WO2010106654A1 - 中継局、中継方法、基地局、通信方法および通信システム - Google Patents

中継局、中継方法、基地局、通信方法および通信システム Download PDF

Info

Publication number
WO2010106654A1
WO2010106654A1 PCT/JP2009/055316 JP2009055316W WO2010106654A1 WO 2010106654 A1 WO2010106654 A1 WO 2010106654A1 JP 2009055316 W JP2009055316 W JP 2009055316W WO 2010106654 A1 WO2010106654 A1 WO 2010106654A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
relay station
relay
base station
radio
Prior art date
Application number
PCT/JP2009/055316
Other languages
English (en)
French (fr)
Inventor
関 宏之
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011504659A priority Critical patent/JP4941615B2/ja
Priority to CN2009801580641A priority patent/CN102349322A/zh
Priority to KR1020117021451A priority patent/KR101338529B1/ko
Priority to PCT/JP2009/055316 priority patent/WO2010106654A1/ja
Priority to EP09841859.3A priority patent/EP2410779A4/en
Publication of WO2010106654A1 publication Critical patent/WO2010106654A1/ja
Priority to US13/216,724 priority patent/US20110305190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to a relay station, a relay method, a base station, a communication method, and a communication system that perform communication.
  • the interval between the base station and the relay station is referred to as a first wireless interval
  • the interval between the relay station and the mobile station is referred to as a second wireless interval.
  • a plurality of relay stations are connected to one base station, and a plurality of mobile stations are connected to each relay station.
  • the base station allocates radio resources for communicating with each relay station.
  • a plurality of relay stations allocate radio resources for communicating with each mobile station.
  • radio resources are allocated not to use the same radio resources not only in the first radio zone and the second radio zone but also in the first radio zone and the second radio zone.
  • radio resources are separated in advance.
  • the propagation state of the first wireless section and the second wireless section changes with time according to the surrounding propagation environment. For this reason, if a necessary and sufficient band is allocated to the first radio section and the second radio section in advance, the frequency utilization efficiency cannot be increased.
  • each wireless section such as WiMAX (802.16d) in the first wireless section and wireless LAN (Wi-Fi) in the second wireless section
  • WiMAX 802.16d
  • Wi-Fi wireless LAN
  • each relay station assigns radio resources independently, interference occurs between radio resources used in each relay station, and throughput decreases.
  • a technique is disclosed in which the base station allocates (schedules) each radio resource in the first radio section and the second radio section intensively (see, for example, Patent Document 1 below).
  • the relay station when one relay station relays signals from a plurality of base stations, the relay station has a scheduling control unit that prevents a slot collision, and the quality transmitted from a mobile station or a relay station Based on the information, slots are allocated intensively.
  • the above-described prior art has a problem that the amount of quality information transmitted from the mobile station or relay station to the base station increases.
  • the amount of quality information transmitted from each mobile station to the base station becomes enormous. For this reason, there exists a problem that the throughput in a 1st radio area falls. Further, if the process of assigning radio resources to many mobile stations is concentrated on the base station, there is a problem that the processing load of scheduling in the base station increases.
  • the disclosed relay station, relay method, base station, communication method, and communication system are intended to solve the above-described problems and to reduce the amount of quality information transmitted to the base station.
  • the relay station relays wireless communication between a base station and each mobile station, and performs communication between itself and each mobile station.
  • a representative value is transmitted to the base station for each communication quality between the relay station and each mobile station, and radio resources allocated from the base station are allocated to each mobile station at the relay station. Can do.
  • the amount of quality information transmitted to the base station can be reduced.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to an embodiment.
  • FIG. 2 is a diagram showing radio resource allocation in the communication system shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of the base station shown in FIG.
  • FIG. 4 is a block diagram showing a configuration of the relay station shown in FIG.
  • FIG. 5 is a block diagram showing a configuration of the mobile station shown in FIG.
  • FIG. 6 is a sequence diagram illustrating a downlink operation example of the communication system.
  • FIG. 7 is a sequence diagram illustrating an example of uplink operation of the communication system.
  • FIG. 8 is a diagram illustrating a specific example of radio resource allocation illustrated in FIG. 2.
  • FIG. 9 is a diagram illustrating a specific example of CQI received by the relay station (RN1).
  • FIG. 10 is a diagram illustrating a specific example of the representative value calculated by the relay station (RN1).
  • FIG. 11 is a diagram illustrating a specific example of CQI received by the relay station (RN2).
  • FIG. 12 is a diagram illustrating a specific example of the representative value calculated by the relay station (RN2).
  • FIG. 13 is a diagram illustrating a specific example of the representative value and CQI received by the base station.
  • FIG. 14 is a diagram illustrating a specific example of radio resource allocation by the base station.
  • FIG. 15 is a diagram illustrating a specific example of radio resource allocation by the relay station (RN1).
  • FIG. 16 is a diagram illustrating a specific example of radio resource allocation by the relay station (RN2).
  • a representative value is sent to the base station for each CQI between the relay station and each mobile station, and each movement of the radio resource allocated from the base station Assign to the station at the relay station. This reduces the amount of CQI information sent to the base station.
  • FIG. 1 is a block diagram illustrating a configuration of a communication system according to an embodiment.
  • a communication system 100 includes a base station 110 (BS: Base Station), relay stations 121 and 122 (RN: Relay Node), and mobile stations 131 to 134 (MS: Mobile). Station).
  • the base station 110 performs wireless communication with the mobile stations 131 and 132 by the relay of the relay station 121.
  • the base station 110 performs wireless communication with the mobile stations 133 and 134 by the relay of the relay station 122. Further, the base station 110 is connected to the core network 101. The relay station 121 and the relay station 122 are located around the base station 110. Base station 110 performs wireless communication with relay station 121 and relay station 122, respectively. A wireless section between the base station 110 and each relay station (relay station 121 and relay station 122) is defined as a first wireless section 102.
  • the mobile station 131 and the mobile station 132 are located around the relay station 121.
  • the relay station 121 performs wireless communication with the mobile station 131 and the mobile station 132, respectively.
  • the mobile station 133 and the mobile station 133 are located around the relay station 122.
  • the relay station 122 performs wireless communication with the mobile station 133 and the mobile station 133, respectively.
  • a wireless section between the relay station 121 and the mobile stations 131 and 132 or a wireless section between the relay station 122 and the mobile stations 133 and 134 is defined as a second wireless section 103.
  • the base station 110 allocates radio resources used by the relay stations 121 and 122 in the first radio section 102 and the second radio section 103. However, the radio resource allocation for each mobile station in the second radio section 103 is performed by the relay station 121 and the relay station 122, respectively.
  • FIG. 2 is a diagram showing radio resource allocation in the communication system shown in FIG.
  • the horizontal axis shown in FIG. 2 indicates the frequency.
  • the radio resource 210 indicates a frequency band used in the communication system 100 (see FIG. 1).
  • the radio resources used in the first radio section 102 and the second radio section 103 are mixedly allocated to the radio resource 210.
  • the radio resource 201 is allocated to a radio path (first radio section 102) between the base station 110 (BS) and the relay station 121 (RN1).
  • the radio resource 202 is allocated to a radio path (second radio section 103) between the relay station 121 (RN1) and the mobile station 131 (MS1).
  • the radio resource 203 is allocated to a radio path (second radio section 103) between the relay station 121 (RN1) and the mobile station 132 (MS2).
  • the radio resource 204 is assigned to a radio path (first radio section 102) between the base station 110 (BS) and the relay station 122 (RN2).
  • the radio resource 205 is allocated to the radio path (second radio section 103) between the relay station 122 (RN2) and the mobile station 134 (MS4).
  • the radio resource 206 is assigned to a radio path (second radio section 103) between the relay station 122 (RN2) and the mobile station 133 (MS3).
  • the radio resources 201 to 206 included in the radio resource 210 are allocated to the radio paths in the first radio section 102 and the second radio section 103 so as not to interfere with each other.
  • the minimum required radio resources can be allocated to each of the first radio section 102 and the second radio section 103, the frequency utilization efficiency can be increased.
  • allocation can be performed so that interference between the relay station 121 and the relay station 122 does not occur, it is possible to improve throughput.
  • FIG. 3 is a block diagram showing a configuration of the base station shown in FIG.
  • the base station 110 includes a reception antenna 301, a receiver 302, a separation unit 303, a control CH decoding unit 304, a DL scheduler 305, and a control CH generation unit 306.
  • the base station 110 includes an SIR measurement unit 314, a UL scheduler 315, a data CH decoding unit 316, a UL buffer 317, and an IP transmission unit 318.
  • Receiving antenna 301, receiver 302, and control CH decoding section 304 receive representative values of each CQI (Channel Quality Indicator) between relay stations 121 and 122 and each mobile station from relay stations 121 and 122. It is a receiving means.
  • CQI Channel Quality Indicator
  • the DL scheduler 305 and the UL scheduler 315 are allocating means for allocating radio resources to the radio path between each relay station and each mobile station based on the representative value received by the receiving means.
  • Control CH generation section 306, transmitter 312 and transmission antenna 313 are transmission means for transmitting allocation information indicating radio resources allocated by the allocation means to each relay station.
  • the receiver 302 receives each signal transmitted from the relay station 121 and the relay station 122 via the reception antenna 301.
  • Each signal received by the receiver 302 includes a representative value (RN1-MS) of each CQI between the relay station 121 and the mobile stations 131 and 132, and each signal between the relay station 122 and the mobile stations 133 and 134. And a representative value of CQI (RN2-MS). Further, each signal received by the receiver 302 includes a CQI (BS-RN1) between the base station 110 and the relay station 121, and a CQI (BS-RN2) between the base station 110 and the relay station 122. ,It is included. The receiver 302 outputs each received representative value and each CQI to the separation unit 303.
  • Separating section 303 controls representative values (RN1-MS) and representative values (RN2-MS) output from receiver 302, and CQI (BS-RN1) and CQI (BS-RN2), as control CH decoding section 304. Output to. Control CH decoding section 304 decodes each representative value and each CQI output from separation section 303. Control CH decoding section 304 outputs each representative value and each CQI decoded to DL scheduler 305.
  • DL scheduler 305 allocates radio resources based on representative value (RN1-MS), representative value (RN2-MS), CQI (BS-RN1), and CQI (BS-RN2) output from control CH decoding section 304. I do.
  • the DL scheduler 305 includes a relay station between the base station 110 and the relay station 121, between the relay station 121 and the mobile stations 131 and 132, between the base station 110 and the relay station 122, Wireless resources are allocated to four wireless paths between 122 and each of the mobile stations 133 and 134.
  • the DL scheduler 305 is based on the ID information of the relay stations 121 and 122 and the mobile stations 131 to 134, the traffic information of the mobile stations 131 to 134, the QoS information, and the like. Radio resources may be allocated.
  • the DL scheduler 305 outputs each allocation information indicating each radio resource allocated to each radio path to the control CH generation unit 306 and the data CH generation unit 309.
  • the allocation information output from the DL scheduler 305 includes allocation information (BS-RN1), allocation information (RN1-MS), allocation information (BS-RN2), and allocation information (RN2-MS).
  • Allocation information is a radio resource allocated to a radio path between the base station 110 and the relay station 121.
  • the assignment information (RN1-MS) is a radio resource assigned to a radio path between the relay station 121 and the mobile stations 131 and 132.
  • the allocation information (BS-RN2) is a radio resource allocated to a radio path between the base station 110 and the relay station 122.
  • the allocation information (RN2-MS) is a radio resource allocated to a radio path between the relay station 122 and each mobile station.
  • the control CH generation unit 306 arranges each allocation information output from the DL scheduler 305 in the control CH (channel), and outputs each allocation information arranged in the control CH to the multiplexing unit 311.
  • Allocation information (BS-RN1) and allocation information (RN1-MS) output from control CH generation section 306 are transmitted to relay station 121 by transmitter 312.
  • Allocation information (BS-RN2) and allocation information (RN2-MS) output from control CH generation section 306 are transmitted to relay station 122 by transmitter 312.
  • the IP receiver 307 receives each DL data distributed from the core network 101 and destined for the mobile stations 131 to 134.
  • Each DL data received by the IP receiver 307 includes DL data (MS1), DL data (MS2), DL data (MS3), and DL data (MS4) destined for the mobile stations 131 to 134, respectively. Yes.
  • the IP receiving unit 307 outputs each received DL data to the DL buffer 308.
  • the DL buffer 308 stores each DL data output from the IP receiving unit 307.
  • the data CH generation unit 309 arranges each DL data stored in the DL buffer 308 in a radio resource based on each allocation information output from the DL scheduler 305.
  • the data CH generation unit 309 outputs each DL data arranged in the radio resource to the multiplexing unit 311.
  • the data CH generation unit 309 places the DL data (MS1) and the DL data (MS2) in the radio resource indicated by the allocation information (BS-RN1) output from the DL scheduler 305.
  • DL data (MS1) and DL data (MS2) are transmitted using the radio resource indicated by the allocation information (BS-RN1).
  • the data CH generation unit 309 places the DL data (MS3) and DL data (MS4) in the radio resource indicated by the allocation information (BS-RN2) output from the DL scheduler 305.
  • DL data (MS3) and DL data (MS4) are transmitted using the radio resource indicated by the allocation information (BS-RN2).
  • Pilot generating section 310 generates a pilot signal (BS) and outputs it to multiplexing section 311.
  • Multiplexing section 311 multiplexes each allocation information output from control CH generating section 306, each DL data output from data CH generating section 309, and a pilot signal (BS) output from the pilot signal generating section. And outputs the multiplexed signal to the transmitter 312.
  • BS pilot signal
  • the transmitter 312 transmits the multiplexed signal output from the multiplexing unit 311 via the transmission antenna 313.
  • a pilot signal (BS) included in the multiplexed signal transmitted by the transmitter 312 is received by the relay station 121 and the relay station 122.
  • Allocation information (BS-RN1) and allocation information (RN1-MS) included in the multiplexed signal transmitted by transmitter 312 are received by relay station 121.
  • Allocation information (BS-RN2) and allocation information (RN2-MS) included in the multiplexed signal transmitted by the transmitter 312 are received by the relay station 122.
  • DL data (MS1) and DL data (MS2) included in the multiplexed signal transmitted by the transmitter 312 are received by the relay station 121.
  • DL data (MS3) and DL data (MS4) included in the multiplexed signal transmitted by the transmitter 312 are received by the relay station 122.
  • Each signal received by the receiver 302 includes each pilot signal transmitted from the relay station 121 and the relay station 122, and each UL data from the mobile stations 131 to 134 destined for the core network 101. Yes.
  • Each pilot signal includes a pilot signal (RN1) transmitted from the relay station 121 and a pilot signal (RN2) transmitted from the relay station 122.
  • Each UL data includes UL data (MS1) from the mobile station 131, UL data (MS2) from the mobile station 132, UL data (MS3) from the mobile station 133, and UL data (from the mobile station 134). MS4).
  • Receiver 302 outputs each received pilot signal and each UL data to demultiplexing section 303.
  • the separation unit 303 outputs each pilot signal output from the receiver 302 to the SIR measurement unit 314. Separation section 303 outputs each UL data output from receiver 302 to data CH decoding section 316.
  • the SIR measurement unit 314 measures each SIR (Signal to Interference Ratio) of the second radio section 103 based on each pilot signal output from the separation unit 303. Specifically, SIR measurement section 314 measures the SIR (BS-RN1) between base station 110 and relay station 121 based on the pilot signal (RN1). The SIR measurement unit 314 measures the SIR (BS-RN2) between the base station 110 and the relay station 122 based on the pilot signal (RN2).
  • SIR Signal to Interference Ratio
  • the SIR measurement unit 314 outputs each CQI indicating each measured SIR to the UL scheduler 315.
  • Each CQI includes a CQI (BS-RN1) indicating SIR (BS-RN1) between the base station 110 and the relay station 121, and an SIR (BS-RN2) between the base station 110 and the relay station 122. CQI (BS-RN2) shown.
  • the control CH decoding unit 304 outputs the decoded representative values to the UL scheduler 315.
  • the representative values output by the control CH decoding unit 304 include representative values of each CQI (RN1-MS) indicating each SIR between the relay station 121 and the mobile stations 131 and 132, and the relay station 122 and the mobile station 133. , 134 and the representative value of each CQI (RN2-MS).
  • the UL scheduler 315 allocates radio resources based on the representative values output from the control CH decoding unit 304 and the CQIs output from the SIR measurement unit 314. Specifically, the UL scheduler 315 includes a relay station between the base station 110 and the relay station 121, between the relay station 121 and the mobile stations 131 and 132, between the base station 110 and the relay station 122, Wireless resources are allocated to four wireless paths between 122 and the mobile stations 133 and 134.
  • the UL scheduler 315 is based on the ID information of the relay stations 121 and 122 and the mobile stations 131 to 134, the traffic information of the mobile stations 131 to 134, the QoS information, in addition to the representative value of each CQI and the CQI. Radio resources may be allocated.
  • the UL scheduler 315 outputs each allocation information indicating each radio resource allocated to each radio path to the control CH generation unit 306.
  • the allocation information output from the UL scheduler 315 includes allocation information (BS-RN1), allocation information (RN1-MS), allocation information (BS-RN2), and allocation information (RN2-MS).
  • the control CH generation unit 306 arranges each allocation information output from the UL scheduler 315 in the control CH.
  • Control CH generation section 306 outputs each piece of allocation information arranged in control CH to multiplexing section 311.
  • Allocation information (BS-RN1) and allocation information (RN1-MS) output from control CH generation section 306 are transmitted to relay station 121 by transmitter 312.
  • Allocation information (BS-RN2) and allocation information (RN2-MS) output from control CH generation section 306 are transmitted to relay station 122 by transmitter 312.
  • the data CH decoding unit 316 decodes each UL data output from the separation unit 303.
  • the data CH decoding unit 316 outputs each decoded UL data to the UL buffer 317.
  • the UL buffer 317 stores each UL data output from the data CH decoding unit 316.
  • the IP transmission unit 318 reads each UL data stored in the UL buffer 317 and transmits each read UL data to the core network 101.
  • FIG. 4 is a block diagram showing a configuration of the relay station shown in FIG.
  • relay station 121 includes reception antenna 401, receiver 402, separation section 403, control CH decoding section 404, DL scheduler 405, and control CH generation section 406.
  • relay station 121 includes data CH decoding section 417, data CH generation section 418, pilot generation section 419, multiplexing section 420, transmitter 421, transmission antenna 422, SIR measurement section 423, and UL scheduler. 424, a data CH decoding unit 425, a data CH generation unit 426, and a pilot generation unit 427.
  • the configuration of the relay station 121 will be described here, the configuration of the relay station 122 is the same.
  • the receiving antenna 401, the receiver 402, the control CH decoding unit 404, and the SIR measuring unit 423 are acquisition means for acquiring each communication quality between the relay station 121 (own station) and the mobile stations 131 and 132.
  • the DL scheduler 405 and the UL scheduler 424 are calculation units that calculate representative values of each communication quality acquired by the acquisition unit.
  • the control CH generation unit 412, the transmitter 414, and the transmission antenna 415 are transmission units that transmit the representative value calculated by the calculation unit to the base station 110.
  • the reception antenna 407, the receiver 408, and the control CH decoding unit 416 are reception units that receive allocation information indicating radio resources allocated by the base station 110 from the base station 110 based on the representative value transmitted by the transmission unit. .
  • the DL scheduler 405 and the UL scheduler 424 are allocation units that allocate radio resources indicated by the allocation information received by the reception unit to the mobile stations 131 and 132.
  • the receiver 402 receives each signal transmitted from the mobile station 131 and the mobile station 132 via the reception antenna 401.
  • Each signal received by the receiver 402 includes CQI (RN1-MS1) between the relay station 121 and the mobile station 131 and CQI (RN1-MS2) between the relay station 121 and the mobile station 132. include.
