ω · cm or less. This is a result that a lower volume specific resistance value can be obtained with a smaller content of the conductivity-imparting agent as compared with a molded product obtained using a conventional conductive thermoplastic resin composition.
(射出成形品)
 本発明の導電性熱可塑性樹脂組成物から得られる射出成形品の具体例としては、自動車用部品を例に取れば、フロントエンドモジュール、ラジエーターマウント、ボディー・バンパーリテーナー、インテークマニホールド、ヒンジ付きクリップ(ヒンジ付き成形品)、結束バンド、レゾネータ、エアークリーナ、エンジンカバー、ロッカーカバー、シリンダーヘッドカバー、タイミングベルトカバー、ガソリンタンク、ガソリンサブタンク、ラジエータータンク、インタークーラータンク、オイルリザーバータンク、オイルパン、電動パワステギヤ、オイルストレーナ、キャニスタ、エンジンマウント、ジャンクションブロック、リレーブロック、ECUケース、コネクタ、コルゲートチューブおよびプロテクター等のアンダーフード部品;ドアハンドル、フェンダー、フードバルジ、ルーフレールレグ、ドアミラーステー、バンパ、スポイラおよびホイールカバー等の外装部品;カップホルダ、コンソールボックス、アクセルペダル、クラッチペダル、シフトレバー台座、シフトレバーノブおよび電磁波シールド部品等の内装部品等が挙げられる。もちろん本発明の導電性熱可塑性樹脂組成物から得られる射出成形品が自動車用部品に限定されるものでないことは言うまでもない。
(Injection molded product)
Specific examples of the injection-molded product obtained from the conductive thermoplastic resin composition of the present invention include a front end module, a radiator mount, a body / bumper retainer, an intake manifold, a hinged clip (for example, an automobile part) Molded product with hinge), cable tie, resonator, air cleaner, engine cover, rocker cover, cylinder head cover, timing belt cover, gasoline tank, gasoline sub tank, radiator tank, intercooler tank, oil reservoir tank, oil pan, electric power steering gear, oil Underhood parts such as strainers, canisters, engine mounts, junction blocks, relay blocks, ECU cases, connectors, corrugated tubes and protectors; Exterior parts such as handle, fender, hood bulge, roof rail leg, door mirror stay, bumper, spoiler and wheel cover; cup holder, console box, accelerator pedal, clutch pedal, shift lever base, shift lever knob and electromagnetic shielding parts Examples include interior parts. Of course, it goes without saying that the injection-molded product obtained from the conductive thermoplastic resin composition of the present invention is not limited to automotive parts.
 これらの中でも、本発明の導電性熱可塑性樹脂組成物から得られるフロントエンドモジュール、ラジエーターマウントおよびボディー・バンパーリテーナー等は、安定した導電性と耐熱性を達成でき好ましい用途である。 Among these, a front end module, a radiator mount, a body / bumper retainer and the like obtained from the conductive thermoplastic resin composition of the present invention are preferable applications because they can achieve stable conductivity and heat resistance.
 なお、前記フロントエンドモジュールおよびラジエーターマウント等は、従来、鋼材にて製造されていた部品であるが、車両の軽量化を目的として樹脂製へと置き替わりつつある。しかしながら、これらの部品を、汎用樹脂を用いて樹脂化すると導電性が無くなり、アース用のワイヤーハーネスを別途設置する必要がある。本発明の導電性熱可塑性樹脂組成物を用いて成形された樹脂部品においては、アースを設ける必要がなくなり、樹脂化による車両軽量化を促進することが可能となる。 The front end module and the radiator mount are parts conventionally made of steel, but are being replaced with resin for the purpose of reducing the weight of the vehicle. However, if these parts are made of resin using a general-purpose resin, the electrical conductivity is lost, and it is necessary to separately install a grounding wire harness. In a resin part molded using the conductive thermoplastic resin composition of the present invention, it is not necessary to provide a ground, and it is possible to promote vehicle weight reduction by resinization.
(押出成形品)
 本発明の導電性熱可塑性樹脂組成物から得られる押出成形品の具体例としては、例えば、釣り糸、漁網等の漁業関連資材、スイッチ類、超小型スライドスイッチ、ディップスイッチ、スイッチのハウジング、ランプソケット、結束バンド、電解コンデンサー、コンデンサーケース、モータの内部フィルム状部品、耐熱容器、電子レンジ部品、炊飯器部品、工業用養生シート、プリンタリボンガイド等に代表される電気・電子関連部品、家庭・事務電気製品部品、コンピューター関連部品、ファクシミリ・複写機関連部品および機械関連部品等各種用途等が挙げられる。
(Extruded product)
Specific examples of the extrusion-molded product obtained from the conductive thermoplastic resin composition of the present invention include, for example, fishing-related materials such as fishing lines and fishing nets, switches, ultra-small slide switches, dip switches, switch housings, lamp sockets , Cable ties, electrolytic capacitors, capacitor cases, motor internal film parts, heat-resistant containers, microwave oven parts, rice cooker parts, industrial curing sheets, printer ribbon guides, etc. Various applications such as electrical product parts, computer related parts, facsimile / copier related parts and machine related parts are listed.
 本発明の導電性熱可塑性樹脂組成物を用いて得られる押出成形品は、導電性や帯電防止性が必要な部品や部材に好適であり、特に、半導体製造現場の床、壁および天井を覆うシートに本発明の組成物から得られるシート類を用いると発塵を著しく低減することができる。 The extrusion-molded product obtained by using the conductive thermoplastic resin composition of the present invention is suitable for parts and members that require electrical conductivity and antistatic properties, and particularly covers floors, walls, and ceilings at semiconductor manufacturing sites. When the sheets obtained from the composition of the present invention are used for the sheet, dust generation can be remarkably reduced.
 また静電塗装を行う車両、航空機の塗装現場においては、静電気のスパークによる火災の危険があるが、本発明の導電性熱可塑性樹脂組成物より得られる養生シートを用いることで静電気のスパークによる火災の危険性を大幅に低減できる等、その価値は高いものである。 In addition, there is a danger of fire due to static electricity sparks in vehicles and aircraft painting sites where electrostatic painting is performed, but by using a curing sheet obtained from the conductive thermoplastic resin composition of the present invention, there is a fire caused by static electricity sparks. Its value is high, such as being able to greatly reduce the risk of
 なお、本発明の導電性熱可塑性組成物から得られるシート類は、電磁波シールド特性にも優れるため、電磁波シールド用材料としても好適である。 In addition, since the sheets obtained from the conductive thermoplastic composition of the present invention are excellent in electromagnetic wave shielding characteristics, they are also suitable as an electromagnetic wave shielding material.
3.導電性ポリアミド樹脂組成物
 本発明の導電性ポリアミド樹脂組成物は、ポリマー成分と導電性付与剤を含む。
3. Conductive polyamide resin composition The conductive polyamide resin composition of the present invention comprises a polymer component and a conductivity-imparting agent.
3-1.ポリマー成分
 本発明の導電性ポリアミド樹脂組成物を構成するポリマー成分は、下記(A)成分のポリアミド5Xと、下記(B-1)成分及び下記(B-2)成分の少なくとも一方からなる(B)成分の変性エラストマーとを含む。ポリマー成分における(A)成分および(B)成分の含有量は、(A)成分:85~50重量%、(B)成分:15~50重量%(ただし、(A)成分と(B)成分との合計で100重量%)である。
 (A)成分:ポリアミド5X
 (B-1)成分:エチレンと炭素数3以上のα-オレフィンとを共重合させてなるオレフィン系共重合体に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ポリオレフィン系共重合体
 (B-2)成分:ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとを含むブロック共重合体の水素添加物に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ブロック共重合体
3-1. Polymer Component The polymer component constituting the conductive polyamide resin composition of the present invention comprises the following component (A) polyamide 5X and at least one of the following component (B-1) and the following component (B-2) (B ) Component modified elastomer. The content of the component (A) and the component (B) in the polymer component is as follows: (A) component: 85 to 50% by weight, (B) component: 15 to 50% by weight (however, the (A) component and the (B) component And 100% by weight in total.
(A) Component: Polyamide 5X
Component (B-1): graft polymerization of at least one of an α, β-unsaturated carboxylic acid and a derivative thereof onto an olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. Modified polyolefin copolymer (B-2) component: α, β-unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b Modified block copolymer obtained by graft polymerization of at least one of carboxylic acid and derivatives thereof
 ポリマー成分における含有量を、(A)成分について上記範囲以上とし、(B)成分について上記範囲以下とすることで、ポリアミド樹脂本来の特性が損なわれるのを防ぐことができる。また、(A)成分を上記範囲以下とし、(B)成分を上記範囲以上とすることで、変性エラストマー量が十分量となり、変性エラストマーを用いることによる前述の作用効果を十分に得ることができる。 By setting the content in the polymer component to the above range or more for the component (A) and not more than the above range for the component (B), it is possible to prevent the original properties of the polyamide resin from being impaired. In addition, when the component (A) is not more than the above range and the component (B) is not less than the above range, the amount of the modified elastomer becomes a sufficient amount, and the above-described effects by using the modified elastomer can be sufficiently obtained. .
 ポリマー成分における好ましい配合割合は、(A)成分:80~50重量%、(B)成分:20~50重量%であり、より好ましくは(A)成分:70~55重量%、(B)成分:30~45重量%である。当該範囲とすることで、導電性と成形性、機械的特性の良好な樹脂組成物を得ることができる。 Preferred blending ratios in the polymer component are (A) component: 80 to 50% by weight, (B) component: 20 to 50% by weight, more preferably (A) component: 70 to 55% by weight, and (B) component. : 30 to 45% by weight. By setting it as the said range, the resin composition with favorable electroconductivity, a moldability, and a mechanical characteristic can be obtained.
3-1-1.(A)成分
 本発明の導電性ポリアミド樹脂組成物に用いる(A)成分は、ポリアミド5X、即ち、ペンタメチレンジアミンを含むジアミンとジカルボン酸とを単量体成分として用いる重縮合反応により得られる重縮合体に相当する構造を有するポリアミド樹脂である。
3-1-1. Component (A) The component (A) used in the conductive polyamide resin composition of the present invention is a polycondensation obtained by a polycondensation reaction using polyamide 5X, that is, a diamine containing pentamethylenediamine and a dicarboxylic acid as monomer components. It is a polyamide resin having a structure corresponding to a condensate.
 (A)成分のポリアミド5Xは、DSC(示差走査熱量測定)による測定で融点として測定される吸熱ピークを2つ有することが好ましく、その2つの吸熱ピークのピークトップの温度差が5~50℃であることが好ましく、特に10~45℃であることが好ましい。 The polyamide 5X as the component (A) preferably has two endothermic peaks measured as the melting points by DSC (differential scanning calorimetry), and the temperature difference between the peak tops of the two endothermic peaks is 5 to 50 ° C. It is preferable that the temperature is 10 to 45 ° C.
 また、吸熱ピークを2つ有する場合、それぞれの吸熱ピークのピークトップの温度は、高温側が好ましくは180~280℃、より好ましくは200~270℃であり、低温側が好ましくは150~250℃、より好ましくは160~250℃である。 In the case of having two endothermic peaks, the peak top temperature of each endothermic peak is preferably 180 to 280 ° C. on the high temperature side, more preferably 200 to 270 ° C., and preferably 150 to 250 ° C. on the low temperature side. The temperature is preferably 160 to 250 ° C.
 なお、本明細書において、吸熱ピークとは、試料を一度加熱溶融させ熱履歴による結晶性への影響をなくした後、再度昇温した時に観測される吸熱ピークとする。 In this specification, the endothermic peak is an endothermic peak that is observed when the sample is heated and melted once to eliminate the influence of the thermal history on the crystallinity and then heated again.
 具体的には、ポリアミド56の場合は、例えば、次の要領で吸熱ピークのピークトップの温度を求めることができる。30~300℃まで20℃/分の速度で昇温し、300℃で3分間保持した試料を完全に溶解させた後、20℃/分の速度で30℃まで降温する。続いて、30℃で3分間保持した後、20℃/分の速度で300℃まで昇温し、昇温時に観測される吸熱ピークのピークトップの温度を求める。 Specifically, in the case of polyamide 56, for example, the temperature of the peak top of the endothermic peak can be obtained in the following manner. The temperature is raised from 30 to 300 ° C. at a rate of 20 ° C./min, and the sample held at 300 ° C. for 3 minutes is completely dissolved, and then the temperature is lowered to 30 ° C. at a rate of 20 ° C./min. Subsequently, after holding at 30 ° C. for 3 minutes, the temperature is raised to 300 ° C. at a rate of 20 ° C./min, and the temperature of the peak top of the endothermic peak observed at the time of temperature rise is obtained.
 昇温時の最高温度は、予想される樹脂の吸熱ピークのピークトップの温度に応じて適宜調整すればよく、通常は吸熱ピークのピークトップの温度(吸熱ピークが2つ以上存在する場合は、高温側の吸熱ピークのピークトップの温度)+50℃の範囲で選択すればよい。 The maximum temperature at the time of temperature rise may be appropriately adjusted according to the expected peak top temperature of the endothermic peak of the resin. Usually, the peak top temperature of the endothermic peak (when two or more endothermic peaks exist, The temperature may be selected in the range of the peak top temperature of the endothermic peak on the high temperature side) + 50 ° C.
 DSC法による吸熱ピークが2つ存在することは、成形時の結晶化が2段階で進行することを意味し、前述のように、結晶化が2段階で進行することによる(B)成分の変性エラストマーの応力緩和効果で、優れた耐衝撃性の改善効果が得られる。 The presence of two endothermic peaks by the DSC method means that crystallization during molding proceeds in two stages, and as described above, modification of component (B) due to crystallization proceeding in two stages. Due to the stress relaxation effect of the elastomer, an excellent impact resistance improvement effect can be obtained.
 ただし、前記吸熱ピークのピークトップの温度差が過度に小さいと、上記2段階の結晶化による効果を十分に得ることができず、過度に大きいと、成形性が損なわれる恐れがあることから、2つの吸熱ピークのピークトップの温度差は5~50℃、特に10~45℃であることが好ましい。 However, if the temperature difference at the peak top of the endothermic peak is excessively small, the effect of the above two-stage crystallization cannot be sufficiently obtained, and if excessively large, the moldability may be impaired. The temperature difference between the peak tops of the two endothermic peaks is preferably 5 to 50 ° C., particularly 10 to 45 ° C.
 本発明の導電性ポリアミド樹脂組成物においては、ポリアミド樹脂としてポリアミド5Xを用いることにより、少量の導電性付与剤の配合で高い導電性が発現し、かつ高い耐衝撃性が発現する。これは、ポリアミド樹脂の結晶形態の差異によるものと考えられ、次のように推定される。 In the conductive polyamide resin composition of the present invention, by using polyamide 5X as the polyamide resin, high conductivity is exhibited with a small amount of a conductivity-imparting agent, and high impact resistance is exhibited. This is considered to be due to the difference in crystal form of the polyamide resin, and is estimated as follows.
 即ち、ポリアミド5Xはγ型結晶を有する傾向にあるが、従来使用されてきたポリアミド6やポリアミド66等はα型結晶のみを有する傾向にある。α型結晶はγ型結晶に比べて結晶サイズが大きいため、導電性付与剤による導電経路を遮断し易くなり導電性が低くなる傾向にあり、さらには、α型結晶は結晶の弾性率も高いため、耐衝撃性が向上しにくい傾向にある。γ型結晶を有するポリアミド5Xは、上記のような問題がないため、導電性付与剤の配合による導電性の発現効果が高く、さらには、耐衝撃性も向上するものと考えられる。 That is, the polyamide 5X tends to have γ-type crystals, but the conventionally used polyamide 6 and polyamide 66 etc. tend to have only α-type crystals. Since the α-type crystal has a larger crystal size than the γ-type crystal, it tends to block the conduction path by the conductivity-imparting agent, and the conductivity tends to be low. Furthermore, the α-type crystal has a high elastic modulus. Therefore, the impact resistance tends to be difficult to improve. Since the polyamide 5X having γ-type crystals does not have the above-described problems, it is considered that the effect of developing the conductivity by the addition of the conductivity imparting agent is high and the impact resistance is also improved.
 以上のことから、(A)成分に用いるポリアミド5Xとしては、特にポリアミド56、ポリアミド59、ポリアミド510、ポリアミド56/6およびポリアミド512が好ましい。なお、ポリアミド5Xは、1種を単独で用いてもよく、組成や分子量、末端アミノ基濃度等が異なるものの2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 From the above, the polyamide 5X used for the component (A) is particularly preferably polyamide 56, polyamide 59, polyamide 510, polyamide 56/6, and polyamide 512. In addition, polyamide 5X may be used individually by 1 type, and 2 or more types of things from which a composition, molecular weight, a terminal amino group concentration, etc. differ may be mixed and used for arbitrary combinations and ratios.
3-1-2.(B)成分
 本発明で用いる(B)成分は、以下の(B-1)成分と(B-2)成分のいずれか一方又は双方の混合物よりなる変性エラストマーである。
3-1-2. Component (B) The component (B) used in the present invention is a modified elastomer comprising any one or a mixture of the following components (B-1) and (B-2).
 (B-1)成分:エチレンと炭素数3以上のα-オレフィンとを共重合させてなるオレフィン系共重合体に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ポリオレフィン系共重合体
 (B-2)成分:ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとを含むブロック共重合体の水素添加物に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ブロック共重合体
Component (B-1): graft polymerization of at least one of an α, β-unsaturated carboxylic acid and a derivative thereof onto an olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. Modified polyolefin copolymer (B-2) component: α, β-unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b Modified block copolymer obtained by graft polymerization of at least one of carboxylic acid and derivatives thereof
 ここで、α,β-不飽和カルボン酸の誘導体とは、α,β-不飽和カルボン酸の酸無水物を含む広義の誘導体である。以下、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方を「α,β-不飽和カルボン酸類」と称す。 Here, the derivative of α, β-unsaturated carboxylic acid is a derivative in a broad sense including an acid anhydride of α, β-unsaturated carboxylic acid. Hereinafter, at least one of α, β-unsaturated carboxylic acid and derivatives thereof is referred to as “α, β-unsaturated carboxylic acids”.
3-1-3.(B-1)成分
 本発明の導電性ポリアミド樹脂組成物に用いる(B-1)成分は、エチレンと炭素数3以上のα-オレフィンとを共重合して得られるオレフィン系共重合体に、α,β-不飽和カルボン酸類をグラフト重合させてなる変性ポリオレフィン系共重合体である。
3-1-3. Component (B-1) The component (B-1) used in the conductive polyamide resin composition of the present invention is an olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. A modified polyolefin copolymer obtained by graft polymerization of α, β-unsaturated carboxylic acids.
ここで、α,β-不飽和カルボン酸の誘導体とは、α,β-不飽和カルボン酸の酸無水物を含む広義の誘導体である。以下、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方を「α,β-不飽和カルボン酸類」と称す。 Here, the derivative of α, β-unsaturated carboxylic acid is a broad definition derivative containing an acid anhydride of α, β-unsaturated carboxylic acid. Hereinafter, at least one of α, β-unsaturated carboxylic acid and derivatives thereof is referred to as “α, β-unsaturated carboxylic acids”.
(オレフィン系共重合体)
 オレフィン系共重合体において、エチレンと共重合させるα-オレフィンとしては、炭素数3~20のものが好ましい。例えば、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デセンおよび3-メチルブテン-1、4-メチルペンテン-1等が挙げられる。これらは2種以上を併用してもよい。これらの中でも好ましくは炭素数3~10の直鎖状のα-オレフィンであり、さらに好ましいのはプロピレンおよび1-ブテンであり、特に好ましくはプロピレンである。
(Olefin copolymer)
In the olefin copolymer, the α-olefin copolymerized with ethylene is preferably one having 3 to 20 carbon atoms. Examples thereof include propylene, 1-butene, 1-hexene, 1-octene, 1-decene and 3-methylbutene-1, 4-methylpentene-1. Two or more of these may be used in combination. Among these, linear α-olefins having 3 to 10 carbon atoms are preferable, propylene and 1-butene are more preferable, and propylene is particularly preferable.
 オレフィン系共重合体としては、例えば、エチレン-プロピレン共重合体(EPR)、エチレン-ブテン共重合体(EBR)などが挙げられる。 Examples of the olefin copolymer include ethylene-propylene copolymer (EPR) and ethylene-butene copolymer (EBR).
