WO2010095349A1 - Near-infrared absorbing pressure-sensitive adhesive composition - Google Patents

Near-infrared absorbing pressure-sensitive adhesive composition Download PDF

Info

Publication number
WO2010095349A1
WO2010095349A1 PCT/JP2010/000266 JP2010000266W WO2010095349A1 WO 2010095349 A1 WO2010095349 A1 WO 2010095349A1 JP 2010000266 W JP2010000266 W JP 2010000266W WO 2010095349 A1 WO2010095349 A1 WO 2010095349A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
infrared absorbing
adhesive composition
resin
dye
Prior art date
Application number
PCT/JP2010/000266
Other languages
French (fr)
Japanese (ja)
Inventor
張替尊子
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009038476A external-priority patent/JP2010018773A/en
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2010095349A1 publication Critical patent/WO2010095349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer

Definitions

  • the present invention relates to a near-infrared absorbing pressure-sensitive adhesive composition, a near-infrared absorbing material containing the near-infrared-absorbing pressure-sensitive adhesive composition, and an optical filter for a thin display using the near-infrared absorbing pressure-sensitive adhesive composition or the near-infrared absorbing material. And so on.
  • the present invention is a near-infrared absorbing adhesive composition excellent in transparency in the visible region and durability of infrared absorbing ability, a near-infrared absorbing material containing the near-infrared absorbing adhesive composition, and the near-infrared absorbing adhesive
  • the present invention relates to an optical filter for an optical semiconductor element using an agent composition or a near-infrared absorbing material, an optical filter for a thin display using the near-infrared absorbing adhesive composition or a near-infrared absorbing material, and the like.
  • a thin liquid crystal display applicable to a large screen and a thin display such as PDP (Plasma Display Panel) have been attracting attention.
  • the thin display generates near infrared rays having a wavelength of 800 nm to 1100 nm.
  • this near infrared ray causes malfunction of the remote control for home appliances.
  • the optical semiconductor element used for a CCD camera etc. has high sensitivity in the near infrared region, it is necessary to remove the near infrared ray. Therefore, there is a demand for a near-infrared absorbing material that has a high near-infrared absorbing ability and high transparency in the visible region.
  • cyanine dyes polymethine dyes, squarylium dyes, porphyrin dyes, metal dithiol complex dyes, phthalocyanine dyes, diimonium dyes or inorganic oxide particles are used as near infrared absorbing dyes that absorb near infrared rays.
  • diimonium dyes are frequently used because they have a high near-infrared absorption ability and high transparency in the visible light region (see, for example, Patent Documents 1, 2, and 3).
  • the PDP generates a discharge in a rare gas, particularly a gas mainly composed of neon, enclosed in the panel, and R, G, B provided in the cells inside the panel by vacuum ultraviolet rays generated at that time.
  • the phosphor is made to emit light. Therefore, electromagnetic waves unnecessary for the operation of the PDP are simultaneously emitted during this light emission process. It is necessary to shield this electromagnetic wave. Further, an antireflection film and an antiglare film (antiglare film) are also required to suppress reflected light.
  • an optical filter for plasma display is generally produced by laminating a near-infrared absorbing film, an electromagnetic wave shielding film and an antireflection film on glass or a shock absorbing material as a support. Such an optical filter for plasma display is placed on the front side of the PDP. Such an optical filter for plasma display may be used by being directly bonded onto glass or a shock absorbing material as a support using an adhesive or a pressure-sensitive adhesive.
  • Patent Document 4 JP 2003-96040 A Japanese Unexamined Patent Publication No. 2000-80071 JP 2005-325292 A Japanese Patent No. 3621322 International Publication WO2008 / 026786
  • Diimonium-based dyes may be inferior in durability, and lowering of near-infrared absorption ability and coloring can be a serious problem when used in optical semiconductor devices and display applications.
  • a resin having a low glass transition point (Tg) such as an adhesive resin, the dye is severely deteriorated.
  • JP-A-2005-325292 discloses a diimonium dye having improved durability by introducing a halogen atom into the alkyl group of the diimonium cation.
  • the near-infrared cut-off filter using the diimonium dye and the high Tg binder resin shows improved durability as compared with the conventional diimonium dye.
  • the durability tends to be insufficient when combined with a rapidly degrading low Tg adhesive resin.
  • WO2008 / 026786 durability of the dye in the pressure-sensitive adhesive composition is improved by appropriately limiting the diimonium dye.
  • a technique capable of improving the durability of the diimonium dye in the pressure-sensitive adhesive resin has been found from a viewpoint different from the invention of International Publication WO2008 / 026786.
  • An object of the present invention is to provide a near-infrared absorbing adhesive composition useful for producing a near-infrared absorbing material having high transparency in the visible region and high durability of near-infrared absorbing ability. Furthermore, an object of the present invention is to provide a near-infrared absorbing material, an optical filter for an optical semiconductor element, an optical filter for a thin display, and a thin display using the composition.
  • the present inventors diligently studied to improve the durability of the diimonium dye in the adhesive resin. As a result, it was found that a near-infrared absorbing pressure-sensitive adhesive composition excellent in the durability of a dye can be obtained by using a dispersion in which a diimonium dye is dispersed. Moreover, it discovered that the near-infrared absorption adhesive composition excellent in durability of a pigment
  • the present invention relating to the composition contains a resin (B) in which a dispersion (A) in which a diimonium dye is dispersed in a composition containing a solvent (D) is mixed, and the glass transition temperature is 0 ° C. or lower.
  • the near-infrared absorbing adhesive composition contains a resin (B) in which a dispersion (A) in which a diimonium dye is dispersed in a composition containing a solvent (D) is mixed, and the glass transition temperature is 0 ° C. or lower.
  • the near-infrared absorbing adhesive composition is 0 ° C. or lower.
  • the dimonium dye is in an associated state.
  • composition containing an aggregate (X) of a diimonium dye, a solvent (D), and a resin (B) having a glass transition temperature of 0 ° C. or lower. is there.
  • Still another invention according to the composition includes a liquid (C) containing a particulate dimonium dye and a solvent (D), and a resin (B) having a glass transition temperature of 0 ° C. or lower. It is an infrared ray absorbing pressure-sensitive adhesive composition, wherein the solubility of the dimonium dye in the solvent (D) is 5% by mass or less.
  • the diimonium dye is a compound having a diimonium cation represented by the following formula (1) described below.
  • the diimonium anion of the diimonium dye is a hexafluorophosphate ion.
  • At least one of R 1 to R 8 is a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, 3 to 12 cycloalkyl groups, or a cycloalkyl ring optionally substituted [C 3-12 cycloalkyl-C 1-10 alkyl group].
  • At least one of R 1 to R 8 is an organic group represented by the following formula (2).
  • the organic group represented by the above formula (2) is a cyclohexylmethyl group.
  • R 1 to R 8 are cyclohexylmethyl groups.
  • At least one of R 1 to R 8 is an organic group represented by the following formula (3).
  • the organic group represented by the above formula (3) is a 3-fluoropropyl group.
  • R 1 to R 8 are 3-fluoropropyl groups.
  • At least one of R 1 to R 8 is a branched alkyl group having 3 to 12 carbon atoms.
  • the branched alkyl group is an isobutyl group.
  • the acid value of the resin (B) is 0 or more and 300 or less.
  • the calculated solubility parameter of the resin (B) is 10.2 or less.
  • the resin (B) is a polymer obtained by copolymerizing the following monomers (1a) to (3a) in the following ratio.
  • the near infrared absorbing pressure-sensitive adhesive composition may further contain a phthalocyanine dye.
  • the near-infrared absorbing adhesive composition is diluted with a diluting solvent (E) in which the solubility of the dimonium dye is 5% by mass or less.
  • E diluting solvent
  • the near-infrared absorbing material according to the present invention includes any one of the above near-infrared absorbing adhesive compositions.
  • the near-infrared absorbing material is formed by laminating one of the above near-infrared absorbing adhesive compositions on a transparent substrate.
  • the transparent substrate is glass, PET film, easy-adhesive PET film, TAC film, antireflection film or electromagnetic wave shielding film.
  • the thin display optical filter according to the present invention uses any one of the above near-infrared absorbing materials.
  • the optical filter for an optical semiconductor element uses any one of the above near-infrared absorbing materials.
  • the thin display according to the present invention uses any one of the above near infrared absorbing pressure-sensitive adhesive compositions, any one of the above near infrared absorbing materials, or the above optical filter.
  • the near-infrared absorbing material using the near-infrared absorbing adhesive composition of the present invention can maintain the near-infrared absorbing ability of the pigment for a long period of time. Therefore, when this near-infrared absorbing pressure-sensitive adhesive composition is used for the production of an optical filter for an optical semiconductor element or a thin display, it becomes possible to make the optical filter thin and simplify the optical filter manufacturing process.
  • FIG. 1 is the transmission spectrum of a dispersion containing IRG-022 particles.
  • FIG. 2 is a transmission spectrum of a MEK solution of IRG-022.
  • FIG. 3 is the transmission spectrum of a dispersion containing IRG-023 particles.
  • FIG. 4 is a transmission spectrum of a MEK solution of IRG-023.
  • FIG. 5 is a transmission spectrum of Example 1 before the test, after the heat resistance test, and after the light resistance test.
  • FIG. 6 is a transmission spectrum of Example 2 before the test, after the heat resistance test, and after the light resistance test.
  • FIG. 7 is a transmission spectrum of Comparative Example 1 before the test, after the heat resistance test, and after the light resistance test.
  • FIG. 1 is the transmission spectrum of a dispersion containing IRG-022 particles.
  • FIG. 2 is a transmission spectrum of a MEK solution of IRG-022.
  • FIG. 3 is the transmission spectrum of a dispersion containing IRG-023 particles.
  • FIG. 8 is a graph showing the molar extinction coefficient at each concentration when the dispersion (a) is diluted with ethyl acetate.
  • FIG. 9 is a graph showing the molar extinction coefficient at each concentration when the dispersion (b) is diluted with toluene.
  • FIG. 10 is a graph showing the molar extinction coefficient at each concentration when the dispersion (c) is diluted with toluene.
  • FIG. 11 is a graph showing the molar extinction coefficient of a liquid obtained by diluting dimonium salt (c) with methylene chloride to a concentration of 10 mg / L.
  • FIG. 12 is a graph showing the molar extinction coefficient at each concentration when the dispersion (d) is diluted with toluene.
  • FIG. 13 is a transmission spectrum of the near-infrared absorbing adhesive composition Aa1 according to Experimental Example 1.
  • FIG. 14 is a transmission spectrum of the specimen Z1 according to Experimental Example 1.
  • FIG. 15 is a transmission spectrum of the near-infrared absorbing adhesive composition Az2 according to Experimental Example 2.
  • FIG. 16 is a transmission spectrum of the specimen Z2 according to Experimental Example 2.
  • Diimonium dye diimonium salt
  • the dispersion (A) described later is used.
  • the durability of the diimonium salt is improved.
  • the diimonium dye is in an associated state. That is, preferably, the diimonium dye is dispersed in the aggregate (X). Details of the aggregate (X) will be described later. As will be described later, the diimonium salt forming the aggregate (X) is excellent in durability.
  • the near-infrared absorbing pressure-sensitive adhesive composition using this dispersion (A) was found to be excellent in durability even though it was present in the pressure-sensitive adhesive resin (B). Furthermore, it has been found that the durability can be further improved by using the diimonium salt in the dispersion (A) as the aggregate (X).
  • the diimonium dye is in the same dispersion state as in the dispersion (A) even in the near-infrared absorbing adhesive composition. Furthermore, in view of the good results, it can be said that at least a part of the diimonium dye is in an associated state even in the near-infrared absorbing adhesive composition.
  • the diimonium dye used in the present invention is preferably used as a dispersion (A) dispersed in a composition containing a solvent (D). Dispersion (A) helps to form aggregates (X).
  • the dispersion (A) is, for example, a dispersion in which a diimonium dye is dispersed in a solvent (D).
  • the dispersion (A) may contain other components such as a resin and a dispersant in addition to the solvent (D).
  • the diimonium dye may be dispersed in the solvent (D) or in a component other than the solvent (D) such as a resin. From the viewpoint of dispersion stability, in the dispersion (A), the diimonium dye is preferably dispersed in the solvent (D). In the dispersion (A), the diimonium dye is dispersed without dissolving in the composition containing the solvent (D).
  • the dispersion (A) is a dispersion in which a diimonium dye is dispersed. It is preferred that the diimonium dye and the solvent (D) are selected so that they can be dispersed.
  • the diimonium dye is dispersed in the near-infrared absorbing adhesive composition.
  • the diimonium salt is dispersed in an associated state in the dispersion (A). More preferably, the diimonium salt is dispersed in an associated state in the near-infrared absorbing adhesive composition.
  • Dispersion in this application is a concept including “meeting”. That is, “dispersion” as used in the present application includes dispersion in an associated state (aggregate (X)).
  • diimonium dye having a diimonium cation represented by the following formula (1) is exemplified.
  • diimmonium dyes as represented by the following formula (1S) and the diimmonium cation represented by the formula (1), diimmonium anion Z - consists of.
  • R 1 to R 8 each represents an atom or a group that may be the same or different.
  • R 1 to R 8 in the formula (1) are not particularly limited as long as they can form the aggregate (X).
  • R 1 to R 8 may each independently be a hydrogen atom, a halogen atom, an alkyl group having 1 to 22 carbon atoms, or an alkyl group having 1 to 22 carbon atoms having a substituent. From the viewpoint of forming an association state, preferably, all of R 1 to R 8 are organic groups which may be the same or different.
  • R 1 to R 8 is the following (1x), (2x), or (3x).
  • (1x) A linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom.
  • (2x) a cycloalkyl group having 3 to 12 carbon atoms.
  • (3x) The cycloalkyl ring may be substituted [C 3-12 cycloalkyl-C 1-10 alkyl group].
  • R 1 to R 8 are all the same. From the viewpoint of easily obtaining an association state, it is preferable that R 1 to R 8 are all the same and are (1x), (2x), or (3x).
  • alkyl group having 1 to 10 carbon atoms in the above (1x) methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group Group, n-amyl group, iso-amyl group, 1-methylbutyl group, 2-methylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 2-dimethylpropyl group, 1,1-dimethylpropyl group, neopentyl group, n -Hexyl group and the like are exemplified.
  • branched alkyl groups having 3 to 6 carbon atoms such as an iso-propyl group, an iso-butyl group, and an iso-amyl group, are preferable from the viewpoint of obtaining a molecular sequence necessary for forming an aggregate.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms in (2x) above include a cyclopentyl group and a cyclohexyl group.
  • Examples of the substituent for substituting the cycloalkyl ring in (3x) above include an alkyl group, a hydroxyl group, a sulfonic acid group, an alkylsulfonic acid group, a nitro group, an amino group, an alkoxy group, an alkyl halide, a halogen atom, and the like.
  • the cycloalkyl ring in (3x) above is not substituted.
  • the [C 3-12 cycloalkyl-C 1-10 alkyl group] in the above (3x) is an organic compound represented by the following formula (2). Based on.
  • R 9 represents a linear or branched alkyl group having 1 to 10 carbon atoms, and m represents an integer of 3 to 12 inclusive.
  • R 1 to R 8 are all the same from the viewpoint that the cation structure is symmetric and an association state is easily obtained.
  • the carbon number of R 9 is more preferably 1 or more and 4 or less.
  • m is preferably 5 or more and 8 or less, and more preferably 5 or more and 6 or less. Such a carbon number range contributes to an increase in the intermolecular interaction necessary for the association.
  • a cyclopentylmethyl group, a cyclohexylmethyl group, a 2-cyclohexylmethyl group, a 2-cyclohexylpropyl group, a 3-cyclohexylpropyl group, and a 4-cyclohexylbutyl group are preferable, and a cyclopentylmethyl group and a cyclohexylmethyl group are more preferable.
  • a cyclohexylmethyl group is preferable.
  • the cycloalkyl ring in the above formula (2) may or may not have a substituent.
  • this substituent include at least one selected from the group consisting of an alkyl group, a hydroxyl group, a sulfonic acid group, an alkylsulfonic acid group, a nitro group, an amino group, an alkoxy group, a halogenated alkyl group, and a halogen. More preferably, the cycloalkyl ring in the above formula (2) does not have a substituent.
  • R 1 to R 8 are cyclohexylmethyl groups. That is, a diimonium salt represented by the following formula (2S) is particularly preferable.
  • a linear or branched alkyl group having 1 to 10 carbon atoms substituted with a halogen atom includes a 2-halogenoethyl group, a 2,2-dihalogenoethyl group, 2,2,2- Trihalogenoethyl group, 3-halogenopropyl group, 3,3-dihalogenopropyl group, 3,3,3-trihalogenopropyl group, 4-halogenobutyl group, 4,4-dihalogenobutyl group, 4,4,4 Examples thereof include alkyl halides such as 4-trihalogenobutyl group, 5-halogenopentyl group, 5,5-dihalogenopentyl group, and 5,5,5-trihalogenopentyl group.
  • a monohalogenated alkyl group represented by the following general formula (3) is preferable.
  • n represents an integer of 1 to 9
  • X represents a halogen atom.
  • n is more preferably 1 or more and 4 or less.
  • X is more preferably a fluorine atom.
  • Preferable specific examples include 2-fluoroethyl group, 3-fluoropropyl group, 4-fluorobutyl group and 5-fluoropentyl group, and 3-fluoropropyl group is particularly preferable.
  • R 1 to R 8 are 3-fluoropropyl groups. That is, a diimonium salt represented by the following formula (3S) is particularly preferable.
  • the diimonium salt compound represented by the general formula (2S) and the diimonium salt compound represented by the general formula (3S) are both novel compounds. These dimonium salt compounds form an aggregate (X), are excellent in heat resistance and moisture resistance in the pressure-sensitive adhesive composition, and have a high near-infrared absorbing ability.
  • Examples of the halogen atom constituting R 1 to R 8 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 to R 8 include linear, branched and alicyclic alkyl groups having 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-amyl group, isoamyl group, Examples include 1-methylbutyl group, 1-ethylpropyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, neopentyl group, n-hexyl group, cyclohexyl group, and the like.
  • R 1 to R 8 include 4,4,4-trifluorobutyl group, 2,2,2-trifluoroethyl group and perfluorobutyl group.
  • R 1 to R 8 may all be the same or different from each other. In these, the above-mentioned branched alkyl group is more preferable.
  • R 1 to R 8 may be a linear or branched alkyl group having 3 to 5 carbon atoms.
  • R 1 to R 8 may be an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-amyl group, or an isoamyl group.
  • the aforementioned branched alkyl group is particularly preferred.
  • Examples of the substituent that can be bonded to the alkyl group of R 1 to R 8 include cyano group; hydroxyl group; halogen atom such as fluorine atom, chlorine atom and bromine atom; methoxy group, ethoxy group, n-propoxy group, n
  • An alkoxy group having 1 to 6 carbon atoms such as butoxy group; alkoxy having 2 to 8 carbon atoms such as methoxymethoxy group, ethoxymethoxy group, methoxyethoxy group, ethoxyethoxy group, methoxypropoxy group, methoxybutoxy group, ethoxybutoxy group, etc.
  • Alkoxy group methoxymethoxymethoxy group, methoxymethoxyethoxy group, methoxyethoxyethoxy group, ethoxyethoxyethoxy group, etc., alkoxyalkoxyalkoxy group having 3 to 15 carbon atoms; allyloxy group; phenoxy group, tolyloxy group, xylyloxy group, naphthyloxy group 6-12 carbon atoms such as Aryloxy group; alkoxycarbonyl group having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group; methylcarbonyloxy group, ethylcarbonyloxy group, C2-C7 alkylcarbonyloxy groups such as n-propylcarbonyloxy group and n-butylcarbonyloxy group; methoxycarbonyloxy group, ethoxycarbonyloxy group
  • the kind of anion in the dimonium dye is not particularly limited. This dimonium anion is necessary to neutralize the dimonium cation represented by the general formula (1).
  • halogen ions such as fluorine ion, chlorine ion, bromine ion and iodine ion; perchlorate ion; periodate ion; tetrafluoroborate ion; hexafluorophosphate ion; hexafluoroantimonate ion; trifluoro Lomethanesulfonate ion; Toluenesulfonate ion; Bis (trifluoromethanesulfone) imide ion; Tetrakis (pentafluorophenyl) borate ion; Tris (trifluoromethanesulfone) methide ion, etc.
  • fluorine ion, chlorine ion, bromine ion, iodine Inorganic anions such as halogen ions such as ions; perchlorate ions; periodate ions; tetrafluoroborate ions; hexafluorophosphate ions; hexafluoroantimonate ions
  • hexafluorophosphate ions are preferred.
  • the diimonium dye of the present invention preferably has a form in which two anions are bonded to one diimonium cation.
  • a salt of the preferable diimonium cation and the preferable diimonium anion is preferably used as the diimonium dye.
  • the diimonium salt according to the present invention is excellent in heat resistance, moist heat resistance and light resistance in combination with the resin (B) having a glass transition temperature (Tg) of 0 ° C. or less, and may have good haze.
  • an amino compound represented by the following formula (4) is obtained by an Ullmann reaction and a reduction reaction.
  • an iodide corresponding to the above R 1 to R 8 and an alkali metal carbonate as a deiodizing agent are added in a polar solvent such as NMP or DMF, and 30 ° C. or more and 150 ° C. or less, preferably Is reacted at 70 ° C. or higher and 120 ° C. or lower to obtain an alkyl-substituted product represented by the following formula (5).
  • R 1 to R 8 are all cyclohexylalkyl groups
  • a cyclohexylalkane iodide is used as the corresponding iodide.
  • R 1 to R 8 are all cyclohexylmethyl groups
  • cyclohexylmethyl iodide is used as the corresponding iodide.
  • all of R 1 to R 8 are fluoroalkyl groups
  • a fluoroalkane iodide is used as the corresponding iodide.
  • R 1 to R 8 are all 3-fluoropropyl groups
  • 1-iodo-3-fluoropropane is used as the corresponding iodide.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • R 1 to R 8 are two or more different substituents, the iodides in the number of moles corresponding to the number of the respective organic groups are sequentially reacted, or these are simultaneously added and reacted.
  • R 1 to R 8 are a cyclohexylmethyl group and other organic groups, a mole number of cyclohexylalkane iodide (cyclohexylmethyl iodide) corresponding to the number of substituents is added and reacted.
  • iodide for example, fluoroalkane iodide; iodoalkane; alkoxyiodide; benzene iodide; phenyl-1-iodoalkane such as benzyl iodide and phenethyl iodide
  • iodide for example, fluoroalkane iodide; iodoalkane; alkoxyiodide; benzene iodide; phenyl-1-iodoalkane such as benzyl iodide and phenethyl iodide
  • a silver salt of an anion Z ⁇ corresponding to the alkyl-substituted product represented by the above formula (5) is 30 ° C. or more and 150 ° C. or less, preferably 40 ° C. or more and 80 ° C. in an organic solvent such as NMP, DMF, or acetonitrile.
  • an organic solvent such as NMP, DMF, or acetonitrile.
  • R 1 to R 8 have the same meaning as described above.
  • the diimonium dye according to the present invention forms an aggregate (X) in which a plurality of molecules represented by the formula (1S) are associated.
  • This aggregate (X) is considered to be a molecular assembly formed by several to several tens of molecules.
  • the aggregate (X) When the aggregate (X) is diluted to 100 mg / L with toluene, the aggregate (X) exhibits absorption in a wavelength region of 750 nm to 1300 nm, and has a maximum absorption wavelength in a wavelength region of 1110 nm to 1250 nm.
  • the maximum absorption wavelength when the aggregate (X) is formed has an absorption spectrum different from that in the dissolved state (for example, Photographic Science and Engineering, Vol. 18, No. 323-335 ( 1974)). In general, the absorption band in the associated state moves to the longer wavelength side than the dissolved state.
  • a diimonium salt compound generally exhibits a maximum absorption wavelength between 1050 nm and 1095 nm in a dissolved state, but when an aggregate (X) is formed, the maximum absorption wavelength is shifted to the longer wavelength side from 15 nm to 200 nm. .
  • the aggregate (X) when the aggregate (X) is diluted to 100 mg / L with toluene, it exhibits a maximum absorption wavelength in the range of 1110 nm to 1250 nm. Note that if the amount of change due to the shift is too large, near infrared absorption near 900 nm or more and 1100 nm or less may be insufficient. From this viewpoint, the amount of change in the shift of ⁇ max when measured after being diluted to 100 mg / L with toluene is preferably 15 nm or more and 100 nm or less.
  • the measurement conditions for measuring the shift change amount are, for example, the following [Measurement method 1] for the aggregate (X) and the following [Measurement method 2] for the dissolved state.
  • the absorption wavelength region and the maximum absorption wavelength of the aggregate (X) of the diimonium dye according to the present invention can be measured, for example, by the following [Measurement method 1].
  • the dimonium salt compound is determined based on the absorbance measured in a suspended or suspended state (dispersed state) as particles having a concentration of at least 50 mg / L and not less than 0.001 ⁇ m and not more than 10 ⁇ m in a dispersion medium. This particle size is measured by a Microtrac particle size analyzer. Specifically, 0.5 parts by weight of a diimonium salt compound, 9.5 parts by weight of toluene, and 70 parts by weight of zirconia beads having a particle diameter of 0.3 mm were placed in a 50 ml glass container and shaken with a paint shaker for 2 hours. The zirconia beads are filtered off to obtain liquid L1.
  • the liquid L1 is diluted with toluene so that the concentration of the diimonium salt compound is 100 mg / L, and a diimonium salt dispersion L2 is obtained.
  • the absorbance of this dispersion L2 is measured with a spectrophotometer.
  • a spectrophotometer As this spectrophotometer, UV-3100 (manufactured by Shimadzu Corporation) can be used.
  • the dilution concentration (100 mg / L) may be appropriately changed as long as the dimonium salt is not dissolved.
  • the maximum absorption wavelength of the dimonium salt compound in a dissolved state can be measured, for example, by the following [Measurement Method 2].
  • the dispersion L2 obtained by the above [Measuring method 1] is further diluted with toluene, and the solution at the time when the solution is dissolved is used. Whether or not it is in a dissolved state can be comprehensively determined by shifting ⁇ max to the short wavelength side or narrowing the half width. If the solution is not dissolved even when diluted to about 5 mg / L with toluene, dilute with methylene chloride instead of toluene. This solution is measured with a spectrophotometer. As this spectrophotometer, UV-3100 (manufactured by Shimadzu Corporation) can be used.
  • the dispersion medium may be other than toluene.
  • examples of the dispersion medium include ethyl acetate, butyl acetate and methylcyclohexane.
  • the diimonium salt compound may be in a dispersed state as a crystal, not as an aggregate.
  • a steep absorption band having a half width smaller than that in the crystal dispersion state is shown.
  • the half-value width is a width of a wavelength region showing an absorbance that is half of the absorbance at the maximum absorption wavelength.
  • the amount of change in the maximum absorption wavelength relative to the dissolved state is large.
  • ⁇ max under a condition diluted to 100 mg / L with toluene shifts to a longer wavelength side than 1250 nm.
  • the molar extinction coefficient at the maximum absorption wavelength is less than 40,000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 .
  • the molar extinction coefficient (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ) is an extinction coefficient when the concentration is 1 mol / L and the optical path length is 1 cm.
  • the molar extinction coefficient at this maximum absorption wavelength is 70000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more.
  • the near-infrared absorption ability is inferior compared with the association state.
  • the determination of whether the diimonium salt compound is in an associated state or a dissolved state is made by comparing the absorption spectrum measured in the dispersion (dispersed state) with the absorption spectrum measured in the dissolved state.
  • the maximum absorption wavelength and the shift amount of the maximum absorption wavelength can be performed.
  • the determination of whether the diimonium salt compound is in an associated state or a crystal dispersed state is made by comparing the maximum absorption wavelength of the absorption spectrum measured in the dispersed state and its molar extinction coefficient.
  • Preferred diimonium dyes can be obtained, for example, by the above production method.
  • Commercially available diimonium dyes include trade name “CIR-1085” manufactured by Nippon Carlit Co., Ltd., trade name “CIR-1085F” manufactured by Nippon Carlit Co., Ltd., and trade name “KAYASORB IRG-022” manufactured by Nippon Kayaku Co., Ltd. ", Trade name” KAYASORB IRG-023 "manufactured by Nippon Kayaku Co., Ltd., and the like.
  • “KAYASORB IRG-022” and “KAYASORB IRG-023” are also simply referred to as “IRG-022” and “IRG-023”, respectively.
  • the diimonium dye is preferably in a form that is easily dispersed in the solvent (D).
  • the diimonium dye is refined by pulverization or the like.
  • the miniaturization method both wet and dry methods can be adopted.
  • a wet micronization method a bead mill or ball mill, micronization by liquid flow, or micronization using laser or ultrasonic waves can be employed.
  • a dry refinement method a ball mill, an attritor, a roll mill or an air stream can be used. More preferably, a method of pulverizing a diimonium dye using particles such as zirconia beads and glass beads may be employed.
  • a liquid is prepared by mixing a diimonium dye, a solvent (D) having a solubility of 5% by mass or less of the diimonium dye, and zirconia beads.
  • a method of separating zirconia beads after shaking is a method of separating zirconia beads after shaking.
  • the diimonium dye is used by being dispersed in a composition containing the solvent (D).
  • the diimonium dye is used by being dispersed in the solvent (D).
  • the solvent (D) is preferably a poor solvent for the diimonium dye used.
  • a solvent in which the diimonium dye used has a solubility of 5% by mass or less is preferable. A method for measuring this solubility will be described later.
  • solvent (D) examples include toluene, xylene, ethyl acetate, butyl acetate, methylcyclohexane and the like, and toluene and ethyl acetate are particularly preferable.
  • Dispersion (A) The dispersion (A) is a liquid in which the diimonium dye is dispersed in a composition containing the solvent (D).
  • the dispersion (A) is formed by mixing a diimonium dye and a dispersion medium.
  • the dispersion medium include a resin in addition to the solvent (D).
  • the dispersion medium may be a mixture of the solvent (D) and another compound.
  • the dispersion medium includes a solvent (D).
  • the dispersion means a state in which particles of about 0.001 ⁇ m to 10 ⁇ m (10 ⁇ 9 m to 10 ⁇ 5 m) are suspended or suspended in the composition containing the solvent (D).
  • the diimonium dye is in an associated state. That is, in the dispersion (A), it is preferable that the diimonium dye is the aggregate (X).
  • Examples of the dispersion (A) in which the diimonium dye is in an associated state include a dispersion (a), a dispersion (b), a dispersion (c), and a dispersion (d) obtained in Synthesis Examples described later.
  • Examples of the dispersing device include a bead mill, a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill, and a bead mill is preferable.
  • Examples of the dispersing device that can be used in the present invention include those described in JP-A-52-92716 and International Publication No. 88/074794. Among these, a vertical or horizontal medium dispersion device is preferable.
  • a dispersion medium may not be used, but it is preferably carried out in the presence of the dispersion medium.
  • Examples of the dispersion medium include water and various organic solvents.
  • an organic solvent is preferable, and toluene, ethyl acetate, and the like are particularly preferable.
  • a surfactant may be used as the dispersion medium.
  • the surfactant include an anionic surfactant, an anionic polymer, a nonionic surfactant, and a cationic surfactant. In this way, the dispersion (A) can be obtained.
  • the liquid (C) in the present application is a concept including the dispersion (A).
  • the liquid (C) is obtained by mixing a particulate diimonium dye and a solvent (D) having a solubility of the diimonium dye of 5% by mass or less.
  • the liquid (C) may contain a component (third component) other than the solvent (D) and the diimonium dye.
  • dye becomes easy to disperse
  • the method for measuring the solubility is as described later.
  • a diluting solvent (E) may be used separately from the solvent (D).
  • a dispersant may be added for the purpose of improving the dispersibility of the diimonium dye dispersion.
  • the dispersant include an anionic, cationic or nonionic surfactant and a polymeric dispersant.
  • the diimonium salt In the dispersion (A) or the liquid (C), depending on the concentration of the diimonium salt, all of them may form an aggregate (X), or a part of the aggregate (X). It may be formed.
  • a part of the dimonium salt is an aggregate (X)
  • the other dimonium salt may be in a dissolved state and / or a crystal dispersion state.
  • the maximum absorption wavelength is 1110 nm or more and 1250 nm or less
  • the molar extinction coefficient at the maximum absorption wavelength is 70000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more.
  • the diimonium salt is an aggregate (X).
  • a diimonium salt that is an aggregate when diluted to 100 mg / L with toluene is also considered to be an aggregate when diluted to a concentration higher than 100 mg / L with toluene.
  • the dimonium salt that is an aggregate is diluted with this dispersion medium S to a concentration higher than B (mg / L). In some cases, it is considered an association.
  • ⁇ max of the dispersion (A) or liquid (C) using the solvent S1 as a dispersion medium is further added to the dispersion (A) or liquid (C) by further adding the solvent S1. It is preferably larger than ⁇ max of the diluted diluent (long wavelength). In this case, it is considered that ⁇ max is shifted because the diimonium salt is dissolved in the diluted body.
  • this solvent S1 the same thing as the said solvent (D) is illustrated.
  • a diimonium salt when used as a near-infrared absorbing composition for a PDP filter or the like, a substituent is often devised so that the diimonium salt is in a dissolved state from the viewpoint of haze or the like.
  • the durability of the diimonium dye in the near-infrared absorbing composition tends to decrease.
  • the pressure-sensitive adhesive resin (B) the durability of the diimonium dye is greatly reduced.
  • the diimonium dye when used in a crystal dispersion state, the dispersion stability is poor and the crystal becomes coarse. In this case, the half width is large and the extinction coefficient at the maximum absorption wavelength is low. For this reason, sufficient near-infrared absorptivity cannot be obtained, and light is scattered due to the coarseness of crystals, and white turbidity is likely to occur.
  • the diimonium dye is an aggregate (X)
  • a so-called aggregate band is formed, and a steep absorption band having a small half width is obtained.
  • the aggregate (X) has a high extinction coefficient at the maximum absorption wavelength and has an excellent near infrared absorption ability.
  • This aggregate (X) is considered to be an aggregate (molecular aggregate) formed by several to several tens of molecules. Therefore, light scattering is not strong and the transparency is excellent.
  • an aminium salt compound is produced. This aminium salt compound has an absorption in the visible light region (near 480 nm) and exhibits a yellow color, so that the appearance of the near-infrared absorbing material is deteriorated.
  • the aggregate (X) is a molecular assembly, it is stabilized by the interaction between molecules, and an aminium salt compound is hardly generated.
  • the dissolved state is a state dispersed in a single molecule, it is not stabilized by the interaction between molecules. Therefore, in the dissolved state, compared to the aggregate (X), the diimonium dye is easily decomposed and an aminium salt compound is easily generated. For these reasons, it is considered that the aggregate (X) is excellent in heat resistance, moisture resistance and light resistance even in the pressure-sensitive adhesive resin (B).
  • Resin (B) The resin (B) according to the present invention is not particularly limited as long as the glass transition temperature is 0 ° C. or lower.
  • the resin (B) according to the present invention has adhesiveness. This tackiness enables direct adhesion between the near-infrared absorbing pressure-sensitive adhesive composition and the adherend.
  • the near-infrared absorbing pressure-sensitive adhesive composition and the adherend can be bonded without interposing an adhesive.
  • this resin (B) is also referred to as an adhesive resin (B).
  • the glass transition temperature of the adhesive resin (B) is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower, and more preferably ⁇ 20 ° C. or lower. More preferably, it is ⁇ 30 ° C. or lower. When it is higher than 0 ° C., the tackiness may be insufficient.
  • the glass transition temperature can also be obtained by determining the maximum temperature of the loss tangent (tan ⁇ ) by a differential scanning calorimeter (Dynamic Scanning Calorimeter) or dynamic viscoelasticity measurement.
  • Means the calculated glass transition temperature obtained by The monomer used for the polymerization of the resin (B) is not particularly limited as long as the calculated glass transition temperature Tg calculated using the Fox formula represented by the following formula satisfies a predetermined value.
  • 1 / (Tg + 273) ⁇ [Wi / (Tgi + 273)]: Fox formula Tg (° C.): calculated glass transition temperature
  • Wi weight fraction of each monomer Tgi (° C.): single weight of each monomer component Glass transition temperature of coalescence
  • the adhesive resin (B) is generally copolymerized with a carboxyl group-containing monomer such as acrylic acid for the purpose of improving the adhesion to the adherend and increasing the adhesive strength.
  • a carboxyl group-containing monomer such as acrylic acid
  • the acid value of the resin (B) is preferably 300 or less, more preferably 100 or less, and still more preferably 80 or less.
  • the acid value of the pressure-sensitive adhesive resin (B) is preferably 0 or more, more preferably 5 or more, and still more preferably 10 or more.
  • “Acid value” refers to the amount of mg of potassium hydroxide required to neutralize 1 g of the adhesive resin.
  • reaction 1 when the transparent base material mentioned later is glass, it is estimated that the following (Reaction 1) has occurred in the glass surface (interface of glass and a near-infrared absorption adhesive composition layer). It is believed that Na + ions in the glass emerge on the glass surface by diffusion. The Na + ions react with present in the near-infrared absorbing pressure-sensitive adhesive composition H 2 O (or H 2 O which is attached to the glass surface prior to application of the adhesive composition) and NaOH generates considered It is done. (Reaction 1) Na + + H 2 O ⁇ NaOH + H + (to the inside of the glass)
  • This NaOH degrades the diimonium salt.
  • this carboxyl group traps Na + . It is considered that this trap suppresses the generation of NaOH and suppresses the deterioration of the diimonium salt.
