WO2018147315A1 - Conductive polyamide resin composition - Google Patents

Conductive polyamide resin composition Download PDF

Info

Publication number
WO2018147315A1
WO2018147315A1 PCT/JP2018/004169 JP2018004169W WO2018147315A1 WO 2018147315 A1 WO2018147315 A1 WO 2018147315A1 JP 2018004169 W JP2018004169 W JP 2018004169W WO 2018147315 A1 WO2018147315 A1 WO 2018147315A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
mass
conductive
carbon
Prior art date
Application number
PCT/JP2018/004169
Other languages
French (fr)
Japanese (ja)
Inventor
久保田 修司
信宏 吉村
雄平 福本
和樹 岩村
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018510895A priority Critical patent/JPWO2018147315A1/en
Publication of WO2018147315A1 publication Critical patent/WO2018147315A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a conductive polyamide resin composition
  • a conductive polyamide resin composition comprising a polyamide resin, conductive carbon black, and an olefin resin. More specifically, the present invention is not only excellent in conductivity, but also has fuel resistance, particularly excellent fuel resistance against alcohol-containing fuel, and is suitable for a fuel tank cap and the like. It is about.
  • Polyamide resin has excellent chemical resistance against gasoline and other organic solvents and alkaline liquids, and has high fluidity, heat resistance, and creep resistance, so it is used as an exterior material for automobiles and parts in engine rooms. It has been.
  • carbon black and other materials are added to impart electrical conductivity, suppress the generation and charging of static electricity, and have a function that can be discharged in a relatively short time. .
  • the present invention was devised in view of the current state of the prior art described above, and its purpose is to provide not only excellent conductivity but also fuel resistance in a conductive polyamide resin composition in which carbon black is blended with a polyamide resin.
  • it has excellent fuel resistance against alcohol-containing fuels, and it can be molded into molded products with high fluidity, excellent moldability, and excellent impact resistance, such as fuel tank caps.
  • An object of the present invention is to provide a conductive polyamide resin composition capable of providing the above.
  • the present inventors have found that an ethylene- ⁇ olefin copolymer blended for imparting impact resistance and dispersing conductive carbon black is swollen by a fuel containing alcohol.
  • the inventors have found that the distance between the carbon particles of the conductive carbon black is widened to the extent that the loss of conductivity occurs, and that the oil absorption of the conductive carbon black is a major cause. Then, it discovered that the said subject could be achieved by mix
  • the fibrous carbon (D) is a carbon nanotube and / or a milled carbon fiber having a fiber length of 200 ⁇ m or less.
  • the conductive polyamide resin composition according to [1] or [2].
  • the conductive polyamide resin composition of the present invention has a small decrease in conductivity even in an environment where it comes into contact with a fuel containing alcohol such as methanol or ethanol, and is a fuel system part of an automobile, such as a fuel tank cap, strainer, filter, etc. Can be used for parts such as valves.
  • a fuel containing alcohol such as methanol or ethanol
  • a fuel system part of an automobile such as a fuel tank cap, strainer, filter, etc.
  • the present invention will be specifically described below.
  • the conductive polyamide resin composition of the present invention reacts with polyamide resin (A) 84 to 40% by mass, conductive carbon black (B) 5 to 30% by mass, polyamide resin end groups and / or main chain amide groups.
  • the conductivity of the conductive polyamide resin composition of the present invention is such that the initial volume resistivity of a flat plate (100 mm ⁇ 100 mm ⁇ 2 mm (thickness)) obtained by injection molding is 1 ⁇ 10 5 ⁇ ⁇ cm or less.
  • the initial volume resistivity is preferably 5 ⁇ 10 4 ⁇ ⁇ cm or less.
  • the lower limit of the initial volume resistivity is not particularly limited, but is about 5 ⁇ 10 3 ⁇ ⁇ cm depending on the raw materials used.
  • the conductivity of the conductive polyamide resin composition of the present invention can suppress a decrease in conductivity even in an environment in contact with an alcohol-containing fuel, and the volume resistivity after exposure to CM15 fuel for 168 hours is 1 ⁇ . 10 7 ⁇ ⁇ cm or less can be achieved.
  • the volume resistivity after exposure to CM15 fuel for 168 hours is preferably 1 ⁇ 10 6 ⁇ ⁇ cm or less, and more preferably 5 ⁇ 10 5 ⁇ ⁇ cm or less.
  • the lower limit of the volume resistivity after the exposure is not particularly limited, but is about 5 ⁇ 10 4 ⁇ ⁇ cm depending on the raw materials used.
  • the volume resistivity can be measured by the method described in the Examples section below.
  • the Charpy impact strength is preferably 2.5 KJ / m 2 or more.
  • the upper limit of the Charpy impact strength is not particularly limited, but is about 20 KJ / m 2 from the raw materials used.
  • the Charpy impact strength can be measured by the method described in the Examples section below.
  • the conductive polyamide resin composition of the present invention preferably has excellent fluidity, and the melt index (ISO 1133 method, 250 ° C., load 10 kg) is preferably 0.5 g / 10 min or more, more preferably 1 g / 10. Min. Or more, more preferably 2 g / 10 min or more, particularly preferably 3 g / 10 min or more.
  • the melt index can be adjusted to an optimum range by adjusting the amount of each component described later.
  • the upper limit of the melt index is not particularly limited, but is about 20 g / 10 minutes from the raw materials used.
  • the melt index can be measured by the method described in the Examples section below.
  • the polyamide resin (A) used in the present invention has an acid amide bond (—CONH—) in the molecule.
  • Copolymers or blends thereof diamines such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine, and dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, and sebacic acid
  • diamines such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine
  • dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, and sebacic acid
  • examples thereof include, but are not limited to, a polymer or copolymer obtained by polycondensation of styrene and a copolymer thereof, or a blend thereof. From the viewpoint of availability, polyamide 6 and polyamide 66 are preferable.
  • These polyamide resins preferably have a number average molecular weight of 7000 to 30,000. If the number average molecular weight is less than 7000, the toughness tends to decrease, and if it exceeds 30,000, the fluidity tends to decrease. In terms of relative viscosity (measured in a 98% sulfuric acid solution), 1.5 to 4.0 is preferable.
  • the content of the polyamide resin (A) is 84 to 40% by mass, more preferably 70 to 50% by mass. When the polyamide resin is less than 40% by mass, the morphology structure in which the polyamide resin should be a continuous phase becomes unstable in the microstructure of the molded article made of the conductive polyamide resin composition.
  • the conductive carbon black (B) used in the present invention is not particularly limited, and ketjen black, acetylene black, furnace black, channel black, and the like can be used. Among these, ketjen black is particularly preferable because it exhibits excellent conductivity with a small content.
  • the content of the conductive carbon black (B) is preferably 5 to 30% by mass although it depends on the intended degree of conductivity.
  • the content of the conductive carbon black (B) is preferably 15 to 30% by mass, and more preferably 20 to 30% by mass.
  • These conductive carbon blacks are preferably dispersed in an amount of 80% by mass or more of the content in the polyamide resin that forms the continuous phase of the conductive polyamide resin composition.
  • the kneading step is extremely important, and functional groups such as carboxyl groups and hydroxyl groups present on the surface of the carbon black particles are also important.
  • the functional group on the surface of the carbon black acts to increase the affinity with the polyamide resin, and it becomes easy to disperse in the continuous phase of the polyamide resin.
  • the kneading conditions and the functional group concentration on the surface of the carbon black are not particularly limited, and 80% by mass or more of the carbon black content in the molded product of the conductive polyamide resin composition is a continuous phase. It is important that it is dispersed in a certain polyamide resin. By such dispersion of carbon black, a composition having excellent conductivity having a volume resistivity of 1 ⁇ 10 5 ⁇ ⁇ cm or less can be obtained. Other physical property values are also good.
  • the ethylene- ⁇ olefin copolymer (C) having a functional group capable of reacting with the terminal group and / or the amide group of the main chain of the polyamide resin used in the present invention (hereinafter referred to as a modified ethylene- ⁇ olefin copolymer or a modified olefin)
  • a modified ethylene- ⁇ olefin copolymer or a modified olefin examples of the polymer that serves as a basic skeleton of ethylene / propylene copolymer, ethylene / propylene / diene copolymer, ethylene / butene-1 copolymer, and ethylene / octene-1 copolymer
