WO2010098426A1 - 長残光蛍光体セラミックスとその製造方法 - Google Patents

長残光蛍光体セラミックスとその製造方法 Download PDF

Info

Publication number
WO2010098426A1
WO2010098426A1 PCT/JP2010/053037 JP2010053037W WO2010098426A1 WO 2010098426 A1 WO2010098426 A1 WO 2010098426A1 JP 2010053037 W JP2010053037 W JP 2010053037W WO 2010098426 A1 WO2010098426 A1 WO 2010098426A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
long afterglow
less
compound
afterglow
Prior art date
Application number
PCT/JP2010/053037
Other languages
English (en)
French (fr)
Inventor
裕司 木村
康 高井
博文 川添
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2011501657A priority Critical patent/JP5300968B2/ja
Priority to CN201080009604.2A priority patent/CN102333842B/zh
Priority to US13/147,933 priority patent/US9090827B2/en
Publication of WO2010098426A1 publication Critical patent/WO2010098426A1/ja
Priority to US14/674,350 priority patent/US20150203750A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/01Recovery of luminescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to an inexpensive method for producing a long afterglow phosphor ceramic used for evacuation route display and the like, and a long afterglow phosphor sintered body having a thin body color.
  • MAl 2 O 4 : Eu, RE type long persistence phosphors use expensive rare earth element europium as a raw material, and in order to obtain a phosphor having a uniform composition, expensive high-purity fine particle type aluminum oxide and alkali Since it was necessary to use earth carbonates, rare earth oxides, etc., raw material costs were high, and it was difficult to make inexpensive products. In addition, since the conventional product has a yellow body color, the range of application is limited in design.
  • An object of the present invention is to provide a method for producing white MAl 2 O 4 : Eu, RE type long afterglow phosphor ceramics, which can reduce raw material costs in view of the above-mentioned present situation.
  • BAM phosphors used as blue (or green) phosphors such as fluorescent lamps, plasma televisions, and liquid crystal backlights.
  • a long afterglow phosphor can be manufactured by mixing and firing an alkaline earth compound, an aluminum compound, and a rare earth compound using an earthen aluminate base and containing a sufficient amount of europium.
  • the mechanism of whitening is not yet clear, and this mechanism does not limit the technical scope of the present invention, but it uses long-afterglow fluorescence because it uses Eu raw material that is already uniformly dispersed in BAM. It is estimated that there is no uneven distribution of Eu in the body.
  • a compound containing only divalent Eu, such as EuCO 3 often has a yellow body color. If the Eu component is segregated, it can be considered that the body color can be caused.
  • the gist of the present invention is a method for producing a long afterglow phosphor ceramic at low cost by mixing and firing a BAM phosphor, an alkaline earth compound, an aluminum compound and a rare earth compound, and a white long residue obtained by this method.
  • Photophosphor ceramics are a method for producing a long afterglow phosphor ceramic at low cost by mixing and firing a BAM phosphor, an alkaline earth compound, an aluminum compound and a rare earth compound, and a white long residue obtained by this method.
  • long afterglow fluorescence can be achieved at a very low cost without using an expensive europium raw material by mixing and firing a BAM phosphor, an alkaline earth compound, an aluminum compound, and a rare earth compound contained in the phosphor waste. It is expected that the application area will be widened by the synergistic effect that the body ceramic can be manufactured and the long afterglow phosphor ceramic obtained is white, and its utility value is extremely high.
  • the alkaline earth aluminate [BAM] phosphor used as a raw material in the present invention has a composition formula of p (M1 1-x Eu x ) O. (M2 1-y Mn y ) O.qAl 2 O 3
  • M1 represents at least one element of Ba, Sr, and Ca, preferably Ba
  • M2 represents Mg
  • p, q, x, and y are 0.8 ⁇ p ⁇ 1,. 2, 4.5 ⁇ q ⁇ 8.5, 0.05 ⁇ x ⁇ 0.3 and 0 ⁇ y ⁇ 0.4.
  • Each elemental composition of the alkaline earth aluminate phosphor is a value obtained by fluorescent X-ray analysis [XRF] measurement.
  • the alkaline earth compound referred to in the present invention is a compound that becomes an oxide by a firing step described later among compounds of one or more mixed elements selected from the group consisting of Mg, Ca, Sr and Ba, or It is an oxide of one or more mixed elements.
  • the rare earth compound referred to in the present invention is one or more mixed elements selected from La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc. Among these compounds, a compound that becomes an oxide by a firing step described later, or an oxide of one or more mixed elements itself.
  • the aluminum compound referred to in the present invention is a compound that becomes an oxide by a firing step described later, or an oxide itself.
  • the BAM phosphor used in the present invention is a recycled waste of a BAM phosphor used as a blue or green phosphor in a fluorescent lamp, a plasma television, or a liquid crystal backlight, a waste during a phosphor coating / cleaning process, or a characteristic standard.
  • a detached product or the like can be suitably used.
  • the origin of the BAM phosphor used in the present invention is often mixed waste with other phosphors such as Y 2 O 3 : Eu (red), LaPO 4 : CeTb (green), but acid decomposition, etc.
  • phosphors other than BAM are dissolved, and a recycling process for each element has already been established.
  • a method for recovering BAM phosphors having extremely low solubility has been proposed in Japanese Patent Application Laid-Open No. 2004-262978, etc.
  • the luminance characteristics of the phosphors during the recovery process are greatly deteriorated, and their practical application has progressed. At present, it is discarded as a residue without being reused. Therefore, it can be said that the BAM phosphor residue separated and recovered from the phosphor recycling waste is a substantially zero-cost raw material.
  • the manufacturing process of the present invention includes a raw material mixing process and a firing process thereof.
  • powder mixing using a ball mill or the like of a BAM phosphor, an alkaline earth compound, an aluminum compound, and a rare earth compound can be selected.
  • the raw material powder used for the above powder mixing has an average particle diameter in the range of 0.3 to 50 ⁇ m, which can be measured by an FRA type measuring instrument (manufactured by Microtrac Co., Ltd.) based on the laser diffraction scattering method. It is desirable to use one.
  • the particles are strongly agglomerated and do not uniformly disperse in the mixing process, which may result in a phosphor having a low afterglow characteristic.
  • the phosphor has a low afterglow characteristic.
  • the alkaline earth compound and the rare earth compound may be any compound that can be converted into an oxide by a firing process described later.
  • carbonates, oxides, hydroxides, acetates, and the like can be used.
  • As an aluminum compound what is necessary is just a compound which becomes an oxide by the baking process mentioned later, For example, an oxide, a hydroxide, acetate etc. can be used.