  • the reaction 1 is likely to occur because a large amount of H 2 O is present. Therefore, in particular, from the viewpoint of heat and humidity resistance, the acid value is preferably large. Specifically, as described above, 0 or more is preferable, 5 or more is more preferable, and 10 or more is more preferable.
  • the acid value of the resin (B) is excessively high, the solubility of the diimonium salt in the resin (B) increases and the aggregate (X) tends to decrease. Therefore, from the viewpoint of heat resistance for evaluating durability at high temperatures, the acid value is preferably small. Specifically, as described above, 300 or less is preferable, 100 or less is more preferable, and 80 or less is preferable. Further preferred.
  • the calculated solubility parameter is a value calculated by the method described on pages 147 to 154 of “POLYMER ENGINEERING AND SCIENCE” (1974, Vol. 14, No. 2). The method is outlined below.
  • the solubility parameter ( ⁇ ) of the homopolymer is calculated by the following formula based on the evaporation energy ( ⁇ ei) and molar volume ( ⁇ vi) of the structural unit forming the polymer.
  • ( ⁇ ei / ⁇ vi) 1/2
  • ⁇ ei Evaporation energy of i component atom or atomic group
  • ⁇ vi Molar volume of i component atom or atomic group
  • the solubility parameter of the copolymer is obtained by multiplying the evaporation energy of each constituent monomer constituting the copolymer by the mole fraction ( ⁇ Ei) and adding it to the molar volume of each constituent monomer. Calculated by multiplying by the mole fraction and adding together ( ⁇ Vi) and taking the 1/2 power.
  • the adhesive resin (B) may be a copolymer.
  • the pressure-sensitive adhesive resin (B) is preferably a copolymer of a monomer containing a functional group and another compound. Furthermore, from the viewpoint of the durability of the diimonium dye, the pressure-sensitive adhesive resin (B) is a (meth) acryl having an alicyclic, polycyclic alicyclic, aromatic or polycyclic aromatic ring alkyl group. A copolymer obtained by copolymerizing 5 to 40% by mass of an acid ester is preferable.
  • the resin (B) is a resin obtained by copolymerizing the following monomers (p1) to (p3).
  • P1 (meth) acrylic acid ester (p2) functional group-containing monomer having an alkyl group having 1 to 12 carbon atoms (P3)
  • P3 Other copolymerizable monomers
  • the preferable ratio of the monomer is 60% by mass or more and 99.9% by mass or less of (meth) acrylic acid ester of (p1), and 0.1% by mass or more and 20% by mass of the functional group-containing monomer of (p2).
  • the other copolymerizable monomer (p3) is 0% by mass or more and 30% by mass or less. More preferably, the ratio of the functional group-containing monomer (p2) is 0.1% by mass or more and 10% by mass or less.
  • the alkyl group in the monomer (p1) is a linear, branched or alicyclic alkyl group.
  • Examples of (meth) acrylic acid ester of (p1) above are methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, i-octyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, n-nonyl ( Examples include meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, and n-dodecyl (meth) acrylate.
  • the functional group-containing monomer (p2) is preferably a hydroxyl group or carboxyl group-containing monomer, more preferably a hydroxyl group or carboxyl group-containing (meth) acrylic monomer.
  • a carboxyl group-containing (meth) acrylic monomer is preferable.
  • the carboxyl group of the carboxyl group-containing (meth) acryl monomer serves as a crosslinking point. Therefore, the adhesiveness can be adjusted by the blending amount of the carboxyl group-containing (meth) acrylic monomer.
  • the carboxyl group of the carboxyl group-containing (meth) acrylic monomer contributes to the improvement of durability. Details of this reason are as described above.
  • carboxyl group-containing (meth) acrylic monomer acrylic acid and methacrylic acid are preferably used.
  • the hydroxyl group-containing (meth) acrylic monomer examples include hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate.
  • the hydroxyl group of the hydroxyl group-containing (meth) acrylic monomer can be a crosslinking point. Therefore, the hydroxyl group-containing (meth) acrylic monomer contributes to the adjustment of the adhesive properties.
  • the ratio of the hydroxyl group-containing (meth) acrylic monomer is particularly preferably 0.1% by mass or more and 10% by mass or less based on the total amount of the monomers.
  • benzyl (meth) acrylate As other copolymerizable monomers of the above (p3), benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tricyclodecanyl (meth) acrylate, Examples include phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • (p3) examples include (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate; ⁇ -methylstyrene, vinyltoluene, styrene, etc.
  • Styrene monomers represented by: vinyl ether monomers represented by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, etc .; fumaric acid; monoalkyl ester of fumaric acid; dialkyl ester of fumaric acid; maleic acid; Dialkyl ester of maleic acid; itaconic acid; monoalkyl ester of itaconic acid; dialkyl ester of itaconic acid; (meth) acrylonitrile; vinyl chloride; vinylidene chloride; vinyl acetate; Nirupirijin; vinyl carbazole and the like.
  • monomers having a functional group such as a carboxyl group, an oxazolinyl group, a pyrrolidonyl group, and a fluoroalkyl group may be copolymerized within a range that does not impair the object of the present invention.
  • More preferred adhesive resin (B) is a resin obtained by copolymerizing the following (m1) to (m4).
  • (M1) A (meth) acrylic acid ester having an alicyclic, polycyclic alicyclic, aromatic or polycyclic aromatic cyclic alkyl group.
  • (M2) A (meth) acrylic acid ester having an alkyl group. However, this alkyl group is linear or branched, and the alkyl group has 1 to 10 carbon atoms.
  • M3 Functional group-containing monomer (m4) Other copolymerizable monomers.
  • a preferable ratio of the monomer is 5% by mass or more and 40% by mass or less of (meth) acrylic acid ester of (m1), and (meth) acrylic acid ester of (m2). Is from 60% by mass to 95% by mass, the functional group-containing monomer of (m3) is from 0.1% by mass to 20% by mass, and the other monomer of (m4) is from 0% by mass to 20% by mass. % Or less.
  • Examples of the (meth) acrylic ester of (m1) include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyloxyethyl (meth).
  • Examples of the (m) acrylic acid ester of (m2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) Examples include acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, i-octyl (meth) acrylate, and the like.
  • Examples of the monomer (m3) include hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate.
  • Examples of the monomer (m4) include (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate; ⁇ -methylstyrene, vinyltoluene, Styrenic monomers typified by styrene and the like; vinyl ether monomers typified by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether and the like; fumaric acid; monoalkyl ester of fumaric acid; dialkyl ester of fumaric acid; maleic acid; Monoalkyl ester of maleic acid; dialkyl ester of maleic acid; itaconic acid; monoalkyl ester of itaconic acid; dialkyl ester of itaconic acid; (meth) acrylonitrile; vinyl chloride; vinylidene chloride; vinyl acetate; Emission
  • monomers having a functional group such as a carboxyl group, an oxazolinyl group, a pyrrolidonyl group, and a fluoroalkyl group may be copolymerized within a range that does not impair the object of the present invention.
  • Peroxide-based initiators include peroxyesters such as perbutyl O and perhexyl O (both manufactured by NOF); peroxydicarbonates such as PERROYL L and PEROIL O (both manufactured by NOF); Diacyl peroxides such as BW and Nyper BMT (both made by NOF); Peroxyketals such as perhexa 3M and perhexa MC (both made by NOF); perbutyl P, park mill D (both made by NOF) And hydroperoxides such as Park Mill P and Permenter H (both manufactured by NOF Corporation).
  • the azo initiator include ABN-E, ABN-R, and ABN-V (all manufactured by Nippon Hydrazine Kogyo).
  • a chain transfer agent may be used as necessary.
  • the chain transfer agent is not particularly limited, and thiol compounds such as normal dodecyl mercaptan, dithioglycol, octyl thioglycolate, and mercaptoethanol can be used.
  • the polymerization of the pressure-sensitive adhesive resin (B) may be performed without a solvent or in an organic solvent.
  • aromatic solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone; other known organics
  • MEK methyl ethyl ketone
  • organic solvents are preferred. From the viewpoint of the stability of the dispersion, an organic solvent having a diimonium dye solubility of 5% by mass or less is preferred.
  • the pressure-sensitive adhesive resin (B) may be composed of a single composition, or may be a polymer alloy or polymer blend in which polymers having different compositions are combined.
  • a macromonomer In order to obtain a branched resin, a macromonomer, a polyfunctional monomer, a polyfunctional initiator, or a polyfunctional chain transfer agent can be used.
  • a macromonomer AA-6, AA-2, AS-6, AB-6, AK-5 (all manufactured by Toagosei Co., Ltd.) and the like can be used.
  • the polyfunctional monomer include LIGHT EG EG, LIGHT SEL 1,4BG, LIGHT ESTER NP, LIGHT ESTER TMP (all manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
  • polyfunctional initiator examples include Pertetra A, BTTB-50 (all manufactured by NOF Corporation), Trigonox 17-40MB, Parkadox 12-XL25 (all manufactured by Explosive Akzo), and the like.
  • polyfunctional chain transfer agent pentaerythritol tetrakis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (thioglycolate) or the like can be used.
  • Near-infrared-absorbing pressure-sensitive adhesive composition The near-infrared-absorbing pressure-sensitive adhesive composition of the present invention is excellent in sustainability of near-infrared absorptivity because it uses a dimonium dye dispersed therein. Moreover, this near-infrared absorption adhesive composition is excellent in transparency in the visible region. Since the near-infrared absorbing adhesive composition of the present invention contains an adhesive resin, it can be easily adhered to an adherend.
  • This near-infrared absorbing pressure-sensitive adhesive composition can be excellent in haze even though the diimonium dye is a pigment dispersion.
  • the near-infrared absorbing adhesive composition has a haze of 5 or less, more preferably 3 or less. This haze is measured by the method shown by the below-mentioned Example.
  • near infrared absorbing dyes may be added to the near infrared absorbing pressure-sensitive adhesive composition of the present invention.
  • Other near infrared absorbing dyes that can be used in combination include known cyanine dyes, polymethine dyes, squarylium dyes, porphyrin dyes, metal dithiol complex dyes, phthalocyanine dyes, diimonium dyes, inorganic oxide particles, and the like. Can be mentioned.
  • Preferred other dyes are dyes that can exhibit a quencher effect with respect to the diimonium dye.
  • the quencher effect is an effect of deexciting an active molecule in an excited state.
  • other dyes having an effect of de-exciting and stabilizing diimonium dye molecules, diimonium anions or diimonium cations are preferred.
  • a phthalocyanine dye is preferable as the other dye.
  • a dye or a metal dithiol complex dye having a maximum absorption wavelength of 800 to 950 nm is preferably used in combination.
  • near infrared rays of 800 to 1100 nm can be effectively absorbed. From the viewpoint of obtaining a near-infrared absorbing pressure-sensitive adhesive composition having good durability, it is particularly preferable to use a phthalocyanine dye in combination.
  • the phthalocyanine compound that can be used in the present invention is not particularly limited as long as it has excellent near-infrared absorption ability, and a known phthalocyanine compound can be used.
  • Preferable phthalocyanine compounds include compounds represented by the following formula (A) or compounds represented by the following formula (I).
  • a 1 to A 16 represent functional groups.
  • a 1 to A 16 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a hydroxysulfonyl group, a carboxyl group, a thiol group, or an optionally substituted carbon atom having 1 to 20 carbon atoms.
  • Alkyl groups optionally substituted alkoxy groups having 1 to 20 carbon atoms, optionally substituted aryl groups having 6 to 20 carbon atoms, optionally substituted carbon atoms 6 to 20 Aryloxy groups, optionally substituted aralkyl groups having 7 to 20 carbon atoms, optionally substituted aralkyloxy groups having 7 to 20 carbon atoms, and optionally substituted carbon atoms 1-20 alkylthio group, optionally substituted arylthio group having 6-20 carbon atoms, optionally substituted aralkylthio group having 7-20 carbon atoms, substituted An optionally substituted alkylsulfonyl group having 1 to 20 carbon atoms, an optionally substituted arylsulfonyl group having 6 to 20 carbon atoms, and an optionally substituted aralkyl having 7 to 20 carbon atoms A sulfonyl group, an optionally substituted acyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy
  • the functional groups of A 1 to A 16 may be the same or different, and may be the same or different in the same type, and the functional groups may be connected via a linking group.
  • M 1 represents two hydrogen atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or an oxy metal.
  • the “acyl group” has the same definition as that described on page 17 of the third edition of the Dictionary of Science and Technology Terms published by the Nikkan Kogyo Shimbun.
  • a group from which a group has been removed is a group represented by the formula: RCO— (where R is an aliphatic group, an alicyclic group or an aromatic group).
  • examples of the halogen atom of the functional groups A 1 to A 16 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the optionally substituted alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, Examples thereof include linear, branched or cyclic alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, etc. It is not limited to.
  • Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, iso-propyloxy group, n-butyloxy group, iso-butyloxy group, sec-butyloxy Group, t-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, etc.
  • an alkoxy group is mentioned, it is not limited to these.
  • Examples of the optionally substituted aryl group having 6 to 20 carbon atoms include, but are not limited to, a phenyl group and a naphthyl group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms which may be substituted include, but are not limited to, a phenoxy group and a naphthoxy group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms which may be substituted include, but are not limited to, benzyl group, phenethyl group, diphenylmethyl group and the like.
  • Examples of the aralkyloxy group having 7 to 20 carbon atoms which may be substituted include a benzyloxy group, a phenethyloxy group and a diphenylmethyloxy group, but are not limited thereto.
  • Examples of the optionally substituted alkylthio group having 1 to 20 carbon atoms include methylthio group, ethylthio group, n-propylthio group, iso-propylthio group, n-butylthio group, iso-butylthio group, sec-butylthio group, linear, branched or cyclic alkylthio groups such as t-butylthio group, n-pentylthio group, n-hexylthio group, cyclohexylthio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, etc.
  • Examples of the optionally substituted arylthio group having 6 to 20 carbon atoms include a phenylthio group and a naphthylthio group, but are not limited thereto.
  • Examples of the aralkylthio group having 7 to 20 carbon atoms which may be substituted include, but are not limited to, benzylthio group, phenethylthio group, diphenylmethylthio group and the like.
  • Examples of the optionally substituted alkylsulfonyl group having 1 to 20 carbon atoms include methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, iso-propylsulfonyl group, n-butylsulfonyl group, iso-butylsulfonyl Group, sec-butylsulfonyl group, t-butylsulfonyl group, n-pentylsulfonyl group, n-hexylsulfonyl group, cyclohexylsulfonyl group, n-heptylsulfonyl group, n-octylsulfonyl group, 2-ethylhexylsulfonyl group, etc.
  • Examples include, but are not limited to, linear, branched, or cyclic alkylsulfonyl groups.
  • Examples of the optionally substituted arylsulfonyl group having 6 to 20 carbon atoms include, but are not limited to, a phenylsulfonyl group and a naphthylsulfonyl group.
  • Examples of the aralkylsulfonyl group which may be substituted include a benzylsulfonyl group, a phenethylsulfonyl group, a diphenylmethylsulfonyl group, and the like, but are not limited thereto.
  • Examples of the optionally substituted acyl group having 1 to 20 carbon atoms include methylcarbonyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n-butylcarbonyl group, iso-butylcarbonyl group, straight-chain such as sec-butylcarbonyl group, t-butylcarbonyl group, n-pentylcarbonyl group, n-hexylcarbonyl group, cyclohexylcarbonyl group, n-heptylcarbonyl group, n-octylcarbonyl group, 2-ethylhexylcarbonyl group, Examples include, but are not limited to, branched or cyclic alkylcarbonyl groups, arylcarbonyl groups such as benzylcarbonyl groups and phenylcarbonyl groups, and aralkylcarbonyl groups such as benzoyl groups.
  • Examples of the optionally substituted alkoxycarbonyl group having 2 to 20 carbon atoms include methoxycarbonyl group, ethoxycarbonyl group, n-propyloxycarbonyl group, iso-propyloxycarbonyl group, n-butyloxycarbonyl group, iso -Butyloxycarbonyl group, sec-butyloxycarbonyl group, t-butyloxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, cyclohexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxy Examples thereof include, but are not limited to, a carbonyl group and a 2-ethylhexyloxycarbonyl group.
  • Examples of the optionally substituted aryloxycarbonyl group having 7 to 20 carbon atoms include, but are not limited to, phenoxycarbonyl and naphthylcarbonyl groups.
  • Examples of the optionally substituted aralkyloxycarbonyl group having 8 to 20 carbon atoms include benzyloxycarbonyl group, phenethyloxycarbonyl group, diphenylmethyloxycarbonyl group and the like, but are not limited thereto. .
  • Examples of the optionally substituted alkylcarbonyloxy group having 2 to 20 carbon atoms include acetyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, iso-propylcarbonyloxy group, n-butylcarbonyloxy group , Iso-butylcarbonyloxy group, sec-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, n-hexylcarbonyloxy group, cyclohexylcarbonyloxy group, n-heptylcarbonyloxy group, 3- A heptyl carbonyloxy group, an n-octyl carbonyloxy group, etc.
  • the arylcarbonyloxy group having 7 to 20 carbon atoms which may be substituted includes a benzoyloxy group, but is not limited thereto.
  • Examples of the aralkylcarbonyloxy group having 8 to 20 carbon atoms which may be substituted include, but are not limited to, a benzylcarbonyloxy group.
  • Examples of the optionally substituted heterocyclic group having 2 to 20 carbon atoms include, but are not limited to, a pyrrole group, an imidazole group, a piperidine group, and a morpholine group.
  • the alkyl group, alkoxy group, aryl group, aryloxy group, aralkyl group, aralkyloxy group, alkylthio group, arylthio group, aralkylthio group, alkylsulfonyl group of the functional groups A 1 to A 16 An arylsulfonyl group, an aralkylsulfonyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an aralkylcarbonyloxy group or a heterocyclic group
  • substituents present in these functional groups A 1 to A 16 for example, halogen atoms, acyl groups, alkyl groups, phenyl groups, alkoxy groups, halogenated alkyl groups, halogenated alkoxy groups, nitro
  • the substituents on the optionally substituted amino group, the optionally substituted aminosulfonyl group, and the optionally substituted aminocarbonyl group of the functional groups A 1 to A 16 are as follows: Hydrogen atom; linear, branched or cyclic such as methyl group, ethyl group, n-propyl group, n-butyl group, sec-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, cyclohexyl group, etc.
  • Alkyl group aryl group such as phenyl group and naphthyl group; aralkyl group such as benzyl group and phenethyl group; acetyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n-butylcarbonyl group, iso- Butylcarbonyl group, sec-butylcarbonyl group, t-butylcarbonyl group, n-pentylcarbonyl group, n-hexyl Linear, branched or cyclic alkylcarbonyl groups such as carbonyl group, cyclohexylcarbonyl group, n-heptylcarbonyl group, 3-heptylcarbonyl group and n-octylcarbonyl group; arylcarbonyl groups such as benzoyl group and naphthylcarbonyl group; benzyl Examples thereof include, but are not limited
  • substituents may be present in the number of 0, 1 or 2, and when 2 are present, they may be the same or different from each other, and even in the same type, they may be the same or different. Also good. Moreover, when there are two substituents, the substituents may be connected via a linking group.
  • Examples of the divalent metal as the metal M 1 include Cu (II), Co (II), Zn (II), Fe (II), Ni (II), Ru (II), and Rh (II). , Pd (II), Pt (II), Mn (II), Mg (II), Ti (II), Be (II), Ca (II), Ba (II), Cd (II), Hg (II) , Pb (II), Sn (II) and the like, but are not limited thereto.
  • Examples of trivalent substituted metal atoms include Al—F, Al—Cl, Al—Br, Al—I, Fe—Cl, Ga—F, Ga—Cl, Ga—I, Ga—Br, and In—F.
  • Examples of tetravalent substituted metal atoms include CrCl 2 , SiF 2 , SiCl 2 , SiBr 2 , SiI 2 , ZrCl 2 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , SnF 2 , SnCl 2 , SnBr 2 , TiF 2 , TiCl 2 , TiBr 2 , Ge (OH) 2 , Mn (OH) 2 , Si (OH) 2 , Sn (OH) 2 , Zr (OH) 2 , Cr (R 1 ) 2 , Ge (R 1 ) 2 , Si (R 1 ) 2 , Sn (R 1 ) 2 , Ti (R 1 ) 2 ⁇ R 1 represents an alkyl group, a phenyl group, a naphthyl group, or a derivative thereof ⁇ Cr (OR 2 ) 2 , Ge (OR 2) 2, Si (OR 2) 2, Sn (OR 2) 2, Ti (OR 2) 2,
  • B 1 to B 24 represent functional groups.
  • Each of B 1 to B 24 is any of the functional groups represented by A 1 to A 16 in the above formula (a).
  • the functional groups of B 1 to B 24 may be the same type or different types, and may be the same or different in the same type, and the functional groups may be linked via a linking group.
  • M 2 represents two hydrogen atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or an oxy metal.
  • Examples of M 2 are the same as the examples of M 1 in the above formula (a), but are not limited thereto.
  • EEX COLOR IR-10A trade names EEX COLOR IR-12, EEX COLOR IR-14, EEX COLOR IR-906, EEX COLOR IR-910, TX-EX-820 And TX-EX-915 (both manufactured by Nippon Shokubai).
  • a cyanine dye may be used in combination as a near infrared absorbing dye.
  • the cyanine dye is not particularly limited as long as it has an excellent near-infrared absorbing ability, but a salt composed of an indolium cation or a benzothiazolium cation and a counter anion can be preferably used.
  • a salt composed of an indolium cation or a benzothiazolium cation and a counter anion can be preferably used.
  • the indolium cation or benzothiazolium cation cations represented by the above formulas (a) to (i) can be preferably used, but are not limited thereto.
  • the counter anion of the indolium cation or benzothiazolium cation is not particularly limited, and chloride ion, bromide ion, iodide ion, perchlorate ion, nitrate ion, benzenesulfonate ion, p-toluenesulfonic acid Ion, methyl sulfate ion, ethyl sulfate ion, propyl sulfate ion, tetrafluoroborate ion, tetraphenylborate ion, hexafluorophosphate ion, benzenesulfinate ion, acetate ion, trifluoroacetate ion, propionate ion, benzoic acid Acid ion, oxalate ion, succinate ion, malonate ion, oleate ion, stearate ion,
  • ADS812MI counter anion is an iodide ion
  • ADS780MT Counter anion is an iodide ion
  • AS0712 S0712 manufactured by FEW Chemical Co.
  • Counter anion is hexafluorophosphate ion
  • S0726 manufactured by FEW Chemical Co.
  • Counter anion is chloride ion
  • ADS780MT As cyanine-based dye containing a cation represented by the above general formula (d), ADS780MT manufactured by American Dye Source Co.
  • the blending amount of the diimonium dye of the present invention, or the total blending amount of the diimonium dye of the present invention and other near-infrared absorbing dyes can be appropriately selected depending on the type and use of the dye.
  • the blending amount is preferably 0.01 to 10% by mass, more preferably 0. 1 to 5% by mass.
  • the total amount of these dyes is preferably 0.01 to 10% by mass, more preferably 0.1%, based on the solid content of the resin. ⁇ 5% by mass.
  • the blending amount is less than 0.01% by mass, there is a possibility that sufficient near infrared absorption ability cannot be achieved. Conversely, when it exceeds 10 mass%, the effect corresponding to addition cannot be acquired and it is not economical, and conversely, transparency in the visible region may be impaired.
  • the near-infrared absorbing adhesive composition of the present invention is characterized by transparency in the visible region, durability of near-infrared absorbing ability, and good adhesiveness.
  • a dye that absorbs visible light may be added to the near-infrared absorbing adhesive composition of the present invention.
  • dyes that absorb visible light include cyanine, phthalocyanine, naphthalocyanine, porphyrin, tetraazaporphyrin, metal dithiol complex, squarylium, azurenium, diphenylmethane, triphenylmethane, oxazine, and azine.
  • dye such as a system and a diketopyrrolopyrrole type
  • the near-infrared absorbing adhesive composition of the present invention is used as an optical filter for PDP, it is preferable to use a visible absorbing dye having a maximum absorption wavelength of 550 to 650 nm in order to absorb unnecessary neon light emission.
  • the type of the dye that absorbs neon light emission is not particularly limited, and a cyanine dye and a tetraazaporphyrin dye can be used.
  • Adeka Arcles TY-102 Adeka Arcles TY-14 (Asahi Denka Kogyo Co., Ltd.), Adeka Arcles TY-15 (Asahi Denka Kogyo Co., Ltd.), TAP-2 ( Yamada Chemical Industries), TAP-18 (Yamada Chemical Industries), TAP-45 (Yamada Chemical Industries), NK-5451 (Hayashibara Biochemical Laboratories), NK-5532 (Hayashibara Biochemical Laboratories) ), NK-5450 (produced by Hayashibara Biochemical Laboratories), and the like.
  • the addition amount of the dye for absorbing neon emission varies depending on the kind of the dye, but it is preferable to add so that the transmittance at the maximum absorption wavelength is about 20 to 80%.
  • a visible light absorbing dye for toning may be added.
  • coloring pigment 1: 2 chromium complex, 1: 2 cobalt complex, copper phthalocyanine, anthraquinone, diketopyrrolopyrrole, and the like can be used.
  • Orazol Blue GN (manufactured by Ciba Specialty Chemicals), Orazol Blue BL (manufactured by Ciba Specialty Chemicals), Orazol Red 2B (manufactured by Ciba Specialty Chemicals), Orazol Red G (Ciba) ⁇ Specialty Chemicals), Orazole Black CN (Ciba Specialty Chemicals), Orasol Yellow 2GLN (Ciba Specialty Chemicals), Orazole Yellow 2RLN (Ciba Specialty Chemicals), Microlith DPP Red BK (manufactured by Ciba Specialty Chemicals) and the like.
  • the near-infrared absorbing pressure-sensitive adhesive composition of the present invention may contain one or more diluent solvents (E), additives, and curing agents as long as the performance is not lost.
  • the dilution solvent (E) can facilitate coating of the near-infrared absorbing pressure-sensitive adhesive composition.
  • the dilution solvent (E) that can be contained in the near-infrared absorbing pressure-sensitive adhesive composition is not limited, and examples thereof include aliphatic systems such as cyclohexane and methylcyclohexane; aromatic systems such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like.
  • Ketone type such as ethyl acetate and butyl acetate; nitrile type such as acetonitrile; alcohol type such as methanol, ethanol and isopropyl alcohol; ether type such as tetrahydrofuran and dibutyl ether; butyl cellosolve, propylene glycol n-propyl ether, propylene glycol glycol ethers such as n-butyl ether and propylene glycol monomethyl ether acetate; amides such as formamide and N, N-dimethylformamide; methylene chloride, chloroform and the like Androgenic system or the like can be used. These solvents may be used alone or in combination.
  • a solvent having a solubility of 5% by mass or less with respect to the diimonium dye used it is preferable to use a solvent having a solubility of 5% by mass or less with respect to the diimonium dye used.
  • a solvent having a solubility of the dimonium dye exceeding 5% by mass is used, the dimonium dispersion may be dissolved.
  • the solubility of the dimonium dye is measured by the following method. First, five kinds of samples having a content of diimonium dye of 0.01% by mass, 0.1% by mass, 1.0% by mass, 2.0% by mass and 5.0% by mass were prepared, respectively. Sonic agitate. Next, it is confirmed whether or not there is a residue for each sample. The residue is confirmed by visually observing whether there is a residue on the filter paper after filtration. Solubility is determined by the presence or absence of residues. When no residue is confirmed in the 5.0% by mass sample (and other samples), it is determined that “the solubility is 5% by mass or more”.
  • a solvent having a boiling point of 100 ° C. or less such as ethyl acetate is suitable as the diluting solvent (E).
  • a solvent having a boiling point of 100 to 150 ° C. such as toluene, methyl isobutyl ketone, butyl acetate or the like is suitable as the diluting solvent (E).
  • a solvent having a boiling point of 150 to 200 ° C. such as butyl cellosolve, propylene glycol n-propyl ether, propylene glycol n-butyl ether, propylene glycol monomethyl ether acetate, etc. Is preferred.
  • diluting solvent (E) examples include toluene, ethyl acetate, butyl acetate and methylcyclohexane. From the viewpoint of the durability of the diimonium dye, the dilution solvent (E) is preferably the same as the solvent (D). ⁇ ⁇ ⁇ ⁇ From this viewpoint, toluene and ethyl acetate are particularly preferable as the diluting solvent (E).
  • the viscosity of the near-infrared absorbing pressure-sensitive adhesive composition is appropriately selected depending on the type of the coating machine, but in the case of coating by a small-diameter gravure kiss reverse method such as a micro gravure coater, 1 to 1000 mPa ⁇ In the case of coating by an extrusion method such as s or a die coater, 100 to 10,000 mPa ⁇ s is generally used.
  • the solid content of the near-infrared absorbing adhesive composition is adjusted according to the viscosity of the paint.
  • additives that are used in resin compositions that form films, coating films, and the like can be used.
  • additives include dispersants, leveling agents, antifoaming agents, viscosity modifiers, matting agents, tackifiers, antistatic agents, antioxidants, UV absorbers, light stabilizers, quenchers, curing agents, A blocking agent etc. are mentioned.
  • an isocyanate compound, a thiol compound, an epoxy compound, an amine compound, an imine compound, an oxazoline compound, a silane coupling agent, a UV curing agent, and the like can be used as the curing agent.
  • the near-infrared absorbing adhesive composition of the present invention is a near-infrared absorbing material for optical, agricultural, architectural or vehicle use, an image recording material such as photosensitive paper, an information recording material such as an optical disc, and a dye-sensitized type. It can be used for a solar cell such as a solar cell, a photosensitive material using a semiconductor laser beam or the like as a light source, and an eye strain prevention material.
  • the near infrared absorbing pressure-sensitive adhesive composition of the present invention is particularly preferably used in the form of a film or a sheet.
  • the near-infrared absorbing material according to the present invention includes the near-infrared absorbing adhesive composition.
  • the near-infrared absorbing material of the present invention may be a film obtained by forming the near-infrared absorbing adhesive composition into a film, and a coating film containing the near-infrared absorbing adhesive composition is laminated on a transparent substrate. It may be what you did.
  • the transparent substrate is generally usable as an optical material and is not particularly limited as long as it is substantially transparent.
  • Specific examples include glass; olefin polymers such as cyclopolyolefin and amorphous polyolefin; methacrylic polymers such as polymethyl methacrylate; vinyl polymers such as vinyl acetate and vinyl halides; polyesters such as PET; polycarbonate and butyral.
  • examples thereof include polyvinyl acetals such as resins; polyaryl ether resins; lactone ring-containing resin films.
  • the transparent substrate is subjected to surface treatment by a conventionally known method such as corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, and coating such as an anchor coating agent and a primer. May be applied.
  • the base resin constituting the transparent base material can be blended with known additives, heat aging inhibitors, lubricants, antistatic agents, and the like.
  • the transparent substrate is formed into a film or a sheet using a known method such as injection molding, T-die molding, calendar molding, compression molding, or a method of casting by melting in an organic solvent.
  • the base material constituting the transparent base material may be unstretched or stretched, and may be laminated with another base material.
  • a PET film As a transparent substrate for obtaining a near infrared ray absorbing film by a coating method, a PET film is preferable, and a PET film subjected to an easy adhesion treatment is particularly preferable.
  • a PET film As a transparent substrate for obtaining a near infrared ray absorbing film by a coating method, a PET film is preferable, and a PET film subjected to an easy adhesion treatment is particularly preferable.
  • Cosmo Shine A4300 manufactured by Toyobo
  • Lumirror U34 manufactured by Toray
  • Melinex 705 manufactured by Teijin DuPont
  • Functional films such as a TAC (triacetylcellulose) film, an antireflection film, an antiglare film, an impact absorbing film, an electromagnetic wave shielding film, and an ultraviolet absorbing film can also be used as the transparent substrate.
  • TAC triacetylcellulose
  • the transparent substrate is preferably a film.
  • glass PET film, lactone ring-containing resin film, easy-adhesive PET film, TAC film, antireflection film and electromagnetic wave shielding film are preferably used as the transparent substrate.
  • an inorganic base material such as glass is used as the transparent base material, a material having a small alkali component is preferable from the viewpoint of durability of the near-infrared absorbing dye.
  • the thickness of the near-infrared absorbing material of the present invention is generally about 0.1 ⁇ m to 10 mm, but is appropriately determined according to the purpose. Further, the content of the near-infrared absorbing dye contained in the near-infrared absorbing material is also appropriately determined according to the purpose.
  • the method for producing the near-infrared absorbing material of the present invention is not particularly limited.
  • the following method can be used.
  • III a method of coating the near-infrared absorbing adhesive composition according to the present invention on the transparent substrate, etc. It is.
  • the near-infrared absorbing pressure-sensitive adhesive composition according to the present invention is usually used as a resin powder or pellet. Examples thereof include a method of adding, heating to 150 to 350 ° C. and dissolving, followed by molding to produce a resin plate, and a method of forming a film (resin plate) with an extruder.
  • the near-infrared absorbing pressure-sensitive adhesive composition according to the present invention and a monomer or oligomer are cast polymerized in the presence of a polymerization catalyst, and the mixture is injected into a mold and reacted to be cured. Or by pouring into a mold and solidifying until a hard product is formed in the mold.
  • Many resins can be molded in this process. Specific examples of such resins include acrylic resins, diethylene glycol bis (allyl carbonate) resins, epoxy resins, phenol-formaldehyde resins, polystyrene resins, silicon resins, and the like.
  • the casting method by bulk polymerization of methyl methacrylate which can obtain an acrylic sheet excellent in hardness, heat resistance, and chemical resistance, is preferable.
  • known radical thermal polymerization initiators can be used, and examples thereof include peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, and azo compounds such as azobisisobutyronitrile. .
  • the amount used is generally 0.01 to 5% by mass relative to the total amount of the mixture.
  • the heating temperature in the thermal polymerization is generally 40 to 200 ° C., and the polymerization time is generally about 30 minutes to 8 hours.
  • a method of photopolymerization by adding a photopolymerization initiator or a sensitizer can also be used.
  • a method of coating the near-infrared absorbing material of the present invention on a transparent substrate a paint in which the near-infrared absorbing adhesive composition of the present invention is fixed to fine particles, and the fine particles are dispersed are used. There is a method of coating on a transparent substrate.
  • a known coating machine When applying the near-infrared absorbing adhesive composition to the substrate, a known coating machine can be used. Examples thereof include knife coaters such as comma coaters, fountain coaters such as slot die coaters and lip coaters, kiss coaters such as micro gravure coaters, roll coaters such as gravure coaters and reverse roll coaters, flow coaters, spray coaters and bar coaters.
  • knife coaters such as comma coaters, fountain coaters such as slot die coaters and lip coaters, kiss coaters such as micro gravure coaters, roll coaters such as gravure coaters and reverse roll coaters, flow coaters, spray coaters and bar coaters.
  • the substrate Prior to coating, the substrate may be surface treated by a known method such as corona discharge treatment or plasma treatment.
  • a drying / curing method a known method such as hot air, far-infrared ray or UV curing can be used. You may wind up with a well-known protective film after drying and hardening.
  • the drying method is not particularly limited, and hot air drying or far infrared drying can be used.
  • the drying temperature may be determined in consideration of the length of the drying line, the line speed, the coating amount, the residual solvent amount, the type of substrate, and the like. If the substrate is a PET film, the general drying temperature is 50 to 150 ° C. When there are a plurality of dryers in one line, each dryer may be set to a different temperature and wind speed. In order to obtain a coating film having a good coating appearance, it is preferable that the drying condition on the inlet side is mild.
  • the near-infrared-absorbing pressure-sensitive adhesive composition of the present invention can be a constituent material of an excellent optical filter having high transparency in the visible region and high near-infrared absorption ability.
  • the near-infrared absorbing pressure-sensitive adhesive composition of the present invention has higher durability, especially heat resistance and light resistance than conventional near-infrared absorbing materials, so that appearance and near-infrared absorbing ability are maintained even during long-term storage and use.
  • the near-infrared absorbing adhesive composition of the present invention can be easily formed into a sheet or film, it is effective for thin displays and optical semiconductor elements.
  • the near-infrared absorbing adhesive composition of the present invention can also be used in filters and films that need to cut infrared rays, such as agricultural films, heat insulating films, sunglasses, optical recording materials, and the like.
  • the near-infrared absorbing adhesive composition of the present invention is suitable for an optical filter.
  • This optical filter is formed using the near-infrared absorbing material.
  • This optical filter is suitable as an optical filter for an optical semiconductor element or an optical filter for a thin display.
  • Such an optical filter has a total light transmittance in the visible region of 40% or more, preferably 50% or more, more preferably 60% or more, and a transmittance of near infrared light having a wavelength of 800 to 1100 nm is preferably 30% or less. Is 15% or less, more preferably 5% or less.
  • the optical filter of the present invention includes an electromagnetic wave shielding layer, an antireflection layer, a glare prevention (antiglare) layer, a scratch prevention layer, and color adjustment.
  • a support such as a layer or glass may be provided.
  • each layer of the optical filter may be arbitrarily selected.
  • an optical filter that preferably combines at least one of an antireflection layer and an antiglare layer and at least two layers of a near-infrared absorbing layer is preferable, and more preferably at least 3 that further combines an electromagnetic wave shielding layer.
  • An optical filter having a layer is preferable.
  • the antireflection layer or the glare prevention layer is the outermost layer on the human side.
  • the stacking order between the near infrared absorbing layer and the electromagnetic wave shielding layer is arbitrary.