  • the receiver 402 outputs each received CQI to the separation unit 403.
  • Separation section 403 outputs each CQI output from receiver 402 to control CH decoding section 404.
  • Control CH decoding section 404 decodes each CQI output from demultiplexing section 403 and outputs each decoded CQI to DL scheduler 405.
  • the DL scheduler 405 calculates a representative value (RN1-MS) of CQI (RN1-MS1) and CQI (RN1-MS2) output from the control CH decoding unit 404. For example, the DL scheduler 405 calculates the maximum value, the minimum value, or the average value of CQI (RN1-MS1) and CQI (RN1-MS2) as the representative value (RN1-MS). The DL scheduler 405 outputs the calculated representative value (RN1-MS) to the control CH generation unit 412.
  • DL scheduler 405 obtains, from control CH decoding section 416, allocation information (RN1-MS) transmitted from base station 110 as a result of outputting the calculated representative value (RN1-MS) to control CH generating section 412. To do. DL scheduler 405 performs radio resource allocation based on the acquired allocation information (RN1-MS) and CQI (RN1-MS1) and CQI (RN1-MS2) output from control CH decoding section 404.
  • the DL scheduler 405 allocates radio resources to each radio path between the relay station 121 and the mobile station 131 and between the relay station 121 and the mobile station 132. In addition to the representative value and CQI of each CQI, the DL scheduler 405 allocates radio resources based on the ID information of the mobile stations 131 and 132, the traffic information of the mobile stations 131 and 132, the QoS information, and the like. You may go.
  • the DL scheduler 405 outputs allocation information (RN1-MS1) and allocation information (RN1-MS2) indicating each radio resource allocated to each radio path to the control CH generation unit 406 and the data CH generation unit 418.
  • the allocation information (RN1-MS1) is allocation information indicating radio resources allocated to a radio path between the relay station 121 and the mobile station 131.
  • the allocation information (RN1-MS2) is allocation information indicating radio resources allocated to a radio path between the relay station 121 and the mobile station 132.
  • the control CH generation unit 406 arranges each allocation information output from the DL scheduler 405 in the control CH, and outputs each allocation information arranged in the control CH to the multiplexing unit 420.
  • the allocation information (RN1-MS1) output from the control CH generation unit 406 is transmitted to the mobile station 131 by the transmitter 421.
  • the allocation information (RN1-MS2) output from the control CH generation unit 406 is transmitted to the mobile station 132 by the transmitter 421.
  • the receiver 408 receives each signal transmitted from the base station 110 via the receiving antenna 407.
  • Each signal received by receiver 408 includes a pilot signal (BS) transmitted from base station 110 and allocation information (RN1-MS).
  • Each signal received by the receiver 408 includes DL data (MS1) and DL data (MS2).
  • Receiver 408 outputs the received pilot signal (BS), allocation information (RN1-MS) and each DL data to demultiplexing section 409.
  • the separation unit 409 outputs the pilot signal (BS) output from the receiver 408 to the SIR measurement unit 410. Separation section 409 outputs allocation information (RN1-MS) output from receiver 408 to control CH decoding section 416. Separation section 409 outputs each DL data output from receiver 408 to data CH decoding section 417.
  • BS pilot signal
  • RN1-MS allocation information
  • the SIR measurement unit 410 measures the SIR (BS-RN1) between the base station 110 and the relay station 121 based on the pilot signal (BS) output from the separation unit 409.
  • the SIR measurement unit 410 notifies the CQI generation unit 411 of the measured SIR (BS-RN1).
  • the CQI generation unit 411 generates a CQI (BS-RN1) indicating the SIR (BS-RN1) notified from the SIR measurement unit 410.
  • CQI generating section 411 outputs the generated CQI (BS-RN1) to control CH generating section 412.
  • the control CH generation unit 412 arranges the representative value (RN1-MS) output from the DL scheduler 405 and the CQI (BS-RN1) output from the CQI generation unit 411 in the control CH.
  • the representative value (RN1-MS) and CQI (BS-RN1) are output to multiplexing section 413.
  • the representative value (RN1-MS) and CQI (BS-RN1) output from control CH generation section 412 are transmitted to base station 110 by transmitter 414.
  • Multiplexer 413 outputs representative values (RN1-MS) and CQI (BS-RN1) output from control CH generator 412, each UL data output from data CH generator 426, and output from pilot generator 427. And multiplexed pilot signal (RN1). Multiplexer 413 outputs the multiplexed signal to transmitter 414. The transmitter 414 transmits the multiplexed signal output from the multiplexing unit 413 to the base station 110 via the transmission antenna 415.
  • the control CH decoding unit 416 decodes the allocation information (RN1-MS) and the allocation information (BS-RN1) output from the demultiplexing unit 409.
  • Control CH decoding section 416 outputs decoded allocation information (RN1-MS) to DL scheduler 405 and allocation information (BS-RN1) to data CH decoding section 417.
  • the data CH decoding unit 417 decodes each DL data output from the demultiplexing unit 409 based on the allocation information (BS-RN1) output from the control CH decoding unit 416.
  • BS-RN1 allocation information
  • Data CH decoding section 417 outputs each decoded DL data to data CH generation section 418.
  • the data CH generation unit 418 arranges each DL data output from the data CH decoding unit 417 in a radio resource based on the allocation information output from the DL scheduler 405, and multiplexes each DL data arranged in the radio resource. Output to 420.
  • the data CH generation unit 418 arranges the DL data (MS1) output from the data CH decoding unit 417 in the radio resource indicated by the allocation information (RN1-MS1) output from the DL scheduler 405. Thereby, the DL data (MS1) is transmitted to the mobile station 131 by the radio resource indicated by the allocation information (RN1-MS1).
  • the data CH generation unit 418 arranges the DL data (MS2) output from the data CH decoding unit 417 in the radio resource indicated by the allocation information (RN1-MS2) output from the DL scheduler 405. Thereby, the DL data (MS2) is transmitted to the mobile station 132 by the radio resource indicated by the allocation information (RN1-MS2).
  • Pilot generating section 419 generates a pilot signal (RN1) and outputs it to multiplexing section 420.
  • Multiplexing section 420 multiplexes each allocation information output from control CH generating section 406, each DL data output from data CH generating section 418, and a pilot signal (RN1) output from pilot generating section 419. And output to the transmitter 421.
  • the transmitter 421 transmits the multiplexed signal output from the multiplexing unit 413 to the mobile station 131 and the mobile station 132 via the transmission antenna 422.
  • the pilot signal (RN1) included in the multiplexed signal transmitted by the transmitter 421 is received by the mobile station 131 and the mobile station 132.
  • Allocation information (RN1-MS1) included in the multiplexed signal transmitted by the transmitter 421 is received by the mobile station 131.
  • the allocation information (RN1-MS2) included in the multiplexed signal transmitted by the transmitter 421 is received by the mobile station 132.
  • the DL data (MS1) included in the multiplexed signal transmitted by the transmitter 421 is received by the mobile station 131.
  • the DL data (MS2) included in the multiplexed signal transmitted by the transmitter 421 is received by the mobile station 132.
  • Each signal received by the receiver 402 includes each pilot signal transmitted from the mobile station 131 and the mobile station 132 and each UL data from each mobile station destined for the core network 101.
  • Each pilot signal includes a pilot signal (MS1) transmitted from the mobile station 131 and a pilot signal (MS2) transmitted from the mobile station 132.
  • Each UL data includes UL data (MS 1) transmitted from the mobile station 131 and UL data (MS 2) transmitted from the mobile station 132.
  • Receiver 402 outputs each received pilot signal and each UL data to demultiplexing section 403.
  • the separating unit 403 outputs each pilot signal output from the receiver 402 to the SIR measuring unit 423. Separation section 403 outputs each UL data output from receiver 402 to data CH decoding section 425.
  • the SIR measurement unit 423 measures each SIR of the second radio section 103 based on each pilot signal output from the separation unit 403. Specifically, SIR measurement section 423 measures the SIR (RN1-MS1) between relay station 121 and mobile station 131 based on the pilot signal (MS1). In addition, the SIR measurement unit 423 measures the SIR (RN1-MS2) between the relay station 121 and the mobile station 132 based on the pilot signal (MS2).
  • the SIR measurement unit 423 outputs each CQI indicating each measured SIR to the UL scheduler 424.
  • Each CQI output by the SIR measurement unit 423 includes a CQI (RN1-MS1) indicating the SIR between the relay station 121 and the mobile station 131, and a CQI (RN1 ⁇ MS1) indicating the SIR between the relay station 121 and the mobile station 132.
  • RN1-MS2 RN1-MS2
  • Control CH decoding section 416 outputs the decoded allocation information (RN1-MS) to UL scheduler 424.
  • the UL scheduler 424 calculates a representative value (RN1-MS) of CQI (RN1-MS1) and CQI (RN1-MS2) output from the SIR measurement unit 423. For example, the UL scheduler 424 calculates the maximum value, the minimum value, or the average value of CQI (RN1-MS1) and CQI (RN1-MS2) as the representative value (RN1-MS). The UL scheduler 424 outputs the calculated representative value (RN1-MS) to the control CH generation unit 412.
  • UL scheduler 424 obtains allocation information (RN1-MS) transmitted from base station 110 from control CH decoding section 416 as a result of outputting the calculated representative value (RN1-MS) to control CH generating section 412. To do.
  • the UL scheduler 424 performs radio resource allocation based on the acquired allocation information (RN1-MS) and the CQI (RN1-MS1) and CQI (RN1-MS2) output from the SIR measurement unit 423.
  • the UL scheduler 424 allocates radio resources to each radio path between the relay station 121 and the mobile station 131 and between the relay station 121 and the mobile station 132.
  • the UL scheduler 424 allocates radio resources based on the ID information of the mobile stations 131 and 132, the traffic information of the mobile stations 131 and 132, the QoS information, in addition to the representative value of each CQI and the CQI. You may go.
  • the UL scheduler 424 outputs each allocation information indicating each radio resource allocated to each radio path to the control CH generation unit 406.
  • the allocation information output from the UL scheduler 424 includes allocation information (RN1-MS1) allocated to a radio path between the relay station 121 and the mobile station 131, and radio between the relay station 121 and the mobile station 132. And allocation information (RN1-MS2) allocated to the route.
  • the control CH generation unit 412 arranges the representative value (RN1-MS) output from the UL scheduler 424 and the CQI (BS-RN1) output from the CQI generation unit 411 in the control CH, and arranges them in the control CH. Each assigned information is output to multiplexing section 413.
  • the representative value (RN1-MS) and CQI (BS-RN1) output from control CH generation section 412 are transmitted to base station 110 by transmitter 414 and transmission antenna 415.
  • the control CH generation unit 406 arranges each allocation information output from the UL scheduler 424 in the control CH, and outputs each allocated allocation information to the multiplexing unit 420.
  • the allocation information (RN1-MS1) output from the control CH generation unit 406 is transmitted to the mobile station 131 by the transmitter 421.
  • the allocation information (RN1-MS2) output from the control CH generation unit 406 is transmitted to the mobile station 132 by the transmitter 421.
  • the data CH decoding unit 425 decodes each UL data output from the demultiplexing unit 403 based on the allocation information (RN1-MS1) and allocation information (RN1-MS2) output from the UL scheduler 424.
  • Data CH decoding section 425 outputs each decoded UL data to data CH generation section 426.
  • the data CH generation unit 426 arranges each UL data output from the data CH decoding unit 425 in a radio resource based on each allocation information output from the UL scheduler 424. Specifically, data CH generation section 426 allocates UL data (MS1) output from data CH decoding section 425 to radio resources indicated by allocation information (BS-RN1) output from UL scheduler 424.
  • MS1 UL data
  • BS-RN1 allocation information
  • the data CH generation unit 426 allocates the UL data (MS2) output from the data CH decoding unit 425 to the radio resource indicated by the allocation information (BS-RN1) output from the UL scheduler 424.
  • the data CH generation unit 426 outputs each UL data arranged in the data CH to the multiplexing unit 413.
  • Each UL data output from the data CH generation unit 426 is transmitted to the base station 110 by the transmitter 414.
  • FIG. 5 is a block diagram showing a configuration of the mobile station shown in FIG.
  • the mobile station 131 includes a reception antenna 501, a receiver 502, a separation unit 503, an SIR measurement unit 504, a CQI generation unit 505, and a control CH generation unit 506.
  • the mobile station 131 includes a pilot generation unit 514, a UL buffer 515, and a data CH generation unit 516. Although the configuration of the mobile station 131 will be described here, the same applies to the configurations of the mobile stations 132 to 134.
  • the receiver 502 receives each signal transmitted from the relay station 121 via the reception antenna 501.
  • Each signal received by the receiver 502 includes a pilot signal (RN1) transmitted from the relay station 121.
  • Each signal received by the receiver 502 includes allocation information (RN1-MS1).
  • Each signal received by the receiver 502 includes DL data (MS1).
  • Receiver 502 outputs the received pilot signal (RN1), allocation information (RN1-MS1), and DL data (MS1) to demultiplexing section 503.
  • the separating unit 503 outputs the pilot signal (RN1) output from the receiver 502 to the SIR measuring unit 504. Separation section 503 outputs the allocation information (RN1-MS1) output from receiver 502 to control CH decoding section 510. Separation section 503 outputs DL data (MS1) output from receiver 502 to data CH decoding section 511.
  • the SIR measurement unit 504 measures the SIR (RN1-MS1) between the relay station 121 and the mobile station 131 based on the pilot signal (RN1) output from the separation unit 503. The SIR measurement unit 504 notifies the measured SIR (RN1-MS1) to the CQI generation unit 505.
  • CQI generating section 505 outputs CQI (RN1-MS1) indicating SIR (RN1-MS1) notified from SIR measuring section 504 to control CH generating section 506.
  • the control CH generation unit 506 arranges the CQI (RN1-MS1) output from the SIR measurement unit 504 in the control CH, and outputs the CQI (RN1-MS1) arranged in the control CH to the multiplexing unit 507.
  • CQI (RN1-MS1) output from control CH generation section 506 is transmitted to relay station 121 by transmitter 508.
  • Multiplexer 507 includes CQI (RN1-MS1) output from control CH generator 506, each UL data output from data CH generator 516, and a pilot signal (MS1) output from pilot generator 514. , Are multiplexed. Multiplexer 507 outputs the multiplexed signal to transmitter 508. The transmitter 508 transmits the multiplexed signal output from the multiplexing unit 507 to the relay station 121 via the transmission antenna 509.
  • Control CH decoding section 510 decodes allocation information (RN1-MS1) output from demultiplexing section 503 and outputs the decoded allocation information (RN1-MS1) to data CH decoding section 511.
  • Data CH decoding section 511 decodes DL data (MS1) output from demultiplexing section 503 based on allocation information (RN1-MS1) output from control CH decoding section 510.
  • Data CH decoding section 511 outputs the decoded DL data (MS1) to DL buffer 512.
  • the DL buffer 512 stores the DL data (MS1) output from the data CH decoding unit 511.
  • the data processing unit 513 reads the DL data (MS1) stored in the DL buffer 512 and performs various processes on the read DL data (MS1).
  • the pilot generation unit 514 generates a pilot signal (MS1) and outputs it to the multiplexing unit 507.
  • the data processing unit 513 generates UL data (MS1) destined for the core network 101, and outputs the generated UL data (MS1) to the UL buffer 515.
  • the UL buffer 515 stores the UL data (MS1) output from the data processing unit 513.
  • Control CH decoding section 510 outputs allocation information (RN1-MS1) to data CH generation section 516.
  • the data CH generation unit 516 arranges the UL data (MS1) stored in the UL buffer 515 in the radio resource indicated by the allocation information (RN1-MS1) output from the control CH decoding unit 510.
  • Data CH generation section 516 outputs UL data (MS1) arranged in the radio resource to multiplexing section 507.
  • the UL data (MS1) output from the data CH generation unit 516 is transmitted to the relay station 121 by the transmitter 508.
  • FIG. 6 is a sequence diagram illustrating a downlink operation example of the communication system.
  • downlink operations by base station 110, relay station 121, and mobile stations 131 and 132 in communication system 100 will be described.
  • the mobile station 131 measures SIR (RN1-MS1) between the relay station 121 and the mobile station 131 (step S601).
  • the mobile station 131 transmits CQI (RN1-MS1) indicating the SIR (RN1-MS1) measured in step S601 to the relay station 121 (step S602).
  • the mobile station 132 measures the SIR (RN1-MS2) between the relay station 121 and the mobile station 132 (step S603).
  • the mobile station 132 transmits CQI (RN1-MS2) indicating the SIR (RN1-MS2) measured in step S603 to the relay station 121 (step S604).
  • the relay station 121 calculates a representative value (RN1-MS) of the CQI (RN1-MS1) transmitted at step S602 and the CQI (RN1-MS2) transmitted at step S604 (step S605). ).
  • the relay station 121 transmits the representative value (RN1-MS) calculated in step S604 to the base station 110 (step S606).
  • the relay station 121 measures SIR (BS-RN1) between the base station 110 and the relay station 121 (step S607).
  • the relay station 121 transmits CQI (BS-RN1) indicating the SIR (BS-RN1) measured in step S607 to the base station 110 (step S608).
  • the base station 110 allocates radio resources based on the representative value (RN1-MS) transmitted in step S606 and the CQI (BS-RN1) transmitted in step S608 (step S609).
  • radio resources are allocated to the two radio paths between the base station 110 and the relay station 121 and between the relay station 121 and the mobile stations 131 and 132, respectively.
  • the base station 110 also receives the representative value (RN2-MS) and CQI (BS-RN2) from the relay station 122 (see FIG. 1).
  • the base station 110 determines whether there is interference between the base station 110 and the relay station 121 and between the relay station 121 and the mobile stations 131 and 132 so as not to interfere with radio resources allocated to the relay station 122.
  • a radio resource is allocated to each radio path.
  • the base station 110 transmits allocation information (BS-RN1) indicating the radio resource allocated in step S609 to the relay station 121 (step S610).
  • the base station 110 transmits each DL data to the relay station 121 (step S611).
  • step S611 DL data (MS1) destined for the mobile station 131 and DL data (MS2) destined for the mobile station 132 are transmitted.
  • step S611 each DL data is transmitted using the radio resource allocated in step S609 to the radio path between the base station 110 and the relay station 121.
  • the base station 110 transmits allocation information (RN1-MS) to the relay station 121 (step S612).
  • the allocation information (RN1-MS) transmitted in step S612 is allocation information indicating the radio resource allocated in step S609 with respect to the radio path between the relay station 121 and the mobile stations 131 and 132.
  • the relay station 121 allocates radio resources indicated by the allocation information (RN1-MS) transmitted at step S612 (step S613).
  • each radio resource indicated by the allocation information (RN1-MS) is included in the radio path between the relay station 121 and the mobile station 131 and the radio path between the relay station 121 and the mobile station 132. Assigned to each.
  • relay station 121 transmits allocation information (RN1-MS1) indicating the radio resource allocated in step S613 to mobile station 131 (step S614).
  • the relay station 121 transmits the DL data (MS1) transmitted in step S611 to the mobile station 131 (step S615).
  • DL data is transmitted using the radio resource allocated in step S613 to the radio path between the relay station 121 and the mobile station 131.
  • the relay station 121 transmits allocation information (RN1-MS2) indicating the radio resource allocated in step S613 to the mobile station 132 (step S616).
  • the relay station 121 transmits the DL data (MS2) transmitted in step S611 to the mobile station 132 (step S617), and the series of operations ends.
  • DL data is transmitted using the radio resource allocated in step S613 to the radio path between the relay station 121 and the mobile station 132.
  • the downlink operation by the base station 110, the relay station 121, and the mobile stations 131, 132 in the communication system 100 has been described, but the same down-link is also performed between the base station 110, the relay station 122, and the mobile stations 133, 134. Perform the link operation.
  • FIG. 7 is a sequence diagram showing an example of uplink operation of the communication system.
  • uplink operations by base station 110, relay station 121, and mobile stations 131 and 132 in communication system 100 will be described.
  • the mobile station 131 transmits a pilot signal (MS1) to the relay station 121 (step S701).
  • MS1 pilot signal
  • the relay station 121 measures the SIR (RN1-MS1) between the relay station 121 and the mobile station 131 based on the pilot signal (MS1) transmitted in step S701 (step S702).
  • the mobile station 132 transmits a pilot signal (MS2) to the relay station 121 (step S703).
  • the relay station 121 measures the SIR (RN1-MS2) between the relay station 121 and the mobile station 132 based on the pilot signal (MS2) transmitted in step S703 (step S704).
  • the relay station 121 calculates a representative value (RN1-MS) of each CQI indicating each SIR measured in steps S702 and S702 (step S705).
  • the relay station 121 transmits the representative value (RN1-MS) calculated in step S704 to the base station 110 (step S706).
  • the relay station 121 transmits a pilot signal (RN1) to the base station 110 (step S707).
  • the base station 110 measures the SIR (BS-RN1) between the base station 110 and the relay station 121 based on the pilot signal (RN1) transmitted at step S707 (step S708).
  • the base station 110 allocates radio resources based on the representative value (RN1-MS) transmitted in step S706 and the CQI (BS-RN1) indicating the SIR measured in step S708 (Ste S709).
  • radio resources are allocated to radio paths between the base station 110 and the relay station 121 and between the relay station 121 and the mobile stations 131 and 132, respectively.
  • the base station 110 also receives the representative value (RN2-MS) and CQI (BS-RN2) from the relay station 122.