  • examples thereof include, but are not limited to, a polymer, an ethylene / hexene-1 copolymer, an ethylene / 4-methylpentene-1 copolymer, and an ethylene / cyclic olefin copolymer.
  • the content of the modified ethylene- ⁇ -olefin copolymer (C) is 3 to 30% by mass.
  • the content of the modified ethylene- ⁇ -olefin copolymer (C) is preferably 3 to 25% by mass, more preferably 3 to 20% by mass, and further preferably 3 to 15% by mass.
  • the functional group capable of reacting with the terminal group of the polyamide resin and / or the amide group of the main chain in the modified ethylene- ⁇ -olefin copolymer (C) used in the present invention is an amino group or a carboxyl group which is a terminal group of the polyamide resin.
  • a group capable of reacting with an amide group of the main chain specifically, examples thereof include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxadoline group, an amino group, and an isocyanate group.
  • An anhydride group is preferred because it is most reactive.
  • the amount of functional groups is natural, but the larger the reaction, the more the reaction with the polyamide resin proceeds, and the ethylene- ⁇ -olefin copolymer is dispersed with a finer particle size in the continuous phase of the polyamide resin. Improves impact resistance of objects.
  • the method for producing an ethylene- ⁇ -olefin copolymer having these functional groups includes a method of reacting the above-mentioned compound having a functional group in the step of producing the copolymer, a copolymer pellet and a compound having a functional group, etc. Although there is a method of mixing and kneading with an extruder or the like, the method is not limited thereto.
  • the modified ethylene- ⁇ -olefin copolymer (C) used in the present invention is preferably in the form of particles having an average particle diameter of 2 ⁇ m or less and having a morphological structure dispersed in a polyamide resin as a continuous phase.
  • the above morphological structure can be obtained by reacting the polyamide resin and the modified ethylene- ⁇ -olefin copolymer in the production process of the composition.
  • High impact characteristics can be obtained by finely dispersing the modified ethylene- ⁇ -olefin copolymer in the polyamide resin with an average particle size of 2 ⁇ m or less.
  • the fibrous carbon (D) used in the present invention is preferably a carbon nanotube and / or a milled carbon fiber having a fiber length of 200 ⁇ m or less.
  • the carbon nanotubes are not limited to these, but the number average fiber diameter is 30 nm or less, preferably 1 to 30 nm, more preferably 5 to 20 nm.
  • the length is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 8 ⁇ m, and still more preferably 0.2 to 5 ⁇ m.
  • Examples of such commercially available carbon nanotubes include VGCF (registered trademark) -X (number average fiber diameter 15 nm, non-linear shape) manufactured by Showa Denko KK, NC2100, NC2101, NC1100 manufactured by Nanosil, and Meijo Co., Ltd. Examples thereof include MWNT MTC (fiber diameter 10 to 40 nm) made of nanocarbon.
  • the milled carbon fiber is not limited to these, but the number average fiber length is preferably 200 ⁇ m or less. If the number average fiber length exceeds 200 ⁇ m, the dispersibility becomes insufficient, and thus the effect of improving the fuel resistance becomes small.
  • PANEX35 manufactured by ZOLTEK Co., etc. can be mentioned.
  • These fibrous carbons are preferably dispersed in an amount of 80% by mass or more of the content in the polyamide resin forming the continuous phase of the conductive polyamide resin composition.
  • the kneading step is extremely important.
  • the content of the fibrous carbon (D) is 1 to 20% by mass, preferably 1 to 15% by mass, more preferably 1.3 to 13% by mass. If the fibrous carbon (D) is less than 1% by mass, the effect of improving the fuel resistance is small, and if it exceeds 20% by mass, the impact resistance is lowered.
  • the morphology of the conductive polyamide resin composition of the present invention is extremely important.
  • the dispersion average particle diameter of the finely dispersed modified ethylene- ⁇ -olefin copolymer (C) can be 2 ⁇ m or less by constituting a continuous phase in which the polyamide resin (A) is a matrix and reacting with the polyamide resin.
  • the conductive carbon black (B) has a content of 80% by mass or more dispersed in the polyamide resin (A) which is a continuous phase depending on the functional groups present on the particle surface and the kneading conditions.
  • the fibrous carbon (D) can be uniformly dispersed in the polyamide resin due to its affinity with the matrix polyamide resin, and can be close to the conductive carbon black (B) in the polyamide resin. It can contribute to the expression of electrical conductivity of objects. Since the fibrous carbon (D) and the conductive carbon black (B) are close to each other, it is possible to suppress a decrease in conductivity due to the fuel or the alcohol-containing fuel.
  • Conductive carbon black (B) and fibrous carbon (D) are previously dispersed in a polyamide resin (A), and then an ethylene- ⁇ olefin copolymer (C) having a reactive functional group capable of reacting with the polyamide resin. It is effective to formulate a conductive polyamide resin composition.
  • the conductive polyamide resin composition of the present invention includes copper, which is a weather resistance improving material used in ordinary polyamide resin compositions.
  • Oxides and / or alkali metal halides, light or heat stabilizers may contain phenolic antioxidants, phosphorus antioxidants, mold release agents, crystal nucleating agents, lubricants, pigments, dyes, and the like.
  • the conductive polyamide resin composition of the present invention preferably occupies 80% by mass or more and 90% by mass or more in total of the components (A), (B), (C) and (D). Is more preferable, and more preferably 95% by mass or more.
  • the conductive polyamide resin composition of the present invention cannot form a stable morphological structure simply by mixing each component and kneading with an extruder, and kneading by a special method is recommended.
  • a polyamide resin (A), conductive carbon black (B), and fibrous carbon (D) are melted and kneaded in a melt kneader (for example, a twin screw extruder, a melt reaction kettle, etc.) After carbon black and fibrous carbon are uniformly dispersed, the modified ethylene- ⁇ -olefin copolymer (C) and other additives as necessary are further melt-kneaded.
  • the polyamide conductive resin composition having the morphological structure of the present invention can be stably produced.
  • the production of the polyamide conductive resin composition of the present invention is not limited to such a specific blend and melt kneading method, and other blends and melt methods can be used as long as the above composition and morphology structure are obtained.
  • the composition of the present invention can be produced.
  • volume resistivity was measured with a digital multimeter (TR-6843, manufactured by Advantest Corp.) with terminals connected to both ends of the 100 mm ⁇ 100 mm ⁇ 2 mm (thickness) plate obtained by injection molding at right angles to the gate position. .
  • the measurement specimen was vacuum-dried at 70 ° C. for 12 hours and then seasoned in an atmosphere of 20 ° C. and 50% RH for 24 hours.
  • a frozen section was prepared from the center of a 100 mm ⁇ 100 mm ⁇ 2 mm (thickness) plate obtained by injection molding.
  • a frozen section having a cross section perpendicular to the resin flow direction of the sample was prepared, stained with 5% phosphotungstic acid aqueous solution for 30 minutes, After carbon deposition, the photo was taken with a JEM2010 transmission electron microscope manufactured by JEOL Ltd. at an acceleration voltage of 200 KV and a direct magnification of 5000 times. Subsequently, the average particle diameter was calculated
  • the diameter converted to a sphere was taken as the particle diameter. Conversion was made the average of the major axis and minor axis of the ellipse as the diameter of the sphere.
  • the conductive carbon black (B) is present in the continuous phase by counting the number of all carbon black particles in the photograph and the number of carbon black particles in the continuous phase with an image analyzer. The percentage% of the number of particles of the conductive carbon black (B) to be made was mass%.
  • the fibrous carbon (D) was distinguished from the conductive carbon black by the difference in shape (the fibrous carbon (D) was fibrous and the conductive carbon black (B) was particulate). Similar to the conductive carbon black (B), the location of the fibrous carbon (D) was determined by counting the number of fibrous materials.
  • Polyamide resin A-1: Toyobo Nylon T-840 (manufactured by Toyobo Co., Ltd., polyamide 6, relative viscosity 2.2) Conductive carbon black (B) B-1: Furnace Carbon 100 (manufactured by Lion Corporation) B-2: Ketjen Carbon EC (manufactured by Lion Corporation) Modified ethylene- ⁇ olefin copolymer (C) C-1: Modified Olefin Copolymer TAFMER (registered trademark) MH7020 (Mitsui Chemicals Co., Ltd.
  • Fibrous carbon D-1: Carbon nanotube manufactured by Nanocyl NC-7000 Diameter 10-15 nm, Length 1.5 ⁇ m D-2: Milled carbon fiber manufactured by ZOLTEK PANEX35 MF MF200 Average fiber length 150 ⁇ m D ': Carbon fiber PANEX35 average fiber length 6mm made by ZOTEK

