WO2010106637A1 - 有機elモジュールおよびその製造方法 - Google Patents

有機elモジュールおよびその製造方法 Download PDF

Info

Publication number
WO2010106637A1
WO2010106637A1 PCT/JP2009/055161 JP2009055161W WO2010106637A1 WO 2010106637 A1 WO2010106637 A1 WO 2010106637A1 JP 2009055161 W JP2009055161 W JP 2009055161W WO 2010106637 A1 WO2010106637 A1 WO 2010106637A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
light
resin
sealing
Prior art date
Application number
PCT/JP2009/055161
Other languages
English (en)
French (fr)
Inventor
晃司 宮村
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2011504645A priority Critical patent/JP5341982B2/ja
Priority to PCT/JP2009/055161 priority patent/WO2010106637A1/ja
Publication of WO2010106637A1 publication Critical patent/WO2010106637A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to a display module, and more particularly to an organic electroluminescence (EL) module and a manufacturing method thereof.
  • EL organic electroluminescence
  • a gap region is inevitably generated between the display regions (also referred to as light emitting regions) of the small display modules adjacent to each other. It becomes easy to be recognized and it is difficult to realize a satisfactory image display. That is, in the case of a display device made by joining a plurality of display modules, the joint portion where the display modules are joined becomes conspicuous. This is because each display module has a so-called gap region that is not related to display around the display region, and this gap region is continuous at the joint portion of the organic EL module.
  • the area from the edge of the light emitting area to the non-light emitting edge of the panel (for example, the four sides of the display module) (hereinafter referred to as a frame) is narrowed.
  • a frame the area from the edge of the light emitting area to the non-light emitting edge of the panel (for example, the four sides of the display module) (hereinafter referred to as a frame) is narrowed.
  • small and medium-sized organic EL modules for mobile phones or digital cameras are strongly required to be thin and have a narrow frame, and the inside of the device is also required to have a structure suitable for it.
  • the frame of the module (for example, the wire bond region or the electrical connection region of the reduced bulge portion referred to in Patent Document 1) is damaged in the assembly apparatus during the assembly process, or depending on the shape of the frame, the glass transparent substrate In some cases, the assembler may be damaged by cracks or chips.
  • narrowing the frame has a problem of reducing the strength of the frame itself and the sealing performance of the organic EL panel. The organic EL panel is damaged during transportation or installation of the organic EL module due to a decrease in the frame strength. The possibility of shortening is increased.
  • breakage of the wire bond area requires replacement of the module, so that the process of combining is greatly delayed and the yield is reduced.
  • the present invention is an example of a problem to deal with such a problem. That is, an example of an object of the present invention is to provide an organic EL module that can be manufactured in a short time without performing complicated steps, and can improve the yield by suppressing the number of manufacturing steps, and the like. It is.
  • the method of manufacturing an organic EL module according to the present invention includes a light emitting region in which an organic EL element including a display electrode, a light emitting layer, and a back electrode is disposed and is sealed between the main surfaces of a translucent substrate and a sealing substrate.
  • An organic EL panel having an extraction terminal around the light emitting region, and a driving IC disposed on the main surface of the sealing substrate on the side opposite to the light-transmitting substrate and controlling the organic EL element via the extraction terminal
  • An organic EL module manufacturing method comprising: The drive IC is on the main surface of the sealing substrate opposite to the light transmitting substrate, and the lead terminal connected to the display electrode and the back electrode is on the main surface of the light transmitting substrate on the sealing substrate side.
  • the organic EL panel forming step includes a mother light-transmitting substrate and a mother sealing substrate each having a plurality of areas of the light-transmitting substrate and the sealing substrate. Forming the bonded body adhered by an adhesive means that is supplied in a sealing margin area having a predetermined width surrounding the light emitting area and delimits the space without covering the exposed extraction terminal and the dividing area; And cutting the mother sealing substrate at least in the dividing region and dividing the sealing substrate into a plurality of the sealing substrates on the mother light-transmitting substrate.
  • the mother EL substrate is cut at the dividing region, and the organic EL module is composed of a sealing substrate and a transparent substrate each bonded by the bonding means. And a step of dividing the panel into a plurality of pieces.
  • the present invention is a method of manufacturing an organic EL module in which an organic EL panel and a driving IC that controls display of the organic EL panel are mounted as one module, and includes the following steps that are sequentially performed as an example. .
  • pretreatment a step of forming a display electrode and a lead terminal of an anode (or cathode) of an organic EL element on one mother light-transmitting substrate); film formation (light emission on the display electrode) Forming an organic EL layer including a layer (which may be vapor deposition, coating, or printing); forming a back electrode (forming a counter electrode (cathode (or anode)) of a display electrode on the organic EL layer); sealing Stopping (step of sealing and joining the mother light-transmitting substrate and the mother sealing substrate by an adhesive means); dividing (step of dividing into pieces of the mother light-transmitting substrate for each organic EL panel) is sequentially performed.
  • a mounting step (a step of forming a driving IC for driving the organic EL panel on the sealing substrate) is performed.
  • a wire bonding step (step of electrically connecting the lead terminal on the light-transmitting substrate and the driving IC on the back surface of the sealing substrate by wire bonding) is performed.
  • a resin molding step (a step of putting an organic EL panel in a mold and filling and curing a fluid resin so as to embed a wire bond) is performed. As a result, a resin portion having a side surface that is flush with the side surface of the translucent substrate is formed.
  • the organic EL panel in the resin part forming step, is placed in a mold that defines a cavity for forming the resin part, and the resin is used as the mold.
  • the organic EL panel can be released from the mold by filling and curing.
  • the mold can define a cavity in which a part or all of the surface of the drive IC is exposed from a part of the resin part.
  • the present invention is a method for manufacturing an organic EL module in which an organic EL panel and a driving IC for controlling the organic EL panel are mounted as a single module, and the following steps can be sequentially performed.
  • pretreatment a step of forming a display electrode and a lead terminal of an anode (or cathode) of an organic EL element on one mother light-transmitting substrate); film formation (light emission on the display electrode) Forming an organic EL layer including a layer (which may be vapor deposition, coating, or printing); forming a back electrode (forming a counter electrode (cathode (or anode)) of a display electrode on the organic EL layer); sealing Stop (step of sealing and bonding the mother light-transmitting substrate and the mother sealing substrate by an adhesive means); groove formation (step of dividing only the mother sealing substrate on the mother light-transmitting substrate into a plurality of sealing substrates); Do.
  • a mounting step (a step of forming a driving IC for driving the organic EL panel on the sealing substrate) is performed.
  • a wire bonding step (a step of electrically connecting the lead terminals on the mother light-transmitting substrate and the driving IC on the back surface of the sealing substrate by wire bonding) is performed.
  • a resin molding step (a step of filling and hardening a flowable resin so as to embed a wire bond in at least a groove between the sealing substrates on the mother translucent substrate) is performed.
  • an organic EL module dividing step (step of cutting the cured resin and the mother translucent substrate with a scriber) is performed. As a result, a resin portion having a side surface that is flush with the side surface of the translucent substrate is formed.
  • the gap between the sealing substrates on the mother light-transmitting substrate is covered with at least the wiring and the extraction terminal.
  • the mother translucent substrate together with the cured resin is cut at the dividing region, and each of the organic layers is composed of a sealing substrate and a translucent substrate that are bonded by the bonding means.
  • a step of dividing the EL panel into a plurality of pieces, and by cutting, a side surface that is flush with a side surface of the light-transmitting substrate on the cured resin surface can be formed.
  • the step of dividing the sealing substrate into a plurality of steps forms a groove that does not reach the mother light-transmitting substrate of the sticking body (half cut), and fills the groove with resin. Curing to form a resin layer, and cutting the resin layer with a width narrower than the groove (full cut), the resin layer is provided on the side surface of the sealing substrate so as to be flush with the side surface of the translucent substrate And a process.
  • the mother translucent substrate is formed with a cavity in which a part or all of the surface of the drive IC is exposed from a part of the resin part. It can be carried out in a formwork to be defined.
  • the organic EL panel forming step may include a step of forming the driving IC in a chip-on-glass form on the sealing substrate.
  • the organic EL module according to the present invention is an organic EL module manufactured by the above-described organic EL module manufacturing method, A light-transmitting substrate; a sealing substrate; a light-emitting region in which at least one organic EL element including a display electrode, a light-emitting layer, and a back electrode is disposed between the light-transmitting substrate and the main surface of the sealing substrate by an adhesive means; And an organic EL panel having an extraction terminal electrically connected to the display electrode and the back electrode, respectively, and disposed around the light emitting region; A driving IC disposed on the main surface of the organic EL panel opposite to the light-transmitting substrate of the sealing substrate; Wiring by wire bonding for electrically connecting the drive IC and the lead terminal; The wiring portion, the driving IC, and the sealing substrate are embedded, and the resin portion has a side surface that is flush with the side surface of the translucent substrate.
  • the organic EL module includes a light-transmitting substrate on which an organic EL element of a light emitting unit is formed and transmits outgoing light, and a seal that is attached to the organic EL element by an adhesive unit and hermetically seals the organic EL element.
  • the wire bonding wiring from the lead terminal at the edge of the translucent substrate around the sealing substrate, that is, the frame portion, to the drive IC on the sealing substrate is embedded in the resin portion that is flush with the sealing substrate.
  • the present invention in the organic EL module using wire bonding with the driving IC, since the wire bonding wiring is embedded in the resin portion, the above-described problems can be solved and the reliability of the organic EL panel is ensured. A narrow frame can be realized.
  • the organic EL module according to the present invention in which the side surface of the light-transmitting substrate and the side surface of the resin portion are flush with each other, when incorporated in a display device (electronic device such as a mobile phone or an in-vehicle acoustic device).
  • a display device electronic device such as a mobile phone or an in-vehicle acoustic device.
  • This has the effect of simplifying the handling. This is because it is possible to solve the problem that the side end surface of the glass light-transmitting substrate is damaged when it is integrated with the resin portion.