  • the addition amounts of the alkaline earth compound and the aluminum compound are preferably mixed so that the final composition is MAl 2 O 4 (that is, the molar ratio of the total alkaline earth metal element to aluminum is 1: 2. Such addition amount). However, afterglow is observed even if the composition is shifted to some extent.
  • the addition amount of the alkaline earth compound, aluminum compound and rare earth compound is, for example, from 3 to 35 for the alkaline earth compound (expressed in terms of the number of moles of each element) with respect to 1 mol of the BAM phosphor (the composition formula). Mole, aluminum compound 0 to 65 mol, and rare earth compound 0 to 1 mol are mixed at a ratio of MAl 2 O 4 : Eu, RE, (Mn).
  • the reaction proceeds easily when a small amount of a compound that becomes boron oxide, such as boric acid or boron oxide, is added as a flux in the firing step described below (for example, 10 mol% or less of the total amount of alkaline earth elements). Optical characteristics are improved.
  • a compound that becomes boron oxide such as boric acid or boron oxide
  • the firing step is performed in a reducing atmosphere (for example, in a mixed gas atmosphere of nitrogen and hydrogen) or in an inert gas atmosphere (for example, in a nitrogen or argon atmosphere) (1000 to 1500 ° C.).
  • a reducing atmosphere for example, in a mixed gas atmosphere of nitrogen and hydrogen
  • an inert gas atmosphere for example, in a nitrogen or argon atmosphere
  • a long afterglow phosphor ceramic in the method for producing a long afterglow phosphor ceramic according to the present invention, it can be pulverized after the firing step to form particles having an average particle diameter of 1 ⁇ m to 1000 ⁇ m, or can be formed into a desired shape after mixing the raw materials and then fired. Thus, it can be obtained in the state of a sintered body of a long afterglow phosphor.
  • the long afterglow phosphor of the present invention thus obtained has a white appearance, whereas the long afterglow phosphor produced by a conventional method using no BAM raw material has a yellow body color. Indicates.
  • M (1-r-t) Al 2 O 4 Eu r, RE s, Mn t (1)
  • M represents at least one element selected from the group consisting of Ba, Sr, Mg and Ca
  • RE represents at least one rare earth element other than Eu
  • r is 0.005 or more and 0.00.
  • M (1-r-t) Al 2 O 4 Eu r, Dy s, Mn t (2)
  • M represents at least one element selected from the group consisting of Ba, Sr, Mg and Ca, r is a value of 0.005 or more and 0.05 or less, and s is 0. 005 or more and 0.05 or less, t is 0 or more than 0.08 value), in particular M (1-r) Al 2 O 4:.
  • the afterglow characteristics of the phosphorescent phosphor of the present invention are as follows.
  • the sample was irradiated with 2400 Lx D65 standard light for 10 minutes, and the afterglow brightness 60 minutes after blocking the excitation light was measured with a luminance meter (LS-110 model manufactured by Konica Minolta). ) And evaluated by a comparative numerical value when the luminance of commercially available ZnS: Cu afterglow phosphor powder (product number: GSS, manufactured by Nemoto Special Chemical Co., Ltd.) is 1.0.
  • the whiteness of the present invention is defined by the CIE 1976 L * a * b * color system defined by the CIE (International Lighting Commission) in 1976.
  • the L * a * b * color system was measured using a color difference meter (CR200 model manufactured by Minolta). Both afterglow luminance and whiteness were measured after pressing 5 g of a powder sample with a pressure of 100 kg / cm 2 using a 30 mm ⁇ mold. The sintered body obtained by press-molding and sintering the raw material mixed powder was measured as it was.
  • Example 1 14.2 g (0.02 mol) of blue BAM phosphor (Ba 0.9 MgAl 10 O 17 : Eu 0.1 ) ⁇ (according to XRF fluorescence X-ray analysis) with an average particle diameter of 7.5 ⁇ m recovered from the waste lamp Strontium carbonate (average particle size 2.2 ⁇ m) 23.9 g (0.16 mol), aluminum oxide (average particle size 3.5 ⁇ m) 10.3 g (0.1 mol) and dysprosium oxide (average particle size 7.3 ⁇ m) ) 0.94 g (0.0025 mol) and boric acid (200 mesh under) 1 g were added, mixed in a ball mill, fired in an alumina crucible at 1300 ° C.
  • Example 2 In the same manner as in Example 1, a product with a varied composition was obtained. Details of the raw material composition are shown in Table 1, and composition and color evaluation results are shown in Table 2.
  • Green BAM phosphor (Ba 0.85 Mg 0.7 Al 10 O 17 : Eu 0.15 , Mn 0.3 ) with an average particle size of 8.1 ⁇ m recovered from the waste lamp ⁇ (by XRF X-ray fluorescence analysis) 14.5 g (0.02 mol) of strontium carbonate 24.0 g (0.16 mol), aluminum oxide 10.4 g (0.1 mol), dysprosium oxide 0.95 g (0.13 mol) and boric acid 1 g
  • 5 g of the product was press-molded at a pressure of 100 kg / cm 2 using a 30 mm ⁇ mold, and it was placed in an alumina crucible at 1300 ° C.
  • the composition of the obtained long afterglow phosphor is Sr 0.800 Ba 0.085 Mg 0.070 Al 2 O 4 : Eu 0.015 , Mn 0.030 , Dy 0.025 , and the afterglow luminance is It was as high as 31.0.
  • Example 7 14.2 g (0.02 mol) of blue BAM phosphor (Ba 0.9 MgAl 10 O 17 : Eu 0.1 ) recovered from the waste lamp and 16.2 g (0 ⁇ m) of calcium carbonate (average particle size) .162 mol), aluminum oxide 10.3 g (0.1 mol), lanthanum oxide (average particle size 6.6 ⁇ m) 0.33 g (0.001 mol) and neodymium oxide (average particle size 7.4 ⁇ m) 0.34 g (0.001 mol) and 1 g of boric acid were added and mixed in a ball mill and fired in an alumina crucible at 1300 ° C.
  • blue BAM phosphor Ba 0.9 MgAl 10 O 17 : Eu 0.1
  • Comparative Example 2 In the same manner as in Comparative Example 1, a composition having a varied composition was obtained. Details of the raw material composition are shown in Table 1, and composition and color evaluation results are shown in Table 2.
  • Example 1 and Comparative Example 1 have the same composition, and despite the addition of an aluminum compound, the long remaining of Example 1 using a BAM phosphor as a raw material. It was found that the photophosphor had higher whiteness and white appearance. Moreover, even if Example 5 and Comparative Example 3 were compared, it was found that the sintered body had the same composition, but a difference in whiteness appeared. The difference in whiteness that appears between Example 5 and Comparative Example 3 that are common in that the Eu ratio is 0.005 or more is the same as Example 3 that is common in that the Eu ratio is less than 0.005. It turned out that it becomes more remarkable compared with the difference of the whiteness which appears in the comparative example 2.
  • Example 7 From Example 7, it was found that even when two kinds of rare earth compounds were used, a long afterglow phosphor having a white appearance and higher whiteness was obtained. From Example 8, it was found that a long afterglow phosphor with high whiteness can be obtained even when a commercially available BAM phosphor is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 原材料コストの低減が可能なMAl:Eu,RE型長残光蛍光体セラミックスの製造方法を提供する。また、黄色のボディーカラーを持たない長残光蛍光体の焼結体を提供する。 BAM(アルカリ土類アルミン酸塩)蛍光体とアルカリ土類化合物とアルミニウム化合物と希土類化合物を混合して焼成することを特徴とするMAl:Eu,RE型長残光蛍光体セラミックス(Mはアルカリ土類元素,REはユーロピウムを除く希土類元素)の製造方法、及び、白色のMAl:Eu,RE型長残光蛍光体。