Abstract

This conductive polyamide resin composition makes it possible to mold a molded article which not only has excellent conductivity, but also has excellent fuel resistance, specifically fuel resistance to alcohol-containing fuels, and further has high fluidity, excellent moldability, and excellent impact resistance. This conductive polyamide resin composition contains: (A) 84-40 mass% polyamide resin, (B) 5-30 mass% conductive carbon black, (C) 3-30 mass% of an ethylene/α-olefin copolymer having a reactive functional group that can react with the terminal groups in the polyamide resin and/or the amide groups in the main chains, and (D) 1-20 mass% fibrous carbon.

Description

導電性ポリアミド樹脂組成物Conductive polyamide resin composition
 本発明は、ポリアミド樹脂と導電性カーボンブラックおよびオレフィン系の樹脂を含有してなる導電性ポリアミド樹脂組成物に関するものである。さらに詳しくは、本発明は、導電性に優れるのみならず、耐燃料性、特にアルコール含有燃料に対して優れた耐燃料性を併せもち、燃料タンク用キャップなどに好適な導電性ポリアミド樹脂組成物に関するものである。 The present invention relates to a conductive polyamide resin composition comprising a polyamide resin, conductive carbon black, and an olefin resin. More specifically, the present invention is not only excellent in conductivity, but also has fuel resistance, particularly excellent fuel resistance against alcohol-containing fuel, and is suitable for a fuel tank cap and the like. It is about.
 ポリアミド樹脂は、ガソリン等の有機溶剤やアルカリ液に対して優れた耐薬品性を示すと共に、流動性が高く、耐熱性、耐クリープ性に優れるため、自動車の外装材やエンジンルーム内部品として用いられている。また、さらにカーボンブラック等を配合して導電性を付与し、静電気の発生・帯電を抑制し、比較的短時間で放電可能な機能を持たせて、自動車部品の給油系統部品として用いられている。 Polyamide resin has excellent chemical resistance against gasoline and other organic solvents and alkaline liquids, and has high fluidity, heat resistance, and creep resistance, so it is used as an exterior material for automobiles and parts in engine rooms. It has been. In addition, carbon black and other materials are added to impart electrical conductivity, suppress the generation and charging of static electricity, and have a function that can be discharged in a relatively short time. .
 ポリアミド樹脂に導電性を付与するために、ポリアミド樹脂にカーボンブラックを配合することは良く知られているが、導電性を向上させるためにカーボンブラックの配合量を増やすと組成物の成形性、流動性、物性などにおいて様々な解決すべき欠点が認められ、それぞれ対策が提案されている。例えば、流動性や成形性を改良するため、ポリアミド樹脂にカーボンブラックと変性されたエチレン共重合体を配合することが提案され(特許文献1参照)、導電性と耐衝撃性を両立させる方法として、カーボンブラックの分散剤を配合する方法が提案され(特許文献2参照)、さらには、組成物のモルフォロジー構造を特定化することにより導電性、耐衝撃性および優れた摺動特性を発現させる提案(特許文献3参照)などがある。 It is well known to add carbon black to polyamide resin in order to impart conductivity to polyamide resin. However, if the amount of carbon black is increased to improve conductivity, the moldability and flow of the composition are increased. Various disadvantages to be solved are recognized in terms of properties and physical properties, and countermeasures have been proposed for each. For example, in order to improve fluidity and moldability, it has been proposed to blend a carbon black and a modified ethylene copolymer in a polyamide resin (see Patent Document 1), and as a method for achieving both conductivity and impact resistance. A method of blending a carbon black dispersant is proposed (see Patent Document 2), and further, a proposal to develop conductivity, impact resistance and excellent sliding characteristics by specifying the morphological structure of the composition. (See Patent Document 3).
特開昭58-93756号公報JP 58-93756 A 特開平11-180171号公報JP-A-11-180171 特開2006-257429号公報JP 2006-257429 A
 提案された方法によれば、それぞれに改善効果が認められるが、耐衝撃性に優れる樹脂組成物の場合、アルコール含有燃料に接触する環境下では、導電性が低下してくる欠点があることが判明した。 According to the proposed method, an improvement effect is recognized in each case, but in the case of a resin composition having excellent impact resistance, there is a drawback in that the conductivity decreases in an environment in contact with an alcohol-containing fuel. found.
 本発明は、上述の従来技術の現状に鑑み創案されたものであり、その目的は、ポリアミド樹脂にカーボンブラックを配合した導電性ポリアミド樹脂組成物において、導電性に優れるのみならず、耐燃料性、特にアルコール含有燃料に対して優れた耐燃料性を併せもち、さらには流動性が高く成形性に優れ、耐衝撃性に優れた成形品の成形が可能で、燃料タンク用キャップなどの成形品の提供を可能とする導電性ポリアミド樹脂組成物を提供することにある。 The present invention was devised in view of the current state of the prior art described above, and its purpose is to provide not only excellent conductivity but also fuel resistance in a conductive polyamide resin composition in which carbon black is blended with a polyamide resin. In particular, it has excellent fuel resistance against alcohol-containing fuels, and it can be molded into molded products with high fluidity, excellent moldability, and excellent impact resistance, such as fuel tank caps. An object of the present invention is to provide a conductive polyamide resin composition capable of providing the above.
 本発明者等は、上記課題を解決するために鋭意研究した結果、耐衝撃性付与や導電性カーボンブラックの分散のために配合したエチレン-αオレフィン共重合体が、アルコールを含有する燃料によって膨潤し、導電性カーボンブラックのカーボン粒子間の距離が、導電性消失が発生するほどまでに広がってしまうこと、及び導電性カーボンブラックの吸油性が主要な原因であることを突き止めた。そこで、繊維状カーボンを配合し、モルフォロジー構造を制御することで、上記課題を達成し得ることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have found that an ethylene-α olefin copolymer blended for imparting impact resistance and dispersing conductive carbon black is swollen by a fuel containing alcohol. In addition, the inventors have found that the distance between the carbon particles of the conductive carbon black is widened to the extent that the loss of conductivity occurs, and that the oil absorption of the conductive carbon black is a major cause. Then, it discovered that the said subject could be achieved by mix | blending fibrous carbon and controlling a morphology structure, and came to complete this invention.
 即ち、本発明は、以下の通りである。
[1] ポリアミド樹脂(A)84~40質量%、導電性カーボンブラック(B)5~30質量%、ポリアミド樹脂の末端基および/又は主鎖のアミド基と反応しうる反応性官能基を有するエチレン-αオレフィン共重合体(C)3~30質量%、および繊維状カーボン(D)1~20質量%を含有してなり、下記の特性(イ)、(ロ)を満足することを特徴とする導電性ポリアミド樹脂組成物。
 (イ)導電性ポリアミド樹脂組成物を射出成形することによって得た平板(100mm×100mm×2mm(厚み))の初期の体積固有抵抗が1×10Ω・cm以下で、該平板をCM15燃料に168時間暴露した後の体積固有抵抗が1×10Ω・cm以下
 (ロ)導電性ポリアミド樹脂組成物を射出成形することによって得た試験片の-40℃におけるシャルピー衝撃強度が2.0KJ/m以上
[2] 前記導電性ポリアミド樹脂組成物が、下記の特性(ハ)を満足する[1]に記載の導電性ポリアミド樹脂組成物。
 (ハ)温度250℃、荷重10kgfで測定したメルトインデックスが0.5g/10min以上
[3] 前記繊維状カーボン(D)が、カーボンナノチューブ及び/または繊維長が200μm以下のミルドカーボンファイバーである[1]または[2]に記載の導電性ポリアミド樹脂組成物。
That is, the present invention is as follows.
[1] Polyamide resin (A) 84 to 40% by mass, conductive carbon black (B) 5 to 30% by mass, having a reactive functional group capable of reacting with an end group of the polyamide resin and / or an amide group of the main chain It contains 3 to 30% by mass of an ethylene-α-olefin copolymer (C) and 1 to 20% by mass of fibrous carbon (D), and satisfies the following characteristics (A) and (B) Conductive polyamide resin composition.
(A) The initial volume specific resistance of a flat plate (100 mm × 100 mm × 2 mm (thickness)) obtained by injection molding the conductive polyamide resin composition is 1 × 10 5 Ω · cm or less, and the flat plate is made of CM15 fuel. Charpy impact strength at -40 ℃ of the resulting test piece by the volume resistivity after exposure for 168 hours in the injection-molding the 1 × 10 7 Ω · cm or less (b) the conductive polyamide resin composition 2.0KJ / M 2 or more [2] The conductive polyamide resin composition according to [1], wherein the conductive polyamide resin composition satisfies the following characteristics (c).