  • a part of the drive IC and the resin part covers the back side of the transparent substrate, and in the present invention, there is nothing that covers a part of the display side surface of the transparent substrate, and it is wider without reducing the display area. A display area can be secured.
  • FIG. 3 is a schematic partial cross-sectional view of an organic EL module taken along line AA in FIG. It is a partial top view of the translucent board
  • Organic EL Module 11 Organic EL Panel 12 Drive IC DESCRIPTION OF SYMBOLS 13 Light transmission board
  • FIG. 1 is a perspective view of an organic EL module 10 according to an embodiment of the present invention as viewed from the display surface side FS.
  • FIG. 2 is a perspective view of the organic EL module 10 according to the embodiment of the present invention as viewed from the back side BS.
  • FIG. 3 is a schematic partial cross-sectional view of the organic EL module 10 taken along line AA in FIG.
  • FIG. 4 is a partial plan view of the light-transmitting substrate 13 of the organic EL panel 11 in the organic EL module 10.
  • the organic EL module 10 is integrally molded so that the organic EL panel 11, the drive IC 12 and the like adhered and fixed to the back surface thereof, and the side surface of the organic EL panel 11 and the side surface thereof are flush with each other.
  • the resin part MR Coplanar means that the organic EL panel 11 shown in FIGS. 1 and 3, in particular, the side surface 11 SF of the translucent substrate 13 and the side surface MRSF of the resin portion MR exist on the same plane.
  • the driver IC 12 fixed to the back surface of the organic EL panel 11 is connected to a flexible wiring board (also simply referred to as flexi) 12b for electrical connection with the outside.
  • a flexible wiring board also simply referred to as flexi
  • the three sides of the organic EL module 10 are flush with the side surfaces of the transparent substrate 13 and the resin part MR, but one side is cut out for the purpose of drawing out the flexi. These four sides are preferably the side surfaces of the flush substrate 13 and the resin part MR. Further, if necessary, an organic EL module with one side or three sides cut out may be used.
  • the organic EL panel 11 includes a light-transmitting substrate 13 that is a light-transmitting flat glass and a sealing substrate 14 having a sealing recess.
  • S is inside and air-tightly bonded through the bonding means 15.
  • a plurality of organic EL elements 19 (light emitting regions 20) each formed by laminating a transparent display electrode 16, an organic EL layer 17, and a back electrode 18 are formed on the inner translucent substrate 13.
  • the sealing substrate 14 has a function of preventing the organic EL element 19 from deterioration factors such as moisture and oxygen. Therefore, drying means 14 b is provided in the recess of the sealing substrate 14.
  • the organic EL panel of the present application uses a plurality of organic EL elements as one pixel, and displays information using light emission / non-light emission of the pixel.
  • the drive IC 12 that controls light emission / non-light emission of the organic EL element 19 is mounted on the sealing substrate 14 side.
  • the necessary wiring EW such as the driving IC 12 and the pad can be directly formed on the sealing substrate 14, but is mounted on the back as a chip-on-glass (COG) form in which the driving IC 12 is formed together with the necessary wiring on the glass substrate. May be. Since the surface area of the sealing substrate 14 is smaller than the area of the light transmitting substrate 13, an exposed portion having a predetermined width is formed at the edge of the surface of the light transmitting substrate 13.
  • the organic EL panel may be obtained by patterning the organic EL elements 19 in a passive drive type dot matrix form on the translucent substrate 13, or patterning icons and segments.
  • the organic EL element 19 may be disposed as at least one light emitting pixel between the light transmitting substrate 13 and the sealing substrate 14.
  • the organic EL element 19 includes an anode, an organic EL layer including a light emitting layer, and a cathode, and excitons generated in the light emitting layer when a current flows between the anode and the cathode transition from an excited state to a ground state. It is a self-luminous element that utilizes the light emission generated.
  • the width of the bonding means 15 as an adhesive is as narrow as 0.2 mm, for example, the frame portion of the organic EL module 10 can be narrowed. Further, since a buffer space having a width of 0.1 mm is formed between the bonding unit 15 and the light emitting region 20 on the side where the organic EL modules 10 are joined, the bonding unit 15 as an adhesive flows into the light emitting region 20. Can be prevented. Therefore, even if the organic EL modules 10 are joined together to produce a display device, a display device with high display quality can be provided because the joints between the organic EL modules 10 are not conspicuous.
  • a partition wall (not shown) may be formed between the organic EL elements 19 adjacent to each other in the light emitting region 20.
  • the distance between the sealing substrate 14 and the translucent substrate 13 that faces the sealing substrate 14 can be kept constant.
  • the wiring 32 connected to the necessary wiring EW from the driving IC 12 is connected to the lead-out terminal 31 outside the sealing substrate 14 (the display electrode 16 of the organic EL element 19 on the transparent substrate 13).
  • the wiring 32 by wire bonding is arranged in a ring shape along the side surface of the peripheral edge of the sealing substrate 14 so as to surround the light emitting region 20 of the organic EL panel 11 between the organic EL panel 11 and the driving IC 12. .
  • the pad (leading terminal 31) on the surface of the translucent substrate 13 and the pad of the driving IC 12 are directly connected.
  • the height of the wiring 32 by wire bonding is not limited.
  • the wiring 32 is provided so as to be separated from the translucent substrate 13 to the surface of the sealing substrate 14. . Sealing reinforcement between the translucent substrate 13 and the sealing substrate 14 by the resin portion MR can be achieved.
  • the resin part MR constitutes the organic EL module 10 integrally formed by embedding the sealing substrate 14, the drive IC 12, and the wiring 32 by wire bonding with resin.
  • the frame portion width W is about 0.5 mm. If the resin part MR has a side surface that is flush with the side surface of the translucent substrate 13, both side surfaces that are flush with each other need not be orthogonal to the panel display surface.
  • a plane can be configured as a single screen display device on one side surface orthogonal to the panel display surface, but a curved surface on one side surface not orthogonal to the panel display surface A screen can be formed.
  • Al, Cu, and Au as the wiring 32 by wire bonding, but since Al can be used in a room temperature process, it is preferably adopted for the organic EL panel 11.
  • the resin portion MR includes acrylic materials, epoxy materials, and silicone materials, but it is preferable to employ acrylic materials. This is because heat shrinkage is small and fluidity is good. It is possible to prevent the organic EL panel 11 from being peeled off due to thermal contraction when the resin portion MR is cured.
  • the display electrode 16 and the back electrode 18 are set on the anode side and the cathode side.
  • the anode side is made of a material having a higher work function than the cathode side, and a transition metal film such as Cr, Mo, Ni, or Pt, or a transparent conductive film such as ITO or IZO is used.
  • the cathode side is made of a material having a lower work function than the anode side, and has a low work function metal such as alkali metal, alkaline earth metal, rare earth metal, a compound thereof, an alloy containing them, doped polyaniline or doped.
  • amorphous semiconductor such as polyphenylene vinylene or an oxide such as Cr 2 O 3 , NiO, or Mn 2 O 5 can be used.
  • the display electrode 16 and the back electrode 18 may be set on the cathode side and the anode side.
  • the lead-out terminal 31 connected to the display electrode 16 and the back electrode 18 is connected to a drive IC 12 that drives the organic EL panel 11, but is preferably formed as low resistance as possible.
  • a drive IC 12 that drives the organic EL panel 11, but is preferably formed as low resistance as possible.
  • the electrode layer can be laminated with a low-resistance metal such as Cr, Al, or an alloy thereof, or can be formed of these low-resistance metal electrodes alone.
  • the organic EL layer 17 is composed of a single layer or a multilayer film including at least a light emitting layer, but the layer structure may be formed in any manner.
  • a layer in which a hole transport layer, a light-emitting layer, and an electron transport layer are laminated from the anode side to the cathode side can be used, but the light-emitting layer, the hole transport layer, and the electron transport layer are each one layer.
  • either layer may be omitted or both layers may be omitted. It is also possible to insert an organic material layer such as a hole injection layer or an electron injection layer depending on the application.
  • the hole transport layer, the light emitting layer, and the electron transport layer conventionally used materials (regardless of polymer materials and low molecular materials) can be appropriately selected and employed.
  • the light-emitting material that forms the light-emitting layer uses either light emission (fluorescence) when returning from the singlet excited state to the ground state or light emission (phosphorescence) when returning from the triplet excited state to the ground state. However, they may be mixed or doped.
  • fillers such as resin and silicone oil
  • a solid sealing method in which an organic EL element 19 is sealed with a barrier film or the like may be used.
  • thermosetting type a chemical curing type (two-component mixing), a light (ultraviolet ray) curing type, glass or the like
  • acrylic resin, epoxy resin, polyester, polyolefin, etc. are used as materials. Etc. can be used.
  • an ultraviolet curable epoxy resin adhesive that does not require heat treatment and has high immediate curing properties.
  • the drying means 14b includes a physical adsorption type desiccant such as zeolite, silica gel, carbon and carbon nanotubes, a chemisorption type desiccant such as alkali metal oxide, metal halide and chlorine peroxide, and an organometallic complex in toluene and xylene. It can be formed by a desiccant dissolved in a petroleum solvent such as an aliphatic organic solvent, or a desiccant in which desiccant particles are dispersed in a binder such as polyethylene, polyisoprene, or polyvinyl cinnaate having transparency.
  • a physical adsorption type desiccant such as zeolite, silica gel, carbon and carbon nanotubes
  • a chemisorption type desiccant such as alkali metal oxide, metal halide and chlorine peroxide
  • organometallic complex in toluene and xylene an organometallic complex in toluene
  • the organic EL panel 11 may be a single color display or a multi-color display.
  • a separate coloring method is included.
  • CF method, CCM method white or blue
  • a method in which regions are stacked vertically to form one unit display region (laminated OLED method), low molecular organic materials with different emission colors are formed on different films in advance and transferred onto a single substrate by laser thermal transfer.
  • a laser transfer method or the like can be employed.
  • a passive driving method is shown. However, an active driving method is adopted in which a TFT substrate is employed as the light-transmitting substrate 13 and a display electrode 16 is formed on a flattening layer formed thereon. May be adopted.
  • the following steps are sequentially executed to form a plurality of organic EL panels from a single mother transparent substrate (so-called large glass plate) for the mother transparent substrate, and individual organic EL panels. It is characterized by molding every time.
  • FIG. 5 is a schematic perspective view of the mother translucent substrate 13M.
  • the display electrodes 16 such as ITO of the organic EL element and the lead terminals 31 connected to the end portions thereof are formed.
  • a plurality of display electrodes 16 arranged in parallel becomes one array, which becomes a display area through a later process.
  • a plurality of arrays are formed in a matrix.
  • the array of the display electrodes 16 is arranged with a lattice-like gap including the dividing region DR in the subsequent dividing step. In the figure, it is represented by an array of four rectangular display electrodes 16, but this is a schematic and is not limited to the shape or number.