  • other layers such as a damage prevention layer, a color adjustment layer, a shock absorption layer, a support body, and a transparent base material, may be inserted between the three layers.
  • an antireflection layer or an antiglare layer on the outermost layer on the human side in order to make the optical filter for thin display easier to see the screen.
  • the antireflection layer is for suppressing reflection of the surface and preventing reflection of external light such as a fluorescent lamp on the surface.
  • the antireflection layer consists of a single layer of a resin with a different refractive index, such as an acrylic resin or a fluororesin, when it is made of an inorganic thin film such as a metal oxide, fluoride, silicide, boride, carbide, nitride, or sulfide.
  • it may be composed of multi-layers, and as a manufacturing method in the former case, there is a method of forming an antireflection coating on a transparent substrate in the form of a single layer or a multilayer using vapor deposition or sputtering. is there.
  • a knife coater such as a comma coater, a fountain coater such as a slot coater and a lip coater, a gravure coater, a flow coater, a spray coater, and a bar coater are used.
  • a bar coater such as a comma coater, a fountain coater such as a slot coater and a lip coater, a gravure coater, a flow coater, a spray coater, and a bar coater are used.
  • the glare-preventing layer is formed by converting fine powders of silica, melamine resin, acrylic resin, etc. into ink, applying it on any layer of the filter of the present invention by a conventionally known coating method, and curing it by heat or photocuring. Is done.
  • An antiglare-treated film may be attached on the filter.
  • the scratch-preventing layer is a coating solution prepared by dissolving or dispersing an acrylate such as urethane acrylate, epoxy acrylate or polyfunctional acrylate and a photopolymerization initiator in an organic solvent by a conventionally known coating method, and any of the filters of the present invention. On this layer, it is formed by coating, drying and photocuring.
  • An optical filter having an antireflection layer or an antiglare layer and a near infrared absorbing layer is provided with a layer made of the near infrared absorbing adhesive composition or the near infrared absorbing material of the present invention on the back surface of the antireflection film or the antiglare film. Obtained by laminating.
  • the near-infrared absorbing layer according to the present invention in the form of a film and the antireflection film or the anti-glare film may be directly bonded together, or the near-infrared absorbing adhesive composition of the present invention in solution may be used. You may apply
  • a near-infrared absorbing layer is provided on the back surface of the antireflection film or the antiglare film, it is preferable to use an ultraviolet absorbing film as a transparent substrate in order to suppress deterioration of the pigment due to ultraviolet rays.
  • the near infrared ray absorbing pressure-sensitive adhesive composition of the present invention has adhesiveness. Therefore, when the near-infrared absorbing layer and another layer are bonded, a pressure-sensitive adhesive or an adhesive may be unnecessary.
  • a near-infrared absorption layer is a layer containing the near-infrared absorption adhesive composition of this invention.
  • the plasma display optical filter is preferably provided with an electromagnetic wave shielding layer in order to remove electromagnetic waves generated from the panel.
  • the electromagnetic wave shielding layer is a film in which a metal mesh is patterned on a film by etching, printing, etc., or a film in which a metal is deposited on a fiber mesh and embedded in a resin. used.
  • An optical filter having two layers of a near-infrared absorbing layer and an electromagnetic wave shielding layer can be obtained by combining an electromagnetic wave prevention material and a near-infrared absorbing adhesive composition.
  • the film form of the near-infrared absorbing adhesive composition of the present invention and the electromagnetic wave shielding film may be laminated, or the solution of the near-infrared absorbing adhesive composition of the present invention is used as an electromagnetic wave shielding film. You may apply directly.
  • the near-infrared absorption adhesive composition of this invention can also be used.
  • the near-infrared absorption adhesive composition of this invention can also be used.
  • an optical filter having three layers of a near-infrared absorbing layer, a reflection or anti-glare layer and an electromagnetic wave shielding layer a near-infrared absorbing film comprising the near-infrared absorbing adhesive composition of the present invention, a reflection or anti-glare film, an electromagnetic wave A laminate of three shielding films can be used.
  • an optical filter having a structure in which a near-infrared absorbing film made of the near-infrared absorbing adhesive composition of the present invention is sandwiched between a reflection or glare-preventing film and an electromagnetic wave shielding film is preferable.
  • this optical filter is laminated
  • a preferable optical filter is an optical filter in which a near-infrared absorbing adhesive layer comprising the near-infrared absorbing adhesive composition of the present invention is bonded to a composite film including an electromagnetic wave shielding layer and a reflection or glare-preventing layer on a single film. It is.
  • the optical filter for thin display of the present invention may be installed away from the display device or may be directly attached to the display device.
  • an optical filter that does not use glass is preferable.
  • the present invention relating to a thin display is a thin display comprising the near-infrared absorbing adhesive composition of the present invention, the near-infrared absorbing material of the present invention, or the optical filter of the present invention.
  • a thin display in which an optical filter is directly bonded to the display body can provide clearer image quality.
  • the optical filter is directly attached, it is preferable to use tempered glass as the display glass or an optical filter provided with a shock absorbing layer.
  • rubber such as styrene butadiene rubber, polyisoprene rubber, polyisobutylene rubber, natural rubber, neoprene rubber, chloroprene rubber, butyl rubber, polymethyl acrylate
  • examples include polyacrylic acid alkyl esters such as ethyl polyacrylate and butyl polyacrylate, and these may be used alone, or further added with piccolite, polyvale, rosin ester, etc. as a tackifier. It may be used.
  • an adhesive having an impact absorbing ability can be used, but it is not limited to this. Without using an adhesive, the optical filter of the present invention may be attached to the display device by utilizing the adhesiveness of the near-infrared absorbing layer.
  • this adhesive layer is usually 5 to 2000 ⁇ m, preferably 10 to 1000 ⁇ m.
  • a release film is provided on the surface of the pressure-sensitive adhesive layer, and this release film protects the pressure-sensitive adhesive layer and prevents dust from adhering to the pressure-sensitive adhesive layer until the optical filter is attached to the surface of the thin display. Also good.
  • a non-adhesive part is formed by forming a part where the adhesive layer is not provided or by sandwiching a non-adhesive film between the adhesive layer at the edge of the filter and the release film. If the part is a peeling start part, the work at the time of sticking is easy.
  • the impact absorbing layer is for protecting the display device from external impacts. It is preferably used in an optical filter that does not use a support.
  • the shock absorbing material ethylene-vinyl acetate copolymer, acrylic polymer, polyvinyl chloride, urethane-based, silicon-based resin as disclosed in JP-A Nos. 2004-246365 and 2004-264416 are disclosed. However, it is not limited to these.
  • the methods for evaluating near-infrared absorptivity, heat resistance, light resistance and acid value are as follows.
  • the dye residual ratio (%) was measured in the evaluation of heat resistance and light resistance.
  • the absorbance at ⁇ max after the test is A1 (%) and the absorbance at ⁇ max before the test is B1 (%)
  • the dye residual ratio P1 (%) is calculated by the following equation.
  • P1 (A1 / B1) ⁇ 100
  • the absorbance is obtained by the following formula when the transmittance is T (%).
  • Absorbance ⁇ log (T / 100)
  • Production Example 1 As monomers, 2-ethylhexyl acrylate (264.6 g), butyl acrylate (150 g), cyclohexyl methacrylate (180 g) and 2-hydroxyethyl acrylate (5.4 g) were weighed and mixed thoroughly to obtain a polymerizable monomer mixture ( 1) was obtained.
  • the internal temperature of the flask was raised to 95 ° C., and a polymerization initiator, Niper BMT-K40 (0.15 g), was charged into the flask to initiate the polymerization reaction. 30 minutes after charging the polymerization initiator, the dropping of the dropping mixture (1) from the dropping funnel was started. The dropping mixture (1) was dropped evenly over 90 minutes. After completion of the dropwise addition of the mixture for dripping (1), the mixture was aged for 6 hours while maintaining the reflux temperature while appropriately diluting with ethyl acetate as the viscosity increased.
  • a polymerization initiator Niper BMT-K40 (0.15 g
  • the reaction solution is diluted with ethyl acetate so that the nonvolatile content is about 45%, and resin (1) having a calculated glass transition temperature (Tg) of ⁇ 35 ° C. and a calculated solubility parameter of 8.99 is obtained. Obtained.
  • This resin (1) was an adhesive resin.
  • the weight average molecular weight (Mw) of the resin (1) was 420,000, and the acid value of the resin (1) was 0.
  • Production Example 2 486 g of butyl acrylate, 108.6 g of methyl methacrylate and 5.4 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (2).
  • a resin (2) as an adhesive resin was obtained in the same manner as in Production Example 1 except that the polymerizable monomer mixture (2) was used in place of the polymerizable monomer mixture (1).
  • Resin (2) has a calculated glass transition temperature (Tg) of ⁇ 35.6 ° C., a calculated solubility parameter of 9.84, a weight average molecular weight (Mw) of 640,000, and an acid value of 0. there were.
  • Production Example 3 570.6 g of butyl acrylate, 24 g of acrylic acid and 5.4 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (3).
  • a resin (3) as an adhesive resin was obtained in the same manner as in Production Example 1 except that the polymerizable monomer mixture (3) was used in place of the polymerizable monomer mixture (1).
  • Resin (3) has a calculated glass transition temperature (Tg) of ⁇ 50 ° C., a calculated solubility parameter of 9.95, a weight average molecular weight (Mw) of 820,000, and an acid value of 31.2. there were.
  • Dispersion Synthesis Example 1 0.5 g of IRG-022 (Nippon Kayaku Co., Ltd. diimonium dye), 9.5 g of toluene, and 25 g of zirconia beads (particle size 300 ⁇ m, manufactured by Nikkato Co., Ltd.) are placed in a 50 ml screw tube, and the mixture is shaken for 2 hours. After shaking, the zirconia beads were filtered off to prepare a dispersion (1) containing IRG-022 particles. Dispersion (1) was injected into a 0.025 mm flow cell (manufactured by GL Science), and this was measured by an ultraviolet-visible absorption spectrum to obtain a transmission spectrum of dispersion (1).
  • IRG-022 Nippon Kayaku Co., Ltd. diimonium dye
  • zirconia beads particle size 300 ⁇ m, manufactured by Nikkato Co., Ltd.
  • the absorption spectrum of the MEK solution of IRG-022 is shown in FIG. This absorption spectrum was obtained by dissolving IRG-022 in a predetermined amount of methyl ethyl ketone and confirming that there was no insoluble matter, and then measuring the absorption spectrum.
  • UV-3700 manufactured by Shimadzu Corporation
  • a quartz cell having an optical path length of 10 mm was used as a measurement cell.
  • Dispersion synthesis example 2 A dispersion (2) was obtained in the same manner as in Synthesis Example 1, except that IRG-023 (Nippon Kayaku Co., Ltd. diimonium dye) was used instead of IRG-022. This dispersion (2) is a liquid containing IRG-023 particles. Dispersion (2) was injected into a 0.025 mm flow cell (GL Science Co., Ltd.), and this was measured by UV-visible absorption spectrum to obtain a transmission spectrum of dispersion (2). For the measurement of the spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. The resulting spectrum is shown in FIG.
  • the absorption spectrum of the MEK solution of IRG-023 is shown in FIG. This absorption spectrum was obtained by dissolving IRG-023 in a predetermined amount of methyl ethyl ketone and confirming that there was no insoluble matter, and then measuring the absorption spectrum.
  • UV-3700 manufactured by Shimadzu Corporation
  • a quartz cell having an optical path length of 10 mm was used as a measurement cell.
  • Dispersion Synthesis Example 3 A dispersion (3) was obtained in the same manner as in Synthesis Example 1, except that CIR-1085F (a diimonium dye manufactured by Nippon Carlit Co., Ltd.) was used instead of IRG-022. This dispersion (3) is a liquid containing CIR-1085F particles.
  • CIR-1085F a diimonium dye manufactured by Nippon Carlit Co., Ltd.
  • Example 1 Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%. The resin (1) obtained in Production Example 1, the dispersion (1) obtained in Synthesis Example 1, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solid weight ratio of 100/1 / 0.25 /.
  • the near-infrared absorbing pressure-sensitive adhesive composition A1 was coated on an easy-adhesion-treated PET film (manufactured by Toyobo Co., Ltd., Cosmo Shine A4300) with an applicator. The thickness at the time of coating was set so that the thickness of the pressure-sensitive adhesive composition layer after drying was 25 ⁇ m. Subsequently, it was dried in a hot air circulating oven at 100 ° C. for 2 minutes. A release film (silicone-treated PET film) was laminated to the layer made of the pressure-sensitive adhesive composition A1, and then cured at 23 ° C. for 7 days to obtain a near-infrared absorbing material B1.
  • this near-infrared absorbing material B1 was attached to a glass plate to obtain a test body according to Example 1. About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
  • Example 2 A test body according to Example 2 was obtained in the same manner as in Example 1 except that the dispersion (2) was used instead of the dispersion (1). About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
  • Example 3 A test body according to Example 3 was obtained in the same manner as in Example 1 except that the dispersion (3) was used instead of the dispersion (1). About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
  • Example 4 Toluene was added to “e-ex color IR-10A” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-10A solution so that “e-ex color IR-10A” was 5% by mass.
  • the resin (1) obtained in Production Example 1 the dispersion (1) obtained in Synthesis Example 1, the IR-10A solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a weight ratio of 100/1. /1/0.25/0.05 It mixed so that it might become solid content, and it diluted with toluene so that it might become 25%, and near-infrared absorption adhesive composition A5 was obtained.
  • This solid content weight ratio is expressed in the order of (resin (1) / dispersion (1) / IR-10A solution / crosslinking agent solution 1 / crosslinking accelerator solution 1).
  • a test body according to Example 4 was obtained in the same manner as in Example 1 except that the near-infrared absorbing adhesive composition A5 was used in place of the near-infrared absorbing adhesive composition A1.
  • This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
  • Example 5 A test body according to Example 5 was obtained in the same manner as in Example 1 except that the resin (2) obtained in Production Example 2 was used in place of the resin (1). This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
  • Example 6 A test body according to Example 6 was obtained in the same manner as in Example 1 except that the resin (3) obtained in Production Example 3 was used in place of the resin (1). This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
  • Example 7 A test body according to Example 7 was obtained in the same manner as in Example 1 except that toluene as the diluent solvent (E) was changed to methyl ethyl ketone. This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
  • the solid content weight ratio is expressed in the order of (resin (1) / diimonium solution 2 / crosslinking agent solution 1 / crosslinking accelerator solution 1).
  • a test specimen Th2 according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the near-infrared absorbing adhesive composition A4 was used instead of the near-infrared absorbing adhesive composition A1. Evaluation similar to Example 1 was performed about this test body Th2. The evaluation results are shown in Table 1 below.
  • methyl ethyl ketone is represented as “MEK”.
  • the solubility of IRG-022 in toluene is 0.1% by mass or less, the solubility of IRG-023 in toluene is 0.1% by mass or less, and the solubility of IRG-022 in methyl ethyl ketone is 5% by mass or more.
  • the solubility of IRG-023 in methyl ethyl ketone was 5% by mass or more, and the solubility of CIR-1085F in toluene was 0.01% by mass or less.
  • the transmission spectrum of the specimen of Example 1 is shown in FIG. FIG. 5 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test.
  • the transmission spectrum of the specimen of Example 2 is shown in FIG. FIG. 6 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test.
  • the transmission spectrum of the test sample of Comparative Example 1 is shown in FIG. FIG. 7 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test.
  • the evaluation method in the second experimental example is as follows.
  • the dye residual ratio (%) was measured in the evaluation of heat resistance, moist heat resistance and light resistance. This measurement method is the same as in [First Experimental Example].
  • Production Example 1a As monomers, weigh 2-ethylhexyl acrylate (360.6 g), butyl acrylate (60 g), cyclohexyl methacrylate (156 g), acrylic acid (18 g) and 2-hydroxyethyl acrylate (5.4 g) and mix well. A polymerizable monomer mixture (1a) was obtained.
  • the internal temperature of the flask was raised to 95 ° C., and a polymerization initiator, Niper BMT-K40 (0.15 g), was charged into the flask to initiate the polymerization reaction. 30 minutes after charging the polymerization initiator, the dropping of the dropping mixture (1a) from the dropping funnel was started. The dropping mixture (1a) was dropped evenly over 90 minutes. After completion of the dropwise addition of the mixture for dropping (1a), the mixture was aged for 6 hours while maintaining the reflux temperature while appropriately diluting with ethyl acetate as the viscosity increased.
  • a polymerization initiator Niper BMT-K40 (0.15 g
  • the reaction solution is diluted with ethyl acetate so that the nonvolatile content is about 45%, a resin (1a) having a calculated glass transition temperature (Tg) of ⁇ 38.5 ° C. and a calculated solubility parameter of 9.08.
  • This resin (1a) was an adhesive resin.
  • the weight average molecular weight (Mw) of the resin (1a) was 430,000, and the acid value of the resin (1a) was 23.4.
  • Production Example 2a 312 g of 2-ethylhexyl acrylate, 132 g of butyl acrylate, 120 g of cyclohexyl methacrylate, and 36 g of acrylic acid were weighed and mixed thoroughly to obtain a polymerizable monomer mixture (2a).
  • a resin (2a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (2a) was used in place of the polymerizable monomer mixture (1a).
  • the resin (2a) has a calculated glass transition temperature (Tg) of ⁇ 39.9 ° C., a calculated solubility parameter of 9.31, a weight average molecular weight (Mw) of 510,000, and an acid value of 46. It was 8.
  • Production Example 3a Resin (3a) was obtained in the same manner as in Production Example 1. This resin (3a) is the same as the resin (1).
  • Production Example 4a 507.6 g of butyl acrylate, 90.6 g of methyl methacrylate, and 1.8 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (4a).
  • a resin (4a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (4a) was used in place of the polymerizable monomer mixture (1a).
  • the resin (4a) has a calculated glass transition temperature (Tg) of ⁇ 40.0 ° C., a calculated solubility parameter of 9.80, a weight average molecular weight (Mw) of 680,000, and an acid value of 0. there were.
  • Production Example 5a 502.9 g of butyl acrylate, 31.1 g of methyl methacrylate, 48 g of acrylic acid, and 18 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (5a). .
  • a resin (5a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (5a) was used in place of the polymerizable monomer mixture (1a).
  • the resin (5a) has a calculated glass transition temperature (Tg) of ⁇ 40.9 ° C., a calculated solubility parameter of 10.19, a weight average molecular weight (Mw) of 1.28 million, and an acid value of 62. 3.
  • Production Example 6a 495.1 g of butyl acrylate, 74.9 g of methyl methacrylate, and 30 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (6a).
  • a resin (6a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (6a) was used in place of the polymerizable monomer mixture (1a).
  • the resin (6a) has a calculated glass transition temperature (Tg) of ⁇ 40.9 ° C., a calculated solubility parameter of 10.00, a weight average molecular weight (Mw) of 950,000, and an acid value of 0. there were.
  • Synthesis Example 1a 100 parts by weight of DMF, 10 parts by weight of N, N, N ′, N′-tetrakis- (p-aminophenyl) -p-phenylenediamine, 63 parts by weight of cyclohexylmethyl iodide and 30 parts by weight of potassium carbonate And reacted at 120 ° C. for 10 hours.
  • this reaction solution was added to 500 parts by mass of water, and the resulting precipitate was filtered, washed with 500 parts by mass of methyl alcohol, dried at 100 ° C., and 24.1 parts of N, N, N ′. , N′-tetrakis- ⁇ p-di (cyclohexylmethyl) aminophenyl ⁇ -p-phenylenediamine was obtained.
  • N, N, N ′, N′-tetrakis- ⁇ p-di (cyclohexylmethyl) aminophenyl ⁇ -p-phenylenediamine 200 parts by weight of DMF and 7.9 parts by weight of hexa Silver fluorophosphate was added and reacted at 60 ° C. for 3 hours, and the resulting silver was filtered off.
  • this diimonium salt is also referred to as diimonium salt (a).
  • the solubility of the diimonium salt (a) in ethyl acetate was 0.01% by mass or less.
  • a 0.5 parts by mass of dimonium salt (a), 9.5 parts by mass of ethyl acetate and 70 parts by mass of zirconia beads (particle size: 0.3 mm) were placed in a 50 ml glass container and shaken for 2 hours with a paint shaker. Thereafter, the zirconia beads were separated by filtration and the pigment concentration was adjusted to 2% by mass to obtain a liquid dispersion (a).
  • the dispersion (a) was diluted with ethyl acetate so that the concentration of the dimonium salt (a) was 100 mg / L, 50 mg / L, 10 mg / L, and 5 mg / L, respectively.
  • a spectrum obtained by measuring the absorbance of each of these four types of dilutions and converting it to a molar extinction coefficient is shown in FIG.
  • the maximum absorption wavelength ( ⁇ max) of this 100 mg / L diluted solution was 1093 nm.
  • the molar extinction coefficient at ⁇ max of this 100 mg / L diluted solution was 75300 (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ).
  • the maximum absorption wavelength ( ⁇ max) when the diimonium salt is an aggregate is different from that when the dispersion medium is toluene.
  • the dispersion (a) In consideration of the fact that the diimonium dye is in the associated state in the dispersion (b) (described later) in which the diimonium salt is the same as the dispersion (a) and the dispersion medium is toluene, the dispersion (a) However, the diimonium salt (a) is considered to be an aggregate.
  • Synthesis Example 2a A liquid dispersion (b) was obtained in the same manner as in Synthesis Example 1a except that the dispersion solvent was changed from ethyl acetate to toluene.
  • the solubility of the diimonium salt (a) in toluene was 0.01% by mass or less.
  • the dispersion (b) was diluted with toluene so that the concentration of the dimonium salt (a) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively.
  • FIG. 9 shows a spectrum obtained by measuring the absorbance of each of these four types of diluted solutions and converting them to molar extinction coefficients.
  • the maximum absorption wavelength ( ⁇ max) of this 100 mg / L diluted solution was 1119 nm. Further, the molar extinction coefficient at ⁇ max of this diluted solution of 100 mg / L was 103634 (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ), which was 70000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more.
  • the diimonium salt (a) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (b). Therefore, the diimonium dye (a) is considered to be in an associated state even in the dispersion (b) having a higher dilution concentration with toluene.
  • Synthesis Example 3a Instead of 63 parts by mass of cyclohexylmethyl iodide used in Synthesis Example 1a, the same mole number of 1-iodo-3-fluoropropane was used as in Synthesis Example 1a. , N, N ′, N′-tetrakis- ⁇ p-di (3-fluoropropyl) aminophenyl ⁇ -p-phenylenediimonium was obtained.
  • this diimonium salt is also referred to as diimonium salt (c).
  • a liquid dispersion (c) was obtained in the same manner as in Synthesis Example 2a except that this dimonium salt (c) was used. The solubility of the diimonium salt (c) in toluene was 0.01% by mass or less.
  • the dispersion (c) was diluted with toluene so that the concentration of the dimonium salt (c) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively.
  • FIG. 10 shows a spectrum obtained by measuring the absorbance of each of these four types of diluted solutions and converting them to molar extinction coefficients.
  • the maximum absorption wavelength ( ⁇ max) of this 100 mg / L diluted solution was 1120 nm.
  • the molar extinction coefficient at ⁇ max of the diluted solution of 100 mg / L was 83775 (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ), which was 70000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more.
  • the diimonium salt (c) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (c). Therefore, it is considered that the diimonium dye (c) is in an associated state even in the dispersion (c) having a higher dilution concentration with toluene.
  • FIG. 11 shows a spectrum obtained by measuring the absorbance of the diluted product (c) and converting it to a molar extinction coefficient.
  • the maximum absorption wavelength ( ⁇ max) of this diluted body (c) was 1050 nm, which was a value smaller than 1120 nm.
  • Synthesis Example 4a Hexafluorophosphoric acid-N, N, N ′ was prepared in the same manner as in Synthesis Example 1a except that isobutyl iodide having the same mole number was used instead of 63 parts by mass of cyclohexylmethyl iodide used in Synthesis Example 1a. , N′-Tetrakis- ⁇ p-di (isobutyl) aminophenyl ⁇ -p-phenylenediimonium was obtained.
  • this diimonium salt is also referred to as diimonium salt (d).
  • a liquid dispersion (d) was obtained in the same manner as in Synthesis Example 2a except that this dimonium salt (d) was used.
  • the solubility of the diimonium salt (d) in toluene was 0.01% by mass or less.
  • the dispersion (d) was diluted with toluene so that the concentration of the dimonium salt (d) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively.
  • FIG. 12 shows a spectrum obtained by measuring the absorbance of each of these four types of dilutions and converting them to molar extinction coefficients.
  • the maximum absorption wavelength ( ⁇ max) of this 100 mg / L diluted solution was 1220 nm.
  • the molar extinction coefficient at ⁇ max of this 100 mg / L diluted solution was 11293 (mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 ), which was 70000 mol ⁇ 1 ⁇ L ⁇ cm ⁇ 1 or more.
  • the diimonium salt (d) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (d). Therefore, it is considered that the diimonium dye (d) is in an associated state even in the dispersion (d) having a higher dilution concentration with toluene.
  • ⁇ max The maximum absorption wavelength ( ⁇ max) of this diluted body (d) was 1081 nm, which was a value smaller than 1220 nm.
  • Example 1a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%.
  • the resin (1a) obtained in Production Example 1a, the dispersion (a) obtained in Synthesis Example 1a, and the crosslinking agent solution 1 are mixed so that the solid content weight ratio is 100 / 1.0 / 0.5. And it diluted with ethyl acetate so that solid content might be 25%, and near-infrared absorption adhesive composition Aa1 was obtained.
  • this solid content weight ratio is described in the order of (resin (1a) / dispersion (a) / crosslinking agent solution 1).
  • the near-infrared absorbing pressure-sensitive adhesive composition Aa1 was coated on an easy-adhesion-treated PET film (Toyobo Co., Ltd., Cosmo Shine A4300) with an applicator. The thickness at the time of coating was set so that the thickness of the pressure-sensitive adhesive composition layer after drying was 25 ⁇ m. Subsequently, it was dried in a hot air circulating oven at 100 ° C. for 2 minutes. A release film (silicone-treated PET film) was laminated to the layer made of the pressure-sensitive adhesive composition Aa1, and then cured at 23 ° C. for 7 days to obtain a near-infrared absorbing material Ba1.
  • this near-infrared absorbing material Ba1 was attached to a glass plate to obtain a test specimen Z1 according to Example 1a.
  • this test body Z1 the heat test, the moist heat test, and the light resistance test were done. The evaluation results are shown in Table 4 below.
  • Example 2a Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass.
  • toluene is added to “e-ex color TX-EX-820” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, so that “e-ex color TX-EX-820” is 5% by mass, so that TX-EX- 820 solution was prepared.
  • the resin (1a) obtained in Production Example 1a, the dispersion (a) obtained in Synthesis Example 1a, the IR-14 solution, the TX-EX-820 solution, and the crosslinking agent solution 1 were mixed at a solid content weight ratio of 100. /1.1/0.35/0.17/0.5, and the mixture was diluted with ethyl acetate so that the solid content was 25% to obtain a near-infrared absorbing adhesive composition Aa2. .
  • the solid content weight ratio is expressed in the order of (resin (1a) / dispersion (a) / IR-14 solution / TX-EX-820 solution / crosslinking agent solution 1).
  • Example 2a A test body according to Example 2a was obtained in the same manner as Example 1a except that near-infrared absorbing adhesive composition Aa2 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
  • Example 3a Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to prepare an IR-14 solution so that “e-ex color IR-14” was 5% by mass.
  • the resin (1a) obtained in Production Example 1a, the dispersion (b) obtained in Synthesis Example 2a, the IR-14 solution and the crosslinking agent solution 1 were mixed at a solids weight ratio of 100 / 1.3 / 0.7.
  • the mixture was mixed so as to be /0.25, and diluted with toluene so that the solid content was 25%, to obtain a near-infrared absorbing adhesive composition Aa3.
  • Example 3a The solid content weight ratio is expressed in the order of (resin (1a) / dispersion (b) / IR-14 solution / crosslinking agent solution 1).
  • a test body according to Example 3a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa3 was used instead of near-infrared absorbing adhesive composition Aa1.
  • the test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
  • Example 4a A test body according to Example 4a was obtained in the same manner as in Example 2a except that the resin (2a) obtained in Production Example 2a was used instead of the resin (1a). The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
  • Example 5a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%.
  • Di-n-butyltin dilaurate which is a crosslinking accelerator, was dissolved in ethyl acetate to prepare a crosslinking accelerator solution 2 having a solid content of 1%.
  • the resin (3a) obtained in Production Example 3a, the dispersion (a) obtained in Synthesis Example 1a, the cross-linking agent solution 1 and the cross-linking accelerator solution 2 are 100 / 1.0 / 0.
  • Example 5a It mixed so that it might become 5 / 0.05, and it diluted with ethyl acetate so that solid content might be 25%, and the near-infrared absorption adhesive composition Aa5 which concerns on Example 5a was obtained.
  • the solid content weight ratio is expressed in the order of (resin (3a) / dispersion (a) / crosslinking agent solution 1 / crosslinking accelerator solution 2).
  • a test body according to Example 5a was obtained in the same manner as Example 1a except that this near-infrared absorbing adhesive composition Aa5 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
  • Example 6a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%.
  • Di-n-butyltin dilaurate which is a crosslinking accelerator, was dissolved in ethyl acetate to prepare a crosslinking accelerator solution 2 having a solid content of 1%.
  • the resin (4a) obtained in Production Example 4a, the dispersion (a) obtained in Synthesis Example 1a, the cross-linking agent solution 1 and the cross-linking accelerator solution 2 are 100 / 1.0 / 0.
  • Example 6a It mixed so that it might become 5 / 0.05, and it diluted with ethyl acetate so that solid content might be 25%, and the near-infrared absorption adhesive composition Aa6 which concerns on Example 6a was obtained.
  • this solid content weight ratio is described in the order of (resin (4a) / dispersion (a) / crosslinking agent solution 1 / crosslinking accelerator solution 2).
  • a test body according to Example 6a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa6 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
  • Example 7a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%.
  • the resin (1a) obtained in Production Example 1a, the dispersion (c) obtained in Synthesis Example 3a, and the crosslinking agent solution 1 are mixed so that the solid content weight ratio is 100 / 1.3 / 0.5. And it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa7 was obtained.
  • this solid content weight ratio is described in the order of (resin (1a) / dispersion (c) / crosslinking agent solution 1).
  • Example 7a A test body according to Example 7a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa7 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 4 below.
  • Example 8a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%.
  • the resin (3a) obtained in Production Example 3a, the dispersion (c) obtained in Synthesis Example 3a, the cross-linking agent solution 1 and the cross-linking accelerator solution 1 are 100 / 1.3 / 0.
  • Example 8a A test body according to Example 8a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa8 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 5 below.
  • Example 9a A test body according to Example 9a was obtained in the same manner as in Example 7a except that the resin (5a) obtained in Production Example 5a was used instead of the resin (1a). The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
  • Example 10a Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%.
  • Di-n-butyltin dilaurate which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%.
  • the resin (6a) obtained in Production Example 6a, the dispersion (c) obtained in Synthesis Example 3a, the cross-linking agent solution 1 and the cross-linking accelerator solution 1 are 100 / 1.3 / 0.
  • Example 10a A test body according to Example 10a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa10 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 5 below.
  • Example 11a Toluene was added to “e-ex color IR-10A” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-10A solution so that “e-ex color IR-10A” was 5% by mass.
  • the resin (3a) obtained in Production Example 3a, the dispersion (d) obtained in Synthesis Example 4a, the IR-10A solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solid content weight ratio of 100/1.
  • Example 11a A test body according to Example 11a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa11 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
  • Example 12a Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass.
  • the resin (1a) obtained in Production Example 1a, the dispersion (d) obtained in Synthesis Example 4a, the IR-14 solution and the crosslinking agent solution 1 were mixed at a solids weight ratio of 100 / 1.0 / 1.0.
  • the mixture was mixed so as to be /0.25, and diluted with toluene so that the solid content was 25%, to obtain a near-infrared absorbing adhesive composition Aa12.
  • Example 12a The solid content weight ratio is expressed in the order of (resin (1a) / dispersion (d) / IR-14 solution / crosslinking agent solution 1).
  • a test body according to Example 12a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa12 was used instead of near-infrared absorbing adhesive composition Aa1.
  • the test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
  • Example 13a Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass.
  • the resin (3a) obtained in Production Example 3a, the dispersion (2) obtained in Synthesis Example 2, the IR-14 solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solids weight ratio of 100 / It mixed so that it might become 2.0 / 0.45 / 0.25 / 0.05, and it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa13 was obtained.
  • the solid content weight ratio is expressed in the order of (resin (3a) / dispersion (2) / IR-14 solution / crosslinking agent solution 1 / crosslinking accelerator solution 1).
  • Example 13a A test body according to Example 13a was obtained in the same manner as in Example 1a, except that this near-infrared absorbing adhesive composition Aa13 was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 6 below.
  • a test body T1 according to Comparative Example 1a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Ah1a was used in place of the near-infrared absorbing adhesive composition Aa1.
  • this test body T1 the heat resistance test, the heat-and-moisture resistance test, and the light resistance test were done. The evaluation results are shown in Table 6 below.
  • a specimen T2 according to Comparative Example 2a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Ah2a was used instead of the near-infrared absorbing adhesive composition Aa1.
  • the specimen T2 was subjected to a heat test, a moist heat test and a light resistance test. The evaluation results are shown in Table 6 below.
  • Example 1 When the near-infrared absorbing adhesive composition Aa1 obtained in Example 1a was put in a cell having an inner diameter of 0.1 mm and measured for a transmission spectrum, ⁇ max was 1123 nm. The transmission spectrum of this composition Aa1 is shown in FIG. Moreover, when the transmission spectrum was measured about the said test body Z1 obtained by affixing the said near-infrared absorber Ba1 on a glass plate, (lambda) max was 1169 nm. The transmission spectrum of this specimen Z1 is shown in FIG.
  • Example 8 Synthesis of polymerizable polysiloxane (M-1) In a 300 ml four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 144.5 parts of tetramethoxysilane, 23.6 parts of ⁇ -methacryloxypropyltrimethoxysilane, water 19.0 parts, 30.0 parts of methanol, and 5.0 parts of Amberlyst 15 (trade name: cation exchange resin manufactured by Organo) were added and stirred at 65 ° C. for 2 hours for reaction.
  • Amberlyst 15 trade name: cation exchange resin manufactured by Organo
  • the ratio of inorganic fine particles to organic polymer in the organic polymer composite inorganic fine particles was 70/30. This ratio is a weight ratio.
  • the average particle diameter of the obtained organic polymer composite inorganic fine particles was 23.9 nm.
  • the ratio of the inorganic fine particles to the organic polymer in the organic polymer composite inorganic fine particles was determined by conducting an elemental analysis on the organic polymer composite fine particle dispersion dried at 130 ° C. for 24 hours under a pressure of 1.33 ⁇ 10 kPa, and calculating the ash content. It calculated
  • the average particle size was determined by photographing particles with a transmission electron microscope using a solution obtained by diluting 1 part of the organic polymer composite inorganic fine particle dispersion (S-1) with 99 parts of n-butyl acetate. The diameter of the particles was read and the average was determined as the average particle diameter.
  • Antireflective film 8 parts of dipentaerythritol hexaacrylate (DPE-6A, manufactured by Kyoeisha Chemical Co., Ltd.) and 2 parts of pentaerythritol triacrylate (PE-3A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed and a solution dissolved in 40 parts of methyl ethyl ketone was prepared.
  • a photopolymerization initiator Irgacure 907, manufactured by Ciba Geigy Co., Ltd.
  • the hard coat layer coating solution was applied to a 188 ⁇ m thick polyethylene terephthalate film (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) using a bar coater to obtain a coating layer h.
  • the coating layer h was dried at 100 ° C. for 15 minutes and then cured by irradiating with 200 mJ / cm 2 of ultraviolet light with a high-pressure mercury lamp to form a hard coat layer having a thickness of 5 ⁇ m.
  • the above low refractive index coating solution was applied using a bar coater to form an antireflection film on the polyethylene terephthalate film.
  • the surface opposite to the antireflection film side of the film was roughened with steel wool. Black ink was applied to the roughened surface.
  • the specular reflection spectrum of the surface on the antireflection film side at an incident angle of 5 ° is measured using an ultraviolet-visible spectrophotometer (UV-3100, manufactured by Shimadzu Corporation), and the wavelength at which the reflectance shows the minimum value and the reflectance at that wavelength. (Minimum reflectance) was determined.
  • UV-3100 ultraviolet-visible spectrophotometer
  • Minimum reflectance was 0.45%.
  • the near-infrared absorbing adhesive composition A1 obtained in Example 1 was coated and dried in the same manner as in Example 1 to obtain an optical filter 1.
  • the near-infrared transmittance, total light transmittance, heat resistance, moist heat resistance, light resistance, crack resistance and solvent resistance of the optical filter 1 were good.
  • Example 9 An optical filter 2 was obtained in the same manner as in Example 8, except that the near-infrared absorbing adhesive composition Aa7 obtained in Example 7a was used instead of the near-infrared absorbing adhesive composition A1.
  • the optical filter 2 had good near-infrared transmittance, total light transmittance, heat resistance, heat and humidity resistance, light resistance, crack resistance and solvent resistance.