(C) Melt index measured at a temperature of 250 ° C. and a load of 10 kgf is 0.5 g / 10 min or more [3] The fibrous carbon (D) is a carbon nanotube and / or a milled carbon fiber having a fiber length of 200 μm or less. The conductive polyamide resin composition according to [1] or [2].
 本発明の導電性ポリアミド樹脂組成物は、メタノールやエタノールなどのアルコールを含有する燃料に接触する環境下でも、導電性の低下が小さく、自動車の燃料系部品、例えば燃料タンクのキャップやストレーナー、フィルター、バルブ等の部品に使用することができる。 The conductive polyamide resin composition of the present invention has a small decrease in conductivity even in an environment where it comes into contact with a fuel containing alcohol such as methanol or ethanol, and is a fuel system part of an automobile, such as a fuel tank cap, strainer, filter, etc. Can be used for parts such as valves.
 以下に本発明を具体的に説明する。
 本発明の導電性ポリアミド樹脂組成物は、ポリアミド樹脂(A)84~40質量%、導電性カーボンブラック(B)5~30質量%、ポリアミド樹脂の末端基および/又は主鎖のアミド基と反応しうる反応性官能基を有するエチレン-αオレフィン共重合体(C)3~30質量%、および繊維状カーボン(D)1~20質量%を含有してなり、下記の特性(イ)、(ロ)を満足することを特徴とする。
 (イ)導電性ポリアミド樹脂組成物を射出成形することによって得た平板(100mm×100mm×2mm(厚み))の初期の体積固有抵抗が1×10Ω・cm以下で、該平板をCM15燃料に168時間暴露した後の体積固有抵抗が1×107Ω・cm以下
 (ロ)導電性ポリアミド樹脂組成物を射出成形することによって得た試験片の-40℃におけるシャルピー衝撃強度が2.0KJ/m以上
The present invention will be specifically described below.
The conductive polyamide resin composition of the present invention reacts with polyamide resin (A) 84 to 40% by mass, conductive carbon black (B) 5 to 30% by mass, polyamide resin end groups and / or main chain amide groups. Comprising 3 to 30% by mass of an ethylene-α-olefin copolymer (C) having a reactive functional group and 1 to 20% by mass of fibrous carbon (D), and having the following characteristics (a), ( (B) is satisfied.
(A) The initial volume specific resistance of a flat plate (100 mm × 100 mm × 2 mm (thickness)) obtained by injection molding the conductive polyamide resin composition is 1 × 10 5 Ω · cm or less, and the flat plate is made of CM15 fuel. Charpy impact strength at -40 ℃ of the resulting test piece by the volume resistivity after exposure for 168 hours in the injection-molding the 1 × 10 7 Ω · cm or less (b) the conductive polyamide resin composition 2.0KJ / M 2 or more
 各成分の含有量は、導電性ポリアミド樹脂組成物中の割合(質量%)である。
 特性(イ)は、後記する導電性ポリアミド樹脂組成物のモルフォロジー構造の制御により達成される。
 CM15燃料とは、Fuel-C(イソオクタン/トルエン=1/1(容量))にメタノールが15質量%含まれたものである。
The content of each component is a ratio (mass%) in the conductive polyamide resin composition.
The characteristic (a) is achieved by controlling the morphology structure of the conductive polyamide resin composition described later.
CM15 fuel is fuel-C (isooctane / toluene = 1/1 (volume)) containing 15% by mass of methanol.
 本発明の導電性ポリアミド樹脂組成物の導電性は、射出成形することによって得た平板(100mm×100mm×2mm(厚み))の初期の体積固有抵抗が1×10Ω・cm以下である。初期の体積固有抵抗は、5×10Ω・cm以下であることが好ましい。初期の体積固有抵抗の下限は、特に限定されないが、用いる原材料等から5×10Ω・cm程度である。 The conductivity of the conductive polyamide resin composition of the present invention is such that the initial volume resistivity of a flat plate (100 mm × 100 mm × 2 mm (thickness)) obtained by injection molding is 1 × 10 5 Ω · cm or less. The initial volume resistivity is preferably 5 × 10 4 Ω · cm or less. The lower limit of the initial volume resistivity is not particularly limited, but is about 5 × 10 3 Ω · cm depending on the raw materials used.
 本発明の導電性ポリアミド樹脂組成物の導電性は、アルコール含有燃料に接触する環境下であっても、導電性の低下を抑制でき、CM15燃料に168時間暴露した後の体積固有抵抗が1×10Ω・cm以下を達成できる。CM15燃料に168時間暴露した後の体積固有抵抗は、1×10Ω・cm以下が好ましく、5×10Ω・cm以下がより好ましい。暴露後の体積固有抵抗の下限は、特に限定されないが、用いる原材料等から5×10Ω・cm程度である。体積固有抵抗は、後記の実施例の項に記載の方法で測定できる。 The conductivity of the conductive polyamide resin composition of the present invention can suppress a decrease in conductivity even in an environment in contact with an alcohol-containing fuel, and the volume resistivity after exposure to CM15 fuel for 168 hours is 1 ×. 10 7 Ω · cm or less can be achieved. The volume resistivity after exposure to CM15 fuel for 168 hours is preferably 1 × 10 6 Ω · cm or less, and more preferably 5 × 10 5 Ω · cm or less. The lower limit of the volume resistivity after the exposure is not particularly limited, but is about 5 × 10 4 Ω · cm depending on the raw materials used. The volume resistivity can be measured by the method described in the Examples section below.
 また、低温耐衝撃性に優れ、-40℃におけるシャルピー衝撃強度が2.0KJ/m以上であり、導電性ポリアミド樹脂組成物が、後記する構成を取ることで達成できる。シャルピー衝撃強度は、好ましくは、2.5KJ/m以上である。シャルピー衝撃強度の上限は、特に限定されないが、用いる原材料等から20KJ/m程度である。シャルピー衝撃強度は、後記の実施例の項に記載の方法で測定できる。 Further, it has excellent low-temperature impact resistance, has a Charpy impact strength at −40 ° C. of 2.0 KJ / m 2 or more, and can be achieved by the conductive polyamide resin composition having the structure described later. The Charpy impact strength is preferably 2.5 KJ / m 2 or more. The upper limit of the Charpy impact strength is not particularly limited, but is about 20 KJ / m 2 from the raw materials used. The Charpy impact strength can be measured by the method described in the Examples section below.
 さらに、本発明の導電性ポリアミド樹脂組成物は、流動性に優れることが好ましく、メルトインデックス(ISO1133法、250℃、荷重10kg)が0.5g/10分以上が好ましく、より好ましくは1g/10分以上、さらに好ましくは2g/10分以上、特に好ましくは3g/10分以上である。メルトインデックスは、後記する各成分の量を調整することで、最適な範囲とすることができる。メルトインデックスの上限は、特に限定されないが、用いる原材料等から20g/10分程度である。メルトインデックスは、後記の実施例の項に記載の方法で測定できる。 Furthermore, the conductive polyamide resin composition of the present invention preferably has excellent fluidity, and the melt index (ISO 1133 method, 250 ° C., load 10 kg) is preferably 0.5 g / 10 min or more, more preferably 1 g / 10. Min. Or more, more preferably 2 g / 10 min or more, particularly preferably 3 g / 10 min or more. The melt index can be adjusted to an optimum range by adjusting the amount of each component described later. The upper limit of the melt index is not particularly limited, but is about 20 g / 10 minutes from the raw materials used. The melt index can be measured by the method described in the Examples section below.
 本発明で用いるポリアミド樹脂(A)とは、分子中に酸アミド結合(-CONH-)を有するものである。具体的には、ε-カプロラクタム、6-アミノカプロン酸、ω-エナントラクタム、7-アミノヘプタン酸、11-アミノウンデカン酸、9-アミノノナン酸、α-ピロリドン、α-ピペリジンなどから得られる重合体または共重合体もしくはこれらのブレンド物、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシリレンジアミンなどのジアミンと、テレフタール酸、イソフタール酸、アジピン酸、セバシン酸などのジカルボン酸とを重縮合して得られる重合体または共重合体もしくはこれらのブレンド物等を例示することができるが、これらに限定されるものではない。入手のし易さから、ポリアミド6、ポリアミド66が好ましい。 The polyamide resin (A) used in the present invention has an acid amide bond (—CONH—) in the molecule. Specifically, a polymer obtained from ε-caprolactam, 6-aminocaproic acid, ω-enantolactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α-pyrrolidone, α-piperidine, etc. Copolymers or blends thereof, diamines such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, metaxylylenediamine, and dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, and sebacic acid Examples thereof include, but are not limited to, a polymer or copolymer obtained by polycondensation of styrene and a copolymer thereof, or a blend thereof. From the viewpoint of availability, polyamide 6 and polyamide 66 are preferable.