  • the base station 110 determines whether there is interference between the base station 110 and the relay station 121 and between the relay station 121 and the mobile stations 131 and 132 so as not to interfere with radio resources allocated to the relay station 122.
  • a radio resource is allocated to each radio path.
  • base station 110 transmits allocation information (BS-RN1) and allocation information (RN1-MS) to relay station 121 (step S710).
  • the allocation information (BS-RN1) transmitted in step S710 is allocation information indicating the radio resource allocated in step S709 for the radio path between the base station 110 and the relay station 121.
  • the allocation information (RN1-MS) is allocation information indicating the radio resources allocated in step S709 for the radio path between the relay station 121 and the mobile stations 131 and 132.
  • each radio resource indicated by the allocation information (RN1-MS) corresponds to two radio paths between the relay station 121 and the mobile station 131 and between the relay station 121 and the mobile station 132. Assigned respectively.
  • the relay station 121 transmits allocation information (RN1-MS1) indicating the radio resource allocated in step S711 to the mobile station 131 (step S712).
  • allocation information indicating the radio resource assigned in step S711 is transmitted to the radio path between the relay station 121 and the mobile station 131.
  • the relay station 121 transmits allocation information (RN1-MS2) indicating the radio resource allocated in step S711 to the mobile station 132 (step S713).
  • allocation information indicating the radio resource allocated in step S711 is transmitted to the radio path between the relay station 121 and the mobile station 132.
  • the mobile station 131 transmits UL data (MS1) to the relay station 121 (step S714).
  • UL data (MS1) is transmitted from mobile station 131 using the radio resource indicated by the allocation information (RN1-MS1) transmitted to mobile station 131 in step S712.
  • the relay station 121 transmits the UL data (MS1) from the mobile station 131 transmitted in step S714 to the base station 110 (step S715).
  • UL data (MS1) is transmitted using the radio resource indicated by the allocation information (BS-RN1) transmitted from base station 110 in step S710.
  • the mobile station 132 transmits UL data (MS2) to the relay station 121 (step S716).
  • UL data (MS2) is transmitted from mobile station 132 using the radio resource indicated by the allocation information (RN1-MS2) transmitted to mobile station 132 in step S713.
  • the relay station 121 transmits the UL data (MS2) from the mobile station 132 transmitted in step S716 to the base station 110 (step S717), and the series of operations ends.
  • UL data (MS2) is transmitted using the radio resource indicated by the allocation information (BS-RN1) transmitted in step S710.
  • the uplink operation by the base station 110, the relay station 121, and the mobile stations 131, 132 in the communication system 100 has been described. However, the same operation is performed between the base station 110, the relay station 122, and the mobile stations 133, 134. Perform the link operation.
  • FIG. 8 is a diagram illustrating a specific example of radio resource allocation illustrated in FIG. 2.
  • the same parts as those shown in FIG. As shown in FIG. 8, here, the case where the radio resource 210 shown in FIG. 2 is divided into radio resources # 1 to # 10 will be described (see FIGS. 9 to 16).
  • FIG. 9 is a diagram illustrating a specific example of CQI received by the relay station (RN1).
  • FIG. 9 shows each CQI received by the relay station 121 from each mobile station.
  • CQI 910 is CQI (RN1-MS1) received by relay station 121 from mobile station 131.
  • CQI 920 is CQI (RN1-MS2) received by relay station 121 from mobile station 132.
  • Each value shown in the CQI 910 indicates each SIR in the radio resources # 1 to # 10 measured by the mobile station 131.
  • Each value shown in the CQI 920 indicates each SIR in the radio resources # 1 to # 10 measured by the mobile station 132.
  • the relay station 121 acquires each SIR in a plurality of radio resources.
  • the value of each SIR is shown in a simplified manner, and the larger the value, the better the communication quality (the same applies to FIGS. 10 to 13).
  • FIG. 10 is a diagram illustrating a specific example of the representative value calculated by the relay station (RN1).
  • R the same parts as those shown in FIG.
  • a representative value 1010 shown in FIG. 10 is a representative value (RN1-MS) of CQI 910 and CQI 920 calculated by relay station 121.
  • relay station 121 calculates the maximum values of CQI 910 and CQI 920 as representative values (RN1-MS).
  • radio resource # 1 the maximum SIR (5) of SIR (5) and SIR (3) is calculated as a representative value (RN1-MS).
  • radio resource # 5 the maximum SIR (7) of SIR (6) and SIR (7) is calculated as a representative value (RN1-MS).
  • FIG. 11 is a diagram illustrating a specific example of CQI received by the relay station (RN2).
  • FIG. 11 shows a specific example of each CQI received by the relay station 122 from each mobile station.
  • CQI 1110 is CQI (RN2-MS3) received by relay station 122 from mobile station 133.
  • CQI 1120 is CQI (RN2-MS4) received by relay station 122 from mobile station 134.
  • Each value shown in CQI 1110 indicates each SIR in the radio resources # 1 to # 10 measured by the mobile station 133.
  • Each value shown in the CQI 1120 indicates each SIR in the radio resources # 1 to # 10 measured by the mobile station 134.
  • the relay station 122 acquires each SIR in a plurality of radio resources.
  • FIG. 12 is a diagram illustrating a specific example of the representative value calculated by the relay station (RN2).
  • R2 the same parts as those shown in FIG.
  • a representative value 1210 shown in FIG. 12 is a representative value (RN2-MS) of CQI 1110 and CQI 1120 calculated by relay station 122.
  • relay station 122 calculates the maximum values of CQI 1110 and CQI 1120 as representative values (RN2-MS).
  • radio resource # 1 the maximum SIR (2) of SIR (2) and SIR (1) is calculated as a representative value (RN2-MS).
  • the maximum SIR (3) of SIR (2) and SIR (3) is calculated as a representative value (RN2-MS).
  • FIG. 13 is a diagram illustrating a specific example of the representative value and CQI received by the base station.
  • FIG. 13 shows a specific example of each representative value and each CQI received by the base station 110 from the relay station 121 and the relay station 122.
  • the CQI 1310 is a CQI (BS-RN1) received by the base station 110 from the relay station 121.
  • the representative value 1010 (see FIG. 10) is a representative value (RN1-MS) received by the base station 110 from the relay station 121.
  • CQI 1320 is CQI (BS-RN2) received by base station 110 from relay station 122.
  • the representative value 1210 (see FIG. 12) is a representative value (RN2-MS) received by the base station 110 from the relay station 122.
  • FIG. 14 is a diagram showing a specific example of radio resource allocation by the base station.
  • FIG. 14 shows a specific example of radio resource allocation by the base station 110.
  • the base station 110 performs radio resource allocation based on the representative value and the CQI shown in FIG.
  • the values “1” and “0” in FIG. 14 indicate whether or not radio resources are assigned to the corresponding radio section (the same applies to FIGS. 15 and 16).
  • Allocation information 1410 is allocation information (BS-RN1) indicating radio resources allocated to a radio path between the base station 110 and the relay station 121. As shown in the allocation information 1410, radio resources # 1 and # 2 are allocated to the radio path between the base station 110 and the relay station 121. Allocation information 1410 is transmitted from base station 110 to relay station 121.
  • Allocation information 1420 is allocation information (BS-RN2) indicating radio resources allocated to a radio path between the base station 110 and the relay station 122. As shown in the allocation information 1420, radio resources # 6 to # 8 are allocated to the radio path between the base station 110 and the relay station 122. Allocation information 1420 is transmitted from base station 110 to relay station 122.
  • BS-RN2 allocation information
  • Allocation information 1430 is allocation information (RN1-MS) indicating radio resources allocated to the radio path between relay station 121 and mobile stations 131 and 132. As shown in the allocation information 1430, radio resources # 3 to # 5 are allocated to the radio path between the relay station 121 and each mobile station. Allocation information 1430 is transmitted from base station 110 to relay station 121.
  • Allocation information 1440 is allocation information (RN2-MS) indicating radio resources allocated to the radio path between relay station 122 and mobile stations 133 and 134. As shown in the allocation information 1440, radio resources # 9 and # 10 are allocated to the radio path between the relay station 122 and each mobile station. Allocation information 1440 is transmitted from base station 110 to relay station 122.
  • RN2-MS allocation information
  • the base station 110 performs allocation so that each relay station and each mobile station can use radio resources having good CQI in the first radio section 102 and the second radio section 103.
  • the information amount of the data CH received by the relay stations 121 and 122 and the information amount of the data CH transmitted by the relay stations 121 and 122 are considered to be substantially equal, the information is assigned according to the information amount of the data CH to be relayed.
  • the number of radio resources may be adjusted.
  • FIG. 15 is a diagram illustrating a specific example of radio resource allocation by the relay station (RN1).
  • FIG. 15 shows a specific example of radio resource allocation by the relay station 121.
  • the relay station 121 uses the radio resources # 3 to # 5 indicated by the allocation information 1430 (see FIG. 14) transmitted from the base station 110 between the relay station 121 and the mobile station 131, and between the relay station 121 and the mobile station 132. Assigned to each wireless path.
  • Allocation information 1510 is allocation information (RN1-MS1) indicating radio resources allocated to a radio path between relay station 121 and mobile station 131. Radio resources # 3 and # 4 are allocated to the radio path between the relay station 121 and the mobile station 131. The relay station 121 communicates with the mobile station 131 using the radio resources # 3 and # 4.
  • Allocation information 1520 is allocation information (RN1-MS2) indicating radio resources allocated to a radio path between relay station 121 and mobile station 132. Radio resource # 5 is assigned to the radio path between relay station 121 and mobile station 132. The relay station 121 communicates with the mobile station 132 using the radio resource # 5.
  • FIG. 16 is a diagram illustrating a specific example of radio resource allocation by the relay station (RN2).
  • FIG. 16 shows a specific example of radio resource allocation by the relay station 122.
  • the relay station 122 transmits the radio resources # 9 and # 10 indicated by the allocation information 1440 (see FIG. 14) transmitted from the base station 110, between the relay station 122 and the mobile station 133, and between the relay station 122 and the mobile station 134. Assigned to each wireless path.
  • Allocation information 1610 is allocation information (RN2-MS3) indicating radio resources allocated to a radio path between relay station 122 and mobile station 133. Radio resource # 10 is assigned to the radio path between relay station 122 and mobile station 133. The relay station 122 communicates with the mobile station 133 using the radio resource # 10.
  • Allocation information 1620 is allocation information (RN2-MS4) indicating radio resources allocated to a radio path between relay station 122 and mobile station 134. Radio resource # 9 is assigned to the radio path between relay station 122 and mobile station 134. The relay station 122 communicates with the mobile station 134 using the radio resource # 9.
  • each relay station may transmit a representative value of each CQI in some of the radio resources # 1 to # 10.
  • relay station 121 calculates a representative value of each CQI in radio resources # 3 to # 6 having a relatively high SIR in each CQI among radio resources # 1 to # 10.
  • the DL scheduler 405 of the relay station 121 calculates the representative value “7, 7, 7, 6” of each CQI in the radio resources # 3 to # 6. Then, the DL scheduler 405 transmits the calculated representative value of each CQI to the base station 110 through the transmitter 414. Thereby, the information amount of the representative value transmitted to the base station 110 can be reduced to 4/10. Further, by preferentially selecting a radio resource having a high SIR among the radio resources # 1 to # 10, a radio resource having a high SIR can be allocated by the base station 110.
  • the DL scheduler 405 notifies the selected radio resources # 3 to # 6 to the base station 110 through the transmitter 414.
  • the DL scheduler 305 of the base station 110 is wireless with respect to the radio path between the relay station 121 and each mobile station within the range of radio resources (for example, radio resources # 3 to # 6) notified from the relay station 121. Allocate resources.
  • the DL scheduler 405 of the relay station 121 and the DL scheduler 305 of the base station 110 have been described, the same applies to the UL scheduler 424 of the relay station 121 and the UL scheduler 315 of the base station 110.
  • the same operation may be performed between the base station 110 and the relay station 122.
  • the relay station 121 and the relay station 122 may calculate the representative value of each CQI for the radio resources # 1 to # 10, and may further calculate the representative value of each calculated representative value.
  • the DL scheduler 405 of the relay station 121 sets the representative values “5, 6, 7, 7, 7, 6, 5, 4, 3, 2” of the CQIs in the radio resources # 1 to # 10. calculate.
  • the DL scheduler 405 calculates an average value “5.2” of the calculated representative values. Then, the DL scheduler 405 transmits the average value “5.2” of the representative values to the base station 110 through the transmitter 414. Thereby, the information amount of the representative value transmitted to the base station 110 can be reduced to 1/10.
  • the DL scheduler 405 of the relay station 121 and the DL scheduler 305 of the base station 110 have been described, the same applies to the UL scheduler 424 of the relay station 121 and the UL scheduler 315 of the base station 110.
  • the same operation may be performed between the base station 110 and the relay station 122.
  • the basic configuration of the communication system is the same as that of the communication system 100 shown in FIG. Also, a section between the base station and each relay station is a first radio section, and a section between each relay station and each mobile station is a second radio section.
  • Each mobile station acquires the CQI of the second radio section and transmits it to the relay station. After receiving the CQI of the second radio section of each mobile station, the relay station transfers it to the base station using the first radio section. Further, the relay station acquires the CQI of the first radio section and transmits it to the base station. The base station receives the CQI of the second radio section of each mobile station and the CQI of the first radio section of each relay station, and schedules both the first radio section and the second radio section based on all the CQIs. I do.
  • the entire system band is divided into N subbands (radio resources), the number of bits required to transmit CQI of one subband is 5 bits, the number of mobile stations scheduled by the base station is K, and the base station The number of relay stations to be scheduled is defined as M.
  • the number of CQI bits transmitted to the base station through the first radio interval is 5 ⁇ N ⁇ M [bit] for the first radio interval, and 5 ⁇ N ⁇ K [for the second radio interval. bit].
  • the number K of mobile stations is assumed to be a large value as the maximum capacity of the system, the number of CQI bits in the second radio section is very large.
  • a large amount of CQI is transmitted to the base station.
  • an increase in the amount of CQI information is particularly problematic.
  • relay stations 121 and 122 are based on CQIs from connected mobile stations 131 to 134 (hereinafter referred to as “respective mobile stations”).
  • the representative CQI of the second radio section 103 is calculated and transmitted to the base station 110.
  • Typical CQIs are, for example, the highest CQI among the CQIs, the average value of the CQIs, and the lowest CQI among the CQIs.
  • the base station 110 receives the representative CQI of the second radio section 103 and the CQI of the first radio section 102 from each connected relay station. Then, the base station 110 performs radio resource allocation (scheduling) so that radio resources used in each radio section do not interfere with each other.
  • Each relay station receives a signal from the base station 110 using the radio resources of the first radio section 102 allocated to the own station by the base station 110.
  • Each relay station transmits a signal from the base station 110 to each mobile station using the radio resources of the second radio section 103 allocated to the own station. Since each CQI of each mobile station in the second radio section 103 only knows each relay station, the scheduler of each relay station determines how to allocate the radio resources in the second radio section 103 to each mobile station. decide.
  • the number of CQI bits related to the second radio section 103 transmitted to the base station 110 through the first radio section 102 is 5 ⁇ N ⁇ M [bits]. Therefore, the number of CQI bits related to the second radio section 103 transmitted to the base station 110 through the first radio section 102 is changed from 5 ⁇ N ⁇ K [bit] to 5 ⁇ N ⁇ M [bit] of the other scheduling procedure described above. ] Can be reduced.
  • each relay station Since the number M of each relay station is significantly smaller than the number K of each mobile station, the number of CQI bits related to the second radio section 103 transmitted to the base station 110 through the first radio section 102 is greatly reduced. I understand. Thus, each relay station calculates a representative CQI of the second radio section 103 and transmits it to the base station 110, so that the amount of CQI information received by the base station 110 can be greatly reduced.
  • each relay station acquires each CQI in a plurality of radio resources (see FIG. 9 to FIG. 12), and represents a representative value of each CQI in a part of the plurality of radio resources. You may make it transmit. As a result, the amount of CQI information sent from each relay station to base station 110 can be further reduced.
  • the radio resources required in the second radio section 103 are narrowed down at each relay station, and the representative value of each CQI in the narrowed down radio resources is transmitted to the base station 110.
  • the number of CQI bits related to the second radio section 103 transmitted to the base station 110 is 5 ⁇ N / 2 ⁇ M [ bit].
  • N bits are used to notify the base station 110 of the information on the radio resources narrowed down by each relay station, the amount of additional feedback information remains N ⁇ M [bit].
  • the number of CQI bits related to the second radio section 103 transmitted to the base station 110 through the first radio section 102 is changed from 5 ⁇ N ⁇ K [bit] of the other scheduling procedure described above to 5 ⁇ N / 2 ⁇ . It can be reduced to M + N ⁇ M [bit].
  • the number M of each relay station is significantly smaller than the number K of each mobile station, the number of CQI bits related to the second radio section 103 transmitted to the base station 110 through the first radio section 102 is greatly increased. It can be seen that
  • Each relay station obtains each CQI in a plurality of radio resources (see FIGS. 9 to 12), calculates a representative value of each CQI for each of the plurality of radio resources, and sets a representative value of each calculated representative value. Further, it may be calculated. Thereby, the amount of communication quality information sent from each relay station to the base station 110 can be further reduced.
  • the CQI related to the second radio section 103 transmitted from each relay station to the base station 110 is not a CQI for each radio resource, but a representative value (for example, an average value) of all radio resources. Since the base station 110 cannot obtain the CQI for each radio resource, the radio resource of the second radio section 103 is allocated based on the representative values of all radio resources.
  • each relay station since each relay station has a CQI for each radio resource in each mobile station in the second radio section 103, the radio resource in the second radio section 103 allocated by the base station 110 is assigned to each radio resource. It can be assigned to the optimal mobile station. For this reason, the number of CQI bits for the second radio section 103 transmitted to the base station 110 through the first radio section 102 is changed from 5 ⁇ N ⁇ K [bit] to 5 ⁇ M [bit] in the other scheduling procedure. Can be reduced.
  • the base station assigns radio resources to be used by each relay station in the first radio section and the second radio section. Do. As a result, radio resources can be efficiently allocated to the relay stations so as not to interfere with each other.
  • a representative value is sent to the base station, and the radio resource assigned from the base station is assigned to each mobile station by the relay station.
  • the radio resource is allocated to each radio path between the relay station and each mobile station by the relay station, so that the scheduling processing burden in the base station can be reduced.
  • each communication quality transmitted from each mobile station is received. Thereby, each communication quality between a relay station and each mobile station can be acquired in a relay station.
  • each pilot signal transmitted from each mobile station is received, and each communication quality is measured based on each received pilot signal. Thereby, each communication quality between a relay station and each mobile station can be acquired in a relay station.
  • the relay station acquires each communication quality in a plurality of radio resources (see FIGS. 9 to 12), and transmits a representative value of each communication quality in a part of the plurality of radio resources. May be. Thereby, the information amount of the communication quality sent from the relay station to the base station can be further reduced.
  • the relay station acquires each communication quality in a plurality of radio resources (see FIGS. 9 to 12), calculates a representative value of each communication quality for each of the plurality of radio resources, and represents the representative value of each calculated representative value. May be further calculated. Thereby, the information amount of the communication quality sent from the relay station to the base station can be further reduced.
  • the communication quality and the quality information form are SIR and CQI. Not limited to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 中継局(121,122)は、基地局(110)と移動局(131~134)との間の無線通信を中継する。中継局(121)は、移動局(131,132)との間の各通信品質を取得する。また、中継局(121)は、取得した各通信品質の代表値を算出し、算出した代表値を基地局(110)へ送信する。基地局(110)は、中継局(121)によって送信された代表値に基づいて、中継局(121)と移動局(131,132)との間の無線経路に無線リソースを割り当てる。中継局(121)は、基地局(110)によって割り当てられた無線リソースを、中継局(121)と移動局(131)の間と、中継局(121)と移動局(132)の間と、の各無線経路に割り当てる。