 オレフィン系共重合体のメルトボリュームレート(MVR)は0.1~400g/10分であることが好ましく、中でも0.2~200g/10分であることが好ましい。なお、本発明におけるMVRは、JIS K7210規格に準拠し、温度180℃、荷重21.17Nで測定した値である。 The melt volume rate (MVR) of the olefin copolymer is preferably 0.1 to 400 g / 10 minutes, and more preferably 0.2 to 200 g / 10 minutes. The MVR in the present invention is a value measured at a temperature of 180 ° C. and a load of 21.17 N in accordance with JIS K7210 standard.
(α,β-不飽和カルボン酸類)
 上記オレフィン系共重合体にグラフト重合させるα,β-不飽和カルボン酸類としては、例えば、(無水)マレイン酸、(無水)イタコン酸、クロロ(無水)マレイン酸、(無水)シトラコン酸、ブテニル(無水)コハク酸およびテトラヒドロ(無水)フタル酸、並びに、これらの酸ハライド、アミド、イミド、炭素数1~20のアルキルおよびグリコールのエステルが挙げられる。
(Α, β-unsaturated carboxylic acids)
Examples of the α, β-unsaturated carboxylic acids to be graft-polymerized to the olefin copolymer include, for example, (anhydrous) maleic acid, (anhydrous) itaconic acid, chloro (anhydrous) maleic acid, (anhydrous) citraconic acid, butenyl ( Anhydrous) succinic acid and tetrahydro (anhydride) phthalic acid, and their acid halides, amides, imides, C1-20 alkyl and glycol esters.
 具体的には、例えば、マレイミド、マレイン酸モノメチルおよびマレイン酸ジメチル等が挙げられる。ここで「(無水)」とは、無水不飽和カルボン酸又は不飽和カルボン酸であることを示す。これらの中で好ましくはα,β-不飽和カルボン酸又はその酸無水物であり、(無水)マレイン酸又は(無水)イタコン酸、特に無水マレイン酸がより好ましい。これらは2種以上を併用してもよい。 Specific examples include maleimide, monomethyl maleate and dimethyl maleate. Here, “(anhydrous)” indicates anhydrous unsaturated carboxylic acid or unsaturated carboxylic acid. Among these, α, β-unsaturated carboxylic acids or acid anhydrides thereof are preferable, and (anhydrous) maleic acid or (anhydrous) itaconic acid, particularly maleic anhydride is more preferable. Two or more of these may be used in combination.
 オレフィン系共重合体へのα,β-不飽和カルボン酸類のグラフト重合量は、オレフィン系共重合体100重量部に対するα,β-不飽和カルボン酸類の量として、好ましくは0.05~5重量部、より好ましくは0.1~3重量部である。 The amount of α, β-unsaturated carboxylic acids grafted onto the olefin copolymer is preferably 0.05 to 5 weights as the amount of α, β-unsaturated carboxylic acids per 100 parts by weight of the olefin copolymer. Parts, more preferably 0.1 to 3 parts by weight.
 前記グラフト重合量を0.05重量部以上とすることにより、高い衝撃強度が得られる。また、グラフト重合量を5重量部以下とすることにより、成形時の流動性が向上し、薄肉成形品の成形が容易になる傾向にある。 High impact strength can be obtained by setting the graft polymerization amount to 0.05 parts by weight or more. Further, when the graft polymerization amount is 5 parts by weight or less, the fluidity at the time of molding is improved and the molding of a thin molded product tends to be facilitated.
 オレフィン系共重合体に対するα,β-不飽和カルボン酸類のグラフト重合量は、変性ポリオレフィン系共重合体製造時のオレフィン系共重合体に対するα,β-不飽和カルボン酸類の仕込み量を変えることによって調整することができる。 The amount of graft polymerization of α, β-unsaturated carboxylic acids to the olefin copolymer can be changed by changing the amount of α, β-unsaturated carboxylic acids charged to the olefin copolymer during the production of the modified polyolefin copolymer. Can be adjusted.
(ラジカル発生剤)
 グラフト重合反応時には、α,β-不飽和カルボン酸類と共にラジカル発生剤を配合してもよい。ラジカル発生剤としては、例えば、有機過酸化物およびアゾ化合物等が挙げられる。
(Radical generator)
In the graft polymerization reaction, a radical generator may be added together with α, β-unsaturated carboxylic acids. Examples of the radical generator include organic peroxides and azo compounds.
 有機過酸化物の具体例としては、例えば、tert-ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイドおよびジイソプロピルベンゼンハイドロパーオキサイド等のハイドロパーオキサイド類、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサンおよびジクミルパーオキサイド等のジアルキルパーオキサイド類、2,2-ビス-tert-ブチルパーオキシブタン、2,2-ビス-tert-ブチルパーオキシオクタン、1,1-ビス-tert-ブチルパーオキシシクロヘキサンおよび1,1-ビス-tert-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール類、ジ-tert-ブチルパーオキシイソフタレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシアセテート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3、tert-ブチルパーオキシイソプロピルカーボネートおよびtert-ブチルパーオキシイソブチレート等のパーオキシエステル類、ベンゾイルパーオキサイド、m-トルオイルパーオキサイド、アセチルパーオキサイドおよびラウロイルパーオキサイド等のジアシルパーオキサイド類が挙げられる。 Specific examples of organic peroxides include, for example, tert-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1,3,3-tetramethyl Hydroperoxides such as butyl hydroperoxide, p-menthane hydroperoxide and diisopropylbenzene hydroperoxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, di-tert- Dialkyl peroxides such as butyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane and dicumyl peroxide, 2,2-bis-tert- Butyl peroxybutane, 2 Peroxyketals such as 2-bis-tert-butylperoxyoctane, 1,1-bis-tert-butylperoxycyclohexane and 1,1-bis-tert-butylperoxy-3,3,5-trimethylcyclohexane , Di-tert-butylperoxyisophthalate, tert-butylperoxybenzoate, tert-butylperoxyacetate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2 Peroxyesters such as, 5-di (benzoylperoxy) hexyne-3, tert-butylperoxyisopropyl carbonate and tert-butylperoxyisobutyrate, benzoyl peroxide, m-toluoyl peroxide, acetyl peroxide Oh Diacyl peroxides such as fine lauroyl peroxide.
 アゾ化合物の具体例としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、2,2’-アゾビス(2,4,4-トリメチルペンタン)および2,2’-アゾビス(2-メチルプロパン)等が挙げられる。 Specific examples of the azo compound include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile). ), 1-[(1-cyano-1-methylethyl) azo] formamide, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4,4-trimethylpentane) And 2,2′-azobis (2-methylpropane) and the like.
 これらのラジカル発生剤の中でも特に好ましいのは、寸法安定性や耐衝撃性の点で、10時間での半減期温度が好ましくは190℃以下、より好ましくは120℃以上のラジカル発生剤である。上に例示した中では、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサンおよび2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3が特に好ましい。 Among these radical generators, particularly preferred are radical generators having a half-life temperature at 10 hours of preferably 190 ° C. or lower, more preferably 120 ° C. or higher, in terms of dimensional stability and impact resistance. Among those exemplified above, benzoyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, tert-butylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane and 2, 5-Dimethyl-2,5-di (benzoylperoxy) hexyne-3 is particularly preferred.
 ラジカル発生剤の使用量は、オレフィン系共重合体100重量部に対して0.01~10重量部の範囲が好ましく、0.01~5重量部がより好ましく、0.01~1重量部がさらに好ましい。ラジカル発生剤の使用量を0.01重量部以上とすることにより、オレフィン系共重合体により十分なグラフト重合量が得られ、10重量部以下とすることにより、オレフィン系共重合体の分子量が小さくなりすぎず、製造が容易になる傾向にある。上記ラジカル発生剤は、有機溶剤などに溶解して混合することもできる。また、炭酸カルシウム、タルクおよびシリカなどの無機充填材を配合したものであってもよい。 The amount of the radical generator used is preferably in the range of 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the olefin copolymer. Further preferred. By making the amount of the radical generator used 0.01 parts by weight or more, a sufficient graft polymerization amount is obtained by the olefin copolymer, and by making it 10 parts by weight or less, the molecular weight of the olefin copolymer is increased. It tends to be easy to manufacture without becoming too small. The radical generator can be dissolved and mixed in an organic solvent or the like. Moreover, what mix | blended inorganic fillers, such as a calcium carbonate, a talc, and a silica, may be used.
(調製方法)
 (B-1)成分の変性ポリオレフィン系共重合体は、オレフィン系共重合体を反応性に変える方法として従来から知られている方法によって調製できる。例えば、オレフィン系共重合体、α,β-不飽和カルボン酸類、ラジカル発生剤などを所定量秤量し、均一に混合した後、溶融混練する方法によって製造することができる。
(Preparation method)
The modified polyolefin copolymer of component (B-1) can be prepared by a conventionally known method as a method for changing the olefin copolymer to reactivity. For example, it can be produced by a method in which a predetermined amount of an olefin copolymer, α, β-unsaturated carboxylic acid, radical generator and the like are weighed and uniformly mixed and then melt-kneaded.
 混合装置としては、例えば、タンブラーブレンダー、リボンブレンダー、V型ブレンダーおよびヘンシェルミキサーなどが挙げられる。溶融混練装置としては、例えば、ミキシングロール、ニーダー、バンバリーミキサー、ブラベンダープラストグラフ、一軸および二軸押出機などが挙げられる。溶融混練温度は、ラジカル発生剤の半減期温度によるが、通常120~300℃の範囲、好ましくは150~280℃の範囲で選ばれる。混練時間は、混練温度、ラジカル発生剤の種類、添加量などによるが、通常0.1~30分、好ましくは0.5~10分である。 Examples of the mixing device include a tumbler blender, a ribbon blender, a V-type blender, and a Henschel mixer. Examples of the melt kneader include a mixing roll, a kneader, a Banbury mixer, a Brabender plastograph, a single screw and a twin screw extruder, and the like. The melt kneading temperature depends on the half-life temperature of the radical generator, but is usually selected in the range of 120 to 300 ° C, preferably in the range of 150 to 280 ° C. The kneading time is usually 0.1 to 30 minutes, preferably 0.5 to 10 minutes, depending on the kneading temperature, the type of radical generator, the amount added, and the like.
 (B-1)成分の変性ポリオレフィン系共重合体としては、無水マレイン酸グラフト重合エチレン-プロピレン共重合体(無水マレイン酸変性EPR)、無水マレイン酸グラフト重合エチレン-ブテン共重合体(無水マレイン酸変性EBR)が、機械的強度、靭性をバランスよく満足することができるため好ましい。 The modified polyolefin copolymer of component (B-1) includes maleic anhydride graft polymerized ethylene-propylene copolymer (maleic anhydride modified EPR), maleic anhydride graft polymerized ethylene-butene copolymer (maleic anhydride). Modified EBR) is preferable because it can satisfy the mechanical strength and toughness in a well-balanced manner.
3-1-4.(B-2)成分
 本発明の導電性ポリアミド樹脂組成物に用いる(B-2)成分は、ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとを含むブロック共重合体の水素添加物に対し、α,β-不飽和カルボン酸類をグラフト重合させてなる変性ブロック共重合体である。
3-1-4. Component (B-2) Component (B-2) used in the conductive polyamide resin composition of the present invention is a block copolymer comprising a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b. It is a modified block copolymer obtained by graft polymerization of α, β-unsaturated carboxylic acids to a hydrogenated product.
(ブロック共重合体の水素添加物)
 「ブロック共重合体の水素添加物」とは、ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体であって、水素添加によりブロックbの脂肪族不飽和基が減少したブロック共重合体を意味する。
(Hydrogenated block copolymer)
The “hydrogenated product of a block copolymer” is a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b, and the aliphatic unsaturation of the block b by hydrogenation. It means a block copolymer having a reduced number of groups.
 ブロックa及びブロックbの配列構造は、線状構造および分岐構造等いずれの構造であってもよい。また、これらの構造のうちで、一部にビニル芳香族化合物と共役ジエン系化合物とのランダム共重合部分に由来するランダム鎖を含んでいてもよい。 The arrangement structure of the block a and the block b may be any structure such as a linear structure and a branched structure. Moreover, among these structures, a random chain derived from a random copolymer portion of a vinyl aromatic compound and a conjugated diene compound may be included in part.
 前記構造の中では、線状構造のものが好ましく、a-b-a型のトリブロック構造のものがより好ましい。上記a-b-a型のブロック共重合体中には、a-b型のジブロック構造のものを含んでいてもよい。これらのブロック共重合体の水素添加物は2種以上併用してもよい。 Among the structures described above, a linear structure is preferable, and an aba type triblock structure is more preferable. The abb type block copolymer may contain an abb type diblock structure. Two or more hydrogenated products of these block copolymers may be used in combination.
 ビニル芳香族化合物重合体ブロックaを構成するビニル芳香族化合物としては、好ましくは、スチレン、α-メチルスチレン、ビニルトルエンおよびビニルキシレン等が挙げられ、より好ましくは、スチレンである。共役ジエン系化合物ブロックbを構成する共役ジエン系化合物としては、好ましくは、1,3-ブタジエンおよび2-メチル-1,3-ブタジエンが挙げられる。 Preferred examples of the vinyl aromatic compound constituting the vinyl aromatic compound polymer block a include styrene, α-methylstyrene, vinyl toluene, vinyl xylene, and the like, and more preferred is styrene. Preferred examples of the conjugated diene compound constituting the conjugated diene compound block b include 1,3-butadiene and 2-methyl-1,3-butadiene.
 ブロック共重合体の水素添加物におけるビニル芳香族化合物に由来する繰り返し単位の占める割合は、全繰り返し単位に対するモル%で10~70モル%の範囲が好ましく、10~40モル%の範囲がより好ましく、15~25モル%の範囲がさらに好ましい。 The proportion of the repeating unit derived from the vinyl aromatic compound in the hydrogenated block copolymer is preferably in the range of 10 to 70% by mole, more preferably in the range of 10 to 40% by mole, based on all repeating units. A range of 15 to 25 mol% is more preferable.
 前記割合を10モル%以上とすることにより、熱安定性が向上する傾向にあり、樹脂組成物の製造及び成形時に酸化劣化を受けにくくなる。また、70モル%以下とすることにより、耐衝撃性が向上する傾向にある。 When the ratio is 10 mol% or more, the thermal stability tends to be improved, and is less susceptible to oxidative degradation during the production and molding of the resin composition. Moreover, it exists in the tendency for impact resistance to improve by setting it as 70 mol% or less.
 また、ブロック共重合体における脂肪族鎖部分のうち、共役ジエン系化合物に由来し、水素添加されずに残存している不飽和結合の割合は、分子中の全結合中の20%以下が好ましく、10%以下がより好ましい。 In addition, the proportion of unsaturated bonds derived from the conjugated diene compound and remaining without hydrogenation in the aliphatic chain portion in the block copolymer is preferably 20% or less of all bonds in the molecule. 10% or less is more preferable.
 ビニル芳香族化合物に由来する芳香族性不飽和結合は、水素添加されていてもよいが、水素添加された芳香族性不飽和結合の割合は、分子中の全結合中の25%以下であることが好ましい。 The aromatic unsaturated bond derived from the vinyl aromatic compound may be hydrogenated, but the ratio of the hydrogenated aromatic unsaturated bond is 25% or less of all the bonds in the molecule. It is preferable.
 ブロック共重合体の水素添加物としては、共役ジエン系化合物重合体ブロックbを構成する単量体である共役ジエン系化合物が、1,3-ブタジエンであるスチレン-エチレン-ブチレン-スチレン共重合体(SEBS)や、共役ジエン系化合物が2-メチル-1,3-ブタジエンであるスチレン-エチレン-プロピレン-スチレン共重合体(SEPS)等の種々のa-b-a型トリブロック構造のものが市販されており、容易に入手可能である。これらのうち、特に溶融熱安定性に優れていることからSEBSを用いることが好ましい。 As the hydrogenated block copolymer, a styrene-ethylene-butylene-styrene copolymer in which the conjugated diene compound as a monomer constituting the conjugated diene compound polymer block b is 1,3-butadiene is used. (SEBS) and various aba type triblock structures such as styrene-ethylene-propylene-styrene copolymer (SEPS) in which the conjugated diene compound is 2-methyl-1,3-butadiene. It is commercially available and is readily available. Among these, it is preferable to use SEBS because it is particularly excellent in heat stability of melting.
 ブロック共重合体の水素添加物の数平均分子量は、50,000~180,000の範囲であることが好ましく、55,000~160,000がより好ましく、60,000~140,000が特に好ましい。数平均分子量を50,000以上とすることにより、最終的に得られる樹脂組成物の耐衝撃性と寸法安定性が優れ、さらに、該樹脂組成物から得られる成形品の外観を良好とすることができる。また、数平均分子量を180,000以下とすることにより、最終的に得られる樹脂組成物の流動性が向上し成形加工が容易になるので好ましい。 The number average molecular weight of the hydrogenated product of the block copolymer is preferably in the range of 50,000 to 180,000, more preferably 55,000 to 160,000, and particularly preferably 60,000 to 140,000. By making the number average molecular weight 50,000 or more, the impact resistance and dimensional stability of the finally obtained resin composition are excellent, and further, the appearance of the molded product obtained from the resin composition is made good. Can do. Further, it is preferable that the number average molecular weight is 180,000 or less because the fluidity of the finally obtained resin composition is improved and the molding process becomes easy.
 (B-2)成分は、前記ブロック共重合体の水素添加物に対し、α,β-不飽和カルボン酸類をグラフト重合させてなる変性ブロック共重合体である。このグラフト重合にあたり、α,β-不飽和カルボン酸類と共に、ラジカル発生剤を併用してもよく、そのα,β-不飽和カルボン酸類、ラジカル発生剤としては、例えば、前記(B-1)成分を製造する際に用いられる化合物を使用することができ、そのグラフト重合反応についても、前記(B-1)成分と同様に行うことができる。 Component (B-2) is a modified block copolymer obtained by graft polymerization of α, β-unsaturated carboxylic acids to the hydrogenated product of the block copolymer. In this graft polymerization, a radical generator may be used in combination with the α, β-unsaturated carboxylic acids. Examples of the α, β-unsaturated carboxylic acids and radical generator include the component (B-1) described above. The compounds used in the production of can be used, and the graft polymerization reaction can also be carried out in the same manner as the component (B-1).
 上記(B-1)成分、(B-2)成分は、それぞれ1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。また、(B-1)成分の1種又は2種以上と(B-2)成分の1種又は2種以上を混合して用いてもよい。 The above components (B-1) and (B-2) may be used alone or in a combination of two or more in any combination and ratio. In addition, one or more of the component (B-1) and one or more of the component (B-2) may be mixed and used.
3-2.導電性付与剤
 本発明の導電性ポリアミド樹脂組成物における導電性付与剤の含有量は、用いる導電性付与剤の種類、要求される導電性の程度によっても異なるが、(A)成分と(B)成分とからなるポリマー成分の合計100重量部に対して、15~200重量部であり、特に20~175重量部、とりわけ25~150重量部とすることが好ましい。導電性付与剤の配合量が少な過ぎると十分な導電性を得ることができず、多過ぎると成形性、機械的特性等のポリアミド樹脂本来の特性が損なわれる。
3-2. Conductivity imparting agent The content of the conductivity imparting agent in the conductive polyamide resin composition of the present invention varies depending on the type of the conductivity imparting agent used and the required degree of conductivity. 15) to 200 parts by weight, particularly 20 to 175 parts by weight, and particularly preferably 25 to 150 parts by weight, based on 100 parts by weight of the total of the polymer components. If the blending amount of the conductivity imparting agent is too small, sufficient conductivity cannot be obtained, and if it is too large, the original properties of the polyamide resin such as moldability and mechanical properties are impaired.
3-3.添加剤
 本発明のポリアミド樹脂組成物には、必要に応じて、上記した各種の添加剤が配合することができる。これらの添加剤の配合量は、少な過ぎるとその配合効果を十分に得ることができないが、多過ぎると成形性や機械的特性が損なわれることから、(A)成分と(B)成分の合計100重量部に対して添加剤の合計で30重量部以下とすることが好ましく、特に、無機系添加剤については、後述の灰分残渣を満たす量とすることが好ましい。
3-3. Additives Various additives described above can be blended in the polyamide resin composition of the present invention, if necessary. If the blending amount of these additives is too small, the blending effect cannot be sufficiently obtained, but if too large, the moldability and mechanical properties are impaired, so the sum of the components (A) and (B) The total amount of additives is preferably 30 parts by weight or less with respect to 100 parts by weight, and in particular, the inorganic additive is preferably in an amount that satisfies the ash residue described below.