 これらのポリアミド樹脂の数平均分子量は7000~30000のものが好ましく用いられる。数平均分子量が7000未満ではタフネスが低下する傾向があり、また30000を越えると流動性が低下する傾向がある。相対粘度(98%硫酸溶液中で測定)で表すと、1.5~4.0が好ましい。ポリアミド樹脂(A)の含有量は、84~40質量%、より好ましくは70~50質量%である。ポリアミド樹脂が40質量%未満になると、導電性ポリアミド樹脂組成物からなる成形品の微細構造において、ポリアミド樹脂が連続相となるべきモルフォロジー構造が不安定になり好ましくない。 These polyamide resins preferably have a number average molecular weight of 7000 to 30,000. If the number average molecular weight is less than 7000, the toughness tends to decrease, and if it exceeds 30,000, the fluidity tends to decrease. In terms of relative viscosity (measured in a 98% sulfuric acid solution), 1.5 to 4.0 is preferable. The content of the polyamide resin (A) is 84 to 40% by mass, more preferably 70 to 50% by mass. When the polyamide resin is less than 40% by mass, the morphology structure in which the polyamide resin should be a continuous phase becomes unstable in the microstructure of the molded article made of the conductive polyamide resin composition.
 本発明で用いる導電性カーボンブラック(B)としては特に制限されるものではなく、ケッチェンブラック、アセチレンブラック、ファーネスブラックおよびチャンネルブラック等を使用することができる。これらの中ではケッチェンブラックが、少ない含有量で優れた導電性を発揮するため特に好ましい。導電性カーボンブラック(B)の含有量は、目的とする導電性の度合いにもよるが、5~30質量%が好適である。導電性カーボンブラック(B)の含有量は、15~30質量%が好ましく、20~30質量%がより好ましい。 The conductive carbon black (B) used in the present invention is not particularly limited, and ketjen black, acetylene black, furnace black, channel black, and the like can be used. Among these, ketjen black is particularly preferable because it exhibits excellent conductivity with a small content. The content of the conductive carbon black (B) is preferably 5 to 30% by mass although it depends on the intended degree of conductivity. The content of the conductive carbon black (B) is preferably 15 to 30% by mass, and more preferably 20 to 30% by mass.
 これらの導電性カーボンブラックは、導電性ポリアミド樹脂組成物の連続相を形成するポリアミド樹脂中に、含有量の80質量%以上分散することが好ましい。そのためには混練工程が極めて重要であると共に、カーボンブラックの粒子表面に存在するカルボキシル基や水酸基等の官能基も重要である。混錬工程で十分練ることによりカーボンブラックの表面の官能基が作用してポリアミド樹脂との親和性が増大し、ポリアミド樹脂の連続相に分散しやすくなる。本発明では、混錬条件やカーボンブラックの表面にある官能基濃度等は特に限定するものではなく、導電性ポリアミド樹脂組成物の成形品においてカーボンブラックの含有量の80質量%以上が連続相であるポリアミド樹脂中に分散していることが重要である。このようなカーボンブラックの分散によって、体積固有抵抗が1×10Ω・cm以下の優れた導電性を持つ組成物が得られる。また他の物性値も良好となる。 These conductive carbon blacks are preferably dispersed in an amount of 80% by mass or more of the content in the polyamide resin that forms the continuous phase of the conductive polyamide resin composition. For this purpose, the kneading step is extremely important, and functional groups such as carboxyl groups and hydroxyl groups present on the surface of the carbon black particles are also important. By sufficiently kneading in the kneading process, the functional group on the surface of the carbon black acts to increase the affinity with the polyamide resin, and it becomes easy to disperse in the continuous phase of the polyamide resin. In the present invention, the kneading conditions and the functional group concentration on the surface of the carbon black are not particularly limited, and 80% by mass or more of the carbon black content in the molded product of the conductive polyamide resin composition is a continuous phase. It is important that it is dispersed in a certain polyamide resin. By such dispersion of carbon black, a composition having excellent conductivity having a volume resistivity of 1 × 10 5 Ω · cm or less can be obtained. Other physical property values are also good.
 本発明で用いるポリアミド樹脂の末端基および/または主鎖のアミド基と反応しうる官能基を有するエチレン-αオレフィン共重合体(C)(以下、変性エチレン-αオレフィン共重合体、または変性オレフィン共重合体と称することもある)の基本骨格となる重合体としては、エチレン/プロピレン共重合体、エチレン/プロピレン/ジエン共重合体、エチレン/ブテン-1共重合体、エチレン/オクテン-1共重合体、エチレン/ヘキセン-1共重合体、エチレン/4-メチルペンテン-1共重合体、エチレン/環状オレフィン共重合体等を挙げることができるが、これらに限定されるものではない。変性エチレン-αオレフィン共重合体(C)の含有量は3~30質量%である。変性エチレン-αオレフィン共重合体(C)の含有量は、3~25質量%が好ましく、3~20質量%がより好ましく、3~15質量%がさらに好ましい。 The ethylene-α olefin copolymer (C) having a functional group capable of reacting with the terminal group and / or the amide group of the main chain of the polyamide resin used in the present invention (hereinafter referred to as a modified ethylene-α olefin copolymer or a modified olefin) Examples of the polymer that serves as a basic skeleton of ethylene / propylene copolymer, ethylene / propylene / diene copolymer, ethylene / butene-1 copolymer, and ethylene / octene-1 copolymer Examples thereof include, but are not limited to, a polymer, an ethylene / hexene-1 copolymer, an ethylene / 4-methylpentene-1 copolymer, and an ethylene / cyclic olefin copolymer. The content of the modified ethylene-α-olefin copolymer (C) is 3 to 30% by mass. The content of the modified ethylene-α-olefin copolymer (C) is preferably 3 to 25% by mass, more preferably 3 to 20% by mass, and further preferably 3 to 15% by mass.
 本発明で用いる変性エチレン-αオレフィン共重合体(C)におけるポリアミド樹脂の末端基および/または主鎖のアミド基と反応しうる官能基とは、ポリアミド樹脂の末端基であるアミノ基、カルボキシル基および主鎖のアミド基と反応しうる基であり、具体的にはカルボン酸基、酸無水物基、エポキシ基、オキサドリン基、アミノ基、イソシアネート基等が例示されるが、これらの中では酸無水物基が最も反応性に優れているので好ましい。また官能基の量は当然のことであるが、多い方がポリアミド樹脂との反応が進み、エチレン-αオレフィン共重合体はポリアミド樹脂の連続相の中でより微細な粒径で分散し、組成物の耐衝撃性も向上する。これらの官能基を有するエチレン-αオレフィン共重合体の製造法は共重合体を製造する工程で上記の官能基を持つ化合物を反応させる方法や共重合体のペレットと官能基を持つ化合物等を混合し、押出機等で混錬して反応させる方法等があるが、これらに限定されるものではない。 The functional group capable of reacting with the terminal group of the polyamide resin and / or the amide group of the main chain in the modified ethylene-α-olefin copolymer (C) used in the present invention is an amino group or a carboxyl group which is a terminal group of the polyamide resin. And a group capable of reacting with an amide group of the main chain, specifically, examples thereof include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxadoline group, an amino group, and an isocyanate group. An anhydride group is preferred because it is most reactive. The amount of functional groups is natural, but the larger the reaction, the more the reaction with the polyamide resin proceeds, and the ethylene-α-olefin copolymer is dispersed with a finer particle size in the continuous phase of the polyamide resin. Improves impact resistance of objects. The method for producing an ethylene-α-olefin copolymer having these functional groups includes a method of reacting the above-mentioned compound having a functional group in the step of producing the copolymer, a copolymer pellet and a compound having a functional group, etc. Although there is a method of mixing and kneading with an extruder or the like, the method is not limited thereto.
 本発明で用いる変性エチレン-αオレフィン共重合体(C)は、平均粒径2μm以下の粒子状で、連続相であるポリアミド樹脂中に分散するモルフォロジー構造を持つことが好ましい。上記のモルフォロジー構造は、組成物の製造工程でポリアミド樹脂と変性エチレン-αオレフィン共重合体が反応することにより得られる。ポリアミド樹脂中に変性エチレン-αオレフィン共重合体が2μm以下の平均粒径で微分散することにより、高い衝撃特性が得られる。 The modified ethylene-α-olefin copolymer (C) used in the present invention is preferably in the form of particles having an average particle diameter of 2 μm or less and having a morphological structure dispersed in a polyamide resin as a continuous phase. The above morphological structure can be obtained by reacting the polyamide resin and the modified ethylene-α-olefin copolymer in the production process of the composition. High impact characteristics can be obtained by finely dispersing the modified ethylene-α-olefin copolymer in the polyamide resin with an average particle size of 2 μm or less.