Description

中継局、中継方法、基地局、通信方法および通信システム
 通信を行う中継局、中継方法、基地局、通信方法および通信システムに関する。
 従来、高いスループットを広いエリアで実現するために有効な技術として、無線中継(リレー)に関する検討が盛んに行われている。IEEEでは、802.16j Relay Task GroupにおいてMulti-hop Relayに関する検討が進められている。また、3GPPでは、LTE-Advancedに向けた標準化作業において、Relaying Functionalityに関する検討を進めている。
 たとえば、基地局と中継局の間の区間および中継局と移動局の間の区間における干渉を無くして高いスループットを実現するために、第1無線区間と第2無線区間で異なる無線リソース(周波数など)を利用する通信システムがある。以下、基地局と中継局間を第1無線区間と称し、中継局と移動局間を第2無線区間と称する。
 このような通信システムにおいては、たとえば、1つの基地局に複数の中継局が接続され、各中継局にはそれぞれ複数の移動局が接続されている。第1無線区間では、基地局が各中継局と通信を行うための無線リソースを割り当てる。また、第2無線区間では、複数の中継局がそれぞれ各移動局と通信を行うための無線リソースを割り当てる。
 高いスループットを実現するためには、第1無線区間内や第2無線区間内だけでなく、第1無線区間と第2無線区間の間で同じ無線リソースを使わないように無線リソースの割り当てを行う。干渉が生じないように無線リソースを割り当てるためには、たとえば、第1無線区間で使用する周波数と第2無線区間で使用する周波数をあらかじめ分離する。
 第1無線区間と第2無線区間の伝搬状態は、周囲の伝搬環境に応じてそれぞれ経時的に変化する。このため、第1無線区間と第2無線区間に必要十分な帯域をあらかじめ割り当てると周波数の利用効率を高くすることができない。
 また、たとえば、第1無線区間にWiMAX(802.16d)、第2無線区間に無線LAN(Wi-Fi)といったように、それぞれの無線区間で異なる無線アクセス方式を用いる形態も考えられる。しかしながら、各中継局が独立して無線リソースの割り当てを行うと、各中継局で用いる各無線リソースの間で干渉が生じてスループットが低下する。
 これに対して、第1無線区間と第2無線区間の各無線リソースの割り当て(スケジューリング)を基地局で集中的に行う技術が開示されている(たとえば、下記特許文献1参照。)。この技術では、1つの中継局が複数の基地局の信号を中継する際に、スロットの衝突が生じないようにするスケジューリング制御部を中継局に有し、移動局や中継局から送信される品質情報に基づいて集中的にスロットの割り当てを行う。
特開2008-60868号公報
 しかしながら、上述した従来技術では、移動局や中継局から基地局へ送信される品質情報の情報量が多くなるという問題がある。特に、1つの中継局に対して多くの移動局が接続されている場合は、各移動局から基地局へ送信される品質情報の情報量が膨大になる。このため、第1無線区間におけるスループットが低下するという問題がある。また、多くの移動局に無線リソースを割り当てる処理を基地局に集中させると、基地局におけるスケジューリングの処理負担が増大するという問題がある。
 開示の中継局、中継方法、基地局、通信方法および通信システムは、上記の問題点を解消するものであり、基地局へ送信される品質情報の情報量を削減することを目的とする。
 上述した課題を解決し、目的を達成するため、この中継局は、基地局と各移動局との間の無線通信を中継する中継局において、自局と前記各移動局との間の各通信品質を取得する取得手段と、前記取得手段によって取得された各通信品質の代表値を算出する算出手段と、前記算出手段によって算出された代表値を前記基地局へ送信する送信手段と、前記送信手段によって送信された代表値に基づいて前記基地局によって割り当てられた無線リソースを示す割当情報を前記基地局から受信する受信手段と、前記受信手段によって受信された割当情報が示す無線リソースを前記各移動局に対して割り当てる割り当て手段と、を備える。
 上記構成によれば、中継局と各移動局との間における各通信品質については代表値を基地局へ送り、基地局から割り当てられた無線リソースの各移動局への割り当てを中継局で行うことができる。
 開示の中継局、中継方法、基地局、通信方法および通信システムによれば、基地局へ送信される品質情報の情報量を削減することができる。
図1は、実施の形態にかかる通信システムの構成を示すブロック図である。 図2は、図1に示した通信システムにおける無線リソースの割り当てを示す図である。 図3は、図1に示した基地局の構成を示すブロック図である。 図4は、図1に示した中継局の構成を示すブロック図である。 図5は、図1に示した移動局の構成を示すブロック図である。 図6は、通信システムのダウンリンクの動作例を示すシーケンス図である。 図7は、通信システムのアップリンクの動作例を示すシーケンス図である。 図8は、図2に示した無線リソースの割り当ての具体例を示す図である。 図9は、中継局(RN1)が受信するCQIの具体例を示す図である。 図10は、中継局(RN1)が算出する代表値の具体例を示す図である。 図11は、中継局(RN2)が受信するCQIの具体例を示す図である。 図12は、中継局(RN2)が算出する代表値の具体例を示す図である。 図13は、基地局が受信する代表値およびCQIの具体例を示す図である。 図14は、基地局による無線リソースの割り当ての具体例を示す図である。 図15は、中継局(RN1)による無線リソースの割り当ての具体例を示す図である。 図16は、中継局(RN2)による無線リソースの割り当ての具体例を示す図である。
符号の説明
 100 通信システム
 101 コアネットワーク
 102 第1無線区間
 103 第2無線区間
 110 基地局
 121,122 中継局
 131~134 移動局
 201~206,210 無線リソース
 301,401,407,501 受信アンテナ
 302,402,408,502 受信器
 303,403,409,503 分離部
 304,404,416,510 制御CH復号部
 305,405 DLスケジューラ
 306,406,412,506 制御CH生成部
 307 IP受信部
 308,512 DLバッファ
 309,418,426,516 データCH生成部
 310,419,427,514 パイロット生成部
 311,413,420,507 多重部
 312,414,421,508 送信器
 313,415,422,509 送信アンテナ
 314,410,423,504 SIR測定部
 315,424 ULスケジューラ
 316,417,425,511 データCH復号部
 317,515 ULバッファ
 318 IP送信部
 411,505 CQI生成部
 513 データ処理部
 910,920,1110,1120,1310,1320 CQI
 1010,1210 代表値
 1410,1420,1430,1440,1510,1520,1610,1620 割当情報
 #1~#10 無線リソース
 以下に添付図面を参照して、この中継局、中継方法、基地局、通信方法および通信システムの好適な実施の形態を詳細に説明する。この中継局、中継方法、基地局、通信方法および通信システムは、中継局と各移動局との間における各CQIについては代表値を基地局へ送り、基地局から割り当てられた無線リソースの各移動局への割り当てを中継局で行う。これにより、基地局へ送るCQIの情報量を削減する。
(実施の形態)
(通信システムの構成)
 図1は、実施の形態にかかる通信システムの構成を示すブロック図である。図1に示すように、実施の形態にかかる通信システム100は、基地局110(BS:Base Station)と、中継局121,122(RN:Relay Node)と、移動局131~134(MS:Mobile Station)と、を含んでいる。基地局110は、中継局121の中継により移動局131,132との間で無線通信を行う。
 また、基地局110は、中継局122の中継により移動局133,134との間で無線通信を行う。また、基地局110は、コアネットワーク101に接続されている。中継局121および中継局122は、基地局110の周囲に位置している。基地局110は、中継局121および中継局122との間でそれぞれ無線通信を行う。基地局110と各中継局(中継局121および中継局122)との間の無線区間を第1無線区間102とする。
 移動局131および移動局132は、中継局121の周囲に位置している。中継局121は、移動局131および移動局132との間でそれぞれ無線通信を行う。移動局133および移動局133は、中継局122の周囲に位置している。中継局122は、移動局133および移動局133との間でそれぞれ無線通信を行う。
 中継局121と移動局131,132との間の無線区間、あるいは、中継局122と移動局133,134との間の無線区間を第2無線区間103とする。基地局110は、第1無線区間102および第2無線区間103において中継局121,122が用いる各無線リソースの割り当てを行う。ただし、第2無線区間103における移動局ごとの無線リソースの割り当てについては、中継局121および中継局122がそれぞれ行う。
(無線リソースの割り当て)
 図2は、図1に示した通信システムにおける無線リソースの割り当てを示す図である。図2に示す横軸は周波数を示している。無線リソース210は、通信システム100(図1参照)において使用される周波数帯域を示している。図2に示すように、通信システム100においては、無線リソース210に対して、第1無線区間102および第2無線区間103で用いられる各無線リソースが混在して割り当てられる。
 たとえば、無線リソース201は、基地局110(BS)と中継局121(RN1)との間の無線経路(第1無線区間102)に割り当てられている。無線リソース202は、中継局121(RN1)と移動局131(MS1)との間の無線経路(第2無線区間103)に割り当てられている。無線リソース203は、中継局121(RN1)と移動局132(MS2)との間の無線経路(第2無線区間103)に割り当てられている。
 無線リソース204は、基地局110(BS)と中継局122(RN2)との間の無線経路(第1無線区間102)に割り当てられている。無線リソース205は、中継局122(RN2)と移動局134(MS4)との間の無線経路(第2無線区間103)に割り当てられている。無線リソース206は、中継局122(RN2)と移動局133(MS3)との間の無線経路(第2無線区間103)に割り当てられている。
 このように、無線リソース210に含まれる無線リソース201~206が、第1無線区間102および第2無線区間103における各無線経路に対して互いに干渉しないように割り当てられる。これにより、第1無線区間102および第2無線区間103のそれぞれに必要最小限の無線リソースを割り当てることができるため、周波数の利用効率を高くすることができる。また、中継局121および中継局122の間の干渉が生じないように割り当てを行うことができるため、スループットを向上させることも可能である。
(基地局の構成)
 図3は、図1に示した基地局の構成を示すブロック図である。図3に示すように、基地局110(図1参照)は、受信アンテナ301と、受信器302と、分離部303と、制御CH復号部304と、DLスケジューラ305と、制御CH生成部306と、IP受信部307と、DLバッファ308と、データCH生成部309と、パイロット生成部310と、多重部311と、送信器312と、送信アンテナ313と、を備えている。
 また、基地局110は、SIR測定部314と、ULスケジューラ315と、データCH復号部316と、ULバッファ317と、IP送信部318と、を備えている。受信アンテナ301、受信器302および制御CH復号部304は、中継局121,122と各移動局との間の各CQI(Channel Quality Indicator:品質情報)の代表値を中継局121,122から受信する受信手段である。
 DLスケジューラ305およびULスケジューラ315は、受信手段によって受信された代表値に基づいて各中継局と各移動局との間の無線経路に対して無線リソースを割り当てる割り当て手段である。制御CH生成部306、送信器312および送信アンテナ313は、割り当て手段によって割り当てられた無線リソースを示す割当情報を各中継局へ送信する送信手段である。
(基地局のダウンリンクに関する処理)
 まず、基地局110における、コアネットワーク101からのデータを各移動局へ転送するダウンリンク(DL:Down Link)に関する処理について説明する。受信器302は、中継局121および中継局122から送信された各信号を、受信アンテナ301を介して受信する。
 受信器302が受信する各信号には、中継局121と移動局131,132との間の各CQIの代表値(RN1-MS)と、中継局122と移動局133,134との間の各CQIの代表値(RN2-MS)と、が含まれている。また、受信器302が受信する各信号には、基地局110と中継局121との間のCQI(BS-RN1)と、基地局110と中継局122との間のCQI(BS-RN2)と、が含まれている。受信器302は、受信した各代表値および各CQIを分離部303へ出力する。
 分離部303は、受信器302から出力された代表値(RN1-MS)および代表値(RN2-MS)と、CQI(BS-RN1)およびCQI(BS-RN2)と、を制御CH復号部304へ出力する。制御CH復号部304は、分離部303から出力された各代表値および各CQIを復号する。制御CH復号部304は、復号した各代表値および各CQIをDLスケジューラ305へ出力する。
 DLスケジューラ305は、制御CH復号部304から出力された代表値(RN1-MS)、代表値(RN2-MS)、CQI(BS-RN1)およびCQI(BS-RN2)に基づいて無線リソースの割り当てを行う。
 具体的には、DLスケジューラ305は、基地局110と中継局121との間と、中継局121と移動局131,132との間と、基地局110と中継局122との間と、中継局122と各移動局133,134との間と、の4つの無線経路に対して無線リソースを割り当てる。また、DLスケジューラ305は、各CQIの代表値やCQIの他に、中継局121,122と移動局131~134のID情報や、移動局131~134の各トラヒック情報や各QoS情報などに基づいて無線リソースの割り当てを行ってもよい。
 DLスケジューラ305は、各無線経路に対して割り当てた各無線リソースを示す各割当情報を制御CH生成部306およびデータCH生成部309へ出力する。DLスケジューラ305が出力する割当情報には、割当情報(BS-RN1)、割当情報(RN1-MS)、割当情報(BS-RN2)および割当情報(RN2-MS)が含まれている。
 割当情報(BS-RN1)は、基地局110と中継局121との間の無線経路に割り当てられた無線リソースである。割当情報(RN1-MS)は、中継局121と移動局131,132との間の無線経路に割り当てられた無線リソースである。割当情報(BS-RN2)は、基地局110と中継局122との間の無線経路に割り当てられた無線リソースである。割当情報(RN2-MS)は、中継局122と各移動局との間の無線経路に割り当てられた無線リソースである。
 制御CH生成部306は、DLスケジューラ305から出力された各割当情報を制御CH(チャネル)に配置し、制御CHに配置した各割当情報を多重部311へ出力する。制御CH生成部306から出力された割当情報(BS-RN1)および割当情報(RN1-MS)は、送信器312によって中継局121へ送信される。制御CH生成部306から出力された割当情報(BS-RN2)および割当情報(RN2-MS)は、送信器312によって中継局122へ送信される。
 IP受信部307は、コアネットワーク101から配信された、移動局131~134を宛先とする各DLデータを受信する。IP受信部307が受信する各DLデータには、それぞれ移動局131~134を宛先とするDLデータ(MS1)、DLデータ(MS2)、DLデータ(MS3)およびDLデータ(MS4)が含まれている。IP受信部307は、受信した各DLデータをDLバッファ308へ出力する。
 DLバッファ308は、IP受信部307から出力された各DLデータを記憶する。データCH生成部309は、DLスケジューラ305から出力された各割当情報に基づいて、DLバッファ308に記憶された各DLデータを無線リソースに配置する。データCH生成部309は、無線リソースに配置した各DLデータを多重部311へ出力する。
 たとえば、データCH生成部309は、DLデータ(MS1)およびDLデータ(MS2)を、DLスケジューラ305から出力された割当情報(BS-RN1)が示す無線リソースに配置する。この場合は、DLデータ(MS1)およびDLデータ(MS2)は、割当情報(BS-RN1)が示す無線リソースを用いて送信される。
 また、データCH生成部309は、DLデータ(MS3)およびDLデータ(MS4)を、DLスケジューラ305から出力された割当情報(BS-RN2)が示す無線リソースに配置する。この場合は、DLデータ(MS3)およびDLデータ(MS4)は、割当情報(BS-RN2)が示す無線リソースを用いて送信される。
 パイロット生成部310は、パイロット信号(BS)を生成して多重部311へ出力する。多重部311は、制御CH生成部306から出力された各割当情報と、データCH生成部309から出力された各DLデータと、パイロット信号生成部から出力されたパイロット信号(BS)と、を多重化し、多重化した多重信号を送信器312へ出力する。
 送信器312は、多重部311から出力された多重信号を、送信アンテナ313を介して送信する。送信器312によって送信された多重信号に含まれるパイロット信号(BS)は、中継局121および中継局122によって受信される。送信器312によって送信された多重信号に含まれる割当情報(BS-RN1)および割当情報(RN1-MS)は、中継局121によって受信される。
 送信器312によって送信された多重信号に含まれる割当情報(BS-RN2)および割当情報(RN2-MS)は、中継局122によって受信される。送信器312によって送信された多重信号に含まれるDLデータ(MS1)およびDLデータ(MS2)は、中継局121によって受信される。送信器312によって送信された多重信号に含まれるDLデータ(MS3)およびDLデータ(MS4)は、中継局122によって受信される。