Description

長残光蛍光体セラミックスとその製造方法
 本発明は、避難経路表示等で使用される長残光蛍光体セラミックスの安価な製造方法、および、これによって得られるボディーカラーが薄い長残光性蛍光体の焼結体に関するものである。
 避難経路表示等で使用される残光蛍光体は、1993年に根本特殊化学株式会社によってMAl:Eu,RE型長残光蛍光体(Mはアルカリ土類元素、REはEuを除く希土類元素)が発明(例えば、特許文献1を参照。)されて以来、適用箇所が広がり需要が増加しつつある。しかしながら、高価な材料を使い、製造コストも高めであることから、製品価格が高く、普及は未だ充分とは言えないのが現状である。更に、該蛍光体は黄色系のボディーカラーを持つので、白地が必要とされる標識類などには適用し難いという問題点を抱えている。
特許第2543825号公報
 MAl:Eu,RE型長残光性蛍光体は原料として高価な希土類元素ユーロピウムを使用する上、均一な組成の蛍光体を得るために、高価な高純度微粒子タイプの酸化アルミニウム、アルカリ土類炭酸塩、希土類酸化物等をそれぞれ使用する必要があり、原材料コストが高く、安価な製品を作ることは困難であった。また、従来製品は黄色系のボディーカラーを持つので、デザイン的に用途範囲が限られていた。
 本発明の目的は、上記現状に鑑み、原材料コストの低減が可能で、且つ、白色のMAl:Eu,RE型長残光蛍光体セラミックスの製造方法を提供する。
 本発明者等は上記問題を解決するために、蛍光ランプやプラズマテレビ、液晶バックライト等の青色(若しくは緑色)蛍光体として使用されるBAM蛍光体のリサイクル廃棄物が、高アルミナ含有率のアルカリ土類アルミネート母体で且つユーロピウムを充分な量含んでいることを利用し、これにアルカリ土類化合物とアルミニウム化合物と希土類化合物を混合して焼成することによって長残光蛍光体を製造でき、しかも、得られた長残光蛍光体のボディーカラーが白色であることを発見し、本発明に至った。白色になる機構は未だ明らかではなく、またかかる機構が本発明の技術的範囲を限定するものではないが、BAM中に既に均一に分散された状態のEu原料を使用するので、長残光蛍光体中においてもEuの偏在が無いことが原因と推測される。EuCOなど、2価Eu単独の化合物は、黄色系のボディーカラーを持つことが多く、Eu成分が偏析していると、同ボディーカラーの原因になりうると考えられる。
 本発明の要旨は、BAM蛍光体とアルカリ土類化合物とアルミニウム化合物と希土類化合物を混合,焼成することによって安価に長残光蛍光体セラミックスを製造する方法とこの方法によって得られる、白色の長残光蛍光体セラミックスである。
 本発明によれば、蛍光体廃棄物中に含まれるBAM蛍光体とアルカリ土類化合物とアルミニウム化合物と希土類化合物を混合焼成することによって、高価なユーロピウム原料を使うことなく極めて安価に長残光蛍光体セラミックスを製造することができ、しかも得られる長残光蛍光体セラミックスが白色であるという相乗効果により適用箇所が広がることが予想され、その利用価値は極めて高い。
 以下、本発明を詳細に説明する。
<原料の組成>
 本発明で原料となるアルカリ土類アルミン酸塩[BAM]蛍光体とは、組成式が、p(M11-xEu)O・(M21-yMn)O・qAl
で表されるアルカリ土類アルミン酸塩蛍光体である。
(ただし、M1はBa,SrおよびCaの中の少なくとも1種の元素を表し、好ましくはBaであり、M2はMgを表し、p,q,xおよびyはそれぞれ0.8≦p≦1.2、4.5≦q≦8.5、0.05≦x≦0.3および0≦y≦0.4 を満たす数を表す。)
 上記アルカリ土類アルミン酸塩蛍光体の各元素組成は、蛍光X線分析[XRF]測定によって得られる値である。
 本発明で言うアルカリ土類化合物とは、Mg,Ca,Sr及びBaからなる群より選ばれる1種もしくは2種以上の混合元素の化合物のうち後述する焼成工程により酸化物となる化合物、または、1種もしくは2種以上の混合元素の酸化物そのものである。
 本発明でいう希土類化合物とは、La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,Scから選ばれる1種もしくは2種以上の混合元素の化合物のうち、後述する焼成工程により酸化物となる化合物、または、1種もしくは2種以上の混合元素の酸化物そのものである。
 本発明で言うアルミニウム化合物とは、後述する焼成工程により酸化物となる化合物、または、酸化物そのものである。
 本発明で使用するBAM蛍光体は、蛍光ランプやプラズマテレビ,液晶バックライト中の青色若しくは緑色蛍光体として使用されるBAM蛍光体のリサイクル廃棄物、蛍光体塗布・洗浄工程中廃棄物もしくは特性規格外れ品などを好適に用いることができる。
 本発明で使用するBAM蛍光体の起源は、Y:Eu(赤色)、LaPO:CeTb(緑色)等の他の蛍光体との混合廃棄物である場合が多いが、酸分解などの処理でBAM以外の蛍光体は溶解したうえで各元素のリサイクルプロセスが既に確立している。溶解性が極めて低いBAM蛍光体についても、特開2004-262978号公報等にはその回収方法が提案されているものの、回収工程中における蛍光体の輝度特性の劣化が大きく、実用化が進展しておらず、再利用されずに残渣として廃棄されているのが現状である。
 よって、蛍光体リサイクル廃棄物から分離回収されたBAM蛍光体残渣はほぼコストゼロの原料と言える。
 本発明の製造工程は原材料の混合工程とその焼成工程とを含む。
 まず、混合工程では、BAM蛍光体とアルカリ土類化合物とアルミニウム化合物と希土類化合物の、ボールミル等を用いた粉体混合などが選択できる。