 各種添加剤は、本発明で用いる(A)成分及び(B)成分の製造工程、本発明の導電性ポリアミド樹脂組成物の製造工程及びその成形工程のうちの任意の工程で配合することができる。 Various additives can be blended in any of the manufacturing process of the component (A) and the component (B) used in the present invention, the manufacturing process of the conductive polyamide resin composition of the present invention, and the molding process. .
3-4.他のポリマー成分
 本発明の導電性ポリアミド樹脂組成物は、上記以外の他のポリマー成分を配合することができる。他のポリマー成分としては、ポリアミド5X以外のポリアミド樹脂、前記(B)成分以外のエラストマー、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂およびポリスチレン等が挙げられる。これらの他のポリマー成分は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
3-4. Other polymer component The conductive polyamide resin composition of this invention can mix | blend other polymer components other than the above. Other polymer components include polyamide resins other than polyamide 5X, elastomers other than the component (B), polyethylene, polypropylene, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN Examples thereof include resins and polystyrene. These other polymer components may be used alone or in a combination of two or more in any combination and ratio.
 これらの他のポリマー成分を配合する場合、その配合量は(A)成分と(B)成分の合計100重量部に対して他のポリマー成分の合計量として1重量部以下とすることが好ましい。1重量部以下とすることで、本発明で用いる(A)成分と(B)成分の効果が損なわれるのを防ぐことができる。 When blending these other polymer components, the blending amount is preferably 1 part by weight or less as the total amount of the other polymer components with respect to 100 parts by weight of the total of the component (A) and the component (B). By setting it as 1 weight part or less, it can prevent that the effect of the (A) component and (B) component which are used by this invention is impaired.
 なお、前記その他のポリマー成分は、本発明で用いる(A)成分及び(B)成分の製造工程、本発明の導電性ポリアミド樹脂組成物の製造工程及びその成形工程のうちの任意の工程で配合することができる。 In addition, the said other polymer component is mix | blended in arbitrary processes among the manufacturing process of the (A) component and (B) component which are used by this invention, the manufacturing process of the electroconductive polyamide resin composition of this invention, and its shaping | molding process. can do.
3-5.灰分残渣
 本発明の導電性ポリアミド樹脂組成物は、灰分残渣が0.5重量%以下であることが好ましい。灰分残渣は少ない程好ましく、0.4重量%以下がより好ましく、0.2重量%以下であることが特に好ましく、0.1重量%であることが最も好ましい。
3-5. Ash residue It is preferable that the conductive polyamide resin composition of the present invention has an ash residue of 0.5% by weight or less. The smaller the ash residue, the more preferable, 0.4 wt% or less is more preferable, 0.2 wt% or less is particularly preferable, and 0.1 wt% is most preferable.
 導電性ポリアミド樹脂組成物の灰分残渣を0.5重量%以下とすることによりフィルム外観が悪化し、成形性(製膜性)が悪くなるのを防ぐことができる。導電性ポリアミド樹脂組成物の灰分残渣は、後述の実施例の項で記載する方法で測定する。 By making the ash residue of the conductive polyamide resin composition 0.5% by weight or less, it is possible to prevent the film appearance from deteriorating and the moldability (film forming property) from deteriorating. The ash residue of the conductive polyamide resin composition is measured by the method described in the Examples section below.
3-6.体積固有抵抗値
 本発明の導電性ポリアミド樹脂組成物は、体積固有抵抗値が1.00×10Ω・cm以下であることが好ましく、1.0×10Ω・cm以下がより好ましく、1.0×10Ω・cm以下が特に好ましい。また、通常1×10Ω・cm以上である。
3-6. Volume resistivity value The conductive polyamide resin composition of the present invention preferably has a volume resistivity value of 1.00 × 10 8 Ω · cm or less, more preferably 1.0 × 10 5 Ω · cm or less, 1.0 × 10 3 Ω · cm or less is particularly preferable. Further, it is usually 1 × 10 0 Ω · cm or more.
 導電性ポリアミド樹脂組成物の体積固有抵抗値を1.00×10Ω・cm以下とすることにより、導電性に優れた本発明の目的とする高導電性のポリアミド樹脂組成物を得ることができる。導電性ポリアミド樹脂組成物の体積固有抵抗値は、後述の実施例の項に記載する方法で測定する。 By setting the volume resistivity value of the conductive polyamide resin composition to 1.00 × 10 8 Ω · cm or less, it is possible to obtain a highly conductive polyamide resin composition that is excellent in conductivity and is an object of the present invention. it can. The volume specific resistance value of the conductive polyamide resin composition is measured by the method described in the section of Examples below.
3-7.導電性ポリアミド樹脂組成物の製造方法
 本発明の導電性ポリアミド樹脂組成物を製造するには、前述の(A)成分と(B)成分と導電性付与剤とを、必要に応じて用いられる添加剤やその他のポリマー成分と共に、上記した公知の混合手段で混合する。
3-7. Method for Producing Conductive Polyamide Resin Composition To produce the conductive polyamide resin composition of the present invention, the above-described components (A), (B) and a conductivity-imparting agent are added as necessary. It mixes with a well-known mixing means mentioned above with an agent and another polymer component.
 特に本発明においては、上記の如く、(A)成分の一部と(B)成分とを予め溶融混練してエラストマーマスターバッチとし、別に(A)成分の残部と導電性付与剤とを予め溶融混練して導電性マスターバッチとし、これらエラストマーマスターバッチと導電性マスターバッチとを混合、好ましくはドライブレンドして、導電性ポリアミド樹脂組成物とすることが好ましい。 Particularly in the present invention, as described above, a part of the component (A) and the component (B) are melt-kneaded in advance to form an elastomer masterbatch, and the remainder of the component (A) and the conductivity-imparting agent are previously melted. It is preferable to knead to make a conductive masterbatch, and to mix the elastomer masterbatch and the conductive masterbatch, preferably dry blend, to obtain a conductive polyamide resin composition.
 なお、前記エラストマーマスターバッチと導電性マスターバッチとの混合時に、マスターバッチ化しない(A)成分及び(B)成分の少なくとも一方を更に混合することもできるが、(A)成分は、それぞれ(B)成分又は導電性付与剤とマスターバッチ化して用いることが、最も好ましい。 At the time of mixing the elastomer masterbatch and the conductive masterbatch, at least one of the component (A) and the component (B) that are not converted into a masterbatch can be further mixed. It is most preferable to use it as a master batch with a component or a conductivity imparting agent.
 上記の添加剤およびその他のポリマー成分は、前記いずれのマスターバッチに配合してもよく、また、マスターバッチとは別に混合してもよい。 The above additives and other polymer components may be blended in any of the master batches, or may be mixed separately from the master batch.
 その他、本発明の導電性ポリアミド樹脂組成物は、下記の混合手順により製造することができる。
 ・(A)成分と(B)成分と導電性付与剤とを溶融混練する。
 ・(A)成分と導電性付与剤とを溶融混練してなる導電性マスターバッチと(B)成分とを溶融混練又はドライブレンドする。
 ・(A)成分と導電性付与剤とを溶融混練してなる導電性マスターバッチと、(A)成分と(B)成分とを溶融混練してなるエラストマーマスターバッチと、(A)成分及び(B)成分の少なくとも一方を溶融混練又はドライブレンドする。
In addition, the conductive polyamide resin composition of the present invention can be produced by the following mixing procedure.
-(A) component, (B) component, and a conductivity imparting agent are melt-kneaded.
-A conductive master batch obtained by melt-kneading the component (A) and the conductivity-imparting agent and component (B) are melt-kneaded or dry blended.
A conductive master batch obtained by melting and kneading the component (A) and the conductivity imparting agent, an elastomer master batch obtained by melting and kneading the component (A) and the component (B), the component (A) and ( B) At least one of the components is melt kneaded or dry blended.
 なお、エラストマーマスターバッチを製造に用いる(A)成分のポリアミド5Xと導電性マスターバッチの製造に用いる(A)成分のポリアミド5Xとは同一のものであってもよく、異なるものであってもよい。また、これらのマスターバッチと混合する(A)成分や(B)成分についても、マスターバッチ化されたものと同一のものであってもよく、異なるものであってもよい。 The polyamide 5X as the component (A) used for the production of the elastomer masterbatch and the polyamide 5X as the component (A) used for the production of the conductive masterbatch may be the same or different. . Further, the component (A) and the component (B) mixed with these master batches may be the same as or different from the master batch.
 上記のマトリックスや各成分を溶融混練する際の条件は一般的なポリアミド樹脂の溶融混練条件でよく、例えば、使用するポリアミド5XのDSCにて測定した吸熱ピークのピークトップの温度(吸熱ピークが2つある場合はその高い方の温度)より5~50℃程度高い温度設定で溶融混練する条件が挙げられる。 The conditions for melt-kneading the above matrix and each component may be general polyamide resin melt-kneading conditions. For example, the temperature at the peak top of the endothermic peak measured by DSC of the polyamide 5X used (endothermic peak is 2). In some cases, the temperature is about 5 to 50 ° C. higher than the higher temperature).
 また、ドライブレンドする際の混合手段としては特に制限はなく、例えば、タンブラー、スーパーミキサー、ヘンシェルミキサーおよびナウターミキサー等が挙げられる。 Further, the mixing means for dry blending is not particularly limited, and examples thereof include a tumbler, a super mixer, a Henschel mixer, and a Nauter mixer.
3-8.成形品
 本発明の導電性ポリアミド樹脂組成物を用いて得られる各種の成形品は、導電性付与剤の含有量を、(A)成分と(B)成分とからなるポリマー成分の合計100重量部に対して、15~200重量部とすることが好ましく、20~175重量部がより好ましく、25~150重量部が特に好ましい。
3-8. Molded products Various molded products obtained using the conductive polyamide resin composition of the present invention have a conductivity imparting agent content of 100 parts by weight in total of polymer components composed of (A) component and (B) component. The content is preferably 15 to 200 parts by weight, more preferably 20 to 175 parts by weight, and particularly preferably 25 to 150 parts by weight.
 前記範囲で導電性付与剤を含有することで、体積固有抵抗値が、例えば1.00×10Ω・cm以下のようなレベルまで低減できる。これは、従来の導電性ポリアミド樹脂組成物を用いて得られる成形品と比べて、より少ない導電性付与剤含有量で、より低い体積固有抵抗値が得られる結果となっている。 By containing the conductive agent in the range, volume resistivity can be reduced for example to a level such as 1.00 × 10 8 Ω · cm or less. This is a result that a lower volume specific resistance value can be obtained with a smaller content of the conductivity-imparting agent compared to a molded product obtained using a conventional conductive polyamide resin composition.
(押出成形品)
 本発明の導電性ポリアミド樹脂組成物をシート状(ここでシート状とはフィルム状を含むものである。)に押出成形してなる押出成形シートの厚みは、その用途に応じて異なり、任意の厚さとすることができるが、通常5~200μm、好ましくは10~150μm、より好ましくは20~100μm、特に好ましくは30~70μmである。この厚みが過度に薄いとシート又はフィルムとしての強度が低下する傾向があり好ましくない。一方、厚みが過度に厚いシート又はフィルムとしての柔軟性が低下する傾向があるため好ましくない。
(Extruded product)
The thickness of the extrusion sheet formed by extruding the conductive polyamide resin composition of the present invention into a sheet form (here, the sheet form includes a film form) varies depending on the application, and may be any thickness. However, it is usually 5 to 200 μm, preferably 10 to 150 μm, more preferably 20 to 100 μm, and particularly preferably 30 to 70 μm. If this thickness is excessively thin, the strength as a sheet or film tends to decrease, such being undesirable. On the other hand, since the softness | flexibility as an excessively thick sheet | seat or film tends to fall, it is unpreferable.
(用途)
 本発明の導電性ポリアミド樹脂組成物を成形してなる成形品は、ポリアミド樹脂本来の耐薬品性、曲げ弾性率等の機械的特性を有し、また、導電性や耐衝撃性に優れるものであり、フィルム、シート、自動車、鉄道車両用部品、コンピューター用部品、携帯電話用部品、家電製品用部品等および各種の電気・電子・OA部品などの一部又は全体を構成するものとして工業的に極めて有用である。
(Use)
The molded product formed by molding the conductive polyamide resin composition of the present invention has mechanical properties such as the chemical resistance and bending elastic modulus inherent in the polyamide resin, and is excellent in conductivity and impact resistance. Yes, industrially as part or all of film, sheet, automobile, railway vehicle parts, computer parts, mobile phone parts, home appliance parts, and various electric / electronic / OA parts Very useful.
 以下、実施例を用いて本発明を更に詳細に説明する。但し、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples. However, the present invention is not limited by the following examples unless it exceeds the gist.
[評価・測定方法]
(1)ポリアミド樹脂の相対粘度(η
 ポリアミド樹脂の相対粘度(η)は、ポリアミド樹脂を98%硫酸に溶解した溶液(濃度:0.01g/ml)を調製し、25℃で、オストワルド式粘度計を使用して測定した。
[Evaluation / Measurement Method]
(1) Relative viscosity of polyamide resin (η r )
The relative viscosity (η r ) of the polyamide resin was measured by preparing a solution (concentration: 0.01 g / ml) in which the polyamide resin was dissolved in 98% sulfuric acid and using an Ostwald viscometer at 25 ° C.
(2)ポリアミド樹脂の融点(Tm)
 ポリアミド樹脂の融点(Tm)は、示差走査熱量計(DSC:セイコー電子工業株式会社製ロボットDSC)を使用して、窒素雰囲気下にて測定した。ポリアミド樹脂の試料約5mgを完全に融解させ、3分間保持した後、降温速度20℃/分で30℃まで降温し、続いて30℃で3分間保持した後、昇温速度20℃/分で昇温したときに観測される吸熱ピークのピークトップの温度を融点(Tm)とした。吸熱ピークが複数ある場合は、最も高い温度を融点(Tm)とした。
(2) Melting point of polyamide resin (Tm)
The melting point (Tm) of the polyamide resin was measured in a nitrogen atmosphere using a differential scanning calorimeter (DSC: Robot DSC manufactured by Seiko Electronics Industry Co., Ltd.). About 5 mg of a polyamide resin sample was completely melted and held for 3 minutes, then the temperature was lowered to 30 ° C. at a temperature drop rate of 20 ° C./min. The temperature at the peak top of the endothermic peak observed when the temperature was raised was defined as the melting point (Tm). When there were a plurality of endothermic peaks, the highest temperature was defined as the melting point (Tm).
(3)末端アミノ基濃度 ポリアミド樹脂の試料0.1~0.2gを正確に秤量し、フェノール(林純薬工業株式会社製)50ml中に溶解した後、自動滴定装置(三菱化学株式会社製、GT-06)を用いて、0.1N(規定)塩酸で滴定して算出した(単位:μeq/g)。 (3) Terminal amino group concentration After 0.1 to 0.2 g of a polyamide resin sample was accurately weighed and dissolved in 50 ml of phenol (Hayashi Junyaku Kogyo Co., Ltd.), an automatic titrator (Mitsubishi Chemical Co., Ltd.) , GT-06), and titration with 0.1N (normal) hydrochloric acid was performed (unit: μeq / g).
(4)体積固有抵抗値
 射出成形品の場合は、ASTM-D638に準拠した引張試験片の両端を、剪定ハサミで切断し、12.7mm×50mm×3mm厚の短冊を切り出し、短冊の両端面(12.7mm×3mm)に銀ペーストを塗布して、23℃で30分間、風乾したものを試験片とした。
(4) Volume resistivity value In the case of injection-molded products, both ends of a tensile test piece according to ASTM-D638 are cut with pruning scissors, a 12.7 mm x 50 mm x 3 mm thick strip is cut out, and both ends of the strip A test piece was prepared by applying a silver paste (12.7 mm × 3 mm) and air-drying at 23 ° C. for 30 minutes.
 測定は、銀ペーストを塗布した両端面の間の抵抗を測定し、体積抵抗率を算出し、これを体積固有抵抗値とした。 The measurement was performed by measuring the resistance between both end surfaces coated with the silver paste, calculating the volume resistivity, and setting this as the volume resistivity value.
 測定器は、株式会社三菱化学アナリテック製「ロレスタEP」および株式会社三菱化学アナリテック製「ハイレスタUP」を使用した。体積固有抵抗値が10Ω・cm以下の場合は「ロレスタEP」を用い、それを超える時は「ハイレスタUP」を用いた。プローブはESP型を使用した。「ハイレスタUP」はリング法を用い、500Vで1分間チャージを行い、測定開始から1分後の値を採用した。 The measuring instrument used was “Loresta EP” manufactured by Mitsubishi Chemical Analytech Co., Ltd. and “Hiresta UP” manufactured by Mitsubishi Chemical Analytech Co., Ltd. When the volume resistivity value was 10 6 Ω · cm or less, “Loresta EP” was used, and when exceeding that, “Hiresta UP” was used. An ESP type probe was used. “Hiresta UP” used the ring method, charged at 500 V for 1 minute, and adopted the value 1 minute after the start of measurement.
 体積固有抵抗値が低いほど導電性が優れていると評価される。 The lower the volume resistivity value, the better the conductivity.
 また、押出成形したフィルムを測定する場合は、試料フィルムから、カッターを用いて100mm×100mmのサンプルを切り出し、その両端に銀ペーストを塗布し、23℃で30分間風乾したものを試料とした。 Further, when measuring an extruded film, a sample of 100 mm × 100 mm was cut out from the sample film using a cutter, a silver paste was applied to both ends thereof, and air-dried at 23 ° C. for 30 minutes was used as a sample.
 この銀ペーストを塗布した両端面間の抵抗を測定して体積抵抗率を算出し、これを体積固有抵抗値とした。測定器については上記射出成形品の場合と同様の機器を使用し、やはり同様にして抵抗測定を実施した。 The volume resistivity was calculated by measuring the resistance between both end faces to which this silver paste was applied, and this was used as the volume resistivity value. About the measuring device, the same apparatus as the case of the said injection molded product was used, and resistance measurement was implemented similarly.
(5)ポリアミド樹脂組成物の溶融粘度
 ポリアミド樹脂組成物の試料20gを使用し、キャピラリーレオメーター(株式会社東洋精機製作所製 キャピログラフ1C)を用いて、測定温度280℃、剪断速度91.6sec-1における溶融粘度を測定した。
(5) Melt Viscosity of Polyamide Resin Composition Using a 20 g sample of a polyamide resin composition, using a capillary rheometer (Capillograph 1C manufactured by Toyo Seiki Seisakusho Co., Ltd.), measuring temperature 280 ° C., shear rate 91.6 sec −1 The melt viscosity was measured.
(6)灰分残渣
 ポリアミド樹脂組成物の試料約10gを正確に秤量し、700℃で5時間電気炉にて燃焼させ、灰分残渣量を秤量し重量%にて表示した。
(6) Ash residue About 10 g of the polyamide resin composition sample was accurately weighed and burned in an electric furnace at 700 ° C. for 5 hours, and the amount of ash residue was weighed and displayed in weight%.
(7)シャルピー衝撃値
 ISO178曲げ試験片の長手方向中央部に、先端ノッチR=0.25mmのノッチを切削後、-30℃の恒温槽に4時間コンディショニングを実施した後、ISO179に従い、-30℃下でのシャルピー衝撃試験を実施した。
(7) Charpy impact value After cutting a notch with a tip notch R = 0.25 mm at the center in the longitudinal direction of an ISO178 bending specimen, conditioning was performed in a thermostatic bath at −30 ° C. for 4 hours, and then −30 according to ISO179. A Charpy impact test at ℃ was performed.
(8)製膜性
 ポリアミド樹脂組成物を、先端に600mm幅のTダイを装着した直径40mm単軸押出機で、シリンダ温度270℃で押出し、ダイス温度275℃、ロール温度60℃で、引き取り速度3mm/分にて厚み50μmのフラットフィルムに押出成形した。この押出成形において、製膜性を下記基準で評価した。
  ○:10分間以上安定連続製膜が可能
  ×:10分間以上安定連続製膜が不可
(8) Film-forming property The polyamide resin composition was extruded at a cylinder temperature of 270 ° C. with a 40 mm diameter single-screw extruder equipped with a T-die having a width of 600 mm at the tip, at a die temperature of 275 ° C. and at a roll temperature of 60 ° C. Extrusion-molded into a flat film having a thickness of 50 μm at 3 mm / min. In this extrusion molding, the film forming property was evaluated according to the following criteria.