(基地局のアップリンクに関する処理)
 つぎに、基地局110における、各移動局からのデータをコアネットワーク101へ転送するアップリンク(UL:Up Link)に関する処理について説明する。受信器302が受信する各信号には、中継局121および中継局122から送信された各パイロット信号と、コアネットワーク101を宛先とする移動局131~134からの各ULデータと、が含まれている。
 各パイロット信号には、中継局121から送信されたパイロット信号(RN1)と、中継局122から送信されたパイロット信号(RN2)と、が含まれている。各ULデータには、移動局131からのULデータ(MS1)と、移動局132からのULデータ(MS2)と、移動局133からのULデータ(MS3)と、移動局134からのULデータ(MS4)と、が含まれている。受信器302は、受信した各パイロット信号および各ULデータを分離部303へ出力する。
 分離部303は、受信器302から出力された各パイロット信号をSIR測定部314へ出力する。また、分離部303は、受信器302から出力された各ULデータをデータCH復号部316へ出力する。
 SIR測定部314は、分離部303から出力された各パイロット信号に基づいて第2無線区間103の各SIR(Signal to Interference Ratio)を測定する。具体的には、SIR測定部314は、パイロット信号(RN1)に基づいて基地局110と中継局121との間のSIR(BS-RN1)を測定する。また、SIR測定部314は、パイロット信号(RN2)に基づいて基地局110と中継局122との間のSIR(BS-RN2)を測定する。
 SIR測定部314は、測定した各SIRを示す各CQIをULスケジューラ315へ出力する。各CQIには、基地局110と中継局121との間のSIR(BS-RN1)を示すCQI(BS-RN1)と、基地局110と中継局122との間のSIR(BS-RN2)を示すCQI(BS-RN2)と、が含まれている。
 制御CH復号部304は、復号した各代表値をULスケジューラ315へ出力する。制御CH復号部304が出力する各代表値には、中継局121と移動局131,132との間の各SIRを示す各CQIの代表値(RN1-MS)と、中継局122と移動局133,134との間の各CQIの代表値(RN2-MS)と、が含まれている。
 ULスケジューラ315は、制御CH復号部304から出力された各代表値と、SIR測定部314から出力された各CQIと、に基づいて無線リソースを割り当てる。具体的には、ULスケジューラ315は、基地局110と中継局121との間と、中継局121と移動局131,132との間と、基地局110と中継局122との間と、中継局122と移動局133,134との間と、の4つの無線経路に無線リソースを割り当てる。
 また、ULスケジューラ315は、各CQIの代表値やCQIの他に、中継局121,122と移動局131~134のID情報や、移動局131~134の各トラヒック情報や各QoS情報などに基づいて無線リソースの割り当てを行ってもよい。
 ULスケジューラ315は、各無線経路に対して割り当てた各無線リソースを示す各割当情報を制御CH生成部306へ出力する。ULスケジューラ315が出力する割当情報には、割当情報(BS-RN1)、割当情報(RN1-MS)、割当情報(BS-RN2)および割当情報(RN2-MS)が含まれている。
 制御CH生成部306は、ULスケジューラ315から出力された各割当情報を制御CHに配置する。制御CH生成部306は、制御CHに配置した各割当情報を多重部311へ出力する。制御CH生成部306から出力された割当情報(BS-RN1)および割当情報(RN1-MS)は、送信器312によって中継局121へ送信される。制御CH生成部306から出力された割当情報(BS-RN2)および割当情報(RN2-MS)は、送信器312によって中継局122へ送信される。
 データCH復号部316は、分離部303から出力された各ULデータを復号する。データCH復号部316は、復号した各ULデータをULバッファ317へ出力する。ULバッファ317は、データCH復号部316から出力された各ULデータを記憶する。IP送信部318は、ULバッファ317に記憶された各ULデータを読み出し、読み出した各ULデータをコアネットワーク101へ送信する。
(中継局の構成)
 図4は、図1に示した中継局の構成を示すブロック図である。図4に示すように、中継局121(図1参照)は、受信アンテナ401と、受信器402と、分離部403と、制御CH復号部404と、DLスケジューラ405と、制御CH生成部406と、受信アンテナ407と、受信器408と、分離部409と、SIR測定部410と、CQI生成部411と、制御CH生成部412と、多重部413と、送信器414と、送信アンテナ415と、制御CH復号部416と、を備えている。
 また、中継局121は、データCH復号部417と、データCH生成部418と、パイロット生成部419と、多重部420と、送信器421と、送信アンテナ422と、SIR測定部423と、ULスケジューラ424と、データCH復号部425と、データCH生成部426と、パイロット生成部427と、を備えている。ここでは中継局121の構成について説明するが、中継局122の構成についても同様である。
 受信アンテナ401、受信器402、制御CH復号部404およびSIR測定部423は、中継局121(自局)と移動局131,132との間の各通信品質を取得する取得手段である。DLスケジューラ405およびULスケジューラ424は、取得手段によって取得された各通信品質の代表値を算出する算出手段である。制御CH生成部412、送信器414および送信アンテナ415は、算出手段によって算出された代表値を基地局110へ送信する送信手段である。
 受信アンテナ407、受信器408および制御CH復号部416は、送信手段によって送信された代表値に基づいて基地局110によって割り当てられた無線リソースを示す割当情報を基地局110から受信する受信手段である。DLスケジューラ405およびULスケジューラ424は、受信手段によって受信された割当情報が示す無線リソースを移動局131,132に対して割り当てる割り当て手段である。
(中継局のダウンリンクに関する処理)
 まず、中継局121における、コアネットワーク101からのデータを各移動局へ転送するダウンリンクに関する処理について説明する。受信器402は、移動局131および移動局132から送信された各信号を、受信アンテナ401を介して受信する。
 受信器402が受信する各信号には、中継局121と移動局131との間のCQI(RN1-MS1)と、中継局121と移動局132との間のCQI(RN1-MS2)と、が含まれている。受信器402は、受信した各CQIを分離部403へ出力する。
 分離部403は、受信器402から出力された各CQIを制御CH復号部404へ出力する。制御CH復号部404は、分離部403から出力された各CQIを復号し、復号した各CQIをDLスケジューラ405へ出力する。
 DLスケジューラ405は、制御CH復号部404から出力されたCQI(RN1-MS1)およびCQI(RN1-MS2)の代表値(RN1-MS)を算出する。たとえば、DLスケジューラ405は、代表値(RN1-MS)としてCQI(RN1-MS1)およびCQI(RN1-MS2)の最大値、最小値または平均値を算出する。DLスケジューラ405は、算出した代表値(RN1-MS)を制御CH生成部412へ出力する。
 また、DLスケジューラ405は、算出した代表値(RN1-MS)を制御CH生成部412へ出力した結果により基地局110から送信された割当情報(RN1-MS)を、制御CH復号部416から取得する。DLスケジューラ405は、取得した割当情報(RN1-MS)と、制御CH復号部404から出力されたCQI(RN1-MS1)およびCQI(RN1-MS2)と、に基づいて無線リソースの割り当てを行う。
 具体的には、DLスケジューラ405は、中継局121と移動局131との間と、中継局121と移動局132との間と、の各無線経路に対して無線リソースを割り当てる。また、DLスケジューラ405は、各CQIの代表値やCQIの他に、移動局131,132のID情報や、移動局131,132の各トラヒック情報や各QoS情報などに基づいて無線リソースの割り当てを行ってもよい。
 DLスケジューラ405は、各無線経路に対して割り当てた各無線リソースを示す割当情報(RN1-MS1)および割当情報(RN1-MS2)を制御CH生成部406およびデータCH生成部418へ出力する。割当情報(RN1-MS1)は、中継局121と移動局131との間の無線経路に割り当てられた無線リソースを示す割当情報である。割当情報(RN1-MS2)は、中継局121と移動局132との間の無線経路に割り当てられた無線リソースを示す割当情報である。
 制御CH生成部406は、DLスケジューラ405から出力された各割当情報を制御CHに配置し、制御CHに配置した各割当情報を多重部420へ出力する。制御CH生成部406から出力された割当情報(RN1-MS1)は、送信器421によって移動局131へ送信される。制御CH生成部406から出力された割当情報(RN1-MS2)は、送信器421によって移動局132へ送信される。
 受信器408は、基地局110から送信された各信号を、受信アンテナ407を介して受信する。受信器408が受信する各信号には、基地局110から送信されたパイロット信号(BS)および割当情報(RN1-MS)が含まれている。また、受信器408が受信する各信号にはDLデータ(MS1)およびDLデータ(MS2)が含まれている。受信器408は、受信したパイロット信号(BS)、割当情報(RN1-MS)および各DLデータを分離部409へ出力する。
 分離部409は、受信器408から出力されたパイロット信号(BS)をSIR測定部410へ出力する。また、分離部409は、受信器408から出力された割当情報(RN1-MS)を制御CH復号部416へ出力する。また、分離部409は、受信器408から出力された各DLデータをデータCH復号部417へ出力する。
 SIR測定部410は、分離部409から出力されたパイロット信号(BS)に基づいて、基地局110と中継局121との間のSIR(BS-RN1)を測定する。SIR測定部410は、測定したSIR(BS-RN1)をCQI生成部411へ通知する。
 CQI生成部411は、SIR測定部410から通知されたSIR(BS-RN1)を示すCQI(BS-RN1)を生成する。CQI生成部411は、生成したCQI(BS-RN1)を制御CH生成部412へ出力する。
 制御CH生成部412は、DLスケジューラ405から出力された代表値(RN1-MS)と、CQI生成部411から出力されたCQI(BS-RN1)と、を制御CHに配置し、制御CHに配置した代表値(RN1-MS)およびCQI(BS-RN1)を多重部413へ出力する。制御CH生成部412から出力された代表値(RN1-MS)およびCQI(BS-RN1)は、送信器414によって基地局110へ送信される。
 多重部413は、制御CH生成部412から出力された代表値(RN1-MS)およびCQI(BS-RN1)と、データCH生成部426から出力された各ULデータと、パイロット生成部427から出力されたパイロット信号(RN1)と、を多重化する。多重部413は、多重化した多重信号を送信器414へ出力する。送信器414は、多重部413から出力された多重信号を、送信アンテナ415を介して基地局110へ送信する。
 制御CH復号部416は、分離部409から出力された割当情報(RN1-MS)と、割当情報(BS-RN1)と、を復号する。制御CH復号部416は、復号した割当情報(RN1-MS)をDLスケジューラ405と割当情報(BS-RN1)とをデータCH復号部417へ出力する。
 データCH復号部417は、分離部409から出力された各DLデータを、制御CH復号部416から出力された割当情報(BS-RN1)に基づいて復号する。データCH復号部417における復号には、データの送信先となる各移動局のID情報や、データCHのビット数などの情報を用いてもよい。これらの情報は、たとえばダウンリンクの制御CHによって基地局110から通知される。データCH復号部417は、復号した各DLデータをデータCH生成部418へ出力する。
 データCH生成部418は、DLスケジューラ405から出力された割当情報に基づいて、データCH復号部417から出力された各DLデータを無線リソースに配置し、無線リソースに配置した各DLデータを多重部420へ出力する。
 たとえば、データCH生成部418は、データCH復号部417から出力されたDLデータ(MS1)を、DLスケジューラ405から出力された割当情報(RN1-MS1)が示す無線リソースに配置する。これにより、DLデータ(MS1)は、割当情報(RN1-MS1)が示す無線リソースによって移動局131へ送信される。
 また、データCH生成部418は、データCH復号部417から出力されたDLデータ(MS2)を、DLスケジューラ405から出力された割当情報(RN1-MS2)が示す無線リソースに配置する。これにより、DLデータ(MS2)は、割当情報(RN1-MS2)が示す無線リソースによって移動局132へ送信される。
 パイロット生成部419は、パイロット信号(RN1)を生成して多重部420へ出力する。多重部420は、制御CH生成部406から出力された各割当情報と、データCH生成部418から出力された各DLデータと、パイロット生成部419から出力されたパイロット信号(RN1)と、を多重化して送信器421へ出力する。
 送信器421は、多重部413から出力された多重信号を、送信アンテナ422を介して移動局131および移動局132へ送信する。送信器421によって送信された多重信号に含まれるパイロット信号(RN1)は、移動局131および移動局132によって受信される。送信器421によって送信された多重信号に含まれる割当情報(RN1-MS1)は、移動局131によって受信される。
 送信器421によって送信された多重信号に含まれる割当情報(RN1-MS2)は、移動局132によって受信される。送信器421によって送信された多重信号に含まれるDLデータ(MS1)は、移動局131によって受信される。送信器421によって送信された多重信号に含まれるDLデータ(MS2)は、移動局132によって受信される。
(中継局のアップリンクに関する処理)
 つぎに、基地局110における、各移動局からのデータをコアネットワーク101へ転送するアップリンクに関する処理について説明する。受信器402が受信する各信号には、移動局131および移動局132から送信された各パイロット信号と、コアネットワーク101を宛先とする各移動局からの各ULデータと、が含まれている。
 各パイロット信号には、移動局131から送信されたパイロット信号(MS1)と、移動局132から送信されたパイロット信号(MS2)と、が含まれている。各ULデータには、移動局131から送信されたULデータ(MS1)と、移動局132から送信されたULデータ(MS2)と、が含まれている。受信器402は、受信した各パイロット信号および各ULデータを分離部403へ出力する。
 分離部403は、受信器402から出力された各パイロット信号をSIR測定部423へ出力する。また、分離部403は、受信器402から出力された各ULデータをデータCH復号部425へ出力する。
 SIR測定部423は、分離部403から出力された各パイロット信号に基づいて第2無線区間103の各SIRを測定する。具体的には、SIR測定部423は、パイロット信号(MS1)に基づいて中継局121と移動局131との間のSIR(RN1-MS1)を測定する。また、SIR測定部423は、パイロット信号(MS2)に基づいて中継局121と移動局132との間のSIR(RN1-MS2)を測定する。
 SIR測定部423は、測定した各SIRを示す各CQIをULスケジューラ424へ出力する。SIR測定部423が出力する各CQIには、中継局121と移動局131との間のSIRを示すCQI(RN1-MS1)と、中継局121と移動局132との間のSIRを示すCQI(RN1-MS2)と、が含まれている。制御CH復号部416は、復号した割当情報(RN1-MS)をULスケジューラ424へ出力する。
 ULスケジューラ424は、SIR測定部423から出力されたCQI(RN1-MS1)およびCQI(RN1-MS2)の代表値(RN1-MS)を算出する。たとえば、ULスケジューラ424は、代表値(RN1-MS)としてCQI(RN1-MS1)およびCQI(RN1-MS2)の最大値、最小値または平均値を算出する。ULスケジューラ424は、算出した代表値(RN1-MS)を制御CH生成部412へ出力する。
 また、ULスケジューラ424は、算出した代表値(RN1-MS)を制御CH生成部412へ出力した結果により基地局110から送信された割当情報(RN1-MS)を、制御CH復号部416から取得する。ULスケジューラ424は、取得した割当情報(RN1-MS)と、SIR測定部423から出力されたCQI(RN1-MS1)およびCQI(RN1-MS2)と、に基づいて無線リソースの割り当てを行う。
 具体的には、ULスケジューラ424は、中継局121と移動局131との間と、中継局121と移動局132との間と、の各無線経路に対して無線リソースを割り当てる。また、ULスケジューラ424は、各CQIの代表値やCQIの他に、移動局131,132のID情報や、移動局131,132の各トラヒック情報や各QoS情報などに基づいて無線リソースの割り当てを行ってもよい。
 ULスケジューラ424は、各無線経路に対して割り当てた各無線リソースを示す各割当情報を制御CH生成部406へ出力する。ULスケジューラ424が出力する各割当情報には、中継局121と移動局131との間の無線経路に割り当てられた割当情報(RN1-MS1)と、中継局121と移動局132との間の無線経路に割り当てられた割当情報(RN1-MS2)と、が含まれている。
 制御CH生成部412は、ULスケジューラ424から出力された代表値(RN1-MS)と、CQI生成部411から出力されたCQI(BS-RN1)と、を制御CHに配置し、制御CHに配置した各割当情報を多重部413へ出力する。制御CH生成部412から出力された代表値(RN1-MS)およびCQI(BS-RN1)は、送信器414および送信アンテナ415によって基地局110へ送信される。