 上記粉体混合に用いる原材料の粉体としては、レーザー回折散乱法を測定原理とするFRA型測定機(マイクロトラック社製)によって測定し得られる平均粒径が0.3~50μmの範囲であるものを用いることが望ましい。0.3μm未満であると、粒子間の凝集が強く、混合工程で均一に分散せず、ひいては残光特性が低い蛍光体となる場合があり、50μmを超えると、原料粒子間の反応が十分に進まず、残光特性が低い蛍光体となる場合がある。
 アルカリ土類化合物および希土類化合物としては、後述する焼成工程により酸化物となる化合物であればよく、例えば、炭酸塩,酸化物,水酸化物,酢酸塩などが使用できる。
 アルミニウム化合物としては、後述する焼成工程により酸化物となる化合物であればよく、例えば、酸化物,水酸化物,酢酸塩などが使用できる。
 アルカリ土類化合物とアルミニウム化合物の添加量は、最終的にMAlなる組成となるように混合することが好ましい(つまり、アルカリ土類金属元素合計とアルミニウムのモル比が1:2になるような添加量)。但し、ある程度組成がずれても残光は観察される。
 アルカリ土類化合物,アルミニウム化合物および希土類化合物の添加量としては、例えば、BAM蛍光体(前記組成式)1モルに対して、(各元素モル数換算で表現して)アルカリ土類化合物3~35モル、アルミニウム化合物0~65モル、希土類化合物0~1モルの比率で混合して、MAl:Eu,RE,(Mn)となる組成にする。
 原料混合時、フラックスとして、ホウ酸や酸化ホウ素など、後述する焼成工程により酸化ホウ素となる化合物を少量添加(例えば、アルカリ土類元素合計量の10モル%以下)すると反応が容易に進み、残光特性が向上する。
 焼成工程は、還元雰囲気中(例えば窒素と水素との混合ガス雰囲気中)もしくは不活性ガス雰囲気中(例えば窒素やアルゴン雰囲気中)で行う(1000~1500℃)。大気などの酸化雰囲気下で焼成すると、発光中心である2価のEuが一部3価に酸化され、残光特性が低くなることがあるからである。
 本発明の長残光蛍光体セラミックスの製法においては、焼成工程後に解砕して、平均粒径1μm~1000μmの粒状にすることもできるし、原料混合後に所望の形状に成形してから焼成することによって、長残光蛍光体の焼結体の状態で得ることもできる。
 このようにして得られた本発明の長残光蛍光体は、BAM原料を使用しない通常の製法によって製造された長残光蛍光体が黄色系のボディーカラーを持つのに対して、白色の外観を示す。この違いは、下記式(1)
(1-r-t)Al:Eu,RE,Mnt      (1)
(式中、Mが、Ba,Sr、MgおよびCaからなる群より選択された少なくとも1種の元素、REはEu以外の希土類元素を少なくとも1種を表し、rが、0.005以上0.05以下の値であり、sが、0.005以上0.05以下であり、tが、0以上0.08以下の値である。)、または、下記式(2)
(1-r-t)Al:Eu,Dy,Mnt      (2)
(式中、Mが、Ba,Sr、MgおよびCaからなる群より選択された少なくとも1種の元素を表し、rが、0.005以上0.05以下の値であり、sが、0.005以上0.05以下であり、tが、0以上0.08以下の値である。)、特にM(1-r)Al:Eu,Dy(0.005≦r≦0.05, 0.005≦s≦0.05)で表される組成範囲の蓄光蛍光体で特に顕著である。
 本発明の蓄光蛍光体の残光特性は、試料に2400LxのD65標準光を10分間照射し、励起光を遮断してから60分後の残光輝度を輝度計(コニカミノルタ製LS-110型)にて測定し、市販のZnS:Cu残光蛍光体粉(品番:GSS、根本特殊化学(株)製)の輝度を1.0とした場合の比較数値により評価した。
 本発明の白色度とは、1976年にCIE(国際照明委員会)により定められたCIE1976L*a*b*表色系により定義され、上記組成においては、L*≧80、-10≦a*≦10、-10≦b*≦10の白色度を有する。
 L*a*b*表色系の測定は、色差計(ミノルタ製CR200型)を使用しておこなった。
残光輝度,白色度ともに、粉体試料は、30mmφの金型を用いてその5gを100kg/cmの圧力でプレス成形してから測定した。原料混合粉をプレス成形して焼結することにより得られた焼結体はそのまま測定した。
 以下、本発明の実施例を説明するが、本発明はこれらによって限定されない。
(実施例1)
 廃棄ランプから回収した平均粒径7.5μmの青色BAM蛍光体(Ba0.9MgAl1017:Eu0.1)→(XRF蛍光X線分析による)の14.2g(0.02モル)に炭酸ストロンチウム(平均粒径2.2μm)23.9g(0.16モル)と酸化アルミニウム(平均粒径3.5μm)10.3g(0.1モル)と酸化ジスプロシウム(平均粒径7.3μm)0.94g(0.0025モル)とホウ酸(200メッシュアンダー)1gを加えてボールミル混合し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体を得た。
 得られた蛍光体の組成は、Sr0.800Ba0.090Mg0.100Al:Eu0.010,Dy0.025であり、残光輝度は、18.5と高く、良好であった。
また、その白色度は、L=92.0,a=-4.3,b=6.5であり、白色の外観を示すものであった。
(実施例2~4)
 実施例1と同様にして、組成を振ったものを得た。
原材料配合の詳細は表1に、組成および色評価結果は表2に示した。
(実施例5) 実施例1と同様にして原料混合粉を調製し、焼成する前に、30mmφの金型を用いてその5gを100kg/cmの圧力でプレス成形し、同様の条件にて焼成することによって、長残光蛍光体の焼結体を得た。得られた焼結体の残光輝度は、33.8と高く、良好であった。また、その白色度は、L=93.5,a=-4.1,b=5.6であり、白色の外観を示すものであった。