○: Stable continuous film formation for 10 minutes or more is possible ×: Stable continuous film formation is not possible for 10 minutes or more
(9)電磁波シールド性
 <射出成形片での測定>
 射出成形機(住友重機械工業製、SH100、型締め力100T)を用いて、樹脂温度(パージ樹脂の実測温度):260℃、金型温度:80℃にて、縦100mm、横100mm、厚み2mmの成形品を射出成形し、得られた射出成形品を市販の2液エポキシ系接着剤にて5枚を重ねて接着して、(株)アドバンテスト製「TR-17301A」と「R3361A」を用いて、周波数10、100、200、600、1000MHzにおける電界波シールド性、周波数400、600、800、1000MHzにおける磁界波シールド性を測定した。
(9) Electromagnetic wave shielding <Measurement with injection molded piece>
Using an injection molding machine (manufactured by Sumitomo Heavy Industries, SH100, clamping force 100T), resin temperature (measured temperature of purge resin): 260 ° C., mold temperature: 80 ° C., length 100 mm, width 100 mm, thickness A 2 mm molded product was injection molded, and the resulting injection molded product was bonded with 5 sheets of commercially available two-component epoxy adhesive, and “TR-17301A” and “R3361A” manufactured by Advantest Co., Ltd. The electric field wave shielding property at frequencies of 10, 100, 200, 600, and 1000 MHz and the magnetic field wave shielding property at frequencies of 400, 600, 800, and 1000 MHz were measured.
 <フィルムでの測定>
 先端に600mm幅のTダイを装着した直径40mm単軸押出機で、シリンダ温度270℃で押出し、ダイス温度275℃、ロール温度60℃で、厚み100μmのフラットフィルムに押出成形した。得られたフィルムを100mm×100mmに切り出し、市販の2液のエポキシ系接着剤で10枚を重ねて接着して、射出成形片と同様に電磁波シールド性を測定した。
<Measurement with film>
Extrusion was performed at a cylinder temperature of 270 ° C. using a 40 mm diameter single-screw extruder equipped with a T-die having a width of 600 mm at the tip, and was extruded into a flat film having a thickness of 100 μm at a die temperature of 275 ° C. and a roll temperature of 60 ° C. The obtained film was cut into a size of 100 mm × 100 mm, and 10 sheets were stacked and bonded with a commercially available two-component epoxy adhesive, and the electromagnetic wave shielding property was measured in the same manner as the injection molded piece.
(10)フィルムの難燃性試験
 押出成形により得られたフィルムを用い、UL94規格の薄手材料(フィルム/シート)の垂直燃焼試験(VTM試験)を実施した。
 尚、当該試験結果は難燃性が優れている順にVTM-0、VTM-1、VTM-2と評価した。
(10) Flame Retardancy Test of Film Using a film obtained by extrusion molding, a vertical combustion test (VTM test) of a thin material (film / sheet) of UL94 standard was performed.
The test results were evaluated as VTM-0, VTM-1, and VTM-2 in the order of excellent flame retardancy.
(11)フィルムの臨界酸素指数(LOI)の測定
 押出成形により得られたフィルムを用い、東洋精機製作所製「OXYGEN INDEXER」にて、JIS K-7201に準拠して測定した。
(11) Measurement of Critical Oxygen Index (LOI) of Film Using a film obtained by extrusion molding, the film was measured by “OXYGEN INDEXER” manufactured by Toyo Seiki Seisakusho according to JIS K-7201.
[(B)成分:変性エラストマーの準備]
 実施例3-1~3-20および比較例3-1~3-7に用いる(B)成分として、以下の市販の変性エラストマーを用いた。
 m-EBR:三菱化学(株)製 無水マレイン酸変性EBR「モディックAP730T」(以下「変性EBR」と記す。)。
[Component (B): Preparation of Modified Elastomer]
The following commercially available modified elastomer was used as the component (B) used in Examples 3-1 to 3-20 and Comparative Examples 3-1 to 3-7.
m-EBR: maleic anhydride-modified EBR “Modic AP730T” (hereinafter referred to as “modified EBR”) manufactured by Mitsubishi Chemical Corporation.
[重縮合用モノマーの準備]
 ε-カプロラクタム、アジピン酸、アゼライン酸、セバシン酸、AH塩(ヘキサメチレンジアミン・アジピン酸塩)、12-アミノドデカン酸、ヘキサメチレンジアミンは、いずれも市販品を使用した。
 ε-カプロラクタム:三菱化学株式会社製
 アジピン酸:旭化成ケミカルズ株式会社製
 アゼライン酸:コグニス(cognis)社製
 セバシン酸:小倉合成株式会社製
 AH塩:ローディア(Rhodia)社製
 12-アミノドデカン酸:宇部興産株式会社製
 ヘキサメチレンジアミン:旭化成ケミカルズ株式会社製
[Preparation of monomer for polycondensation]
Commercially available products were used for ε-caprolactam, adipic acid, azelaic acid, sebacic acid, AH salt (hexamethylenediamine / adipate), 12-aminododecanoic acid and hexamethylenediamine.
ε-caprolactam: manufactured by Mitsubishi Chemical Corporation adipic acid: manufactured by Asahi Kasei Chemicals Corporation azelaic acid: manufactured by cognis Sebacic acid: manufactured by Ogura Gosei Co., Ltd. AH salt: manufactured by Rhodia Corporation 12-aminododecanoic acid: Ube Hexamethylenediamine manufactured by Kosan Co., Ltd .: Asahi Kasei Chemicals Corporation
[重合用モノマーの調製]
 以下の操作により、ペンタメチレンジアミンを調製した。
[Preparation of monomer for polymerization]
Pentamethylenediamine was prepared by the following operation.
(1)カダベリン・アジピン酸塩水溶液の調製
 cadA増幅株を用い、リジン・アジピン酸塩を原料とし、以下の方法でカダベリン・アジピン酸塩水溶液調製した。
(1) Preparation of cadaverine / adipate aqueous solution Using cadA amplified strain, cadaverine / adipate aqueous solution was prepared by the following method using lysine / adipate as a raw material.
 E.coli JM109/pCAD1をLB培地入りフラスコ10本で前培養した後、1Lの培養液を99LのLB培地が入った200L容ジャーファーメンターに接種し、通気量0.5vvm、35℃、250rpmで通気撹拌培養を行った。培養開始6時間後、この培養液全量を、3mの2×LB培地が入った5m容培養タンクに接種して更に培養を行った。5m容培養タンクでの培養条件は、通気量0.5vvm、35℃であった。撹拌回転数は溶存酸素濃度が十分高い値になるように60rpm~100rpmの範囲で調節した。培養4時間目に、滅菌したIPTG(イソプロピル-β-D-チオガラクトピラノシド)を終濃度で0.5mMになるように添加し、その後14時間培養を継続した。 E. E. coli JM109 / pCAD1 was pre-cultured in 10 flasks containing LB medium, and then 1 L of the culture solution was inoculated into a 200 L jar fermenter containing 99 L of LB medium, and aerated at 0.5 vvm, 35 ° C., 250 rpm. Stirring culture was performed. Six hours after the start of the culture, the whole culture solution was inoculated into a 5 m 3 volume culture tank containing 3 m 3 of 2 × LB medium and further cultured. The culture conditions in the 5 m 3 volume culture tank were aeration volume of 0.5 vvm and 35 ° C. The rotational speed of stirring was adjusted in the range of 60 rpm to 100 rpm so that the dissolved oxygen concentration had a sufficiently high value. At 4 hours of culture, sterilized IPTG (isopropyl-β-D-thiogalactopyranoside) was added to a final concentration of 0.5 mM, and then the culture was continued for 14 hours.
 6,400rpm、フィード速度750L/時間の条件下で、アルファラバル分離機により培養液からの菌体回収を行った。回収された菌体の湿重量は36.9kgであった。この湿菌体を10mMの酢酸ナトリウム溶液160Lに懸濁した後、15,000rpm、フィード速度1.0L/分の条件下でシャープレス遠心機により再度菌体回収を行い、18.7kgの湿菌体を取得した。50%(w/v)リジンベース溶液(協和醗酵工業株式会社製)にpHが6.0となるようにアジピン酸を添加して、リジン・アジピン酸塩の濃厚溶液を調製した。リジン濃度で60g/Lとなるように基質溶液(3m)を作成し、5m容培養タンクに入れた。ピリドキサルリン酸を0.1mMとなるように基質溶液に添加し、さらにE.coli JM109/pCAD1の菌体をOD660が0.5になるように添加して反応を開始した。 Under the conditions of 6,400 rpm and a feed rate of 750 L / hour, the cells were collected from the culture solution using an Alfa Laval separator. The wet weight of the collected cells was 36.9 kg. The wet cells were suspended in 160 L of a 10 mM sodium acetate solution, and then recovered again with a sharp press centrifuge at 15,000 rpm and a feed rate of 1.0 L / min. 18.7 kg of wet cells Acquired the body. Adipic acid was added to a 50% (w / v) lysine base solution (manufactured by Kyowa Hakko Kogyo Co., Ltd.) to a pH of 6.0 to prepare a concentrated solution of lysine / adipate. A substrate solution (3 m 3 ) was prepared so as to have a lysine concentration of 60 g / L, and placed in a 5 m 3 culture tank. Pyridoxal phosphate was added to the substrate solution to 0.1 mM, and The reaction was started by adding E. coli JM109 / pCAD1 cells so that the OD660 was 0.5.
 反応条件は、37℃、0.5vvm通気、70rpmとした。反応中の溶液のpHは、250kgのアジピン酸をイオン交換水400Lに懸濁したスラリーを添加し、6.5になるように制御した。
 また、リジン濃度318g/Lの基質濃厚溶液(600L)を開始から約130L/時間で連続的にフィードし、約4.5時間で全量を添加した。さらに反応を継続して計22時間反応させた。反応終了時には、リジン残存濃度が0.03g/L以下であり、ほぼ100%のリジンがカダベリンに変換されていた。反応後の溶液(約4m)は、菌体の不活化処理(80℃、30分間)を実施したのち、分子量13,000以上をカットするUF膜モジュールACP-3053(旭化成工業株式会社製)を通して高分子量体の不純物除去を行った。UF処理による回収率は99.3%であった。以上のようにして、ほぼカダベリンとアジピン酸をほぼ等モル含むカダベリン・アジピン酸塩水溶液を取得した。
The reaction conditions were 37 ° C., 0.5 vvm aeration, and 70 rpm. The pH of the solution during the reaction was controlled to be 6.5 by adding a slurry in which 250 kg of adipic acid was suspended in 400 L of ion-exchanged water.
Further, a concentrated substrate solution (600 L) having a lysine concentration of 318 g / L was continuously fed at about 130 L / hour from the start, and the entire amount was added within about 4.5 hours. The reaction was further continued for a total of 22 hours. At the end of the reaction, the residual concentration of lysine was 0.03 g / L or less, and almost 100% of lysine was converted to cadaverine. UF membrane module ACP-3053 (manufactured by Asahi Kasei Kogyo Co., Ltd.) that cuts the molecular weight of 13,000 or more after inactivating the cells (80 ° C., 30 minutes) is used for the solution after the reaction (about 4 m 3 ) High molecular weight impurities were removed through The recovery rate by UF treatment was 99.3%. As described above, an aqueous cadaverine / adipate solution containing approximately equimolar amounts of cadaverine and adipic acid was obtained.
(2)カダベリン・アジピン酸塩の精製・単離
 直径700mmの活性炭塔に三菱化学カルゴン株式会社製活性炭「MM-11」(105kg、約440L)を仕込み、2日間脱塩水を通水した。次に、上記のカダベリン・アジピン酸塩水溶液(約4m)を1.32m/時間の速度で通液し、最後に500Lの脱塩水を通水した。初期460Lをパージした後、活性炭処理したカダベリン・アジピン酸塩水溶液を採取した。
 活性炭処理前はカダベリン・アジピン酸塩水溶液4076.5kg、含有するカダベリン・アジピン酸塩603.9kgであった。活性炭処理後はカダベリン・アジピン酸塩水溶液5029kg、含有するカダベリン・アジピン酸塩603.7kgであった。
(2) Purification and isolation of cadaverine and adipate An activated carbon tower with a diameter of 700 mm was charged with activated carbon “MM-11” (105 kg, approximately 440 L) manufactured by Mitsubishi Chemical Calgon Co., Ltd., and demineralized water was passed through for 2 days. Next, the cadaverine adipate aqueous solution (about 4 m 3 ) was passed at a rate of 1.32 m 3 / hour, and finally 500 L of demineralized water was passed. After initially purging 460 L, an activated cadaverine / adipate aqueous solution treated with activated carbon was collected.
Before the activated carbon treatment, 4076.5 kg of the cadaverine / adipate aqueous solution and 603.9 kg of the cadaverine / adipate contained. After the activated carbon treatment, the solution was 5029 kg of cadaverine / adipate aqueous solution and 603.7 kg of cadaverine / adipate contained.
 PPプリーツカートリッジフィルターTCP-JXを通して、前記活性炭処理後のカダベリン・アジピン酸塩水溶液を2m撹拌槽に仕込み、ジャケット温度110℃、内温57℃、真空度140Torr~150Torrにて濃縮を開始し、適宜、活性炭処理後のカダベリン・アジピン酸塩水溶液を仕込みながら濃縮を行った。濃縮液の重量は918.4kg、カダベリン・アジピン酸塩濃度は63.5重量%であった。尚、上記濃縮液等のカダベリン・アジピン酸塩水溶液中のカダベリン濃度は、1N-HCl水溶液にて滴定して、pHの変曲点までの滴定量から算出した。同様に上記濃縮液等のカダベリン・アジピン酸塩水溶液中のアジピン酸濃度は、1N-NaOH水溶液にて滴定して、pHの変曲点までの滴定量から算出した。滴定には、自動滴定装置(三菱化学株式会社製GT-06型)を使用した。 Through the PP pleated cartridge filter TCP-JX, the activated cadaverine / adipate aqueous solution after the activated carbon treatment was charged into a 2 m 3 stirring tank, and concentration was started at a jacket temperature of 110 ° C., an internal temperature of 57 ° C., and a vacuum degree of 140 Torr to 150 Torr. Concentration was appropriately performed while charging the cadaverine / adipate aqueous solution after the activated carbon treatment. The weight of the concentrate was 918.4 kg, and the cadaverine adipate concentration was 63.5% by weight. The cadaverine concentration in the cadaverine / adipate aqueous solution such as the concentrated solution was calculated from titration up to the inflection point of pH by titrating with 1N HCl aqueous solution. Similarly, the concentration of adipic acid in the cadaverine / adipate aqueous solution such as the concentrated solution was titrated with 1N-NaOH aqueous solution and calculated from the titration amount up to the inflection point of pH. For the titration, an automatic titrator (GT-06 manufactured by Mitsubishi Chemical Corporation) was used.
 次に、同一の2m撹拌槽にて晶析を行った。撹拌翼は3枚後退翼、撹拌速度は40rpm、降温速度は8℃/時間とした。内温37.4℃のときに、予め作成したカダベリン・アジピン酸塩を種晶として1kg添加して結晶を析出させ、内温10.5℃で晶析終了として、カダベリン・アジピン酸塩スラリーを得た。尚、種晶としてのカダベリン・アジピン酸塩は、本実施例に準じてラボスケールにて準備した。直径1.22mの遠心濾過器を用い、前記カダベリン・アジピン酸塩スラリーを3回に分けて遠心濾過した。回転数は980rpm、母液振り切り時間は15分、母液振り切り後に10℃の脱塩水約12kg(脱塩水約12kgは、予想wetケーキ重量の約20重量%分)をシャワー状に振りかけて洗浄し、その脱塩水の振り切り時間は15分間とした。 Next, crystallization was performed in the same 2 m 3 stirring tank. The stirring blades were 3 retreating blades, the stirring speed was 40 rpm, and the cooling rate was 8 ° C./hour. When the internal temperature is 37.4 ° C., 1 kg of cadaverine adipate prepared in advance is added as a seed crystal to precipitate crystals, and crystallization is completed at an internal temperature of 10.5 ° C. Obtained. Cadaverine adipate as a seed crystal was prepared on a lab scale according to this example. Using a centrifugal filter having a diameter of 1.22 m, the cadaverine adipate slurry was centrifugally filtered in three portions. The number of revolutions is 980 rpm, the mother liquor shake-off time is 15 minutes, and after the mother liquor is shaken off, about 12 kg of demineralized water at 10 ° C. The demineralized water was shaken off for 15 minutes.
 上記の操作により、種晶として、含水率が約15重量%のカダベリン・アジピン酸塩(ペンタメチレンジアミン・アジピン酸塩)を得た。次いで、予め窒素置換した1mのステンレス製容器に、脱塩水(100kg)と、含水率が約15重量%のペンタメチレンジアミン・アジピン酸塩(250kg)とを仕込み、撹拌して溶解させた。次に、この溶解液中に25重量%の水酸化ナトリウム水溶液(273.8kg)を仕込み、中和した(即ち、ペンタメチレンジアミンを脱塩して遊離アミンとした)。溶解液中に水酸化ナトリウム水溶液を仕込む際は、溶解液の内温が70℃を超えないように調整した。中和処理を行った溶解液を、内温50℃、減圧度50Torrの条件で水を留去し、次いで、内温80℃、減圧度20Torrの条件でぺンタメチレンジアミンを蒸留した。得られたペンタメチレンジアミンを内温80℃、減圧度20Torrの条件で再度蒸留を行い、ナトリウム含有率が約2ppmのペンタメチレンジアミンを得た。得られたペンタメチレンジアミンを内温80℃、減圧度20Torr(2.6kPa)の条件で再度蒸留を行い、ナトリウム含有率が約2ppmのペンタメチレンジアミンを得た。 By the above operation, cadaverine adipate (pentamethylenediamine adipate) having a water content of about 15% by weight was obtained as a seed crystal. Next, demineralized water (100 kg) and pentamethylenediamine adipate (250 kg) having a water content of about 15% by weight were charged into a 1 m 3 stainless steel container previously purged with nitrogen and dissolved by stirring. Next, a 25% by weight aqueous sodium hydroxide solution (273.8 kg) was charged into the solution and neutralized (that is, pentamethylenediamine was desalted to give a free amine). When the sodium hydroxide aqueous solution was charged into the solution, the internal temperature of the solution was adjusted so as not to exceed 70 ° C. From the neutralized solution, water was distilled off under conditions of an internal temperature of 50 ° C. and a reduced pressure of 50 Torr, and then pentamethylenediamine was distilled under the conditions of an internal temperature of 80 ° C. and a reduced pressure of 20 Torr. The obtained pentamethylenediamine was distilled again under the conditions of an internal temperature of 80 ° C. and a reduced pressure of 20 Torr to obtain pentamethylenediamine having a sodium content of about 2 ppm. The obtained pentamethylenediamine was distilled again under the conditions of an internal temperature of 80 ° C. and a reduced pressure of 20 Torr (2.6 kPa) to obtain pentamethylenediamine having a sodium content of about 2 ppm.
[ポリアミド樹脂の製造] 
・実施例1-1~1-10、比較例1-1~1-13に用いたポリアミド樹脂は、以下の方法(1-1)~(1-13)で製造した。
[Production of polyamide resin]
The polyamide resins used in Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-13 were produced by the following methods (1-1) to (1-13).
(1-1)ポリアミド6(末端アミノ基濃度:60μeq/g)
 ε-カプロラクタム50kg、脱塩水1.5kg、及び亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素置換した後に100℃にて溶解した。この原料水溶液をオートクレーブに移送し、ジャケット温度を280℃に設定して加熱を開始した。内容物を270℃迄昇温した後、オートクレーブの圧力を徐々に放圧し、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後、窒素にて復圧し、内容物をストランド状に冷却水槽へ導入後、回転式カッターでペレット化した。得られたペレットに対し、得られたペレットの1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド6を得た。
 ポリアミド6の相対粘度(η)は2.8、融点(Tm)は224℃、末端アミノ基濃度は60μeq/gであった。
(1-1) Polyamide 6 (terminal amino group concentration: 60 μeq / g)
50 kg of ε-caprolactam, 1.5 kg of demineralized water, and 3.48 g of disodium hydrogen phosphite pentahydrate were placed in a container, purged with nitrogen, and dissolved at 100 ° C. This aqueous raw material solution was transferred to an autoclave, the jacket temperature was set to 280 ° C., and heating was started. After the temperature of the contents was raised to 270 ° C., the pressure in the autoclave was gradually released, and the polycondensation reaction was terminated when the pressure was further reduced to reach a predetermined stirring power. After completion of the reaction, the pressure was restored with nitrogen, and the contents were introduced into a cooling water tank in the form of a strand and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets. The pellets from which the unreacted substances had been removed were dried at 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 6.
Polyamide 6 had a relative viscosity (η r ) of 2.8, a melting point (Tm) of 224 ° C., and a terminal amino group concentration of 60 μeq / g.