  • the near-infrared-absorbing pressure-sensitive adhesive composition of the present invention is useful as an optical filter for thin displays because it has a long-infrared-absorbing ability and high transparency in the visible region, and is excellent in heat resistance, moist heat resistance and light resistance. is there. It can also be used as an optical information recording material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A near-infrared absorbing pressure-sensitive adhesive composition which contains a dispersion (A) mixed thereinto and which contains a resin (B) having a glass transition temperature of 0°C or lower, said dispersion (A) being a dispersion prepared by dispersing a diimonium-type coloring matter in a composition containing a solvent (D).  Further, the pressure-sensitive adhesive composition may be diluted with a diluent solvent (E).  The pressure-sensitive adhesive composition may further contain a non-diimonium-type coloring matter.  It is preferable that the acid value of the resin (B) is 0 to 300.  It is preferable that the calculated solubility parameter of the resin (B) is 10.2 or lower.  The pressure-sensitive adhesive composition is suitable for use in optical filters for flat-panel displays; optical filters for photosemiconductor elements; flat-panel displays; and so on.

Description

近赤外線吸収粘着剤組成物Near-infrared absorbing adhesive composition
 本発明は、近赤外線吸収粘着剤組成物、該近赤外線吸収粘着剤組成物を含有する近赤外線吸収材、該近赤外線吸収粘着剤組成物または近赤外線吸収材を用いてなる薄型ディスプレー用光学フィルターなどに関する。特に、本発明は、可視領域の透明性と赤外線吸収能の持続性に優れた近赤外線吸収粘着剤組成物、該近赤外線吸収粘着剤組成物を含有する近赤外線吸収材、該近赤外線吸収粘着剤組成物または近赤外線吸収材を用いてなる光半導体素子用光学フィルター、該近赤外線吸収粘着剤組成物または近赤外線吸収材を用いてなる薄型ディスプレー用光学フィルターなどに関する。 The present invention relates to a near-infrared absorbing pressure-sensitive adhesive composition, a near-infrared absorbing material containing the near-infrared-absorbing pressure-sensitive adhesive composition, and an optical filter for a thin display using the near-infrared absorbing pressure-sensitive adhesive composition or the near-infrared absorbing material. And so on. In particular, the present invention is a near-infrared absorbing adhesive composition excellent in transparency in the visible region and durability of infrared absorbing ability, a near-infrared absorbing material containing the near-infrared absorbing adhesive composition, and the near-infrared absorbing adhesive The present invention relates to an optical filter for an optical semiconductor element using an agent composition or a near-infrared absorbing material, an optical filter for a thin display using the near-infrared absorbing adhesive composition or a near-infrared absorbing material, and the like.
 近年、薄型で大画面に適用できる液晶ディスプレーやPDP(Plasma Display Panel)等の薄型ディスプレーが注目されている。薄型ディスプレーは波長が800nm~1100nmの近赤外線を発生させる。この近赤外線が家電用リモコンの誤作動を誘発することが問題となっている。また、CCDカメラ等に使用される光半導体素子も近赤外線領域の感度が高いため、近赤外線の除去が必要である。そこで、近赤外線の吸収能が高く、可視領域の透明性が高い近赤外線吸収材料が求められている。 In recent years, a thin liquid crystal display applicable to a large screen and a thin display such as PDP (Plasma Display Panel) have been attracting attention. The thin display generates near infrared rays having a wavelength of 800 nm to 1100 nm. There is a problem that this near infrared ray causes malfunction of the remote control for home appliances. Moreover, since the optical semiconductor element used for a CCD camera etc. has high sensitivity in the near infrared region, it is necessary to remove the near infrared ray. Therefore, there is a demand for a near-infrared absorbing material that has a high near-infrared absorbing ability and high transparency in the visible region.
 近赤外線を吸収する近赤外線吸収色素としては、従来、シアニン系色素、ポリメチン系色素、スクアリリウム系色素、ポルフィリン系色素、金属ジチオール錯体系色素、フタロシアニン系色素、ジイモニウム系色素または無機酸化物粒子が使用されている。中でもジイモニウム系色素は近赤外線の吸収能が高く、可視光領域での透明性が高いことから多用されている(例えば、特許文献1、2及び3参照)。 Conventionally, cyanine dyes, polymethine dyes, squarylium dyes, porphyrin dyes, metal dithiol complex dyes, phthalocyanine dyes, diimonium dyes or inorganic oxide particles are used as near infrared absorbing dyes that absorb near infrared rays. Has been. Among these, diimonium dyes are frequently used because they have a high near-infrared absorption ability and high transparency in the visible light region (see, for example, Patent Documents 1, 2, and 3).
 また、PDPは、パネル内部に封入された希ガス、特にネオンを主体としたガス中で放電を発生させ、その際に発生する真空紫外線により、パネル内部のセルに設けられたR、G、Bの蛍光体を発光させる。よって、この発光過程でPDPの作動に不必要な電磁波も同時に放出される。この電磁波も遮蔽されることが必要である。また、反射光を抑えるために反射防止フィルム、ぎらつき防止フィルム(アンチグレアフィルム)も必要である。このため、プラズマディスプレー用光学フィルターは、近赤外線吸収フィルム、電磁波遮蔽フィルム及び反射防止フィルムを、支持体であるガラスや衝撃吸収材の上に積層して作製されることが一般的である。このようなプラズマディスプレー用光学フィルターは、PDPの前面側に載置される。このようなプラズマディスプレー用光学フィルターは、接着剤や粘着剤を用いて、支持体であるガラスや衝撃吸収材の上に直接貼合わされて使用される場合もある。 The PDP generates a discharge in a rare gas, particularly a gas mainly composed of neon, enclosed in the panel, and R, G, B provided in the cells inside the panel by vacuum ultraviolet rays generated at that time. The phosphor is made to emit light. Therefore, electromagnetic waves unnecessary for the operation of the PDP are simultaneously emitted during this light emission process. It is necessary to shield this electromagnetic wave. Further, an antireflection film and an antiglare film (antiglare film) are also required to suppress reflected light. For this reason, an optical filter for plasma display is generally produced by laminating a near-infrared absorbing film, an electromagnetic wave shielding film and an antireflection film on glass or a shock absorbing material as a support. Such an optical filter for plasma display is placed on the front side of the PDP. Such an optical filter for plasma display may be used by being directly bonded onto glass or a shock absorbing material as a support using an adhesive or a pressure-sensitive adhesive.
 近年、光学フィルターの薄層化や、光学フィルターの製造工程の簡略化を目的として、粘着剤に近赤外線吸収色素を含有させて近赤外線吸収フィルムと粘着剤層とを一体化させる試みがなされている(特許文献4及び特許文献5)。
特開2003-96040号公報 特開2000-80071号公報 特開2005-325292号公報 特許第3621322号 国際公開WO2008/026786公報
In recent years, attempts have been made to integrate a near-infrared absorbing film and a pressure-sensitive adhesive layer by incorporating a near-infrared absorbing dye into the pressure-sensitive adhesive for the purpose of thinning the optical filter and simplifying the optical filter manufacturing process. (Patent Document 4 and Patent Document 5).
JP 2003-96040 A Japanese Unexamined Patent Publication No. 2000-80071 JP 2005-325292 A Japanese Patent No. 3621322 International Publication WO2008 / 026786
 ジイモニウム系色素は耐久性が劣る場合があり、近赤外線の吸収能の低下や着色は、光半導体素子やディスプレー用途で使用する際の重大な問題となりうる。特に、粘着剤樹脂のようなガラス転移点(Tg)の低い樹脂中では色素の劣化が激しい。 Diimonium-based dyes may be inferior in durability, and lowering of near-infrared absorption ability and coloring can be a serious problem when used in optical semiconductor devices and display applications. In particular, in a resin having a low glass transition point (Tg) such as an adhesive resin, the dye is severely deteriorated.
 特開2005-325292号公報にはジイモニウムカチオンのアルキル基にハロゲン原子を導入することにより耐久性を向上させたジイモニウム色素が開示されている。確かにこのジイモニウム色素と高Tgバインダー樹脂を用いた近赤外線遮断フィルターでは、従来のジイモニウム色素と比較して耐久性の向上が見られる。しかし、劣化の激しい低Tgの粘着剤樹脂との組み合わせでは、その耐久性は不十分となりやすい。国際公開WO2008/026786公報では、ジイモニウム色素を適切に限定することにより、粘着剤組成物中における色素の耐久性が向上させている。本発明では、国際公開WO2008/026786公報の発明とは異なる観点から、粘着剤樹脂中におけるジイモニウム色素の耐久性を向上させうる技術を見いだした。 JP-A-2005-325292 discloses a diimonium dye having improved durability by introducing a halogen atom into the alkyl group of the diimonium cation. Certainly, the near-infrared cut-off filter using the diimonium dye and the high Tg binder resin shows improved durability as compared with the conventional diimonium dye. However, the durability tends to be insufficient when combined with a rapidly degrading low Tg adhesive resin. In the international publication WO2008 / 026786, durability of the dye in the pressure-sensitive adhesive composition is improved by appropriately limiting the diimonium dye. In the present invention, a technique capable of improving the durability of the diimonium dye in the pressure-sensitive adhesive resin has been found from a viewpoint different from the invention of International Publication WO2008 / 026786.
 本発明は、可視領域の透明性と近赤外線吸収能の持続性が高い近赤外線吸収材を作製するのに有用な、近赤外線吸収粘着剤組成物を提供することを目的とする。さらに、本発明は、該組成物を使用した近赤外線吸収材、光半導体素子用光学フィルター、薄型ディスプレー用光学フィルター、および薄型ディスプレーを提供することを目的とする。 An object of the present invention is to provide a near-infrared absorbing adhesive composition useful for producing a near-infrared absorbing material having high transparency in the visible region and high durability of near-infrared absorbing ability. Furthermore, an object of the present invention is to provide a near-infrared absorbing material, an optical filter for an optical semiconductor element, an optical filter for a thin display, and a thin display using the composition.
 本発明者らは、粘着剤樹脂中におけるジイモニウム色素の耐久性の向上について鋭意検討を行なった。その結果、ジイモニウム色素を分散させた分散体を用いることにより、色素の耐久性に優れた近赤外線吸収粘着剤組成物が得られることを見出した。また、ジイモニウム色素の会合体を用いることにより、色素の耐久性に優れた近赤外線吸収粘着剤組成物が得られることを見出した。 The present inventors diligently studied to improve the durability of the diimonium dye in the adhesive resin. As a result, it was found that a near-infrared absorbing pressure-sensitive adhesive composition excellent in the durability of a dye can be obtained by using a dispersion in which a diimonium dye is dispersed. Moreover, it discovered that the near-infrared absorption adhesive composition excellent in durability of a pigment | dye was obtained by using the aggregate of a diimonium pigment | dye.
 組成物に係る本発明は、ジイモニウム色素を溶剤(D)を含む組成物中に分散させた分散体(A)が混合されており、ガラス転移温度が0℃以下である樹脂(B)を含有している近赤外線吸収粘着剤組成物である。 The present invention relating to the composition contains a resin (B) in which a dispersion (A) in which a diimonium dye is dispersed in a composition containing a solvent (D) is mixed, and the glass transition temperature is 0 ° C. or lower. The near-infrared absorbing adhesive composition.
 好ましくは、上記分散体(A)中において、上記ジイモニウム色素が会合状態である。 Preferably, in the dispersion (A), the dimonium dye is in an associated state.
 組成物に係る他の発明は、ジイモニウム色素の会合体(X)と、溶剤(D)と、ガラス転移温度が0℃以下である樹脂(B)とを含有する近赤外線吸収粘着剤組成物である。 Another invention relating to the composition is a near-infrared absorbing pressure-sensitive adhesive composition containing an aggregate (X) of a diimonium dye, a solvent (D), and a resin (B) having a glass transition temperature of 0 ° C. or lower. is there.
 組成物に係る更に他の発明は、粒子状のジイモニウム色素と溶剤(D)とを含む液体(C)が混合されており、ガラス転移温度が0℃以下である樹脂(B)を含有する近赤外線吸収粘着剤組成物であって、上記溶剤(D)における上記ジイモニウム色素の溶解度が5質量%以下である近赤外線吸収粘着剤組成物である。 Still another invention according to the composition includes a liquid (C) containing a particulate dimonium dye and a solvent (D), and a resin (B) having a glass transition temperature of 0 ° C. or lower. It is an infrared ray absorbing pressure-sensitive adhesive composition, wherein the solubility of the dimonium dye in the solvent (D) is 5% by mass or less.
 好ましくは、上記ジイモニウム色素が、後述の下記式(1)で示されるジイモニウムカチオンを有する化合物である。 Preferably, the diimonium dye is a compound having a diimonium cation represented by the following formula (1) described below.
 好ましくは、上記ジイモニウム色素のジイモニウムアニオンが、ヘキサフルオロリン酸イオンである。 Preferably, the diimonium anion of the diimonium dye is a hexafluorophosphate ion.
 好ましくは、後述の式(1)において、RからRのうちの少なくとも一つが、ハロゲン原子で置換されていてもよい直鎖又は分岐状の炭素数1から10のアルキル基、炭素数が3から12のシクロアルキル基、又はシクロアルキル環が置換されていてもよい[C3-12シクロアルキル-C1-10アルキル基]である。 Preferably, in the following formula (1), at least one of R 1 to R 8 is a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, 3 to 12 cycloalkyl groups, or a cycloalkyl ring optionally substituted [C 3-12 cycloalkyl-C 1-10 alkyl group].
 好ましくは、上記RからRの少なくとも1つが、後述の式(2)で示される有機基である。 Preferably, at least one of R 1 to R 8 is an organic group represented by the following formula (2).
 好ましくは、上記式(2)で示される有機基が、シクロヘキシルメチル基である。 Preferably, the organic group represented by the above formula (2) is a cyclohexylmethyl group.
 好ましくは、上記RからRの全てがシクロヘキシルメチル基である。 Preferably, all of R 1 to R 8 are cyclohexylmethyl groups.
 好ましくは、上記RからRの少なくとも1つが、後述の式(3)で示される有機基である。 Preferably, at least one of R 1 to R 8 is an organic group represented by the following formula (3).
 好ましくは、上記式(3)で示される有機基が、3-フルオロプロピル基である。 Preferably, the organic group represented by the above formula (3) is a 3-fluoropropyl group.
 好ましくは、上記RからRの全てが3-フルオロプロピル基である。 Preferably, all of R 1 to R 8 are 3-fluoropropyl groups.
 好ましくは、上記RからRの少なくとも1つが、炭素数が3以上12以下の分岐状アルキル基である。 Preferably, at least one of R 1 to R 8 is a branched alkyl group having 3 to 12 carbon atoms.
 好ましくは、上記分岐状アルキル基がイソブチル基である。 Preferably, the branched alkyl group is an isobutyl group.
 好ましくは、前記樹脂(B)の酸価が0以上300以下である。 Preferably, the acid value of the resin (B) is 0 or more and 300 or less.
 好ましくは、前記樹脂(B)の計算溶解性パラメータが10.2以下である。 Preferably, the calculated solubility parameter of the resin (B) is 10.2 or less.
 好ましくは、前記樹脂(B)が、下記単量体(1a)から(3a)を下記の比率で共重合してなるポリマーである。
(1a)炭素数が1以上12以下であるアルキル基を有する(メタ)アクリル酸エステル:60質量%以上99.9質量%以下
(2a)官能基含有モノマー:0.1質量%以上20質量%以下 
(3a)その他共重合可能な単量体:0質量%以上30質量%以下
Preferably, the resin (B) is a polymer obtained by copolymerizing the following monomers (1a) to (3a) in the following ratio.
(1a) (meth) acrylic acid ester having an alkyl group having 1 to 12 carbon atoms: 60% by mass to 99.9% by mass (2a) Functional group-containing monomer: 0.1% by mass to 20% by mass Less than
(3a) Other copolymerizable monomers: 0% by mass to 30% by mass
 上記近赤外線吸収粘着剤組成物は、さらに、フタロシアニン系色素を含んでいてもよい。 The near infrared absorbing pressure-sensitive adhesive composition may further contain a phthalocyanine dye.
 好ましくは、上記近赤外線吸収粘着剤組成物は、上記ジイモニウム色素の溶解度が5質量%以下である希釈溶剤(E)により希釈されてなる。 Preferably, the near-infrared absorbing adhesive composition is diluted with a diluting solvent (E) in which the solubility of the dimonium dye is 5% by mass or less.
 本発明に係る近赤外線吸収材は、上記いずれかの近赤外線吸収粘着剤組成物を含む。 The near-infrared absorbing material according to the present invention includes any one of the above near-infrared absorbing adhesive compositions.
 好ましくは、近赤外線吸収材は、上記いずれかの近赤外線吸収粘着剤組成物が透明基材に積層されてなる。 Preferably, the near-infrared absorbing material is formed by laminating one of the above near-infrared absorbing adhesive compositions on a transparent substrate.
 好ましくは、前記透明基材は、ガラス、PETフィルム、易接着性PETフィルム、TACフィルム、反射防止フィルムまたは電磁波シールドフィルムである。 Preferably, the transparent substrate is glass, PET film, easy-adhesive PET film, TAC film, antireflection film or electromagnetic wave shielding film.
 本発明に係る薄型ディスプレー用光学フィルターは、上記いずれかの近赤外線吸収材を用いてなる。 The thin display optical filter according to the present invention uses any one of the above near-infrared absorbing materials.
 本発明に係る光半導体素子用光学フィルターは、上記いずれかの近赤外線吸収材を用いてなる。 The optical filter for an optical semiconductor element according to the present invention uses any one of the above near-infrared absorbing materials.
 本発明に係る薄型ディスプレーは、上記いずれかの近赤外線吸収粘着剤組成物、上記いずれかの近赤外線吸収材または上記の光学フィルターを用いてなる。 The thin display according to the present invention uses any one of the above near infrared absorbing pressure-sensitive adhesive compositions, any one of the above near infrared absorbing materials, or the above optical filter.
 本発明の近赤外線吸収粘着剤組成物を使用した近赤外線吸収材料は、色素の近赤外線吸収能が長期間に渡って維持されうる。よって、この近赤外線吸収粘着剤組成物を、光半導体素子や薄型ディスプレー用の光学フィルターの作製に使用すると、光学フィルターの薄層化や、光学フィルターの製造工程の簡略化が可能となる。 The near-infrared absorbing material using the near-infrared absorbing adhesive composition of the present invention can maintain the near-infrared absorbing ability of the pigment for a long period of time. Therefore, when this near-infrared absorbing pressure-sensitive adhesive composition is used for the production of an optical filter for an optical semiconductor element or a thin display, it becomes possible to make the optical filter thin and simplify the optical filter manufacturing process.
図1は、IRG-022粒子を含む分散体の透過スペクトルである。FIG. 1 is the transmission spectrum of a dispersion containing IRG-022 particles. 図2は、IRG-022のMEK溶液の透過スペクトルである。FIG. 2 is a transmission spectrum of a MEK solution of IRG-022. 図3は、IRG-023粒子を含む分散体の透過スペクトルである。FIG. 3 is the transmission spectrum of a dispersion containing IRG-023 particles. 図4は、IRG-023のMEK溶液の透過スペクトルである。FIG. 4 is a transmission spectrum of a MEK solution of IRG-023. 図5は、試験前、耐熱性試験後及び耐光性試験後における実施例1の透過スペクトルである。FIG. 5 is a transmission spectrum of Example 1 before the test, after the heat resistance test, and after the light resistance test. 図6は、試験前、耐熱性試験後及び耐光性試験後における実施例2の透過スペクトルである。FIG. 6 is a transmission spectrum of Example 2 before the test, after the heat resistance test, and after the light resistance test. 図7は、試験前、耐熱性試験後及び耐光性試験後における比較例1の透過スペクトルである。FIG. 7 is a transmission spectrum of Comparative Example 1 before the test, after the heat resistance test, and after the light resistance test. 図8は、分散体(a)を酢酸エチルで希釈したときの各濃度におけるモル吸光係数を示すグラフである。FIG. 8 is a graph showing the molar extinction coefficient at each concentration when the dispersion (a) is diluted with ethyl acetate. 図9は、分散体(b)をトルエンで希釈したときの各濃度におけるモル吸光係数を示すグラフである。FIG. 9 is a graph showing the molar extinction coefficient at each concentration when the dispersion (b) is diluted with toluene. 図10は、分散体(c)をトルエンで希釈したときの各濃度におけるモル吸光係数を示すグラフである。FIG. 10 is a graph showing the molar extinction coefficient at each concentration when the dispersion (c) is diluted with toluene. 図11は、ジイモニウム塩(c)を塩化メチレンにて10mg/Lの濃度に希釈した液体のモル吸光係数を示すグラフである。FIG. 11 is a graph showing the molar extinction coefficient of a liquid obtained by diluting dimonium salt (c) with methylene chloride to a concentration of 10 mg / L. 図12は、分散体(d)をトルエンで希釈したときの各濃度におけるモル吸光係数を示すグラフである。FIG. 12 is a graph showing the molar extinction coefficient at each concentration when the dispersion (d) is diluted with toluene. 図13は、実験例1に係る近赤外線吸収粘着剤組成物Aa1の透過スペクトルである。FIG. 13 is a transmission spectrum of the near-infrared absorbing adhesive composition Aa1 according to Experimental Example 1. 図14は、実験例1に係る試験体Z1の透過スペクトルである。FIG. 14 is a transmission spectrum of the specimen Z1 according to Experimental Example 1. 図15は、実験例2に係る近赤外線吸収粘着剤組成物Az2の透過スペクトルである。FIG. 15 is a transmission spectrum of the near-infrared absorbing adhesive composition Az2 according to Experimental Example 2. 図16は、実験例2に係る試験体Z2の透過スペクトルである。FIG. 16 is a transmission spectrum of the specimen Z2 according to Experimental Example 2.
1.ジイモニウム色素(ジイモニウム塩)
 本発明では、後述される分散体(A)が用いられる。分散体(A)が用いられることにより、ジイモニウム塩の耐久性が向上する。好ましくは、分散体(A)において、ジイモニウム色素は、会合状態にある。即ち、好ましくは、ジイモニウム色素は、会合体(X)で分散している。この会合体(X)の詳細については、後述される。後述するように、会合体(X)を形成したジイモニウム塩は、耐久性に優れる。
1. Diimonium dye (diimonium salt)
In the present invention, the dispersion (A) described later is used. By using the dispersion (A), the durability of the diimonium salt is improved. Preferably, in the dispersion (A), the diimonium dye is in an associated state. That is, preferably, the diimonium dye is dispersed in the aggregate (X). Details of the aggregate (X) will be described later. As will be described later, the diimonium salt forming the aggregate (X) is excellent in durability.
 この分散体(A)を用いた近赤外線吸収粘着剤組成物は、粘着剤樹脂(B)中に存在しているにも関わらず、耐久性に優れることが判明した。さらに、分散体(A)中のジイモニウム塩が会合体(X)とされることにより、より一層耐久性が向上しうることが判明した。 The near-infrared absorbing pressure-sensitive adhesive composition using this dispersion (A) was found to be excellent in durability even though it was present in the pressure-sensitive adhesive resin (B). Furthermore, it has been found that the durability can be further improved by using the diimonium salt in the dispersion (A) as the aggregate (X).
 このような良好な結果が得られたことに鑑みれば、ジイモニウム色素の少なくとも一部は、近赤外線吸収粘着剤組成物中においても、分散体(A)中と同様の分散状態にあるといえる。更に、この良好な結果が得られたことに鑑みれば、ジイモニウム色素の少なくとも一部は、近赤外線吸収粘着剤組成物中においても、会合状態にあるといえる。 Considering that such a good result was obtained, it can be said that at least a part of the diimonium dye is in the same dispersion state as in the dispersion (A) even in the near-infrared absorbing adhesive composition. Furthermore, in view of the good results, it can be said that at least a part of the diimonium dye is in an associated state even in the near-infrared absorbing adhesive composition.
 本発明に用いられるジイモニウム色素は、溶剤(D)を含む組成物中に分散させた分散体(A)とされて用いられるのが好ましい。分散体(A)は、会合体(X)の形成に役立つ。 The diimonium dye used in the present invention is preferably used as a dispersion (A) dispersed in a composition containing a solvent (D). Dispersion (A) helps to form aggregates (X).
 分散体(A)は、例えば、ジイモニウム色素を溶媒(D)中に分散させた分散液である。分散体(A)は、溶媒(D)の他に、樹脂や分散剤等の他成分を含んでいてもよい。分散体(A)において、ジイモニウム色素は、溶媒(D)中に分散していてもよいし、樹脂等の溶媒(D)以外の成分中に分散していてもよい。分散安定性の観点から、分散体(A)において、ジイモニウム色素は、溶剤(D)中に分散しているのが好ましい。分散体(A)において、ジイモニウム色素は、溶剤(D)を含む組成物に溶解することなく、分散している。即ち、分散体(A)は、ジイモニウム色素を分散させた分散体である。分散が可能となるように、ジイモニウム色素及び溶剤(D)が選択されるのが好ましい。好ましくは、このジイモニウム色素は、近赤外線吸収粘着剤組成物中において分散している。好ましくは、ジイモニウム塩は、分散体(A)中において、会合状態で分散している。より好ましくは、ジイモニウム塩は、近赤外線吸収粘着剤組成物中において、会合状態で分散している。 The dispersion (A) is, for example, a dispersion in which a diimonium dye is dispersed in a solvent (D). The dispersion (A) may contain other components such as a resin and a dispersant in addition to the solvent (D). In the dispersion (A), the diimonium dye may be dispersed in the solvent (D) or in a component other than the solvent (D) such as a resin. From the viewpoint of dispersion stability, in the dispersion (A), the diimonium dye is preferably dispersed in the solvent (D). In the dispersion (A), the diimonium dye is dispersed without dissolving in the composition containing the solvent (D). That is, the dispersion (A) is a dispersion in which a diimonium dye is dispersed. It is preferred that the diimonium dye and the solvent (D) are selected so that they can be dispersed. Preferably, the diimonium dye is dispersed in the near-infrared absorbing adhesive composition. Preferably, the diimonium salt is dispersed in an associated state in the dispersion (A). More preferably, the diimonium salt is dispersed in an associated state in the near-infrared absorbing adhesive composition.
 本願にいう「分散」は、「会合」を含む概念である。即ち、本願にいう「分散」は、会合状態(会合体(X))での分散を含む。 “Dispersion” in this application is a concept including “meeting”. That is, “dispersion” as used in the present application includes dispersion in an associated state (aggregate (X)).
 ジイモニウム色素の具体的な構造としては、下記式(1)で示されるジイモニウムカチオンを有するジイモニウム色素が例示される。 As a specific structure of the diimonium dye, a diimonium dye having a diimonium cation represented by the following formula (1) is exemplified.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 好ましいジイモニウム色素は、下記式(1S)で表されるように、上記式(1)で示されるジイモニウムカチオンと、ジイモニウムアニオンZとからなる。 Preferred diimmonium dyes, as represented by the following formula (1S) and the diimmonium cation represented by the formula (1), diimmonium anion Z - consists of.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 RからRは、それぞれ同一でもよく異なっていてもよい原子又は基を表す。式(1)中のRからRは、会合体(X)を形成しうるものであれば特に限定されない。例えば、RからRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~22のアルキル基または置換基を有する炭素数1~22のアルキル基であってもよい。会合状態の形成の観点から、好ましくは、上記RからRの全ては、同一でもよいし異なっていてもよい有機基とされる。 R 1 to R 8 each represents an atom or a group that may be the same or different. R 1 to R 8 in the formula (1) are not particularly limited as long as they can form the aggregate (X). For example, R 1 to R 8 may each independently be a hydrogen atom, a halogen atom, an alkyl group having 1 to 22 carbon atoms, or an alkyl group having 1 to 22 carbon atoms having a substituent. From the viewpoint of forming an association state, preferably, all of R 1 to R 8 are organic groups which may be the same or different.
 会合状態の形成の観点から、より好ましくは、上記RからRのうちの少なくとも一つが、以下の(1x)、(2x)又は(3x)とされる。
 (1x)ハロゲン原子で置換されていてもよい直鎖又は分岐状の炭素数1から10のアルキル基。
 (2x)炭素数が3から12のシクロアルキル基。
 (3x)シクロアルキル環が置換されていてもよい[C3-12シクロアルキル-C1-10アルキル基]。
From the viewpoint of forming an association state, more preferably, at least one of R 1 to R 8 is the following (1x), (2x), or (3x).
(1x) A linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom.
(2x) a cycloalkyl group having 3 to 12 carbon atoms.
(3x) The cycloalkyl ring may be substituted [C 3-12 cycloalkyl-C 1-10 alkyl group].
 カチオン構造が対称となり、会合状態が得られやすい観点から、上記RからRは、全て同じであるのが好ましい。会合状態が得られやすい観点から、上記RからRは、全て同一であり、且つ、上記(1x)、(2x)又は(3x)であるのが好ましい。 From the viewpoint that the cation structure is symmetric and an association state is easily obtained, it is preferable that R 1 to R 8 are all the same. From the viewpoint of easily obtaining an association state, it is preferable that R 1 to R 8 are all the same and are (1x), (2x), or (3x).
 上記(1x)における、炭素数1から10のアルキル基として、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-アミル基、iso-アミル基、1-メチルブチル基、2-メチルブチル基、1-エチルブチル基、2-エチルブチル基、2-ジメチルプロピル基、1,1-ジメチルプロピル基、ネオペンチル基、n-ヘキシル基等が例示される。これらのうち、iso-プロピル基、iso-ブチル基、iso-アミル基等の、分岐状で且つ炭素数が3から6のアルキル基が、会合体形成に必要な分子配列を得る点で好ましい。 As the alkyl group having 1 to 10 carbon atoms in the above (1x), methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group Group, n-amyl group, iso-amyl group, 1-methylbutyl group, 2-methylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 2-dimethylpropyl group, 1,1-dimethylpropyl group, neopentyl group, n -Hexyl group and the like are exemplified. Of these, branched alkyl groups having 3 to 6 carbon atoms, such as an iso-propyl group, an iso-butyl group, and an iso-amyl group, are preferable from the viewpoint of obtaining a molecular sequence necessary for forming an aggregate.
 上記(2x)における、炭素数が3から12のシクロアルキル基として、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of the cycloalkyl group having 3 to 12 carbon atoms in (2x) above include a cyclopentyl group and a cyclohexyl group.
 上記(3x)における、シクロアルキル環を置換する置換基として、アルキル基、水酸基、スルホン酸基、アルキルスルホン酸基、ニトロ基、アミノ基、アルコキシ基、ハロゲン化アルキル、ハロゲン原子等が例示される。好ましくは、上記(3x)における、シクロアルキル環は置換されていないのがよい。 Examples of the substituent for substituting the cycloalkyl ring in (3x) above include an alkyl group, a hydroxyl group, a sulfonic acid group, an alkylsulfonic acid group, a nitro group, an amino group, an alkoxy group, an alkyl halide, a halogen atom, and the like. . Preferably, the cycloalkyl ring in (3x) above is not substituted.
 会合体形成に必要な分子配列を容易とする観点から、より好ましくは、上記(3x)における[C3-12シクロアルキル-C1-10アルキル基]は、下記式(2)で示される有機基とされる。 From the viewpoint of facilitating the molecular arrangement necessary for the formation of the aggregate, more preferably, the [C 3-12 cycloalkyl-C 1-10 alkyl group] in the above (3x) is an organic compound represented by the following formula (2). Based on.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ただし、式(2)中、Rは、炭素数1以上10以下の直鎖状又は分岐状のアルキル基を示し、mは3以上12以下の整数を示す。 However, in formula (2), R 9 represents a linear or branched alkyl group having 1 to 10 carbon atoms, and m represents an integer of 3 to 12 inclusive.
 前述の通り、カチオン構造が対称となり、会合状態が得られやすい観点から、上記RからRは、全て同じであるのが好ましい。 As described above, it is preferable that R 1 to R 8 are all the same from the viewpoint that the cation structure is symmetric and an association state is easily obtained.
 上記式(2)において、Rの炭素数は1以上4以下であるのがより好ましい。上記式(2)において、mは5以上8以下が好ましく、5以上6以下がより好ましい。このような炭素数の範囲は、会合に必要な分子間相互作用の増大に寄与する。具体的には、シクロペンチルメチル基、シクロヘキシルメチル基、2-シクロペンチルエチル基、2-シクロペンチルプロピル基、3-シクロペンチルプロピル基、4-シクロペンチルブチル基、2-シクロヘキシルエチル基、2-シクロヘキシルプロピル基、3-シクロヘキシルプロピル基、4-シクロヘキシルブチル基等が例示される。これらの中でも、シクロペンチルメチル基、シクロヘキシルメチル基、2-シクロヘキシルメチル基、2-シクロヘキシルプロピル基、3-シクロヘキシルプロピル基及び4-シクロヘキシルブチル基が好ましく、より好ましくは、シクロペンチルメチル基及びシクロヘキシルメチル基であり、特にシクロヘキシルメチル基が好ましい。 In the above formula (2), the carbon number of R 9 is more preferably 1 or more and 4 or less. In the above formula (2), m is preferably 5 or more and 8 or less, and more preferably 5 or more and 6 or less. Such a carbon number range contributes to an increase in the intermolecular interaction necessary for the association. Specifically, cyclopentylmethyl group, cyclohexylmethyl group, 2-cyclopentylethyl group, 2-cyclopentylpropyl group, 3-cyclopentylpropyl group, 4-cyclopentylbutyl group, 2-cyclohexylethyl group, 2-cyclohexylpropyl group, 3 Examples include -cyclohexylpropyl group, 4-cyclohexylbutyl group and the like. Among these, a cyclopentylmethyl group, a cyclohexylmethyl group, a 2-cyclohexylmethyl group, a 2-cyclohexylpropyl group, a 3-cyclohexylpropyl group, and a 4-cyclohexylbutyl group are preferable, and a cyclopentylmethyl group and a cyclohexylmethyl group are more preferable. In particular, a cyclohexylmethyl group is preferable.
 上記式(2)におけるシクロアルキル環は、置換基を有していなくてもよいし、有していてもよい。この置換基として、アルキル基、水酸基、スルホン酸基、アルキルスルホン酸基、ニトロ基、アミノ基、アルコキシ基、ハロゲン化アルキル基及びハロゲンからなる群から選ばれる少なくとも1種が挙げられる。より好ましくは、上記式(2)におけるシクロアルキル環は、置換基を有していないのがよい。 The cycloalkyl ring in the above formula (2) may or may not have a substituent. Examples of this substituent include at least one selected from the group consisting of an alkyl group, a hydroxyl group, a sulfonic acid group, an alkylsulfonic acid group, a nitro group, an amino group, an alkoxy group, a halogenated alkyl group, and a halogen. More preferably, the cycloalkyl ring in the above formula (2) does not have a substituent.
 会合状態の形成及びジイモニウム色素の耐久性の観点から、RからRの全てがシクロヘキシルメチル基であるのが特に好ましい。即ち、下記式(2S)で示されるジイモニウム塩が特に好ましい。 From the viewpoint of formation of an association state and durability of the diimonium dye, it is particularly preferable that all of R 1 to R 8 are cyclohexylmethyl groups. That is, a diimonium salt represented by the following formula (2S) is particularly preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記(1x)のうち、ハロゲン原子で置換された直鎖又は分岐状の炭素数1から10のアルキル基として、2-ハロゲノエチル基、2,2-ジハロゲノエチル基、2,2,2-トリハロゲノエチル基、3-ハロゲノプロピル基、3,3-ジハロゲノプロピル基、3,3,3-トリハロゲノプロピル基、4-ハロゲノブチル基、4,4-ジハロゲノブチル基、4,4,4-トリハロゲノブチル基、5-ハロゲノペンチル基、5,5-ジハロゲノペンチル基、5,5,5-トリハロゲノペンチル基等のハロゲン化アルキルが例示される。中でも、下記一般式(3)で示されるモノハロゲン化アルキル基が好ましい。 Of the above (1x), a linear or branched alkyl group having 1 to 10 carbon atoms substituted with a halogen atom includes a 2-halogenoethyl group, a 2,2-dihalogenoethyl group, 2,2,2- Trihalogenoethyl group, 3-halogenopropyl group, 3,3-dihalogenopropyl group, 3,3,3-trihalogenopropyl group, 4-halogenobutyl group, 4,4-dihalogenobutyl group, 4,4,4 Examples thereof include alkyl halides such as 4-trihalogenobutyl group, 5-halogenopentyl group, 5,5-dihalogenopentyl group, and 5,5,5-trihalogenopentyl group. Among these, a monohalogenated alkyl group represented by the following general formula (3) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ただし、式(3)中、nは1以上9以下の整数を示し、Xはハロゲン原子を示す。 However, in formula (3), n represents an integer of 1 to 9, and X represents a halogen atom.
 上記式(3)において、nは1以上4以下であるのがより好ましい。上記式(3)において、Xはフッ素原子であるのがより好ましい。この範囲とされることにより、会合に必要な分子間相互作用が増大する。好ましい具体例として、2-フルオロエチル基、3-フルオロプロピル基、4-フルオロブチル基及び5-フルオロペンチル基が挙げられ、特に3-フルオロプロピル基が好ましい。 In the above formula (3), n is more preferably 1 or more and 4 or less. In the above formula (3), X is more preferably a fluorine atom. By being in this range, the intermolecular interaction required for the association increases. Preferable specific examples include 2-fluoroethyl group, 3-fluoropropyl group, 4-fluorobutyl group and 5-fluoropentyl group, and 3-fluoropropyl group is particularly preferable.