 本発明で用いる繊維状カーボン(D)とは、カーボンナノチューブ及び/または繊維長200μm以下のミルドカーボンファイバーであることが好ましい。カーボンナノチューブは、これらに限定されるものでは無いが、数平均繊維径が30nm以下であり、好ましくは1~30nm、より好ましくは5~20nmである。長さとしては、好ましくは0.1~10μm、より好ましくは0.2~8μm、さらに好ましくは0.2~5μmである。このようなカーボンナノチューブの市販品としては、昭和電工株式会社製のVGCF(登録商標)-X(数平均繊維径15nm、非直線的形状)、ナノシル社製のNC2100、NC2101、NC1100、株式会社名城ナノカーボン製のMWNT MTC(繊維径10~40nm)等が挙げられる。ミルドカーボンファイバーとしては、これらに限定されるものではないが、その数平均繊維長は200μm以下が好ましい。数平均繊維長が200μm超では、分散性が不十分となるため、耐燃料性の改善効果が小さくなってしまう。このようなミルドカーボンファイバーの市販品としては、ZOLTEK社製のPANEX35等が上げられる。 The fibrous carbon (D) used in the present invention is preferably a carbon nanotube and / or a milled carbon fiber having a fiber length of 200 μm or less. The carbon nanotubes are not limited to these, but the number average fiber diameter is 30 nm or less, preferably 1 to 30 nm, more preferably 5 to 20 nm. The length is preferably 0.1 to 10 μm, more preferably 0.2 to 8 μm, and still more preferably 0.2 to 5 μm. Examples of such commercially available carbon nanotubes include VGCF (registered trademark) -X (number average fiber diameter 15 nm, non-linear shape) manufactured by Showa Denko KK, NC2100, NC2101, NC1100 manufactured by Nanosil, and Meijo Co., Ltd. Examples thereof include MWNT MTC (fiber diameter 10 to 40 nm) made of nanocarbon. The milled carbon fiber is not limited to these, but the number average fiber length is preferably 200 μm or less. If the number average fiber length exceeds 200 μm, the dispersibility becomes insufficient, and thus the effect of improving the fuel resistance becomes small. As a commercial product of such milled carbon fiber, PANEX35 manufactured by ZOLTEK Co., etc. can be mentioned.
 これらの繊維状カーボンは、導電性ポリアミド樹脂組成物の連続相を形成するポリアミド樹脂中に、含有量の80質量%以上分散することが好ましい。そのためには混練工程が極めて重要である。 These fibrous carbons are preferably dispersed in an amount of 80% by mass or more of the content in the polyamide resin forming the continuous phase of the conductive polyamide resin composition. For this purpose, the kneading step is extremely important.
 繊維状カーボン(D)の含有量は1~20質量%であり、1~15質量%が好ましく、より好ましくは1.3~13質量%である。繊維状カーボン(D)が1質量%未満では耐燃料性の改善効果が小さく、20質量%を超えると耐衝撃性が低下してしまうため好ましくない。 The content of the fibrous carbon (D) is 1 to 20% by mass, preferably 1 to 15% by mass, more preferably 1.3 to 13% by mass. If the fibrous carbon (D) is less than 1% by mass, the effect of improving the fuel resistance is small, and if it exceeds 20% by mass, the impact resistance is lowered.
 本発明の導電性ポリアミド樹脂組成物は、そのモルフォロジー構造が極めて重要である。ポリアミド樹脂(A)がマトリックスとなる連続相を構成し、そのポリアミド樹脂と反応することにより、微分散している変性エチレン-αオレフィン共重合体(C)の分散平均粒径は2μm以下となり得る。さらに導電性カーボンブラック(B)は、粒子表面に存在する官能基と混練条件により連続相であるポリアミド樹脂(A)中に、含有量の80質量%以上が分散している。また繊維状カーボン(D)は、マトリックスであるポリアミド樹脂との親和性により、ポリアミド樹脂中に均一に分散することが可能であり、ポリアミド樹脂中の導電性カーボンブラック(B)に近接でき、組成物の導電性発現に寄与できる。繊維状カーボン(D)と導電性カーボンブラック(B)が近接していることで、燃料やアルコール含有燃料による導電性の低下が抑制可能となる。 The morphology of the conductive polyamide resin composition of the present invention is extremely important. The dispersion average particle diameter of the finely dispersed modified ethylene-α-olefin copolymer (C) can be 2 μm or less by constituting a continuous phase in which the polyamide resin (A) is a matrix and reacting with the polyamide resin. . Further, the conductive carbon black (B) has a content of 80% by mass or more dispersed in the polyamide resin (A) which is a continuous phase depending on the functional groups present on the particle surface and the kneading conditions. The fibrous carbon (D) can be uniformly dispersed in the polyamide resin due to its affinity with the matrix polyamide resin, and can be close to the conductive carbon black (B) in the polyamide resin. It can contribute to the expression of electrical conductivity of objects. Since the fibrous carbon (D) and the conductive carbon black (B) are close to each other, it is possible to suppress a decrease in conductivity due to the fuel or the alcohol-containing fuel.
 前記したモルフォロジー構造に制御するためには、各成分の配合方法が重要となる。ポリアミド樹脂(A)に、予め導電性カーボンブラック(B)と繊維状カーボン(D)を分散させた後、ポリアミド樹脂と反応しうる反応性官能基を有するエチレン-αオレフィン共重合体(C)を配合して、導電性ポリアミド樹脂組成物とすることが有効である。 In order to control to the above morphological structure, the blending method of each component is important. Conductive carbon black (B) and fibrous carbon (D) are previously dispersed in a polyamide resin (A), and then an ethylene-α olefin copolymer (C) having a reactive functional group capable of reacting with the polyamide resin. It is effective to formulate a conductive polyamide resin composition.
 本発明の導電性ポリアミド樹脂組成物には上述した(A)、(B)、(C)および(D)の成分の他に、通常のポリアミド樹脂組成物に用いられる耐候性改良材である銅酸化物、および/又はハロゲン化アルカリ金属、光または熱安定剤としてフェノール系酸化防止剤やリン系酸化防止剤、離型剤、結晶核剤、滑剤、顔料、染料等を含有しても良い。
 本発明の導電性ポリアミド樹脂組成物は、(A)、(B)、(C)および(D)の各成分の合計で、80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。
In addition to the components (A), (B), (C) and (D) described above, the conductive polyamide resin composition of the present invention includes copper, which is a weather resistance improving material used in ordinary polyamide resin compositions. Oxides and / or alkali metal halides, light or heat stabilizers may contain phenolic antioxidants, phosphorus antioxidants, mold release agents, crystal nucleating agents, lubricants, pigments, dyes, and the like.
The conductive polyamide resin composition of the present invention preferably occupies 80% by mass or more and 90% by mass or more in total of the components (A), (B), (C) and (D). Is more preferable, and more preferably 95% by mass or more.
 本発明の導電性ポリアミド樹脂組成物は各成分を混合して、単に押出機で混錬するだけでは安定したモルフォロジー構造を形成することができず、特別の方法により混錬することが推奨される。例えば、溶融混錬機(例えば二軸押出機や溶融反応釜等々)にポリアミド樹脂(A)と導電性カーボンブラック(B)及び繊維状カーボン(D)とを溶融混錬し、ポリアミド樹脂中にカーボンブラック、繊維状カーボンを均一に分散させた後、変性エチレン-αオレフィン共重合体(C)、および必要に応じて他の添加物を加えて更に溶融混錬する。このような二段階の溶融混錬をすることにより、本発明のモルフォロジー構造を持つポリアミド導電性樹脂組成物が安定して製造することができる。しかし、本発明のポリアミド導電性樹脂組成物の製造では、かかる特定のブレンド、溶融混錬方法に限られるものではなく、前記の組成およびモルフォロジー構造が得られる限り他のブレンド、溶融方法を用いて本発明の組成物を製造することができる。 The conductive polyamide resin composition of the present invention cannot form a stable morphological structure simply by mixing each component and kneading with an extruder, and kneading by a special method is recommended. . For example, a polyamide resin (A), conductive carbon black (B), and fibrous carbon (D) are melted and kneaded in a melt kneader (for example, a twin screw extruder, a melt reaction kettle, etc.) After carbon black and fibrous carbon are uniformly dispersed, the modified ethylene-α-olefin copolymer (C) and other additives as necessary are further melt-kneaded. By performing such two-stage melt-kneading, the polyamide conductive resin composition having the morphological structure of the present invention can be stably produced. However, the production of the polyamide conductive resin composition of the present invention is not limited to such a specific blend and melt kneading method, and other blends and melt methods can be used as long as the above composition and morphology structure are obtained. The composition of the present invention can be produced.
 以下に実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に何ら制限されるものではない。
 また以下の実施例、比較例において示した各特性、物性値は下記の試験方法で測定した。試験片は射出成形機(東芝機械(株)製、IS80)により下記条件にて成形した。
  樹脂温度:275℃
  金型温度:40℃
  射出圧力:50kg/cm
  射出時間:1秒
  保圧力:60kg/cm
  保持時間:6秒
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