(1-2)ポリアミド12(末端アミノ基濃度:56μeq/g)
 12-アミノドデカン酸50kg、及び亜リン酸水素2ナトリウム5水和物3.48gをオートクレーブに仕込み、オートクレーブ内の窒素置換を行った。その後、ジャケット温度を230℃に設定して加熱を開始した。内容物を220℃迄昇温した後、オートクレーブ内の圧力を徐々に放圧し、更に減圧して所定の撹拌動力に到達した時点で反応終了とした。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド12を得た。
 ポリアミド12の相対粘度(η)は2.8、融点(Tm)は182℃、末端アミノ基濃度は56μeq/gであった。
(1-2) Polyamide 12 (terminal amino group concentration: 56 μeq / g)
An autoclave was charged with 50 kg of 12-aminododecanoic acid and 3.48 g of disodium hydrogen phosphite pentahydrate, and nitrogen substitution in the autoclave was performed. Thereafter, the jacket temperature was set to 230 ° C. and heating was started. After the temperature of the contents was raised to 220 ° C., the pressure in the autoclave was gradually released and further reduced to reach the predetermined stirring power, and the reaction was terminated. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under the conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 12.
Polyamide 12 had a relative viscosity (η r ) of 2.8, a melting point (Tm) of 182 ° C., and a terminal amino group concentration of 56 μeq / g.
(1-3)ポリアミド510(末端アミノ基濃度43μeq/g)
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド6製造時より低く設定された所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 ポリアミド510の相対粘度(η)は2.5、融点(Tm)は218℃、末端アミノ基濃度は43μeq/gであった。以下、このポリアミド510を「ポリアミド510(43)」と記す。
(1-3) Polyamide 510 (terminal amino group concentration: 43 μeq / g)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the polycondensation reaction was completed when the pressure was further reduced and the predetermined stirring power set lower than that in the production of the polyamide 6 was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
Polyamide 510 had a relative viscosity (η r ) of 2.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 43 μeq / g. Hereinafter, this polyamide 510 is referred to as “polyamide 510 (43)”.
(1-4)ポリアミド510(末端アミノ基濃度15μeq/g)
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gと酢酸74gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド510(末端アミノ基濃度43μeq/g)の製造時と同じ撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 ポリアミド510の相対粘度(η)は2.5、融点(Tm)は218℃、末端アミノ基濃度は15μeq/gであった。以下、このポリアミド510を「ポリアミド510(15)」と記す。
(1-4) Polyamide 510 (terminal amino group concentration: 15 μeq / g)
Pentamethylenediamine, sebacic acid, and demineralized water are placed in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. And 74 g of acetic acid were put in a container, and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide 510 (terminal amino group concentration: 43 μeq / g) was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
Polyamide 510 had a relative viscosity (η r ) of 2.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 15 μeq / g. Hereinafter, this polyamide 510 is referred to as “polyamide 510 (15)”.
(1-5)ポリアミド510(相対粘度4.5、末端アミノ基濃度23μeq/g)
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48g、及びペンタメチレンジアミン135gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド6の製造時より高く設定された所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 ポリアミド510の相対粘度(η)は4.5、融点(Tm)は218℃、末端アミノ基濃度は23μeq/gであった。以下、このポリアミド510を「ポリアミド510(23)」と記す。
(1-5) Polyamide 510 (relative viscosity 4.5, terminal amino group concentration 23 μeq / g)
Put pentamethylene diamine, sebacic acid, and demineralized water into a container so that the concentration is 50% by weight and a quantity of 100 kg pentamethylene diamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate. And 135 g of pentamethylenediamine were put in a container, and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the polycondensation reaction was terminated when the pressure was further reduced and a predetermined stirring power set higher than that in the production of the polyamide 6 was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
Polyamide 510 had a relative viscosity (η r ) of 4.5, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 23 μeq / g. Hereinafter, this polyamide 510 is referred to as “polyamide 510 (23)”.
(1-6)ポリアミド510(相対粘度2.0、末端アミノ基濃度55μeq/g)
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド510(末端アミノ基濃度43μeq/g)製造時より低く設定された所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 ポリアミド510の相対粘度(η)は2.0、融点(Tm)は218℃、末端アミノ基濃度は55μeq/gであった。以下、このポリアミド510を「ポリアミド510(55)」と記す。
(1-6) Polyamide 510 (relative viscosity 2.0, terminal amino group concentration 55 μeq / g)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure is further reduced and the polycondensation reaction is reached when a predetermined stirring power set lower than that during the production of the polyamide 510 (terminal amino group concentration 43 μeq / g) is reached. Ended. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
Polyamide 510 had a relative viscosity (η r ) of 2.0, a melting point (Tm) of 218 ° C., and a terminal amino group concentration of 55 μeq / g. Hereinafter, this polyamide 510 is referred to as “polyamide 510 (55)”.
(1-7)ポリアミド66(末端アミノ基濃度:51μeq/g)
 濃度50重量%、数量100kgのヘキサメチレンジアミン・アジピン酸塩水溶液となるように、ヘキサメチレンジアミン・アジピン酸塩、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を285℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を275℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド66を得た。
 ポリアミド66の相対粘度(η)は2.8、融点(Tm)は264℃、末端アミノ基濃度は51μeq/gであった。
(1-7) Polyamide 66 (terminal amino group concentration: 51 μeq / g)
2. Hexamethylenediamine / adipate and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of hexamethylenediamine / adipate solution, and disodium hydrogen phosphite pentahydrate is added. 48 g was put in a container, and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 285 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 275 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 66.
Polyamide 66 had a relative viscosity (η r ) of 2.8, a melting point (Tm) of 264 ° C., and a terminal amino group concentration of 51 μeq / g.
(1-8)ポリアミド56/6(56/6仕込み重量比=80/20)(末端アミノ基濃度:40μeq/g)
 濃度50重量%、数量80kgのペンタメチレンジアミン・アジピン酸塩水溶液となるように、ペンタメチレンジアミン、アジピン酸、及び脱塩水を容器に入れ、さらにε-カプロラクタム10kg、亜リン酸水素2ナトリウム5水和物3.48g、及びペンタメチレンジアミン135gを容器に入れ、窒素雰囲気下で混合物を溶解させて原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド6製造時より高く、前記ポリアミド510(相対粘度(η)4.5、末端アミノ基濃度23μeq/g)製造時より低い所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。
 得られたペレットに対し、得られたペレットの1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド56/6(56/6仕込み重量比=80/20)を得た。
 ポリアミド56/6の相対粘度(η)は3.5、融点(Tm)は224℃、末端アミノ基濃度は40μeq/gであった。
(1-8) Polyamide 56/6 (56/6 feed weight ratio = 80/20) (terminal amino group concentration: 40 μeq / g)
Pentamethylenediamine, adipic acid, and demineralized water are put in a container so that a concentration of 50% by weight and a quantity of 80 kg of pentamethylenediamine / adipate aqueous solution is obtained. 3.48 g of the Japanese product and 135 g of pentamethylenediamine were placed in a container, and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure is further reduced to higher than that in the production of the polyamide 6, and the polyamide 510 (relative viscosity (η r ) 4.5, terminal amino group concentration 23 μeq / g) is produced. The polycondensation reaction was terminated when a predetermined stirring power lower than that was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets. The pellets from which unreacted substances were removed were dried at 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less, and polyamide 56/6 (56/6 feed weight ratio = 80 / 20) was obtained.
Polyamide 56/6 had a relative viscosity (η r ) of 3.5, a melting point (Tm) of 224 ° C., and a terminal amino group concentration of 40 μeq / g.
(1-9)ポリアミド6/66(6/66仕込み重量比=80/20)(末端アミノ基濃度:58μeq/g)
 ε-カプロラクタム40kgを容器に入れ、窒素置換した後に100℃にて溶解した。この原料水溶液をオートクレーブ(a)に移送し、ジャケット温度を270℃に設定して加熱を開始した。
 濃度50重量%、数量20kgのヘキサメチレンジアミン・アジピン酸塩水溶液、及び亜リン酸水素2ナトリウム5水和物3.48gをオートクレーブ(b)に入れ、窒素置換した後に昇温を開始した。内容物の温度と圧力が、150℃、0.15MPaに到達するまでヘキサメチレンジアミン・アジピン酸塩水溶液の濃縮を行った。
 オートクレーブ(a)の内温が245℃に到達した時点で、オートクレーブ(b)のヘキサメチレンジアミン・アジピン酸塩水溶液をオートクレーブ(a)に移送した。ジャケット温度を250℃に、オートクレーブ(a)の圧力を0.20MPaにそれぞれ調節し、内容物を240℃に昇温した。次に、オートクレーブ(a)の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。
 反応終了後、窒素にて復圧し、内容物をストランド状に冷却水槽へ導入後、回転式カッターでペレット化した。得られたペレットに対し、得られたペレットの1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド6/66(6/66仕込み重量比=80/20)を得た。
 ポリアミド6/66aの相対粘度(η)は2.8、融点(Tm)は191℃、末端アミノ基濃度は58μeq/gであった。
(1-9) Polyamide 6/66 (6/66 charge weight ratio = 80/20) (terminal amino group concentration: 58 μeq / g)
40 kg of ε-caprolactam was placed in a container, purged with nitrogen, and dissolved at 100 ° C. This raw material aqueous solution was transferred to the autoclave (a), the jacket temperature was set to 270 ° C., and heating was started.
A hexamethylenediamine / adipate aqueous solution having a concentration of 50% by weight and a quantity of 20 kg and 3.48 g of disodium hydrogen phosphite pentahydrate were placed in the autoclave (b), and the temperature was increased after nitrogen substitution. The hexamethylenediamine / adipate aqueous solution was concentrated until the temperature and pressure of the contents reached 150 ° C. and 0.15 MPa.
When the internal temperature of the autoclave (a) reached 245 ° C., the hexamethylenediamine / adipate aqueous solution in the autoclave (b) was transferred to the autoclave (a). The jacket temperature was adjusted to 250 ° C., the pressure of the autoclave (a) was adjusted to 0.20 MPa, and the contents were heated to 240 ° C. Next, after the pressure of the autoclave (a) was gradually released, the polycondensation reaction was terminated when the pressure was further reduced and a predetermined stirring power was reached.
After completion of the reaction, the pressure was restored with nitrogen, and the contents were introduced into a cooling water tank in the form of a strand and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets. The pellets from which unreacted substances were removed were dried at 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less, and polyamide 6/66 (6/66 feed weight ratio = 80 / 20) was obtained.
Polyamide 6 / 66a had a relative viscosity (η r ) of 2.8, a melting point (Tm) of 191 ° C., and a terminal amino group concentration of 58 μeq / g.
(1-10)ポリアミド610(末端アミノ基濃度:44μeq/g)
 濃度50重量%、数量100kgのヘキサメチレンジアミン・セバシン酸塩水溶液となるように、ヘキサメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド510(末端アミノ基濃度43μeq/g)の製造時と同じ撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド610を得た。
 ポリアミド610の相対粘度(η)は2.5、融点(Tm)は222℃、末端アミノ基濃度は44μeq/gであった。以下、このポリアミド610を「ポリアミド610(44)」と記す。
(1-10) Polyamide 610 (terminal amino group concentration: 44 μeq / g)
Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of hexamethylenediamine / sebacate aqueous solution. Further, disodium hydrogen phosphite pentahydrate 3.48 g Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide 510 (terminal amino group concentration: 43 μeq / g) was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under the conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610.
Polyamide 610 had a relative viscosity (η r ) of 2.5, a melting point (Tm) of 222 ° C., and a terminal amino group concentration of 44 μeq / g. Hereinafter, this polyamide 610 is referred to as “polyamide 610 (44)”.
(1-11)ポリアミド610(末端アミノ基濃度:37μeq/g)
 濃度50重量%、数量100kgのヘキサメチレンジアミン・セバシン酸塩水溶液となるように、ヘキサメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド610を得た。
 ポリアミド610の相対粘度(η)は2.8、融点(Tm)は222℃、末端アミノ基濃度は37μeq/gであった。以下、このポリアミド610を「ポリアミド610(37)」と記す。
(1-11) Polyamide 610 (terminal amino group concentration: 37 μeq / g)
Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of hexamethylenediamine / sebacate aqueous solution. Further, disodium hydrogen phosphite pentahydrate 3.48 g Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under the conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610.
Polyamide 610 had a relative viscosity (η r ) of 2.8, a melting point (Tm) of 222 ° C., and a terminal amino group concentration of 37 μeq / g. Hereinafter, this polyamide 610 is referred to as “polyamide 610 (37)”.
(1-12)ポリアミド510(末端アミノ基濃度:35μeq/g)
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 ポリアミド510の相対粘度(η)は2.5、吸熱ピーク温度は176℃と219℃であり、末端アミノ基濃度は35μeg/gであった。
(1-12) Polyamide 510 (terminal amino group concentration: 35 μeq / g)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
Polyamide 510 had a relative viscosity (η r ) of 2.5, endothermic peak temperatures of 176 ° C. and 219 ° C., and a terminal amino group concentration of 35 μeg / g.
(1-13)ポリアミド56/6(56/6仕込み重量比=80/20)(末端アミノ基濃度:38μeq/g)
 濃度50重量%、数量80kgのペンタメチレンジアミン・アジピン酸塩水溶液となるように、ペンタメチレンジアミン、アジピン酸、及び脱塩水を容器に入れ、さらにε-カプロラクタム10kg、亜リン酸水素2ナトリウム5水和物3.48g、及びペンタメチレンジアミン135gを容器に入れ、窒素雰囲気下で混合物を溶解させ原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。
 得られたペレットに対し、得られたペレットの1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド56/6(56/6仕込み重量比=80/20)を得た。
 ポリアミド56/6の相対粘度(η)は3.5、末端アミノ基濃度は38μeg/gであった。吸熱ピーク温度は250℃と180℃であった。
(1-13) Polyamide 56/6 (56/6 charging weight ratio = 80/20) (terminal amino group concentration: 38 μeq / g)
Pentamethylenediamine, adipic acid, and demineralized water are put in a container so that a concentration of 50% by weight and a quantity of 80 kg of pentamethylenediamine / adipate aqueous solution is obtained. 3.48 g of the Japanese product and 135 g of pentamethylenediamine were placed in a container, and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter.
Unreacted monomers and oligomers were extracted and removed from the obtained pellets using 1.5 times the amount of boiling water of the obtained pellets. The pellets from which unreacted substances were removed were dried at 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less, and polyamide 56/6 (56/6 feed weight ratio = 80 / 20) was obtained.
Polyamide 56/6 had a relative viscosity (η r ) of 3.5 and a terminal amino group concentration of 38 μeg / g. The endothermic peak temperatures were 250 ° C. and 180 ° C.
・実施例2-1~実施例2-21、比較例2-1~比較例2-9に用いたポリアミド樹脂は以下の方法(2-1)~(2-14)で製造した。 The polyamide resins used in Examples 2-1 to 2-21 and Comparative Examples 2-1 to 2-9 were produced by the following methods (2-1) to (2-14).
(2-1)ポリアミド6(PA6)
 上記(1-1)と同様の方法でポリアミド6を得た。
 得られたポリアミド6の相対粘度(ηrel)は2.8、融点(Tm)は224℃であった。
(2-1) Polyamide 6 (PA6)
Polyamide 6 was obtained in the same manner as in (1-1) above.
The obtained polyamide 6 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 224 ° C.
(2-2)ポリアミド12(PA12)
 上記(1-2)と同様の方法でポリアミド12を得た。
 得られたポリアミド12の相対粘度(ηrel)は2.8、融点(Tm)は182℃であった。
(2-2) Polyamide 12 (PA12)
Polyamide 12 was obtained in the same manner as in (1-2) above.
Polyamide 12 obtained had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 182 ° C.
(2-3)ポリアミド56(PA56)
 濃度50重量%で100kgのペンタメチレンジアミン・アジピン酸塩水溶液となるように、ペンタメチレンジアミン、アジピン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解し、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットを120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥して、ポリアミド56(PA56)を得た。
 得られたポリアミド56の相対粘度(ηrel)は2.8、融点(Tm)は255℃であった。
(2-3) Polyamide 56 (PA56)
Pentamethylenediamine, adipic acid, and demineralized water are put in a container so that a 100 kg pentamethylenediamine adipate aqueous solution with a concentration of 50% by weight is added, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 56 (PA56).
The obtained polyamide 56 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 255 ° C.
(2-4)ポリアミド59(PA59)
 濃度50重量%、100kgのペンタメチレンジアミン・アゼライン酸塩水溶液となるように、ペンタメチレンジアミン、アゼライン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解し、原料水溶液を得た。以後、上記(2-3)のポリアミド56の製造方法と同様にして、ポリアミド59(PA59)を得た。
 得られたポリアミド59の相対粘度(ηrel)は2.8、融点(Tm)は210℃であった。
(2-4) Polyamide 59 (PA59)
Pentamethylenediamine, azelaic acid, and demineralized water are put in a container so that a concentration of 50% by weight and 100 kg of pentamethylenediamine azelaic acid solution is obtained, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. In addition, the mixture was dissolved under a nitrogen atmosphere to obtain an aqueous raw material solution. Thereafter, polyamide 59 (PA59) was obtained in the same manner as in the method for producing polyamide 56 in (2-3) above.
The obtained polyamide 59 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 210 ° C.
(2-5)ポリアミド510(PA510)
 濃度50重量%で100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解し、原料水溶液を得た。以後、上記(2-3)のポリアミド56の製造方法と同様にして、ポリアミド510(PA510)を得た。
 得られたポリアミド510の相対粘度(ηrel)は2.8、融点(Tm)は218℃であった。
(2-5) Polyamide 510 (PA510)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that a 100 kg pentamethylenediamine / sebacate aqueous solution with a concentration of 50% by weight is added, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. Thereafter, polyamide 510 (PA510) was obtained in the same manner as in the production method of polyamide 56 in (2-3) above.
The obtained polyamide 510 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 218 ° C.
(2-6)ポリアミド6/66(PA6/66)(6/66仕込み重量比=80/20)
 上記(1-8)と同様の方法でポリアミド6/66(6/66仕込み重量比=80/20)を得た。
 得られたポリアミド6/66の相対粘度(ηrel)は2.8、融点(Tm)は191℃であった。
(2-6) Polyamide 6/66 (PA 6/66) (6/66 charge weight ratio = 80/20)
Polyamide 6/66 (6/66 feed weight ratio = 80/20) was obtained in the same manner as in the above (1-8).
Polyamide 6/66 obtained had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 191 ° C.
(2-7)ポリアミド66(PA66)
 上記(1-7)と同様の方法でポリアミドPA66を得た。
 得られたポリアミド66の相対粘度(ηrel)は2.8、融点(Tm)は264℃であった。
(2-7) Polyamide 66 (PA66)
Polyamide PA66 was obtained in the same manner as in the above (1-7).
The obtained polyamide 66 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 264 ° C.
(2-8)ポリアミド610(PA610)
 上記(1-10)と同様の方法でポリアミド610(PA610)を得た。
 得られたポリアミド610の相対粘度(ηrel)は2.8、融点(Tm)は222℃であった。
(2-8) Polyamide 610 (PA610)
Polyamide 610 (PA610) was obtained in the same manner as in the above (1-10).
The obtained polyamide 610 had a relative viscosity (ηrel) of 2.8 and a melting point (Tm) of 222 ° C.
(2-9)ポリアミド6I/6T(PA6I/6T)
 ポリアミド6I/6Tは、三菱エンジニアリングプラスチックス株式会社製X21を使用した。
(2-9) Polyamide 6I / 6T (PA6I / 6T)
As polyamide 6I / 6T, X21 manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used.
(2-10)ポリアミド510-2 (PA510-2、前記「ポリアミド510」の粘度を低く調整)
 濃度50重量%で100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解し、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して、前記(2-5)のポリアミド510より低く設定された所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510-2を得た。
 得られたポリアミド510-2の末端アミノ基濃度は43μeq/g、相対粘度(ηrel)は2.5、融点(Tm)は218℃であった。
(2-10) Polyamide 510-2 (PA510-2, the viscosity of “Polyamide 510” is adjusted to be low)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that a 100 kg pentamethylenediamine / sebacate aqueous solution with a concentration of 50% by weight is added, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced, and the polycondensation reaction was terminated when a predetermined stirring power set lower than that of the polyamide (2-5) was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510-2.
Polyamide 510-2 obtained had a terminal amino group concentration of 43 μeq / g, a relative viscosity (ηrel) of 2.5, and a melting point (Tm) of 218 ° C.