  • an insulating film (not shown) having an opening exposing a portion of the display electrode 16 on the mother light transmitting substrate 13M where the organic EL element is to be formed is formed.
  • an organic EL layer 17 is deposited on the surface of the display electrode 16 (film formation process P2).
  • a plurality of back electrodes 18 are formed on the organic EL layer 17 (back electrode forming step P3).
  • the back electrode 18 is formed so that each of the plurality of parallel back electrodes 18 is orthogonal to the display electrode 16.
  • the lead terminals 31 connected to the respective ends of the back electrode 18 may be formed, or may be performed simultaneously with the formation of the lead terminals 31 in the pretreatment step P1.
  • a mother sealing substrate 14M for a plurality of sealing substrates 14 for hermetically sealing the organic EL element 19 as shown in FIG. 8 (a large glass plate having substantially the same size as the mother translucent substrate).
  • a plurality of sealing recesses RES are formed on the main surface of the mother sealing substrate 14M as shown in FIG.
  • a plate-like member made of glass, plastic, metal or the like can be used as the material.
  • a glass sealing substrate having a recess for sealing formed by press molding, etching, sandblasting, or the like can be used, or a glass (or plastic) spacer using flat glass.
  • a sealing region is formed between the transparent substrate and the same area as the bonding means. That is, as shown in FIG. 8B, a lattice-shaped gap portion including the dividing region DR used in the subsequent groove forming step can also be formed on the sealing substrate 14 as the dividing recess RES2.
  • the dividing recess RES2 can easily expose the lead-out terminal 31 on the mother translucent substrate 13M without damaging the half-cut.
  • the bonding means 15 is supplied to a sealing margin region SMR having a predetermined width that surrounds each light emitting region on the mother translucent substrate 13M.
  • the lead terminals 31 connected to the ends of the display electrode 16 and the back electrode 18 are exposed around the sealing margin region SMR.
  • an adhesive means may be formed on the sealing substrate side at the edge of the sealing recess in the lattice-like gap portion including the cutting region in the subsequent cutting step. That is, the bonding means may be formed on either the mother translucent substrate or the mother sealing substrate.
  • the mother translucent substrate 13M and the mother sealing substrate 14M with the organic EL element 19 inside are attached and fixed by pressure bonding to form an adhesive body.
  • the bonding may be performed by performing light irradiation from the mother translucent substrate 13 ⁇ / b> M side and photocuring the bonding means 15.
  • the mother translucent substrate 13M and the mother sealing substrate 14M are sealed and bonded by the bonding means 15 (sealing step P4).
  • FIG. 11 shows only the mother sealing substrate 14M portion on the sticking body (without contact with the lead terminal 31) cut to a predetermined sealing substrate size by a scribing method using a scriber such as a diamond cutter.
  • a scriber such as a diamond cutter.
  • the groove 41 having a width that exposes the lead terminal 31 along the dividing region is formed. That is, half-cutting is performed so that the shape of the sealing substrate is defined by the scriber and the extraction terminal 31 is exposed without being damaged.
  • only the mother sealing substrate 14M on the mother translucent substrate 13M is divided into a plurality of sealing substrates.
  • a dicing method using a dicing blade may be employed in addition to the scribing method.
  • the mother translucent substrate 13 ⁇ / b> M is divided in the thickness direction along the division region at the center of the groove 41 by a scriber (not shown) between the sealing substrates on the mother translucent substrate 13 ⁇ / b> M.
  • a scriber not shown
  • the mother light-transmitting substrate 13M is divided for each organic EL panel 11 (the light-transmitting substrate 13 and the sealing substrate 14) (dividing step P5).
  • a drive IC 12 for driving the organic EL panel 11 is formed on a glass plate to prepare a chip-on-glass COG (step of forming the drive IC in a chip-on-glass form). As shown in FIG. 13, the chip-on-glass COG of the driving IC 12 is bonded to a predetermined position on the sealing substrate 14 of the organic EL panel 11 (mounting process P6).
  • the wiring 32 that electrically connects the chip-on-glass COG pad of the drive IC 12 and the lead terminal 31 is formed by wire bonding.
  • a wiring 32 by wire bonding is arranged in an annular shape so as to surround the sealing substrate 14 (light emitting region 20).
  • the wiring 32 by wire bonding is applied on the periphery of the organic EL panel 11 by heating and / or pressure bonding.
  • the lead terminal 31 on the translucent substrate 13 and the driving IC 12 on the back surface of the sealing substrate 14 are contacted using wire bonding (wire bonding step P7).
  • the edge of the organic EL panel 11 is directly bonded to the drive IC 12 from the lead terminal 31, it is not necessary to provide a separate flexi, and the frame can be narrowed.
  • the organic EL panel 11 is placed in the mold MF and filled with resin to form the organic EL module 10 (resin molding step P8).
  • resin molding step P8 the organic EL panel 11 is placed in a mold MF that defines a cavity CA that forms a predetermined resin portion, filling the mold cavity with a resin, and curing the resin, and then releasing the organic EL panel 11 from the mold MF. 3 is formed such that the side surface of the resin portion MR is flush with the side surface of the light-transmitting substrate 13 of the organic EL module 10 as shown in FIG.
  • the flexi is connected to the chip-on-glass COG pad of the driving IC 12 before the molding process, and the molding process is performed using a mold with an opening for flexi, an organic EL module directly attached to the flexi is obtained. It is done. Further, if a molding process is performed using a mold having an opening for flexi connection, it is possible to connect the flexi to a chip-on-glass COG pad after forming the organic EL module.
  • the following steps are sequentially performed to form a precursor of an organic EL module from one mother light-transmitting substrate (so-called large glass plate) for the mother light-transmitting substrate, and then collectively cut.
  • An individual organic EL module is formed. That is, the second embodiment is a modification of the first embodiment.
  • the steps from the mother light-transmitting substrate side manufacturing process to the groove forming process of the first embodiment are sequentially performed.
  • the plurality of sealing substrates 14 on the mother translucent substrate 13M are divided and formed with a groove 41 having a width exposing the lead terminals 31 along the dividing region.
  • the width of the groove 41 is set so that the wire nozzle can work without any trouble in the next wire bonding step.
  • a drive IC 12 for driving the organic EL panel 11 is formed on a glass plate to prepare a chip-on-glass COG (step of forming the drive IC in a chip-on-glass form).
  • the chip-on-glass COG of the driving IC 12 is bonded to a predetermined position on the sealing substrate 14 of the mother light transmitting substrate 13M (mounting process P6).
  • the wiring 32 which electrically connects between the chip-on-glass COG pad of the driving IC 12 and the extraction terminal 31 is formed by wire bonding.
  • the lead terminals 31 on the mother translucent substrate 13M and the driving IC 12 on the back surface of the sealing substrate 14 are contacted using wire bonding (wire bonding step P7 ′).
  • the mother translucent substrate 13M is put in a mold MF and filled with a resin, whereby a precursor of an organic EL module (a plurality of organic EL modules connected by a resin filled in a groove) (Resin molding step P8 ').
  • the mother translucent substrate 13M is placed in a mold MF that defines a cavity CA that forms a predetermined resin portion, and the resin is filled in the mold cavity and cured to release the organic EL module precursor from the mold MF. To do.
  • the flexi is connected to the chip-on-glass COG pad of the driving IC 12 before the molding process, and the molding process is performed using a mold with an opening for flexi, an organic EL module directly attached to the flexi is obtained. It is done. Further, if a molding process is performed using a mold having an opening for flexi connection, it is possible to connect the flexi to a chip-on-glass COG pad after forming the organic EL module. Further, the mold resin MR may be applied on the mother translucent substrate 13M without using the mold MF.
  • the divided region covered with the resin MR filled in the groove between the sealing substrates on the mother light-transmitting substrate 13M is mother-transmitted in the thickness direction by a scriber (not shown).
  • the substrate 13M is cut into a plurality of light-transmitting substrates 13, and the mother light-transmitting substrate 13M is divided for each organic EL module 10 (organic EL panel 11, drive IC 12) (dividing step P5 ′).
  • the light-transmitting substrate 13 and the divided surface of the resin MR, which are ground by the scriber, are divided into a plurality of individual organic EL modules 10 while forming the same side surface.
  • the mother light-transmitting substrate 13M and the resin MR are fully cut to a predetermined size to obtain the organic EL module 10 including the light-transmitting substrate 13, the bonding means 15, and the sealing substrate 14 as shown in FIG. It is done.
  • the step of dividing the precursor of the organic EL module it is possible to form the resin portion MR so that the side surface of the resin portion MR is flush with the side surface of the transparent substrate 13 in each organic EL module 10. Since it is separated into pieces by scriber or dicing, the side surfaces of the translucent substrate 13, the sealing substrate 14 and the bonding means 15 are a common flat surface.
  • the resin portion MR fixed to the side surface of the translucent substrate 13 has an external side surface that is also fixed to the bonding means 15 and is flush with the side surface of the sealing substrate 14.
  • the transparent substrate 13 is formed with a larger area than the sealing substrate 14.
  • External light from the sealing substrate 14 side is blocked by the resin portion MR (if black), and the organic EL module 10 capable of preventing light from entering from the back surface can be obtained.
  • the material of the resin portion MR a material obtained by mixing a black pigment such as triiron tetroxide with a polymer resin such as an epoxy resin is used. Further, a dark color pigment exhibiting a light shielding property other than black can be used.
  • the dividing width of the sealing substrate 14 can be designed to be narrow even if the width of the resin layer is wide, it is possible to increase the effective number of chips on the mother translucent substrate 13M and increase the yield. Cost reduction can be expected.
  • the wide resin layer is cut thinly according to the dividing width of the sealing substrate 14 and the resin layer is formed simultaneously with the organic EL module 10, the number of steps can be reduced.
  • the resin layer is formed on the side surface of the glass, the glass can be prevented from being chipped or broken, and the handling becomes easy.
  • the resin portion MR can suppress the incidence of light from the side surface of the mother translucent substrate 13M, and can be expected to improve the characteristics of the organic EL module 10.
  • a molding process is performed such that a part of the surface of the drive IC 12 of the organic EL module 10 is exposed from a part of the resin portion MR, this serves as a heat dissipation measure.
  • a material having high thermal conductivity may be attached to the surface of the driving IC 12 so as to be exposed from a part of the resin portion MR.
  • the present invention can be used as a display device, and in particular, a narrow frame organic EL panel using wire bonding that realizes a narrow frame may be used, or a display device that tiles a plurality of organic EL panels can be used. is there.
  • the present invention relates to an organic EL module and a method for manufacturing the same, and can be suitably used particularly for a small or medium-sized organic EL module such as a mobile phone, a digital still camera, and a car navigation system. Furthermore, it can also be used as a sub-display such as a liquid crystal TV or a plasma TV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

透光基板と封止基板の主面間に接着手段により封止されかつ表示電極、発光層及び背面電極を含む有機EL素子が配置された発光領域を有しかつ発光領域の周りに引出端子を有する有機ELパネルと、封止基板の透光基板反対側主面上に配置されかつ引出端子を介して有機EL素子を制御する駆動ICと、を有する有機ELモジュールの製造方法であって、駆動ICが封止基板の透光基板反対側主面上に配置されかつ、表示電極及び背面電極に接続された引出端子が発光領域から透光基板の封止基板側主面上にて露出するように、有機ELパネルを形成する有機ELパネル形成工程;引出端子と駆動ICとをワイヤボンディングにより配線で電気的に接続するワイヤボンディング工程;並びに、配線、駆動ICおよび封止基板を流動体状態の樹脂で埋設して硬化せしめ、硬化した樹脂表面が透光基板の側面と面一となる側面を有する樹脂部を形成する樹脂部形成工程;を含むことを特徴とする。

Description

有機ELモジュールおよびその製造方法
 本発明は表示モジュールに関し、特に、有機エレクトロルミネセンス(EL)モジュールおよびその製造方法に関する。
 従来、大型の表示システム装置として、単位となる小型表示モジュールの複数をマトリクス状にタイル張りによって互いに取り付け、1つの大型表示装置を構成することが提案されている。1枚の大型ガラス板による大型表示装置の製造は高度な技術と製造ラインの投資に多額の費用を有するが、小型表示モジュールのタイル張り構成は現行の製造ラインを活用できるなど費用や技術的なハードルが低くなる点で有効である。
 一般に、小型表示モジュールのタイル張り構成の場合、互いに隣接する小型表示モジュールの表示領域(発光領域とも呼ぶ)同士の間にギャップ領域の発生が必至あり、かかるギャップ領域が大きいほど観察者に継ぎ目を認識されやすくなり、満足のいく画像表示を実現しずらくなる。つまり、複数の表示モジュールを継ぎ合わせて造られた表示装置の場合には、表示モジュール同士を継ぎ合わせた継ぎ目部分が目立ってしまう。表示モジュールには、表示領域の周りに表示に関係のないいわゆるギャップ領域と呼ばれている部分がそれぞれにあり、このギャップ領域が有機ELモジュールの継ぎ目部分において連続してしまうためである。
 例えば、ディスプレイ装置のマトリクスアレイにおいて、ディスプレイ装置間のギャップ領域を縮小するために、ディスプレイのバックプレート上の構成要素にディスプレイのアクティブ領域への電気的接続を与えるためにワイヤボンディングを使用することによって、相互接続されたマトリクスアレイにおけるディスプレイ装置間の出っ張り領域およびギャップ領域を縮小する方法が提案されている(特許文献1、参照)。さらに、かかるギャップ領域を小型表示モジュールの縮小出っ張り部分(例えば、ワイヤボンド領域または電気的接続領域)として、1.5mm以下の幅、例えば、0.0001~1.25mmの幅が提案されている。
 なお、油浸タイプのELディスプレイパネルなどの表示モジュールの封止缶内部の電気的接続にワイヤボンドを用いることは公知であるが(特許文献2、3、参照)、表示モジュール間のギャップ領域幅は表示画像品質に直結するので、ワイヤボンディングを用いたとしても、ギャップ領域幅のさらなる減縮は重要である。
特開2006-099093 特開昭63-019795 特公平07-093195
 上述したように、発光領域の縁部からパネルの非発光端部(たとえば表示モジュールの四辺)までの領域(以下、額縁と呼ぶ)を狭くするすなわちギャップ領域の減縮技術(以下、狭額縁化と呼ぶ)はディスプレイ市場で求められている。例えば、携帯電話用またはデジタルカメラ用等の中小型の有機ELモジュールは、薄型化と狭額縁化の要求が強く、装置の内部もそれに適した構造が求められている。しかし、特許文献1に示されているようなモジュールは縮小出っ張り部分幅1mm未満の要求があるが、アクティブ領域を画定する非発光の封止リング(封止代領域)の幅は1.3~1.5mmもあり、狭額縁化を確保できているとは言えない。
 一方、一般的な表示モジュールの複数を配列するマトリクスアレイ工程では、各モジュールとを組み合わせる工程が必要であり、モジュールの額縁間に両面テープ等の接着手段を配設する煩雑な工程が必要であったり、製造時間に長時間を要したりする。また、組立工程時にモジュールの額縁(例えば、特許文献1でいう縮小出っ張り部分のワイヤボンド領域または電気的接続領域)が組立装置内で破損したり、額縁の形状によってはガラス製の透光基板の割れ、欠けにより組立作業者を傷つけてしまう場合もある。さらに、狭額縁化は額縁自体の強度や有機ELパネルの封止性能を低下させるという問題があり、額縁強度の低下による有機ELモジュールの輸送中または装置に組み込み中に破損、有機ELパネルの寿命を短くするなどの可能性が大きくなる。
 特に、ワイヤボンド領域の破損は、そのモジュール交換を要するので、組み合わせる工程を大幅に遅延させ、歩留まりの低下を招来する。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、煩雑な工程を行うことなく、短時間に製造することができ、製造工程数を抑え歩留を向上させ得る有機ELモジュールおよびその製造方法を提供すること、等が本発明の目的の一例である。
 本発明による有機ELモジュールの製造方法は、透光基板と封止基板の主面間に接着手段により封止されかつ表示電極、発光層および背面電極を含む有機EL素子が配置された発光領域を有しかつ前記発光領域の周りに引出端子を有する有機ELパネルと、前記封止基板の透光基板反対側主面上に配置されかつ前記引出端子を介して前記有機EL素子を制御する駆動ICと、を有する有機ELモジュールの製造方法であって、
 前記駆動ICが前記封止基板の透光基板反対側主面上にされかつ、前記表示電極および背面電極に接続された引出端子が前記発光領域から前記透光基板の封止基板側主面上にて露出するように、前記有機ELパネルを形成する有機ELパネル形成工程;
 前記引出端子と前記駆動ICとをワイヤボンディングにより配線で電気的に接続するワイヤボンディング工程;並びに、
 前記配線、前記駆動用ICおよび前記封止基板を流動体状態の樹脂で埋設して硬化せしめ、硬化した樹脂表面が前記透光基板の側面と面一となる側面を有する樹脂部を形成する樹脂部形成工程;を含むことを特徴とする。
 本発明による有機ELモジュールの製造方法においては、前記有機ELパネル形成工程は、それぞれが前記透光基板および封止基板の複数分の面積を有するマザー透光基板およびマザー封止基板を、各々の前記発光領域の周りを囲む所定幅の封止代領域にて供給されかつ前記露出する引出端子および分断領域を覆わずに空間を画定する接着手段によって、固着された前記貼着体を形成する工程と、前記分断領域にて少なくとも前記マザー封止基板を切断して、前記マザー透光基板上にて前記封止基板の複数に分割する工程と、を含むこととすることができる。
 本発明による有機ELモジュールの製造方法においては、前記分断領域にて前記マザー透光基板をも切断して、各々が前記接着手段にて接合された封止基板および透光基板からなる前記有機ELパネルの複数に個片化する工程と、を含むこととすることができる。
 具体的には、本発明は、有機ELパネルとこれの表示を制御する駆動ICを一つのモジュールとして実装した有機ELモジュールの製造方法であって、一例として、順次、行われる以下の工程を含む。
 上記有機ELパネル形成工程としては、前処理(一つのマザー透光基板上に有機EL素子の陽極(または陰極)の表示電極と引出端子を形成する工程);成膜(前記表示電極上に発光層を含む有機EL層を成膜(蒸着でも塗布でも印刷でもよい)する工程);背面電極形成(有機EL層上に表示電極の対向電極(陰極(または陽極))を形成する工程);封止(マザー透光基板とマザー封止基板を接着手段により封止接合する工程);分断(マザー透光基板を有機ELパネル毎に分断する個片化工程);を順次行う。
 上記有機ELパネル形成工程の後に、実装工程(有機ELパネルを駆動する駆動ICを封止基板上に形成する工程)を行う。
 上記実装工程の後に、ワイヤボンディング工程(透光基板上の引出端子と封止基板背面の駆動ICと電気的に接続をワイヤボンディングにより行う工程)を行う。
 上記ワイヤボンディング工程の後に、樹脂成形工程(有機ELパネルを型に入れ、ワイヤボンドを埋設するように流動性樹脂を充填し硬化する工程)を行う。これによって透光基板の側面と面一となる側面を有する樹脂部を形成する。
 すなわち、本発明による有機ELモジュールの製造方法においては、前記樹脂部形成工程において、前記有機ELパネルを、前記樹脂部を形成する空洞を画定する型枠に入れて、前記樹脂を前記型枠に充填して硬化せしめ、前記有機ELパネルを前記型枠から離型することとすることができる。
 本発明による有機ELモジュールの製造方法においては、前記型枠は、前記駆動ICの表面の一部または全部が前記樹脂部の一部から露出するような空洞を画定することとすることができる。
 さらなる具体例としては、本発明では、有機ELパネルとこれを制御する駆動ICを一つのモジュールとして実装した有機ELモジュールの製造方法であって、以下の工程を順次行うことができる。
 上記有機ELパネル形成工程としては、前処理(一つのマザー透光基板上に有機EL素子の陽極(または陰極)の表示電極と引出端子を形成する工程);成膜(前記表示電極上に発光層を含む有機EL層を成膜(蒸着でも塗布でも印刷でもよい)する工程);背面電極形成(有機EL層上に表示電極の対向電極(陰極(または陽極))を形成する工程);封止(マザー透光基板とマザー封止基板を接着手段により封止接合する工程);溝形成(マザー透光基板上のマザー封止基板のみを封止基板の複数に分割する工程);を順次行う。
 上記有機ELパネル形成工程の後に、実装工程(有機ELパネルを駆動する駆動ICを封止基板上に形成する工程)を行う。
 上記実装工程の後に、ワイヤボンディング工程(マザー透光基板上の引出端子と封止基板背面の駆動ICと電気的に接続をワイヤボンディングにより行う工程)を行う。
 上記ワイヤボンディング工程の後に、樹脂成形工程(少なくともマザー透光基板上の封止基板の間の溝にてワイヤボンドを埋設するように流動性樹脂を充填し硬化する工程)を行う。
 上記樹脂成形工程の後に、有機ELモジュール分断工程(硬化樹脂とマザー透光基板をスクライバにより分断する工程)を行う。これによって透光基板の側面と面一となる側面を有する樹脂部を形成する。
 すなわち、本発明による有機ELモジュールの製造方法においては、前記樹脂部形成工程において、前記マザー透光基板上の前記封止基板同士の間隙にて、少なくとも前記配線および前記引出端子を覆うように前記樹脂を塗布し硬化せしめた後、硬化した樹脂とともに前記マザー透光基板を、前記分断領域にて切断して、各々が前記接着手段にて接合された封止基板および透光基板からなる前記有機ELパネルの複数に個片化する工程と、を含み、前記切断により、硬化した樹脂表面において前記透光基板の側面と面一となる側面を形成することとすることができる。換言すれば、この例では、前記封止基板の複数に分割する工程は、前記貼着体の前記マザー透光基板に達しない溝を形成(ハーフカット)し、前記溝に樹脂を充填して硬化させ樹脂層を形成し、前記溝より狭い幅で前記樹脂層を切断(フルカット)することにより、前記樹脂層を、前記透光基板の側面と面一として前記封止基板の側面に設ける工程と、含む。
 本発明による有機ELモジュールの製造方法においては、前記樹脂部形成工程は、前記マザー透光基板を、前記駆動ICの表面の一部または全部が前記樹脂部の一部から露出するような空洞を画定する型枠に入れて実行することとすることができる。
 本発明による有機ELモジュールの製造方法においては、前記有機ELパネル形成工程は、前記駆動ICを前記封止基板上にチップオングラス形態で形成する工程を含むこととすることができる。
 さらにまた、本発明による有機ELモジュールは、上記の有機ELモジュールの製造方法により製造した有機ELモジュールであって、
 透光基板;封止基板;透光基板と封止基板の主面間に接着手段により封止されかつ表示電極、発光層および背面電極を含む少なくとも1つの有機EL素子が配置された発光領域;並びに、前記表示電極および背面電極にそれぞれ個別に電気的に接続されかつ前記発光領域の周りに配置された引出端子;を有する有機ELパネルと、
 前記有機ELパネルの前記封止基板の透光基板反対側主面上に配置された駆動ICと、
 前記駆動ICおよび前記引出端子の間を電気的に接続するワイヤボンディングによる配線と、
 前記配線、前記駆動用ICおよび前記封止基板を埋設しかつ前記透光基板の側面と面一となる側面を有する樹脂部と、を有することを特徴とする。換言すれば、有機ELモジュールは、発光部の有機EL素子が形成され出射光を透過させる透光基板と、これに接着手段で貼り付けられた、かつ有機EL素子を気密的に封止する封止基板とで構成され、封止基板周囲の透光基板の縁部すなわち額縁部にある引出端子から封止基板上の駆動ICまでのワイヤボンディング配線を面一となる樹脂部で埋設したことを特徴とする。
 本発明によれば、駆動ICとのワイヤボンディングを利用した有機ELモジュールにおいて、ワイヤボンディング配線を樹脂部で埋設するので、上記の課題を解決することができ、有機ELパネルの信頼性を確保し、狭額縁化を実現することができる。
 このような狭額縁を実現することで、複数の有機ELモジュールをタイリングした表示デバイスを実現可能である。
 特に、本発明による、透光基板の側面と樹脂部の側面が面一となることを特徴とする有機ELモジュールによれば、表示機器(携帯電話や車載音響装置などの電子機器)に組み込む際の取扱いを簡易化する効果を奏する。樹脂部と一体化する際にガラス透光基板の側端面が破損をする不具合を解決することができるからである。
 更に、駆動IC、樹脂部の一部が透光基板背面側を覆っており、本発明では透光基板の表示側表面の一部を覆うものはなく、表示面積を少なくすることなく、より広い表示面積を確保できる。
本発明の実施形態に係る有機ELモジュールの表示面側から見た斜視図である。 本発明の実施形態に係る有機ELモジュールの背面側から見た斜視図である。 図2の線A-Aにおける有機ELモジュールの模式的概略部分断面図である。 本発明の実施形態に係る有機ELモジュールにおける有機ELパネルの透光基板の部分平面図である。 本発明の実施形態に係る有機ELモジュール製造工程(前処理工程P1)におけるマザー透光基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(成膜工程P2)におけるマザー透光基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(背面電極形成工程P3)におけるマザー透光基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(封止工程P4)におけるマザー封止基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(封止工程P4)におけるマザー透光基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(封止工程P4)における貼着体の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(分断工程P5)におけるマザー透光基板に引出端子を露出させる幅の溝を形成する模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(分断工程P5)におけるマザー透光基板の模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(実装工程P6)におけるマザー透光基板から分けられた有機ELパネルの模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(ワイヤボンディング工程P7)におけるマザー透光基板から分けられた有機ELパネルの模式的な概略斜視図である。 本発明の実施形態に係る有機ELモジュール製造工程(樹脂成形工程P8)におけるマザー透光基板から分けられた有機ELパネルの模式的な概略斜視図である。 本発明の他の実施形態に係る有機ELモジュール製造工程(実装工程P6)におけるマザー透光基板の模式的な概略斜視図である。 本発明の他の実施形態に係る有機ELモジュール製造工程(ワイヤボンディング工程P7)におけるマザー透光基板の模式的な概略斜視図である。 本発明の他の実施形態に係る有機ELモジュール製造工程(樹脂成形工程P8)におけるマザー透光基板の模式的な概略斜視図である。 本発明の他の実施形態に係る有機ELモジュール製造工程(分断工程P5’)におけるマザー透光基板から分けられた有機ELモジュールの模式的な概略斜視図である。
符号の説明
 10 有機ELモジュール
 11 有機ELパネル
 12 駆動IC
 13 透光基板
 13M マザー透光基板
 14 封止基板
 14M マザー封止基板
 15 接着手段
 16 表示電極
 17 有機EL層
 18 背面電極
 19 有機EL素子
  20発光領域
 31 引出端子
 32 ワイヤボンディングによる配線
 41 溝
 DR 分断領域
 MR 樹脂部
 RES 封止用凹部
 RES2 分割用凹部
 S 封止領域
発明を実施するための形態
 本発明による実施形態の有機ELモジュールについて添付の図面を参照しつつ詳細に説明する。なお、各図において、同一の構成要素については別の図に示している場合でも同一の符号を与え、その詳細な説明を省略する。さらに、実施形態は例示に過ぎずこれらに本発明は制限されないことはいうまでもない。
 <有機ELモジュールの構成>
 図1は、本発明の実施形態に係る有機ELモジュール10の表示面側FSから見た斜視図を示す。図2は、本発明の実施形態に係る有機ELモジュール10の背面側BSから見た斜視図を示す。図3は、図2の線A-Aにおける有機ELモジュール10の模式的概略部分断面図を示す。図4は、有機ELモジュール10における有機ELパネル11の透光基板13の部分平面図を示す。
 図示するように、有機ELモジュール10は、有機ELパネル11と、その背面に接着固定された駆動IC12等と、有機ELパネル11の側面とその側面が面一となるように一体的に成形された樹脂部MRと、により構成されている。面一(コプレーナ:coplanar)となるとは、図1や図3に示す有機ELパネル11、特に透光基板13の側面11SFと樹脂部MRの側面MRSFが同一平面に存在することを意味する。
 図2に示すように、有機ELパネル11の背面固着の駆動IC12はフレキシブル配線基板(単に、フレキシともいう)12bが外部との電気接続のために接続されている。図示する有機ELモジュール10では、その3辺が透光基板13と樹脂部MRの側面が面一となっているが、フレキシの引き出しのため1辺を切り欠いているためであり、有機ELモジュールの4辺を面一の透光基板13と樹脂部MRの側面とすることが好ましい。また、必要であれば、1辺又は3辺を切り欠いた有機ELモジュールとすることもできる。
 図3の有機ELモジュール10の断面図のように、有機ELパネル11は、透光性の平板ガラスである透光基板13と封止用凹部を有する封止基板14とが凹部(封止領域S)を内側にして接着手段15を介して気密的に貼り合わされている実施形態である。該凹部を内側透光基板13上には、各々が透明な表示電極16、有機EL層17および背面電極18が積層されてなる複数の有機EL素子19(発光領域20)が形成されている。封止基板14は前記有機EL素子19を水分や酸素等の劣化因子から防ぐ機能を有する。よって、封止基板14の凹部には乾燥手段14bが設けられる。本願の有機ELパネルは、複数の有機EL素子を一つの画素として利用し、その画素の発光/非発光を利用して情報表示を行うものである。有機EL素子19の発光/非発光を制御する駆動IC12は、封止基板14側に搭載されている。また、駆動IC12およびパッドなど必要配線EWを封止基板14上に直接形成できるが、ガラス基板に必要配線とともに駆動IC12が形成されたチップオングラス(COG:Chip On Glass)形態として背面に実装してもよい。封止基板14の表面の面積が透光基板13の面積より小さく形成されているため、透光基板13の表面の縁部には、所定の幅の露出部が形成されている。
 有機ELパネルは、図4に示すように、透光基板13上にパッシブ駆動方式ドットマトリックス状に有機EL素子19をパターニングしたものでもよく、或いはアイコン、セグメントのパターニングでもよい。有機ELパネル11は、透光基板13および封止基板14の間に少なくとも1つの発光画素として有機EL素子19が配置されていればよい。有機EL素子19は、陽極、発光層を含む有機EL層、陰極を積層し、陽極と陰極間に電流を流す際に発光層にて発生する励起子が、励起状態から基底状態に遷移する際に生じる発光を利用する自発光素子である。
 いずれの場合でも、接着剤としての接着手段15の幅例えば、0.2mmと狭いため有機ELモジュール10の額縁部分を狭くすることができる。さらに、有機ELモジュール10を継ぎ合わせる側において接着手段15と発光領域20との間に0.1mm幅の緩衝空間が形成されているため、接着剤としての接着手段15が発光領域20に流入するのを防ぐことができる。よって、有機ELモジュール10を継ぎ合わせて表示装置を造ったとしても、有機ELモジュール10同士の継ぎ目が目立たず表示品位の高い表示装置を提供することができる。
 なお、発光領域20の隣接する有機EL素子19同士の間には、隔壁(図示せず)を形成してもよい。隔壁により、封止基板14と対向することとなる透光基板13との距離を一定に保つことができる。
 図1~図3に示すように、駆動IC12からの必要配線EWに接続される配線32は、封止基板14外側の引出端子31(透光基板13上の有機EL素子19の表示電極16に接続されている)までワイヤボンディングにより接続されている。ワイヤボンディングによる配線32は、有機ELパネル11と駆動IC12との間に、有機ELパネル11の発光領域20を囲むように、封止基板14の周縁の側面に沿って環状に並設されている。ワイヤボンディングによる配線32は、透光基板13の表面のパッド(引出端子31)と駆動IC12のパッドとを直接接続されている。ワイヤボンディングによる配線32の高さは制限されないが、充填される樹脂部MRの接着力を増大させるため、透光基板13から封止基板14の表面に離間して沿うように設けられることが好ましい。樹脂部MRによる透光基板13と封止基板14の間の封止の補強を達成できる。
 樹脂部MRは封止基板14と駆動IC12、ワイヤボンディングによる配線32を樹脂で埋設して、一体成形された有機ELモジュール10を構成している。本実施例において、額縁部分幅Wは約0.5mmとなっている。樹脂部MRは、透光基板13の側面と面一となっている側面を有していれば、面一となっている両側面はパネル表示面に対して直交する必要はない。モジュールの複数を並べタイリングする場合に、パネル表示面に対して直交する面一側面では一つのスクリーンの表示デバイスとして、平面を構成できるが、パネル表示面に対して直交しない面一側面では曲面スクリーンを形成することができる。
 さらに、有機ELモジュールの構成要素を以下に詳述する。
 ワイヤボンディングによる配線32として、Al,Cu,Auがあるが、Alは常温プロセスで使用できるので、有機ELパネル11に採用することが好ましい。
 樹脂部MRとして、アクリル系材料、エポキシ系材料、シリコーン系材料があるが、アクリル系材料を採用することが好ましい。これは、熱収縮が少ないこと、流動性がよいことが上げられる。樹脂部MRの硬化時の熱収縮による有機ELパネル11の封止剥がれを防止することができる。
 表示電極16、背面電極18は、陽極側、陰極側に設定される。陽極側は陰極側より仕事関数の高い材料で構成され、Cr、Mo、Ni、Pt等の遷移金属の膜やITO、IZO等の透明導電膜が用いられる。逆に陰極側は陽極側より仕事関数の低い材料で構成され、アルカリ金属、アルカリ土類金属、希土類金属等、仕事関数の低い金属、その化合物、またはそれらを含む合金、ドープされたポリアニリンやドープされたポリフェニレンビニレン等の非晶質半導体、Cr23、NiO、Mn25等の酸化物を使用できる。また上記実施形態とは逆に、表示電極16および背面電極18を陰極側および陽極側に設定した構成にすることもできる。
 表示電極16および背面電極18に接続される引出端子31には、有機ELパネル11を駆動する駆動IC12に接続されるが、可能な限り低抵抗に形成することが好ましく、前述したように、Ag、Cr、Al等の低抵抗金属やその合金で電極層を積層するか、或いはこれらの低抵抗金属電極単独で形成することができる。
 有機EL層17は、少なくとも発光層を含む単層または多層の成膜層からなるが、層構成はどのように形成されていてもよい。一般には、陽極側から陰極側に向けて、正孔輸送層、発光層、電子輸送層を積層させたものを用いることができるが、発光層、正孔輸送層、電子輸送層はそれぞれ1層だけでなく複数層積層して設けてもよく、正孔輸送層、電子輸送層についてはどちらかの層を省略しても、両方の層を省略してもよい。また、正孔注入層、電子注入層等の有機材料層を用途に応じて挿入することも可能である。正孔輸送層、発光層、電子輸送層は従来の使用されている材料(高分子材料、低分子材料を問わない)を適宜選択して採用できる。また、発光層を形成する発光材料においては、1重項励起状態から基底状態に戻る際の発光(蛍光)と3重項励起状態から基底状態に戻る際の発光(りん光)のどちらを採用し、混合、或いはドープして構成してもよい。
 また、上記のような封止用凹部を有する封止基板14により封止領域Sを形成する気密封止法を利用してもよく、封止領域S内に例えば樹脂やシリコーンオイル等の充填剤を封入したもの、例えば樹脂フィルムと金属箔で封止した固体封止法、バリア膜等で有機EL素子19を封止する膜封止法でもよい。
 接着手段15を構成する接着剤は、熱硬化型、化学硬化型(2液混合)、光(紫外線)硬化型、ガラス等を使用することができ、材料としてアクリル樹脂、エポキシ樹脂、ポリエステル、ポリオレフィン等を用いることができる。特には、加熱処理を要さず即硬化性の高い紫外線硬化型のエポキシ樹脂製接着剤の使用が好ましい。
 乾燥手段14bは、ゼオライト、シリカゲル、カーボン、カーボンナノチューブ等の物理吸着タイプの乾燥剤、アルカリ金属酸化物、金属ハロゲン化物、過酸化塩素等の化学吸着タイプの乾燥剤、有機金属錯体をトルエン、キシレン、脂肪族有機溶剤等の石油系溶媒に溶解した乾燥剤、乾燥剤粒子を透明性を有するポリエチレン、ポリイソプレン、ポリビニルシンナエート等のバインダに分散させた乾燥剤により形成することができる。
 本発明の実施例である有機ELパネル11としては、単色表示であっても複数色表示であってもよく、複数色表示を実現するためには、塗り分け方式を含むことは勿論のこと、白色や青色等の単色の発光を有する有機EL素子を単数または複数備える有機ELパネル11にカラーフィルタや蛍光材料による色変換層を組み合わせた方式(CF方式、CCM方式)、2色以上の単位表示領域を縦に積層し一つの単位表示領域を形成した方式(積層OLED方式)、異なる発光色の低分子有機材料を予め異なるフィルム上に成膜してレーザによる熱転写で一つの基板上に転写するレーザ転写方式、等を採用することができる。また、実施の態様ではパッシブ駆動方式を示しているが、透光基板13としてTFT基板を採用し、その上に平坦化層を形成した上に表示電極16を形成するようにして、アクディブ駆動方式を採用したものであってもよい。
 <第1実施例>
 第1の実施例である有機ELモジュール10の製造方法の概略プロセスを図に基づいて説明する。
 第1実施例は、以下の工程を順次実行して、マザー透光基板のための一つのマザー透光基板(いわゆる大判ガラス板)から複数の有機ELパネルを形成して、個別の有機ELパネル毎にモールドすることを特徴とする。
 <マザー透光基板側作製工程>
 図5はマザー透光基板13Mの模式的な概略斜視図である。例えば、マザー透光基板13Mの主面上に、有機EL素子のITOなどの表示電極16と、それらの端部に接続された引出端子31を形成する。複数の表示電極16が平行に配列されたものが1つのアレイとなり、後の工程を経て表示領域となるが、この前処理工程P1で、複数のアレイがマトリクス状に形成される。図5に示すように、表示電極16のアレイは、後の分断工程の分断領域DRを含む格子状の間隙を空けて配列される。図において4つの矩形の表示電極16のアレイで表しているが、これは概略であり、その形状や個数に限定されない。
 そして、この前処理工程P1において、マザー透光基板13M上の表示電極16の有機EL素子を形成すべき部分を露出させる開口を有する絶縁膜(図示せず)を形成する。
 次に、図6に示すように、表示電極16表面に有機EL層17を蒸着する(成膜工程P2)。
 次に、図7に示すように、有機EL層17上に複数の背面電極18を形成する(背面電極形成工程P3)。複数の平行な背面電極18の各々が表示電極16に直交するように背面電極18を形成する。この背面電極形成工程P3において、背面電極18のそれぞれの端部に接続された引出端子31を形成してもよく、前処理工程P1の引出端子31の形成と同時に行っても良い。
 <マザー封止基板作製工程>
 次に、図8に示すような有機EL素子19を気密的に封止するための封止基板14の複数のためのマザー封止基板14M(マザー透光基板とほぼ同じサイズの大判ガラス板)を作成する。すなわち、図8(A)に示すようなマザー封止基板14Mの主面上に複数の封止用凹部RES(表示電極アレイ又は表示領域に対応するもの)を形成する。材料としては、ガラス製、プラスチック製、金属製等による板状部材を用いることができる。ガラス製の封止基板にプレス成形、エッチング、サンドブラスト処理等の加工によって、封止用凹部を形成したものを用いることもできるし、或いは平板ガラスを使用してガラス(プラスチックでもよい)製のスペーサ(接着手段と同じ面積)により透光基板との間に封止領域を形成するようにする。すなわち、図8(B)に示すように、後の溝形成工程で用いる分断領域DRを含む格子状の間隙の部分をも分割用凹部RES2として封止基板14に形成しておくこともできる。分割用凹部RES2により、ハーフカット時に、マザー透光基板13M上の引出端子31を損傷させずに露出させることを容易にできる。
 <封止工程>
 次に、図9に示すように、マザー透光基板13M上の各々の発光領域と成るべき部位の周りを囲む所定幅の封止代領域SMRに接着手段15を供給する。封止代領域SMRの周りには表示電極16および背面電極18の端部に接続された引出端子31が露出している。
 なお、図示しないが、後の分断工程の分断領域を含む格子状の間隙の部分の封止用凹部の縁部に封止基板側に接着手段を形成しておくこともできる。すなわち、接着手段はマザー透光基板とマザー封止基板のいずれに形成してもよい。
 次に、図10に示すように、マザー透光基板13Mと有機EL素子19を内側にしたマザー封止基板14Mとを貼り付け、圧着固定して貼着体を形成する。接着手段15の接着材料として、感光性接着剤を用いた場合、マザー透光基板13M側から光照射を行い、接着手段15が光硬化することにより接合を実行してもよい。
 以上のように、マザー透光基板13Mとマザー封止基板14Mを接着手段15により封止接合する(封止工程P4)。
 <溝形成工程>
 ダイヤモンドカッター等のスクライバを用いたスクライブ法にて所定の封止基板サイズに前記貼着体の上のマザー封止基板14M部分のみ(引出端子31に非接触で)カットして、図11に示すように、分断領域に沿った引出端子31を露出させる幅の溝41を形成する。すなわち、スクライバにて封止基板形状を画定しかつ引出端子31を損傷させずに露出させるようにハーフカットする。ここで、マザー透光基板13M上のマザー封止基板14Mのみを封止基板の複数に分割する。本発明による分断方法として、スクライブ法のほかにもダイシングブレードによるダイシング法を採用しても良い。
 <分断工程>
 図12に示すように、マザー透光基板13M上の封止基板の間の分断領域を、スクライバ(図示せず)により、溝41中央の分断領域に沿って厚さ方向にマザー透光基板13Mを複数の透光基板13に切断し、マザー透光基板13Mを有機ELパネル11(透光基板13、封止基板14)毎に分断する(分断工程P5)。
 <実装工程>
 前もって、ガラス板上に有機ELパネル11を駆動する駆動IC12を形成してチップオングラスCOGを用意する(駆動ICをチップオングラス形態で形成する工程)。図13に示すように、駆動IC12のチップオングラスCOGを有機ELパネル11の封止基板14上の所定位置に接合する(実装工程P6)。
 <ワイヤボンディング工程>
 次に図14に示すように、ワイヤボンディングにより、駆動IC12のチップオングラスCOGのパッドと引出端子31の間を電気的に接続する配線32を形成する。露出している引出端子31と駆動IC12との間に、封止基板14(発光領域20)を囲むように、ワイヤボンディングによる配線32を環状に配置する。このとき、ワイヤボンディングによる配線32は、有機ELパネル11の周縁にて、加熱および/または圧着によって、施される。このように、透光基板13上の引出端子31と封止基板14背面の駆動IC12とをワイヤボンディングを利用してコンタクトする(ワイヤボンディング工程P7)。有機ELモジュール10では、有機ELパネル11の縁部にて引出端子31から駆動IC12へ直接接着されているため、フレキシを別に設ける必要がなく、装置の狭額縁化が可能となる。
 <モールディング工程>
 次に図15に示すように、有機ELパネル11を型枠MFに入れ、樹脂を充填することで有機ELモジュール10を形成する(樹脂成形工程P8)。有機ELパネル11を、所定樹脂部を形成する空洞CAを画定する型枠MFに入れて、樹脂を型枠空洞に充填して硬化せしめ、有機ELパネル11を型枠MFから離型することにより、図3に示すような有機ELモジュール10の透光基板13の側面に対し、樹脂部MRの側面が面一となるように形成する。なお、モールディング工程前にフレキシを駆動IC12のチップオングラスCOGのパッドと接続させておいて、フレキシ用の開口のある型枠を用いてモールディング工程を行えば、フレキシ直付の有機ELモジュールが得られる。また、フレキシ接続用の開口のある型枠を用いてモールディング工程を行えば、有機ELモジュールを成形後にフレキシをチップオングラスCOGのパッドと接続させることもできる。
 <第2実施例>
 第2の実施例である有機ELモジュール10の製造方法の概略プロセスフローを図に基づいて説明する。
 第2実施例は、以下の工程を順次実行して、マザー透光基板のための一つのマザー透光基板(いわゆる大判ガラス板)から有機ELモジュールの前駆体を形成して、一括切断して個別の有機ELモジュールを形成することを特徴とする。すなわち、第2実施例は、第1実施例の変形例である。
 第1実施例の上記マザー透光基板側作製工程から溝形成工程までを順次行う。
 よって、図11に示すように、マザー透光基板13M上の複数の封止基板14は、分断領域に沿った引出端子31を露出させる幅の溝41を隔てて分割され形成されている。ただし、溝41の幅は、次のワイヤボンディング工程でワイヤノズルが支障なく作業できる幅とする。
 <実装工程>
 前もって、ガラス板上に有機ELパネル11を駆動する駆動IC12を形成してチップオングラスCOGを用意する(駆動ICをチップオングラス形態で形成する工程)。図16に示すように、駆動IC12のチップオングラスCOGをマザー透光基板13Mの封止基板14上の所定位置に接合する(実装工程P6)。
 <ワイヤボンディング工程>
 次に図17に示すように、ワイヤボンディングにより、駆動IC12のチップオングラスCOGのパッドと引出端子31の間を電気的に接続する配線32を形成する。このように、マザー透光基板13M上の引出端子31と封止基板14背面の駆動IC12とをワイヤボンディングを利用してコンタクトする(ワイヤボンディング工程P7’)。
 <モールディング工程>
 次に図18に示すように、マザー透光基板13Mを型枠MFに入れ、樹脂を充填することで有機ELモジュールの前駆体(有機ELモジュール複数が溝に充填された樹脂でつながったもの)を形成する(樹脂成形工程P8’)。マザー透光基板13Mを、所定樹脂部を形成する空洞CAを画定する型枠MFに入れて、樹脂を型枠空洞に充填して硬化せしめ、有機ELモジュールの前駆体を型枠MFから離型する。なお、モールディング工程前にフレキシを駆動IC12のチップオングラスCOGのパッドと接続させておいて、フレキシ用の開口のある型枠を用いてモールディング工程を行えば、フレキシ直付の有機ELモジュールが得られる。また、フレキシ接続用の開口のある型枠を用いてモールディング工程を行えば、有機ELモジュールを成形後にフレキシをチップオングラスCOGのパッドと接続させることもできる。また、前記型枠MFを用いずにマザー透光基板13M上にモールド樹脂MRを塗布しても良い。
 <分断工程>
 図19に示すように、マザー透光基板13M上の封止基板の間の溝に充填された樹脂MRで覆われた分断領域を、スクライバ(図示せず)により、厚さ方向にマザー透光基板13Mを複数の透光基板13に切断し、マザー透光基板13Mを有機ELモジュール10(有機ELパネル11、駆動IC12)毎に分断する(分断工程P5’)。このように、スクライバにより研削された透光基板13と樹脂MRの分割面がそれらの面一側面を形成しつつ、個別の有機ELモジュール10の複数に分割する。
 以上のように、所定のサイズにマザー透光基板13Mと樹脂MRをフルカットして図1に示すような、透光基板13、接着手段15および封止基板14からなる有機ELモジュール10が得られる。有機ELモジュールの前駆体の分断工程により、有機ELモジュール10毎において、透光基板13の側面に対し、樹脂部MRの側面が面一となるように形成可能となる。スクライバもしくはダイシングにより個片化されるので、透光基板13、封止基板14および接着手段15の側面が共通な平坦面である。よって、透光基板13側面に固着された樹脂部MRは、接着手段15にも固着されかつ封止基板14の側面と同一平面にある外部側面を有している。これにより、透光基板13の正面から見た場合、透光基板13が封止基板14より大きい面積で形成される。封止基板14側からの外光は樹脂部MR(黒色とすれば)により遮断され、背面からの光の進入を防ぐことが可能な有機ELモジュール10ができる。この場合、樹脂部MRの材料としては、四酸化三鉄など黒色色素をエポキシ樹脂などポリマー樹脂に混合したものが用いられる。また、黒色以外でも遮光性を呈する暗色色素を用いることができる。
 以上のように実施例によれば、樹脂層の幅が広くとも封止基板14の分断幅を狭く設計できるため、マザー透光基板13M上のチップ有効数を多く取ることができ歩留が上がりコスト低減が期待できる。また、幅広の樹脂層を封止基板14の分断幅に合わせて細くカットして有機ELモジュール10ごと樹脂層を同時形成しているので、工程数の低減できる。さらに、ガラスの側面に樹脂層が形成されているため、ガラスの欠けや割れなどの防止もでき取り扱いが容易になる。また、樹脂部MRによりマザー透光基板13Mの側面からの光の入射を抑えることができ有機ELモジュール10特性の向上が期待できる。
 いずれの実施例においても、有機ELモジュール10の駆動IC12の表面の一部が樹脂部MRの一部から露出するような、モールディング工程を行えば、これにより、放熱対策となる。更に、駆動用IC12の表面に熱伝導の高い材料を貼り付けて樹脂部MRの一部から露出するように形成しても良い。
 また、いずれの実施例においても、有機ELモジュール10の駆動IC12形成位置の樹脂部MRの一部が切り欠かれているような、モールディング工程を行えば、これにより、省スペース対策となる。
 本発明は、表示デバイスとして利用でき、特に、狭額縁を実現したワイヤボンディングを利用する狭額縁の有機ELパネル単体でもよく、複数の有機ELパネルをタイリングする表示デバイスに採用することも可能である。
 さらに、本発明は、有機ELモジュールおよびその製造方法に関し、特に携帯電話、デジタルスチルカメラ、カーナビゲーションなどの中小型または極小型の有機ELモジュールに好適に利用することができる。更には、液晶TVやプラズマTV等のサブディスプレイとして利用することも可能である。

Claims (14)

  1.  透光基板と封止基板の主面間に接着手段により封止されかつ表示電極、発光層及び背面電極を含む有機EL素子が配置された発光領域を有しかつ前記発光領域の周りに引出端子を有する有機ELパネルと、前記封止基板の透光基板反対側主面上に配置されかつ前記引出端子を介して前記有機EL素子を制御する駆動ICと、を有する有機ELモジュールの製造方法であって、
     前記駆動ICが前記封止基板の透光基板反対側主面上にされかつ、前記表示電極及び背面電極に接続された引出端子が前記発光領域から前記透光基板の封止基板側主面上にて露出するように、前記有機ELパネルを形成する有機ELパネル形成工程;
     前記引出端子と前記駆動ICとをワイヤボンディングにより配線で電気的に接続するワイヤボンディング工程;並びに、
     前記配線、前記駆動用ICおよび前記封止基板を流動体状態の樹脂で埋設して硬化せしめ、硬化した樹脂表面が前記透光基板の側面と面一となる側面を有する樹脂部を形成する樹脂部形成工程;を含むことを特徴とする有機ELモジュールの製造方法。
  2.  前記有機ELパネル形成工程は、それぞれが前記透光基板及び封止基板の複数分の面積を有するマザー透光基板及びマザー封止基板を、各々の前記発光領域の周りを囲む所定幅の封止代領域にて供給されかつ前記露出する引出端子及び分断領域を覆わずに空間を画定する接着手段によって、固着された前記貼着体を形成する工程と、
     前記分断領域にて少なくとも前記マザー封止基板を切断して、前記マザー透光基板上にて前記封止基板の複数に分割する工程と、を含むことを特徴とする請求項1記載の有機ELモジュールの製造方法。
  3.  前記分断領域にて前記マザー透光基板をも切断して、各々が前記接着手段にて接合された封止基板および透光基板からなる前記有機ELパネルの複数に個片化する工程と、を含むことを特徴とする請求項2記載の有機ELモジュールの製造方法。
  4.  前記樹脂部形成工程において、前記有機ELパネルを、前記樹脂部を形成する空洞を画定する型枠に入れて、前記樹脂を前記型枠に充填して硬化せしめ、前記有機ELパネルを前記型枠から離型することを特徴とする請求項3記載の有機ELモジュールの製造方法。
  5.  前記型枠は、前記駆動ICの表面の一部又は全部が前記樹脂部の一部から露出するような空洞を画定することを特徴とする請求項4記載の有機ELモジュールの製造方法。
  6.  前記樹脂部形成工程において、前記マザー透光基板上の前記封止基板同士の間隙にて、少なくとも前記配線及び前記引出端子を覆うように前記樹脂を塗布し硬化せしめた後、硬化した樹脂とともに前記マザー透光基板を、前記分断領域にて切断して、各々が前記接着手段にて接合された封止基板および透光基板からなる前記有機ELパネルの複数に個片化する工程と、を含み、前記切断により、硬化した樹脂表面において前記透光基板の側面と面一となる側面を形成することを特徴とする請求項2記載の有機ELモジュールの製造方法。
  7.  前記樹脂部形成工程は、前記マザー透光基板を、前記駆動ICの表面の一部又は全部が前記樹脂部の一部から露出するような空洞を画定する型枠に入れて実行することを特徴とする請求項6記載の有機ELモジュールの製造方法。
  8.  前記有機ELパネル形成工程は、前記駆動ICを前記封止基板上にチップオングラス形態で形成する工程を含むことを特徴とする請求項1~7のいずれか1記載の有機ELモジュールの製造方法。
  9. 前記請求項1から8のいずれかに記載の有機ELモジュールの製造方法により製造した有機ELモジュールであって、
     前記透光基板;前記封止基板;前記透光基板と封止基板の主面間に接着手段により封止されかつ前記表示電極、発光層及び背面電極を含む少なくとも1つの前記有機EL素子が配置された前記発光領域;並びに、前記表示電極及び背面電極にそれぞれ個別に電気的に接続されかつ前記発光領域の周りに配置された前記引出端子;を有する前記有機ELパネルと、
     前記有機ELパネルの前記封止基板の透光基板反対側主面上に配置された前記駆動ICと、
     前記駆動IC及び前記引出端子の間を電気的に接続するワイヤボンディングによる前記配線と、
     前記配線、前記駆動用ICおよび前記封止基板および前記封止基板を埋設しかつ前記透光基板の側面と面一となる側面を有する前記樹脂部と、を有することを特徴とする有機ELモジュール。
  10. 前記透光基板の側面4辺のすべてを前記樹脂部の側面と面一とする請求項9記載の有機ELモジュール。
  11. 前記駆動用ICの表面の一部が前記樹脂部の一部から露出していることを特徴とする請求項9又は10記載の有機ELモジュール。
  12. 前記駆動用IC形成位置の前記樹脂部の一部が切り欠かれていることを特徴とする請求項9又は10記載の有機ELモジュール。
  13. 前記駆動用ICを前記封止基板上に直接形成されていることを特徴とする請求項9又は10記載の有機ELモジュール。
  14. 請求項9~13のいずれか1記載の前記有機ELモジュールを、前記透光基板の側面同士が合うように、複数組み合わせて一つのスクリーンを形成することを特徴とする表示デバイス。
PCT/JP2009/055161 2009-03-17 2009-03-17 有機elモジュールおよびその製造方法 WO2010106637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011504645A JP5341982B2 (ja) 2009-03-17 2009-03-17 有機elモジュールおよびその製造方法
PCT/JP2009/055161 WO2010106637A1 (ja) 2009-03-17 2009-03-17 有機elモジュールおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055161 WO2010106637A1 (ja) 2009-03-17 2009-03-17 有機elモジュールおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2010106637A1 true WO2010106637A1 (ja) 2010-09-23

Family

ID=42739308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055161 WO2010106637A1 (ja) 2009-03-17 2009-03-17 有機elモジュールおよびその製造方法

Country Status (2)

Country Link
JP (1) JP5341982B2 (ja)
WO (1) WO2010106637A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069912A (ja) * 2011-09-22 2013-04-18 Panasonic Corp 照明装置
WO2013128602A1 (ja) * 2012-02-29 2013-09-06 パイオニア株式会社 有機el装置及びその製造方法
KR20130105521A (ko) * 2012-03-16 2013-09-25 유니버셜 디스플레이 코포레이션 비디바이스 엣지 영역이 감소된 전자 디바이스
JP2014090036A (ja) * 2012-10-29 2014-05-15 Kaneka Corp 有機el装置
JP2014103023A (ja) * 2012-11-21 2014-06-05 Kaneka Corp 有機elパネル及び有機elパネルの接続構造
CN104365177A (zh) * 2012-06-12 2015-02-18 松下知识产权经营株式会社 有机电致发光元件和照明装置
JP2016514895A (ja) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
CN113064294A (zh) * 2016-12-30 2021-07-02 乐金显示有限公司 显示装置和多屏幕显示装置
CN114842758A (zh) * 2022-04-19 2022-08-02 Tcl华星光电技术有限公司 拼接显示面板的制作方法及拼接显示面板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102484183B1 (ko) * 2016-06-30 2023-01-04 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
US11107841B2 (en) 2018-07-04 2021-08-31 Samsung Electronics Co., Ltd. Display panel and large format display apparatus using the same
KR102151099B1 (ko) * 2018-07-04 2020-09-02 삼성전자주식회사 디스플레이 패널 및 이를 이용한 대형 디스플레이 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152673U (ja) * 1982-04-02 1983-10-13 沖電気工業株式会社 エレクトロルミネセンス表示パネル
JPS63108696A (ja) * 1986-05-28 1988-05-13 沖電気工業株式会社 Elデイスプレイパネル
JPH02137795U (ja) * 1989-04-21 1990-11-16
JP2000206908A (ja) * 1999-01-14 2000-07-28 Sony Corp 映像装置及びその製造方法
JP2000223267A (ja) * 1999-01-29 2000-08-11 Sony Corp 平面表示素子及びその配線方法
JP2003332043A (ja) * 2002-05-09 2003-11-21 Rohm Co Ltd 有機elディスプレイ素子、その製造方法及び携帯端末
JP2004355998A (ja) * 2003-05-30 2004-12-16 Seiko Epson Corp 有機el表示体およびその配線方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152673U (ja) * 1982-04-02 1983-10-13 沖電気工業株式会社 エレクトロルミネセンス表示パネル
JPS63108696A (ja) * 1986-05-28 1988-05-13 沖電気工業株式会社 Elデイスプレイパネル
JPH02137795U (ja) * 1989-04-21 1990-11-16
JP2000206908A (ja) * 1999-01-14 2000-07-28 Sony Corp 映像装置及びその製造方法
JP2000223267A (ja) * 1999-01-29 2000-08-11 Sony Corp 平面表示素子及びその配線方法
JP2003332043A (ja) * 2002-05-09 2003-11-21 Rohm Co Ltd 有機elディスプレイ素子、その製造方法及び携帯端末
JP2004355998A (ja) * 2003-05-30 2004-12-16 Seiko Epson Corp 有機el表示体およびその配線方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069912A (ja) * 2011-09-22 2013-04-18 Panasonic Corp 照明装置
WO2013128602A1 (ja) * 2012-02-29 2013-09-06 パイオニア株式会社 有機el装置及びその製造方法
US10505137B2 (en) 2012-03-16 2019-12-10 Universal Display Corporation Electronic device with reduced non-device edge area
KR102016172B1 (ko) * 2012-03-16 2019-08-29 유니버셜 디스플레이 코포레이션 비디바이스 엣지 영역이 감소된 전자 디바이스
US11871607B2 (en) 2012-03-16 2024-01-09 Universal Display Corporation Electronic device with reduced non-device edge area
US11309522B2 (en) 2012-03-16 2022-04-19 Universal Display Corporation Electronic device with reduced non-device edge area
US11018319B2 (en) 2012-03-16 2021-05-25 Universal Display Corporation Electronic device with reduced non-device edge area
KR20130105521A (ko) * 2012-03-16 2013-09-25 유니버셜 디스플레이 코포레이션 비디바이스 엣지 영역이 감소된 전자 디바이스
JP2016189353A (ja) * 2012-03-16 2016-11-04 ユニバーサル ディスプレイ コーポレイション 非デバイス縁部領域が低減された電子デバイス
US10483487B2 (en) 2012-03-16 2019-11-19 The Trustees Of Princeton University Electronic device with reduced non-device edge area
EP2861042A4 (en) * 2012-06-12 2015-08-12 Panasonic Ip Man Co Ltd ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
CN104365177A (zh) * 2012-06-12 2015-02-18 松下知识产权经营株式会社 有机电致发光元件和照明装置
JP2014090036A (ja) * 2012-10-29 2014-05-15 Kaneka Corp 有機el装置
JP2014103023A (ja) * 2012-11-21 2014-06-05 Kaneka Corp 有機elパネル及び有機elパネルの接続構造
US9876190B2 (en) 2013-08-21 2018-01-23 Lg Display Co., Ltd. Organic light-emitting diode and method for manufacturing same
JP2016514895A (ja) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
CN113064294A (zh) * 2016-12-30 2021-07-02 乐金显示有限公司 显示装置和多屏幕显示装置
CN114842758A (zh) * 2022-04-19 2022-08-02 Tcl华星光电技术有限公司 拼接显示面板的制作方法及拼接显示面板

Also Published As

Publication number Publication date
JPWO2010106637A1 (ja) 2012-09-20
JP5341982B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5341982B2 (ja) 有機elモジュールおよびその製造方法
TWI676309B (zh) 一種柔性顯示模組及其製備方法
WO2021007998A1 (zh) 显示面板、显示模组及显示装置
KR101421168B1 (ko) 유기전계발광 표시소자 및 그 제조방법
JP5099060B2 (ja) 有機el装置、有機el装置の製造方法、電子機器
CN106449697B (zh) 显示装置及其制造方法
JP5593630B2 (ja) 有機el装置および電子機器
JP6173019B2 (ja) 発光装置
US9196869B2 (en) Manufacturing method of light-emitting device with nano-imprinting wiring
US9570702B2 (en) Display apparatus with a seal including a gas hole adjacent to a display portion and method of manufacturing the same
JP5609941B2 (ja) 表示装置および電子機器
TW201943069A (zh) 發光裝置以及發光裝置的製造方法
TW200836581A (en) Organic light emitting display device and method for fabricating the same
KR20170070495A (ko) 유기발광 표시장치
JPWO2010024006A1 (ja) 有機エレクトロルミネセンスパネル、有機エレクトロルミネセンスディスプレイ、有機エレクトロルミネセンス照明、及び、それらの製造方法
US20120043880A1 (en) Flat panel display apparatus and method of manufacturing the same
KR101980761B1 (ko) Fpcb와의 전기적 접속이 원활한 표시소자
WO2021129093A1 (zh) 显示面板及其制备方法、显示装置
JP2007200856A (ja) 有機電界発光表示装置及びその製造方法
JPWO2006088185A1 (ja) El表示装置およびその製造方法
JP2003223111A (ja) 表示装置の製造方法、表示装置の封止側原型基板、表示装置の集合体、表示装置および電子機器
JP2007294336A (ja) 発光装置、発光装置の製造方法及び電子機器
KR20210122729A (ko) 광원 모듈, 디스플레이 패널 및 그 제조방법
JP2013157328A (ja) 有機電界発光素子
CN114188382B (zh) Oled显示面板及其封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011504645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841842

Country of ref document: EP

Kind code of ref document: A1