 制御CH生成部406は、ULスケジューラ424から出力された各割当情報を制御CHに配置し、配置した各割当情報を多重部420へ出力する。制御CH生成部406から出力された割当情報(RN1-MS1)は、送信器421によって移動局131へ送信される。制御CH生成部406から出力された割当情報(RN1-MS2)は、送信器421によって移動局132へ送信される。
 データCH復号部425は、ULスケジューラ424から出力された割当情報(RN1-MS1)および割当情報(RN1-MS2)に基づいて、分離部403から出力された各ULデータを復号する。データCH復号部425は、復号した各ULデータをデータCH生成部426へ出力する。
 データCH生成部426は、データCH復号部425から出力された各ULデータを、ULスケジューラ424から出力された各割当情報に基づいて無線リソースに配置する。具体的には、データCH生成部426は、データCH復号部425から出力されたULデータ(MS1)を、ULスケジューラ424から出力された割当情報(BS-RN1)が示す無線リソースに割り当てる。
 また、データCH生成部426は、データCH復号部425から出力されたULデータ(MS2)を、ULスケジューラ424から出力された割当情報(BS-RN1)が示す無線リソースに割り当てる。データCH生成部426は、データCHに配置した各ULデータを多重部413へ出力する。データCH生成部426から出力された各ULデータは、送信器414によって基地局110へ送信される。
(移動局の構成)
 図5は、図1に示した移動局の構成を示すブロック図である。図5に示すように、移動局131(図1参照)は、受信アンテナ501と、受信器502と、分離部503と、SIR測定部504と、CQI生成部505と、制御CH生成部506と、多重部507と、送信器508と、送信アンテナ509と、制御CH復号部510と、データCH復号部511と、DLバッファ512と、データ処理部513と、を備えている。
 また、移動局131は、パイロット生成部514と、ULバッファ515と、データCH生成部516と、を備えている。ここでは移動局131の構成について説明するが、移動局132~134の各構成についても同様である。
(移動局のダウンリンクに関する処理)
 まず、移動局131における、コアネットワーク101からのデータを受信するダウンリンクに関する処理について説明する。受信器502は、中継局121から送信された各信号を、受信アンテナ501を介して受信する。
 受信器502が受信する各信号には、中継局121から送信されたパイロット信号(RN1)が含まれている。また、受信器502が受信する各信号には割当情報(RN1-MS1)が含まれている。また、受信器502が受信する各信号にはDLデータ(MS1)が含まれている。受信器502は、受信したパイロット信号(RN1)、割当情報(RN1-MS1)およびDLデータ(MS1)を分離部503へ出力する。
 分離部503は、受信器502から出力されたパイロット信号(RN1)をSIR測定部504へ出力する。また、分離部503は、受信器502から出力された割当情報(RN1-MS1)を制御CH復号部510へ出力する。また、分離部503は、受信器502から出力されたDLデータ(MS1)をデータCH復号部511へ出力する。
 SIR測定部504は、分離部503から出力されたパイロット信号(RN1)に基づいて、中継局121と移動局131との間におけるSIR(RN1-MS1)を測定する。SIR測定部504は、測定したSIR(RN1-MS1)をCQI生成部505へ通知する。CQI生成部505は、SIR測定部504から通知されたSIR(RN1-MS1)を示すCQI(RN1-MS1)を制御CH生成部506へ出力する。
 制御CH生成部506は、SIR測定部504から出力されたCQI(RN1-MS1)を制御CHに配置し、制御CHに配置したCQI(RN1-MS1)を多重部507へ出力する。制御CH生成部506から出力されたCQI(RN1-MS1)は、送信器508によって中継局121へ送信される。
 多重部507は、制御CH生成部506から出力されたCQI(RN1-MS1)と、データCH生成部516から出力された各ULデータと、パイロット生成部514から出力されたパイロット信号(MS1)と、を多重化する。多重部507は、多重化した多重信号を送信器508へ出力する。送信器508は、多重部507から出力された多重信号を、送信アンテナ509を介して中継局121へ送信する。
 制御CH復号部510は、分離部503から出力された割当情報(RN1-MS1)を復号し、復号した割当情報(RN1-MS1)をデータCH復号部511へ出力する。データCH復号部511は、制御CH復号部510から出力された割当情報(RN1-MS1)に基づいて、分離部503から出力されたDLデータ(MS1)を復号する。データCH復号部511は、復号したDLデータ(MS1)をDLバッファ512へ出力する。
 DLバッファ512は、データCH復号部511から出力されたDLデータ(MS1)を記憶する。データ処理部513は、DLバッファ512に記憶されたDLデータ(MS1)を読み出し、読み出したDLデータ(MS1)の各種処理を行う。
(移動局のアップリンクに関する処理)
 つぎに、移動局131における、コアネットワーク101へデータを送信するアップリンクに関する処理について説明する。パイロット生成部514は、パイロット信号(MS1)を生成して多重部507へ出力する。
 データ処理部513は、コアネットワーク101を宛先とするULデータ(MS1)を生成し、生成したULデータ(MS1)をULバッファ515へ出力する。ULバッファ515は、データ処理部513から出力されたULデータ(MS1)を記憶する。制御CH復号部510は、割当情報(RN1-MS1)をデータCH生成部516へ出力する。
 データCH生成部516は、ULバッファ515に記憶されたULデータ(MS1)を、制御CH復号部510から出力された割当情報(RN1-MS1)が示す無線リソースに配置する。データCH生成部516は、無線リソースに配置したULデータ(MS1)を多重部507へ出力する。データCH生成部516から出力されたULデータ(MS1)は、送信器508によって中継局121へ送信される。
(通信システムの動作例)
 図6は、通信システムのダウンリンクの動作例を示すシーケンス図である。ここでは、通信システム100における基地局110、中継局121および移動局131,132によるダウンリンクの動作について説明する。まず、移動局131が、中継局121と移動局131との間におけるSIR(RN1-MS1)を測定する(ステップS601)。
 つぎに、移動局131が、ステップS601によって測定されたSIR(RN1-MS1)を示すCQI(RN1-MS1)を中継局121へ送信する(ステップS602)。つぎに、移動局132が、中継局121と移動局132との間におけるSIR(RN1-MS2)を測定する(ステップS603)。
 つぎに、移動局132が、ステップS603によって測定されたSIR(RN1-MS2)を示すCQI(RN1-MS2)を中継局121へ送信する(ステップS604)。つぎに、中継局121が、ステップS602によって送信されたCQI(RN1-MS1)と、ステップS604によって送信されたCQI(RN1-MS2)と、の代表値(RN1-MS)を算出する(ステップS605)。
 つぎに、中継局121が、ステップS604によって算出された代表値(RN1-MS)を基地局110へ送信する(ステップS606)。つぎに、中継局121が、基地局110と中継局121との間におけるSIR(BS-RN1)を測定する(ステップS607)。つぎに、中継局121が、ステップS607によって測定されたSIR(BS-RN1)を示すCQI(BS-RN1)を基地局110へ送信する(ステップS608)。
 つぎに、基地局110が、ステップS606によって送信された代表値(RN1-MS)と、ステップS608によって送信されたCQI(BS-RN1)と、に基づいて無線リソースの割り当てを行う(ステップS609)。ステップS609においては、基地局110と中継局121との間と、中継局121と移動局131,132との間と、の2つの無線経路に対してそれぞれ無線リソースが割り当てられる。
 また、図示しないが、基地局110は、中継局122(図1参照)からの代表値(RN2-MS)およびCQI(BS-RN2)も受信している。基地局110は、ステップS609において、中継局122側へ割り当てる無線リソースと干渉しないように、基地局110と中継局121との間と、中継局121と移動局131,132との間と、の各無線経路に対して無線リソースを割り当てる。
 つぎに、基地局110が、ステップS609によって割り当てられた無線リソースを示す割当情報(BS-RN1)を中継局121へ送信する(ステップS610)。つぎに、基地局110が各DLデータを中継局121へ送信する(ステップS611)。ステップS611においては、移動局131を宛先とするDLデータ(MS1)と、移動局132を宛先とするDLデータ(MS2)と、が送信される。また、ステップS611においては、基地局110と中継局121との間の無線経路に対してステップS609によって割り当てられた無線リソースを用いて各DLデータが送信される。
 つぎに、基地局110が、割当情報(RN1-MS)を中継局121へ送信する(ステップS612)。ステップS612において送信される割当情報(RN1-MS)は、中継局121と移動局131,132との間の無線経路に対してステップS609によって割り当てられた無線リソースを示す割当情報である。
 つぎに、中継局121が、ステップS612によって送信された割当情報(RN1-MS)が示す無線リソースの割り当てを行う(ステップS613)。ステップS613においては、割当情報(RN1-MS)が示す各無線リソースが、中継局121と移動局131との間の無線経路と、中継局121と移動局132との間の無線経路と、に対してそれぞれ割り当てられる。
 つぎに、中継局121が、ステップS613によって割り当てられた無線リソースを示す割当情報(RN1-MS1)を移動局131へ送信する(ステップS614)。つぎに、中継局121が、ステップS611によって送信されたDLデータ(MS1)を移動局131へ送信する(ステップS615)。ステップS615においては、中継局121と移動局131との間の無線経路に対してステップS613によって割り当てられた無線リソースを用いてDLデータが送信される。
 つぎに、中継局121が、ステップS613によって割り当てられた無線リソースを示す割当情報(RN1-MS2)を移動局132へ送信する(ステップS616)。つぎに、中継局121が、ステップS611によって送信されたDLデータ(MS2)を移動局132へ送信し(ステップS617)、一連の動作を終了する。ステップS617においては、中継局121と移動局132との間の無線経路に対してステップS613によって割り当てられた無線リソースを用いてDLデータが送信される。
 ここでは、通信システム100における基地局110、中継局121および移動局131,132によるダウンリンクの動作について説明したが、基地局110、中継局122および移動局133,134の間においても同様のダウンリンクの動作を行う。
 図7は、通信システムのアップリンクの動作例を示すシーケンス図である。ここでは、通信システム100における基地局110、中継局121および移動局131,132によるアップリンクの動作について説明する。まず、移動局131が、中継局121へパイロット信号(MS1)を送信する(ステップS701)。
 つぎに、中継局121が、ステップS701によって送信されたパイロット信号(MS1)に基づいて、中継局121と移動局131との間におけるSIR(RN1-MS1)を測定する(ステップS702)。つぎに、移動局132が、中継局121へパイロット信号(MS2)を送信する(ステップS703)。
 つぎに、中継局121が、ステップS703によって送信されたパイロット信号(MS2)に基づいて、中継局121と移動局132との間におけるSIR(RN1-MS2)を測定する(ステップS704)。つぎに、中継局121が、ステップS702およびステップS702によって測定された各SIRを示す各CQIの代表値(RN1-MS)を算出する(ステップS705)。つぎに、中継局121が、ステップS704によって算出された代表値(RN1-MS)を基地局110へ送信する(ステップS706)。
 つぎに、中継局121が、パイロット信号(RN1)を基地局110へ送信する(ステップS707)。つぎに、基地局110が、ステップS707によって送信されたパイロット信号(RN1)に基づいて、基地局110と中継局121との間におけるSIR(BS-RN1)を測定する(ステップS708)。
 つぎに、基地局110が、ステップS706によって送信された代表値(RN1-MS)と、ステップS708によって測定されたSIRを示すCQI(BS-RN1)と、に基づいて無線リソースの割り当てを行う(ステップS709)。ステップS709においては、基地局110と中継局121との間と、中継局121と移動局131,132との間と、の各無線経路に対してそれぞれ無線リソースが割り当てられる。
 また、図示しないが、基地局110は、中継局122からの代表値(RN2-MS)およびCQI(BS-RN2)も受信している。基地局110は、ステップS709において、中継局122側へ割り当てる無線リソースと干渉しないように、基地局110と中継局121との間と、中継局121と移動局131,132との間と、の各無線経路に対して無線リソースを割り当てる。
 つぎに、基地局110が、割当情報(BS-RN1)および割当情報(RN1-MS)を中継局121へ送信する(ステップS710)。ステップS710において送信される割当情報(BS-RN1)は、基地局110と中継局121との間の無線経路に対してステップS709によって割り当てられた無線リソースを示す割当情報である。割当情報(RN1-MS)は、中継局121と移動局131,132との間の無線経路に対してステップS709によって割り当てられた無線リソースを示す割当情報である。
 つぎに、中継局121が、ステップS710によって送信された割当情報(RN1-MS)が示す無線リソースを割り当てる(ステップS711)。ステップS711においては、割当情報(RN1-MS)が示す各無線リソースが、中継局121と移動局131との間と、中継局121と移動局132との間と、の2つの無線経路に対してそれぞれ割り当てられる。
 つぎに、中継局121が、ステップS711によって割り当てられた無線リソースを示す割当情報(RN1-MS1)を移動局131へ送信する(ステップS712)。ステップS712においては、中継局121と移動局131との間の無線経路に対してステップS711によって割り当てられた無線リソースを示す割当情報が送信される。
 つぎに、中継局121が、ステップS711によって割り当てられた無線リソースを示す割当情報(RN1-MS2)を移動局132へ送信する(ステップS713)。ステップS713においては、中継局121と移動局132との間の無線経路に対してステップS711によって割り当てられた無線リソースを示す割当情報が送信される。
 つぎに、移動局131が、ULデータ(MS1)を中継局121へ送信する(ステップS714)。ステップS714においては、ステップS712によって移動局131へ送信された割当情報(RN1-MS1)が示す無線リソースによって、移動局131からULデータ(MS1)が送信される。
 つぎに、中継局121が、ステップS714によって送信された移動局131からのULデータ(MS1)を基地局110へ送信する(ステップS715)。ステップS715においては、ステップS710によって基地局110から送信された割当情報(BS-RN1)が示す無線リソースによってULデータ(MS1)が送信される。
 つぎに、移動局132が、ULデータ(MS2)を中継局121へ送信する(ステップS716)。ステップS716においては、ステップS713によって移動局132へ送信された割当情報(RN1-MS2)が示す無線リソースによって、移動局132からULデータ(MS2)が送信される。
 つぎに、中継局121が、ステップS716によって送信された移動局132からのULデータ(MS2)を基地局110へ送信し(ステップS717)、一連の動作を終了する。ステップS717においては、ステップS710によって送信された割当情報(BS-RN1)が示す無線リソースによってULデータ(MS2)が送信される。
 ここでは、通信システム100における基地局110、中継局121および移動局131,132によるアップリンクの動作について説明したが、基地局110、中継局122および移動局133,134の間においても同様のアップリンクの動作を行う。
(通信システムの動作の具体例)
 図8は、図2に示した無線リソースの割り当ての具体例を示す図である。図8において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図8に示すように、ここでは、図2に示した無線リソース210を無線リソース#1~#10に分割する場合について説明する(図9~図16参照)。
 図9は、中継局(RN1)が受信するCQIの具体例を示す図である。図9は、中継局121が各移動局から受信する各CQIを示している。CQI910は、中継局121が移動局131から受信したCQI(RN1-MS1)である。CQI920は、中継局121が移動局132から受信したCQI(RN1-MS2)である。
 CQI910に示す各値は、移動局131が測定した無線リソース#1~#10における各SIRを示している。CQI920に示す各値は、移動局132が測定した無線リソース#1~#10における各SIRを示している。このように、中継局121は、複数の無線リソースにおける各SIRを取得する。ここでは各SIRの値を単純化して示しており、値が大きいほど通信品質がよい(図10~図13においても同様)。
 図10は、中継局(RN1)が算出する代表値の具体例を示す図である。図10において、図9に示した部分と同様の部分については同一の符号を付して説明を省略する。図10に示す代表値1010は、中継局121が算出したCQI910およびCQI920の代表値(RN1-MS)である。ここでは、中継局121は、代表値(RN1-MS)としてCQI910およびCQI920の最大値を算出している。