In addition, each characteristic and physical property value shown in the following examples and comparative examples were measured by the following test methods. The test piece was molded under the following conditions by an injection molding machine (Toshiba Machine Co., Ltd., IS80).
Resin temperature: 275 ° C
Mold temperature: 40 ℃
Injection pressure: 50 kg / cm 2
Injection time: 1 second Holding pressure: 60 kg / cm 2
Holding time: 6 seconds
1.体積固有抵抗
 射出成形で得た100mm×100mm×2mm(厚み)のプレートのゲート位置に対し直角方向の両端に端子を接続し、デジタルマルチメーター(アドバンテスト(株)製、TR-6843)で測定した。なお測定試験片は70℃で12時間、真空乾燥した後、20℃、50%RHの雰囲気で24時間シーズニングしてから測定した。
1. Volume resistivity was measured with a digital multimeter (TR-6843, manufactured by Advantest Corp.) with terminals connected to both ends of the 100 mm × 100 mm × 2 mm (thickness) plate obtained by injection molding at right angles to the gate position. . The measurement specimen was vacuum-dried at 70 ° C. for 12 hours and then seasoned in an atmosphere of 20 ° C. and 50% RH for 24 hours.
2.体積固有抵抗(燃料暴露後)
 テストピース浸漬用のCM15燃料は、Fuel-C(イソオクタン/トルエン=1/1(容量))にメタノール(ナカライテスク社製 純度99.5%)を15質量%になるよう混合して作製した。そこに、1.で使用したテストピースを浸漬し、60℃オーブン中に静置して試験を実施した。
 テストピースは168時間浸漬後にCM15燃料から取り出した後、表面に付着した溶液をふき取った後、1分以内に1.と同様の方法で体積固有抵抗を測定した。
2. Volume resistivity (after fuel exposure)
CM15 fuel for dipping the test piece was prepared by mixing Fuel (C) (isooctane / toluene = 1/1 (volume)) with methanol (purity 99.5%, manufactured by Nacalai Tesque) to 15% by mass. There, 1. The test piece used in was immersed in a 60 ° C. oven and tested.
The test piece was immersed from the CM15 fuel after being immersed for 168 hours, and the solution adhering to the surface was wiped off. The volume resistivity was measured by the same method.
3.ノッチ入りシャルピー衝撃強度
 低温シャルピー衝撃強度:ISO-179-1eAに準じて、射出成形でダンベル片を作製して-40℃で測定した。
3. Notched Charpy impact strength Low temperature Charpy impact strength: Dumbbell pieces were produced by injection molding according to ISO-179-1eA and measured at -40 ° C.
4.メルトインデックス
 ISO1133に準拠して測定した。温度250℃、荷重10kgfで測定した。
4). Melt index It measured based on ISO1133. Measurement was performed at a temperature of 250 ° C. and a load of 10 kgf.
5.モルフォロジー構造の観察
 射出成形で得た100mm×100mm×2mm(厚み)のプレートの中央部より凍結切片を作製した。
 変性エチレン-αオレフィン共重合体(C)の平均粒子径の測定には、試料の樹脂流れの方向と垂直な断面の凍結切片を作製し、5%リンタングステン酸水溶液で30分間染色し、さらにカーボン蒸着を施した後、日本電子製JEM2010透過型電子顕微鏡で加速電圧200KV、直接倍率5000倍で観察して、写真撮影をした。次いで、得られた写真を画像解析装置に供することによって、平均粒子径を求めた。当該装置では、ドメイン(分散相)の観察像が楕円形状である場合は、球に換算した直径を粒子径とした。換算は、楕円の長径と短径の平均を球の直径とした。
 導電性カーボンブラック(B)の存在場所は、得られた写真に存在する全てのカーボンブラックの粒子数と連続相に存在するカーボンブラックの粒子数を画像解析装置でカウントして、連続相に存在する導電性カーボンブラック(B)の粒子数の百分率%を質量%とした。なお、繊維状カーボン(D)は、観察時、形状の違い(繊維状カーボン(D)は繊維状、導電性カーボンブラック(B)は粒子状)で導電性カーボンブラックと区別した。導電性カーボンブラック(B)と同様に、繊維状カーボン(D)の存在場所についても、繊維状物の数をカウントすることで求めた。
5). Observation of Morphological Structure A frozen section was prepared from the center of a 100 mm × 100 mm × 2 mm (thickness) plate obtained by injection molding.
To measure the average particle size of the modified ethylene-α-olefin copolymer (C), a frozen section having a cross section perpendicular to the resin flow direction of the sample was prepared, stained with 5% phosphotungstic acid aqueous solution for 30 minutes, After carbon deposition, the photo was taken with a JEM2010 transmission electron microscope manufactured by JEOL Ltd. at an acceleration voltage of 200 KV and a direct magnification of 5000 times. Subsequently, the average particle diameter was calculated | required by using the obtained photograph for an image analyzer. In this apparatus, when the observed image of the domain (dispersed phase) is elliptical, the diameter converted to a sphere was taken as the particle diameter. Conversion was made the average of the major axis and minor axis of the ellipse as the diameter of the sphere.
The conductive carbon black (B) is present in the continuous phase by counting the number of all carbon black particles in the photograph and the number of carbon black particles in the continuous phase with an image analyzer. The percentage% of the number of particles of the conductive carbon black (B) to be made was mass%. In the observation, the fibrous carbon (D) was distinguished from the conductive carbon black by the difference in shape (the fibrous carbon (D) was fibrous and the conductive carbon black (B) was particulate). Similar to the conductive carbon black (B), the location of the fibrous carbon (D) was determined by counting the number of fibrous materials.
 実施例および比較例に用いた組成物の原材料は、下記のような材料を使用した。
ポリアミド樹脂(A)
 A-1:東洋紡ナイロンT-840(東洋紡(株)製、ポリアミド6、相対粘度2.2)
導電性カーボンブラック(B)
 B-1:ファーネスカーボン 100(ライオン(株)製)
 B-2:ケッチェンカーボンEC(ライオン(株)製)
変性エチレン-αオレフィン共重合体(C)
 C-1:変性オレフィン共重合体 タフマー(登録商標)MH7020(三井化学(株)製 無水マレイン酸変性エチレン-αオレフィン共重合体)
繊維状カーボン(D)
 D-1:カーボンナノチューブ Nanocyl社製 NC-7000 直径10~15nm、長さ1.5μm
 D-2:ミルドカーボンファイバー ZOLTEK社製 PANEX35 MF MF200 平均繊維長 150μm
 D’:カーボンファイバー ZOTEK社製 PANEX35 平均繊維長 6mm
The following materials were used as raw materials for the compositions used in the examples and comparative examples.
Polyamide resin (A)
A-1: Toyobo Nylon T-840 (manufactured by Toyobo Co., Ltd., polyamide 6, relative viscosity 2.2)
Conductive carbon black (B)
B-1: Furnace Carbon 100 (manufactured by Lion Corporation)
B-2: Ketjen Carbon EC (manufactured by Lion Corporation)
Modified ethylene-α olefin copolymer (C)
C-1: Modified Olefin Copolymer TAFMER (registered trademark) MH7020 (Mitsui Chemicals Co., Ltd. maleic anhydride modified ethylene-α olefin copolymer)
Fibrous carbon (D)
D-1: Carbon nanotube manufactured by Nanocyl NC-7000 Diameter 10-15 nm, Length 1.5 μm
D-2: Milled carbon fiber manufactured by ZOLTEK PANEX35 MF MF200 Average fiber length 150 μm
D ': Carbon fiber PANEX35 average fiber length 6mm made by ZOTEK
(実施例および比較例)
 全体のコンパウンディングの前に、まず、ポリアミド樹脂と導電性カーボンブラック、繊維状カーボンとを、表1に記載の質量比率になるように二軸押出機(池貝鉄工(株)製、PCM30)で溶融混練してマスターバッチペレットとした。次いで、得られたマスターバッチペレットを用い、表1の組成割合で各原料を計量ブレンドし、シリンダー温度260℃に設定した二軸押出機(池貝鉄工(株)製、PCM30)で溶融混練して導電性ポリアミド樹脂組成物ペレットを得た。得られた導電性ポリアミド樹脂組成物を用いて、各評価を行った。結果を表1に記す。
(Examples and Comparative Examples)
Before the entire compounding, first, polyamide resin, conductive carbon black, and fibrous carbon are mixed with a twin screw extruder (Ikegai Iron Works Co., Ltd., PCM30) so as to have the mass ratio shown in Table 1. It was melt-kneaded to obtain master batch pellets. Next, using the obtained master batch pellets, each raw material was weighed and blended at the composition ratio shown in Table 1, and melt kneaded with a twin-screw extruder (PCM30, manufactured by Ikekai Tekko Co., Ltd.) set at a cylinder temperature of 260 ° C. Conductive polyamide resin composition pellets were obtained. Each evaluation was performed using the obtained conductive polyamide resin composition. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1~4の導電性ポリアミド樹脂組成物は、CM15燃料に168時間暴露した後の体積固有抵抗が1×10Ω・cmを超えることが確認できた。 It was confirmed that the conductive polyamide resin compositions of Comparative Examples 1 to 4 had a volume resistivity exceeding 1 × 10 7 Ω · cm after being exposed to CM15 fuel for 168 hours.
 本発明によれば、バイオエタノールを使用する自動車の部材、電気・電子製品の部品用として利用が可能である。
 