(実施例6)
 廃棄ランプから回収した平均粒径8.1μmの緑色BAM蛍光体(Ba0.85Mg0.7Al1017:Eu0.15,Mn0.3)→(XRF蛍光X線分析による)の14.5g(0.02モル)に炭酸ストロンチウム24.0g(0.16モル)と酸化アルミニウム10.4g(0.1モル)と酸化ジスプロシウム0.95g(0.13モル)とホウ酸1gを加えてボールミル混合し、焼成する前に、30mmφの金型を用いてその5gを100kg/cmの圧力でプレス成形し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体の焼結体を得た。得られた長残光蛍光体の組成は、Sr0.800Ba0.085Mg0.070Al:Eu0.015,Mn0.030,Dy0.025であり、残光輝度は、31.0と高く、良好であった。また、その白色度は、L=93.1,a=-4.5,b=6.4であり、白色の外観を示すものであった。
(実施例7)
 廃棄ランプから回収した青色BAM蛍光体(Ba0.9MgAl1017:Eu0.1)の14.2g(0.02モル)に炭酸カルシウム(平均粒径2.8μm)16.2g(0.162モル)と酸化アルミニウム10.3g(0.1モル)と酸化ランタン(平均粒径6.6μm)0.33g(0.001モル)と酸化ネオジム(平均粒径7.4μm)0.34g(0.001モル)とホウ酸1gを加えてボールミル混合し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体を得た。
 得られた蛍光体の組成は、Ca0.800Ba0.090Mg0.100Al:Eu0.010,La0.010,Nd0.010であり、残光輝度は、5.6と高く、良好であった。また、その白色度は、L=94.1,a=-3.0,b=2.4であり、白色の外観を示すものであった。
(実施例8)
 市販の青色BAM蛍光体(日亜化学工業株式会社製/平均粒径8.3μm/組成=Ba0.9MgAl1017:Eu0.1 → XRF蛍光X線分析による)の14.2g(0.02モル)に炭酸ストロンチウム(平均粒径2.2μm)23.9g(0.16モル)と酸化アルミニウム(平均粒径3.5μm)10.3g(0.1モル)と酸化ジスプロシウム(平均粒径7.3μm)0.94g(0.0025モル)とホウ酸(200メッシュアンダー)1gを加えてボールミル混合し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体を得た。
 得られた蛍光体の組成は、Sr0.800Ba0.090Mg0.100Al:Eu0.010,Dy0.025であり、残光輝度は、19.8と高く、良好であった。
また、その白色度は、L=93.2,a=-4.1,b=6.1であり、白色の外観を示すものであった。
(比較例1)
 炭酸バリウム(平均粒径2.4μm)3.6gと炭酸マグネシウム(平均粒径3.2μm)1.7gと炭酸ストロンチウム23.9gと酸化アルミニウム20.6gと酸化ユーロピウム(平均粒径6.7μm)0.36gと酸化ジスプロシウム0.94gとホウ酸1gをそれぞれ個々に加えてボールミル混合し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体を得た。得られた蛍光体の組成は、Sr0.800Ba0.090Mg0.100Al:Eu0.010,Dy0.025であり、残光輝度は20.1と高く、良好であった。しかし、その白色度は、L=88.1,a=-10.2,b=19.6であり、黄色系のボディーカラーを持つものであった。
(比較例2)
 比較例1と同様にして、組成を振ったものを得た。
原材料配合の詳細は表1に、組成および色評価結果は表2に示した。
(比較例3)
 比較例1と同様にして原料混合粉を調製し、焼成する前に、30mmφの金型を用いてその5gを100kg/cmの圧力でプレス成形し、同様の条件にて焼成することによって、長残光蛍光体の焼結体を得た。得られた焼結体の残光輝度は、33.3と高く、良好であった。しかし、その白色度は、L=90.3,a=-8.7,b=16.9であり、黄色系のボディーカラーを持つものであった。
(比較例4)
 炭酸ストロンチウム29.5gと酸化アルミニウム20.6gと酸化ユーロピウム0.36gと酸化ジスプロシウム0.94gとホウ酸1gをそれぞれ個々に加えてボールミル混合し、アルミナルツボ中、1300℃×1時間(97:3窒素水素雰囲気下)焼成し、長残光蛍光体を得た。得られた蛍光体の組成は、Sr0.990Al:Eu0.010,Dy0.025であり、残光輝度は、20.3と高く、良好であった。しかし、その白色度は、L=87.9,a=-9.3,b=19.2であり、黄色系のボディーカラーを持つものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2の結果から、実施例1と比較例1とは同組成であって、ともにアルミニウム化合物を添加しているにもかかわらず、BAM蛍光体を原料とする実施例1の長残光蛍光体の方が、より白色度が高く、外観上も白色を呈することがわかった。
 また、実施例5と比較例3とを比較しても同組成の焼結体であるが、白さの違いが現れていることがわかった。
 Euの割合が0.005以上である点で共通する実施例5と比較例3との間で現れる白さの違いは、Euの割合が0.005未満である点で共通する実施例3と比較例2との間で現れる白さの違いに比べてより顕著となることがわかった。
 実施例7から、希土類化合物を2種類用いた場合でも外観上白色を呈し、より白色度が高い長残光蛍光体が得られることがわかった。