(2-11)ポリアミド510-3(PA-510-3、酢酸を加えてアミノ末端基濃度を低くなるように調整)
 濃度50重量%で100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48g、酢酸74gを加えて、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して上記(2-10)のポリアミド510-2の製造時と同じ撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510-3を得た。
 得られたポリアミド510-3の末端アミノ基濃度は15μeq/g、相対粘度(ηrel)は2.5、融点(Tm)は218℃であった。
(2-11) Polyamide 510-3 (PA-510-3, added with acetic acid to adjust the concentration of amino end groups to be low)
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that a 100 kg pentamethylenediamine / sebacate aqueous solution with a concentration of 50% by weight is added, and further 3.48 g of disodium hydrogen phosphite pentahydrate, 74 g of acetic acid was added and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that in the production of the polyamide (510) of (2-10) was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510-3.
Polyamide 510-3 obtained had a terminal amino group concentration of 15 μeq / g, a relative viscosity (ηrel) of 2.5, and a melting point (Tm) of 218 ° C.
(2-12)ポリアミド56/6-1(56/6仕込み重量比=80/20)(PA56/6-1)
 濃度50重量%で80kgのペンタメチレンジアミン・アジピン酸塩水溶液となるように、ペンタメチレンジアミン、アジピン酸、及び脱塩水を容器に入れ、さらにε-カプロラクタム10kg、亜リン酸水素2ナトリウム5水和物3.48g、ペンタメチレンジアミン135gを加えて、窒素雰囲気下で混合物を溶解させ原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記(2-5)のポリアミド510の製造時より高く設定された所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットに対し、その1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド56/6-1(56/6仕込み重量比=80/20)を得た。
 得られたポリアミド56/6-1の末端アミノ基濃度は45μeq/g、相対粘度(ηrel)は3.5、融点(Tm)は224℃であった。
(2-12) Polyamide 56 / 6-1 (56/6 charging weight ratio = 80/20) (PA56 / 6-1)
Pentamethylenediamine, adipic acid, and demineralized water are put in a container so that it becomes an aqueous solution of pentamethylenediamine / adipate with a concentration of 50% by weight, and further 10 kg of ε-caprolactam and disodium hydrogen phosphite pentahydrate. 3.48 g of the product and 135 g of pentamethylenediamine were added, and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the polycondensation reaction is terminated when the pressure reaches a predetermined stirring power set higher than that in the production of the polyamide 510 of (2-5). did. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the resulting pellets using 1.5 times the amount of boiling water. The pellets from which the unreacted substances were removed were dried at 120 ° C. and 1 torr (0.13 kPa) until the water content became 0.1% by weight or less, and polyamide 56 / 6-1 (56/6 feed weight ratio) = 80/20).
Polyamide 56 / 6-1 obtained had a terminal amino group concentration of 45 μeq / g, a relative viscosity (ηrel) of 3.5, and a melting point (Tm) of 224 ° C.
(2-13)ポリアミド56/6-2(56/6仕込み重量比=80/20)(PA56/6-2)(上記PA56/6-1を低粘度化)
 濃度50重量%で80kgのペンタメチレンジアミン・アジピン酸塩水溶液となるように、ペンタメチレンジアミン、アジピン酸、及び脱塩水を容器に入れ、さらにε-カプロラクタム10kg、亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解させ原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記(2-10)のポリアミド510-2と同じ撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットに対し、その1.5倍量の沸騰水を使用して未反応のモノマー、オリゴマーを抽出除去した。未反応物を除去したペレットは120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥を行い、ポリアミド56/6-2(56/6仕込み重量比=80/20)を得た。
 得られたポリアミド56/6-2の末端アミノ基濃度は40μeq/g、相対粘度(ηrel)は2.5、融点(Tm)は224℃であった。
(2-13) Polyamide 56 / 6-2 (56/6 weight ratio = 80/20) (PA56 / 6-2) (The viscosity of PA56 / 6-1 is reduced)
Pentamethylenediamine, adipic acid, and demineralized water are put in a container so that an aqueous solution of pentamethylenediamine / adipate with a concentration of 50% by weight is obtained, and further 10 kg of ε-caprolactam and disodium hydrogen phosphite pentahydrate. 3.48 g of the product was added, and the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that of the polyamide 510-2 of (2-10) was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. Unreacted monomers and oligomers were extracted and removed from the resulting pellets using 1.5 times the amount of boiling water. The pellets from which unreacted substances were removed were dried at 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less, and polyamide 56 / 6-2 (56/6 feed weight ratio) = 80/20).
Polyamide 56 / 6-2 obtained had a terminal amino group concentration of 40 μeq / g, a relative viscosity (ηrel) of 2.5, and a melting point (Tm) of 224 ° C.
(2-14)ポリアミド610-2(PA610-2、前記「ポリアミド610」の粘度を低く調整)
 濃度50重量%で100kgのヘキサメチレンジアミン・セバシン酸塩水溶液となるように、ヘキサメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを加えて、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して前記ポリアミド(2-10)の510-2と同じ撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド610-2を得た。
 得られたポリアミド610-2の末端アミノ基濃度は44μeq/g、相対粘度(ηrel)は2.5、融点(Tm)は224℃であった。
(2-14) Polyamide 610-2 (PA610-2, the viscosity of the “polyamide 610” is adjusted to be low)
Hexamethylenediamine, sebacic acid, and demineralized water are put in a container so that a concentration of 50% by weight is 100 kg of hexamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is further added. In addition, the mixture was dissolved under a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was completed when the same stirring power as that of the polyamide (2-10) 510-2 was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 610-2.
Polyamide 610-2 obtained had a terminal amino group concentration of 44 μeq / g, a relative viscosity (ηrel) of 2.5, and a melting point (Tm) of 224 ° C.
・実施例3-1~3-12、比較例3-1~3-7に用いたポリアミド樹脂は、以下の方法(3-1)~(3-6)で製造した。 The polyamide resins used in Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-7 were produced by the following methods (3-1) to (3-6).
(3-1)ポリアミド6
 上記(1-1)と同様の方法でポリアミド6を得た。
 得られたポリアミド6の相対粘度(η)は2.8、吸熱ピーク温度は224℃、末端アミノ基濃度は32μeq/gであった。
(3-1) Polyamide 6
Polyamide 6 was obtained in the same manner as in (1-1) above.
The obtained polyamide 6 had a relative viscosity (η r ) of 2.8, an endothermic peak temperature of 224 ° C., and a terminal amino group concentration of 32 μeq / g.
(3-2)ポリアミド56
 上記(2-3)と同様の方法でポリアミド56を得た。
 得られたポリアミド56の相対粘度(η)は2.8、吸熱ピーク温度は232℃と255℃であり、末端アミノ基濃度は33μeq/gであった。
(3-2) Polyamide 56
Polyamide 56 was obtained in the same manner as in (2-3) above.
The obtained polyamide 56 had a relative viscosity (η r ) of 2.8, endothermic peak temperatures of 232 ° C. and 255 ° C., and a terminal amino group concentration of 33 μeq / g.
(3-3)ポリアミド510
 濃度50重量%、数量100kgのペンタメチレンジアミン・セバシン酸塩水溶液となるように、ペンタメチレンジアミン、セバシン酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。プランジャーポンプにて予め窒素置換したオートクレーブに、上記の原料水溶液を移送した。ジャケット温度を280℃に、オートクレーブの圧力を1.47MPaにそれぞれ調節し、内容物を270℃に昇温した。次に、オートクレーブ内の圧力を徐々に放圧した後、更に減圧して所定の撹拌動力に到達した時点で重縮合反応を終了した。反応終了後に窒素にて復圧し、内容物をストランド状に冷却水槽へ導入した後、回転式カッターでペレット化した。得られたペレットは、120℃、1Torr(0.13kPa)の条件で、水分量が0.1重量%以下となる迄乾燥し、ポリアミド510を得た。
 得られたポリアミド510の相対粘度(η)は2.5、吸熱ピーク温度は176℃と219℃であり、末端アミノ基濃度は35μeg/gであった。
(3-3) Polyamide 510
Pentamethylenediamine, sebacic acid, and demineralized water are put in a container so that the concentration is 50% by weight and a quantity of 100 kg of pentamethylenediamine / sebacate aqueous solution, and 3.48 g of disodium hydrogen phosphite pentahydrate is added. Was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. The raw material aqueous solution was transferred to an autoclave which had been previously purged with nitrogen by a plunger pump. The jacket temperature was adjusted to 280 ° C., the autoclave pressure was adjusted to 1.47 MPa, and the contents were heated to 270 ° C. Next, after gradually releasing the pressure in the autoclave, the pressure was further reduced and the polycondensation reaction was terminated when a predetermined stirring power was reached. After completion of the reaction, the pressure was restored with nitrogen, the contents were introduced into a cooling water tank in the form of a strand, and then pelletized with a rotary cutter. The obtained pellets were dried under conditions of 120 ° C. and 1 Torr (0.13 kPa) until the water content became 0.1% by weight or less to obtain polyamide 510.
The obtained polyamide 510 had a relative viscosity (η r ) of 2.5, endothermic peak temperatures of 176 ° C. and 219 ° C., and a terminal amino group concentration of 35 μeg / g.
(3-4)ポリアミド59
 上記(2-4)と同様の方法でポリアミド59を得た。
 得られたポリアミド59の相対粘度(η)は2.8、吸熱ピーク温度は190℃と210℃であり、末端アミノ基濃度は32μeq/gであった。
(3-4) Polyamide 59
Polyamide 59 was obtained in the same manner as in (2-4) above.
Polyamide 59 obtained had a relative viscosity (η r ) of 2.8, endothermic peak temperatures of 190 ° C. and 210 ° C., and a terminal amino group concentration of 32 μeq / g.
(3-5)ポリアミド512
 濃度50重量%、数量100kgのペンタメチレンジアミン・ドデカン二酸塩水溶液となるように、ペンタメチレンジアミン、ドデカン二酸、及び脱塩水を容器に入れ、さらに亜リン酸水素2ナトリウム5水和物3.48gを容器に入れ、窒素雰囲気下で混合物を溶解させ、原料水溶液を得た。以降は(2)ポリアミド56の製造と同様にして、ポリアミド512を得た。
 得られたポリアミド512の相対粘度(η)は2.8、吸熱ピーク温度は173℃と211℃であり、末端アミノ基濃度は32μeq/gであった。
(3-5) Polyamide 512
Pentamethylenediamine, dodecanedioic acid, and demineralized water are put in a container so that a concentration of 50% by weight and a quantity of 100 kg of pentamethylenediamine / dodecanedioate aqueous solution is obtained, and disodium hydrogen phosphite pentahydrate 3 .48 g was put in a container and the mixture was dissolved in a nitrogen atmosphere to obtain a raw material aqueous solution. Thereafter, polyamide 512 was obtained in the same manner as (2) production of polyamide 56.
The obtained polyamide 512 had a relative viscosity (η r ) of 2.8, endothermic peak temperatures of 173 ° C. and 211 ° C., and a terminal amino group concentration of 32 μeq / g.
(3-6)ポリアミド66
 上記(1-7)と同様の方法でポリアミド66を得た。
 得られたポリアミド66の相対粘度(η)は2.8、吸熱ピーク温度は264℃、末端アミノ基濃度は35μeg/gであった。
(3-6) Polyamide 66
Polyamide 66 was obtained in the same manner as in (1-7) above.
The obtained polyamide 66 had a relative viscosity (η r ) of 2.8, an endothermic peak temperature of 264 ° C., and a terminal amino group concentration of 35 μeg / g.
[導電性付与剤の準備]
 導電性付与剤として、中空炭素フィブリルと導電性カーボンブラックを使用した。
 中空炭素フィブリルとしては、DBP吸油量256ml/100gの三菱化学株式会社製カーボンナノチューブMC-4を用いた。
 また、導電性カーボンブラックとしては、DBP吸油量495ml/100gのライオン株式会社製「ケッチェンブラックEC600JD」(以下「CB1」と記す)、及びDBP吸油量140ml/100gの三菱化学株式会社製「カーボンブラック#3230MJ」(以下「CB2」と記す)を用いた。なお上記「#3230MJ」は原油を原料としたファーネス式不完全燃焼により製造された導電性カーボンブラックである。
[Preparation of conductivity imparting agent]
As the conductivity imparting agent, hollow carbon fibrils and conductive carbon black were used.
As the hollow carbon fibril, carbon nanotube MC-4 manufactured by Mitsubishi Chemical Co., Ltd. having a DBP oil absorption of 256 ml / 100 g was used.
Further, as conductive carbon black, “Ketjen Black EC600JD” (hereinafter referred to as “CB1”) manufactured by Lion Corporation having a DBP oil absorption of 495 ml / 100 g, and “Carbon” manufactured by Mitsubishi Chemical Co., Ltd. having a DBP oil absorption of 140 ml / 100 g. Black # 3230MJ ”(hereinafter referred to as“ CB2 ”) was used. The “# 3230MJ” is a conductive carbon black produced by furnace incomplete combustion using crude oil as a raw material.
[導電性マスターバッチの製造]
 二軸押出機(日本製鋼所製TEX-30α)を用い、表1~4および表6~10に示す組成の導電性付与剤とポリアミド樹脂とをシリンダ設定温度265℃、スクリュー回転数250rpm、吐出量20kg/時間の条件で溶融混練し、導電剤マスターバッチを調製した。なお、表1~4および表6~10中、中空炭素フィブリルは「CF」、ガラス繊維は「GF」と表記する。また、導電性カーボンブラックは「CB」と表記し、DBP吸油量495ml/100gのライオン株式会社製「ケッチェンブラックEC600JD」を「CB1」、及びDBP吸油量140ml/100gの三菱化学株式会社製「カーボンブラック#3230MJ」を「CB2」と表記する。
[Manufacture of conductive masterbatch]
Using a twin screw extruder (TEX-30α manufactured by Nippon Steel), the conductivity imparting agent and the polyamide resin having the compositions shown in Tables 1 to 4 and Tables 6 to 10 were discharged at a cylinder set temperature of 265 ° C., a screw rotation speed of 250 rpm. It melt-kneaded on the conditions of the quantity of 20 kg / hour, and prepared the electrically conductive agent masterbatch. In Tables 1 to 4 and Tables 6 to 10, hollow carbon fibrils are represented as “CF” and glass fibers are represented as “GF”. Conductive carbon black is expressed as “CB”, “Ketjen Black EC600JD” manufactured by Lion Corporation having a DBP oil absorption amount of 495 ml / 100 g is “CB1”, and “Mitsubishi Chemical Corporation” having a DBP oil absorption amount of 140 ml / 100 g “ “Carbon black # 3230MJ” is denoted as “CB2”.
[エラストマーマスターバッチの製造]
 二軸押出機(日本製鋼所製「TEX-30α」)を用い、表9に示すポリアミド樹脂と変性エラストマー(変性EBR)とをシリンダ設定温度265℃、スクリュー回転数250rpm、吐出量20kg/時間で溶融混練して変性EBR含有量45重量%のエラストマーマスターバッチを製造した。
[Manufacture of elastomer masterbatch]
Using a twin screw extruder (“TEX-30α” manufactured by Nippon Steel Works), the polyamide resin and modified elastomer (modified EBR) shown in Table 9 were set at a cylinder set temperature of 265 ° C., a screw rotation speed of 250 rpm, and a discharge rate of 20 kg / hour. An elastomer master batch having a modified EBR content of 45% by weight was produced by melt-kneading.
[強化材の準備]
 強化材として、平均繊維径10μmのガラス繊維を用いた。
[Preparation of reinforcement]
Glass fiber having an average fiber diameter of 10 μm was used as the reinforcing material.
[実施例1-1~1-10、比較例1-1~1-13]
 表1~4に示す導電剤マスターバッチ1及びベースポリアミド(実施例1-4においては更に導電剤マスターバッチ2)を表1~4に示す配合重量割合で回転式タンブラーを用いてドライブレンドし、ブレンド物(導電性ポリアミド樹脂組成物)とした。該ブレンド物(実施例1-7,1-10除く)を、先端に600mm幅Tダイを装着した直径40mm単軸押出機で、シリンダ温度270℃で押出し、ダイス温度275℃、ロール温度60℃で、厚み50μmのフラットフィルムに押出成形した。実施例1-7、実施例1-10は射出成形を行った。
 得られた導電性ポリアミド樹脂組成物及び成形品について、各評価を行い、結果を表1~4に示した。
[Examples 1-1 to 1-10, Comparative Examples 1-1 to 1-13]
Conductive agent masterbatch 1 and base polyamide shown in Tables 1 to 4 and base polyamide (in Example 1-4, further conductive agent masterbatch 2) were dry blended using a rotary tumbler at a blending weight ratio shown in Tables 1 to 4, A blend (conductive polyamide resin composition) was obtained. The blend (excluding Examples 1-7 and 1-10) was extruded at a cylinder temperature of 270 ° C. with a 40 mm diameter single-screw extruder equipped with a 600 mm wide T-die at the tip, a die temperature of 275 ° C., and a roll temperature of 60 ° C. Then, it was extruded into a flat film having a thickness of 50 μm. In Examples 1-7 and 1-10, injection molding was performed.
Each of the obtained conductive polyamide resin composition and molded product was evaluated, and the results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3に示すように、本発明によれば、少ない導電性付与剤配合量で、従って成形性(製膜性)や柔軟性を損なうことなく、高い導電性を発現する導電性ポリアミドフィルムを提供することができることが分かった。更に、表4に示すように、本発明によれば、少ない導電性付与剤配合量で極めて良好な電磁波シールド性を有することが分かった。 As shown in Tables 1 to 3, according to the present invention, a conductive polyamide film exhibiting high conductivity with a small blending amount of a conductivity imparting agent and thus without impairing moldability (film forming property) and flexibility. Found that can provide. Furthermore, as shown in Table 4, according to the present invention, it was found that the composition has a very good electromagnetic wave shielding property with a small amount of conductivity imparting agent.
 なお、実施例1-1と比較例1-12との対比から、ポリアミド5Xとしては末端アミノ基濃度が16μeq/g以上のものを用いることが好ましいことが分かった。 In addition, from the comparison between Example 1-1 and Comparative Example 1-12, it was found that it is preferable to use a polyamide 5X having a terminal amino group concentration of 16 μeq / g or more.
[実施例2-1~2-21、比較例2-1~2-9]
(実施例2-1~2-6、実施例2-9~2-10、比較例2-1~2-3、比較例2-7、比較例2-8)
 表6に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6に示す配合で、回転式タンブラーを用いてドライブレンドし、ブレンド物とした後、該ブレンド物をASTM-D638に準拠した引張試験片金型を搭載した射出成形機(日精樹脂工業株式会社製:NEX80型)にてシリンダ温度260℃、金型温度80℃で射出成形を行った。
 得られた射出成形品(引張試験片)を用いて体積固有抵抗値を測定した。結果を表6に示す。
[Examples 2-1 to 2-21, Comparative Examples 2-1 to 2-9]
(Examples 2-1 to 2-6, Examples 2-9 to 2-10, Comparative Examples 2-1 to 2-3, Comparative Example 2-7, Comparative Example 2-8)
Conductive agent masterbatch shown in Table 6 and polyamide resin (base PA) are blended as shown in Table 6 and dry blended using a rotary tumbler to make a blended product, which is compliant with ASTM-D638. The injection molding was carried out at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd .: NEX80 type) equipped with the tensile test piece mold.
The volume resistivity value was measured using the obtained injection molded product (tensile test piece). The results are shown in Table 6.
(実施例2-7、実施例2-8、実施例2-13~2-18、比較例2-5、比較例2-9)
 表6(実施例2-15~2-18については表7)に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6(実施例2-15~2-18については表7)に示す配合で、回転式タンブラーを用いてドライブレンドし、ブレンド物とした後、該ブレンド物を先端に600mm幅のTダイを装着した直径40mm単軸押出機を用いて、シリンダ温度270℃で押し出し、ダイス温度275℃、ロール温度60℃で、厚み50μmのフラットフィルムに押出成形し、得られたフラットフィルムの体積固有抵抗値を測定した。但し、比較例2-9では製膜性が悪くフィルムを得ることができなかったため、以後の評価を行うことができなかった。
 結果を表6(実施例2-15~2-18については表7)に示す。
(Example 2-7, Example 2-8, Examples 2-13 to 2-18, Comparative Example 2-5, Comparative Example 2-9)
The conductive agent master batches shown in Table 6 (Table 7 for Examples 2-15 to 2-18) and polyamide resin (base PA) are shown in Table 6 (Table 7 for Examples 2-15 to 2-18). The blend shown in FIG. 1 was dry blended using a rotary tumbler to obtain a blended product, and then the blended product was used at a cylinder temperature of 270 ° C. using a 40 mm diameter single screw extruder equipped with a 600 mm wide T die at the tip. Extrusion and extrusion at a die temperature of 275 ° C. and a roll temperature of 60 ° C. into a 50 μm-thick flat film, and the volume resistivity of the resulting flat film was measured. However, in Comparative Example 2-9, since the film forming property was poor and a film could not be obtained, the subsequent evaluation could not be performed.