INDUSTRIAL APPLICABILITY According to the present invention, it can be used for automobile parts using bioethanol and parts for electric and electronic products.

Claims (3)

  1.  ポリアミド樹脂(A)84~40質量%、導電性カーボンブラック(B)5~30質量%、ポリアミド樹脂の末端基および/又は主鎖のアミド基と反応しうる反応性官能基を有するエチレン-αオレフィン共重合体(C)3~30質量%、および繊維状カーボン(D)1~20質量%を含有してなり、下記の特性(イ)、(ロ)を満足することを特徴とする導電性ポリアミド樹脂組成物。
     (イ)導電性ポリアミド樹脂組成物を射出成形することによって得た平板(100mm×100mm×2mm(厚み))の初期の体積固有抵抗が1×10Ω・cm以下で、該平板をCM15燃料に168時間暴露した後の体積固有抵抗が1×10Ω・cm以下
     (ロ)導電性ポリアミド樹脂組成物を射出成形することによって得た試験片の-40℃におけるシャルピー衝撃強度が2.0KJ/m以上
    Polyethylene resin (A) 84 to 40% by mass, conductive carbon black (B) 5 to 30% by mass, ethylene-α having a reactive functional group capable of reacting with an end group of the polyamide resin and / or an amide group of the main chain Conductivity characterized by containing 3 to 30% by mass of olefin copolymer (C) and 1 to 20% by mass of fibrous carbon (D) and satisfying the following characteristics (a) and (b) -Soluble polyamide resin composition.
    (A) The initial volume specific resistance of a flat plate (100 mm × 100 mm × 2 mm (thickness)) obtained by injection molding the conductive polyamide resin composition is 1 × 10 5 Ω · cm or less, and the flat plate is made of CM15 fuel. Charpy impact strength at -40 ℃ of the resulting test piece by the volume resistivity after exposure for 168 hours in the injection-molding the 1 × 10 7 Ω · cm or less (b) the conductive polyamide resin composition 2.0KJ / M 2 or more
  2.  前記導電性ポリアミド樹脂組成物が、下記の特性(ハ)を満足する請求項1に記載の導電性ポリアミド樹脂組成物。
     (ハ)温度250℃、荷重10kgfで測定したメルトインデックスが0.5g/10min以上
    The conductive polyamide resin composition according to claim 1, wherein the conductive polyamide resin composition satisfies the following characteristics (c).
    (C) Melt index measured at a temperature of 250 ° C. and a load of 10 kgf is 0.5 g / 10 min or more.
  3.  前記繊維状カーボン(D)が、カーボンナノチューブ及び/または繊維長が200μm以下のミルドカーボンファイバーである請求項1または2に記載の導電性ポリアミド樹脂組成物。
     
    The conductive polyamide resin composition according to claim 1, wherein the fibrous carbon (D) is a carbon nanotube and / or a milled carbon fiber having a fiber length of 200 μm or less.
PCT/JP2018/004169 2017-02-09 2018-02-07 Conductive polyamide resin composition WO2018147315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510895A JPWO2018147315A1 (en) 2017-02-09 2018-02-07 Conductive polyamide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-022170 2017-02-09
JP2017022170 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147315A1 true WO2018147315A1 (en) 2018-08-16

Family

ID=63108326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004169 WO2018147315A1 (en) 2017-02-09 2018-02-07 Conductive polyamide resin composition

Country Status (2)

Country Link
JP (1) JPWO2018147315A1 (en)
WO (1) WO2018147315A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510763A (en) * 2002-12-19 2006-03-30 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive thermoplastic resin containing carbon black and carbon nanofibers
JP2007507562A (en) * 2003-09-29 2007-03-29 ゼネラル・エレクトリック・カンパニイ Conductive thermoplastic composition, method of manufacture, and article derived from such composition
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
WO2010122886A1 (en) * 2009-04-20 2010-10-28 三菱化学株式会社 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
WO2013061650A1 (en) * 2011-10-28 2013-05-02 宇部興産株式会社 Polyamide resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510763A (en) * 2002-12-19 2006-03-30 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Conductive thermoplastic resin containing carbon black and carbon nanofibers
JP2007507562A (en) * 2003-09-29 2007-03-29 ゼネラル・エレクトリック・カンパニイ Conductive thermoplastic composition, method of manufacture, and article derived from such composition
WO2009151145A1 (en) * 2008-06-10 2009-12-17 宇部興産株式会社 Novel polyamide resin composition and polyamide resin-containing product
WO2010122886A1 (en) * 2009-04-20 2010-10-28 三菱化学株式会社 Conductive thermoplastic resin composition, conductive polyamide resin compositions, and conductive polyamide film
WO2012098840A1 (en) * 2011-01-17 2012-07-26 株式会社クラレ Resin composition and molded article including same
WO2013061650A1 (en) * 2011-10-28 2013-05-02 宇部興産株式会社 Polyamide resin composition

Also Published As

Publication number Publication date
JPWO2018147315A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US7544313B2 (en) Cap for fuel tank comprising electrically conductive resin composition of a polyamide type
DE102009047030B4 (en) Conductive polyamide composite composition and use of the same for the manufacture of a fuel transport pipe
US5958303A (en) Electrically conductive compositions and methods for producing same
JP5221876B2 (en) Conductive masterbatch and resin composition containing the same
CN112778762B (en) Conductive PPS composite material and preparation method thereof
WO2017047588A1 (en) Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow batteries and separator for fuel cells
WO2022110666A1 (en) Red phosphorus flame-retardant polyamide composition, and preparation method therefor and application thereof
JP4322065B2 (en) Conductive polyamide resin composition
WO2018147250A1 (en) Conductive polyamide resin composition
JP4889987B2 (en) Fuel tank cap
FR2818986A1 (en) Electrically conductive resin composition useful for making automobile components, especially fuel filter housings and pipes, comprises polyamide, thermoplastic elastomer, carbon black, sulfonamide and dicarboxylic acid
WO2018147315A1 (en) Conductive polyamide resin composition
JP5277516B2 (en) Polyamide-based conductive resin composition
JP2009144058A (en) Automobile outer panel member
JP3961891B2 (en) Thermoplastic resin composition
JP5277517B2 (en) Method for producing polyamide-based conductive resin composition
CN110684313A (en) ceramic/ABS super-strong and super-tough composite material and application thereof in electric field
CN114561096B (en) High-dimensional-stability conductive PPE/PA alloy and preparation method and application thereof
KR20230046157A (en) High performance polyamide resin composition for electrical and thermal conductive material and molded article including the same
CN113969055A (en) Composite resin composition having dimensional stability
CN110922735A (en) Filled PC composition and preparation method thereof
JPH1171515A (en) Electrically conductive resin composition
JPH1149949A (en) Electroconductive polyamide resin composition
JPH1153941A (en) Conductive polyamide resin composition
JPH0121181B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510895

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751888

Country of ref document: EP

Kind code of ref document: A1