 実施例8から、市販のBAM蛍光体を用いた場合でも、白色度の高い長残光蛍光体が得られることがわかった。
 

Claims (6)

  1.  アルカリ土類アルミン酸塩蛍光体とアルカリ土類化合物とアルミニウム化合物と希土類化合物を混合する工程と、 前記混合物を焼成する工程とを含むMAl:Eu,RE型長残光蛍光体セラミックスの製造方法。
  2.  前記アルカリ土類アルミン酸塩蛍光体が、蛍光体のリサイクル廃棄物、蛍光体の塗布・洗浄工程中廃棄物もしくは特性規格外れ品から分離回収されたものであることを特徴とする請求項1に記載の長残光蛍光体セラミックスの製造方法。
  3.  前記混合する工程の後、前記焼成する工程に先立ち、成形する工程を含む請求項1または2に記載の長残光蛍光体セラミックスの製造方法。
  4.  請求項1ないし3のいずれかに記載の方法によって得られた長残光蛍光体セラミックス。
  5.  組成が、下記式(1)
    (1-r-t)Al:Eu,RE,Mnt     (1)
    (式中、Mが、Ba,Sr、MgおよびCaからなる群より選択された少なくとも1種の元素、REはEu以外の希土類元素を少なくとも1種を表し、rが、0.005以上0.05以下の値であり、sが、0.005以上0.05以下であり、tが、0以上0.08以下の値である。)であり、白色度が、L,*a,*b表色系で評価した時にL*≧80、-10≦a*≦10、-10≦b*≦10であることを特徴とする、請求項4に記載の長残光蛍光体セラミックス。
  6.  組成が、下記式(2)
    (1-r-t)Al:Eu,Dy,Mnt     (2)
    (式中、Mが、Ba,Sr、MgおよびCaからなる群より選択された少なくとも1種の元素を表し、rが、0.005以上0.05以下の値であり、sが、0.005以上0.05以下であり、tが、0以上0.08以下の値である。)であり、白色度が、L,*a,*b表色系で評価した時にL*≧80、-10≦a*≦10、-10≦b*≦10であることを特徴とする、請求項4に記載の長残光蛍光体セラミックス。
PCT/JP2010/053037 2009-02-27 2010-02-26 長残光蛍光体セラミックスとその製造方法 WO2010098426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011501657A JP5300968B2 (ja) 2009-02-27 2010-02-26 長残光蛍光体セラミックスとその製造方法
CN201080009604.2A CN102333842B (zh) 2009-02-27 2010-02-26 长余辉荧光体陶瓷及其制造方法
US13/147,933 US9090827B2 (en) 2009-02-27 2010-02-26 Long-lasting phosphor ceramics and manufacturing method thereof
US14/674,350 US20150203750A1 (en) 2009-02-27 2015-03-31 Long-lasting phosphor ceramics and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009045944 2009-02-27
JP2009-045944 2009-02-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/147,933 A-371-Of-International US9090827B2 (en) 2009-02-27 2010-02-26 Long-lasting phosphor ceramics and manufacturing method thereof
US14/674,350 Division US20150203750A1 (en) 2009-02-27 2015-03-31 Long-lasting phosphor ceramics and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2010098426A1 true WO2010098426A1 (ja) 2010-09-02