 会合状態の形成及びジイモニウム色素の耐久性の観点から、RからRの全てが3-フルオロプロピル基であるのが特に好ましい。即ち、下記式(3S)で示されるジイモニウム塩が特に好ましい。 From the viewpoints of formation of an association state and durability of the diimonium dye, it is particularly preferable that all of R 1 to R 8 are 3-fluoropropyl groups. That is, a diimonium salt represented by the following formula (3S) is particularly preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記した一般式(2S)で示されるジイモニウム塩化合物及び一般式(3S)で示されるジイモニウム塩化合物は、いずれも新規な化合物である。これらのジイモニウム塩化合物は、会合体(X)を形成し、粘着剤組成物中における耐熱性及び耐湿性に優れ、且つ、高い近赤外線吸収能を有している。 The diimonium salt compound represented by the general formula (2S) and the diimonium salt compound represented by the general formula (3S) are both novel compounds. These dimonium salt compounds form an aggregate (X), are excellent in heat resistance and moisture resistance in the pressure-sensitive adhesive composition, and have a high near-infrared absorbing ability.
 RからRを構成するハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom constituting R 1 to R 8 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 他のRからRとして、炭素数が1から10の直鎖、分岐状及び脂環式アルキル基が挙げられる。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-アミル基、イソアミル基、1-メチルブチル基、1-エチルプロピル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、ネオペンチル基、n-ヘキシル基、シクロヘキシル基、等が挙げられる。他の好ましいRからRとして、4,4,4-トリフルオロブチル基、2,2,2-トリフルオロエチル基及びペルフルオロブチル基が挙げられる。RからRは全て同じであってもよいし、それぞれ異なっていてもよい。これらの中では、前述の分岐状アルキル基がより好ましい。 Other examples of R 1 to R 8 include linear, branched and alicyclic alkyl groups having 1 to 10 carbon atoms. Examples of such an alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-amyl group, isoamyl group, Examples include 1-methylbutyl group, 1-ethylpropyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, neopentyl group, n-hexyl group, cyclohexyl group, and the like. Other preferred R 1 to R 8 include 4,4,4-trifluorobutyl group, 2,2,2-trifluoroethyl group and perfluorobutyl group. R 1 to R 8 may all be the same or different from each other. In these, the above-mentioned branched alkyl group is more preferable.
 RからRは、炭素数が3から5の直鎖又は分岐状のアルキル基であってもよい。例えば、RからRは、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-アミル基又はイソアミル基であってもよい。これらの中では、前述の分岐状アルキル基が特に好ましい。 R 1 to R 8 may be a linear or branched alkyl group having 3 to 5 carbon atoms. For example, R 1 to R 8 may be an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-amyl group, or an isoamyl group. Of these, the aforementioned branched alkyl group is particularly preferred.
 また、RからRのアルキル基に結合しうる置換基としては、シアノ基;ヒドロキシル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等の炭素数1~6のアルコキシ基;メトキシメトキシ基、エトキシメトキシ基、メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基、メトキシブトキシ基、エトキシブトキシ基等の炭素数2~8のアルコキシアルコキシ基;メトキシメトキシメトキシ基、メトキシメトキシエトキシ基、メトキシエトキシエトキシ基、エトキシエトキシエトキシ基等の炭素数3~15のアルコキシアルコキシアルコキシ基;アリルオキシ基;フェノキシ基、トリルオキシ基、キシリルオキシ基、ナフチルオキシ基等の炭素数6~12のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基等の炭素数2~7のアルコキシカルボニル基;メチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基等の炭素数2~7のアルキルカルボニルオキシ基;メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基等の炭素数2~7のアルコキシカルボニルオキシ基等がある。 Examples of the substituent that can be bonded to the alkyl group of R 1 to R 8 include cyano group; hydroxyl group; halogen atom such as fluorine atom, chlorine atom and bromine atom; methoxy group, ethoxy group, n-propoxy group, n An alkoxy group having 1 to 6 carbon atoms such as butoxy group; alkoxy having 2 to 8 carbon atoms such as methoxymethoxy group, ethoxymethoxy group, methoxyethoxy group, ethoxyethoxy group, methoxypropoxy group, methoxybutoxy group, ethoxybutoxy group, etc. Alkoxy group; methoxymethoxymethoxy group, methoxymethoxyethoxy group, methoxyethoxyethoxy group, ethoxyethoxyethoxy group, etc., alkoxyalkoxyalkoxy group having 3 to 15 carbon atoms; allyloxy group; phenoxy group, tolyloxy group, xylyloxy group, naphthyloxy group 6-12 carbon atoms such as Aryloxy group; alkoxycarbonyl group having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group; methylcarbonyloxy group, ethylcarbonyloxy group, C2-C7 alkylcarbonyloxy groups such as n-propylcarbonyloxy group and n-butylcarbonyloxy group; methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, n-butoxycarbonyloxy group, etc. And an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
 ジイモニウム色素におけるアニオンの種類は特に限定されない。このジイモニウムアニオンは、上記一般式(1)で示されるジイモニウムカチオンを中和させるのに必要である。このジイモニウムアニオンとして、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン等のハロゲンイオン;過塩素酸イオン;過ヨウ素酸イオン;テトラフルオロホウ酸イオン;ヘキサフルオロリン酸イオン;ヘキサフルオロアンチモン酸イオン;トリフルオロメタンスルホン酸イオン;トルエンスルホン酸イオン;ビス(トリフルオロメタンスルホン)イミドイオン;テトラキス(ペンタフルオロフェニル)ホウ酸イオン;トリス(トリフルオロメタンスルホン)メチドイオン等が好ましく、中でもフッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン等のハロゲンイオン;過塩素酸イオン;過ヨウ素酸イオン;テトラフルオロホウ酸イオン;ヘキサフルオロリン酸イオン;ヘキサフルオロアンチモン酸イオンなどの無機アニオンは、ジイモニウム塩の溶解度を低下させるという観点から好ましい。会合体(X)の形成に必要な分子配列を容易とする観点から、ヘキサフルオロリン酸イオンが好ましい。 The kind of anion in the dimonium dye is not particularly limited. This dimonium anion is necessary to neutralize the dimonium cation represented by the general formula (1). As the diimonium anion, halogen ions such as fluorine ion, chlorine ion, bromine ion and iodine ion; perchlorate ion; periodate ion; tetrafluoroborate ion; hexafluorophosphate ion; hexafluoroantimonate ion; trifluoro Lomethanesulfonate ion; Toluenesulfonate ion; Bis (trifluoromethanesulfone) imide ion; Tetrakis (pentafluorophenyl) borate ion; Tris (trifluoromethanesulfone) methide ion, etc. are preferable, among which fluorine ion, chlorine ion, bromine ion, iodine Inorganic anions such as halogen ions such as ions; perchlorate ions; periodate ions; tetrafluoroborate ions; hexafluorophosphate ions; hexafluoroantimonate ions From the viewpoint of lowering the solubility of the diimmonium salt. From the viewpoint of facilitating the molecular arrangement required for the formation of the aggregate (X), hexafluorophosphate ions are preferred.
 本発明のジイモニウム色素は、ジイモニウムカチオン1個に対して、2個のアニオンが結合する形態であるのが好ましい。上記好ましいジイモニウムカチオンと、上記好ましいジイモニウムアニオンとの塩が、ジイモニウム色素として好ましく用いられる。 The diimonium dye of the present invention preferably has a form in which two anions are bonded to one diimonium cation. A salt of the preferable diimonium cation and the preferable diimonium anion is preferably used as the diimonium dye.
 本発明に係るジイモニウム塩は、ガラス転移温度(Tg)が0℃以下である樹脂(B)との組み合わせにおいて、耐熱性、耐湿熱性及び耐光性に優れ、しかも、良好なヘイズを有しうる。 The diimonium salt according to the present invention is excellent in heat resistance, moist heat resistance and light resistance in combination with the resin (B) having a glass transition temperature (Tg) of 0 ° C. or less, and may have good haze.
 上記ジイモニウム塩の製造方法の一例は、以下の通りである。 An example of a method for producing the above dimonium salt is as follows.
 この製造方法の一例では、先ず、ウルマン反応及び還元反応により、下記式(4)で示されるアミノ体を得る。このアミノ体に、NMP、DMF等の極性溶剤中で、上記RからRに対応するヨウ化物と、脱ヨウ素剤としてのアルカリ金属の炭酸塩とを加え、30℃以上150℃以下、好ましくは70℃以上120℃以下で反応させて、下記式(5)で示されるアルキル置換体を得る。例えば、上記RからRが全てシクロヘキシルアルキル基である場合、対応するヨウ化物としてヨウ化シクロヘキシルアルカンが用いられる。具体的には、上記RからRが全てシクロヘキシルメチル基である場合、対応するヨウ化物としてシクロヘキシルメチルヨーダイドが用いられる。また、上記RからRが全てフルオロアルキル基である場合、対応するヨウ化物としてヨウ化フルオロアルカンが用いられる。具体的には、例えば、上記RからRが全て3-フルオロプロピル基である場合、対応するヨウ化物として、1-ヨード-3-フルオロプロパンが用いられる。 In an example of this production method, first, an amino compound represented by the following formula (4) is obtained by an Ullmann reaction and a reduction reaction. To this amino compound, an iodide corresponding to the above R 1 to R 8 and an alkali metal carbonate as a deiodizing agent are added in a polar solvent such as NMP or DMF, and 30 ° C. or more and 150 ° C. or less, preferably Is reacted at 70 ° C. or higher and 120 ° C. or lower to obtain an alkyl-substituted product represented by the following formula (5). For example, when R 1 to R 8 are all cyclohexylalkyl groups, a cyclohexylalkane iodide is used as the corresponding iodide. Specifically, when R 1 to R 8 are all cyclohexylmethyl groups, cyclohexylmethyl iodide is used as the corresponding iodide. Further, when all of R 1 to R 8 are fluoroalkyl groups, a fluoroalkane iodide is used as the corresponding iodide. Specifically, for example, when R 1 to R 8 are all 3-fluoropropyl groups, 1-iodo-3-fluoropropane is used as the corresponding iodide.
 なお、本願において、「NMP」はN-メチル-2-ピロリドンを意味し、「DMF」はジメチルホルムアミドを意味する。 In the present application, “NMP” means N-methyl-2-pyrrolidone, and “DMF” means dimethylformamide.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一方、RからRが2種以上の異なる置換基である場合、それぞれの有機基の数に対応するモル数のヨウ化物を順次反応させるか、又は、これらを同時に添加して反応させる。例えば、RからRがシクロヘキシルメチル基及びその他の有機基である場合、置換基の数に対応するモル数のヨウ化シクロヘキシルアルカン(シクロヘキシルメチルヨーダイド)を添加して反応させ、この反応の後に、順次対応するモル数のヨウ化物(例えば、ヨウ化フルオロアルカン;ヨードアルカン;アルコキシヨード;ヨウ化ベンゼン;ヨウ化ベンジル、ヨウ化フェネチル等のフェニル-1-ヨードアルカン等)を加えて反応させるか、あるいは、これらの異種のヨウ化物を同時に加えて反応させる。 On the other hand, when R 1 to R 8 are two or more different substituents, the iodides in the number of moles corresponding to the number of the respective organic groups are sequentially reacted, or these are simultaneously added and reacted. For example, when R 1 to R 8 are a cyclohexylmethyl group and other organic groups, a mole number of cyclohexylalkane iodide (cyclohexylmethyl iodide) corresponding to the number of substituents is added and reacted. Thereafter, the corresponding number of moles of iodide (for example, fluoroalkane iodide; iodoalkane; alkoxyiodide; benzene iodide; phenyl-1-iodoalkane such as benzyl iodide and phenethyl iodide) are added and reacted. Alternatively, these different types of iodides are simultaneously added and reacted.
 次に、上記式(5)で示されるアルキル置換体と対応するアニオンZの銀塩を、NMP、DMF、アセトニトリル等の有機溶剤中、30℃以上150℃以下、好ましくは40℃以上80℃以下の温度で反応させ、析出した銀を濾別した後、水、酢酸エチル、ヘキサン等の溶媒を加え、生じた沈殿を濾過して、上記式(1S)に示されるジイモニウム塩を得る。 Next, a silver salt of an anion Z corresponding to the alkyl-substituted product represented by the above formula (5) is 30 ° C. or more and 150 ° C. or less, preferably 40 ° C. or more and 80 ° C. in an organic solvent such as NMP, DMF, or acetonitrile. After reacting at the following temperature and separating the precipitated silver, a solvent such as water, ethyl acetate or hexane is added, and the resulting precipitate is filtered to obtain a diimmonium salt represented by the above formula (1S).
 なお式(5)中のRからRは、前述した通りの意味である。 In the formula (5), R 1 to R 8 have the same meaning as described above.
2.会合体(X)
 本発明に係るジイモニウム色素は、上記式(1S)で示される分子が複数会合した会合体(X)を形成する。この会合体(X)は、数個から数十個程度の分子により形成される分子集合体であると考えられる。この会合体(X)は、トルエンで100mg/Lに希釈された場合、750nm以上1300nm以下の波長領域において吸収を示し、且つ、1110nm以上1250nm以下の波長領域に極大吸収波長を有する。
2. Aggregate (X)
The diimonium dye according to the present invention forms an aggregate (X) in which a plurality of molecules represented by the formula (1S) are associated. This aggregate (X) is considered to be a molecular assembly formed by several to several tens of molecules. When the aggregate (X) is diluted to 100 mg / L with toluene, the aggregate (X) exhibits absorption in a wavelength region of 750 nm to 1300 nm, and has a maximum absorption wavelength in a wavelength region of 1110 nm to 1250 nm.
 会合体(X)を形成した場合の極大吸収波長は、溶解状態の場合とは異なる吸収スペクトルを有することが知られている(例えば、Photographic Science and Engineering,Vol.18,No.323-335(1974)参照)。一般に、会合状態における吸収バンドは、溶解状態よりも長波長側に移動する。ジイモニウム塩化合物は、一般的に溶解状態において1050nm以上1095nm以下の間に極大吸収波長を示すが、会合体(X)を形成している場合、極大吸収波長が15nm~200nm長波長側にシフトする。よって、会合体(X)は、トルエンで100mg/Lに希釈された場合、1110nm以上1250nm以下の範囲に極大吸収波長を示す。なお、シフトによる変化量が大きすぎる場合、900nm以上1100nm以下付近の近赤外線吸収が不足してしまう場合がある。この観点から、トルエンで100mg/Lに希釈されて測定される場合のλmaxのシフトの変化量は、15nm以上100nm以下が好ましい。このシフトの変化量を測定する場合の測定条件は、例えば、会合体(X)の場合が下記[測定法1]とされ、溶解状態の場合は下記[測定法2]とされる。 It is known that the maximum absorption wavelength when the aggregate (X) is formed has an absorption spectrum different from that in the dissolved state (for example, Photographic Science and Engineering, Vol. 18, No. 323-335 ( 1974)). In general, the absorption band in the associated state moves to the longer wavelength side than the dissolved state. A diimonium salt compound generally exhibits a maximum absorption wavelength between 1050 nm and 1095 nm in a dissolved state, but when an aggregate (X) is formed, the maximum absorption wavelength is shifted to the longer wavelength side from 15 nm to 200 nm. . Therefore, when the aggregate (X) is diluted to 100 mg / L with toluene, it exhibits a maximum absorption wavelength in the range of 1110 nm to 1250 nm. Note that if the amount of change due to the shift is too large, near infrared absorption near 900 nm or more and 1100 nm or less may be insufficient. From this viewpoint, the amount of change in the shift of λmax when measured after being diluted to 100 mg / L with toluene is preferably 15 nm or more and 100 nm or less. The measurement conditions for measuring the shift change amount are, for example, the following [Measurement method 1] for the aggregate (X) and the following [Measurement method 2] for the dissolved state.
 本発明に係るジイモニウム色素の会合体(X)の吸収波長領域及び極大吸収波長は、例えば、次の[測定法1]により測定されうる。 The absorption wavelength region and the maximum absorption wavelength of the aggregate (X) of the diimonium dye according to the present invention can be measured, for example, by the following [Measurement method 1].
 [測定法1]
 ジイモニウム塩化合物を、分散媒中において、少なくとも50mg/L以上の濃度で、0.001μm以上10μm以下の粒子として、浮遊あるいは懸濁している状態(分散状態)において測定された吸光度に基づいて求める。この粒子径は、マイクロトラック粒度分析計によって測定される。具体的には、ジイモニウム塩化合物0.5質量部、トルエン9.5質量部及び粒子径0.3mmのジルコニアビーズ70質量部を50mlのガラス容器に入れ、ペイントシェーカーで2時間振とうした後に、ジルコニアビーズを濾別して、液体L1を得る。この液体L1を、ジイモニウム塩化合物の濃度が100mg/Lとなるようにトルエンで希釈して、ジイモニウム塩分散液L2が得られる。この分散液L2の吸光度が、分光光度計により測定される。この分光光度計として、UV-3100(島津製作所製)が用いられうる。なお、ジイモニウム塩が溶解状態とならない限りにおいて、上記希釈濃度(100mg/L)は適宜変更されてもよい。
[Measurement method 1]
The dimonium salt compound is determined based on the absorbance measured in a suspended or suspended state (dispersed state) as particles having a concentration of at least 50 mg / L and not less than 0.001 μm and not more than 10 μm in a dispersion medium. This particle size is measured by a Microtrac particle size analyzer. Specifically, 0.5 parts by weight of a diimonium salt compound, 9.5 parts by weight of toluene, and 70 parts by weight of zirconia beads having a particle diameter of 0.3 mm were placed in a 50 ml glass container and shaken with a paint shaker for 2 hours. The zirconia beads are filtered off to obtain liquid L1. The liquid L1 is diluted with toluene so that the concentration of the diimonium salt compound is 100 mg / L, and a diimonium salt dispersion L2 is obtained. The absorbance of this dispersion L2 is measured with a spectrophotometer. As this spectrophotometer, UV-3100 (manufactured by Shimadzu Corporation) can be used. The dilution concentration (100 mg / L) may be appropriately changed as long as the dimonium salt is not dissolved.
 一方、溶解状態にあるジイモニウム塩化合物の極大吸収波長は、例えば、次の[測定法2]により測定されうる。 On the other hand, the maximum absorption wavelength of the dimonium salt compound in a dissolved state can be measured, for example, by the following [Measurement Method 2].
 [測定法2]
 上記の[測定法1]で得られた分散液L2をトルエンによって更に希釈し、溶解状態となった時点の溶液が用いられる。溶解状態か否かの確認は、λmaxが短波長側にシフトすること、あるいは、半値幅が狭くなること等により、総合的に判断することができる。トルエンで5mg/L程度まで希釈しても溶解状態とならない場合、トルエンに代えて塩化メチレンで希釈する。この溶液の測定には、分光光度計により測定される。この分光光度計として、UV-3100(島津製作所製)が用いられうる。
[Measurement method 2]
The dispersion L2 obtained by the above [Measuring method 1] is further diluted with toluene, and the solution at the time when the solution is dissolved is used. Whether or not it is in a dissolved state can be comprehensively determined by shifting λmax to the short wavelength side or narrowing the half width. If the solution is not dissolved even when diluted to about 5 mg / L with toluene, dilute with methylene chloride instead of toluene. This solution is measured with a spectrophotometer. As this spectrophotometer, UV-3100 (manufactured by Shimadzu Corporation) can be used.
 なお、測定法1及び測定法2において、分散媒は、トルエン以外でもよい。この分散媒として、酢酸エチル、酢酸ブチル及びメチルシクロヘキサンが例示される。 In measurement method 1 and measurement method 2, the dispersion medium may be other than toluene. Examples of the dispersion medium include ethyl acetate, butyl acetate and methylcyclohexane.
 ジイモニウム塩化合物は、会合体としてではなく、結晶として分散状態にある場合がある。会合分散状態では、結晶分散状態よりも半値幅が小さい急峻な吸収バンドを示す。半値幅とは、極大吸収波長における吸光度の半分の吸光度を示す波長領域の幅である。結晶分散状態では、溶解状態に対する極大吸収波長の変化量が大きい。結晶分散状態において、トルエンで100mg/Lに希釈された条件下でのλmaxは、1250nmよりも長波長側にシフトする。また結晶分散状態では、極大吸収波長におけるモル吸光係数が40,000mol-1・L・cm-1未満となる。なお、モル吸光係数(mol-1・L・cm-1)とは、濃度が1mol/Lであり且つ光路長が1cmである場合における吸光係数である。一方、溶媒がトルエンである場合、会合状態(会合分散状態)では、この極大吸収波長におけるモル吸光係数が70000mol-1・L・cm-1以上となる。このように、結晶分散状態では、モル吸光係数が低いため、会合状態と比較して、近赤外線吸収能力が劣る。 The diimonium salt compound may be in a dispersed state as a crystal, not as an aggregate. In the association dispersion state, a steep absorption band having a half width smaller than that in the crystal dispersion state is shown. The half-value width is a width of a wavelength region showing an absorbance that is half of the absorbance at the maximum absorption wavelength. In the crystal dispersion state, the amount of change in the maximum absorption wavelength relative to the dissolved state is large. In a crystal dispersion state, λmax under a condition diluted to 100 mg / L with toluene shifts to a longer wavelength side than 1250 nm. In the crystal dispersion state, the molar extinction coefficient at the maximum absorption wavelength is less than 40,000 mol −1 · L · cm −1 . The molar extinction coefficient (mol −1 · L · cm −1 ) is an extinction coefficient when the concentration is 1 mol / L and the optical path length is 1 cm. On the other hand, when the solvent is toluene, in the association state (association dispersion state), the molar extinction coefficient at this maximum absorption wavelength is 70000 mol −1 · L · cm −1 or more. Thus, since the molar absorption coefficient is low in the crystal dispersion state, the near-infrared absorption ability is inferior compared with the association state.
 このように、ジイモニウム塩化合物が会合状態であるか又は溶解状態であるかの判別は、分散液(分散状態)で測定された吸収スペクトルと、溶解状態で測定された吸収スペクトルとを比較して、それぞれの極大吸収波長及び極大吸収波長のシフト量に基づき行うことができる。一方、ジイモニウム塩化合物が会合状態であるか又は結晶分散状態であるかの判別は、分散状態において測定された吸収スペクトルの極大吸収波長及びそのモル吸光係数を比較することによりなされる。 Thus, the determination of whether the diimonium salt compound is in an associated state or a dissolved state is made by comparing the absorption spectrum measured in the dispersion (dispersed state) with the absorption spectrum measured in the dissolved state. The maximum absorption wavelength and the shift amount of the maximum absorption wavelength can be performed. On the other hand, the determination of whether the diimonium salt compound is in an associated state or a crystal dispersed state is made by comparing the maximum absorption wavelength of the absorption spectrum measured in the dispersed state and its molar extinction coefficient.
 好ましいジイモニウム色素は、例えば上記製造方法により得られうる。また、市販されているジイモニウム色素としては、日本カーリット社製の商品名「CIR-1085」、日本カーリット社製の商品名「CIR-1085F」、日本化薬社製の商品名「KAYASORB IRG-022」、日本化薬社製の商品名「KAYASORB IRG-023」等が挙げられる。以下、「KAYASORB IRG-022」及び「KAYASORB IRG-023」は、それぞれ単に、「IRG-022」及び「IRG-023」とも称される。 Preferred diimonium dyes can be obtained, for example, by the above production method. Commercially available diimonium dyes include trade name “CIR-1085” manufactured by Nippon Carlit Co., Ltd., trade name “CIR-1085F” manufactured by Nippon Carlit Co., Ltd., and trade name “KAYASORB IRG-022” manufactured by Nippon Kayaku Co., Ltd. ", Trade name" KAYASORB IRG-023 "manufactured by Nippon Kayaku Co., Ltd., and the like. Hereinafter, “KAYASORB IRG-022” and “KAYASORB IRG-023” are also simply referred to as “IRG-022” and “IRG-023”, respectively.
 ジイモニウム色素は、溶剤(D)中に分散しやすい形態とされるのが好ましい。好ましくは、ジイモニウム色素は、粉砕等により微細化されているのが好ましい。この微細化の方式としては、湿式及び乾式のいずれもが採用されうる。湿式の微細化手法としては、ビーズミルやボールミルの他、液流による微細化、あるいはレーザーや超音波を用いた微細化が採用されうる。乾式の微細化手法としては、ボールミル、アトライターの他、ロールミルや気流による微細化が採用されうる。より好ましくは、ジルコニアビーズ、ガラスビーズ等の粒子を用いてジイモニウム色素を粉砕する方法が採用されうる。例えば、ジルコニア粒子を用いた粉砕方法として、ジイモニウム色素と、このジイモニウム色素の溶解度が5質量%以下である溶剤(D)と、ジルコニアビーズとを混合した液体を作製し、この液体を容器内で振とうした後、ジルコニアビーズを分離する方法が例示される。 The diimonium dye is preferably in a form that is easily dispersed in the solvent (D). Preferably, the diimonium dye is refined by pulverization or the like. As the miniaturization method, both wet and dry methods can be adopted. As a wet micronization method, a bead mill or ball mill, micronization by liquid flow, or micronization using laser or ultrasonic waves can be employed. As a dry refinement method, a ball mill, an attritor, a roll mill or an air stream can be used. More preferably, a method of pulverizing a diimonium dye using particles such as zirconia beads and glass beads may be employed. For example, as a pulverization method using zirconia particles, a liquid is prepared by mixing a diimonium dye, a solvent (D) having a solubility of 5% by mass or less of the diimonium dye, and zirconia beads. An example is a method of separating zirconia beads after shaking.
3.溶剤(D)
 本発明では、ジイモニウム色素を溶剤(D)を含む組成物中に分散させて用いる。好ましくは、本発明では、ジイモニウム色素を溶剤(D)に分散させて用いる。ジイモニウム色素を分散させやすくする観点から、上記溶剤(D)としては、用いられるジイモニウム色素に対する貧溶媒が好ましい。具体的には、用いられるジイモニウム色素の溶解度が5質量%以下である溶剤が好ましい。この溶解度の測定方法は、後述される。
3. Solvent (D)
In the present invention, the diimonium dye is used by being dispersed in a composition containing the solvent (D). Preferably, in the present invention, the diimonium dye is used by being dispersed in the solvent (D). From the viewpoint of facilitating the dispersion of the diimonium dye, the solvent (D) is preferably a poor solvent for the diimonium dye used. Specifically, a solvent in which the diimonium dye used has a solubility of 5% by mass or less is preferable. A method for measuring this solubility will be described later.
 具体的な溶剤(D)としては、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルシクロヘキサン等が好ましく、トルエン及び酢酸エチルが特に好ましい。 Specific examples of the solvent (D) include toluene, xylene, ethyl acetate, butyl acetate, methylcyclohexane and the like, and toluene and ethyl acetate are particularly preferable.
4.分散体(A)
 分散体(A)は、上記溶剤(D)を含む組成物中に上記ジイモニウム色素が分散している液体である。分散体(A)は、ジイモニウム色素と分散媒とを混合してなる。分散媒として、溶剤(D)の他、樹脂が例示される。分散媒は、溶剤(D)と他の化合物との混合物であってもよい。好ましくは、この分散媒は、溶剤(D)を含む。分散体(A)において、ジイモニウム色素は、実質的に溶剤(D)に溶解していない。本願において分散とは、0.001μm以上10μm以下(10-9m~10-5m)程度の粒子が、溶剤(D)を含む組成物中に浮遊あるいは懸濁している状態を意味する。
4). Dispersion (A)
The dispersion (A) is a liquid in which the diimonium dye is dispersed in a composition containing the solvent (D). The dispersion (A) is formed by mixing a diimonium dye and a dispersion medium. Examples of the dispersion medium include a resin in addition to the solvent (D). The dispersion medium may be a mixture of the solvent (D) and another compound. Preferably, the dispersion medium includes a solvent (D). In the dispersion (A), the diimonium dye is not substantially dissolved in the solvent (D). In the present application, the dispersion means a state in which particles of about 0.001 μm to 10 μm (10 −9 m to 10 −5 m) are suspended or suspended in the composition containing the solvent (D).
 好ましくは、分散体(A)において、ジイモニウム色素は、会合状態にある。即ち、分散体(A)において、ジイモニウム色素は、上記会合体(X)とされているのが好ましい。 Preferably, in the dispersion (A), the diimonium dye is in an associated state. That is, in the dispersion (A), it is preferable that the diimonium dye is the aggregate (X).
 ジイモニウム色素が会合状態にある分散体(A)として、後述の合成例で得られる分散体(a)、分散体(b)、分散体(c)及び分散体(d)が例示される。 Examples of the dispersion (A) in which the diimonium dye is in an associated state include a dispersion (a), a dispersion (b), a dispersion (c), and a dispersion (d) obtained in Synthesis Examples described later.
 分散装置として、ビーズミル、ボールミル、振動ボールミル、遊星ボールミル、サンドミル、コロイドミル、ジェットミル及びローラミルが挙げられ、ビーズミルが好ましい。本発明で利用可能な分散装置は、例えば、特開昭52-92716号公報及び国際公開88/074794号パンフレットに記載されているものが挙げられる。これらの中でも、縦型又は横型の媒体分散装置が好ましい。ジイモニウム塩化合物の分散では、分散媒が用いられなくてもよいが、分散媒の存在下で実施されるのが好ましい。この分散媒として、水及び各種有機溶剤が挙げられ、樹脂(B)との混合の観点から、好ましくは有機溶媒であり、特に好ましくはトルエン、酢酸エチル等である。また、分散媒として界面活性剤が用いられても良い。この界面活性剤として、アニオン界面活性剤、アニオン性ポリマー、ノニオン性界面活性剤及びカチオン性界面活性剤が挙げられる。このようにして、分散体(A)が得られうる。 Examples of the dispersing device include a bead mill, a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill, and a bead mill is preferable. Examples of the dispersing device that can be used in the present invention include those described in JP-A-52-92716 and International Publication No. 88/074794. Among these, a vertical or horizontal medium dispersion device is preferable. In the dispersion of the diimonium salt compound, a dispersion medium may not be used, but it is preferably carried out in the presence of the dispersion medium. Examples of the dispersion medium include water and various organic solvents. From the viewpoint of mixing with the resin (B), an organic solvent is preferable, and toluene, ethyl acetate, and the like are particularly preferable. A surfactant may be used as the dispersion medium. Examples of the surfactant include an anionic surfactant, an anionic polymer, a nonionic surfactant, and a cationic surfactant. In this way, the dispersion (A) can be obtained.
 本願における上記液体(C)は、上記分散体(A)を含む概念である。例えば、液体(C)は、粒子状のジイモニウム色素と、そのジイモニウム色素の溶解度が5質量%以下である溶剤(D)とを混合して得られる。液体(C)には、溶剤(D)及びジイモニウム色素以外の成分(第三の成分)が含まれていてもよい。このように、溶剤(D)の溶解度が小さくされることにより、ジイモニウム色素が分散しやすくなる。この溶解度の測定方法は、後述の通りである。なお、後述するように、この溶剤(D)とは別に、希釈溶剤(E)が用いられてもよい。 The liquid (C) in the present application is a concept including the dispersion (A). For example, the liquid (C) is obtained by mixing a particulate diimonium dye and a solvent (D) having a solubility of the diimonium dye of 5% by mass or less. The liquid (C) may contain a component (third component) other than the solvent (D) and the diimonium dye. Thus, diimonium pigment | dye becomes easy to disperse | distribute by making the solubility of a solvent (D) small. The method for measuring the solubility is as described later. As will be described later, a diluting solvent (E) may be used separately from the solvent (D).
 上記分散体(A)、上記液体(C)又は樹脂(B)には、その性能を損なわない範囲で、種々の添加剤を加えることができる。例えば、ジイモニウム色素分散体の分散性を向上させる目的で、分散剤が添加されうる。この分散剤として、アニオン性、カチオン性又はノニオン性の界面活性剤や高分子系分散剤などが挙げられる。 Various additives can be added to the dispersion (A), the liquid (C) or the resin (B) as long as the performance is not impaired. For example, a dispersant may be added for the purpose of improving the dispersibility of the diimonium dye dispersion. Examples of the dispersant include an anionic, cationic or nonionic surfactant and a polymeric dispersant.
 上記分散体(A)又は液体(C)においては、ジイモニウム塩の濃度等によっては、その全てが会合体(X)を形成している場合もあれば、その一部が会合体(X)を形成している場合もある。ジイモニウム塩の一部が会合体(X)である場合、その他のジイモニウム塩は溶解状態及び/又は結晶分散状態である場合がある。いずれにしても、トルエンで100mg/Lに希釈された条件において、極大吸収波長が1110nm以上1250nm以下であり、且つ、極大吸収波長におけるモル吸光係数が70000mol-1・L・cm-1以上であれば、ジイモニウム塩が会合体(X)であると判断することができる。 In the dispersion (A) or the liquid (C), depending on the concentration of the diimonium salt, all of them may form an aggregate (X), or a part of the aggregate (X). It may be formed. When a part of the dimonium salt is an aggregate (X), the other dimonium salt may be in a dissolved state and / or a crystal dispersion state. In any case, under the condition diluted to 100 mg / L with toluene, the maximum absorption wavelength is 1110 nm or more and 1250 nm or less, and the molar extinction coefficient at the maximum absorption wavelength is 70000 mol −1 · L · cm −1 or more. For example, it can be determined that the diimonium salt is an aggregate (X).
 また、分散媒による希釈濃度が高いほど、ジイモニウム塩は分散媒に溶解しにくい。換言すれば、分散媒による希釈濃度が高いほど、ジイモニウム塩の会合体が形成されやすい。トルエンで100mg/Lに希釈された場合に会合体であるジイモニウム塩は、トルエンで100mg/Lよりも高い濃度に希釈された場合も会合体であると考えられる。また一般に、特定の分散媒Sで濃度がB(mg/L)に希釈された場合に会合体であるジイモニウム塩は、この分散媒SでB(mg/L)よりも高い濃度に希釈された場合も会合体であると考えられる。ジイモニウム塩の耐久性の観点から、溶媒S1を分散媒とする分散体(A)又は液体(C)のλmaxは、上記溶媒S1を更に加えて上記分散体(A)又は液体(C)を更に希釈した希釈体のλmaxよりも大きい(長波長である)のが好ましい。この場合、希釈体においてジイモニウム塩が溶解した為、λmaxがシフトしたと考えられる。この溶媒S1として、上記溶剤(D)と同じものが例示される。 Also, the higher the dilution concentration in the dispersion medium, the more difficult the dimonium salt dissolves in the dispersion medium. In other words, the higher the dilution concentration by the dispersion medium, the easier the formation of an association of diimonium salts. A diimonium salt that is an aggregate when diluted to 100 mg / L with toluene is also considered to be an aggregate when diluted to a concentration higher than 100 mg / L with toluene. In general, when the concentration is diluted to B (mg / L) with a specific dispersion medium S, the dimonium salt that is an aggregate is diluted with this dispersion medium S to a concentration higher than B (mg / L). In some cases, it is considered an association. From the viewpoint of the durability of the dimonium salt, λmax of the dispersion (A) or liquid (C) using the solvent S1 as a dispersion medium is further added to the dispersion (A) or liquid (C) by further adding the solvent S1. It is preferably larger than λmax of the diluted diluent (long wavelength). In this case, it is considered that λmax is shifted because the diimonium salt is dissolved in the diluted body. As this solvent S1, the same thing as the said solvent (D) is illustrated.
 従来、ジイモニウム塩がPDPフィルター用等の近赤外線吸収組成物として用いる場合、ヘイズ等の観点から、ジイモニウム塩が溶解状態となるように置換基が工夫されている場合が多い。しかしこの場合、近赤外線吸収組成物中におけるジイモニウム色素の耐久性が低下しやすい。特に、粘着剤樹脂(B)中においては、ジイモニウム色素の耐久性の低下が大きい。また、ジイモニウム色素が結晶分散状態で使用された場合、分散安定性が悪く、結晶が粗大となる。この場合、半値幅が大きく且つ極大吸収波長における吸光係数が低い。このため、十分な近赤外線吸収能が得られず、且つ、結晶の粗大さに起因して光が散乱し、白濁が生じやすい。 Conventionally, when a diimonium salt is used as a near-infrared absorbing composition for a PDP filter or the like, a substituent is often devised so that the diimonium salt is in a dissolved state from the viewpoint of haze or the like. However, in this case, the durability of the diimonium dye in the near-infrared absorbing composition tends to decrease. Particularly in the pressure-sensitive adhesive resin (B), the durability of the diimonium dye is greatly reduced. Further, when the diimonium dye is used in a crystal dispersion state, the dispersion stability is poor and the crystal becomes coarse. In this case, the half width is large and the extinction coefficient at the maximum absorption wavelength is low. For this reason, sufficient near-infrared absorptivity cannot be obtained, and light is scattered due to the coarseness of crystals, and white turbidity is likely to occur.
 ジイモニウム色素が会合体(X)とされた場合、いわゆる会合体バンドが形成され、半値幅が小さい急峻な吸収バンドが得られる。会合体(X)は、極大吸収波長における吸光係数が高く、優れた近赤外線吸収能を有する。この会合体(X)は、数個から数十個程度の分子によって形成された集合体(分子集合体)であると考えられる。よって、光の散乱が強くなく、透明性に優れる。また、ジイモニウム塩が分解すると、アミニウム塩化合物が生成するが、このアミニウム塩化合物は、可視光線領域(480nm付近)に吸収を有し、黄色を呈するため、近赤外線吸収材の外観を低下させる。会合体(X)は、分子集合体であるため、分子間の相互作用により安定化されており、アミニウム塩化合物が生成しにくい。これに対して、溶解状態は、単分子で分散した状態であるため、分子間の相互作用による安定化がなされない。よって、溶解状態は、会合体(X)と比較して、ジイモニウム色素が分解しやすく、アミニウム塩化合物が生じやすい。このような理由で、会合体(X)は、粘着剤樹脂(B)中においても、耐熱性、耐湿性及び耐光性に優れると考えられる。 When the diimonium dye is an aggregate (X), a so-called aggregate band is formed, and a steep absorption band having a small half width is obtained. The aggregate (X) has a high extinction coefficient at the maximum absorption wavelength and has an excellent near infrared absorption ability. This aggregate (X) is considered to be an aggregate (molecular aggregate) formed by several to several tens of molecules. Therefore, light scattering is not strong and the transparency is excellent. In addition, when the dimonium salt is decomposed, an aminium salt compound is produced. This aminium salt compound has an absorption in the visible light region (near 480 nm) and exhibits a yellow color, so that the appearance of the near-infrared absorbing material is deteriorated. Since the aggregate (X) is a molecular assembly, it is stabilized by the interaction between molecules, and an aminium salt compound is hardly generated. On the other hand, since the dissolved state is a state dispersed in a single molecule, it is not stabilized by the interaction between molecules. Therefore, in the dissolved state, compared to the aggregate (X), the diimonium dye is easily decomposed and an aminium salt compound is easily generated. For these reasons, it is considered that the aggregate (X) is excellent in heat resistance, moisture resistance and light resistance even in the pressure-sensitive adhesive resin (B).