The results are shown in Table 6 (Table 7 for Examples 2-15 to 2-18).
(実施例2-11)
 表6に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6に示す配合で、ニ軸押出機(日本製鋼所製TEX-30α)を用いてシリンダ温度265℃、スクリュー回転数200rpm、吐出量20kg/時間で溶融混練し、混練物とし、該混練物をASTM-D638に準拠した引張試験片金型を搭載した射出成形機(日精樹脂工業株式会社製:NEX80型)にてシリンダ温度260℃、金型温度80℃で射出成形を行った。
 得られた射出成形品(引張試験片)を用いて体積固有抵抗値を測定した。結果を表6に示す。
(Example 2-11)
The conductive agent masterbatch shown in Table 6 and the polyamide resin (base PA) were blended as shown in Table 6, using a twin screw extruder (TEX-30α manufactured by Nippon Steel) and a cylinder temperature of 265 ° C. and a screw speed of 200 rpm. The mixture is melt-kneaded at a discharge rate of 20 kg / hour to obtain a kneaded product, and the kneaded product is cylinderized by an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd .: NEX80 type) equipped with a tensile test piece mold conforming to ASTM-D638. Injection molding was performed at a temperature of 260 ° C and a mold temperature of 80 ° C.
The volume resistivity value was measured using the obtained injection molded product (tensile test piece). The results are shown in Table 6.
(実施例2-12)
 表6に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6に示す配合で、ニ軸押出機(日本製鋼所製TEX-30α)を用いてシリンダ温度265℃、スクリュー回転数200rpm、吐出量20kg/時間で溶融混練し、混練物とし、該混練物を先端に600mm幅のTダイを装着した直径40mm単軸押出機で、シリンダ温度270℃で押し出し、ダイス温度275℃、ロール温度60℃で、厚み50μmのフラットフィルムに押出成形した。
 このフラットフィルムの体積固有抵抗値を測定した。結果を表6に示す。
(Example 2-12)
The conductive agent masterbatch shown in Table 6 and the polyamide resin (base PA) were blended as shown in Table 6, using a twin screw extruder (TEX-30α manufactured by Nippon Steel) and a cylinder temperature of 265 ° C. and a screw speed of 200 rpm. The mixture was melt-kneaded at a discharge rate of 20 kg / hour to obtain a kneaded product, and the kneaded product was extruded at a cylinder temperature of 270 ° C. with a T-die having a width of 600 mm at the tip, and the die temperature was 275 ° C. The film was extruded at a temperature of 60 ° C. into a flat film having a thickness of 50 μm.
The volume resistivity value of this flat film was measured. The results are shown in Table 6.
(比較例2-4)
 表6に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6に示す配合で、回転式タンブラーを用いてドライブレンドし、ブレンド物とし、該ブレンド物を射出成形機(日精樹脂工業株式会社製:NEX80型)にてシリンダ温度260℃で、ASTM-D638に準拠した引張試験片金型を搭載して金型温度80℃で射出成形を行った。しかし、ポリアミド樹脂(ベースPA)と導電剤マスターバッチとの相溶性が悪く、得られた成形品の表面が剥離状に荒れてしまい、体積固有抵抗値を測定することが出来なかった。結果を表6に示す。
(Comparative Example 2-4)
Conductive agent master batches shown in Table 6 and polyamide resin (base PA) are blended as shown in Table 6 and dry blended using a rotary tumbler to make a blend, and the blend is made by an injection molding machine (Nissei Plastic Industries). A tensile test piece mold conforming to ASTM-D638 was mounted at 260 ° C. at a cylinder temperature of 260 ° C. (made by Co., Ltd.) and injection molding was performed at a mold temperature of 80 ° C. However, the compatibility between the polyamide resin (base PA) and the conductive agent master batch was poor, and the surface of the obtained molded product was roughened in a peeled state, so that the volume resistivity value could not be measured. The results are shown in Table 6.
(比較例2-6)
 表6に示す導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表6に示す配合で、回転式タンブラーを用いてドライブレンドし、ブレンド物とし、該ブレンド物を射出成形機(日精樹脂工業株式会社製:NEX80型)にてシリンダ温度270℃で、ASTM-D638に準拠した引張試験片金型を搭載し、金型温度80℃で射出成形を行った。
 得られた射出成形品(引張試験片)を用いて体積固有抵抗値を測定した。結果を表6に示す。
(Comparative Example 2-6)
Conductive agent master batches shown in Table 6 and polyamide resin (base PA) are blended as shown in Table 6 and dry blended using a rotary tumbler to make a blend, and the blend is made by an injection molding machine (Nissei Plastic Industries). A tensile test piece mold conforming to ASTM-D638 was mounted at a cylinder temperature of 270 ° C. and manufactured by injection molding at a mold temperature of 80 ° C.
The volume resistivity value was measured using the obtained injection molded product (tensile test piece). The results are shown in Table 6.
(実施例2-19~2-21)
 表8に示す難燃剤マスターバッチと導電剤マスターバッチと、ポリアミド樹脂(ベースPA)とを表8に示す配合で、回転式タンブラーを用いてドライブレンドし、ブレンド物とし、該ブレンド物を射出成形機(日精樹脂工業株式会社製:NEX80型)にてシリンダ温度270℃で、ASTM-D638に準拠した引張試験片金型を搭載し、金型温度80℃で射出成形を行った。
 得られた射出成形品(引張試験片)の難燃性や体積固有抵抗値を測定した。結果を表8に示す。
(Examples 2-19 to 2-21)
A flame retardant masterbatch, a conductive agent masterbatch, and a polyamide resin (base PA) shown in Table 8 are dry blended using a rotary tumbler with the composition shown in Table 8 to form a blend, and the blend is injection molded. A tensile test piece mold conforming to ASTM-D638 was mounted at a cylinder temperature of 270 ° C. using a machine (Nissei Plastic Industrial Co., Ltd .: NEX80 type), and injection molding was performed at a mold temperature of 80 ° C.
The flame retardancy and volume resistivity of the obtained injection molded product (tensile test piece) were measured. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6乃至表8に示すように、熱可塑性樹脂(ポリアミド樹脂)a、前記熱可塑性樹脂aとは異なる溶解度パラメータを有する熱可塑性樹脂(ポリアミド樹脂)b、及び導電性付与剤(導電性カーボンブラック/中空炭素フィブリル)とを少なくとも含有し、熱可塑性樹脂aがポリアミド5Xであり、かつ熱可塑性樹脂aの溶解度パラメータSP(a)と、熱可塑性樹脂bの溶解度パラメータSP(b)との差の絶対値が0.2~3.7の範囲である導電性熱可塑性樹脂組成物(実施例2-1~実施例2-18)は、射出成形品、押出成形品のいずれの場合においても、体積固有抵抗値が低く、導電性が高いことが分かった。更に、難燃性も優れている。 As shown in Tables 6 to 8, a thermoplastic resin (polyamide resin) a, a thermoplastic resin (polyamide resin) b having a solubility parameter different from that of the thermoplastic resin a, and a conductivity-imparting agent (conductive carbon black) / Hollow carbon fibril), the thermoplastic resin a is polyamide 5X, and the difference between the solubility parameter SP (a) of the thermoplastic resin a and the solubility parameter SP (b) of the thermoplastic resin b The conductive thermoplastic resin compositions (Example 2-1 to Example 2-18) having an absolute value in the range of 0.2 to 3.7 can be used for both injection molded products and extruded products. It was found that the volume resistivity was low and the conductivity was high. Furthermore, the flame retardancy is also excellent.
 また、表6の比較例2-1~2-9に示す導電性樹脂組成物のように熱可塑性樹脂aがポリアミド5Xではない場合、または△SP値が上記範囲を満たさない場合は、体積固有抵抗値が良好な成形品は得られないことが分かった。 In addition, when the thermoplastic resin a is not polyamide 5X as in the conductive resin compositions shown in Comparative Examples 2-1 to 2-9 in Table 6, or when the ΔSP value does not satisfy the above range, the volume-specific It was found that a molded article having a good resistance value could not be obtained.
 更に、表7に示すように、本発明の範囲を満たす末端アミノ基濃度の熱可塑性樹脂を用いることにより、体積固有抵抗値が低い成形品が得られていることが分かった。 Furthermore, as shown in Table 7, it was found that by using a thermoplastic resin having a terminal amino group concentration satisfying the scope of the present invention, a molded product having a low volume resistivity value was obtained.
[実施例3-1~3-20、比較例3-1~3-11]
(実施例3-1~3-12、比較例3-1)
 表9に示すエラストマーマスターバッチと導電性マスターバッチを、表9に示す混合割合で、回転式タンブラーを用いてドライブレンドしてブレンド物とした後、該ブレンド物を用いて所定の試験片の成形又は押出成形を行って、評価を行った。結果を表9に示す。
[Examples 3-1 to 3-20, Comparative examples 3-1 to 3-11]
(Examples 3-1 to 3-12, Comparative example 3-1)
The elastomer masterbatch and conductive masterbatch shown in Table 9 were dry blended using a rotary tumbler at the mixing ratio shown in Table 9 to form a blended product, and then a predetermined test piece was molded using the blended product. Or it evaluated by performing extrusion molding. The results are shown in Table 9.
(実施例3-13~3-20、比較例3-2~3-11)
 表10に示すポリアミド樹脂を用いて表10に示す配合割合となるように、ポリアミド樹脂と変性エラストマー(変性EBR)と導電性付与剤(CB)とを、二軸押出機(日本製鋼所製TEX-30α)を用いてシリンダ温度265℃、スクリュー回転数200rpm、吐出量20kg/時間で溶融混練して混練物とし、該混練物を用いて所定の試験片の成形又は押出成形を行って、評価を行った。結果を表10に示す。
(Examples 3-13 to 3-20, Comparative Examples 3-2 to 3-11)
Using the polyamide resin shown in Table 10, a polyamide resin, a modified elastomer (modified EBR), and a conductivity-imparting agent (CB) are mixed into a twin-screw extruder (TEX manufactured by Nippon Steel Works) so that the blending ratio shown in Table 10 is obtained. -30α), a kneaded material is melt-kneaded at a cylinder temperature of 265 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 20 kg / hour to form a kneaded material, and a predetermined test piece is molded or extruded using the kneaded material and evaluated. Went. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9および10に示すように、本発明によれば、導電性に優れると共に耐衝撃性、成形性(製膜性)に優れたポリアミド樹脂組成物が提供されることが分かった。 As shown in Tables 9 and 10, it was found that according to the present invention, a polyamide resin composition having excellent conductivity and excellent impact resistance and moldability (film forming property) was provided.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年4月20日出願の日本特許出願2009-101929、2010年3月19日出願の日本特許出願2010-064416、2010年3月24日出願の日本特許出願2010-068830、2010年3月29日出願の日本特許出願2010-074392、2010年3月29日出願の日本特許出願2010-075979、2010年3月29日出願の日本特許出願2010-075981、2010年3月29日出願の日本特許出願2010-075982、2010年3月31日出願の日本国特許出願2010-080936に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application includes Japanese Patent Application 2009-101929 filed on April 20, 2009, Japanese Patent Application 2010-064416 filed on March 19, 2010, and Japanese Patent Application 2010-068830, 2010 filed on March 24, 2010. Japanese Patent Application 2010-074392 filed on March 29, 2010, Japanese Patent Application 2010-075979 filed on March 29, 2010, Japanese Patent Application 2010-075981 filed on March 29, 2010, March 29, 2010 The application is based on Japanese Patent Application 2010-075982, Japanese Patent Application 2010-080936 filed on March 31, 2010, the contents of which are incorporated herein by reference.
 本発明の導電性熱可塑性樹脂組成物および導電性ポリアミド樹脂組成物を用いて成形された成形品並びに本発明の導電性ポリアミドフィルムは、導電性が良好であり、自動車用部品の樹脂化による車両軽量化を促進することが可能となる。また、本発明の導電性熱可塑性樹脂組成物および導電性ポリアミド樹脂組成物を用いて成形された成形品並びに本発明の導電性ポリアミドフィルムは、導電性や帯電防止性が必要な部品や部材に好適であり、半導体製造現場における発塵の低減や、静電塗装時の静電気のスパークによる火災予防等に有用である。
 また、本発明の導電性熱可塑性組成物および導電性ポリアミド樹脂組成物から得られるシート類は、電磁波シールド用材料として用いても有効である。
The molded article molded by using the conductive thermoplastic resin composition and conductive polyamide resin composition of the present invention and the conductive polyamide film of the present invention have good conductivity, and the vehicle by resinizing automobile parts. It becomes possible to promote weight reduction. In addition, molded articles formed using the conductive thermoplastic resin composition and conductive polyamide resin composition of the present invention and the conductive polyamide film of the present invention are suitable for parts and members that require conductivity and antistatic properties. It is suitable, and is useful for reducing dust generation at semiconductor manufacturing sites and preventing fires due to static sparks during electrostatic coating.
The sheets obtained from the conductive thermoplastic composition and conductive polyamide resin composition of the present invention are also effective when used as an electromagnetic shielding material.

Claims (48)

  1.  ポリアミド樹脂と導電性付与剤とを含有する導電性ポリアミド樹脂組成物であって、
     該ポリアミド樹脂が、ペンタメチレンジアミンを含むジアミンとジカルボン酸とを単量体成分として用いる重縮合反応により得られる重縮合体に相当する構造を有するポリアミド(以下「ポリアミド5X」と称す。)を少なくとも含み、
     該導電性ポリアミド樹脂組成物の灰分残渣が0.5重量%以下であり、
     該導電性ポリアミド樹脂組成物から成形されたフィルムの体積固有抵抗値が1.0×10Ω・cm以下であることを特徴とする導電性ポリアミド樹脂組成物。
    A conductive polyamide resin composition containing a polyamide resin and a conductivity imparting agent,
    The polyamide resin has at least a polyamide having a structure corresponding to a polycondensate obtained by a polycondensation reaction using a diamine containing pentamethylenediamine and a dicarboxylic acid as monomer components (hereinafter referred to as “polyamide 5X”). Including
    The ash residue of the conductive polyamide resin composition is 0.5% by weight or less,
    A conductive polyamide resin composition, wherein a volume specific resistance value of a film formed from the conductive polyamide resin composition is 1.0 × 10 8 Ω · cm or less.
  2.  前記導電性付与剤がカーボンブラック及び中空炭素フィブリルからなる群より選ばれた少なくとも1種であることを特徴とする請求項1に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin composition according to claim 1, wherein the conductivity imparting agent is at least one selected from the group consisting of carbon black and hollow carbon fibrils.
  3.  前記ポリアミド樹脂の末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする請求項1又は2に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin composition according to claim 1 or 2, wherein the polyamide resin has a terminal amino group concentration of 16 µeq / g to 100 µeq / g.
  4.  前記導電性ポリアミド樹脂組成物中の導電性付与剤の含有量が0.1重量%~65重量%であることを特徴とする請求項1乃至3のいずれか1項に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin according to any one of claims 1 to 3, wherein the content of the conductivity imparting agent in the conductive polyamide resin composition is 0.1 wt% to 65 wt%. Composition.
  5.  前記導電性ポリアミド樹脂組成物の、温度280℃、剪断速度91.6sec-1における溶融粘度が100Pa・s~4000Pa・sであることを特徴とする請求項1乃至4のいずれか1項に記載の導電性ポリアミド樹脂組成物。 5. The conductive polyamide resin composition according to claim 1, wherein the melt viscosity at a temperature of 280 ° C. and a shear rate of 91.6 sec −1 is 100 Pa · s to 4000 Pa · s. Conductive polyamide resin composition.
  6.  前記請求項1乃至5のいずれか1項に記載の導電性ポリアミド樹脂組成物から成形された導電性ポリアミドフィルム。 A conductive polyamide film formed from the conductive polyamide resin composition according to any one of claims 1 to 5.
  7. 厚みが5μm~200μmであることを特徴とする請求項6に記載の導電性ポリアミドフィルム。 The conductive polyamide film according to claim 6, wherein the thickness is 5 μm to 200 μm.
  8.  周波数5MHz~800MHzにおいて測定した電界シールド性が-10dB以下かつ周波数200MHz~1000MHzにおいて測定した磁界シールド性が-10dB以下であることを特徴とする請求項1乃至5のいずれか1項に記載の導電性ポリアミド樹脂組成物。 6. The conductivity according to claim 1, wherein the electric field shielding property measured at a frequency of 5 MHz to 800 MHz is −10 dB or less and the magnetic field shielding property measured at a frequency of 200 MHz to 1000 MHz is −10 dB or less. -Soluble polyamide resin composition.
  9.  請求項8に記載の導電性ポリアミド樹脂組成物を射出成形してなる電磁波シールド性成形品。 An electromagnetic wave shielding molded article obtained by injection molding the conductive polyamide resin composition according to claim 8.
  10.  請求項8に記載の導電性ポリアミド樹脂組成物を押出成形してなる電磁波シールド性成形品。 An electromagnetic wave shielding molded product obtained by extruding the conductive polyamide resin composition according to claim 8.
  11.  厚みが5μm~200μmであることを特徴とする請求項10に記載の電磁波シールド性成形品。 11. The electromagnetic wave shielding molded article according to claim 10, wherein the thickness is 5 μm to 200 μm.
  12.  少なくともその一部が請求項9乃至11のいずれか1項に記載の成形品で構成されていることを特徴とする自動車・鉄道車両用部品又は電気・電子・OA用部品。 An automobile / railway vehicle component or an electric / electronic / OA component, wherein at least a part thereof is formed of the molded product according to any one of claims 9 to 11.
  13.  二種類以上の熱可塑性樹脂と導電性付与剤とを含有する導電性熱可塑性樹脂組成物であって、
     該熱可塑性樹脂が、ポリアミド5Xを少なくとも含み、
     該ポリアミド5Xの中で、最も配合量の多いポリアミド5Xを「熱可塑性樹脂a」とし、
     該導電性熱可塑性樹脂組成物に用いられる、該熱可塑性樹脂a以外の熱可塑性樹脂の中で、最も配合量の多い熱可塑性樹脂を「熱可塑性樹脂b」としたとき、
     該熱可塑性樹脂aの溶解度パラメータ値と、該熱可塑性樹脂bの溶解度パラメータ値との差の絶対値が、0.2以上、3.7以下であることを特徴とする導電性熱可塑性樹脂組成物。
    A conductive thermoplastic resin composition containing two or more kinds of thermoplastic resins and a conductivity imparting agent,
    The thermoplastic resin contains at least polyamide 5X,
    Among the polyamides 5X, the polyamide 5X having the largest blending amount is referred to as “thermoplastic resin a”,
    Among the thermoplastic resins other than the thermoplastic resin a used in the conductive thermoplastic resin composition, when the thermoplastic resin with the largest blending amount is “thermoplastic resin b”,
    Conductive thermoplastic resin composition, wherein absolute value of difference between solubility parameter value of thermoplastic resin a and solubility parameter value of thermoplastic resin b is 0.2 or more and 3.7 or less object.
  14.  前記ポリアミド5Xが、ポリアミド56、ポリアミド59、ポリアミド510及びポリアミド56/6からなる群より選ばれる少なくとも1種であることを特徴とする請求項13に記載の導電性熱可塑性樹脂組成物。 The conductive thermoplastic resin composition according to claim 13, wherein the polyamide 5X is at least one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510, and polyamide 56/6.
  15.  前記熱可塑性樹脂aがポリアミド56、ポリアミド59、ポリアミド510及びポリアミド56/6からなる群より選ばれる1種であることを特徴とする請求項13又は14に記載の導電性熱可塑性樹脂組成物。 15. The conductive thermoplastic resin composition according to claim 13 or 14, wherein the thermoplastic resin a is one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510 and polyamide 56/6.
  16.  前記熱可塑性樹脂bがポリアミド5Xであることを特徴とする請求項13乃至15のいずれか1項に記載の導電性熱可塑性樹脂組成物。 The conductive thermoplastic resin composition according to any one of claims 13 to 15, wherein the thermoplastic resin b is polyamide 5X.