 たとえば、無線リソース#1においては、SIR(5)およびSIR(3)の中で最大のSIR(5)が代表値(RN1-MS)として算出されている。また、無線リソース#5においては、SIR(6)およびSIR(7)の中で最大のSIR(7)が代表値(RN1-MS)として算出されている。
 図11は、中継局(RN2)が受信するCQIの具体例を示す図である。図11は、中継局122が各移動局から受信する各CQIの具体例を示している。CQI1110は、中継局122が移動局133から受信したCQI(RN2-MS3)である。CQI1120は、中継局122が移動局134から受信したCQI(RN2-MS4)である。
 CQI1110に示す各値は、移動局133が測定した無線リソース#1~#10における各SIRを示している。CQI1120に示す各値は、移動局134が測定した無線リソース#1~#10における各SIRを示している。このように、中継局122は、複数の無線リソースにおける各SIRを取得する。
 図12は、中継局(RN2)が算出する代表値の具体例を示す図である。図12において、図11に示した部分と同様の部分については同一の符号を付して説明を省略する。図12に示す代表値1210は、中継局122が算出したCQI1110およびCQI1120の代表値(RN2-MS)である。ここでは、中継局122は、代表値(RN2-MS)としてCQI1110およびCQI1120の最大値を算出している。
 たとえば、無線リソース#1においては、SIR(2)およびSIR(1)の中で最大のSIR(2)が代表値(RN2-MS)として算出されている。また、無線リソース#5においては、SIR(2)およびSIR(3)の中で最大のSIR(3)が代表値(RN2-MS)として算出されている。
 図13は、基地局が受信する代表値およびCQIの具体例を示す図である。図13において、図10または図12に示した部分と同様の部分については同一の符号を付して説明を省略する。図13は、基地局110が中継局121および中継局122から受信する各代表値および各CQIの具体例を示している。
 CQI1310は、基地局110が中継局121から受信したCQI(BS-RN1)である。代表値1010(図10参照)は、基地局110が中継局121から受信した代表値(RN1-MS)である。CQI1320は、基地局110が中継局122から受信したCQI(BS-RN2)である。代表値1210(図12参照)は、基地局110が中継局122から受信した代表値(RN2-MS)である。
 図14は、基地局による無線リソースの割り当ての具体例を示す図である。図14は、基地局110による無線リソースの割り当ての具体例を示している。基地局110は、図13に示した代表値およびCQIに基づいて無線リソースの割り当てを行う。図14の値「1」および「0」は、該当する無線区間に対する無線リソースの割り当ての有無を示している(図15,図16においても同様)。
 割当情報1410は、基地局110と中継局121との間の無線経路に割り当てられた無線リソースを示す割当情報(BS-RN1)である。割当情報1410に示すように、基地局110と中継局121との間の無線経路には、無線リソース#1,#2が割り当てられている。割当情報1410は、基地局110から中継局121へ送信される。
 割当情報1420は、基地局110と中継局122との間の無線経路に割り当てられた無線リソースを示す割当情報(BS-RN2)である。割当情報1420に示すように、基地局110と中継局122との間の無線経路には、無線リソース#6~#8が割り当てられている。割当情報1420は、基地局110から中継局122へ送信される。
 割当情報1430は、中継局121と移動局131,132との間の無線経路に割り当てられた無線リソースを示す割当情報(RN1-MS)である。割当情報1430に示すように、中継局121と各移動局との間の無線経路には、無線リソース#3~#5が割り当てられている。割当情報1430は、基地局110から中継局121へ送信される。
 割当情報1440は、中継局122と移動局133,134との間の無線経路に割り当てられた無線リソースを示す割当情報(RN2-MS)である。割当情報1440に示すように、中継局122と各移動局との間の無線経路には、無線リソース#9,#10が割り当てられている。割当情報1440は、基地局110から中継局122へ送信される。
 基地局110は、第1無線区間102および第2無線区間103において各中継局および各移動局が良好なCQIを持つ無線リソースを使用できるように割り当てを行う。ここで、中継局121,122が受信するデータCHの情報量と中継局121,122が送信するデータCHの情報量はほぼ等しいと考えられるため、中継するデータCHの情報量に合わせて、割り当てる無線リソースの数を調整してもよい。
 たとえば、中継局121に割り当てる第1無線区間102の無線リソースのCQIが高く、第2無線区間103の無線リソースのCQIが低い場合は、第2無線区間103にはより多くの無線リソースを割り当てるように調整を行う。
 図15は、中継局(RN1)による無線リソースの割り当ての具体例を示す図である。図15は、中継局121による無線リソースの割り当ての具体例を示している。中継局121は、基地局110から送信された割当情報1430(図14参照)が示す無線リソース#3~#5を、中継局121と移動局131との間と、中継局121と移動局132との間と、の各無線経路に割り当てる。
 割当情報1510は、中継局121と移動局131との間の無線経路に割り当てられた無線リソースを示す割当情報(RN1-MS1)である。中継局121と移動局131との間の無線経路には、無線リソース#3,#4が割り当てられている。中継局121は、無線リソース#3,#4を用いて移動局131と通信を行う。
 割当情報1520は、中継局121と移動局132との間の無線経路に割り当てられた無線リソースを示す割当情報(RN1-MS2)である。中継局121と移動局132との間の無線経路には、無線リソース#5が割り当てられている。中継局121は、無線リソース#5を用いて移動局132と通信を行う。
 図16は、中継局(RN2)による無線リソースの割り当ての具体例を示す図である。図16は、中継局122による無線リソースの割り当ての具体例を示している。中継局122は、基地局110から送信された割当情報1440(図14参照)が示す無線リソース#9,#10を、中継局122と移動局133との間と、中継局122と移動局134との間と、の各無線経路に割り当てる。
 割当情報1610は、中継局122と移動局133との間の無線経路に割り当てられた無線リソースを示す割当情報(RN2-MS3)である。中継局122と移動局133との間の無線経路には、無線リソース#10が割り当てられている。中継局122は、無線リソース#10を用いて移動局133と通信を行う。
 割当情報1620は、中継局122と移動局134との間の無線経路に割り当てられた無線リソースを示す割当情報(RN2-MS4)である。中継局122と移動局134との間の無線経路には、無線リソース#9が割り当てられている。中継局122は、無線リソース#9を用いて移動局134と通信を行う。
(通信システムの動作の他の例1)
 通信システム100において、各中継局は、無線リソース#1~#10のうちの一部の無線リソースにおける各CQIの代表値を送信するようにしてもよい。たとえば、図10において、中継局121は、無線リソース#1~#10のうちの、各CQIにおいてSIRが比較的高い無線リソース#3~#6における各CQIの代表値を算出する。
 具体的には、中継局121のDLスケジューラ405は、無線リソース#3~#6における各CQIの代表値「7,7,7,6」を算出する。そして、DLスケジューラ405は、算出した各CQIの代表値を、送信器414を通じて基地局110へ送信する。これにより、基地局110へ送信する代表値の情報量を4/10にすることができる。また、無線リソース#1~#10のうちのSIRが高い無線リソースを優先的に選択することで、SIRが高い無線リソースを基地局110によって割り当てさせることができる。
 また、DLスケジューラ405は、選択した無線リソース#3~#6を、送信器414を通じて基地局110へ通知する。基地局110のDLスケジューラ305は、中継局121から通知された無線リソース(たとえば無線リソース#3~#6)の範囲内で、中継局121と各移動局との間の無線経路に対して無線リソースを割り当てる。
 中継局121のDLスケジューラ405および基地局110のDLスケジューラ305について説明したが、中継局121のULスケジューラ424および基地局110のULスケジューラ315についても同様である。また、基地局110と中継局122との間でも同様の動作を行ってもよい。
(通信システムの動作の他の例2)
 通信システム100において、中継局121および中継局122は、無線リソース#1~#10について各CQIの代表値をそれぞれ算出し、算出した各代表値の代表値をさらに算出するようにしてもよい。たとえば、図10において、中継局121のDLスケジューラ405は、無線リソース#1~#10における各CQIの代表値「5,6,7,7,7,6,5,4,3,2」を算出する。
 そして、DLスケジューラ405は、算出した各代表値の平均値「5.2」を算出する。そして、DLスケジューラ405は、各代表値の平均値「5.2」を、送信器414を通じて基地局110へ送信する。これにより、基地局110へ送信する代表値の情報量を1/10にすることができる。
 中継局121のDLスケジューラ405および基地局110のDLスケジューラ305について説明したが、中継局121のULスケジューラ424および基地局110のULスケジューラ315についても同様である。また、基地局110と中継局122との間でも同様の動作を行ってもよい。
(CQIの情報量の削減効果)
 つぎに、通信システム100によるCQIの情報量の削減効果について説明する。まず、通信システム100とは異なる通信システムについて検討する。上述した特許文献1においては、基地局と各中継局との間の区間と、各中継局と各移動局との間の区間と、のそれぞれに対してスケジューリングを行う具体的な手順が十分に開示されていない。
 したがって、ここでは、上述した特許文献1に基づいて簡単に導き出せるスケジューリングについて検討する。また、通信システムの基本構成については、図1に示した通信システム100と同様であるとする。また、基地局と各中継局との間の区間を第1無線区間とし、各中継局と各移動局との間の区間を第2無線区間とする。
 各移動局は、第2無線区間のCQIを取得して中継局に送信する。中継局は、各移動局の第2無線区間のCQIを受信した後、第1無線区間を用いて基地局に転送する。また、中継局は、第1無線区間のCQIを取得して基地局へ送信する。基地局では、各移動局の第2無線区間のCQIと、各中継局の第1無線区間のCQIを受信し、それら全てのCQIに基づいて第1無線区間と第2無線区間の両方のスケジューリングを行う。
 全システム帯域をN個のサブバンド(無線リソース)に分割し、1つのサブバンドのCQIを送信するのに必要なビット数を5bit、基地局がスケジューリングする移動局の数をK、基地局がスケジューリングする中継局の数をMと定義する。この場合は、第1無線区間を通じて基地局へ送信されるCQIのビット数は、第1無線区間に関するものが5×N×M[bit]、第2無線区間に関するものが5×N×K[bit]となる。
 特に移動局の数Kは、システムの最大容量として大きな数値が想定されるため、第2無線区間のCQIのビット数は非常に多いものとなる。このように、このスケジューリングの手順においては、大量のCQIを基地局へ送信することになる。このため、多くの移動局を収容するセルラー基地局においては、CQIの情報量の増加は特に問題となる。
 つぎに、通信システム100によるCQIの情報量の一例について検討する。通信システム100においては、中継局121,122(以下、「各中継局」と称する)が、接続されている移動局131~134(以下、「各移動局」と称する)からの各CQIに基づいて第2無線区間103の代表的なCQIを算出して基地局110へ送信する。
 代表的なCQIは、たとえば、各CQIの中で最も高いCQI、各CQIの平均値、各CQIの中で最も低いCQIなどである。基地局110は、接続している各中継局から第2無線区間103の代表的なCQIと、第1無線区間102のCQIを受信する。そして、基地局110は、それぞれの無線区間で使用する無線リソースが互いに干渉しないように、無線リソースの割り当て(スケジューリング)を行う。
 各中継局は、基地局110によって自局に割り当てられた第1無線区間102の無線リソースを用いて基地局110からの信号を受信する。そして、各中継局は、自局に割り当てられた第2無線区間103の無線リソースを用いて、基地局110からの信号を各移動局に送信する。第2無線区間103の各移動局の各CQIは各中継局しか知らないため、第2無線区間103の無線リソースをどのように各移動局に割り当てるかは、各中継局のスケジューラが判断して決定する。
 この場合は、たとえば、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数は5×N×M[bit]となる。したがって、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数を、上述した他のスケジューリング手順の5×N×K[bit]から5×N×M[bit]に削減することができる。
 各中継局の数Mは各移動局の数Kよりも大幅に少ないため、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数が大幅に削減されることが分かる。このように、各中継局が第2無線区間103の代表的なCQIを算出して基地局110へ送信することにより、基地局110で受信するCQIの情報量を大幅に削減することができる。
 また、通信システム100において、各中継局は、複数の無線リソースにおける各CQIを取得し(図9~図12参照)、複数の無線リソースのうちの一部の無線リソースにおける各CQIの代表値を送信するようにしてもよい。これにより、各中継局から基地局110へ送るCQIの情報量をさらに削減することができる。
 このように、第2無線区間103で必要とする無線リソースを各中継局において絞り込み、絞り込んだ無線リソースにおける各CQIの代表値を基地局110へ送信する。たとえば、各中継局が第2無線区間103で必要とする無線リソースを半分に絞り込んだ場合、基地局110へ送信される第2無線区間103に関するCQIのビット数は5×N/2×M[bit]となる。このとき、各中継局が絞り込んだ無線リソースの情報を基地局110へ通知するためにNビット使用すると仮定しても、追加となるフィードバック情報量はN×M[bit]に留まる。
 このため、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数を、上述した他のスケジューリング手順の5×N×K[bit]から5×N/2×M+N×M[bit]に削減することができる。上述したように、各中継局の数Mは各移動局の数Kよりも大幅に少ないため、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数が大幅に削減されることが分かる。
 また、各中継局は、複数の無線リソースにおける各CQIを取得し(図9~図12参照)、複数の無線リソースについて各CQIの代表値をそれぞれ算出し、算出した各代表値の代表値をさらに算出するようにしてもよい。これにより、各中継局から基地局110へ送る通信品質の情報量をさらに削減することができる。
 このように、各中継局が基地局110へ送信する第2無線区間103に関するCQIは、無線リソースごとのCQIではなく、全無線リソースの代表値(たとえば平均値)とする。基地局110では、無線リソースごとのCQIが得られないため、全無線リソースの代表値に基づいて第2無線区間103の無線リソースを割り当てる。
 一方で、各中継局は第2無線区間103の各移動局における無線リソースごとのCQIを有しているため、基地局110によって割り当てられた第2無線区間103の無線リソースを、無線リソースごとに最適な移動局に対して割り当てることができる。このため、第1無線区間102を通じて基地局110へ送信される第2無線区間103に関するCQIのビット数を、上記の他のスケジューリング手順の5×N×K[bit]から5×M[bit]に削減することができる。
 以上説明したように、開示の中継局、中継方法、基地局、通信方法および通信システムによれば、第1無線区間および第2無線区間において各中継局が利用する無線リソースの割り当てを基地局によって行う。これにより、無線リソースを、各中継局に対して互いに干渉しないように効率的に割り当てることができる。
 また、中継局と各移動局との間における各通信品質については代表値を基地局へ送り、基地局から割り当てられた無線リソースの各移動局への割り当てを中継局で行う。これにより、中継局から基地局へ送る通信品質の情報量を削減することができる。また、中継局と各移動局との間の各無線経路に対する無線リソースの割り当ては中継局によって行うことで、基地局におけるスケジューリングの処理負担を低減することができる。
 また、基地局から各移動局へのダウンリンクの通信を行う場合は、各移動局から送信された各通信品質を受信する。これにより、中継局と各移動局との間における各通信品質を中継局において取得することができる。また、各移動局から基地局へのアップリンクの通信を行う場合は、各移動局から送信された各パイロット信号を受信し、受信した各パイロット信号に基づいて各通信品質を測定する。これにより、中継局と各移動局との間における各通信品質を中継局において取得することができる。
 また、中継局は、複数の無線リソースにおける各通信品質を取得し(図9~図12参照)、複数の無線リソースのうちの一部の無線リソースにおける各通信品質の代表値を送信するようにしてもよい。これにより、中継局から基地局へ送る通信品質の情報量をさらに削減することができる。
 また、中継局は、複数の無線リソースにおける各通信品質を取得し(図9~図12参照)、複数の無線リソースについて各通信品質の代表値をそれぞれ算出し、算出した各代表値の代表値をさらに算出するようにしてもよい。これにより、中継局から基地局へ送る通信品質の情報量をさらに削減することができる。
 なお、上述した実施の形態においては、各無線区間の通信品質としてSIRを測定し、測定したSIRを示す品質情報としてCQIを用いる場合について説明したが、通信品質や品質情報の形態はSIRやCQIに限らない。