5.樹脂(B)
 本発明に係る樹脂(B)は、ガラス転移温度が0℃以下のものであれば特に限定されない。本発明に係る樹脂(B)は、粘着性を有している。この粘着性は、近赤外線吸収粘着剤組成物と被着体との直接的な接着を可能とする。接着剤を介在させることなく、近赤外線吸収粘着剤組成物と被着体とが接着されうる。以下において、この樹脂(B)を粘着剤樹脂(B)ともいう。
5). Resin (B)
The resin (B) according to the present invention is not particularly limited as long as the glass transition temperature is 0 ° C. or lower. The resin (B) according to the present invention has adhesiveness. This tackiness enables direct adhesion between the near-infrared absorbing pressure-sensitive adhesive composition and the adherend. The near-infrared absorbing pressure-sensitive adhesive composition and the adherend can be bonded without interposing an adhesive. Hereinafter, this resin (B) is also referred to as an adhesive resin (B).
5-1.ガラス転移温度
 被着体への粘着性を付与する観点から、粘着剤樹脂(B)のガラス転移温度は、0℃以下が好ましく、-10℃以下がより好ましく、-20℃以下がより好ましく、さらに好ましくは-30℃以下である。0℃よりも高い場合、粘着性が不足することがある。ガラス転移温度は示差走査熱量計(Differential Scanning Calorimeter)や動的粘弾性測定により損失正接(tanδ)の極大値温度を求めることでも得られるが、本願にいうガラス転移温度は、下記のFoxの式により求められる計算ガラス転移温度を意味する。樹脂(B)の重合に使用される単量体は、下記式で表されるFoxの式を用いて計算された計算ガラス転移温度Tgが所定の値を満足していれば特に限定されない。
 1/(Tg+273)=Σ[Wi/(Tgi+273)] : Foxの式
  Tg(℃) : 計算ガラス転移温度
  Wi : 各単量体の重量分率
  Tgi(℃) : 各単量体成分の単独重合体のガラス転移温度
5-1. Glass transition temperature From the viewpoint of imparting adhesiveness to the adherend, the glass transition temperature of the adhesive resin (B) is preferably 0 ° C. or lower, more preferably −10 ° C. or lower, and more preferably −20 ° C. or lower. More preferably, it is −30 ° C. or lower. When it is higher than 0 ° C., the tackiness may be insufficient. The glass transition temperature can also be obtained by determining the maximum temperature of the loss tangent (tan δ) by a differential scanning calorimeter (Dynamic Scanning Calorimeter) or dynamic viscoelasticity measurement. Means the calculated glass transition temperature obtained by The monomer used for the polymerization of the resin (B) is not particularly limited as long as the calculated glass transition temperature Tg calculated using the Fox formula represented by the following formula satisfies a predetermined value.
1 / (Tg + 273) = Σ [Wi / (Tgi + 273)]: Fox formula Tg (° C.): calculated glass transition temperature Wi: weight fraction of each monomer Tgi (° C.): single weight of each monomer component Glass transition temperature of coalescence
5-2.酸価
 粘着剤樹脂(B)には、被着体との密着性向上および粘着力アップを目的として、アクリル酸等のカルボキシル基含有単量体が共重合されるのが一般的である。樹脂(B)の酸価が高すぎる場合、ジイモニウム塩の溶解度が増加し、ジイモニウム塩の耐久性(特に耐熱性)が低下しうる。特に耐熱性の観点からは、樹脂(B)の酸価は、300以下が好ましく、100以下がより好ましく、80以下が更に好ましい。耐湿熱性の観点からは、粘着剤樹脂(B)の酸価は、0以上が好ましく、5以上がより好ましく、10以上が更に好ましい。「酸価」とは、粘着剤樹脂1gを中和するのに必要な水酸化カリウムのmg量を言う。
5-2. Acid Value The adhesive resin (B) is generally copolymerized with a carboxyl group-containing monomer such as acrylic acid for the purpose of improving the adhesion to the adherend and increasing the adhesive strength. When the acid value of the resin (B) is too high, the solubility of the dimonium salt increases, and the durability (particularly heat resistance) of the dimonium salt may decrease. In particular, from the viewpoint of heat resistance, the acid value of the resin (B) is preferably 300 or less, more preferably 100 or less, and still more preferably 80 or less. From the viewpoint of heat and humidity resistance, the acid value of the pressure-sensitive adhesive resin (B) is preferably 0 or more, more preferably 5 or more, and still more preferably 10 or more. “Acid value” refers to the amount of mg of potassium hydroxide required to neutralize 1 g of the adhesive resin.
 例えば、後述される透明基材がガラスである場合、ガラス表面(ガラスと近赤外線吸収粘着剤組成物層との界面)では、次の(反応1)が起こっていると推測されている。ガラス中のNaイオンは拡散によってガラス表面に出てくると考えられている。このNaイオンは、近赤外線吸収粘着剤組成物中に存在するHO(又は粘着剤組成物の塗布前にガラス表面に付着していたHO)と反応し、NaOHが生成すると考えられる。
 (反応1)Na+ + HO → NaOH + H(ガラス内部へ)
For example, when the transparent base material mentioned later is glass, it is estimated that the following (Reaction 1) has occurred in the glass surface (interface of glass and a near-infrared absorption adhesive composition layer). It is believed that Na + ions in the glass emerge on the glass surface by diffusion. The Na + ions react with present in the near-infrared absorbing pressure-sensitive adhesive composition H 2 O (or H 2 O which is attached to the glass surface prior to application of the adhesive composition) and NaOH generates considered It is done.
(Reaction 1) Na + + H 2 O → NaOH + H + (to the inside of the glass)
 このNaOHは、ジイモニウム塩を劣化させる。樹脂(B)にカルボキシル基が存在する場合、このカルボキシル基がNaをトラップする。このトラップにより、NaOHの生成が抑制され、ジイモニウム塩の劣化が抑制されると考えられる。特に、耐湿熱性の評価では、HOが多く存在するため、上記反応1が起こりやすい。よって、特に耐湿熱性の観点からは、上記酸価は大きいほうが好ましく、具体的には、前述のように、0以上が好ましく、5以上がより好ましく、10以上が更に好ましい。 This NaOH degrades the diimonium salt. When a carboxyl group is present in the resin (B), this carboxyl group traps Na + . It is considered that this trap suppresses the generation of NaOH and suppresses the deterioration of the diimonium salt. In particular, in the evaluation of wet heat resistance, the reaction 1 is likely to occur because a large amount of H 2 O is present. Therefore, in particular, from the viewpoint of heat and humidity resistance, the acid value is preferably large. Specifically, as described above, 0 or more is preferable, 5 or more is more preferable, and 10 or more is more preferable.
 一方、樹脂(B)の酸価が過度に高い場合、樹脂(B)に対するジイモニウム塩の溶解度が増加し、会合体(X)が減少しやすい。よって、特に高温での耐久性を評価する耐熱性の観点からは、上記酸価は小さいほうが好ましく、具体的には、前述のように、300以下が好ましく、100以下がより好ましく、80以下が更に好ましい。 On the other hand, when the acid value of the resin (B) is excessively high, the solubility of the diimonium salt in the resin (B) increases and the aggregate (X) tends to decrease. Therefore, from the viewpoint of heat resistance for evaluating durability at high temperatures, the acid value is preferably small. Specifically, as described above, 300 or less is preferable, 100 or less is more preferable, and 80 or less is preferable. Further preferred.
5-3.計算溶解性パラメータ
 粘着剤樹脂(B)の計算溶解性パラメータが高い場合にはジイモニウム色素の耐久性が劣る場合があるため、溶解性パラメータは10.2以下が好ましい。計算溶解性パラメータは、「POLYMER ENGINEERING AND SCIENCE」(1974年、Vol.14、No.2)の147ページから154ページ記載の方法によって計算される値である。以下にその方法を概説する。
5-3. Calculated solubility parameter When the calculated solubility parameter of the pressure-sensitive adhesive resin (B) is high, the durability of the diimonium dye may be inferior, so the solubility parameter is preferably 10.2 or less. The calculated solubility parameter is a value calculated by the method described on pages 147 to 154 of “POLYMER ENGINEERING AND SCIENCE” (1974, Vol. 14, No. 2). The method is outlined below.
 単独重合体の溶解性パラメータ(δ)は、該重合体を形成している構成単位の蒸発エネルギー(△ei)及びモル体積(△vi)に基づいて、下式の計算法により算出される。
 δ=(Σ△ei/Σ△vi)1/2
  △ei: i成分の原子または原子団の蒸発エネルギー
  △vi: i成分の原子または原子団のモル体積
The solubility parameter (δ) of the homopolymer is calculated by the following formula based on the evaporation energy (Δei) and molar volume (Δvi) of the structural unit forming the polymer.
δ = (ΣΔei / ΣΔvi) 1/2
Δei: Evaporation energy of i component atom or atomic group Δvi: Molar volume of i component atom or atomic group
 共重合体の溶解性パラメータは、その共重合体を構成する各構成単量体の蒸発エネルギーにモル分率を乗じて合算したもの(Σ△Ei)を、各構成単量体のモル体積にモル分率を乗じて合算したもの(Σ△Vi)で割り、1/2乗をとることで算出される。 The solubility parameter of the copolymer is obtained by multiplying the evaporation energy of each constituent monomer constituting the copolymer by the mole fraction (ΣΔEi) and adding it to the molar volume of each constituent monomer. Calculated by multiplying by the mole fraction and adding together (ΣΔVi) and taking the 1/2 power.
5-4.共重合体組成
 粘着剤樹脂(B)は、共重合体でもよい。粘着剤樹脂(B)は、官能基を含有するモノマーと他の化合物との共重合体であるのが好ましい。更には、ジイモニウム色素の耐久性の観点から、粘着剤樹脂(B)は、脂環式、多環性脂環式、芳香環式または多環性芳香環式のアルキル基を有する(メタ)アクリル酸エステルが5~40質量%共重合された共重合体であるのが好ましい。ジイモニウム色素の耐久性が向上する理由は不明であるが、これら脂環式、多環性脂環式、芳香環式、多環性芳香環式のアルキル基部分とジイモニウム色素がスタッキング構造を採ることにより、耐熱性や耐湿熱性を向上させるものと考えられる。
5-4. Copolymer composition The adhesive resin (B) may be a copolymer. The pressure-sensitive adhesive resin (B) is preferably a copolymer of a monomer containing a functional group and another compound. Furthermore, from the viewpoint of the durability of the diimonium dye, the pressure-sensitive adhesive resin (B) is a (meth) acryl having an alicyclic, polycyclic alicyclic, aromatic or polycyclic aromatic ring alkyl group. A copolymer obtained by copolymerizing 5 to 40% by mass of an acid ester is preferable. The reason why the durability of the diimonium dye is improved is unknown, but the alicyclic, polycyclic alicyclic, aromatic, and polycyclic aromatic cyclic alkyl groups and the diimonium dye have a stacking structure. Therefore, it is thought that heat resistance and heat-and-moisture resistance are improved.
 好ましくは、前記樹脂(B)が、下記単量体(p1)から(p3)を共重合してなる樹脂である。
(p1)炭素数が1以上12以下であるアルキル基を有する(メタ)アクリル酸エステル
(p2)官能基含有モノマー 
(p3)その他共重合可能な単量体
Preferably, the resin (B) is a resin obtained by copolymerizing the following monomers (p1) to (p3).
(P1) (meth) acrylic acid ester (p2) functional group-containing monomer having an alkyl group having 1 to 12 carbon atoms
(P3) Other copolymerizable monomers
 単量体の好ましい比率は、(p1)の(メタ)アクリル酸エステルが60質量%以上99.9質量%以下であり、(p2)の官能基含有モノマーが0.1質量%以上20質量%以下であり、(p3)の他の共重合可能な単量体が0質量%以上30質量%以下である。より好ましくは、(p2)の官能基含有モノマーの比率は、0.1質量%以上10質量%以下である。 The preferable ratio of the monomer is 60% by mass or more and 99.9% by mass or less of (meth) acrylic acid ester of (p1), and 0.1% by mass or more and 20% by mass of the functional group-containing monomer of (p2). The other copolymerizable monomer (p3) is 0% by mass or more and 30% by mass or less. More preferably, the ratio of the functional group-containing monomer (p2) is 0.1% by mass or more and 10% by mass or less.
 ジイモニウム色素の耐久性の観点から、より好ましくは、上記単量体(p1)におけるアルキル基は、直鎖型、分岐型及び脂環式のアルキル基である。 From the viewpoint of durability of the dimonium dye, more preferably, the alkyl group in the monomer (p1) is a linear, branched or alicyclic alkyl group.
 上記(p1)の(メタ)アクリル酸エステルの例として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、i-オクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレートなどが挙げられる。 Examples of (meth) acrylic acid ester of (p1) above are methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, i-octyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, n-nonyl ( Examples include meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, and n-dodecyl (meth) acrylate.
 上記(p2)の官能基含有モノマーとして、水酸基もしくはカルボキシル基含有モノマーが好ましく、水酸基もしくはカルボキシル基含有(メタ)アクリルモノマーがより好ましい。ジイモニウム色素の耐久性の観点から、カルボキシル基含有(メタ)アクリルモノマーが好ましい。カルボキシル基含有(メタ)アクリルモノマーのカルボキシル基は架橋点となる。よって、カルボキシル基含有(メタ)アクリルモノマーの配合量により、粘着性の調整が可能である。また、別の理由により、カルボキシル基含有(メタ)アクリルモノマーのカルボキシル基は、耐久性の向上に寄与していると考えられる。この理由の詳細は、前述の通りである。 The functional group-containing monomer (p2) is preferably a hydroxyl group or carboxyl group-containing monomer, more preferably a hydroxyl group or carboxyl group-containing (meth) acrylic monomer. From the viewpoint of durability of the diimonium dye, a carboxyl group-containing (meth) acrylic monomer is preferable. The carboxyl group of the carboxyl group-containing (meth) acryl monomer serves as a crosslinking point. Therefore, the adhesiveness can be adjusted by the blending amount of the carboxyl group-containing (meth) acrylic monomer. For another reason, it is considered that the carboxyl group of the carboxyl group-containing (meth) acrylic monomer contributes to the improvement of durability. Details of this reason are as described above.
 カルボキシル基含有(メタ)アクリルモノマーとして、アクリル酸及びメタクリル酸が好適に用いられる。 As the carboxyl group-containing (meth) acrylic monomer, acrylic acid and methacrylic acid are preferably used.
 水酸基含有(メタ)アクリルモノマーの例として、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。水酸基含有(メタ)アクリルモノマーの水酸基は、架橋点となりうる。よって、水酸基含有(メタ)アクリルモノマーは、粘着物性の調整に寄与する。上記(p2)が水酸基含有(メタ)アクリルモノマーの場合、この水酸基含有(メタ)アクリルモノマーの比率は、モノマー全量に対して、0.1質量%以上10質量%以下が特に好ましい。 Examples of the hydroxyl group-containing (meth) acrylic monomer include hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate. The hydroxyl group of the hydroxyl group-containing (meth) acrylic monomer can be a crosslinking point. Therefore, the hydroxyl group-containing (meth) acrylic monomer contributes to the adjustment of the adhesive properties. When the (p2) is a hydroxyl group-containing (meth) acrylic monomer, the ratio of the hydroxyl group-containing (meth) acrylic monomer is particularly preferably 0.1% by mass or more and 10% by mass or less based on the total amount of the monomers.
 上記(p3)の、他の共重合可能な単量体として、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ヒドロキシー3-フェノキシプロピル(メタ)アクリレートなどが挙げられる。他に、上記(p3)の例として、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等の(メタ)アクリレート類;α-メチルスチレン、ビニルトルエン、スチレンなどに代表されるスチレン系単量体;メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどに代表されるビニルエーテル系単量体;フマル酸;フマル酸のモノアルキルエステル;フマル酸のジアルキルエステル;マレイン酸;マレイン酸のモノアルキルエステル;マレイン酸のジアルキルエステル;イタコン酸;イタコン酸のモノアルキルエステル;イタコン酸のジアルキルエステル;(メタ)アクリロニトリル;塩化ビニル;塩化ビニリデン;酢酸ビニル;ビニルケトン;ビニルピリジン;ビニルカルバゾールなどを挙げることができる。また、カルボキシル基、オキサゾリニル基、ピロリドニル基、フルオロアルキル基等の官能基を有する単量体も、本発明の目的を損なわない範囲で共重合してもよい。 As other copolymerizable monomers of the above (p3), benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tricyclodecanyl (meth) acrylate, Examples include phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. Other examples of (p3) include (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate; α-methylstyrene, vinyltoluene, styrene, etc. Styrene monomers represented by: vinyl ether monomers represented by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, etc .; fumaric acid; monoalkyl ester of fumaric acid; dialkyl ester of fumaric acid; maleic acid; Dialkyl ester of maleic acid; itaconic acid; monoalkyl ester of itaconic acid; dialkyl ester of itaconic acid; (meth) acrylonitrile; vinyl chloride; vinylidene chloride; vinyl acetate; Nirupirijin; vinyl carbazole and the like. In addition, monomers having a functional group such as a carboxyl group, an oxazolinyl group, a pyrrolidonyl group, and a fluoroalkyl group may be copolymerized within a range that does not impair the object of the present invention.
 より好ましい粘着剤樹脂(B)は、下記(m1)から(m4)を共重合してなる樹脂である。
(m1)脂環式、多環性脂環式、芳香環式または多環性芳香環式のアルキル基を有する(メタ)アクリル酸エステル。
(m2)アルキル基を有する(メタ)アクリル酸エステル。ただし、このアルキル基は、直鎖型または分岐型であり、このアルキル基の炭素数は1以上10以下である。
(m3)官能基含有モノマー
(m4)その他共重合可能な単量体。
More preferred adhesive resin (B) is a resin obtained by copolymerizing the following (m1) to (m4).
(M1) A (meth) acrylic acid ester having an alicyclic, polycyclic alicyclic, aromatic or polycyclic aromatic cyclic alkyl group.
(M2) A (meth) acrylic acid ester having an alkyl group. However, this alkyl group is linear or branched, and the alkyl group has 1 to 10 carbon atoms.
(M3) Functional group-containing monomer (m4) Other copolymerizable monomers.
 共重合体の樹脂(B)において、単量体の好ましい比率は、(m1)の(メタ)アクリル酸エステルが5質量%以上40質量%以下であり、(m2)の(メタ)アクリル酸エステルが60質量%以上95質量%以下であり、(m3)の官能基含有モノマーが0.1質量%以上20質量%以下であり、(m4)のその他の単量体が0質量%以上20質量%以下である。 In the copolymer resin (B), a preferable ratio of the monomer is 5% by mass or more and 40% by mass or less of (meth) acrylic acid ester of (m1), and (meth) acrylic acid ester of (m2). Is from 60% by mass to 95% by mass, the functional group-containing monomer of (m3) is from 0.1% by mass to 20% by mass, and the other monomer of (m4) is from 0% by mass to 20% by mass. % Or less.
 上記(m1)の(メタ)アクリル酸エステルの例としては、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ヒドロキシー3-フェノキシプロピル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic ester of (m1) include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopentenyloxyethyl (meth). Acrylate, dicyclopentanyl (meth) acrylate, tricyclodecanyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl ( And (meth) acrylate.
 上記(m2)の(メタ)アクリル酸エステルの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、i-オクチル(メタ)アクリレートなどが挙げられる。 Examples of the (m) acrylic acid ester of (m2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) Examples include acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, i-octyl (meth) acrylate, and the like.
 上記(m3)の単量体の例としては、ヒドロキシエチル(メタ)アクリレート及びヒドロキシプロピル(メタ)アクリレートが挙げられる。 Examples of the monomer (m3) include hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate.
 上記(m4)の単量体の例としては、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート等の(メタ)アクリレート類;α-メチルスチレン、ビニルトルエン、スチレンなどに代表されるスチレン系単量体;メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテルなどに代表されるビニルエーテル系単量体;フマル酸;フマル酸のモノアルキルエステル;フマル酸のジアルキルエステル;マレイン酸;マレイン酸のモノアルキルエステル;マレイン酸のジアルキルエステル;イタコン酸;イタコン酸のモノアルキルエステル;イタコン酸のジアルキルエステル;(メタ)アクリロニトリル;塩化ビニル;塩化ビニリデン;酢酸ビニル;ビニルケトン;ビニルピリジン;ビニルカルバゾールなどを挙げることができる。また、カルボキシル基、オキサゾリニル基、ピロリドニル基、フルオロアルキル基等の官能基を有する単量体も、本発明の目的を損なわない範囲で共重合してもよい。 Examples of the monomer (m4) include (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate; α-methylstyrene, vinyltoluene, Styrenic monomers typified by styrene and the like; vinyl ether monomers typified by methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether and the like; fumaric acid; monoalkyl ester of fumaric acid; dialkyl ester of fumaric acid; maleic acid; Monoalkyl ester of maleic acid; dialkyl ester of maleic acid; itaconic acid; monoalkyl ester of itaconic acid; dialkyl ester of itaconic acid; (meth) acrylonitrile; vinyl chloride; vinylidene chloride; vinyl acetate; Emissions; vinyl pyridine; vinyl carbazole and the like. In addition, monomers having a functional group such as a carboxyl group, an oxazolinyl group, a pyrrolidonyl group, and a fluoroalkyl group may be copolymerized within a range that does not impair the object of the present invention.
 粘着剤樹脂(B)の重合に使用される開始剤として、過酸化物系、アゾ系等、市販のものが使用できる。過酸化物系の開始剤としては、パーブチルO、パーヘキシルO(いずれも日本油脂製)などのパーオキシエステル系;パーロイルL、パーロイルO(いずれも日本油脂製)などのパーオキシジカーボネート系;ナイパーBW、ナイパーBMT(いずれも日本油脂製)などのジアシルパーオキサイド系;パーヘキサ3M、パーヘキサMC(いずれも日本油脂製)などのパーオキシケタール系;パーブチルP、パークミルD(いずれも日本油脂製)などのジアルキルパーオキサイド系;パークミルP、パーメンタH(いずれも日本油脂製)などのハイドロパーオキサイド系等が挙げられる。アゾ系の開始剤としてはABN-E、ABN-R、ABN-V(いずれも日本ヒドラジン工業製)等が挙げられる。 As the initiator used for the polymerization of the pressure-sensitive adhesive resin (B), commercially available products such as peroxides and azos can be used. Peroxide-based initiators include peroxyesters such as perbutyl O and perhexyl O (both manufactured by NOF); peroxydicarbonates such as PERROYL L and PEROIL O (both manufactured by NOF); Diacyl peroxides such as BW and Nyper BMT (both made by NOF); Peroxyketals such as perhexa 3M and perhexa MC (both made by NOF); perbutyl P, park mill D (both made by NOF) And hydroperoxides such as Park Mill P and Permenter H (both manufactured by NOF Corporation). Examples of the azo initiator include ABN-E, ABN-R, and ABN-V (all manufactured by Nippon Hydrazine Kogyo).
 粘着剤樹脂(B)の重合の際には必要に応じて連鎖移動剤を使用してもよい。連鎖移動剤は特に制約されず、ノルマルドデシルメルカプタン、ジチオグリコール、チオグリコール酸オクチル、メルカプトエタノール等のチオール化合物等が使用できる。 In the polymerization of the adhesive resin (B), a chain transfer agent may be used as necessary. The chain transfer agent is not particularly limited, and thiol compounds such as normal dodecyl mercaptan, dithioglycol, octyl thioglycolate, and mercaptoethanol can be used.
 また、粘着剤樹脂(B)の重合は無溶剤で行ってもよいし、有機溶剤中で行ってもよい。有機溶剤中で重合する際には、トルエン、キシレン等の芳香族系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン系溶剤;その他の公知の有機溶剤が使用できる。使用する有機溶剤の種類は得られる樹脂の溶解性、重合温度を考慮して決められるが、乾燥時の残存溶剤の残りにくさの点からトルエン、酢酸エチル、メチルエチルケトン等の沸点が120℃以下の有機溶剤が好ましい。また、分散体の安定性の観点から、ジイモニウム色素の溶解性が5質量%以下の有機溶剤が好ましい。 Further, the polymerization of the pressure-sensitive adhesive resin (B) may be performed without a solvent or in an organic solvent. When polymerizing in an organic solvent, aromatic solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone; other known organics A solvent can be used. The type of organic solvent to be used is determined in consideration of the solubility of the obtained resin and the polymerization temperature, but the boiling point of toluene, ethyl acetate, methyl ethyl ketone, etc. is 120 ° C. or lower in terms of the difficulty of remaining the residual solvent during drying. Organic solvents are preferred. From the viewpoint of the stability of the dispersion, an organic solvent having a diimonium dye solubility of 5% by mass or less is preferred.
 また、粘着剤樹脂(B)は単一の組成からなるものでもよいし、異なる組成のポリマーを複合化したポリマーアロイやポリマーブレンドであってもよい。 Further, the pressure-sensitive adhesive resin (B) may be composed of a single composition, or may be a polymer alloy or polymer blend in which polymers having different compositions are combined.
 分岐型の樹脂を得るためにはマクロモノマー、多官能モノマー、多官能開始剤、多官能連鎖移動剤が使用できる。マクロモノマーとしては、AA-6、AA-2、AS-6、AB-6、AK-5(いずれも東亜合成製)等が使用できる。多官能モノマーとしては、ライトエスエルEG、ライトエスエル1,4BG、ライトエステルNP、ライトエステルTMP(いずれも共栄社化学製)等が挙げられる。多官能開始剤としては、パーテトラA、BTTB-50(いずれも日本油脂製)、トリゴノックス17-40MB、パーカドックス12-XL25(いずれも火薬アクゾ製)等が挙げられる。多官能連鎖移動剤としてはペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(チオグリコレート)等が使用できる。 In order to obtain a branched resin, a macromonomer, a polyfunctional monomer, a polyfunctional initiator, or a polyfunctional chain transfer agent can be used. As the macromonomer, AA-6, AA-2, AS-6, AB-6, AK-5 (all manufactured by Toagosei Co., Ltd.) and the like can be used. Examples of the polyfunctional monomer include LIGHT EG EG, LIGHT SEL 1,4BG, LIGHT ESTER NP, LIGHT ESTER TMP (all manufactured by Kyoeisha Chemical Co., Ltd.) and the like. Examples of the polyfunctional initiator include Pertetra A, BTTB-50 (all manufactured by NOF Corporation), Trigonox 17-40MB, Parkadox 12-XL25 (all manufactured by Explosive Akzo), and the like. As the polyfunctional chain transfer agent, pentaerythritol tetrakis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (thioglycolate) or the like can be used.
6.近赤外線吸収粘着剤組成物
 本発明の近赤外線吸収粘着剤組成物は、ジイモニウム色素を分散させて用いているため、近赤外線吸収能の持続性に優れる。また、この近赤外線吸収粘着剤組成物は、可視領域の透明性に優れる。本発明の近赤外線吸収粘着剤組成物は、粘着性を有する樹脂を含有するので、被着体に対して容易に接着されうる。
6). Near-infrared-absorbing pressure-sensitive adhesive composition The near-infrared-absorbing pressure-sensitive adhesive composition of the present invention is excellent in sustainability of near-infrared absorptivity because it uses a dimonium dye dispersed therein. Moreover, this near-infrared absorption adhesive composition is excellent in transparency in the visible region. Since the near-infrared absorbing adhesive composition of the present invention contains an adhesive resin, it can be easily adhered to an adherend.
 この近赤外線吸収粘着剤組成物は、ジイモニウム色素が顔料分散系であるにも関わらず、ヘイズに優れうる。好ましくは、この近赤外線吸収粘着剤組成物のヘイズは、5以下であり、より好ましくは3以下である。このヘイズは、後述の実施例で示される方法により測定される。 This near-infrared absorbing pressure-sensitive adhesive composition can be excellent in haze even though the diimonium dye is a pigment dispersion. Preferably, the near-infrared absorbing adhesive composition has a haze of 5 or less, more preferably 3 or less. This haze is measured by the method shown by the below-mentioned Example.
 本発明の近赤外線吸収粘着剤組成物には、他の近赤外線吸収色素が添加されてもよい。併用されうる他の近赤外線吸収色素としては、公知のシアニン系色素、ポリメチン系色素、スクアリリウム系色素、ポルフィリン系色素、金属ジチオール錯体系色素、フタロシアニン系色素、ジイモニウム系色素、無機酸化物粒子等が挙げられる。 Other near infrared absorbing dyes may be added to the near infrared absorbing pressure-sensitive adhesive composition of the present invention. Other near infrared absorbing dyes that can be used in combination include known cyanine dyes, polymethine dyes, squarylium dyes, porphyrin dyes, metal dithiol complex dyes, phthalocyanine dyes, diimonium dyes, inorganic oxide particles, and the like. Can be mentioned.
 好ましい他の色素(ジイモニウム色素以外の色素)は、上記ジイモニウム色素に対してクエンチャー効果を奏しうる色素である。クエンチャー効果とは、励起状態にある活性分子を脱励起させる効果である。本発明の場合、ジイモニウム色素分子、ジイモニウムアニオン又はジイモニウムカチオンを脱励起して安定化させる効果を有する他の色素が好ましい。クエンチャー効果の観点から、この他の色素として、フタロシアニン系色素が好ましい。 Preferred other dyes (dyes other than diimonium dyes) are dyes that can exhibit a quencher effect with respect to the diimonium dye. The quencher effect is an effect of deexciting an active molecule in an excited state. In the present invention, other dyes having an effect of de-exciting and stabilizing diimonium dye molecules, diimonium anions or diimonium cations are preferred. From the viewpoint of the quencher effect, a phthalocyanine dye is preferable as the other dye.
 本発明の近赤外線吸収粘着剤組成物を薄型ディスプレイ用光学フィルターとして使用する場合には、上記のジイモニウム色素とともに最大吸収波長が800~950nmのフタロシアニン系色素、最大吸収波長が800~950nmのシアニン系色素または最大吸収波長が800~950nmの金属ジチオール錯体系色素が併用されるのが好ましい。この併用により、800~1100nmの近赤外線が効果的に吸収されうる。耐久性の良好な近赤外線吸収粘着剤組成物を得る観点から、フタロシアニン色素が併用されるのが特に好ましい。 When the near-infrared absorbing adhesive composition of the present invention is used as an optical filter for a thin display, a phthalocyanine dye having a maximum absorption wavelength of 800 to 950 nm and a cyanine dye having a maximum absorption wavelength of 800 to 950 nm together with the diimonium dye. A dye or a metal dithiol complex dye having a maximum absorption wavelength of 800 to 950 nm is preferably used in combination. By using this combination, near infrared rays of 800 to 1100 nm can be effectively absorbed. From the viewpoint of obtaining a near-infrared absorbing pressure-sensitive adhesive composition having good durability, it is particularly preferable to use a phthalocyanine dye in combination.
 本発明で使用できるフタロシアニン系化合物としては、近赤外線吸収能に優れるものであれば特に制限されず、公知のフタロシアニン系化合物が使用できる。好ましいフタロシアニン系化合物として、下記式(ア)で表される化合物、または下記式(イ)で表される化合物が挙げられる。 The phthalocyanine compound that can be used in the present invention is not particularly limited as long as it has excellent near-infrared absorption ability, and a known phthalocyanine compound can be used. Preferable phthalocyanine compounds include compounds represented by the following formula (A) or compounds represented by the following formula (I).
 [式(ア)で示されるフタロシアニン系化合物]
Figure JPOXMLDOC01-appb-C000009
[Phthalocyanine compound represented by the formula (a)]
Figure JPOXMLDOC01-appb-C000009
 上記式(ア)において、AからA16は官能基を表す。上記式(ア)において、AからA16は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ヒドロキシスルホニル基、カルボキシル基、チオール基、置換されていてもよい炭素原子数1~20個のアルキル基、置換されていてもよい炭素原子数1~20個のアルコキシ基、置換されていてもよい炭素原子数6~20個のアリール基、置換されていてもよい炭素原子数6~20個のアリールオキシ基、置換されていてもよい炭素原子数7~20個のアラルキル基、置換されていてもよい炭素原子数7~20個のアラルキルオキシ基、置換されていてもよい炭素原子数1~20個のアルキルチオ基、置換されていてもよい炭素原子数6~20個のアリールチオ基、置換されていてもよい炭素原子数7~20個のアラルキルチオ基、置換されていてもよい炭素原子数1~20個のアルキルスルホニル基、置換されていてもよい炭素原子数6~20個のアリールスルホニル基、置換されていてもよい炭素原子数7~20個のアラルキルスルホニル基、置換されていてもよい炭素原子数1~20個のアシル基、置換されていてもよい炭素原子数2~20個のアルコキシカルボニル基、置換されていてもよい炭素原子数6~20個のアリールオキシカルボニル基、置換されていてもよい炭素原子数2~20個のアラルキルオキシカルボニル基、置換されていてもよい炭素原子数2~20個のアルキルカルボニルオキシ基、置換されていてもよい炭素原子数6~20個のアリールカルボニルオキシ基、置換されていてもよい炭素原子数8~20個のアラルキルカルボニルオキシ基、置換されていてもよい炭素原子数2~20個の複素環基、置換されていてもよいアミノ基、置換されていてもよいアミノスルホニル基または置換されていてもよいアミノカルボニル基を表す。AからA16の官能基は同種若しくは異種のいずれであってもよく、同種の場合においても同一若しくは異なっていてもよく、官能基同士が連結基を介して繋がっていても良い。Mは2個の水素原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子またはオキシ金属を表す。なお、本明細書において、「アシル基」とは、日刊工業新聞社発行の第三版科学技術用語大辞典の17頁に記載される定義と同様であり、具体的には、有機酸からヒドロキシル基が除去された基であり、式:RCO-(Rは、脂肪基、脂環基または芳香族基である)で表される基である。 In the above formula (A), A 1 to A 16 represent functional groups. In the above formula (a), A 1 to A 16 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a hydroxysulfonyl group, a carboxyl group, a thiol group, or an optionally substituted carbon atom having 1 to 20 carbon atoms. Alkyl groups, optionally substituted alkoxy groups having 1 to 20 carbon atoms, optionally substituted aryl groups having 6 to 20 carbon atoms, optionally substituted carbon atoms 6 to 20 Aryloxy groups, optionally substituted aralkyl groups having 7 to 20 carbon atoms, optionally substituted aralkyloxy groups having 7 to 20 carbon atoms, and optionally substituted carbon atoms 1-20 alkylthio group, optionally substituted arylthio group having 6-20 carbon atoms, optionally substituted aralkylthio group having 7-20 carbon atoms, substituted An optionally substituted alkylsulfonyl group having 1 to 20 carbon atoms, an optionally substituted arylsulfonyl group having 6 to 20 carbon atoms, and an optionally substituted aralkyl having 7 to 20 carbon atoms A sulfonyl group, an optionally substituted acyl group having 1 to 20 carbon atoms, an optionally substituted alkoxycarbonyl group having 2 to 20 carbon atoms, and an optionally substituted carbon atom having 6 to 20 carbon atoms Aryloxycarbonyl group, optionally substituted aralkyloxycarbonyl group having 2 to 20 carbon atoms, optionally substituted alkylcarbonyloxy group having 2 to 20 carbon atoms, optionally substituted Good arylcarbonyloxy group having 6 to 20 carbon atoms, optionally substituted aralkylcarbonyloxy group having 8 to 20 carbon atoms, substituted It represents an optionally substituted heterocyclic group having 2 to 20 carbon atoms, an optionally substituted amino group, an optionally substituted aminosulfonyl group or an optionally substituted aminocarbonyl group. The functional groups of A 1 to A 16 may be the same or different, and may be the same or different in the same type, and the functional groups may be connected via a linking group. M 1 represents two hydrogen atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or an oxy metal. In the present specification, the “acyl group” has the same definition as that described on page 17 of the third edition of the Dictionary of Science and Technology Terms published by the Nikkan Kogyo Shimbun. A group from which a group has been removed is a group represented by the formula: RCO— (where R is an aliphatic group, an alicyclic group or an aromatic group).