  17.  前記熱可塑性樹脂aと前記熱可塑性樹脂bとは、それぞれ異なり、かつポリアミド510及びポリアミド56/6から選ばれるものであることを特徴とする請求項13乃至16のいずれか1項に記載の導電性熱可塑性樹脂組成物。 The electrically conductive resin according to any one of claims 13 to 16, wherein the thermoplastic resin a and the thermoplastic resin b are different from each other and are selected from polyamide 510 and polyamide 56/6. Thermoplastic resin composition.
  18. 前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の樹脂の末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする請求項13乃至17のいずれか1項に記載の導電性熱可塑性樹脂組成物。 18. The conductive material according to claim 13, wherein the terminal amino group concentration of at least one of the thermoplastic resin a and the thermoplastic resin b is 16 μeq / g to 100 μeq / g. Thermoplastic resin composition.
  19.  前記熱可塑性樹脂aの相対粘度をηrel(a)、前記熱可塑性樹脂bの相対粘度をηrel(b)とした場合に、これらの相対粘度が下記式を満たすことを特徴とする請求項13乃至18のいずれか1項に記載の導電性熱可塑性樹脂組成物。
    ηrel(a)>ηrel(b)
    ηrel(a)≧3.0
    14. When the relative viscosity of the thermoplastic resin a is ηrel (a) and the relative viscosity of the thermoplastic resin b is ηrel (b), these relative viscosities satisfy the following formulas: The conductive thermoplastic resin composition according to any one of 18.
    ηrel (a)> ηrel (b)
    ηrel (a) ≧ 3.0
  20.  前記導電性熱可塑性樹脂組成物の総量を100重量%としたとき、前記導電性付与剤の含有量が0.01重量%~65重量%であることを特徴とする請求項13乃至19のいずれか1項に記載の導電性熱可塑性樹脂組成物。 20. The content of the conductivity-imparting agent is 0.01% to 65% by weight when the total amount of the conductive thermoplastic resin composition is 100% by weight. 2. The conductive thermoplastic resin composition according to item 1.
  21.  前記導電性付与剤が導電性カーボンブラック及び中空炭素フィブリルからなる群より選ばれる少なくとも1種であることを特徴とする請求項13乃至20のいずれか1項に記載の導電性熱可塑性樹脂組成物。 21. The conductive thermoplastic resin composition according to claim 13, wherein the conductivity imparting agent is at least one selected from the group consisting of conductive carbon black and hollow carbon fibrils. .
  22.  更に難燃剤を含有配合されていることを特徴とする請求項13乃至21のいずれか1項に記載の導電性熱可塑性樹脂組成物。 The conductive thermoplastic resin composition according to any one of claims 13 to 21, further comprising a flame retardant.
  23.  JIS K-7201に準拠して測定した臨界酸素指数(LOI)が26以上であり、かつUL-94規格VTM試験での難燃性がVTM-0を満足することを特徴とする請求項22に記載の導電性熱可塑性樹脂組成物。 The critical oxygen index (LOI) measured in accordance with JIS K-7201 is 26 or more, and the flame retardancy in the UL-94 standard VTM test satisfies VTM-0. The electrically conductive thermoplastic resin composition as described.
  24.  前記難燃剤が、フォスフィン酸塩類から選ばれる少なくとも1種であることを特徴とする請求項22又は23に記載の導電性熱可塑性樹脂組成物。 24. The conductive thermoplastic resin composition according to claim 22 or 23, wherein the flame retardant is at least one selected from phosphinates.
  25.  ポリアミド5Xを少なくとも含む二種類以上の熱可塑性樹脂と、導電性付与剤とを含有する導電性熱可塑性樹脂組成物の製造方法であって、該ポリアミド5Xの中で最も配合量の多いポリアミド5Xである「熱可塑性樹脂a」と該熱可塑性樹脂a以外の熱可塑性樹脂の中で最も配合量が多い熱可塑性樹脂であり、その溶解度パラメータ値と前記熱可塑性樹脂aの溶解度パラメータ値の差の絶対値が0.2以上3.7以下である「熱可塑性樹脂b」を含む熱可塑性樹脂成分と、前記導電性付与剤とを溶融混練することを特徴とする導電性熱可塑性樹脂組成物の製造方法。 A method for producing a conductive thermoplastic resin composition comprising at least two types of thermoplastic resins containing at least polyamide 5X and a conductivity imparting agent, wherein the polyamide 5X has the largest amount of the polyamide 5X. It is a thermoplastic resin having the largest blending amount among a certain “thermoplastic resin a” and a thermoplastic resin other than the thermoplastic resin a, and the absolute difference between the solubility parameter value and the solubility parameter value of the thermoplastic resin a Production of a conductive thermoplastic resin composition comprising melt-kneading a thermoplastic resin component containing "thermoplastic resin b" having a value of 0.2 or more and 3.7 or less and the conductivity imparting agent. Method.
  26.  前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方と前記導電性付与剤とを溶融混練して混合物とし、次いで、該混合物と前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とを溶融混練することを特徴とする請求項25に記載の導電性熱可塑性樹脂組成物の製造方法。 At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 26. The method for producing a conductive thermoplastic resin composition according to claim 25, wherein a thermoplastic resin component containing said resin is melt-kneaded.
  27.  前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方と前記導電性付与剤とを溶融混練して混合物とし、次いで、該混合物と前記熱可塑性樹脂a及び前記熱可塑性樹脂bの少なくとも一方の残部を含む熱可塑性樹脂成分とをドライブレンドすることを特徴とする請求項26に記載の導電性熱可塑性樹脂組成物の製造方法。 At least one of the thermoplastic resin a and the thermoplastic resin b and the conductivity imparting agent are melt-kneaded to form a mixture, and then the balance of the mixture and the thermoplastic resin a and at least one of the thermoplastic resin b 27. The method for producing a conductive thermoplastic resin composition according to claim 26, comprising dry blending a thermoplastic resin component containing
  28.  請求項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を射出成形して得られる射出成形品。 An injection-molded product obtained by injection-molding the conductive thermoplastic resin composition according to any one of claims 13 to 24.
  29.  射出成形品の体積固有抵抗値が1.00×10Ω・cm以下であることを特徴とする請求項28に記載の射出成形品。 29. The injection-molded article according to claim 28, wherein the injection molded article has a volume resistivity value of 1.00 × 10 8 Ω · cm or less.
  30.  請求項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を押出成形して得られる押出成形品。 25. An extruded product obtained by extrusion molding the conductive thermoplastic resin composition according to any one of claims 13 to 24.
  31.  請求項13乃至24のいずれか1項に記載の導電性熱可塑性樹脂組成物を押出成形して得られる導電性フィルム。 A conductive film obtained by extrusion molding the conductive thermoplastic resin composition according to any one of claims 13 to 24.
  32.  厚さが5μm~200μmであることを特徴とする請求項31に記載の導電性フィルム。 32. The conductive film according to claim 31, wherein the thickness is 5 μm to 200 μm.
  33.  体積固有抵抗値が1.0×10Ω・cm以下であることを特徴とする請求項31又は32に記載の導電性フィルム。 The volume resistivity is 1.0 × 10 8 Ω · cm or less, and the conductive film according to claim 31 or 32.
  34.  下記(A)成分85重量%~50重量%と、下記(B-1)成分及び下記(B-2)成分の少なくとも一方からなる(B)成分15重量%~50重量%とからなるポリマー成分と、導電性付与剤とを含み、該導電性付与剤の含有量がポリマー成分100重量部に対して15重量部~200重量部であることを特徴とする導電性ポリアミド樹脂組成物。
     (A)成分:ポリアミド5X
     (B-1)成分:エチレンと炭素数3以上のα-オレフィンとを共重合させてなるオレフィン系共重合体に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ポリオレフィン系共重合体
     (B-2)成分:ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとを含むブロック共重合体の水素添加物に、α,β-不飽和カルボン酸及びその誘導体の少なくとも一方をグラフト重合させてなる変性ブロック共重合体
    Polymer component comprising 85% by weight to 50% by weight of the following (A) component and 15% by weight to 50% by weight of the (B) component comprising at least one of the following (B-1) component and the following (B-2) component: And a conductivity-imparting agent, wherein the content of the conductivity-imparting agent is 15 to 200 parts by weight with respect to 100 parts by weight of the polymer component.
    (A) Component: Polyamide 5X
    Component (B-1): graft polymerization of at least one of an α, β-unsaturated carboxylic acid and a derivative thereof onto an olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. Modified polyolefin copolymer (B-2) component: α, β-unsaturated to a hydrogenated block copolymer containing vinyl aromatic compound polymer block a and conjugated diene compound polymer block b Modified block copolymer obtained by graft polymerization of at least one of carboxylic acid and derivatives thereof
  35.  前記ポリアミド5Xは、示差走査熱量測定法による測定で2つの吸熱ピークを有することを特徴とする請求項34に記載の導電性ポリアミド樹脂組成物。 35. The conductive polyamide resin composition according to claim 34, wherein the polyamide 5X has two endothermic peaks as measured by differential scanning calorimetry.
  36.  前記2つの吸熱ピークのピークトップの温度差が5℃~50℃であることを特徴とする請求項35に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin composition according to claim 35, wherein a temperature difference between peak tops of the two endothermic peaks is 5 ° C to 50 ° C.
  37.  前記ポリアミド5Xの末端アミノ基濃度が16μeq/g~100μeq/gであることを特徴とする請求項34乃至36のいずれか1項に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin composition according to any one of claims 34 to 36, wherein the polyamide 5X has a terminal amino group concentration of 16 µeq / g to 100 µeq / g.
  38.  前記ポリアミド5Xが、ポリアミド56、ポリアミド59、ポリアミド510、ポリアミド512及びポリアミド56/6からなる群から選ばれる少なくとも1種であることを特徴とする請求項34乃至37のいずれか1項に記載の導電性ポリアミド樹脂組成物。 38. The polyamide 5X according to any one of claims 34 to 37, wherein the polyamide 5X is at least one selected from the group consisting of polyamide 56, polyamide 59, polyamide 510, polyamide 512, and polyamide 56/6. A conductive polyamide resin composition.
  39.  前記導電性付与剤がカーボンブラック及び中空炭素フィブリルからなる群より選ばれる少なくとも1種であることを特徴とする請求項34乃至38のいずれか1項に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide resin composition according to any one of claims 34 to 38, wherein the conductivity imparting agent is at least one selected from the group consisting of carbon black and hollow carbon fibrils.
  40.  灰分残渣が0.5重量%以下であり、体積固有抵抗値が1×10Ω・cm以下であることを特徴とする請求項34乃至39のいずれか1項に記載の導電性ポリアミド樹脂組成物。 40. The conductive polyamide resin composition according to claim 34, wherein the ash residue is 0.5% by weight or less and the volume resistivity is 1 × 10 8 Ω · cm or less. object.
  41.  前記(B-1)成分におけるオレフィン系共重合体がエチレン-ブテン共重合体及びエチレン-プロピレン共重合体の少なくとも一方であることを特徴とする請求項34乃至40のいずれか1項に記載の導電性ポリアミド樹脂組成物。 41. The olefin-based copolymer in the component (B-1) is at least one of an ethylene-butene copolymer and an ethylene-propylene copolymer. A conductive polyamide resin composition.
  42.  前記(B-2)成分におけるブロック共重合体の水素添加物がスチレン-エチレン-ブチレン-スチレン共重合体であることを特徴とする請求項34乃至41のいずれか1項に記載の導電性ポリアミド樹脂組成物。 The conductive polyamide according to any one of claims 34 to 41, wherein the hydrogenated block copolymer in the component (B-2) is a styrene-ethylene-butylene-styrene copolymer. Resin composition.
  43.  前記α,β-不飽和カルボン酸が無水マレイン酸であることを特徴とする請求項34乃至42のいずれか1項に記載の導電性ポリアミド樹脂組成物。 43. The conductive polyamide resin composition according to any one of claims 34 to 42, wherein the α, β-unsaturated carboxylic acid is maleic anhydride.
  44.  前記(A)成分の一部と前記(B)成分とを予め溶融混練してなる組成物と、前記(A)成分の残部の少なくとも一部と前記導電性付与剤とを予め溶融混練してなる組成物とを混合してなることを特徴とする請求項34乃至43のいずれか1項に記載の導電性ポリアミド樹脂組成物。 A composition obtained by previously melt-kneading a part of the component (A) and the component (B), at least a part of the remaining part of the component (A) and the conductivity-imparting agent are previously melt-kneaded. 44. The conductive polyamide resin composition according to any one of claims 34 to 43, wherein the conductive polyamide resin composition is mixed with the composition.
  45.  請求項34乃至44のいずれか1項に記載の導電性ポリアミド樹脂組成物を射出成形して得られる導電性射出成形品。 45. A conductive injection-molded product obtained by injection molding the conductive polyamide resin composition according to any one of claims 34 to 44.
  46.  請求項34乃至44のいずれか1項に記載の導電性ポリアミド樹脂組成物を押出成形してなる導電性押出成形品。 45. A conductive extruded product obtained by extruding the conductive polyamide resin composition according to any one of claims 34 to 44.
  47.  シート状であることを特徴とする請求項46に記載の導電性押出成形品。 The conductive extruded product according to claim 46, wherein the conductive extruded product is in a sheet form.
  48.  少なくともその一部が請求項45乃至47のいずれか1項に記載の成形品で構成されていることを特徴とする、自動車若しくは鉄道車両用部品又は電気、電子若しくはOA用部品。 48. A part for automobiles or railway vehicles, or a part for electric, electronic, or OA, characterized in that at least a part thereof is composed of the molded product according to any one of claims 45 to 47.
PCT/JP2010/055976 2009-04-20 2010-03-31 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film WO2010122886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080017011.0A CN102395626B (en) 2009-04-20 2010-03-31 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2009-101929 2009-04-20
JP2009101929 2009-04-20
JP2010-064416 2010-03-19
JP2010064416 2010-03-19
JP2010068830A JP5581767B2 (en) 2009-04-20 2010-03-24 Conductive thermoplastic resin composition, process for producing conductive thermoplastic resin composition, and injection-molded product and extrusion-molded product obtained therefrom
JP2010-068830 2010-03-24
JP2010075982A JP5585162B2 (en) 2010-03-29 2010-03-29 Electromagnetic wave shielding polyamide resin composition and molded product thereof
JP2010074392 2010-03-29
JP2010-075979 2010-03-29
JP2010-075981 2010-03-29
JP2010075981A JP5720104B2 (en) 2010-03-29 2010-03-29 Conductive polyamide resin composition and molded product thereof
JP2010-075982 2010-03-29
JP2010075979A JP5565034B2 (en) 2010-03-29 2010-03-29 Flame retardant polyamide resin composition and extruded product
JP2010-074392 2010-03-29
JP2010-080936 2010-03-31
JP2010080936A JP5593788B2 (en) 2010-03-19 2010-03-31 Conductive polyamide resin composition and conductive polyamide film

Publications (1)

Publication Number Publication Date
WO2010122886A1 true WO2010122886A1 (en) 2010-10-28

Family

ID=43011009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055976 WO2010122886A1 (en) 2009-04-20 2010-03-31 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film

Country Status (1)

Country Link
WO (1) WO2010122886A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153749A (en) * 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc Polyamide resin and production method therefor
JP2013252684A (en) * 2012-06-08 2013-12-19 Konica Minolta Inc Method of manufacturing conductive resin molded body
JP2014019738A (en) * 2012-07-13 2014-02-03 Mitsubishi Gas Chemical Co Inc Flame-retardant polyamide resin composition
WO2018147315A1 (en) * 2017-02-09 2018-08-16 東洋紡株式会社 Conductive polyamide resin composition
CN110885506A (en) * 2018-09-07 2020-03-17 锦湖石油化学株式会社 Conductive resin composition and method for preparing same
CN115449069A (en) * 2021-06-09 2022-12-09 上海凯赛生物技术股份有限公司 Copolyamide resin, copolyamide fiber, and preparation methods and applications thereof
CN116178604A (en) * 2022-11-11 2023-05-30 山东京博石油化工有限公司 Preparation method of thermoplastic polyolefin elastomer with high volume resistivity
CN116178604B (en) * 2022-11-11 2024-04-16 海南贝欧亿科技有限公司 Preparation method of thermoplastic polyolefin elastomer with high volume resistivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182866A (en) * 2002-12-03 2004-07-02 Mitsubishi Engineering Plastics Corp Conductive polyamide resin composition
JP2004269549A (en) * 2003-03-05 2004-09-30 Toray Ind Inc Polypentamethylene adipamide resin composition
JP2004269634A (en) * 2003-03-07 2004-09-30 Toray Ind Inc Weld-bondable member and molded product
JP2005508425A (en) * 2001-11-07 2005-03-31 ゼネラル・エレクトリック・カンパニイ Conductive polyphenylene ether-polyamide composition, method for producing the same, and article obtained

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005508425A (en) * 2001-11-07 2005-03-31 ゼネラル・エレクトリック・カンパニイ Conductive polyphenylene ether-polyamide composition, method for producing the same, and article obtained
JP2004182866A (en) * 2002-12-03 2004-07-02 Mitsubishi Engineering Plastics Corp Conductive polyamide resin composition
JP2004269549A (en) * 2003-03-05 2004-09-30 Toray Ind Inc Polypentamethylene adipamide resin composition
JP2004269634A (en) * 2003-03-07 2004-09-30 Toray Ind Inc Weld-bondable member and molded product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153749A (en) * 2011-01-24 2012-08-16 Mitsubishi Gas Chemical Co Inc Polyamide resin and production method therefor
JP2013252684A (en) * 2012-06-08 2013-12-19 Konica Minolta Inc Method of manufacturing conductive resin molded body
JP2014019738A (en) * 2012-07-13 2014-02-03 Mitsubishi Gas Chemical Co Inc Flame-retardant polyamide resin composition
WO2018147315A1 (en) * 2017-02-09 2018-08-16 東洋紡株式会社 Conductive polyamide resin composition
CN110885506A (en) * 2018-09-07 2020-03-17 锦湖石油化学株式会社 Conductive resin composition and method for preparing same
CN110885506B (en) * 2018-09-07 2022-08-16 锦湖石油化学株式会社 Conductive resin composition and method for preparing same
CN115449069A (en) * 2021-06-09 2022-12-09 上海凯赛生物技术股份有限公司 Copolyamide resin, copolyamide fiber, and preparation methods and applications thereof
CN116178604A (en) * 2022-11-11 2023-05-30 山东京博石油化工有限公司 Preparation method of thermoplastic polyolefin elastomer with high volume resistivity
CN116178604B (en) * 2022-11-11 2024-04-16 海南贝欧亿科技有限公司 Preparation method of thermoplastic polyolefin elastomer with high volume resistivity

Similar Documents

Publication Publication Date Title
KR102221899B1 (en) Polyamide composition and molded article
CN102395626B (en) Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
US9732223B2 (en) Semi-aromatic polyamide resin composition and molded article containing same
JP5522036B2 (en) Method for producing polyamide resin
WO2010122886A1 (en) Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
WO2007132733A1 (en) Polyamide resin
WO2007058170A1 (en) Resin composition having excellent heat resistance
JP2016138163A (en) Semi-aromatic polyamide resin, and molded article including the same
JP5282371B2 (en) Copolymer polyamide resin
JP6234175B2 (en) Polyamide resin composition
JP5598052B2 (en) Polyamide resin composition excellent in low-temperature impact resistance and molded product thereof
JP5565034B2 (en) Flame retardant polyamide resin composition and extruded product
JP5760405B2 (en) Polyamide resin composition and molded article comprising the same
JP5299051B2 (en) Conductive polyamide resin composition, process for producing conductive polyamide resin composition, injection-molded product and extrusion-molded product
JP5581767B2 (en) Conductive thermoplastic resin composition, process for producing conductive thermoplastic resin composition, and injection-molded product and extrusion-molded product obtained therefrom
JP5720104B2 (en) Conductive polyamide resin composition and molded product thereof
JP5585162B2 (en) Electromagnetic wave shielding polyamide resin composition and molded product thereof
JP5593788B2 (en) Conductive polyamide resin composition and conductive polyamide film
WO2021065205A1 (en) Inorganic reinforced semi-aromatic polyamide resin composition
JP3409436B2 (en) Resin composition, method for producing the same, and processed resin product
JP2014240494A (en) Conductive polyamide resin composition and molded article of the same
JPWO2019155982A1 (en) Thermoplastic resin composition and molded article formed by molding the thermoplastic resin composition
JP4507337B2 (en) High heat and impact resistant polyamide resin composition
JP2023141970A (en) Polyamide resin composition, and molded body thereof
JP3409400B2 (en) Resin composition and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017011.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766945

Country of ref document: EP

Kind code of ref document: A1