Family

ID=42665630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053037 WO2010098426A1 (ja) 2009-02-27 2010-02-26 長残光蛍光体セラミックスとその製造方法

Country Status (4)

Country Link
US (2) US9090827B2 (ja)
JP (1) JP5300968B2 (ja)
CN (1) CN102333842B (ja)
WO (1) WO2010098426A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155428A1 (ja) * 2010-06-11 2011-12-15 株式会社ネモト・ルミマテリアル 蓄光性蛍光体および蓄光性顔料
JP2013163811A (ja) * 2012-02-10 2013-08-22 Rolex Sa 減衰時間の長い新規燐光体
JP2014503644A (ja) * 2010-12-17 2014-02-13 ゼネラル・エレクトリック・カンパニイ 白色発光長残光蛍光体
WO2014040229A1 (zh) * 2012-09-11 2014-03-20 海洋王照明科技股份有限公司 铝酸锌发光材料及其制备方法
JP2014534298A (ja) * 2011-10-17 2014-12-18 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 窒化物赤色発光材料、それを含む発光素子及び発光デバイス
WO2015137287A1 (ja) * 2014-03-11 2015-09-17 株式会社ネモト・ルミマテリアル 蓄光性蛍光体
JP6292684B1 (ja) * 2016-12-28 2018-03-14 国立研究開発法人産業技術総合研究所 蓄光性蛍光体及びその製造方法
US10723945B2 (en) 2017-03-15 2020-07-28 Nichia Corporation Method of producing aluminate fluorescent material, aluminate fluorescent material, and light emitting device
WO2022168705A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 蛍光体及び蛍光体の製造方法
WO2022168704A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 蛍光体の製造方法及び蛍光体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913028A (ja) * 1995-06-30 1997-01-14 Nemoto Tokushu Kagaku Kk 白色蓄光性蛍光体
JPH0959617A (ja) * 1995-08-24 1997-03-04 Matsushita Electric Ind Co Ltd アルミン酸塩蛍光体の製造方法
JPH0995671A (ja) * 1995-09-28 1997-04-08 Toshiba Corp 透明蓄光性材料
JPH10231480A (ja) * 1996-12-17 1998-09-02 Beijing City Fengtai Kogyo Toso Horyosho 長残光性発光材料及びその製造方法
JP2003147352A (ja) * 2001-11-16 2003-05-21 Sumitomo Chem Co Ltd アルミン酸塩蛍光体
JP2003238949A (ja) * 2002-02-13 2003-08-27 Shinko Pantec Co Ltd 蛍光体の再生処理方法
JP2004262978A (ja) * 2003-02-20 2004-09-24 Tohoku Techno Arch Co Ltd 蛍光粉末の回収法
WO2010007970A1 (ja) * 2008-07-14 2010-01-21 信越化学工業株式会社 長残光蛍光体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864273A (en) 1972-11-13 1975-02-04 Gen Electric Process for reclaiming rare-earth phosphors
JP2543825B2 (ja) * 1993-04-28 1996-10-16 根本特殊化学株式会社 蓄光性蛍光体
JP3456553B2 (ja) * 1994-11-01 2003-10-14 根本特殊化学株式会社 蓄光性蛍光体
US5853614A (en) 1996-12-17 1998-12-29 Beijing Hongye Coating Materials Company Long decay luminescent material
JPH11102644A (ja) 1997-09-29 1999-04-13 Hitachi Chem Co Ltd 再生蛍光体の製造法
US6253698B1 (en) * 1998-09-14 2001-07-03 Marineglo Corporation Phosphorescent marine products
US20030183807A1 (en) * 2002-03-28 2003-10-02 Virendra Shankar Long decay luminescent powder and process for preparation thereof
US20050179008A1 (en) * 2004-02-18 2005-08-18 Zhiguo Xiao Light-storage self-luminescent glass and the process for producing the same
US7433115B2 (en) 2004-12-15 2008-10-07 Nichia Corporation Light emitting device
DE102006037730A1 (de) * 2006-08-11 2008-02-14 Merck Patent Gmbh LED-Konversionsleuchtstoffe in Form von keramischen Körpern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913028A (ja) * 1995-06-30 1997-01-14 Nemoto Tokushu Kagaku Kk 白色蓄光性蛍光体
JPH0959617A (ja) * 1995-08-24 1997-03-04 Matsushita Electric Ind Co Ltd アルミン酸塩蛍光体の製造方法
JPH0995671A (ja) * 1995-09-28 1997-04-08 Toshiba Corp 透明蓄光性材料
JPH10231480A (ja) * 1996-12-17 1998-09-02 Beijing City Fengtai Kogyo Toso Horyosho 長残光性発光材料及びその製造方法
JP2003147352A (ja) * 2001-11-16 2003-05-21 Sumitomo Chem Co Ltd アルミン酸塩蛍光体
JP2003238949A (ja) * 2002-02-13 2003-08-27 Shinko Pantec Co Ltd 蛍光体の再生処理方法
JP2004262978A (ja) * 2003-02-20 2004-09-24 Tohoku Techno Arch Co Ltd 蛍光粉末の回収法
WO2010007970A1 (ja) * 2008-07-14 2010-01-21 信越化学工業株式会社 長残光蛍光体の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155428A1 (ja) * 2010-06-11 2011-12-15 株式会社ネモト・ルミマテリアル 蓄光性蛍光体および蓄光性顔料
CN102933686A (zh) * 2010-06-11 2013-02-13 根本发光材料株式会社 蓄光性荧光体和蓄光性颜料
JP5652967B2 (ja) * 2010-06-11 2015-01-14 株式会社ネモト・ルミマテリアル 蓄光性蛍光体および蓄光性顔料
JP2014503644A (ja) * 2010-12-17 2014-02-13 ゼネラル・エレクトリック・カンパニイ 白色発光長残光蛍光体
JP2014534298A (ja) * 2011-10-17 2014-12-18 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 窒化物赤色発光材料、それを含む発光素子及び発光デバイス
JP2013163811A (ja) * 2012-02-10 2013-08-22 Rolex Sa 減衰時間の長い新規燐光体
WO2014040229A1 (zh) * 2012-09-11 2014-03-20 海洋王照明科技股份有限公司 铝酸锌发光材料及其制备方法
WO2015137287A1 (ja) * 2014-03-11 2015-09-17 株式会社ネモト・ルミマテリアル 蓄光性蛍光体
US10669480B2 (en) 2014-03-11 2020-06-02 Nemoto & Co., Ltd. Phosphorescent phosphor
JP6292684B1 (ja) * 2016-12-28 2018-03-14 国立研究開発法人産業技術総合研究所 蓄光性蛍光体及びその製造方法
JP2018109164A (ja) * 2016-12-28 2018-07-12 国立研究開発法人産業技術総合研究所 蓄光性蛍光体及びその製造方法
US10723945B2 (en) 2017-03-15 2020-07-28 Nichia Corporation Method of producing aluminate fluorescent material, aluminate fluorescent material, and light emitting device
US11008511B2 (en) 2017-03-15 2021-05-18 Nichia Corporation Method of producing aluminate fluorescent material, aluminate fluorescent material, and light emitting device
WO2022168705A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 蛍光体及び蛍光体の製造方法
WO2022168704A1 (ja) * 2021-02-05 2022-08-11 住友化学株式会社 蛍光体の製造方法及び蛍光体

Also Published As

Publication number Publication date
US20110291050A1 (en) 2011-12-01
CN102333842A (zh) 2012-01-25
CN102333842B (zh) 2014-10-22
US9090827B2 (en) 2015-07-28
JP5300968B2 (ja) 2013-09-25
JPWO2010098426A1 (ja) 2012-09-06
US20150203750A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5300968B2 (ja) 長残光蛍光体セラミックスとその製造方法
JP5149384B2 (ja) 長残光蛍光体の製造方法
EP1090975B1 (en) A process for producing aluminate-based phosphor
KR100858269B1 (ko) 알루민산염 형광체의 제조 방법, 형광체, 및 형광체를함유하는 소자
US7755276B2 (en) Aluminate-based green phosphors
CN110139914B (zh) 蓄光性荧光体及其制造方法、以及蓄光性制品
WO2005044945A1 (ja) 蓄光性蛍光体及びその製造方法
KR101256626B1 (ko) 초장잔광 형광체 및 그의 분말 제조방법
US9120973B2 (en) Fluorescent substance and a production method therefor
KR101230039B1 (ko) 실리케이트계 산화물 형광체 및 상기의 분말 제조 방법
US9187694B2 (en) Phosphor and method for preparing same
KR20100058467A (ko) 이트륨 및 희토류 혼합 산화물의 제조 방법
JP2018109083A (ja) 緑色蛍光体、発光素子及び発光装置
CN112852415B (zh) 一种高色纯度、高稳定性的发光绿色荧光粉及其制备方法
JP2018109075A (ja) 緑色蛍光体、その製造方法、発光素子及び発光装置
JP2018109078A (ja) 緑色蛍光体、発光素子及び発光装置
WO1998042797A1 (fr) Procede de production de phosphore d'aluminate
JP2018109084A (ja) 緑色蛍光体、発光素子及び発光装置
JP2018109082A (ja) 緑色蛍光体、発光素子及び発光装置
WO2017030030A1 (ja) 蛍光体及びその製造方法並びに発光装置
JP2010095687A (ja) アルミン酸塩蛍光体及びその製造方法、並びに該蛍光体を用いた冷陰極蛍光ランプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009604.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501657

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13147933

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746305

Country of ref document: EP

Kind code of ref document: A1