(末端がアミノ基以外の官能基の場合)
 上記式(ア)において、官能基AからA16のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。置換されていてもよい炭素原子数1~20個のアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、等の直鎖、分岐又は環状のアルキル基が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数1~20個のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、iso-プロピルオキシ基、n-ブチルオキシ基、iso-ブチルオキシ基、sec-ブチルオキシ基、t-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、等の直鎖、分岐又は環状のアルコキシ基が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数6~20個のアリール基としては、フェニル基、ナフチル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数6~20個のアリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数7~20個のアラルキル基としては、ベンジル基、フェネチル基、ジフェニルメチル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数7~20個のアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基、ジフェニルメチルオキシ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数1~20個のアルキルチオ基としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、iso-プロピルチオ基、n-ブチルチオ基、iso-ブチルチオ基、sec-ブチルチオ基、t-ブチルチオ基、n-ペンチルチオ基、n-ヘキシルチオ基、シクロヘキシルチオ基、n-ヘプチルチオ基、n-オクチルチオ基、2-エチルヘキシルチオ基等の直鎖、分岐又は環状のアルキルチオ基が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数6~20個のアリールチオ基としては、フェニルチオ基、ナフチルチオ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数7~20個のアラルキルチオ基としては、ベンジルチオ基、フェネチルチオ基、ジフェニルメチルチオ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数1~20個のアルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基、iso-プロピルスルホニル基、n-ブチルスルホニル基、iso-ブチルスルホニル基、sec-ブチルスルホニル基、t-ブチルスルホニル基、n-ペンチルスルホニル基、n-ヘキシルスルホニル基、シクロヘキシルスルホニル基、n-ヘプチルスルホニル基、n-オクチルスルホニル基、2-エチルヘキシルスルホニル基、等の直鎖、分岐又は環状のアルキルスルホニル基が挙げられるが、これらに限定されるものではない。置換されていても良い炭素原子数6~20個のアリールスルホニル基としては、フェニルスルホニル基、ナフチルスルホニル基等が挙げられるが、これらに限定されるものではない。置換されていてもよいアラルキルスルホニル基としては、ベンジルスルホニル基、フェネチルスルホニル基、ジフェニルメチルスルホニル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数1~20個のアシル基としてはメチルカルボニル基、エチルカルボニル基、n-プロピルカルボニル基、iso-プロピルカルボニル基、n-ブチルカルボニル基、iso-ブチルカルボニル基、sec-ブチルカルボニル基、t-ブチルカルボニル基、n-ペンチルカルボニル基、n-ヘキシルカルボニル基、シクロヘキシルカルボニル基、n-ヘプチルカルボニル基、n-オクチルカルボニル基、2-エチルヘキシルカルボニル基等の直鎖、分岐又は環状のアルキルカルボニル基、ベンジルカルボニル基、フェニルカルボニル基等のアリールカルボニル基、ベンゾイル基等のアラルキルカルボニル基が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数2~20個のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n-プロピルオキシカルボニル基、iso-プロピルオキシカルボニル基、n-ブチルオキシカルボニル基、iso-ブチルオキシカルボニル基、sec-ブチルオキシカルボニル基、t-ブチルオキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-オクチルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数7~20個のアリールオキシカルボニル基としては、フェノキシカルボニル、ナフチルカルボニル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数8~20個のアラルキルオキシカルボニル基としては、ベンジルオキシカルボニル基、フェネチルオキシカルボニル基、ジフェニルメチルオキシカルボニル基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数2~20個のアルキルカルボニルオキシ基としては、アセチルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、iso-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、iso-ブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基、n-ヘプチルカルボニルオキシ基、3-ヘプチルカルボニルオキシ基、n-オクチルカルボニルオキシ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数7~20個のアリールカルボニルオキシ基としては、ベンゾイルオキシ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数8~20個のアラルキルカルボニルオキシ基としては、ベンジルカルボニルオキシ基等が挙げられるが、これらに限定されるものではない。置換されていてもよい炭素原子数2~20個の複素環基としては、ピロール基、イミダゾール基、ピペリジン基、モルホリン基等が挙げられるが、これらに限定されるものではない。
(When the terminal is a functional group other than an amino group)
In the above formula (a), examples of the halogen atom of the functional groups A 1 to A 16 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Examples of the optionally substituted alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, Examples thereof include linear, branched or cyclic alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, etc. It is not limited to. Examples of the optionally substituted alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, iso-propyloxy group, n-butyloxy group, iso-butyloxy group, sec-butyloxy Group, t-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, etc. Although an alkoxy group is mentioned, it is not limited to these. Examples of the optionally substituted aryl group having 6 to 20 carbon atoms include, but are not limited to, a phenyl group and a naphthyl group. Examples of the aryloxy group having 6 to 20 carbon atoms which may be substituted include, but are not limited to, a phenoxy group and a naphthoxy group. Examples of the aralkyl group having 7 to 20 carbon atoms which may be substituted include, but are not limited to, benzyl group, phenethyl group, diphenylmethyl group and the like. Examples of the aralkyloxy group having 7 to 20 carbon atoms which may be substituted include a benzyloxy group, a phenethyloxy group and a diphenylmethyloxy group, but are not limited thereto. Examples of the optionally substituted alkylthio group having 1 to 20 carbon atoms include methylthio group, ethylthio group, n-propylthio group, iso-propylthio group, n-butylthio group, iso-butylthio group, sec-butylthio group, linear, branched or cyclic alkylthio groups such as t-butylthio group, n-pentylthio group, n-hexylthio group, cyclohexylthio group, n-heptylthio group, n-octylthio group, 2-ethylhexylthio group, etc. It is not limited to these. Examples of the optionally substituted arylthio group having 6 to 20 carbon atoms include a phenylthio group and a naphthylthio group, but are not limited thereto. Examples of the aralkylthio group having 7 to 20 carbon atoms which may be substituted include, but are not limited to, benzylthio group, phenethylthio group, diphenylmethylthio group and the like. Examples of the optionally substituted alkylsulfonyl group having 1 to 20 carbon atoms include methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, iso-propylsulfonyl group, n-butylsulfonyl group, iso-butylsulfonyl Group, sec-butylsulfonyl group, t-butylsulfonyl group, n-pentylsulfonyl group, n-hexylsulfonyl group, cyclohexylsulfonyl group, n-heptylsulfonyl group, n-octylsulfonyl group, 2-ethylhexylsulfonyl group, etc. Examples include, but are not limited to, linear, branched, or cyclic alkylsulfonyl groups. Examples of the optionally substituted arylsulfonyl group having 6 to 20 carbon atoms include, but are not limited to, a phenylsulfonyl group and a naphthylsulfonyl group. Examples of the aralkylsulfonyl group which may be substituted include a benzylsulfonyl group, a phenethylsulfonyl group, a diphenylmethylsulfonyl group, and the like, but are not limited thereto. Examples of the optionally substituted acyl group having 1 to 20 carbon atoms include methylcarbonyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n-butylcarbonyl group, iso-butylcarbonyl group, straight-chain such as sec-butylcarbonyl group, t-butylcarbonyl group, n-pentylcarbonyl group, n-hexylcarbonyl group, cyclohexylcarbonyl group, n-heptylcarbonyl group, n-octylcarbonyl group, 2-ethylhexylcarbonyl group, Examples include, but are not limited to, branched or cyclic alkylcarbonyl groups, arylcarbonyl groups such as benzylcarbonyl groups and phenylcarbonyl groups, and aralkylcarbonyl groups such as benzoyl groups. Examples of the optionally substituted alkoxycarbonyl group having 2 to 20 carbon atoms include methoxycarbonyl group, ethoxycarbonyl group, n-propyloxycarbonyl group, iso-propyloxycarbonyl group, n-butyloxycarbonyl group, iso -Butyloxycarbonyl group, sec-butyloxycarbonyl group, t-butyloxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, cyclohexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxy Examples thereof include, but are not limited to, a carbonyl group and a 2-ethylhexyloxycarbonyl group. Examples of the optionally substituted aryloxycarbonyl group having 7 to 20 carbon atoms include, but are not limited to, phenoxycarbonyl and naphthylcarbonyl groups. Examples of the optionally substituted aralkyloxycarbonyl group having 8 to 20 carbon atoms include benzyloxycarbonyl group, phenethyloxycarbonyl group, diphenylmethyloxycarbonyl group and the like, but are not limited thereto. . Examples of the optionally substituted alkylcarbonyloxy group having 2 to 20 carbon atoms include acetyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, iso-propylcarbonyloxy group, n-butylcarbonyloxy group , Iso-butylcarbonyloxy group, sec-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, n-hexylcarbonyloxy group, cyclohexylcarbonyloxy group, n-heptylcarbonyloxy group, 3- A heptyl carbonyloxy group, an n-octyl carbonyloxy group, etc. are mentioned, However, It is not limited to these. The arylcarbonyloxy group having 7 to 20 carbon atoms which may be substituted includes a benzoyloxy group, but is not limited thereto. Examples of the aralkylcarbonyloxy group having 8 to 20 carbon atoms which may be substituted include, but are not limited to, a benzylcarbonyloxy group. Examples of the optionally substituted heterocyclic group having 2 to 20 carbon atoms include, but are not limited to, a pyrrole group, an imidazole group, a piperidine group, and a morpholine group.
 また、上記式(ア)において、官能基AからA16のアルキル基、アルコキシ基、アリール基、アリールオキシ基、アラルキル基、アラルキルオキシ基、アルキルチオ基、アリールチオ基、アラルキルチオ基、アルキルスルホニル基、アリールスルホニル基、アラルキルスルホニル基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アラルキルカルボニルオキシ基または複素環基が置換されている場合、これらの官能基AからA16に存在する置換基として、例えば、ハロゲン原子、アシル基、アルキル基、フェニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ニトロ基、アミノ基、アルキルアミノ基、アルキルカルボニルアミノ基、アリールアミノ基、アリールカルボニルアミノ基、カルボニル基、アルコキシカルボニル基、アルキルアミノカルボニル基、アルコキシスルホニル基、アルキルチオ基、カルバモイル基、アリールオキシカルボニル基、シアノ基、複素環基などが挙げられるが、これらに限定されるものではない。これらの置換基は複数個存在していてもよく、複数個存在する場合には同種若しくは異種のいずれであってもよく、同種の場合においても同一若しくは異なっていても良い。また、置換基同士が連結基を介して繋がっていてもよい。 In the above formula (a), the alkyl group, alkoxy group, aryl group, aryloxy group, aralkyl group, aralkyloxy group, alkylthio group, arylthio group, aralkylthio group, alkylsulfonyl group of the functional groups A 1 to A 16 An arylsulfonyl group, an aralkylsulfonyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an aralkylcarbonyloxy group or a heterocyclic group As the substituents present in these functional groups A 1 to A 16 , for example, halogen atoms, acyl groups, alkyl groups, phenyl groups, alkoxy groups, halogenated alkyl groups, halogenated alkoxy groups, nitro groups, amino groups, Archi Ruamino group, alkylcarbonylamino group, arylamino group, arylcarbonylamino group, carbonyl group, alkoxycarbonyl group, alkylaminocarbonyl group, alkoxysulfonyl group, alkylthio group, carbamoyl group, aryloxycarbonyl group, cyano group, heterocyclic group However, it is not limited to these. A plurality of these substituents may be present. When a plurality of substituents are present, they may be the same or different, and even in the same case, they may be the same or different. Moreover, substituents may be connected through a linking group.
(末端がアミノ基である官能基の場合)
 上記式(ア)において、官能基AからA16の置換されていてもよいアミノ基、置換されていてもよいアミノスルホニル基、置換されていてもよいアミノカルボニル基への置換基としては、水素原子;メチル基、エチル基、n-プロピル基、n-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基、シクロヘキシル基等の直鎖、分岐又は環状のアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;アセチル基、エチルカルボニル基、n-プロピルカルボニル基、iso-プロピルカルボニル基、n-ブチルカルボニル基、iso-ブチルカルボニル基、sec-ブチルカルボニル基、t-ブチルカルボニル基、n-ペンチルカルボニル基、n-ヘキシルカルボニル基、シクロヘキシルカルボニル基、n-ヘプチルカルボニル基、3-ヘプチルカルボニル基、n-オクチルカルボニル基等の直鎖、分岐又は環状のアルキルカルボニル基;ベンゾイル基、ナフチルカルボニル基等のアリールカルボニル基;ベンジルカルボニル基等のアラルキルカルボニル基などが挙げられるが、これらに限定されるものではなく、これらの置換基はさらに置換基で置換されていても良い。これらの置換基は0個、1個または2個存在していてもよく、2個存在する場合にはお互いが同種若しくは異種のいずれであってもよく、同種の場合においても同一若しくは異なっていても良い。また、置換基が2個の場合、置換基同士が連結基を介して繋がっていてもよい。
(When the terminal is an amino group)
In the above formula (a), the substituents on the optionally substituted amino group, the optionally substituted aminosulfonyl group, and the optionally substituted aminocarbonyl group of the functional groups A 1 to A 16 are as follows: Hydrogen atom; linear, branched or cyclic such as methyl group, ethyl group, n-propyl group, n-butyl group, sec-butyl group, n-pentyl group, n-hexyl group, 2-ethylhexyl group, cyclohexyl group, etc. Alkyl group; aryl group such as phenyl group and naphthyl group; aralkyl group such as benzyl group and phenethyl group; acetyl group, ethylcarbonyl group, n-propylcarbonyl group, iso-propylcarbonyl group, n-butylcarbonyl group, iso- Butylcarbonyl group, sec-butylcarbonyl group, t-butylcarbonyl group, n-pentylcarbonyl group, n-hexyl Linear, branched or cyclic alkylcarbonyl groups such as carbonyl group, cyclohexylcarbonyl group, n-heptylcarbonyl group, 3-heptylcarbonyl group and n-octylcarbonyl group; arylcarbonyl groups such as benzoyl group and naphthylcarbonyl group; benzyl Examples thereof include, but are not limited to, an aralkylcarbonyl group such as a carbonyl group, and these substituents may be further substituted with a substituent. These substituents may be present in the number of 0, 1 or 2, and when 2 are present, they may be the same or different from each other, and even in the same type, they may be the same or different. Also good. Moreover, when there are two substituents, the substituents may be connected via a linking group.
 上記置換されていてもよいアミノ基、置換されていてもよいアミノスルホニル基または置換されていてもよいアミノカルボニル基への置換基であるアルキル基、アリール基、アラルキル基、アルキルカルボニル基、アリールカルボニル基、アラルキルカルボニル基などに更に存在しても良い置換基として、例えば、ハロゲン原子、アシル基、アルキル基、フェニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ニトロ基、アミノ基、アルキルアミノ基、アルキルカルボニルアミノ基、アリールアミノ基、アリールカルボニルアミノ基、カルボニル基、アルコキシカルボニル基、アルキルアミノカルボニル基、アルコキシスルホニル基、アルキルチオ基、カルバモイル基、アリールオキシカルボニル基、シアノ基、複素環基が挙げられるが、これらに限定されるものではない。これらの置換基は複数個存在していてもよく、複数個存在する場合には同種若しくは異種のいずれであってもよく、同種の場合においても同一若しくは異なっていても良い。また、置換基同士が連結基を介して繋がっていてもよい。 Alkyl group, aryl group, aralkyl group, alkylcarbonyl group, arylcarbonyl which is a substituent to the above-mentioned optionally substituted amino group, optionally substituted aminosulfonyl group or optionally substituted aminocarbonyl group Group, aralkylcarbonyl group and the like, which may be further present as a substituent, for example, halogen atom, acyl group, alkyl group, phenyl group, alkoxy group, halogenated alkyl group, halogenated alkoxy group, nitro group, amino group, Alkylamino group, alkylcarbonylamino group, arylamino group, arylcarbonylamino group, carbonyl group, alkoxycarbonyl group, alkylaminocarbonyl group, alkoxysulfonyl group, alkylthio group, carbamoyl group, aryloxycarbonyl group, cyano group, compound Include ring groups, but not limited thereto. A plurality of these substituents may be present. When a plurality of substituents are present, they may be the same or different, and even in the same case, they may be the same or different. Moreover, substituents may be connected through a linking group.
 また、金属Mとしての2価の金属の例としては、Cu(II)、Co(II)、Zn(II)、Fe(II)、Ni(II)、Ru(II)、Rh(II)、Pd(II)、Pt(II)、Mn(II)、Mg(II)、Ti(II)、Be(II)、Ca(II)、Ba(II)、Cd(II)、Hg(II)、Pb(II)、Sn(II)などが挙げられるがこれらに限定されるものではない。3価の置換金属原子の例としては、Al-F、Al-Cl、Al-Br、Al-I、Fe-Cl、Ga-F、Ga-Cl、Ga-I、Ga-Br、In-F、In-Cl、In-Br、In-I、Tl-F、Tl-Cl、Tl-Br、Tl-I、Al-C、Al-C(CH)、In-C、In-C(CH)、In-C、Mn(OH)、Mn(OC)、Mn〔OSi(CH〕、Ru-Cl等が挙げられるがこれらに限定されるものではない。4価の置換金属原子の例としては、CrCl、SiF、SiCl、SiBr、SiI、ZrCl、GeF、GeCl、GeBr、GeI、SnF、SnCl、SnBr、TiF、TiCl、TiBr、Ge(OH)、Mn(OH)、Si(OH)、Sn(OH)、Zr(OH)、Cr(R、Ge(R、Si(R、Sn(R、Ti(R{Rは、アルキル基、フェニル基、ナフチル基またはそれらの誘導体を表す}Cr(OR、Ge(OR、Si(OR、Sn(OR、Ti(OR、{Rは、アルキル基、フェニル基、ナフチル基、トリアルキルシリル基、ジアルキルアルコキシシリル基またはそれらの誘導体を表す}、Sn(SR、Ge(SR{Rは、アルキル基、フェニル基、ナフチル基またはそれらの誘導体を表す}などが挙げられるがこれらに限定されるものではない。オキシ金属の例としては、VO、MnO、TiOなどが挙げられるがこれらに限定されるものではない。 Examples of the divalent metal as the metal M 1 include Cu (II), Co (II), Zn (II), Fe (II), Ni (II), Ru (II), and Rh (II). , Pd (II), Pt (II), Mn (II), Mg (II), Ti (II), Be (II), Ca (II), Ba (II), Cd (II), Hg (II) , Pb (II), Sn (II) and the like, but are not limited thereto. Examples of trivalent substituted metal atoms include Al—F, Al—Cl, Al—Br, Al—I, Fe—Cl, Ga—F, Ga—Cl, Ga—I, Ga—Br, and In—F. In-Cl, In-Br, In-I, Tl-F, Tl-Cl, Tl-Br, Tl-I, Al-C 6 H 5 , Al-C 6 H 4 (CH 3 ), In-C 6 H 5 , In—C 6 H 4 (CH 3 ), In—C 6 H 5 , Mn (OH), Mn (OC 6 H 5 ), Mn [OSi (CH 3 ) 3 ], Ru—Cl, etc. Although it is mentioned, it is not limited to these. Examples of tetravalent substituted metal atoms include CrCl 2 , SiF 2 , SiCl 2 , SiBr 2 , SiI 2 , ZrCl 2 , GeF 2 , GeCl 2 , GeBr 2 , GeI 2 , SnF 2 , SnCl 2 , SnBr 2 , TiF 2 , TiCl 2 , TiBr 2 , Ge (OH) 2 , Mn (OH) 2 , Si (OH) 2 , Sn (OH) 2 , Zr (OH) 2 , Cr (R 1 ) 2 , Ge (R 1 ) 2 , Si (R 1 ) 2 , Sn (R 1 ) 2 , Ti (R 1 ) 2 {R 1 represents an alkyl group, a phenyl group, a naphthyl group, or a derivative thereof} Cr (OR 2 ) 2 , Ge (OR 2) 2, Si (OR 2) 2, Sn (OR 2) 2, Ti (OR 2) 2, {R 2 is an alkyl group, a phenyl group, a naphthyl group, a trialkylsilyl group, a dialkyl Alkoxysilyl represents a group or a derivative thereof}, Sn (SR 3) 2 , Ge (SR 3) 2 {R 3 is an alkyl group, a phenyl group, a naphthyl group or a derivative thereof} to but like these It is not limited. Examples of oxymetals include, but are not limited to, VO, MnO, TiO and the like.
 [式(イ)で示されるフタロシアニン系化合物]
Figure JPOXMLDOC01-appb-C000010
[Phthalocyanine compound represented by the formula (I)]
Figure JPOXMLDOC01-appb-C000010
 上記式(イ)において、BからB24は官能基を表す。BからB24のそれぞれは、上記式(ア)においてAからA16で示された官能基のいずれかである。BからB24の官能基は同種若しくは異種のいずれであってもよく、同種の場合においても同一若しくは異なっていてもよく、官能基同士が連結基を介して繋がっていても良い。 In the above formula (A), B 1 to B 24 represent functional groups. Each of B 1 to B 24 is any of the functional groups represented by A 1 to A 16 in the above formula (a). The functional groups of B 1 to B 24 may be the same type or different types, and may be the same or different in the same type, and the functional groups may be linked via a linking group.
 上記式(イ)において、Mは2個の水素原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子またはオキシ金属を表す。Mの例は、上記式(ア)におけるMの例と同じであるが、これらに限定されない。 In the above formula (a), M 2 represents two hydrogen atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or an oxy metal. Examples of M 2 are the same as the examples of M 1 in the above formula (a), but are not limited thereto.
 具体的なフタロシアニン系化合物として、商品名イーエクスカラーIR-10A、イーエクスカラーIR-12、イーエクスカラーIR-14、イーエクスカラーIR-906、イーエクスカラーIR-910、TX-EX-820及びTX-EX-915(いずれも日本触媒製)が挙げられる。 As specific phthalocyanine compounds, trade names EEX COLOR IR-10A, EEX COLOR IR-12, EEX COLOR IR-14, EEX COLOR IR-906, EEX COLOR IR-910, TX-EX-820 And TX-EX-915 (both manufactured by Nippon Shokubai).
 また、本発明の近赤外線吸収粘着剤組成物には近赤外線吸収色素としてシアニン系色素が併用されてもよい。シアニン系色素は近赤外線吸収能に優れるものであれば特に制限されないが、インドリウム系カチオンまたはベンゾチアゾリウム系カチオンと、対アニオンからなる塩が好ましく使用できる。インドリウム系カチオンまたはベンゾチアゾリウム系カチオンとしては、上記式(a)から(i)で示されるカチオンが好ましく使用できるが、これらに限定されるものではない。 In the near infrared absorbing pressure-sensitive adhesive composition of the present invention, a cyanine dye may be used in combination as a near infrared absorbing dye. The cyanine dye is not particularly limited as long as it has an excellent near-infrared absorbing ability, but a salt composed of an indolium cation or a benzothiazolium cation and a counter anion can be preferably used. As the indolium cation or benzothiazolium cation, cations represented by the above formulas (a) to (i) can be preferably used, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 インドリウム系カチオンまたはベンゾチアゾリウム系カチオンの対アニオンは、特に制限されず、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、硝酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン、メチル硫酸イオン、エチル硫酸イオン、プロピル硫酸イオン、テトラフルオロホウ酸イオン、テトラフェニルホウ酸イオン、ヘキサフルオロリン酸イオン、ベンゼンスルフィン酸イオン、酢酸イオン、トリフルオロ酢酸イオン、プロピオン酸イオン、安息香酸イオン、シュウ酸イオン、コハク酸イオン、マロン酸イオン、オレイン酸イオン、ステアリン酸イオン、クエン酸イオン、一水素二リン酸イオン、二水素一リン酸イオン、ペンタクロロスズ酸イオン、クロロスルホン酸イオン、フルオロスルホン酸イオン、トリフルオロメタンスルホン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、モリブデン酸イオン、タングステン酸イオン、チタン酸イオン、ジルコン酸イオン、硫酸イオン、バナジン酸イオン、ホウ酸イオンなどが使用できる。 The counter anion of the indolium cation or benzothiazolium cation is not particularly limited, and chloride ion, bromide ion, iodide ion, perchlorate ion, nitrate ion, benzenesulfonate ion, p-toluenesulfonic acid Ion, methyl sulfate ion, ethyl sulfate ion, propyl sulfate ion, tetrafluoroborate ion, tetraphenylborate ion, hexafluorophosphate ion, benzenesulfinate ion, acetate ion, trifluoroacetate ion, propionate ion, benzoic acid Acid ion, oxalate ion, succinate ion, malonate ion, oleate ion, stearate ion, citrate ion, monohydrogen diphosphate ion, dihydrogen monophosphate ion, pentachlorostannate ion, chlorosulfonic acid Ion, fluorosulfur Acid ion, trifluoromethanesulfonate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, molybdate ion, tungstate ion, titanate ion, zirconate ion, sulfate ion, vanadate ion, borate ion, etc. Can be used.
 より具体的には、上記一般式(a)で表されるカチオンを含むシアニン系色素として、アメリカンダイソース社製のADS812MI(対アニオンはヨウ化物イオン);上記一般式(b)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製のS0712(対アニオンはヘキサフルオロリン酸イオン);上記一般式(c)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製のS0726(対アニオンは塩化物イオン);上記一般式(d)で表されるカチオンを含むシアニン系色素として、アメリカンダイソース社製のADS780MT(対アニオンはp-トルエンスルホン酸イオン);上記一般式(e)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製のS0006(対アニオンは過塩素酸イオン);上記一般式(f)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製のS0081(対アニオンは過塩素酸イオン);上記一般式(g)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製のS0773(対アニオンはテトラフルオロホウ酸イオン);上記一般式(h)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製の商品名S0772(対アニオンはテトラフルオロホウ酸イオン);上記一般式(i)で表されるカチオンを含むシアニン系色素として、FEWケミカル社製の商品名S0734(対アニオンはテトラフルオロホウ酸イオン)等の市販されているものを用いることができる。シアニン系色素を使用することにより可視領域の透明性が高い近赤外線吸収粘着剤組成物が得られる。 More specifically, as a cyanine dye containing a cation represented by the above general formula (a), ADS812MI (counter anion is an iodide ion) manufactured by American Dye Source Co .; represented by the above general formula (b) S0712 manufactured by FEW Chemical Co. (counter anion is hexafluorophosphate ion) as a cyanine dye containing a cation; S0726 manufactured by FEW Chemical Co. as a cyanine dye containing a cation represented by the general formula (c) Counter anion is chloride ion); As cyanine-based dye containing a cation represented by the above general formula (d), ADS780MT manufactured by American Dye Source Co. (counter anion is p-toluenesulfonic acid ion); ) S0006 (counter anion) manufactured by FEW Chemical Co., Ltd. Perchlorate ion); as a cyanine dye containing a cation represented by the general formula (f), S0081 (counter anion is perchlorate ion) manufactured by FEW Chemical Co .; represented by the general formula (g) As a cyanine dye containing a cation, S0773 manufactured by FEW Chemical (counter anion is a tetrafluoroborate ion); as a cyanine dye containing a cation represented by the general formula (h), a product name manufactured by FEW Chemical S0772 (the counter anion is a tetrafluoroborate ion); as a cyanine dye containing a cation represented by the general formula (i), a trade name S0734 (counter anion is a tetrafluoroborate ion) manufactured by FEW Chemical Co., Ltd. What is marketed can be used. By using a cyanine dye, a near-infrared absorbing adhesive composition having high transparency in the visible region can be obtained.
 本発明のジイモニウム色素の配合量、または本発明のジイモニウム色素とその他の近赤外線吸収色素とを合計した配合量は、色素の種類と用途によって適宜選択することが出来る。本発明の近赤外線吸収粘着剤組成物を10~30μmの薄膜として使用する場合、配合量は、樹脂の固形分に対して、好ましくは0.01~10質量%であり、より好ましくは0.1~5質量%である。例えば、ジイモニウム色素とフタロシアニン系色素とを併用する場合、これらの色素を合計した配合量は、樹脂の固形分に対して、好ましくは0.01~10質量%であり、より好ましくは0.1~5質量%である。配合量が0.01質量%未満であると、十分な近赤外線吸収能が達成できなくなる可能性がある。逆に10質量%を超えると、添加に見合う効果が得られず経済的でない上、逆に可視領域での透明性が損なわれる可能性がある。 The blending amount of the diimonium dye of the present invention, or the total blending amount of the diimonium dye of the present invention and other near-infrared absorbing dyes can be appropriately selected depending on the type and use of the dye. When the near-infrared absorbing pressure-sensitive adhesive composition of the present invention is used as a thin film having a thickness of 10 to 30 μm, the blending amount is preferably 0.01 to 10% by mass, more preferably 0. 1 to 5% by mass. For example, when a diimonium dye and a phthalocyanine dye are used in combination, the total amount of these dyes is preferably 0.01 to 10% by mass, more preferably 0.1%, based on the solid content of the resin. ~ 5% by mass. If the blending amount is less than 0.01% by mass, there is a possibility that sufficient near infrared absorption ability cannot be achieved. Conversely, when it exceeds 10 mass%, the effect corresponding to addition cannot be acquired and it is not economical, and conversely, transparency in the visible region may be impaired.
 本発明の近赤外線吸収粘着剤組成物は可視領域の透明性、近赤外線吸収能の持続性、良好な粘着性を特徴とする。本発明の近赤外線吸収粘着剤組成物には、必要に応じて可視光を吸収する色素が添加されてもよい。可視光を吸収する色素としては、シアニン系、フタロシアニン系、ナフタロシアニン系、ポルフィリン系、テトラアザポルフィリン系、金属ジチオール錯体系、スクアリリウム系、アズレニウム系、ジフェニルメタン系、トリフェニルメタン系、オキサジン系、アジン系、チオピリリウム系、ビオローゲン系、アゾ系、アゾ金属錯体系、ビスアゾ系、アントラキノン系、ペリレン系、インダンスロン系、ニトロソ系、インジコ系、アゾメチン系、キサンテン系、オキサノール系、インドアニリン系、キノリン系、ジケトピロロピロール系等、従来公知の色素を広く使用することができる。 The near-infrared absorbing adhesive composition of the present invention is characterized by transparency in the visible region, durability of near-infrared absorbing ability, and good adhesiveness. If necessary, a dye that absorbs visible light may be added to the near-infrared absorbing adhesive composition of the present invention. Examples of dyes that absorb visible light include cyanine, phthalocyanine, naphthalocyanine, porphyrin, tetraazaporphyrin, metal dithiol complex, squarylium, azurenium, diphenylmethane, triphenylmethane, oxazine, and azine. , Thiopyrylium, viologen, azo, azo metal complex, bisazo, anthraquinone, perylene, indanthrone, nitroso, indico, azomethine, xanthene, oxanol, indoaniline, quinoline A conventionally well-known pigment | dye, such as a system and a diketopyrrolopyrrole type | system | group, can be used widely.
 本発明の近赤外線吸収粘着剤組成物をPDP用の光学フィルターとして使用する場合は、不要なネオン発光を吸収するために最大吸収波長が550~650nmの可視吸収色素を併用するのが好ましい。ネオン発光を吸収する色素の種類は特に限定されないが、シアニン色素、テトラアザポルフィリン色素が使用できる。具体的にはアデカアークルズTY-102(旭電化工業社製)、アデカアークルズTY-14(旭電化工業社製)、アデカアークルズTY-15(旭電化工業社製)、TAP-2(山田化学工業製)、TAP-18(山田化学工業製)、TAP-45(山田化学工業製)、商品名NK-5451(林原生物化学研究所製)、NK-5532(林原生物化学研究所製)、NK-5450(林原生物化学研究所製)等が挙げられる。ネオン発光を吸収するための色素の添加量は、色素の種類によって異なるが、最大吸収波長での透過率が20~80%程度になるように添加するのが好ましい。 When the near-infrared absorbing adhesive composition of the present invention is used as an optical filter for PDP, it is preferable to use a visible absorbing dye having a maximum absorption wavelength of 550 to 650 nm in order to absorb unnecessary neon light emission. The type of the dye that absorbs neon light emission is not particularly limited, and a cyanine dye and a tetraazaporphyrin dye can be used. Specifically, Adeka Arcles TY-102 (Asahi Denka Kogyo Co., Ltd.), Adeka Arcles TY-14 (Asahi Denka Kogyo Co., Ltd.), Adeka Arcles TY-15 (Asahi Denka Kogyo Co., Ltd.), TAP-2 ( Yamada Chemical Industries), TAP-18 (Yamada Chemical Industries), TAP-45 (Yamada Chemical Industries), NK-5451 (Hayashibara Biochemical Laboratories), NK-5532 (Hayashibara Biochemical Laboratories) ), NK-5450 (produced by Hayashibara Biochemical Laboratories), and the like. The addition amount of the dye for absorbing neon emission varies depending on the kind of the dye, but it is preferable to add so that the transmittance at the maximum absorption wavelength is about 20 to 80%.
 また、近赤外線吸収粘着剤組成物からなる薄膜の色調を調整するために、調色用の可視光吸収色素を添加してもよい。調色用の色素の種類は特に限定されないが、1:2クロム錯体、1:2コバルト錯体、銅フタロシアニン、アントラキノン、ジケトピロロピロール等が使用できる。具体的には、オラゾールブルーGN(チバ・スペシャリティ・ケミカルズ製)、オラゾールブルーBL(チバ・スペシャリティ・ケミカルズ製)、オラゾールレッド2B(チバ・スペシャリティ・ケミカルズ製)、オラゾールレッドG(チバ・スペシャリティ・ケミカルズ製)、オラゾールブラックCN(チバ・スペシャリティ・ケミカルズ製)、オラゾールイエロー2GLN(チバ・スペシャリティ・ケミカルズ製)、オラゾールイエロー2RLN(チバ・スペシャリティ・ケミカルズ製)、マイクロリスDPPレッドB-K(チバ・スペシャリティ・ケミカルズ製)、等が挙げられる。 Further, in order to adjust the color tone of the thin film comprising the near-infrared absorbing adhesive composition, a visible light absorbing dye for toning may be added. There are no particular limitations on the type of coloring pigment, but 1: 2 chromium complex, 1: 2 cobalt complex, copper phthalocyanine, anthraquinone, diketopyrrolopyrrole, and the like can be used. Specifically, Orazol Blue GN (manufactured by Ciba Specialty Chemicals), Orazol Blue BL (manufactured by Ciba Specialty Chemicals), Orazol Red 2B (manufactured by Ciba Specialty Chemicals), Orazol Red G (Ciba)・ Specialty Chemicals), Orazole Black CN (Ciba Specialty Chemicals), Orasol Yellow 2GLN (Ciba Specialty Chemicals), Orazole Yellow 2RLN (Ciba Specialty Chemicals), Microlith DPP Red BK (manufactured by Ciba Specialty Chemicals) and the like.
 更に、本発明の近赤外線吸収粘着剤組成物は、必要に応じて、その性能を失わない範囲で希釈溶剤(E)や添加剤、硬化剤を1種または2種以上含んでいてもよい。希釈溶剤(E)により、近赤外線吸収粘着剤組成物のコーティングが容易とされうる。 Furthermore, the near-infrared absorbing pressure-sensitive adhesive composition of the present invention may contain one or more diluent solvents (E), additives, and curing agents as long as the performance is not lost. The dilution solvent (E) can facilitate coating of the near-infrared absorbing pressure-sensitive adhesive composition.
 近赤外線吸収粘着剤組成物に含まれうる希釈溶剤(E)は限定されず、例えばシクロヘキサン、メチルシクロヘキサン等の脂肪族系;トルエン、キシレンなどの芳香族系;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系;酢酸エチル、酢酸ブチル等のエステル系;アセトニトリル等のニトリル系;メタノール、エタノール、イソプロピルアルコール等のアルコール系;テトラヒドロフラン、ジブチルエーテル等のエーテル系;ブチルセロソルブ、プロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル系;ホルムアミド、N,N-ジメチルホルムアミド等のアミド系;塩化メチレン、クロロホルム等のハロゲン系等が使用できる。これらの溶剤は、単独で使用されてもよいし、混合して使用されてもよい。ただし、好ましくは、使用されるジイモニウム色素についての溶解度が5質量%以下の溶剤が好ましい。ジイモニウム色素の溶解度が5質量%を超える溶剤を用いた場合、ジイモニウム分散体が溶解してしまう場合がある。 The dilution solvent (E) that can be contained in the near-infrared absorbing pressure-sensitive adhesive composition is not limited, and examples thereof include aliphatic systems such as cyclohexane and methylcyclohexane; aromatic systems such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like. Ketone type; ester type such as ethyl acetate and butyl acetate; nitrile type such as acetonitrile; alcohol type such as methanol, ethanol and isopropyl alcohol; ether type such as tetrahydrofuran and dibutyl ether; butyl cellosolve, propylene glycol n-propyl ether, propylene glycol glycol ethers such as n-butyl ether and propylene glycol monomethyl ether acetate; amides such as formamide and N, N-dimethylformamide; methylene chloride, chloroform and the like Androgenic system or the like can be used. These solvents may be used alone or in combination. However, it is preferable to use a solvent having a solubility of 5% by mass or less with respect to the diimonium dye used. When a solvent having a solubility of the dimonium dye exceeding 5% by mass is used, the dimonium dispersion may be dissolved.
 なお、本願において、このジイモニウム色素の溶解度は、次の方法により測定される。先ず、ジイモニウム色素の含有割合が0.01質量%、0.1質量%、1.0質量%、2.0質量%及び5.0質量%である5種類のサンプルを調整して、それぞれ超音波攪拌する。次に、各サンプルのそれぞれについて、残渣があるか否かを確認する。残渣は、ろ過後のろ紙上に残渣があるか否かを目視で観察することにより確認する。残渣の有無によって、溶解度が決定される。5.0質量%のサンプル(及び他のサンプル)に残渣が確認されなかった場合、「溶解度が5質量%以上である」と判断される。5.0質量%のサンプル)に残渣が確認された場合、「溶解度が5質量%以下である」と判断される。0.01質量%のサンプル(及び他のサンプル)に残渣が確認された場合、「溶解度が0.01質量%以下である」と判断される。この溶解度は、25℃において測定される。 In the present application, the solubility of the dimonium dye is measured by the following method. First, five kinds of samples having a content of diimonium dye of 0.01% by mass, 0.1% by mass, 1.0% by mass, 2.0% by mass and 5.0% by mass were prepared, respectively. Sonic agitate. Next, it is confirmed whether or not there is a residue for each sample. The residue is confirmed by visually observing whether there is a residue on the filter paper after filtration. Solubility is determined by the presence or absence of residues. When no residue is confirmed in the 5.0% by mass sample (and other samples), it is determined that “the solubility is 5% by mass or more”. When a residue is confirmed in a sample of 5.0% by mass, it is determined that “the solubility is 5% by mass or less”. When a residue is confirmed in a 0.01% by mass sample (and other samples), it is determined that “the solubility is 0.01% by mass or less”. This solubility is measured at 25 ° C.