Claims (10)

  1.  基地局と各移動局との間の無線通信を中継する中継局において、
     自局と前記各移動局との間の各通信品質を取得する取得手段と、
     前記取得手段によって取得された各通信品質の代表値を算出する算出手段と、
     前記算出手段によって算出された代表値を前記基地局へ送信する送信手段と、
     前記送信手段によって送信された代表値に基づいて前記基地局によって割り当てられた無線リソースを示す割当情報を前記基地局から受信する受信手段と、
     前記受信手段によって受信された割当情報が示す無線リソースを前記各移動局に対して割り当てる割り当て手段と、
     を備えることを特徴とする中継局。
  2.  前記基地局から前記各移動局へのダウンリンクの通信を行う場合は、前記取得手段は、前記各移動局から送信された前記各通信品質を受信することを特徴とする請求項1に記載の中継局。
  3.  前記各移動局から前記基地局へのアップリンクの通信を行う場合は、前記取得手段は、前記各移動局から送信された各パイロット信号を受信し、受信した各パイロット信号に基づいて前記各通信品質を測定することを特徴とする請求項1に記載の中継局。
  4.  前記取得手段は、複数の無線リソースにおける前記各通信品質を取得し、
     前記送信手段は、前記複数の無線リソースのうちの一部の無線リソースについて前記算出手段によって算出された代表値を送信することを特徴とする請求項1に記載の中継局。
  5.  前記取得手段は、複数の無線リソースにおける前記各通信品質を取得し、
     前記算出手段は、前記複数の無線リソースについて前記代表値をそれぞれ算出し、算出した各代表値の代表値を算出し、
     前記送信手段は、前記算出手段によって算出された前記各代表値の代表値を送信することを特徴とする請求項1に記載の中継局。
  6.  基地局と各移動局との間の無線通信を中継する中継局による中継方法において、
     自局と前記各移動局との間の各通信品質を取得する取得工程と、
     前記取得工程によって取得された各通信品質の代表値を算出する算出工程と、
     前記算出工程によって算出された代表値を前記基地局へ送信する送信工程と、
     前記送信工程によって送信された代表値に基づいて前記基地局によって割り当てられた無線リソースを示す割当情報を前記基地局から受信する受信工程と、
     前記受信工程によって受信された割当情報が示す無線リソースを前記各移動局に対して割り当てる割当工程と、
     を含むことを特徴とする中継方法。
  7.  中継局の中継によって各移動局と無線通信を行う基地局において、
     前記中継局と前記各移動局との間の各通信品質の代表値を前記中継局から受信する受信手段と、
     前記受信手段によって受信された代表値に基づいて前記中継局と前記各移動局との間の無線経路に対して無線リソースを割り当てる割り当て手段と、
     前記割り当て手段によって割り当てられた無線リソースを示す割当情報を前記中継局へ送信する送信手段と、
     を備えることを特徴とする基地局。
  8.  中継局の中継によって各移動局と無線通信を行う基地局による通信方法において、
     前記中継局と前記各移動局との間の各通信品質の代表値を前記中継局から受信する受信工程と、
     前記受信工程によって受信された代表値に基づいて前記中継局と前記各移動局との間の無線経路に対して無線リソースを割り当てる割当工程と、
     前記割当工程によって割り当てられた無線リソースを示す割当情報を前記中継局へ送信する送信工程と、
     を含むことを特徴とする通信方法。
  9.  中継局の中継により基地局と各移動局との間で無線通信を行う通信システムにおいて、
     前記中継局と前記各移動局との間の各通信品質の代表値を前記中継局から受信し、受信した代表値に基づいて前記中継局と前記各移動局との間の無線経路に対して無線リソースを割り当てる基地局と、
     前記基地局によって割り当てられた無線リソースを前記各移動局に対して割り当てる中継局と、
     前記中継局によって割り当てられた無線リソースによって前記中継局との無線通信を行う複数の移動局と、
     を含むことを特徴とする通信システム。
  10.  中継局の中継により基地局と各移動局との間で無線通信を行う通信方法において、
     前記中継局が、前記中継局と前記各移動局との間の各通信品質の代表値を取得する取得工程と、
     前記中継局が、前記取得工程によって取得された代表値を前記基地局へ送信する第1送信工程と、
     前記基地局が、前記第1送信工程によって送信された代表値に基づいて前記中継局と前記各移動局との間の無線経路に対して無線リソースを割り当てる第1割当工程と、
     前記基地局が、前記第1割当工程によって割り当てられた無線リソースを示す割当情報を前記中継局へ送信する第2送信工程と、
     前記中継局が、前記第2送信工程によって送信された割当情報が示す無線リソースを前記各移動局に対して割り当てる第2割当工程と、
     を含むことを特徴とする通信方法。
PCT/JP2009/055316 2009-03-18 2009-03-18 中継局、中継方法、基地局、通信方法および通信システム WO2010106654A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011504659A JP4941615B2 (ja) 2009-03-18 2009-03-18 中継局、中継方法、基地局、通信方法および通信システム
CN2009801580641A CN102349322A (zh) 2009-03-18 2009-03-18 中继站、中继方法、基站、通信方法以及通信***
KR1020117021451A KR101338529B1 (ko) 2009-03-18 2009-03-18 중계국, 중계 방법, 기지국, 통신 방법 및 통신 시스템
PCT/JP2009/055316 WO2010106654A1 (ja) 2009-03-18 2009-03-18 中継局、中継方法、基地局、通信方法および通信システム
EP09841859.3A EP2410779A4 (en) 2009-03-18 2009-03-18 RELAY STATION, RELAY PROCEDURE, BASE STATION, COMMUNICATION PROCESS AND COMMUNICATION SYSTEM
US13/216,724 US20110305190A1 (en) 2009-03-18 2011-08-24 Relay node, relay method, base station, communication method, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055316 WO2010106654A1 (ja) 2009-03-18 2009-03-18 中継局、中継方法、基地局、通信方法および通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/216,724 Continuation US20110305190A1 (en) 2009-03-18 2011-08-24 Relay node, relay method, base station, communication method, and communications system

Publications (1)

Publication Number Publication Date
WO2010106654A1 true WO2010106654A1 (ja) 2010-09-23

Family

ID=42739324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055316 WO2010106654A1 (ja) 2009-03-18 2009-03-18 中継局、中継方法、基地局、通信方法および通信システム

Country Status (6)

Country Link
US (1) US20110305190A1 (ja)
EP (1) EP2410779A4 (ja)
JP (1) JP4941615B2 (ja)
KR (1) KR101338529B1 (ja)
CN (1) CN102349322A (ja)
WO (1) WO2010106654A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002501A (zh) * 2011-09-19 2013-03-27 北京三星通信技术研究有限公司 一种移动中继的实现方法及***
WO2016043023A1 (ja) * 2014-09-19 2016-03-24 シャープ株式会社 基地局装置、端末装置、処理方法、処理装置、プログラム及び記録媒体
JP2016533064A (ja) * 2013-07-03 2016-10-20 インターデイジタル パテント ホールディングス インコーポレイテッド 干渉制限されるワイヤレスローカルエリアネットワークシステムのためのマルチバンド方法
WO2020202401A1 (ja) * 2019-03-29 2020-10-08 株式会社Nttドコモ リレー装置
WO2023112106A1 (ja) * 2021-12-13 2023-06-22 株式会社Nttドコモ 無線中継装置及び通信方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066287B2 (en) 2012-01-24 2015-06-23 Qualcomm Incorporated Systems and methods of relay selection and setup
US20130235788A1 (en) * 2012-03-08 2013-09-12 Qualcomm Incorporated Systems and methods for establishing a connection setup through relays
US9794796B2 (en) 2012-06-13 2017-10-17 Qualcomm, Incorporation Systems and methods for simplified store and forward relays
US9510271B2 (en) 2012-08-30 2016-11-29 Qualcomm Incorporated Systems, apparatus, and methods for address format detection
EP2835927B1 (en) 2013-08-07 2016-11-30 Samsung Electronics Co., Ltd Method and apparatus for scheduling resources at relay station (RS) in mobile communication network
US10237865B2 (en) * 2014-06-23 2019-03-19 Telecom Italia S.P.A. Fronthaul load dynamic reduction in centralized radio access networks
SE539871C2 (en) * 2015-02-04 2017-12-27 Lumenradio Ab A method and a system for selecting communication parameters in a wireless network
US10743230B2 (en) * 2015-06-24 2020-08-11 Sony Corporation Node reselection determined by the network on received UE beacon signaling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048416A (ja) * 2006-08-18 2008-02-28 Fujitsu Ltd 無線ネットワークにおけるチャネル割り当てシステム及び方法
JP2008060868A (ja) 2006-08-31 2008-03-13 Fujitsu Ltd 無線通信システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810236B2 (en) * 2001-05-14 2004-10-26 Interdigital Technology Corporation Dynamic channel quality measurement procedure for adaptive modulation and coding techniques
KR100810201B1 (ko) * 2005-06-18 2008-03-06 삼성전자주식회사 다중 홉 릴레이 셀룰라 네트워크에서 라우팅 장치 및 방법
KR101002897B1 (ko) * 2006-02-15 2010-12-21 한국과학기술원 이동 통신 시스템에서 채널 할당 시스템 및 방법
KR101317500B1 (ko) * 2006-06-20 2013-10-15 연세대학교 산학협력단 이동통신 시스템의 릴레잉 방법 및 그 시스템
CN101641874B (zh) * 2006-08-18 2013-11-06 富士通株式会社 共存新的和现有的无线通信设备的导码序列
KR100883354B1 (ko) * 2006-11-03 2009-02-17 한국전자통신연구원 다중 반송파 무선 시스템에서 채널 품질 정보의 보고 주기결정 방법 및 장치
KR101106689B1 (ko) * 2007-02-26 2012-01-18 한국과학기술원 광대역 무선통신 시스템에서 상향링크 무선자원을 할당하기위한 장치 및 방법
KR101370780B1 (ko) * 2007-03-21 2014-03-10 엘지전자 주식회사 채널품질정보 전송방법 및 채널품질정보 생성방법
WO2008135833A2 (en) * 2007-05-07 2008-11-13 Nokia Corporation Feedback and link adaptation techniques for wireless networks
US8320431B2 (en) * 2007-08-31 2012-11-27 Nokia Siemens Networks Oy Differential channel quality reporting
KR20090052784A (ko) * 2007-11-21 2009-05-26 엘지전자 주식회사 릴레이를 통한 통신 방법
US7907540B2 (en) * 2007-12-18 2011-03-15 Intel Corporation Relays in wireless communication networks
US8462743B2 (en) * 2008-01-25 2013-06-11 Nokia Siemens Networks Oy Method, apparatus and computer program for signaling channel quality information in a network that employs relay nodes
WO2009096406A1 (ja) * 2008-01-30 2009-08-06 Sharp Kabushiki Kaisha 中継装置、通信システムおよび通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048416A (ja) * 2006-08-18 2008-02-28 Fujitsu Ltd 無線ネットワークにおけるチャネル割り当てシステム及び方法
JP2008060868A (ja) 2006-08-31 2008-03-13 Fujitsu Ltd 無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410779A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002501A (zh) * 2011-09-19 2013-03-27 北京三星通信技术研究有限公司 一种移动中继的实现方法及***
JP2016533064A (ja) * 2013-07-03 2016-10-20 インターデイジタル パテント ホールディングス インコーポレイテッド 干渉制限されるワイヤレスローカルエリアネットワークシステムのためのマルチバンド方法
WO2016043023A1 (ja) * 2014-09-19 2016-03-24 シャープ株式会社 基地局装置、端末装置、処理方法、処理装置、プログラム及び記録媒体
WO2020202401A1 (ja) * 2019-03-29 2020-10-08 株式会社Nttドコモ リレー装置
WO2023112106A1 (ja) * 2021-12-13 2023-06-22 株式会社Nttドコモ 無線中継装置及び通信方法

Also Published As

Publication number Publication date
JP4941615B2 (ja) 2012-05-30
JPWO2010106654A1 (ja) 2012-09-20
KR20110119797A (ko) 2011-11-02
EP2410779A4 (en) 2014-04-23
US20110305190A1 (en) 2011-12-15
EP2410779A1 (en) 2012-01-25
CN102349322A (zh) 2012-02-08
KR101338529B1 (ko) 2013-12-06

Similar Documents

Publication Publication Date Title
JP4941615B2 (ja) 中継局、中継方法、基地局、通信方法および通信システム
US11211995B2 (en) Allocating time-frequency blocks for a relay link and an access link
JP5257515B2 (ja) 基地局、中継局、通信システムおよび通信方法
KR101513528B1 (ko) 다중 홉 릴레이 시스템에서 데이터 전송 방법, 데이터 송신장치, 및 통신 시스템
EP2392191B1 (en) Apparatus and method for relaying multiple links in a communication system
KR101217292B1 (ko) 통신 장치 및 무선 통신 시스템
JP5248509B2 (ja) 無線通信システムにおけるマルチホップ中継のためのフレーム構造
JP5711827B2 (ja) 中継器ノードを持つofdmaワイヤレス・ネットワークのためのリンク・スケジューリング・アルゴリズム
KR101383513B1 (ko) 단말 장치, 통신 시스템 및 통신 방법
US8982864B2 (en) Base station, communication system, mobile terminal, and relay device for allocating uplink and downlink communication resources
TW200537859A (en) Wireless multi-hop system with macroscopic multiplexing
KR20050060076A (ko) 패킷 데이터 전송 시스템 및 그 동작 방법과, 제 1 및 제 2스테이션
US9705584B2 (en) Apparatus and method for transmitting and receiving data in a communication system
WO2012077791A1 (ja) 無線中継局装置、無線基地局装置及び無線通信方法
US20100172284A1 (en) Mobile Communication System, Radio Communication Relay Station Device, and Relay Transmission Method
JP5117293B2 (ja) 基地局装置、中継局装置および通信システム
KR20110079853A (ko) 이동 전화 네트워크에서 데이터 전송
JP2010056652A (ja) 無線通信システム、基地局およびスケジューリング方法
JP2010004197A (ja) 基地局装置、中継局装置および通信システム
JP2009206790A (ja) 無線通信システムおよびスケジュール方法
JP5033823B2 (ja) 無線通信システム、基地局およびスケジューリング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158064.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011504659

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009841859

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117021451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE