WO2010101288A1 - 油脂の製造方法 - Google Patents

油脂の製造方法 Download PDF

Info

Publication number
WO2010101288A1
WO2010101288A1 PCT/JP2010/053787 JP2010053787W WO2010101288A1 WO 2010101288 A1 WO2010101288 A1 WO 2010101288A1 JP 2010053787 W JP2010053787 W JP 2010053787W WO 2010101288 A1 WO2010101288 A1 WO 2010101288A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
mass
triglyceride
lower alkyl
fats
Prior art date
Application number
PCT/JP2010/053787
Other languages
English (en)
French (fr)
Inventor
智巳 菅沼
雅人 高場
Original Assignee
日清オイリオグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清オイリオグループ株式会社 filed Critical 日清オイリオグループ株式会社
Priority to US13/254,974 priority Critical patent/US20120009321A1/en
Priority to EP10748879.3A priority patent/EP2404985A4/en
Priority to CN201080019963.6A priority patent/CN102421884B/zh
Publication of WO2010101288A1 publication Critical patent/WO2010101288A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils

Definitions

  • the present invention relates to a method for producing fats and oils rich in triglyceride (X2U type triglyceride) composed of two saturated fatty acid residues and one unsaturated fatty acid residue.
  • triglyceride X2U type triglyceride
  • Hard butter such as cocoa butter is widely used in confectionery mainly made of chocolate, foods such as bread making, pharmaceuticals, and cosmetics.
  • These hard butters are 1,3-dipalmitoyl-2-oleoylglycerin (POP), triglycerides (POS) having an oleoyl group at the 2-position, one palmitoyl group and one stearoyl group, and 1,3 -Mainly composed of symmetric disaturated monounsaturated triglycerides having one unsaturated bond in the molecule such as distearoyl-2-oleoylglycerin (SOS).
  • POP 1,3-dipalmitoyl-2-oleoylglycerin
  • POS triglycerides
  • SOS distearoyl-2-oleoylglycerin
  • SLS 1,3-distearoyl-2-linoloylglycerin
  • such triglycerides can be obtained as natural fats and oils containing this component, for example, fats and oils such as palm oil, shea fat, monkey fat, and lippe fat, or fractionated oils thereof.
  • fats and oils such as palm oil, shea fat, monkey fat, and lippe fat, or fractionated oils thereof.
  • a 1,3-selective lipase is allowed to act on specific fats and oils, not as oil fractions such as palm oils, shea fats, monkey fats, lippe fats, etc. It has been proposed (Patent Documents 1 to 3).
  • Asymmetric disaturated monounsaturated triglycerides such as 1,2-dipalmitoyl-3-oleoylglycerin (PPO) and 1,2-distearoyl-3-oleoylglycerin (SSO) are also not tempered oils and fats. It is known that it is suitable as a raw material for confectionery, bread making and the like.
  • PPO 1,2-dipalmitoyl-3-oleoylglycerin
  • SSO 1,2-distearoyl-3-oleoylglycerin
  • fractionation operations are performed to obtain the final product.
  • solvent fractionation or complicated process management is required.
  • it is not satisfactory, and a more efficient production method suitable for industrialization of oils and fats rich in di-saturated monounsaturated triglycerides (X2U triglycerides) is desired.
  • An object of the present invention is to provide a more efficient and suitable process for industrial production of fats and oils rich in disaturated monounsaturated triglycerides (X2U type triglycerides or X2U type TG).
  • the present invention solves the above-mentioned problems by fractionating oils and fats containing a specific amount of di-saturated monounsaturated triglycerides (X2U triglycerides) in the presence of fatty acid lower alkyl esters containing unsaturated fatty acid lower alkyl esters. It was made based on the knowledge that it can be done. That is, according to the first aspect of the present invention, there is provided an oil or fat containing 20 to 60% by mass of a disaturated monounsaturated triglyceride (X2U triglyceride) comprising two saturated fatty acid residues and one unsaturated fatty acid residue in all triglycerides.
  • X2U triglyceride disaturated monounsaturated triglyceride
  • the second invention is a method for producing fats and oils, wherein the fatty acid lower alkyl ester in the first invention is a fatty acid lower alkyl ester containing 30 to 100% by mass of an unsaturated fatty acid lower alkyl ester.
  • the fat or oil containing 20 to 60% by mass of X2U triglyceride in the total triglyceride is obtained by converting a mixture of fat and fatty acid and a lower alkyl ester of 1,3 selective lipase.
  • the fourth invention is a food containing fats and oils rich in X2U type triglycerides produced by the method for producing fats and oils in the first to third inventions.
  • a fatty acid used as a raw material for transesterification without using an organic solvent that is volatile and difficult to handle in producing fats and oils rich in disaturated monounsaturated triglycerides (X2U type triglycerides)
  • X2U type triglycerides disaturated monounsaturated triglycerides
  • the disaturated monounsaturated triglyceride (X2U type triglyceride) referred to in the present invention may be symmetric type (XUX type) or asymmetric type (XXU type or UXX type) depending on the triglyceride to be produced. Moreover, it may be a mixed type of them.
  • the fatty acid residue constituting the X2U type triglyceride is preferably 12 to 26 carbon atoms, more preferably 16 to 22 carbon atoms, from the viewpoint of being useful in the food industry.
  • the unsaturated fatty acid residue U preferably has 16 to 26 carbon atoms, and more preferably 16 to 22 carbon atoms.
  • the degree of unsaturation of the unsaturated fatty acid is preferably from 1 to 6, and more preferably from 1 to 3.
  • the unsaturated fatty acid residue is particularly preferably an oleyl group, a linoloyl group, or a linoleyl group.
  • the X2U triglyceride in the total triglycerides is more preferably 30 to 60% by mass, and most preferably 40 to 60% by mass.
  • fats and oils containing 20 to 60% by mass of X2U type triglycerides in the total triglyceride used as a fractionation raw material in the production method of the present invention fats and oils having a triglyceride content of 85% by mass or more are preferable, and 90% by mass or more. Oils and fats are more preferable, and oils and fats of 94% by mass or more are most preferable. For example, oils and fats obtained by separating palm oil, shea fat, monkey fat, iripe fat and the like can be used.
  • fats and oils are the portions excluding the fatty acid lower alkyl ester in the case of a mixture with the fatty acid lower alkyl ester.
  • the fat containing 20 to 60% by mass of X2U type triglyceride in the total triglyceride is a portion excluding the fatty acid lower alkyl ester remaining in the distillation residue. Is the corresponding oil.
  • the fat containing 20 to 60% by mass of X2U triglyceride in the total triglycerides is 1 to 50% by mass of fatty acid lower alkyl ester containing 10 to 100% by mass of unsaturated fatty acid lower alkyl ester.
  • it is fractionated through a cooling crystallization step. That is, in the production method of the present invention, the content of unsaturated fatty acid lower alkyl ester is 10 to 100% by mass, and the fatty acid lower alkyl ester is 1 to 50% by mass.
  • the fractionated raw material having an X2U type triglyceride content of 20 to 60% by mass is fractionated through a cooling crystallization step to obtain an oil and fat rich in X2U type triglyceride.
  • the fractionation is preferably performed in the presence of 1 to 30% by mass of a fatty acid lower alkyl ester. More preferably, it is carried out in the presence of 4 to 25% by mass, and most preferably in the presence of 7 to 23% by mass. It is preferable for the fatty acid lower alkyl ester to be in the above range since an oil rich in X2U triglycerides can be obtained efficiently.
  • the unsaturated fatty acid lower alkyl ester used for the fractionation raw material is not particularly limited, but a lower alcohol ester of an unsaturated fatty acid having 16 to 22 carbon atoms (preferably oleic acid, linoleic acid, linolenic acid) is preferable.
  • a lower alcohol ester of an unsaturated fatty acid having 16 to 22 carbon atoms preferably oleic acid, linoleic acid, linolenic acid
  • an ester of an unsaturated fatty acid and an alcohol having 1 to 6 carbon atoms is preferred.
  • methanol, ethanol, and isopropyl alcohol are preferable. Among these, ethanol is preferable because of processing of edible fats and oils.
  • the saturated fatty acid lower alkyl ester which is an optional component other than the unsaturated fatty acid lower alkyl ester, is not particularly limited, but may be a lower one of saturated fatty acids having 16 to 22 carbon atoms (preferably palmitic acid, stearic acid, behenic acid).
  • Alcohol esters are preferred, and esters of saturated fatty acids and alcohols having 1 to 6 carbon atoms are particularly preferred.
  • methanol, ethanol, and isopropyl alcohol are preferable.
  • ethanol is preferable because of processing of edible fats and oils.
  • the unsaturated fatty acid lower alkyl ester in the fatty acid lower alkyl ester is 10 to 100% by mass, preferably 20 to 100% by mass, and more preferably 30 to 100% by mass.
  • the crystallization temperature in fractionation can be set low, and therefore an oil rich in X2U triglycerides can be obtained efficiently and is preferable.
  • the fat and oil rich in X2U type triglyceride is finally cooled and crystallized in the presence of fatty acid lower alkyl ester in the presence of fatty acid and fat containing 20 to 60% by mass of X2U type triglyceride in the total triglyceride. It is possible to obtain a stearin part (solid fat part) separated through
  • an oil and fat having an oleoyl group at the 2-position of 50% by mass or more is a fatty acid lower alkyl ester.
  • the free fatty acid may be contained in an amount of 0.01 to 10% by mass) and then subjected to a transesterification reaction and then distilled to obtain a distillation residue
  • XOX triglyceride in X2U type triglyceride is 50% by mass or more, preferably It may be contained in an amount of 70% by mass or more (O: oleic acid).
  • the saturated fatty acid residue in the XOX triglyceride is preferably a saturated fatty acid residue having 16 to 22 carbon atoms, and more preferably a stearoyl group, a palmitoyl group, or a behenoyl group. More specifically, trioleoyl glycerin, shea fat low melting point part (for example, iodine value 70-80), high oleic sunflower oil, high oleic lorinolen rapeseed oil, high oleic safflower oil, palm oil, palm fraction oil, etc.
  • Fatty acid lower alkyl ester is added to the raw oil and fat of 1,3 selective lipase, for example, lysops lipase, Aspergillus lipase, mucor lipase, pancreatic lipase, rice nuclei lipase, etc. And then distilled to obtain a distillation residue obtained by removing a part or all of unreacted raw materials, by-produced fatty acids such as oleic acid and lower alkyl esters thereof.
  • 1,3 selective lipase for example, lysops lipase, Aspergillus lipase, mucor lipase, pancreatic lipase, rice nuclei lipase, etc.
  • the fatty acid lower alkyl ester used here is preferably a lower alcohol ester of a saturated fatty acid having 16 to 22 carbon atoms (preferably palmitic acid, stearic acid or behenic acid), and particularly an ester with an alcohol having 1 to 6 carbon atoms. Is preferred. In particular, methanol, ethanol, and isopropyl alcohol are preferable. Among these, ethanol is preferable because of processing of edible fats and oils.
  • the use ratio (molar ratio) of fat / fatty acid lower alkyl ester having an oleoyl group of 50% by mass or more at the 2-position is preferably 1/2 or less, particularly 1/2 to 1/30. preferable.
  • a saturated fatty acid residue at the 1-position and the 3-position and linoloyl at the 2-position It may be a fat or oil containing a group-containing triglyceride (XLX type triglyceride, L: linoleic acid) in an X2U type triglyceride of 50% by mass or more, preferably 70% by mass or more.
  • XLX type triglyceride L: linoleic acid
  • the saturated fatty acid residue in the XLX triglyceride is preferably a saturated fatty acid residue having 16 to 22 carbon atoms, and more preferably a stearoyl group, a palmitoyl group, or a behenoyl group.
  • Fats and oils containing XLX type triglycerides are oils and fats having a linoleoyl group at the 2-position of 50% by mass or more, specifically, trilinoyl glycerin, highlinol sunflower oil, highlinol safflower oil, etc.
  • saturated fatty acid lower alkyl esters having 16 to 22 carbon atoms (free fatty acids may be contained in an amount of 0.01 to 10% by mass) are added, and 1,3-selective lipase is allowed to act to transesterify.
  • the reaction can be carried out, and then a distillation residue obtained by distilling a part or all of the fatty acid lower alkyl ester can be obtained.
  • the oil containing 20 to 60% by mass of X2U type triglyceride in the total triglyceride used in the production method of the present invention saturated fatty acid residues at the 1st and 3rd positions and linoleyl at the 2nd position It may be a fat or oil containing a group-containing triglyceride (XLnX triglyceride, Ln: linolenic acid) in an X2U triglyceride of 50% by mass or more, preferably 70% by mass or more.
  • XLnX triglyceride Ln: linolenic acid
  • the saturated fatty acid residue in the XLnX triglyceride is preferably a saturated fatty acid residue having 16 to 22 carbon atoms, and more preferably a stearoyl group, a palmitoyl group, or a behenoyl group.
  • the fats and oils containing XLnX type triglycerides are oils and fats having a linoleyl group at 50% by mass or more at the 2-position, specifically, trilinoleyl glycerin, linseed oil, perilla oil, sesame oil and the like as raw material fats and oils.
  • a saturated fatty acid lower alkyl ester having 16 to 22 carbon atoms (free fatty acid may be contained in an amount of 0.01 to 10% by mass) is added, and a 1,3-selective lipase is allowed to act to effect transesterification. And then a part or all of the fatty acid lower alkyl ester can be obtained as a distillation residue.
  • saturated fatty acid residues are located at the 1st and 2nd positions or the 2nd and 3rd positions. It may be a fat or oil containing 50% by mass or more, preferably 70% by mass or more, of triglyceride (XXU type and / or UXX type triglyceride) having an unsaturated fatty acid residue at the 3rd or 1st position in the X2U type triglyceride.
  • the saturated fatty acid residue in the XXU type and / or UXX type triglyceride is preferably a saturated fatty acid residue having 16 to 22 carbon atoms, and more preferably a stearoyl group, a palmitoyl group, or a behenoyl group.
  • the unsaturated fatty acid residue in the XXU type and / or UXX type triglyceride is preferably an unsaturated fatty acid residue having 16 to 22 carbon atoms, and more preferably an oleyl group, a linoloyl group, or a linoleyl group.
  • the fats and oils containing XXU type and / or UXX type triglycerides can be obtained by adding oleic acid lower alkyl ester, lower linoleic acid to extremely hardened oils of animal and plant oils and fats having 16 or more carbon atoms.
  • One or more fatty acid lower alkyl esters selected from alkyl esters and linolenic acid lower alkyl esters may contain 0.01 to 10% by mass of free fatty acids).
  • a 1,3-selective lipase can be allowed to act to conduct a transesterification reaction, and then a part or all of the fatty acid lower alkyl ester can be obtained as a distillation residue.
  • Rhizopus delemar and Rhizopus oryzae belonging to the genus Rhizopus are preferable.
  • these lipases include Robin's product: Picantase R8000 and Amano Enzyme's product: Lipase F-AP15.
  • the most suitable lipase is derived from Rhizopus oryzae, Amano Enzyme's product: Lipase DF ( Amano) 15-K (also referred to as lipase D). This is a powder lipase.
  • the lipase DF (Amano) 15-K has conventionally been derived from Rhizopus delemar.
  • the lipase used may be obtained by drying a lipase-containing aqueous solution containing a lipase medium component or the like.
  • the powder lipase is preferably spherical and has a water content of 10% by mass or less. In particular, 90% by mass or more of the lipase powder preferably has a particle size of 1 to 100 ⁇ m.
  • the powder lipase is preferably produced by spray-drying a lipase-containing aqueous solution whose pH is adjusted to 6 to 7.5. It is also preferable to use granulated powder lipase (also referred to as powder lipase) obtained by granulating the above lipase with soybean powder and pulverizing it.
  • Commercially available immobilized lipase can also be used suitably. For example, trade names such as Lipozyme RM IM and Lipozyme TL IM manufactured by Novozymes are listed.
  • the lipase is added to a raw material containing fats and oils and a fatty acid lower alkyl ester (which may contain 0.01 to 10% by mass of free fatty acid), and the transesterification reaction is carried out in a conventional manner. It can be performed. In this case, 0.01 to 10 parts by mass (preferably 0.01 to 2 parts by mass, more preferably 0.1 to 1.5 parts by mass) of lipase is added per 100 parts by mass of the raw material, and 35 to 100 ° C.
  • the transesterification is carried out at a temperature (preferably 35 to 80 ° C., more preferably 40 to 60 ° C.) for 0.1 to 50 hours (preferably 0.5 to 30 hours, more preferably 1 to 20 hours). preferable.
  • the reaction is preferably carried out batchwise.
  • the reaction temperature may be any number of times as long as it is a temperature at which fats and oils as reaction substrates dissolve and has enzyme activity.
  • the optimal reaction time varies depending on the amount of enzyme added, reaction temperature, etc., and may be adjusted as appropriate.
  • the X2U type triglyceride used as a fractionation raw material in the present invention is added to all triglycerides by distillation until the unreacted raw materials, by-product fatty acids and fatty acid lower alkyl esters are reduced to 50% by mass or less.
  • An oil containing up to 60% by weight, preferably 30 to 60% by weight is obtained.
  • the fatty acid lower alkyl ester is used in the transesterification raw material in an amount of more than 50% by mass in the transesterification reaction, and the distillation is adjusted to adjust the X2U type triglyceride to 20 to 60 in all triglycerides.
  • the content of unsaturated fatty acid lower alkyl ester is 10 to 100% by mass by allowing the fatty acid lower alkyl ester to remain in the distillation residue containing fat / oil containing 5% by mass, or by adding another fatty acid lower alkyl ester separately.
  • a certain fatty acid lower alkyl ester is adjusted to 1 to 50% by mass (preferably 1 to 30% by mass, more preferably 4 to 25% by mass, most preferably 7 to 23% by mass) or by distillation. Unreacted raw materials (including fatty acid lower alkyl esters), by-product fatty acids and their lower alkyl esters
  • the fatty acid lower alkyl ester having an unsaturated fatty acid lower alkyl ester content of 10 to 100% by mass is newly added to oils and fats containing 20 to 60% by mass of X2U triglyceride in the total triglycerides. You may add so that it may become 50 mass% (preferably 1-30 mass%, More preferably, 4-25 mass%, Most preferably, 7-23 mass%).
  • the fatty acid lower alkyl ester to be newly added is not particularly limited, but a lower alcohol ester of a fatty acid having 16 to 22 carbon atoms is preferred, and in particular, an unsaturated saturated fatty acid and an alcohol having 1 to 6 carbon atoms. Esters are preferred. In particular, methanol, ethanol, and isopropyl alcohol are preferable. Among these, ethanol is preferable because of processing of edible fats and oils.
  • free fatty acid may be present in the fractionated raw material in an amount of 0.01 to 5% by mass.
  • the free fatty acid is more preferably 0.01 to 3% by mass, and most preferably 0.01 to 1% by mass. It is preferable that the free fatty acid is in the above-mentioned range since an oil and fat rich in X2U triglyceride can be obtained efficiently.
  • the fatty acid lower alkyl ester and the free fatty acid are preferably fatty acid lower alkyl ester / free fatty acid ⁇ 10 on a mass basis, and fatty acid lower alkyl ester / free fatty acid ⁇ 20. It is more preferable. It is preferable for the fatty acid lower alkyl ester / free fatty acid to be in the above range since an oil and fat rich in X2U triglyceride content can be obtained efficiently.
  • the fractionated raw material having an X2U triglyceride content of 20 to 60% by mass in the triglyceride is dissolved by heating to a temperature at which the whole is uniformly dissolved (for example, 50 ° C. or higher, preferably 50 to 70 ° C.), or immediately after the dissolution or After maintaining the temperature for a predetermined time (for example, 0.5 to 2 hours), it is not more than room temperature (for example, 25 ° C.
  • the solid content rich in X2U type triglyceride is crystallized, and this is solid-liquid separated to enrich in X2U type triglyceride. It is preferable to manufacture the fats and oils. Further, before cooling to a room temperature or lower for crystallization of the solid part rich in X2U type triglyceride, it is kept at a predetermined temperature (for example, 26 to 35 ° C., preferably 26 to 28 ° C.) for a predetermined time (for example, 0.5 For 5 hours, preferably 1 to 3 hours).
  • a predetermined temperature for example, 26 to 35 ° C., preferably 26 to 28 ° C.
  • a predetermined time for example, 0.5 For 5 hours, preferably 1 to 3 hours).
  • the cooling temperature of the X2L type triglyceride or the X2Ln type triglyceride is 20 ° C. or lower, preferably 5 to 15 ° C. From the heating and dissolving to the cooling step, stirring and / or standing can be performed.
  • the crystallization time of fats and oils rich in X2U type triglyceride can be shortened, the stability and yield of the solids obtained by crystallization are improved, and crystals with very good filterability are obtained.
  • the advantage that the content of X2U type triglyceride is improved can be obtained.
  • the method in which the fatty acid lower alkyl ester is contained and stirred and cooled a crystallized product having fluidity is obtained, and the crystal has good filterability. Therefore, solid-liquid separation is improved, and an advantage that the content of X2U triglyceride can be improved is obtained.
  • the content of unsaturated fatty acid lower alkyl ester is 10 to 100% by mass, and the fatty acid lower alkyl ester is 1 to 50% by mass.
  • a fractional raw material having a triglyceride content of 20 to 60% by mass is dissolved by heating and cooled to crystallize a solid content rich in X2U triglyceride, but the temperature at which X2U triglyceride is hardly crystallized (for example, 26 Crystallization of trisaturated fatty acid triglyceride (XXX type triglyceride or XXX type TG) and disaturated fatty acid diglyceride (XX type diglyceride or XX type DG) at ⁇ 35 ° C, preferably 26 to 28 ° C, and fractionation Removed, and further at room temperature or lower (for example, 25 ° C.
  • a predetermined temperature for example, 26 to 35 ° C., preferably 26 to 28 ° C.
  • a predetermined time for example, 0.5 to 5 hours, preferably 1 to 3 hours.
  • the cooling temperature in the final fractionation step should be 20 ° C. or less, preferably 5 to 15 ° C. under the above conditions, and for the X2L type triglyceride or the X2Ln type triglyceride.
  • the pressure filtration for performing solid-liquid separation uses, for example, a pressure filter used for fractional filtration of palm oil or the like, and the solid-liquid separation of the crystallized crystals is performed at a temperature below room temperature (preferably 20 to 27 ° C.). It is better to do it.
  • the fats and oils rich in X2U type triglyceride in the present invention can be finally obtained in a stearin part (solid fat part) separated through a cooling crystallization step.
  • the finally obtained solid fat part contains about 50 to 60% of the content of fatty acid lower alkyl ester contained in the fractionated raw material (10 to 12% by mass if it is 20% by mass in the fractionated raw material).
  • the oil and fat part excluding the ester preferably has a triglyceride content of 85% by mass (more preferably 90% by mass, most preferably 94% by mass), and the content of X2U triglyceride in the total triglycerides is 65% by mass or more, preferably Is 70% by mass or more, more preferably 75% by mass or more, and most preferably 80% by mass or more.
  • the purification step which is an optional step performed thereafter, can be performed by a conventional method (for example, steam distillation or the like), and the fatty acid lower alkyl ester can be removed before making the final product.
  • the triglyceride content is preferably 85% by mass (more preferably 90% by mass, most preferably 94% by mass), and the content of X2U triglyceride in the total triglycerides is 65% by mass or more, preferably 70% by mass.
  • Oils and fats of mass% or more, more preferably 75 mass% or more, and most preferably 80 mass% or more can be obtained.
  • the fats and oils rich in X2U type triglyceride obtained by the production method of the present invention can be suitably used particularly as a substitute fat (hard butter) for cacao butter.
  • a chocolate product contains the fats and oils component and sugar component containing said hard butter, for example.
  • the hard butter is preferably contained in the oil and fat component by 10% by mass or more, preferably 20% by mass or more, and more preferably 30% by mass or more.
  • Any sugar component can be used as long as it is usually used in chocolate.
  • sucrose, fructose, or a mixture thereof can be mentioned.
  • Sugar alcohols such as sorbitol may be used.
  • it can also be included about the arbitrary components contained in a normal chocolate product.
  • the oil and fat rich in X2U type triglyceride obtained by the production method of the present invention includes, for example, soybean oil, rapeseed oil, sunflower oil, corn oil, cottonseed oil, safflower oil, peanut oil, palm oil, cocoa butter, shea fat, Margarine is blended with one or more types of fats and oils selected from coconut oil, palm kernel oil, beef tallow, lard, milk fat and the like, and processed oils that have been subjected to fractionation, hydrogenation, transesterification, etc. , Shortening, filling, O / W cream, etc. can be suitably used as raw material fats and oils for processed fats and oils products.
  • the obtained reaction product 1 (34300 g) was subjected to thin-film distillation, and fatty acid ethyl was removed from the reaction product at a distillation temperature of 140 ° C., and the triglyceride content was 93.2% by mass and the fatty acid ethyl content was 2.9% by mass. 13721 g of residue 1 was obtained.
  • the obtained distillation residue 1 was used to fractionate [Example 1] to [Example 4], [Comparative Example 1] and [Reference Example 1].
  • the distillate during thin film distillation was designated as distillate 1.
  • Example 1 845 g of distillation residue 1 is mixed with 155 g of ethyl oleate (trade name: Ethyl Olate SP, manufactured by Inoue Fragrance Co., Ltd.), and the fatty acid ethyl content is 18.0% by mass (of which 90% is unsaturated fatty acid ethyl) %), And a fractionated raw material having a free fatty acid content of 0.2% by mass was obtained.
  • ethyl oleate trade name: Ethyl Olate SP, manufactured by Inoue Fragrance Co., Ltd.
  • Example 2 845 g of distillation residue 1 is mixed with 155 g of distillate 1 obtained by thin-film distillation, and fractionation with a fatty acid ethyl content of 17.7% by mass (including unsaturated fatty acid ethyl 28% by mass) and free fatty acid 0.5% by weight The raw material was obtained. After complete dissolution at 50 ° C, with stirring, cooling at 27 ° C for 2.5 hours and then at 18 ° C for 4 hours, followed by pressing filtration (pressing pressure 30 kgf / cm 2 , Nisshin Oilio Group Co., Ltd.) Solid-liquid separation was performed using a pressure filter to obtain a solid fat part (453 g) and a liquid part (527 g).
  • Example 3 To 845 g of distillation residue 1, 48 g of distillate 1 obtained by thin film distillation and 107 g of ethyl stearate (trade name: ethyl stearate, manufactured by Inoue Fragrance Co., Ltd.) are mixed, and the fatty acid ethyl content is 17. A fractionated raw material of 8% by mass (including 11% by mass of unsaturated fatty acid ethyl) and 0.3% by weight of free fatty acid was obtained.
  • ethyl stearate trade name: ethyl stearate, manufactured by Inoue Fragrance Co., Ltd.
  • Example 4 To 958 g of distillation residue 1, 42 g of ethyl oleate (trade name: Ethyl Olate SP, manufactured by Inoue Fragrance Co., Ltd.) was mixed, and the fatty acid ethyl content was 7.0% by mass (of which unsaturated fatty acid ethyl was 71 Mass%), and a fractionated raw material having a free fatty acid content of 0.1% by weight was obtained.
  • ethyl oleate trade name: Ethyl Olate SP, manufactured by Inoue Fragrance Co., Ltd.
  • the obtained reaction product 2 (14500 g) was subjected to thin-film distillation, and fatty acid ethyl was removed from the reaction product at a distillation temperature of 140 ° C., and the triglyceride content was 91.8% by mass and the fatty acid ethyl content was 3.4% by mass. 5723 g of residue 2 was obtained. Using the obtained distillation residue 2, fractionation of [Example 5] and [Example 6] was performed. The distillate obtained by thin film distillation was designated as distillate 2. The results are summarized in Table 2.
  • Example 5 845 g of distillation residue 2 is mixed with 155 g of distillate 2 by thin film distillation, the fatty acid ethyl content is 17.2% by mass (of which 27% is unsaturated fatty acid ethyl), and the free fatty acid is 0.7% by weight.
  • a fractionated raw material was obtained. After complete dissolution at 50 ° C, with stirring, cooling at 27 ° C for 2.5 hours and then at 18 ° C for 4 hours, followed by pressing filtration (pressing pressure 30 kgf / cm 2 , Nisshin Oilio Group Co., Ltd.) Solid-liquid separation was performed using a pressure filter) to obtain a solid fat part (443 g) and a liquid part (537 g).
  • Example 6 845 g of distillation residue 2 is mixed with 130 g of distillate 2 obtained by thin-film distillation and 25 g of ethyl oleate (trade name: ethyl oleate SP, manufactured by Inoue Fragrance Co., Ltd.), and the fatty acid ethyl content is 17.6.
  • ethyl oleate SP manufactured by Inoue Fragrance Co., Ltd.
  • Hylinol safflower oil (trade name: safflower oil, manufactured by Nisshin Oillio Group Co., Ltd.) 1600 g, ethyl stearate (trade name: ethyl stearate, manufactured by Inoue Fragrance Co., Ltd.) 2400 g are mixed, Powdered lipase composition A was added in an amount of 0.3% by mass, and the reaction was stirred at 40 ° C. for 20 hours. The enzyme powder was removed by filtration to obtain 3929 g of the reaction product 3.
  • the obtained reaction product 3 (3900 g) was subjected to thin-film distillation, and fatty acid ethyl was removed from the reaction product at a distillation temperature of 140 ° C., and the triglyceride content was 79.3% by mass and the fatty acid ethyl content was 16.9% by mass. 1801 g of residue 3 was obtained. Using the obtained distillation residue 3, fractionation of [Example 7] was performed. The results are summarized in Table 3.
  • Example 7 To 985 g of distillation residue 3, 15 g of ethyl oleate (trade name: Ethyl Olate SP, manufactured by Inoue Fragrance Co., Ltd.) was mixed, and the fatty acid ethyl content was 18.1% by mass (of which unsaturated fatty acid ethyl was 34 Mass%), and a fractionated raw material of 0.3% by mass of free fatty acid was obtained. After complete dissolution at 50 ° C., while stirring, cool at 27 ° C.
  • Ethyl Olate SP manufactured by Inoue Fragrance Co., Ltd.
  • first pressure filtration pressure pressure 7 kgf / cm 2 , using Nisshin Oilio Group's self-made pressure filter
  • second press filtration press pressure 30 kgf / cm 2 , using Nisshin Oilio Group's self-made pressure filter
  • reaction product 4 (3900 g) was subjected to thin film distillation, fatty acid ethyl was removed from the reaction product at a distillation temperature of 140 ° C., and the diglyceride content was 72.0% by mass, and the fatty acid ethyl content was 24.3% by mass. 1983 g of residue 4 was obtained. The resulting distillation residue 4 was used to fractionate [Example 8]. The results are summarized in Table 3.
  • Example 8 1000 g of distillation residue 4 was used as a fractionation raw material.
  • Distillation residue 4 was a fractionated raw material having a fatty acid ethyl content of 24.3 mass% (of which unsaturated fatty acid ethyl was 66 mass%) and free fatty acid 0.3 mass%.
  • the mixture is cooled at 28 ° C. for 3 hours with stirring, and is subjected to squeeze filtration (first squeeze filtration: squeeze pressure 7 kgf / cm 2 , using Nisshin Oilio Group's own pressure filter) ) To obtain a solid part (297 g) and a liquid part (685 g).
  • the obtained liquid part (600 g) is slowly cooled to 20 ° C.
  • Example 6 Manufacture of chocolate
  • the solid fat part obtained in Example 6 was subjected to decolorization and deodorization purification according to a normal oil purification method to obtain hard butter.
  • a hard butter 7.5 parts of hard butter, 43.45 parts of sugar, 40.0 parts of cacao mass (55% oil), 1.0 part of cacao butter, 7.5 parts of palm oil melting point fraction, lecithin
  • a blend of 0.5 part and 0.05 part of a fragrance was used, and rolls, conching, tempering, and molding were carried out in accordance with a conventional method to produce a chocolate.
  • the prototype chocolate had good mold release and was excellent in flavor and melting in the mouth.
  • Example 8 The solid fat part obtained in Example 8 and the solid fat part obtained in Example 6 were subjected to decolorization and deodorization purification according to a normal purification method for fats and oils, and mixed fats and oils mixed at 6: 4 were obtained.
  • a shortening excellent in consistency was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Fats And Perfumes (AREA)
  • Edible Oils And Fats (AREA)

Abstract

 全トリグリセリド中に2つの飽和脂肪酸残基と1つの不飽和脂肪酸残基からなる2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)を20~60質量%含有する油脂を、不飽和脂肪酸低級アルキルエステルを10~100質量%含有する脂肪酸低級アルキルエステル1~50質量%の存在下で分別し、X2U型トリグリセリドに富んだ油脂を得る。この方法は、2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)に富んだ油脂のより効率的で工業化に適した分別製造方法である。

Description

油脂の製造方法
 本発明は、2つの飽和脂肪酸残基と1つの不飽和脂肪酸残基からなるトリグリセリド(X2U型トリグリセリド)に富んだ油脂の製造方法に関するものである。
 カカオ脂をはじめとするハードバターは、チョコレートを主とした製菓、製パンなどの食品および医薬品、化粧品などに広く用いられている。これらのハードバターは、1,3-ジパルミトイル-2-オレオイルグリセリン(POP)、2位にオレオイル基を有しパルミトイル基とステアロイル基を各1基づつ有するトリグリセリド(POS)及び1,3-ジステアロイル-2-オレオイルグリセリン(SOS)などの分子内に1つの不飽和結合を有する対称型の2飽和1不飽和型トリグリセリド類を主成分としている。これらは、チョコレート用としてはテンパー型油脂として知られているものである。又、チョコレートの硬度調整剤として優れる1,3-ジステアロイル-2-リノロイルグリセリン(SLS)などの分子内に2つの不飽和結合を有する対称型の2飽和1不飽和トリグリセリド類も知られている。
 一般的に、このようなトリグリセリドは、この成分を含む天然の油脂、例えばパーム油、シア脂、サル脂、イリッペ脂などの油脂またはその分画油として得ることができる。又、パーム油、シア脂、サル脂、イリッペ脂などの油脂の分画油としてではなくて、特定の油脂に1,3選択性リパーゼを作用させ、エステル交換反応を利用して製造する方法が提案されている(特許文献1~3)。
 また、1,2-ジパルミトイル-3-オレオイルグリセリン(PPO)や、1,2-ジステアロイル-3-オレオイルグリセリン(SSO)といった、非対称型の2飽和1不飽和トリグリセリド類もノーテンパー型油脂の原材料として製菓、製パン等の用途に適していることが知られている。このようなトリグリセリドについても、天然油脂の分画の他、特定の油脂に1,3選択性リパーゼを作用させ、エステル交換反応を利用して製造する方法が提案されている(特許文献4~5)
 上記いずれの方法も最終製品を得るのに分画操作を行なっているが、品質を向上させるためには溶剤分別が必要であったり、複雑な工程管理が必要であったりと、生産効率の面で、なお満足のゆくものではなく、2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)に富んだ油脂のより効率的で、より工業化に適した製造方法が望まれている。
特開昭55-71797号公報 特開昭62-155048号公報 WO2005/63952号公報 特開昭61-224934号公報 特開平10-25491号公報
 本発明は、2飽和1不飽和型トリグリセリド(X2U型トリグリセリド、又は、X2U型TG)に富んだ油脂の、より効率的で工業化に適した製造方法を提供することを目的とする。
 本発明は、2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)を特定量含有する油脂を、不飽和脂肪酸低級アルキルエステルを含有する脂肪酸低級アルキルエステルの存在下で分別することにより、上記課題を解決できるという知見に基づきなされたものである。
 すなわち、第1の発明は、全トリグリセリド中に2つの飽和脂肪酸残基と1つの不飽和脂肪酸残基からなる2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)を20~60質量%含有する油脂を、不飽和脂肪酸低級アルキルエステルを10~100質量%含有する脂肪酸低級アルキルエステル1~50質量%の存在下で分別することを特徴とするX2U型トリグリセリドに富んだ油脂の製造方法である。
 第2の発明は、第1の発明における脂肪酸低級アルキルエステルが不飽和脂肪酸低級アルキルエステルを30~100質量%含有する脂肪酸低級アルキルエステルである油脂の製造方法である。
 第3の発明は、第1~第2の発明において、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂が、油脂と脂肪酸低級アルキルエステルとの混合物を、1,3選択性リパーゼによりエステル交換した後、蒸留により脂肪酸低級アルキルエステルを50質量%以下に低減させた蒸留残渣由来である、油脂の製造方法である。
 第4の発明は、第1~第3の発明における油脂の製造方法により製造されたX2U型トリグリセリドに富んだ油脂を含む食品である。
 本発明により、2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)に富んだ油脂を製造するにあたり、揮発性が高く取り扱いが困難な有機溶剤を使用しなくても、エステル交換の原料に使用する脂肪酸低級アルキルエステルを使用することによって、より安全かつ効率的で工業化に適した製造方法を提供することができる。
 以下、本発明の2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)に富んだ油脂の製造方法ついて詳述する。
 本発明でいう2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)は、製造目的とされるトリグリセリドによって、対称型(XUX型)であっても非対称型(XXU型またはUXX型)であっても、また、それらの混合型であっても構わない。
 X2U型トリグリセリドを構成する脂肪酸残基については、食品産業上有用であるという面で、飽和脂肪酸残基Xは、炭素数が12~26であることが好ましく、16~22であることがより好ましい。特に、パルミトイル基、ステアロイル基、ベヘノイル基であることが好ましい。また、不飽和脂肪酸残基Uは、炭素数が16~26であることが好ましく、16~22であることがより好ましい。不飽和脂肪酸の不飽和度は1~6であることが好ましく、1~3であることがより好ましい。不飽和脂肪酸残基としては、特に、オレイル基、リノロイル基、リノレイル基であることが好ましい。
 本発明の製造方法においては、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂を分別原料に使用する必要がある。分別効率及び経済性を考慮すると、全トリグリセリド中のX2U型トリグリセリドは、30~60質量%であることがより好ましく、40~60質量%であることが最も好ましい。
 本発明の製造方法の分別原料に使用する、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂としては、トリグリセリド含量が85質量%以上である油脂が好ましく、90質量%以上である油脂がより好ましく、94質量%以上である油脂が最も好ましい。例えば、パーム油、シア脂、サル脂、イリッペ脂等を分別した油脂が使用できる。特には、油脂と脂肪酸低級アルキルエステルとの混合物に、1,3選択性リパーゼを作用させてエステル交換反応を行い、次いで蒸留により脂肪酸低級アルキルエステルの一部又は全部を蒸留した蒸留残渣由来であることが、製造効率上好ましい。
 なお、本発明で油脂とは、脂肪酸低級アルキルエステルとの混合物の場合、脂肪酸低級アルキルエステルを除いた部分とする。従って、上述のようなエステル交換後の蒸留残渣を使用する場合、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂は、該蒸留残渣中に残留した脂肪酸低級アルキルエステルを除いた部分が該当油脂となる。
 本発明の製造方法においては、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂は、不飽和脂肪酸低級アルキルエステルを10~100質量%含有する脂肪酸低級アルキルエステル1~50質量%の存在下において、冷却結晶化工程を経て分別される。
 すなわち、本発明の製造方法においては、不飽和脂肪酸低級アルキルエステルの含量が10~100質量%である脂肪酸低級アルキルエステル1~50質量%を含有し、脂肪酸低級アルキルエステルを除く油脂部分の全トリグリセリド中のX2U型トリグリセリド含量が20~60質量%である分別原料を、冷却結晶化工程を経て分別し、X2U型トリグリセリドに富んだ油脂を得る。分別は、脂肪酸低級アルキルエステル1~30質量%の存在下で行なわれるのが好ましく。4~25質量%の存在下で行なわれることがより好ましく、7~23質量%の存在下で行なわれることが最も好ましい。脂肪酸低級アルキルエステルが上記範囲であると、X2U型トリグリセリドに富んだ油脂が効率よく得られるので好ましい。
 分別原料に使用される不飽和脂肪酸低級アルキルエステルは特に限定されるものではないが、炭素数16から22の不飽和脂肪酸(好ましくは、オレイン酸、リノール酸、リノレン酸)の低級アルコールエステルが好ましく、特に、不飽和脂肪酸と炭素数1~6のアルコールとのエステルが好ましい。特に、メタノール、エタノール、イソプロピルアルコールが好ましく、このなかでも食用油脂の加工ということからエタノールが好ましい。
 不飽和脂肪酸低級アルキルエステル以外の任意成分である飽和脂肪酸低級アルキルエステルは特に限定されるものではないが、炭素数16から22の飽和脂肪酸(好ましくは、パルミチン酸、ステアリン酸、ベヘン酸)の低級アルコールエステルが好ましく、特に、飽和脂肪酸と炭素数1~6のアルコールとのエステルが好ましい。特に、メタノール、エタノール、イソプロピルアルコールが好ましく、このなかでも食用油脂の加工ということからエタノールが好ましい。
 脂肪酸低級アルキルエステル中の不飽和脂肪酸低級アルキルエステルは10~100質量%であり、20~100質量%であることが好ましく、30~100質量%であることがより好ましい。脂肪酸低級アルキルエステル中の不飽和脂肪酸低級アルキルエステルの含量が上記範囲にあると、分別における晶析温度を低く設定できるので、X2U型トリグリセリドに富んだ油脂が効率よく得られ好ましい。
 本発明の製造方法においてX2U型トリグリセリドに富んだ油脂は、最終的には、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂を、脂肪酸低級アルキルエステル存在下において、冷却結晶化工程を経て分別したステアリン部(固体脂部)に得ることができる。
 本発明の製造方法において用いる、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂の好ましい態様としては、例えば、2位にオレオイル基を50質量%以上有する油脂を脂肪酸低級アルキルエステル(遊離脂肪酸が0.01~10質量%含まれていても良い)とエステル交換反応を行い、次いで蒸留して得られた蒸留残渣(X2U型トリグリセリド中XOX型トリグリセリドを50質量%以上、好ましくは70質量%以上含有する。O:オレイン酸)であってもよい。XOX型トリグリセリドにおける飽和脂肪酸残基としては、炭素数16から22の飽和脂肪酸残基であるのが好ましく、さらにステアロイル基、パルミトイル基、ベヘノイル基であるのが好ましい。より具体的には、トリオレオイルグリセリン、シア脂低融点部分(例えば、ヨウ素価70~80)、ハイオレイックヒマワリ油、ハイオレイックローリノレン菜種油、ハイオレイック紅花油、パーム油、パーム分画油などの原料油脂に、脂肪酸低級アルキルエステルを加え、1,3選択性リパーゼ、例えば、リゾプス系リパーゼ、アスペルギルス系リパーゼ、ムコール系リパーゼ、パンクレアチックリパーゼ、米ヌカリパーゼなどを作用させて、エステル交換反応を行い、次いで蒸留し、未反応原料や副生するオレイン酸などの脂肪酸やその低級アルキルエステルを一部又は全部除いた蒸留残渣に得ることができる。
 ここで用いる脂肪酸低級アルキルエステルとしては、炭素数16から22の飽和脂肪酸(好ましくは、パルミチン酸、ステアリン酸、ベヘン酸)の低級アルコールエステルが好ましく、特に、炭素数1~6のアルコールとのエステルが好ましい。特に、メタノール、エタノール、イソプロピルアルコールが好ましく、このなかでも食用油脂の加工ということからエタノールが好ましい。
 2位にオレオイル基を50質量%以上有する油脂対脂肪酸低級アルキルエステルの使用比率(モル比)は、1/2以下であるのが好ましく、特に、1/2~1/30であるのが好ましい。
 本発明の製造方法において用いる、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂の好ましい態様の例としては、また、1位及び3位に飽和脂肪酸残基を、2位にリノロイル基を有するトリグリセリド(XLX型トリグリセリド、L:リノール酸)をX2U型トリグリセリド中50質量%以上、好ましくは70質量%以上含有する油脂であってもよい。XLX型トリグリセリドにおける飽和脂肪酸残基としては、炭素数16から22の飽和脂肪酸残基であるのが好ましく、さらにステアロイル基、パルミトイル基、ベヘノイル基であるのが好ましい。
 XLX型トリグリセリドを含有する油脂は、2位にリノロイル基を50質量%以上有する油脂、具体的には、トリリノロイルグリセリン、ハイリノールヒマワリ油、ハイリノールサフラワー油などを原料油脂に、XOX型トリグリセリドと同様に、炭素数16から22の飽和脂肪酸低級アルキルエステル(遊離脂肪酸が0.01~10質量%含まれていても良い)を加え、1,3選択性リパーゼを作用させて、エステル交換反応を行い、次いで脂肪酸低級アルキルエステルの一部又は全部を蒸留した蒸留残渣に得ることができる。
 本発明の製造方法において用いる、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂の好ましい態様の例としては、また、1位及び3位に飽和脂肪酸残基を、2位にリノレイル基を有するトリグリセリド(XLnX型トリグリセリド、Ln:リノレン酸)をX2U型トリグリセリド中50質量%以上、好ましくは70質量%以上含有する油脂であってもよい。XLnX型トリグリセリドにおける飽和脂肪酸残基としては、炭素数16から22の飽和脂肪酸残基であるのが好ましく、さらにステアロイル基、パルミトイル基、ベヘノイル基であるのが好ましい。
 XLnX型トリグリセリドを含有する油脂は、2位にリノレイル基を50質量%以上有する油脂、具体的には、トリリノレイルグリセリン、アマニ油、シソ油、エゴマ油などを原料油脂に、XOX型トリグリセリドと同様に、炭素数16から22の飽和脂肪酸低級アルキルエステル(遊離脂肪酸が0.01~10質量%含まれていても良い)を加え、1,3選択性リパーゼを作用させて、エステル交換反応を行い、次いで脂肪酸低級アルキルエステルの一部又は全部を蒸留した蒸留残渣に得ることができる。
 本発明の製造方法において用いる、全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂のさらに別の好ましい態様としては、1位及び2位または2位及び3位に飽和脂肪酸残基を、3位または1位に不飽和脂肪酸残基を有するトリグリセリド(XXU型及び/又はUXX型トリグリセリド)をX2U型トリグリセリド中50質量%以上、好ましくは70質量%以上含有する油脂であってもよい。XXU型及び/又はUXX型トリグリセリドにおける飽和脂肪酸残基としては、炭素数16から22の飽和脂肪酸残基であるのが好ましく、さらにステアロイル基、パルミトイル基、ベヘノイル基であるのが好ましい。XXU型及び/又はUXX型トリグリセリドにおける不飽和脂肪酸残基としては、炭素数16から22の不飽和脂肪酸残基であるのが好ましく、さらにオレイル基、リノロイル基、リノレイル基であるのが好ましい。
 XXU型及び/又はUXX型トリグリセリドを含有する油脂は、より具体的には、炭素数16以上の脂肪酸が80質量%以上である動植物油脂の極度硬化油に、オレイン酸低級アルキルエステル、リノール酸低級アルキルエステル及びリノレン酸低級アルキルエステルの中から選択される1種又は2種以上の脂肪酸低級アルキルエステル(遊離脂肪酸が0.01~10質量%含まれていても良い)を加え、XUX型トリグリセリドの調製と同様に、1,3選択性リパーゼを作用させて、エステル交換反応を行い、次いで脂肪酸低級アルキルエステルの一部又は全部を蒸留した蒸留残渣に得ることができる。
 1,3選択性リパーゼとしては、リゾプス属のリゾプス デレマー(Rhizopus delemar)及びリゾプス オリザエ(Rhizopus oryzae)が好ましい。
これらのリパーゼとしては、ロビン社の商品:ピカンターゼR8000や、天野エンザイム社の商品:リパーゼF-AP15等が挙げられるが、最も適したリパーゼとしては Rhizopus oryzae由来、天野エンザイム社の商品:リパーゼDF(Amano)15-K(リパーゼDともいう)が挙げられる。このものは粉末リパーゼである。なお、このリパーゼDF(Amano)15-Kについては従来はRhizopus delemar由来の表記であった。
 ここで、使用するリパーゼとしては、リパーゼの培地成分等を含有したリパーゼ含有水溶液を乾燥して得られたものでもよい。粉末リパーゼとしては、球状で、水分含量が10質量%以下であるものを用いるのが好ましい。特に、リパーゼ粉末の90質量%以上が粒径1~100μmであるのが好ましい。又、粉末リパーゼはpHが6~7.5に調整されてなるリパーゼ含有水溶液を噴霧乾燥して製造されるものが好ましい。
上記リパーゼを大豆粉末を用いて造粒し、粉末化した造粒粉末リパーゼ(粉末リパーゼともいう)を用いるのも好ましい。
 また、市販の固定化リパーゼも好適に使用できる。例えば、ノボザイムズ社製の商品名Lipozyme RM IM、Lipozyme TL IM等が挙げられる。
 エステル交換反応においては、油脂と脂肪酸低級アルキルエステル(遊離脂肪酸が0.01~10質量%含まれていても良い)とを含有する原料に、上記リパーゼを添加して、常法でエステル交換反応を行うことができる。この場合、原料100質量部当り、リパーゼを0.01~10質量部(好ましくは0.01~2質量部、より好ましくは0.1~1.5質量部)添加し、35~100℃の温度(好ましくは35~80℃、より好ましくは40~60℃)で、0.1~50時間(好ましくは0.5~30時間、より好ましくは1~20時間)エステル交換反応を行うのが好ましい。反応はバッチ式で行うのが好ましい。反応温度は反応基質である油脂が溶解する温度で酵素活性を有する温度であれば何度でもかまわない。最適な反応時間は、酵素添加量、反応温度などにより変化するので、適宜調整すれば良い。
 エステル交換反応後、蒸留して、未反応原料や副生する脂肪酸や、脂肪酸低級アルキルエステルを50質量%以下になるまで除いて、本発明で分別原料に用いるX2U型トリグリセリドを全トリグリセリド中に20~60質量%、好ましくは30~60質量%含有する油脂を得る。
 本発明では、エステル交換反応を行なう際に脂肪酸低級アルキルエステルをエステル交換の原料中に50質量%を超える量で使用し、蒸留を調整することにより、X2U型トリグリセリドを全トリグリセリド中に20~60質量%含有する油脂を含む蒸留残渣に脂肪酸低級アルキルエステルを残存させることにより、また更には別途に脂肪酸低級アルキルエステルを添加する等により、不飽和脂肪酸低級アルキルエステルの含量が10~100質量%である脂肪酸低級アルキルエステルが1~50質量%(好ましくは1~30質量%、より好ましくは4~25質量%、最も好ましくは7~23質量%)となる様に調整するか、または、蒸留により未反応原料(脂肪酸低級アルキルエステルを含む)や副生する脂肪酸やその低級アルキルエステルをできるだけ除き、ここに新たに不飽和脂肪酸低級アルキルエステルの含量が10~100質量%である脂肪酸低級アルキルエステルを、X2U型トリグリセリドを全トリグリセリド中に20~60質量%含有する油脂に、1~50質量%(好ましくは1~30質量%、より好ましくは4~25質量%、最も好ましくは7~23質量%)となるように添加してもよい。
 ここで新たに添加する脂肪酸低級アルキルエステルは特に限定されるものではないが、炭素数16から22の脂肪酸の低級アルコールエステルが好ましく、特に、不飽和飽和脂肪酸と炭素数1~6のアルコールとのエステルが好ましい。特に、メタノール、エタノール、イソプロピルアルコールが好ましく、このなかでも食用油脂の加工ということからエタノールが好ましい。
 本発明の製造方法においては、遊離脂肪酸が分別原料中に0.01~5質量%存在していても良い。遊離脂肪酸は0.01~3質量%であることが更に好ましく、0.01~1質量%であることが最も好ましい。遊離脂肪酸が上記範囲であると、X2U型トリグリセリドに富んだ油脂が効率よく得られるので好ましい。
 本発明の製造方法においては、また、脂肪酸低級アルキルエステルと遊離脂肪酸とは、質量ベースで、脂肪酸低級アルキルエステル/遊離脂肪酸≧10であることが好ましく、脂肪酸低級アルキルエステル/遊離脂肪酸≧20であることがより好ましい。脂肪酸低級アルキルエステル/遊離脂肪酸が上記範囲であると、X2U型トリグリセリド含量に富んだ油脂が効率よく得られるので好ましい。
 本発明では、このようにして調製した、不飽和脂肪酸低級アルキルエステルの含量が10~100質量%である脂肪酸低級アルキルエステル1~50質量%を含有し、脂肪酸低級アルキルエステルを除く油脂部分の全トリグリセリド中のX2U型トリグリセリド含量が20~60質量%である分別原料を、全体が均一に溶ける温度(例えば、50℃以上、好ましくは50~70℃)に加熱して溶解させ、溶解後直ちに又は所定の時間(例えば、0.5~2時間)その温度に保持した後、室温以下(例えば、25℃以下、好ましくは、15~25℃、更に好ましくは15~22℃、最も好ましくは15~19℃)に冷却して、X2U型トリグリセリドに富んだ固形分を晶析させ、これを固液分離することにより、X2U型トリグリセリドに富んだ油脂を製造するのが好ましい。また、X2U型トリグリセリドに富んだ固形部を晶析するために室温以下に冷却する前に、所定の温度(例えば26~35℃、好ましくは26~28℃)に所定の時間(例えば0.5~5時間、好ましくは1~3時間)保持することが好ましい。
 尚、X2O型トリグリセリドの場合は上記条件で、X2L型トリグリセリドまたはX2Ln型トリグリセリドについては、冷却温度を20℃以下、好ましくは、5~15℃とするのがよい。
 上記加熱溶解から冷却工程においては、攪拌及び/又は静置して行うことができる。
 上記の方法によると、特に、X2U型トリグリセリドに富んだ油脂の晶析時間を短縮でき、晶析して得られた固形分の安定性および収率が向上するとともに、非常にろ過性の良い結晶が得られるのでX2U型トリグリセリドの含量が向上するとの利点が得られる。また、脂肪酸低級アルキルエステルを含有させて攪拌して冷却する方法では、流動性がある晶析物が得られ、結晶もろ過性が良好である。そのため、固液分離が良好になり、X2U型トリグリセリドの含有量も向上させることができる利点が得られる。
 本発明では、また、不飽和脂肪酸低級アルキルエステルの含量が10~100質量%である脂肪酸低級アルキルエステル1~50質量%を含有し、脂肪酸低級アルキルエステルを除く油脂部分の全トリグリセリド中のX2U型トリグリセリド含量が20~60質量%である分別原料を、加熱溶解させ、冷却して、X2U型トリグリセリドに富んだ固形分を晶析させるが、X2U型トリグリセリドがほとんど結晶化していない温度(例えば、26~35℃、好ましくは26~28℃)でトリ飽和脂肪酸トリグリセリド(XXX型トリグリセリド、または、XXX型TG)やジ飽和脂肪酸ジグリセリド(XX型ジグリセリド、または、XX型DG)を結晶化させて、分別除去し、更に室温以下(例えば、25℃以下、好ましくは、15~25℃、更に好ましくは15~22℃、最も好ましくは15~19℃)に冷却、もしくは再度加熱(例えば、50℃以上、好ましくは50~70℃)した後に室温以下(例えば25℃以下、好ましくは、15~25℃、更に好ましくは15~22℃、最も好ましくは15~19℃)に冷却して、X2U型トリグリセリドに富んだ固形分を晶析させ、これを固液分離することにより、X2U型トリグリセリドに富んだ油脂を製造するのが好ましい。この場合、XXX型トリグリセリドやXX型ジグリセリドを分別除去した後に、X2U型トリグリセリドに富んだ固形部を晶析するために室温以下に冷却する前に、所定の温度(例えば26~35℃、好ましくは26~28℃)に所定の時間(例えば0.5~5時間、好ましくは1~3時間)保持することが好ましい。脂肪酸低級アルキルエステルを含有させて実施するこの方法により、X2U型トリグリセリドの含有量が高く、晶析して得られた固形分の安定性が向上するだけでなく、チョコレートの結晶性に悪影響のあるXXX型トリグリセリドやXX型ジグリセリドを減少させることができる利点が得られる。
 尚、X2O型トリグリセリドの場合は上記条件で、X2L型トリグリセリドまたはX2Ln型トリグリセリドについては、最終分別段階の冷却温度を20℃以下、好ましくは、5~15℃とするのがよい。
 固液分離を行う圧搾濾過は、例えば、パーム油等の分別濾過等で使用する圧搾ろ過機などを用い、晶析した結晶の固液分離は、室温以下の温度(好ましくは20~27℃)で行なうのがよい。本発明におけるX2U型トリグリセリドに富んだ油脂は、最終的には、冷却結晶化工程を経て分別したステアリン部(固体脂部)に得ることができる。最終的に得られる固体脂部は、脂肪酸低級アルキルエステルを分別原料に含まれる含量の50~60%程度含み(分別原料中に20質量%であれば、10~12質量%)、脂肪酸低級アルキルエステルを除いた油脂部分として、トリグリセリド含量が好ましくは85質量%であり(より好ましくは90質量%、最も好ましくは94質量%)、全トリグリセリド中のX2U型トリグリセリド含有量が65質量%以上、好ましくは70質量%以上、より好ましくは75質量%以上、最も好ましくは80質量%以上のものである。
 また、この後に行う任意工程である精製工程は、常法(例えば、水蒸気蒸留など)により行うことができ、最終製品にする前に脂肪酸低級アルキルエステルを除去することができる。このようにして、トリグリセリド含量が好ましくは85質量%であり(より好ましくは90質量%、最も好ましくは94質量%)、全トリグリセリド中にX2U型トリグリセリドの含有量が65質量%以上、好ましくは70質量%以上、より好ましくは75質量%以上、最も好ましくは80質量%以上の油脂を得ることができる。
 また、必要に応じて、脱酸、脱色、脱臭等の通常行う油脂の精製を行ってもよい。
 本発明の製造方法により得られるX2U型トリグリセリドに富んだ油脂は、特にカカオ脂の代用脂(ハードバター)として好適に用いることができる。チョコレート製品は、例えば、上記のハードバターを含む油脂成分および糖成分とを含む。上記ハードバターは油脂成分中に10質量%以上、好ましくは20質量%以上、さらに好ましくは30質量%以上含まれていることが好ましい。糖成分としては通常チョコレートに使用されるものであれば何でもかまわない。例えば、ショ糖、果糖、あるいはこれらの混合物をあげることができる。ソルビトールなどの糖アルコールを用いても良い。また、通常のチョコレート製品に含まれる任意の成分についても含ませることができる。これらの例としては、乳化剤(通常レシチン)、香料、脱脂粉乳、全脂粉乳などがあげられる。
 また、本発明の製造方法により得られるX2U型トリグリセリドに富んだ油脂は、例えば、大豆油、菜種油、ヒマワリ油、コーン油、綿実油、サフラワー油、ピーナッツ油、パーム油、カカオ脂、シア脂、ヤシ油、パーム核油、牛脂、豚脂、乳脂等、及び、これらに、分別、水素添加、エステル交換等の処理をした加工油の中から選ばれた1種類以上の油脂と混合し、マーガリン、ショートニング、フィリング、O/Wクリーム等の加工油脂製品の原材料油脂として好適に使用できる。
 以下、実施例において本発明をより詳細に説明するが、本発明はそれらに何等限定されるものではない。
分析法:
 トリグリセリドの分析は、JAOCS,vol70,11,1111-1114(1993)に準じたガスクロマトグラフィー法によって行なった。
 トリグリセリドの対称性は、J.High Resolut.Chromatogr.,18,105-107(1995)の方法に準拠した銀イオンカラム-HPLC法により測定した。
 脂肪酸低級アルキルエステルの分析は、ガスクロマトグラフィー法で行なった。
粉末リパーゼ組成物Aの調製:
 天野エンザイム社の商品:リパーゼDF(Amano)15-K(リパーゼDともいう)の酵素溶液(150000U/ml)に、予めオートクレーブ滅菌(121℃、15分)を行い、室温程度に冷やした脱臭全脂大豆粉末(脂肪含有量が23質量%、商品名:アルファプラスHS-600、日清コスモフーズ(株)社製)10%水溶液を攪拌しながら3倍量加え、0.5N NaOH溶液でpH7.8に調整後、噴霧乾燥(東京理科器械(株)社、SD-1000型)を行い、粉末リパーゼ組成物Aを得た。
(分別に供する蒸留残渣1の調製)
 ハイオレイックヒマワリ油(商品名:オレインリッチ、昭和産業(株)製)14000gに、ステアリン酸エチル(商品名:エチルステアレート、(株)井上香料製造所製)21000gを混合し、粉末リパーゼ組成物Aを0.3質量%添加し、40℃で20時間攪拌反応させた。ろ過処理により酵素粉末を除去し、反応物1を34379g得た。得られた反応物1(34300g)を薄膜蒸留にかけ、蒸留温度140℃にて反応物から脂肪酸エチルを除去し、トリグリセリド含量が93.2質量%、脂肪酸エチル含量が2.9質量%である蒸留残渣1を13721g得た。得られた蒸留残渣1を使用して〔実施例1〕~〔実施例4〕、〔比較例1〕及び〔参考例1〕の分別を行った。なお、薄膜蒸留時の留出物を留出物1とした。結果は表1、2に纏めた。
〔実施例1〕
 845gの蒸留残渣1に、155gのオレイン酸エチル(商品名:エチルオレートSP、(株)井上香料製造所製)を混合し、脂肪酸エチル含量が18.0質量%(うち不飽和脂肪酸エチル90質量%)、遊離脂肪酸0.2質量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(464g)及び液状部(515g)を得た。
〔実施例2〕
 845gの蒸留残渣1に、155gの薄膜蒸留による留出物1を混合し、脂肪酸エチル含量が17.7質量%(うち不飽和脂肪酸エチル28質量%)、遊離脂肪酸0.5重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い固体脂部(453g)及び液状部(527g)を得た。
〔実施例3〕
 845gの蒸留残渣1に、48gの薄膜蒸留による留出物1と107gのステアリン酸エチル(商品名:エチルステアレート、(株)井上香料製造所製)とを混合し、脂肪酸エチル含量が17.8質量%(うち不飽和脂肪酸エチル11質量%)、遊離脂肪酸0.3重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(431g)及び液状部(547g)を得た。
〔実施例4〕
 958gの蒸留残渣1に、42gのオレイン酸エチル(商品名:エチルオレートSP、(株)井上香料製造所製)を混合し、脂肪酸エチル含量が7.0質量%(うち不飽和脂肪酸エチルが71質量%)、遊離脂肪酸0.1重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(494g)及び液状部(482g)を得た。
〔比較例1〕
 845gの蒸留残渣1に、155gのステアリン酸エチル(商品名:エチルステアレート、(株)井上香料製造所製)を混合し、脂肪酸エチル含量が18.0質量%(うち不飽和脂肪酸エチルが3.5質量%)、遊離脂肪酸0.2重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却したところ、増粘が著しく、圧搾ろ過できなかった。
〔参考例1〕
 845gの蒸留残渣1に、155gのステアリン酸エチル(商品名:エチルステアレート、(株)井上香料製造所製)を混合し、脂肪酸エチル含量が18.0質量%(うち不飽和脂肪酸エチルが3.5質量%)、遊離脂肪酸0.2重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで20℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(401g)及び液状部(577g)を得た。
(分別に供する蒸留残渣2の調製)
 ハイオレイックヒマワリ油(商品名:オレインリッチ、昭和産業(株)製)6000gに、薄膜蒸留により回収した留出物を極度水素添加したステアリン酸エチル9000gを混合し、粉末リパーゼ組成物Aを0.3質量%添加し、40℃で20時間攪拌反応させた。ろ過処理により酵素粉末を除去し、反応物2を14700g得た。得られた反応物2(14500g)を薄膜蒸留にかけ、蒸留温度140℃にて反応物から脂肪酸エチルを除去し、トリグリセリド含量が91.8質量%、脂肪酸エチル含量が3.4質量%である蒸留残渣2を5723g得た。得られた蒸留残渣2を使用して〔実施例5〕及び〔実施例6〕の分別を行った。なお、薄膜蒸留による留出物を留出物2とした。結果は表2に纏めた。
〔実施例5〕
 845gの蒸留残渣2に、155gの薄膜蒸留による留出物2を混合し、脂肪酸エチル含量が17.2質量%(うち不飽和脂肪酸エチルが27質量%)、遊離脂肪酸0.7重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(443g)及び液状部(537g)を得た。
〔実施例6〕
 845gの蒸留残渣2に、130gの薄膜蒸留による留出物2と25gのオレイン酸エチル(商品名:エチルオレートSP、(株)井上香料製造所製)と混合し、脂肪酸エチル含量が17.6質量%(うち不飽和脂肪酸エチルが37質量%)、遊離脂肪酸0.6重量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて2.5時間、次いで18℃にて4時間冷却後、圧搾ろ過(圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(451g)及び液状部(525g)を得た。
(分別に供する蒸留残渣3の調製)
 ハイリノールサフラワー油(商品名:サフラワー油、日清オイリオグループ(株)製)1600gに、ステアリン酸エチル(商品名:エチルステアレート、(株)井上香料製造所製)2400gを混合し、粉末リパーゼ組成物Aを0.3質量%添加し、40℃で20時間攪拌反応させた。ろ過処理により酵素粉末を除去し、反応物3を3929g得た。得られた反応物3(3900g)を薄膜蒸留にかけ、蒸留温度140℃にて反応物から脂肪酸エチルを除去し、トリグリセリド含量が79.3質量%、脂肪酸エチル含量が16.9質量%である蒸留残渣3を1801g得た。得られた蒸留残渣3を使用して〔実施例7〕の分別を行った。結果は表3に纏めた。
〔実施例7〕
 985gの蒸留残渣3に、15gのオレイン酸エチル(商品名:エチルオレートSP、(株)井上香料製造所製)を混合し、脂肪酸エチル含量が18.1質量%(うち不飽和脂肪酸エチルが34質量%)、遊離脂肪酸0.3質量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、27℃にて3時間冷却し、圧搾ろ過(第1圧搾ろ過:圧搾圧力7kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(29g)及び液状部(941g)を得た。得られた液状部(600g)を攪拌を行いながら、ゆっくりと10℃まで冷却し、圧搾ろ過(第2圧搾ろ過:圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(284g)及び液状部(304g)を得た。
(分別に供する蒸留残渣4の調製)
 菜種極度硬化油(商品名:菜種極度硬化油、横関油脂(株)製)1600gに、オレイン酸エチル(商品名:エチルオレートSP、(株)井上香料製造所製)2400gを混合し、粉末リパーゼ組成物Aを0.3質量%添加し、40℃で20時間攪拌反応させた。ろ過処理により酵素粉末を除去し、反応物4を3921g得た。得られた反応物4(3900g)を薄膜蒸留にかけ、蒸留温度140℃にて反応物から脂肪酸エチルを除去し、トリグリセリド含量が72.0質量%、脂肪酸エチル含量が24.3質量%である蒸留残渣4を1983g得た。得られた蒸留残渣4を使用して〔実施例8〕の分別を行った。結果は表3に纏めた。
〔実施例8〕
 1000gの蒸留残渣4を分別原料とした。蒸留残渣4は、脂肪酸エチル含量が24.3質量%(うち不飽和脂肪酸エチルが66質量%)、遊離脂肪酸0.3質量%である分別原料を得た。50℃にて完全溶解後、攪拌を行いながら、28℃にて3時間冷却し、圧搾ろ過(第1圧搾ろ過:圧搾圧力7kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固形部(297g)及び液状部(685g)を得た。得られた液状部(600g)を攪拌を行いながら、ゆっくりと20℃まで冷却し、圧搾ろ過(第2圧搾ろ過:圧搾圧力30kgf/cm2、日清オイリオグループ(株)自作加圧ろ過機使用)にて固液分離を行い、固体脂部(283g)及び液状部(301g)を得た。
Figure JPOXMLDOC01-appb-T000001
*;トリグリセリド中におけるX2U型トリグリセリドの含量
**、***;分別原料中における含量
****;固体脂部/分別原料×100
Figure JPOXMLDOC01-appb-T000002
*;トリグリセリド中におけるX2U型トリグリセリドの含量
**、***;分別原料中における含量
****;固体脂部/分別原料×100
Figure JPOXMLDOC01-appb-T000003
*;トリグリセリド中におけるX2U型トリグリセリドの含量
**、***;分別原料中における含量
****;固体脂部/分別中間原料×100
(チョコレートの製造)
 実施例6で得られた固体脂部を、油脂の通常の精製方法に従って脱色、脱臭の精製を行い、ハードバターを得た。このハードバターを用いて、ハードバター7.5部、砂糖43.45部、カカオマス(油分55%)40.0部、カカオバター1.0部、パーム油中融点画分7.5部、レシチン0.5部、香料0.05部からなる配合で、常法に従い、ロール掛け、コンチング、テンパリング、型入れを行い、チョコレートを試作した。試作したチョコレートは型離れも良く、風味・口溶けに優れたものであった。
(ショートニングの製造)
 実施例8で得られた固体脂部と実施例6で得られた固体脂部を、油脂の通常の精製方法に従って脱色、脱臭の精製を行い、6:4で混合した混合油脂を得た。この混合油脂50部、菜種油47部及びパーム極度硬化油3部とを混合し、急冷練り合わせしたところ、ちょう度に優れたショートニングが得られた。

Claims (11)

  1.  全トリグリセリド中に2つの飽和脂肪酸残基と1つの不飽和脂肪酸残基からなる2飽和1不飽和型トリグリセリド(X2U型トリグリセリド)を20~60質量%含有する油脂を、不飽和脂肪酸低級アルキルエステルを10~100質量%含有する脂肪酸低級アルキルエステル1~50質量%の存在下で分別することを特徴とするX2U型トリグリセリドに富んだ油脂の製造方法。
  2.  脂肪酸低級アルキルエステルが不飽和脂肪酸低級アルキルエステルを30~100質量%含有する脂肪酸低級アルキルエステルであることを特徴とする請求項1記載の油脂の製造方法。
  3.  全トリグリセリド中にX2U型トリグリセリドを20~60質量%含有する油脂が、油脂と脂肪酸低級アルキルエステルとの混合物を、1,3選択性リパーゼによりエステル交換した後、蒸留により脂肪酸低級アルキルエステルを50質量%以下に低減させた蒸留残渣由来であることを特徴とする請求項1又は2に記載の油脂の製造方法。
  4.  分別を、2飽和1不飽和型トリグリセリドを含有する油脂と脂肪酸低級アルキルエステルの全体が均一に溶ける温度に加熱して溶解させ、溶解後直ちに又は所定の時間その温度に保持した後、室温以下に冷却して、X2U型トリグリセリドに富んだ固形分を晶析させ、これを固液分離することにより行う請求項1~3のいずれか1項記載の油脂の製造方法。
  5.  分別を、2飽和1不飽和型トリグリセリドを含有する油脂と脂肪酸低級アルキルエステルの全体が均一に溶ける温度に加熱して溶解させ、冷却して、X2U型トリグリセリドに富んだ固形分を晶析させるが、X2U型トリグリセリドがほとんど結晶化していない温度でトリ飽和脂肪酸トリグリセリドやジ飽和脂肪酸ジグリセリドを結晶化させて、分別除去し、更に室温以下に冷却して、X2U型トリグリセリドに富んだ固形分を晶析させ、これを固液分離する請求項1~3のいずれか1項記載の油脂の製造方法。
  6.  室温以下が25℃以下である請求項4又は5記載の油脂の製造方法。
  7.  室温以下が15~25℃である請求項4又は5記載の油脂の製造方法。
  8.  所定の時間が0.5~2時間である請求項4記載の油脂の製造方法。
  9.  X2U型トリグリセリドに富んだ固形分を晶析させるが、X2U型トリグリセリドがほとんど結晶化していない温度が、26~35℃である請求項5記載の油脂の製造方法。
  10.  固液分離を圧搾濾過により行う請求項4~9のいずれか1項記載の方法。
  11.  請求項1~10の何れか1項に記載の製造方法により製造されたX2U型トリグリセリドに富んだ油脂を含む食品。
PCT/JP2010/053787 2009-03-06 2010-03-08 油脂の製造方法 WO2010101288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/254,974 US20120009321A1 (en) 2009-03-06 2010-03-08 Method for producing fats and oils
EP10748879.3A EP2404985A4 (en) 2009-03-06 2010-03-08 PROCESS FOR PRODUCING LIPID
CN201080019963.6A CN102421884B (zh) 2009-03-06 2010-03-08 油脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-053997 2009-03-06
JP2009053997A JP5557458B2 (ja) 2009-03-06 2009-03-06 油脂の製造方法

Publications (1)

Publication Number Publication Date
WO2010101288A1 true WO2010101288A1 (ja) 2010-09-10

Family

ID=42709830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053787 WO2010101288A1 (ja) 2009-03-06 2010-03-08 油脂の製造方法

Country Status (6)

Country Link
US (1) US20120009321A1 (ja)
EP (1) EP2404985A4 (ja)
JP (1) JP5557458B2 (ja)
CN (1) CN102421884B (ja)
MY (1) MY156261A (ja)
WO (1) WO2010101288A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158909A1 (ja) * 2010-06-18 2011-12-22 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314682B1 (ko) * 2010-04-22 2013-10-07 씨제이제일제당 (주) 카카오 버터 유사 하드버터의 제조 방법
EP2561765A4 (en) * 2010-04-22 2017-05-10 CJ CheilJedang Corporation Dry fractionation method for a transesterified oil and fat composition
WO2012169457A1 (ja) * 2011-06-06 2012-12-13 日清オイリオグループ株式会社 油脂の分別方法
JP5178888B2 (ja) * 2011-08-02 2013-04-10 日清オイリオグループ株式会社 エステル交換油の製造方法
WO2014037008A1 (en) * 2012-09-07 2014-03-13 Aarhuskarlshamn Ab Process for separation of a processed vegetable fat
CN104171029B (zh) * 2013-05-21 2020-11-10 丰益(上海)生物技术研发中心有限公司 一种降低煎炸油极性化合物生成的油脂组合物
JP5584351B1 (ja) * 2013-12-27 2014-09-03 ミヨシ油脂株式会社 可塑性油脂組成物及び可塑性油脂組成物を用いた食品
WO2017191821A1 (ja) * 2016-05-02 2017-11-09 日清ファルマ株式会社 高度不飽和脂肪酸含有組成物の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184805A (ja) * 1974-11-22 1976-07-24 Eichi Eru Esu Ltd Indasutoriar
JPH09103244A (ja) * 1995-10-12 1997-04-22 Fuji Oil Co Ltd ショートニングおよびその利用
WO2004029185A1 (ja) * 2002-09-30 2004-04-08 Fuji Oil Company, Limited 油脂の乾式分別方法
WO2009031680A1 (ja) * 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. 1,3-ジ飽和-2-不飽和トリグリセリドの分別方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834114B2 (ja) * 1975-04-17 1983-07-25 フジセイユ カブシキガイシヤ カカオバタ−ダイヨウシノセイゾウホウ
JPS5916593B2 (ja) * 1976-05-07 1984-04-16 鐘淵化学工業株式会社 油脂の分別結晶法
DE2747765B2 (de) * 1977-10-25 1979-11-15 Walter Rau Lebensmittelwerke, 4517 Hilter Verfahren zur Gewinnung eines Fettes mit einem Gehalt von 45 bis 80 Prozent 13-Di-palmitoyl-2-oleoyl-glycerin
JPS58198423A (ja) * 1982-05-12 1983-11-18 Nippon Oil & Fats Co Ltd 油脂の分別法
GB2236537A (en) * 1989-09-13 1991-04-10 Unilever Plc Transesterification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184805A (ja) * 1974-11-22 1976-07-24 Eichi Eru Esu Ltd Indasutoriar
JPH09103244A (ja) * 1995-10-12 1997-04-22 Fuji Oil Co Ltd ショートニングおよびその利用
WO2004029185A1 (ja) * 2002-09-30 2004-04-08 Fuji Oil Company, Limited 油脂の乾式分別方法
WO2009031680A1 (ja) * 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. 1,3-ジ飽和-2-不飽和トリグリセリドの分別方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158909A1 (ja) * 2010-06-18 2011-12-22 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物
JP4988070B2 (ja) * 2010-06-18 2012-08-01 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物
JPWO2011158909A1 (ja) * 2010-06-18 2013-08-19 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物

Also Published As

Publication number Publication date
US20120009321A1 (en) 2012-01-12
JP5557458B2 (ja) 2014-07-23
CN102421884A (zh) 2012-04-18
EP2404985A1 (en) 2012-01-11
EP2404985A4 (en) 2014-09-03
CN102421884B (zh) 2014-03-05
MY156261A (en) 2016-01-29
JP2010209153A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5557457B2 (ja) 油脂の製造方法
JP5557458B2 (ja) 油脂の製造方法
JP4352103B2 (ja) 1,3−ジ飽和−2−不飽和トリグリセリドの分別方法
EP1928990B1 (en) Process for producing dioleyl palmitoyl glyceride
JP5186505B2 (ja) ハードバターの製造方法
JP6163530B2 (ja) ココアバターと類似のハードバターの製造方法
JP2013014749A (ja) 油脂の分別方法
EP3139770B1 (en) Fatty acid composition, method for the production thereof and use thereof
JP2013507117A (ja) チョコレート及び製菓用の油脂組成物
EP2251428B1 (en) Process for making a triglyceride composition
JP2013507118A (ja) 酵素的エステル交換反応によるチョコレート、及び製菓用油脂の製造方法
CN111280281B (zh) 油脂组合物及其制备方法
CN110996672A (zh) 油脂组合物及包含所述油脂组合物的油性食品
EP2892987B1 (en) Process for separation of a processed vegetable fat
JP2010081835A (ja) ハードバターの製造法
EP3307074B1 (en) Improved edible fat
CN113115830B (zh) 用于巧克力的油脂组合物
JP2010081834A (ja) ハードバター組成物の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019963.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13254974

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010748879

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010748879

Country of ref document: EP