 なお、ジイモニウム色素の耐久性の観点からは、希釈溶剤(E)として、酢酸エチル等の沸点が100℃以下の溶剤が好適である。また、コーティング時の塗膜外観を向上させる観点からは、希釈溶剤(E)として、トルエン、メチルイソブチルケトン、酢酸ブチル等の沸点が100~150℃の溶剤が好適である。塗膜の耐クラック性を向上させる観点からは、希釈溶剤(E)として、ブチルセロソルブ、プロピレングリコールn-プロピルエーテル、プロピレングリコールn-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の沸点が150~200℃の溶剤が好適である。 In addition, from the viewpoint of durability of the diimonium dye, a solvent having a boiling point of 100 ° C. or less such as ethyl acetate is suitable as the diluting solvent (E). Further, from the viewpoint of improving the appearance of the coating film during coating, a solvent having a boiling point of 100 to 150 ° C. such as toluene, methyl isobutyl ketone, butyl acetate or the like is suitable as the diluting solvent (E). From the viewpoint of improving the crack resistance of the coating film, as the diluent solvent (E), a solvent having a boiling point of 150 to 200 ° C. such as butyl cellosolve, propylene glycol n-propyl ether, propylene glycol n-butyl ether, propylene glycol monomethyl ether acetate, etc. Is preferred.
 希釈溶剤(E)として、トルエン、酢酸エチル、酢酸ブチル及びメチルシクロヘキサンが例示される。ジイモニウム色素の耐久性の観点から、希釈溶剤(E)は、上記溶剤(D)と同じであるのが好ましい。 この観点から、希釈溶剤(E)として、トルエン及び酢酸エチルが特に好ましい。 Examples of the diluting solvent (E) include toluene, ethyl acetate, butyl acetate and methylcyclohexane. From the viewpoint of the durability of the diimonium dye, the dilution solvent (E) is preferably the same as the solvent (D).ト ル エ ン From this viewpoint, toluene and ethyl acetate are particularly preferable as the diluting solvent (E).
 塗工時において、近赤外線吸収粘着剤組成物の粘度は、塗工機の種類によって適宜選択されるが、マイクログラビアコーター等のような小径グラビアキスリバース方式で塗工する場合は1~1000mPa・s、ダイコーター等押し出し方式で塗工する場合は100~10000mPa・sが一般的である。近赤外線吸収粘着剤組成物の固形分は塗料粘度に合わせて調整される。 At the time of coating, the viscosity of the near-infrared absorbing pressure-sensitive adhesive composition is appropriately selected depending on the type of the coating machine, but in the case of coating by a small-diameter gravure kiss reverse method such as a micro gravure coater, 1 to 1000 mPa · In the case of coating by an extrusion method such as s or a die coater, 100 to 10,000 mPa · s is generally used. The solid content of the near-infrared absorbing adhesive composition is adjusted according to the viscosity of the paint.
 また、近赤外線吸収粘着剤組成物が含有しうる添加剤としては、フィルムやコーティング膜等を形成する樹脂組成物に使用される従来公知の添加剤が用いられうる。この添加剤として、分散剤、レベリング剤、消泡剤、粘性調整剤、つや消し剤、粘着付与剤、帯電防止剤、酸化防止剤、紫外線吸収材、光安定化剤、消光剤、硬化剤、アンチブロッキング剤等が挙げられる。なお、硬化剤としてはイソシアネート化合物、チオール化合物、エポキシ化合物、アミン系化合物、イミン系化合物、オキサゾリン化合物、シランカップリング剤、UV硬化剤等を使用することができる。 In addition, as the additive that can be contained in the near-infrared absorbing pressure-sensitive adhesive composition, conventionally known additives that are used in resin compositions that form films, coating films, and the like can be used. These additives include dispersants, leveling agents, antifoaming agents, viscosity modifiers, matting agents, tackifiers, antistatic agents, antioxidants, UV absorbers, light stabilizers, quenchers, curing agents, A blocking agent etc. are mentioned. In addition, an isocyanate compound, a thiol compound, an epoxy compound, an amine compound, an imine compound, an oxazoline compound, a silane coupling agent, a UV curing agent, and the like can be used as the curing agent.
 本発明の近赤外線吸収粘着剤組成物は、光学用、農業用、建築用または車両用の近赤外線吸収材料、感光紙などの画像記録材料、光ディスク用などの情報記録用材料、色素増感型太陽電池などの太陽電池、半導体レーザー光などを光源とする感光材料、眼精疲労防止材に使用されうる。本発明の近赤外線吸収粘着剤組成物は、特にフィルムやシート状での使用が好ましい。 The near-infrared absorbing adhesive composition of the present invention is a near-infrared absorbing material for optical, agricultural, architectural or vehicle use, an image recording material such as photosensitive paper, an information recording material such as an optical disc, and a dye-sensitized type. It can be used for a solar cell such as a solar cell, a photosensitive material using a semiconductor laser beam or the like as a light source, and an eye strain prevention material. The near infrared absorbing pressure-sensitive adhesive composition of the present invention is particularly preferably used in the form of a film or a sheet.
7.近赤外線吸収材
 本発明に係る近赤外線吸収材は、前記近赤外線吸収粘着剤組成物を含む。本発明の近赤外線吸収材は、前記近赤外線吸収粘着剤組成物をフィルム状に成形したものであってもよいし、透明基材上に前記近赤外線吸収粘着剤組成物を含む塗膜を積層したものであってもよい。
7). Near-infrared absorbing material The near-infrared absorbing material according to the present invention includes the near-infrared absorbing adhesive composition. The near-infrared absorbing material of the present invention may be a film obtained by forming the near-infrared absorbing adhesive composition into a film, and a coating film containing the near-infrared absorbing adhesive composition is laminated on a transparent substrate. It may be what you did.
 透明基材としては、一般に光学材に使用し得るものであって、実質的に透明であれば特に制限はない。具体的な例としてはガラス;シクロポリオレフィン、非晶質ポリオレフィン等のオレフィン系ポリマー;ポリメチルメタクリレート等のメタクリル系ポリマー;酢酸ビニルやハロゲン化ビニル等のビニル系ポリマー;PET等のポリエステル;ポリカーボネート、ブチラール樹脂等のポリビニルアセタール;ポリアリールエーテル系樹脂;ラクトン環含有樹脂フィルム等が挙げられる。更に、該透明基材には、コロナ放電処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の従来公知の方法による表面処理や、アンカーコート剤やプライマー等のコーティングが施されてもよい。また、上記透明基材を構成する基材樹脂には、公知の添加剤、耐熱老化防止剤、滑剤、帯電防止剤等の配合が可能である。上記透明基材は、公知の射出成形、Tダイ成形、カレンダー成形、圧縮成形等の方法や、有機溶剤に溶融させてキャスティングする方法などを用い、フィルムまたはシート状に成形される。かかる透明基材を構成する基材は、未延伸でも延伸されていてもよく、また他の基材と積層されていてもよい。 The transparent substrate is generally usable as an optical material and is not particularly limited as long as it is substantially transparent. Specific examples include glass; olefin polymers such as cyclopolyolefin and amorphous polyolefin; methacrylic polymers such as polymethyl methacrylate; vinyl polymers such as vinyl acetate and vinyl halides; polyesters such as PET; polycarbonate and butyral. Examples thereof include polyvinyl acetals such as resins; polyaryl ether resins; lactone ring-containing resin films. Further, the transparent substrate is subjected to surface treatment by a conventionally known method such as corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, and coating such as an anchor coating agent and a primer. May be applied. The base resin constituting the transparent base material can be blended with known additives, heat aging inhibitors, lubricants, antistatic agents, and the like. The transparent substrate is formed into a film or a sheet using a known method such as injection molding, T-die molding, calendar molding, compression molding, or a method of casting by melting in an organic solvent. The base material constituting the transparent base material may be unstretched or stretched, and may be laminated with another base material.
 コーティング法で近赤外線吸収フィルムを得る場合の透明基材としてはPETフィルムが好ましく、特に易接着処理をしたPETフィルムが好適である。具体的にはコスモシャインA4300(東洋紡績製)、ルミラーU34(東レ製)、メリネックス705(帝人デュポン製)等が挙げられる。また、TAC(トリアセチルセルロース)フィルム、反射防止フィルム、ぎらつき防止フィルム、衝撃吸収フィルム、電磁波シールドフィルム、紫外線吸収フィルムなどの機能性フィルムも透明基材として使用できる。これにより、簡便に薄型ディスプレー用や光半導体素子用の光学フィルターを作製することができる。透明基材は、フィルムであることが好ましい。 As a transparent substrate for obtaining a near infrared ray absorbing film by a coating method, a PET film is preferable, and a PET film subjected to an easy adhesion treatment is particularly preferable. Specifically, Cosmo Shine A4300 (manufactured by Toyobo), Lumirror U34 (manufactured by Toray), Melinex 705 (manufactured by Teijin DuPont) and the like can be mentioned. Functional films such as a TAC (triacetylcellulose) film, an antireflection film, an antiglare film, an impact absorbing film, an electromagnetic wave shielding film, and an ultraviolet absorbing film can also be used as the transparent substrate. Thereby, the optical filter for thin displays and optical semiconductor elements can be produced simply. The transparent substrate is preferably a film.
 これらのうち、ガラス、PETフィルム、ラクトン環含有樹脂フィルム、易接着性PETフィルム、TACフィルム、反射防止フィルム及び電磁波シールドフィルムが透明基材として好ましく使用される。透明基材として、ガラス等の無機基材を使用する場合には、アルカリ成分が少ないものが近赤外線吸収色素の耐久性の観点から好ましい。 Of these, glass, PET film, lactone ring-containing resin film, easy-adhesive PET film, TAC film, antireflection film and electromagnetic wave shielding film are preferably used as the transparent substrate. When an inorganic base material such as glass is used as the transparent base material, a material having a small alkali component is preferable from the viewpoint of durability of the near-infrared absorbing dye.
 本発明の近赤外線吸収材の厚みは、一般に0.1μmから10mm程度とされるが、目的に応じて適宜決定される。また近赤外線吸収材に含まれる近赤外線吸収色素の含有量も目的に応じて、適宜決定される。 The thickness of the near-infrared absorbing material of the present invention is generally about 0.1 μm to 10 mm, but is appropriately determined according to the purpose. Further, the content of the near-infrared absorbing dye contained in the near-infrared absorbing material is also appropriately determined according to the purpose.
 本発明の近赤外線吸収材を作製する方法としては、特に限定されるものではないが、例えば次の方法が利用できる。例えば、(I)樹脂と本発明に係る近赤外線吸収粘着剤組成物とを混練し、加熱成形して樹脂板又はフィルムを作製する方法;(II)本発明に係る近赤外線吸収粘着剤組成物とモノマー又はオリゴマーを重合触媒の存在下にキャスト重合し、樹脂板又はフィルムを作製する方法;(III)本発明に係る近赤外線吸収粘着剤組成物を上記の透明基材上にコーティングする方法等である。 The method for producing the near-infrared absorbing material of the present invention is not particularly limited. For example, the following method can be used. For example, (I) a method of kneading a resin and a near-infrared absorbing adhesive composition according to the present invention and thermoforming them to produce a resin plate or film; (II) a near-infrared absorbing adhesive composition according to the present invention And a method of producing a resin plate or film by casting polymerization of a monomer or an oligomer in the presence of a polymerization catalyst; (III) a method of coating the near-infrared absorbing adhesive composition according to the present invention on the transparent substrate, etc. It is.
 (I)の作製方法としては、用いる樹脂によって加工温度、フィルム化(樹脂板化)条件等が多少異なるが、通常、本発明に係る近赤外線吸収粘着剤組成物を樹脂の粉体又はペレットに添加し、150~350℃に加熱、溶解させた後、成形して樹脂板を作製する方法、押し出し機によりフィルム化(樹脂板化)する方法等が挙げられる。 As a production method of (I), although the processing temperature, filming (resin plate) conditions, etc. are slightly different depending on the resin used, the near-infrared absorbing pressure-sensitive adhesive composition according to the present invention is usually used as a resin powder or pellet. Examples thereof include a method of adding, heating to 150 to 350 ° C. and dissolving, followed by molding to produce a resin plate, and a method of forming a film (resin plate) with an extruder.
 (II)の作製方法としては、本発明に係る近赤外線吸収粘着剤組成物とモノマー又はオリゴマーとを重合触媒の存在下にキャスト重合し、それらの混合物を型内に注入し、反応させて硬化させるか、又は金型に流し込んで型内で硬い製品となるまで固化させて成形する方法が挙げられる。多くの樹脂がこの過程で成形可能である。その様な樹脂の具体例としてアクリル樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、エポキシ樹脂、フェノール-ホルムアルデヒド樹脂、ポリスチレン樹脂、シリコン樹脂、等が挙げられる。その中でも、硬度、耐熱性、耐薬品性に優れたアクリルシートが得られるメタクリル酸メチルの塊状重合によるキャスティング法が好ましい。 As a preparation method of (II), the near-infrared absorbing pressure-sensitive adhesive composition according to the present invention and a monomer or oligomer are cast polymerized in the presence of a polymerization catalyst, and the mixture is injected into a mold and reacted to be cured. Or by pouring into a mold and solidifying until a hard product is formed in the mold. Many resins can be molded in this process. Specific examples of such resins include acrylic resins, diethylene glycol bis (allyl carbonate) resins, epoxy resins, phenol-formaldehyde resins, polystyrene resins, silicon resins, and the like. Among them, the casting method by bulk polymerization of methyl methacrylate, which can obtain an acrylic sheet excellent in hardness, heat resistance, and chemical resistance, is preferable.
 重合触媒としては公知のラジカル熱重合開始剤が利用でき、例えばベンゾイルパーオキシド、p-クロロベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。その使用量は混合物の総量に対して、一般的に0.01~5質量%である。熱重合における加熱温度は、一般的に40~200℃であり、重合時間は一般的に30分~8時間程度である。また熱重合以外に、光重合開始剤や増感剤を添加して光重合する方法も利用できる。 As the polymerization catalyst, known radical thermal polymerization initiators can be used, and examples thereof include peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, and azo compounds such as azobisisobutyronitrile. . The amount used is generally 0.01 to 5% by mass relative to the total amount of the mixture. The heating temperature in the thermal polymerization is generally 40 to 200 ° C., and the polymerization time is generally about 30 minutes to 8 hours. In addition to thermal polymerization, a method of photopolymerization by adding a photopolymerization initiator or a sensitizer can also be used.
 (III)の方法としては、本発明の近赤外吸収材料を透明基材上にコーティングする方法、本発明の近赤外線吸収粘着剤組成物を微粒子に固定化し、該微粒子を分散させた塗料を透明基材上にコーティングする方法等がある。 As the method of (III), a method of coating the near-infrared absorbing material of the present invention on a transparent substrate, a paint in which the near-infrared absorbing adhesive composition of the present invention is fixed to fine particles, and the fine particles are dispersed are used. There is a method of coating on a transparent substrate.
 基材に近赤外線吸収粘着剤組成物を塗布する際には公知の塗工機が使用できる。例えばコンマコーター等のナイフコーター、スロットダイコーター、リップコーター等のファウンテンコーター、マイクログラビアコーター等のキスコーター、グラビアコーター、リバースロールコーター等のロールコーター、フローコーター、スプレーコーター、バーコーターが挙げられる。塗布前にコロナ放電処理、プラズマ処理等の公知の方法で基材の表面処理を行ってもよい。乾燥・硬化方法としては、熱風、遠赤外線、UV硬化等公知の方法が使用できる。乾燥・硬化後は公知の保護フィルムとともに巻き取ってもよい。 When applying the near-infrared absorbing adhesive composition to the substrate, a known coating machine can be used. Examples thereof include knife coaters such as comma coaters, fountain coaters such as slot die coaters and lip coaters, kiss coaters such as micro gravure coaters, roll coaters such as gravure coaters and reverse roll coaters, flow coaters, spray coaters and bar coaters. Prior to coating, the substrate may be surface treated by a known method such as corona discharge treatment or plasma treatment. As a drying / curing method, a known method such as hot air, far-infrared ray or UV curing can be used. You may wind up with a well-known protective film after drying and hardening.
 乾燥方法は特に限定されないが、熱風乾燥や遠赤外線乾燥を用いることができる。乾燥温度は乾燥ラインの長さ、ライン速度、塗布量、残存溶剤量、基材の種類等を考慮して決めればよい。基材がPETフィルムであれば、一般的な乾燥温度は50~150℃である。1ラインに複数の乾燥機がある場合は、それぞれの乾燥機を異なる温度、風速に設定してもよい。塗工外観の良好な塗膜を得るためには、入り口側の乾燥条件をマイルドにするのが好ましい。 The drying method is not particularly limited, and hot air drying or far infrared drying can be used. The drying temperature may be determined in consideration of the length of the drying line, the line speed, the coating amount, the residual solvent amount, the type of substrate, and the like. If the substrate is a PET film, the general drying temperature is 50 to 150 ° C. When there are a plurality of dryers in one line, each dryer may be set to a different temperature and wind speed. In order to obtain a coating film having a good coating appearance, it is preferable that the drying condition on the inlet side is mild.
 本発明の近赤外線吸収粘着剤組成物は、可視領域の透明性及び近赤外線の吸収能が高い優れた光学フィルターの構成材料となりうる。本発明の近赤外線吸収粘着剤組成物は、従来の近赤外線吸収材料と比べて耐久性、特に耐熱性及び耐光性が高いため、長期間の保管や使用でも外観と近赤外線吸収能が維持される。さらに、本発明の近赤外線吸収粘着剤組成物は、シートやフィルム状にするのが容易なため、薄型ディスプレー用や光半導体素子用に有効である。そのほかに、本発明の近赤外線吸収粘着剤組成物は、赤外線をカットする必要があるフィルターやフィルム、例えば農業用フィルム、断熱フィルム、サングラス、光記録材料等にも使用することができる。 The near-infrared-absorbing pressure-sensitive adhesive composition of the present invention can be a constituent material of an excellent optical filter having high transparency in the visible region and high near-infrared absorption ability. The near-infrared absorbing pressure-sensitive adhesive composition of the present invention has higher durability, especially heat resistance and light resistance than conventional near-infrared absorbing materials, so that appearance and near-infrared absorbing ability are maintained even during long-term storage and use. The Furthermore, since the near-infrared absorbing adhesive composition of the present invention can be easily formed into a sheet or film, it is effective for thin displays and optical semiconductor elements. In addition, the near-infrared absorbing adhesive composition of the present invention can also be used in filters and films that need to cut infrared rays, such as agricultural films, heat insulating films, sunglasses, optical recording materials, and the like.
8.光学フィルター
 本発明の近赤外線吸収粘着剤組成物は光学フィルターに好適である。この光学フィルターは、前記近赤外線吸収材を用いてなる。この光学フィルターは、光半導体素子用光学フィルターまたは薄型ディスプレー用光学フィルターとして好適である。このような光学フィルターは、可視領域の全光線透過率が40%以上、好ましくは50%以上、さらに好ましくは60%以上であり、波長800~1100nmの近赤外線の透過率が30%以下、好ましくは15%以下、さらに好ましくは5%以下である。
8). Optical filter The near-infrared absorbing adhesive composition of the present invention is suitable for an optical filter. This optical filter is formed using the near-infrared absorbing material. This optical filter is suitable as an optical filter for an optical semiconductor element or an optical filter for a thin display. Such an optical filter has a total light transmittance in the visible region of 40% or more, preferably 50% or more, more preferably 60% or more, and a transmittance of near infrared light having a wavelength of 800 to 1100 nm is preferably 30% or less. Is 15% or less, more preferably 5% or less.
 本発明の光学フィルターには、上記の近赤外線吸収粘着剤組成物からなる近赤外線吸収層のほかに、電磁波遮蔽層、反射防止層、ぎらつき防止(アンチグレア)層、傷付き防止層、色調整層、ガラス等の支持体などが設けられていてもよい。 In addition to the near-infrared absorbing layer comprising the above-mentioned near-infrared absorbing adhesive composition, the optical filter of the present invention includes an electromagnetic wave shielding layer, an antireflection layer, a glare prevention (antiglare) layer, a scratch prevention layer, and color adjustment. A support such as a layer or glass may be provided.
 光学フィルターの各層の構成は任意に選択すればよい。例えば、好ましくは反射防止層とぎらつき防止層のうち少なくともどちらか一層と、近赤外線吸収層の少なくとも2層を組み合わせた光学フィルターが好適であり、より好ましくは更に電磁波遮蔽層を組み合わせた少なくとも3層を有する光学フィルターである。 The configuration of each layer of the optical filter may be arbitrarily selected. For example, an optical filter that preferably combines at least one of an antireflection layer and an antiglare layer and at least two layers of a near-infrared absorbing layer is preferable, and more preferably at least 3 that further combines an electromagnetic wave shielding layer. An optical filter having a layer.
 反射防止層、またはぎらつき防止層が人側の最表層とされるのが好ましい。近赤外線吸収層と電磁波遮蔽層相互間の積層順序は任意である。また、3層の間には傷付き防止層、色調整層、衝撃吸収層、支持体、透明基材等の他の層が挿入されていてもよい。 It is preferable that the antireflection layer or the glare prevention layer is the outermost layer on the human side. The stacking order between the near infrared absorbing layer and the electromagnetic wave shielding layer is arbitrary. Moreover, other layers, such as a damage prevention layer, a color adjustment layer, a shock absorption layer, a support body, and a transparent base material, may be inserted between the three layers.
 各層を張り合わせる際にはコロナ処理、プラズマ処理等の物理的な処理をしてもよいし、ポリエチレンイミン、オキサゾリン系ポリマー、ポリエステル、セルロース等の公知の高極性ポリマーをアンカーコート剤として使用してもよい。 When laminating each layer, physical treatment such as corona treatment and plasma treatment may be performed, and a known high-polarity polymer such as polyethyleneimine, oxazoline-based polymer, polyester or cellulose is used as an anchor coating agent. Also good.
 薄型ディスプレー用光学フィルターには、画面を見やすくするために、反射防止層またはぎらつき防止層を人側の最表層に設けることが好ましい。 It is preferable to provide an antireflection layer or an antiglare layer on the outermost layer on the human side in order to make the optical filter for thin display easier to see the screen.
 反射防止層は、表面の反射を抑えて、表面への蛍光灯などの外光の写り込みを防止するためのものである。反射防止層は、金属酸化物、フッ化物、ケイ化物、ホウ化物、炭化物、窒化物、硫化物等の無機物の薄膜からなる場合と、アクリル樹脂、フッ素樹脂などの屈折率の異なる樹脂を単層あるいは多層に積層させたものからなる場合とがあり、前者の場合の製造方法として、蒸着やスパッタリング法を用いて単層あるいは多層の形態で、透明基材上に反射防止コーティングを形成させる方法がある。また、後者の場合の製造方法として、透明フィルム上に、コンマコーター等のナイフコーター、スロットコーター、リップコーター等のファウンテンコーター、グラビアコーター、フローコーター、スプレーコーター、バーコーターを用いて透明基材の表面に反射防止コーティングを塗布する方法がある。 The antireflection layer is for suppressing reflection of the surface and preventing reflection of external light such as a fluorescent lamp on the surface. The antireflection layer consists of a single layer of a resin with a different refractive index, such as an acrylic resin or a fluororesin, when it is made of an inorganic thin film such as a metal oxide, fluoride, silicide, boride, carbide, nitride, or sulfide. Alternatively, it may be composed of multi-layers, and as a manufacturing method in the former case, there is a method of forming an antireflection coating on a transparent substrate in the form of a single layer or a multilayer using vapor deposition or sputtering. is there. Further, as a manufacturing method in the latter case, on a transparent film, a knife coater such as a comma coater, a fountain coater such as a slot coater and a lip coater, a gravure coater, a flow coater, a spray coater, and a bar coater are used. There is a method of applying an antireflection coating to the surface.
 ぎらつき防止層は、シリカ、メラミン樹脂、アクリル樹脂等の微粉体をインキ化し、従来公知の塗布法で、本発明のフィルターのいずれかの層上に塗布し、熱或いは光硬化させることにより形成される。また、アンチグレア処理したフィルムを該フィルター上に貼りつけてもよい。 The glare-preventing layer is formed by converting fine powders of silica, melamine resin, acrylic resin, etc. into ink, applying it on any layer of the filter of the present invention by a conventionally known coating method, and curing it by heat or photocuring. Is done. An antiglare-treated film may be attached on the filter.
 また、傷付き防止層は、ウレタンアクリレート、エポキシアクリレート、多官能アクリレート等のアクリレートと光重合開始剤を有機溶剤に溶解或いは分散させた塗布液を従来公知の塗布法で、本発明のフィルターのいずれかの層上に、塗布し、乾燥させ、光硬化させることにより形成される。 In addition, the scratch-preventing layer is a coating solution prepared by dissolving or dispersing an acrylate such as urethane acrylate, epoxy acrylate or polyfunctional acrylate and a photopolymerization initiator in an organic solvent by a conventionally known coating method, and any of the filters of the present invention. On this layer, it is formed by coating, drying and photocuring.
 反射防止層またはぎらつき防止層と近赤外線吸収層とを有する光学フィルターは、反射防止フィルムまたはぎらつき防止フィルムの裏面に本発明の近赤外線吸収粘着剤組成物又は近赤外線吸収材からなる層を積層させることで得られる。積層させる方法としては、フィルム状にした本発明に係る近赤外線吸収層と反射防止フィルムまたはぎらつき防止フィルムとを直接張り合わせてもよいし、溶液化した本発明の近赤外線吸収粘着剤組成物を反射防止フィルムまたはぎらつき防止フィルムの裏面に直接塗布してもよい。反射防止フィルムまたはぎらつき防止フィルムの裏面に近赤外線吸収層を設ける場合には、紫外線による色素の劣化を抑えるために、透明基材として紫外線吸収フィルムを使用するのが好ましい。本発明の近赤外線吸収粘着剤組成物は粘着性を有している。よって、近赤外線吸収層と、他の層とが接着される場合、粘着剤や接着剤が不要とされうる。近赤外線吸収層は、本発明の近赤外線吸収粘着剤組成物を含む層である。 An optical filter having an antireflection layer or an antiglare layer and a near infrared absorbing layer is provided with a layer made of the near infrared absorbing adhesive composition or the near infrared absorbing material of the present invention on the back surface of the antireflection film or the antiglare film. Obtained by laminating. As a method of laminating, the near-infrared absorbing layer according to the present invention in the form of a film and the antireflection film or the anti-glare film may be directly bonded together, or the near-infrared absorbing adhesive composition of the present invention in solution may be used. You may apply | coat directly on the back surface of an antireflection film or an anti-glare film. In the case where a near-infrared absorbing layer is provided on the back surface of the antireflection film or the antiglare film, it is preferable to use an ultraviolet absorbing film as a transparent substrate in order to suppress deterioration of the pigment due to ultraviolet rays. The near infrared ray absorbing pressure-sensitive adhesive composition of the present invention has adhesiveness. Therefore, when the near-infrared absorbing layer and another layer are bonded, a pressure-sensitive adhesive or an adhesive may be unnecessary. A near-infrared absorption layer is a layer containing the near-infrared absorption adhesive composition of this invention.
 プラズマディスプレー用光学フィルターには、パネルから発生する電磁波を除去するために、電磁波遮蔽層を設けることが好ましい。 The plasma display optical filter is preferably provided with an electromagnetic wave shielding layer in order to remove electromagnetic waves generated from the panel.
 電磁波遮蔽層はエッチング、印刷等の手法で金属のメッシュをフィルム上にパターニングしたものを樹脂で平滑化したフィルムや、繊維メッシュの上に金属を蒸着させたものを樹脂中に抱埋したフィルムが使用される。 The electromagnetic wave shielding layer is a film in which a metal mesh is patterned on a film by etching, printing, etc., or a film in which a metal is deposited on a fiber mesh and embedded in a resin. used.
 近赤外線吸収層と電磁波遮蔽層の2層を有する光学フィルターは電磁波防止材料と近赤外線吸収粘着剤組成物とを複合化することで得られる。複合化させる方法としては、フィルム状にした本発明の近赤外線吸収粘着剤組成物と電磁波遮蔽フィルムを張り合わせてもよいし、溶液化した本発明の近赤外線吸収粘着剤組成物を電磁波遮蔽フィルムに直接塗布してもよい。また、フィルム上の金属のメッシュを平滑化する際に本発明の近赤外線吸収粘着剤組成物を使用することもできる。また、金属を蒸着した繊維を抱埋する際に、本発明の近赤外線吸収粘着剤組成物を使用することもできる。 An optical filter having two layers of a near-infrared absorbing layer and an electromagnetic wave shielding layer can be obtained by combining an electromagnetic wave prevention material and a near-infrared absorbing adhesive composition. As a composite method, the film form of the near-infrared absorbing adhesive composition of the present invention and the electromagnetic wave shielding film may be laminated, or the solution of the near-infrared absorbing adhesive composition of the present invention is used as an electromagnetic wave shielding film. You may apply directly. Moreover, when smoothing the metal mesh on a film, the near-infrared absorption adhesive composition of this invention can also be used. Moreover, when embedding the fiber which vapor-deposited the metal, the near-infrared absorption adhesive composition of this invention can also be used.
 近赤外線吸収層、反射またはぎらつき防止層および電磁波遮蔽層の3層を有する光学フィルターとしては、本発明の近赤外線吸収粘着剤組成物からなる近赤外線吸収フィルム、反射またはぎらつき防止フィルム、電磁波遮蔽フィルムの3枚を張り合わせたものが使用できる。好ましくは、本発明の近赤外線吸収粘着剤組成物からなる近赤外線吸収フィルムが、反射またはぎらつき防止フィルムと、電磁波遮蔽フィルムとで挟まれた構造を有する光学フィルターが好ましい。この光学フィルターは、近赤外線吸収フィルムの粘着性を利用して積層されているため、従来フィルム同士の張り合わせのためだけに設けられていた粘着層を省略して製造されうる。必要に応じてガラス等の支持体や色調整フィルム等の機能性フィルムを張り合わせてもよい。 As an optical filter having three layers of a near-infrared absorbing layer, a reflection or anti-glare layer and an electromagnetic wave shielding layer, a near-infrared absorbing film comprising the near-infrared absorbing adhesive composition of the present invention, a reflection or anti-glare film, an electromagnetic wave A laminate of three shielding films can be used. Preferably, an optical filter having a structure in which a near-infrared absorbing film made of the near-infrared absorbing adhesive composition of the present invention is sandwiched between a reflection or glare-preventing film and an electromagnetic wave shielding film is preferable. Since this optical filter is laminated | stacked using the adhesiveness of a near-infrared absorption film, it can abbreviate | omit the adhesive layer provided only for pasting of the films conventionally. If necessary, a support such as glass or a functional film such as a color adjusting film may be laminated.
 光学フィルターの製造工程やフィルム構成をさらに簡略化するためには、複数の機能を有する複合化フィルムを使用するのが良い。好ましい光学フィルターは、1枚のフィルムに電磁波遮蔽層と反射またはぎらつき防止層とを含む複合化フィルムに、本発明の近赤外線吸収粘着剤組成物からなる近赤外線吸収粘着層を張り合わせた光学フィルターである。 In order to further simplify the optical filter manufacturing process and film configuration, it is preferable to use a composite film having a plurality of functions. A preferable optical filter is an optical filter in which a near-infrared absorbing adhesive layer comprising the near-infrared absorbing adhesive composition of the present invention is bonded to a composite film including an electromagnetic wave shielding layer and a reflection or glare-preventing layer on a single film. It is.
 本発明の薄型ディスプレー用光学フィルターは表示装置から離して設置してもよいし、表示装置に直接貼り付けてもよい。表示装置から離して設置する場合は支持体としてガラスを使用するのが好ましい。表示装置に直接張り合わせる場合にはガラスを使用しない光学フィルターが好ましい。 The optical filter for thin display of the present invention may be installed away from the display device or may be directly attached to the display device. When installing away from the display device, it is preferable to use glass as the support. In the case of directly bonding to a display device, an optical filter that does not use glass is preferable.
9.薄型ディスプレー
 本発明の近赤外線吸収粘着剤組成物を積層した光学フィルターを薄型ディスプレーに搭載すると、長期間にわたり良好な画質が維持される。薄型ディスプレーに係る本発明は、本発明の近赤外線吸収粘着剤組成物、本発明の近赤外線吸収材、または本発明の光学フィルターを用いてなる、薄型ディスプレーである。表示体に直接、光学フィルターを張り合わせた薄型ディスプレーはより鮮明な画質が得られる。光学フィルターを直接張り合わせる場合は表示体のガラスが強化ガラスを使用するか、衝撃吸収層を設けた光学フィルターを使用するのが好ましい。
9. Thin display When an optical filter laminated with the near-infrared absorbing adhesive composition of the present invention is mounted on a thin display, good image quality is maintained over a long period of time. The present invention relating to a thin display is a thin display comprising the near-infrared absorbing adhesive composition of the present invention, the near-infrared absorbing material of the present invention, or the optical filter of the present invention. A thin display in which an optical filter is directly bonded to the display body can provide clearer image quality. When the optical filter is directly attached, it is preferable to use tempered glass as the display glass or an optical filter provided with a shock absorbing layer.
 本発明の光学フィルターを表示装置に貼り付ける際の粘着剤としては、スチレンブタジエンゴム、ポリイソプレンゴム、ポリイソブチレンゴム、天然ゴム、ネオプレンゴム、クロロプレンゴム、ブチルゴム等のゴム類やポリアクリル酸メチル、ボリアクリル酸エチル、ポリアクリル酸ブチル等のポリアクリル酸アルキルエステル等が挙げられ、これらは単独で用いられてもよいし、さらに粘着付与剤としてピッコライト、ポリベール、ロジンエステル等を添加したものを用いてもよい。また、特開2004-263084号公報で示されているように衝撃吸収能を有する粘着剤を使用することができるが、これに限定されるものではない。粘着剤を用いることなく、近赤外線吸収層の粘着性を利用して、本発明の光学フィルターが表示装置に貼り付けられても良い。 As an adhesive when the optical filter of the present invention is attached to a display device, rubber such as styrene butadiene rubber, polyisoprene rubber, polyisobutylene rubber, natural rubber, neoprene rubber, chloroprene rubber, butyl rubber, polymethyl acrylate, Examples include polyacrylic acid alkyl esters such as ethyl polyacrylate and butyl polyacrylate, and these may be used alone, or further added with piccolite, polyvale, rosin ester, etc. as a tackifier. It may be used. Further, as disclosed in JP-A-2004-263084, an adhesive having an impact absorbing ability can be used, but it is not limited to this. Without using an adhesive, the optical filter of the present invention may be attached to the display device by utilizing the adhesiveness of the near-infrared absorbing layer.
 この粘着層の厚みは、通常5~2000μm、好ましくは10~1000μmである。粘着剤層の表面に剥離フィルムを設け、この剥離フィルムにより、光学フィルターを薄型ディスプレーの表面に張り付けるまでの間、粘着剤層を保護し、粘着剤層にゴミ等が付着しないようにするのもよい。この場合、フィルターの縁綾部の粘着剤層と剥離フィルムとの間に、粘着剤層を設けない部分を形成したり非粘着性のフィルムを挟む等して非粘着部分を形成し、この非粘着部分を剥離開始部とすれば、貼着時の作業がやりやすい。 The thickness of this adhesive layer is usually 5 to 2000 μm, preferably 10 to 1000 μm. A release film is provided on the surface of the pressure-sensitive adhesive layer, and this release film protects the pressure-sensitive adhesive layer and prevents dust from adhering to the pressure-sensitive adhesive layer until the optical filter is attached to the surface of the thin display. Also good. In this case, a non-adhesive part is formed by forming a part where the adhesive layer is not provided or by sandwiching a non-adhesive film between the adhesive layer at the edge of the filter and the release film. If the part is a peeling start part, the work at the time of sticking is easy.
 衝撃吸収層は表示装置を外部からの衝撃から保護するためのものである。支持体を使用しない光学フィルターで使用するのが好ましい。衝撃吸収材としては特開2004-246365号公報、特開2004-264416号公報に示されているような、エチレン-酢酸ビニル共重合体、アクリル系ポリマー、ポリ塩化ビニル、ウレタン系、シリコン系樹脂等が使用できるが、これらに限定されるものではない。 The impact absorbing layer is for protecting the display device from external impacts. It is preferably used in an optical filter that does not use a support. As the shock absorbing material, ethylene-vinyl acetate copolymer, acrylic polymer, polyvinyl chloride, urethane-based, silicon-based resin as disclosed in JP-A Nos. 2004-246365 and 2004-264416 are disclosed. However, it is not limited to these.
 以下において、実施例により本発明が具体的に説明される。これらの実施例は何ら本発明を制限するものではない。なお以下の成分比率において、特に説明されない限り、「%」は質量%を意味し、「部」は質量部を意味するものとする。 In the following, the present invention will be specifically described by way of examples. These examples do not limit the invention in any way. In the following component ratios, unless otherwise specified, “%” means mass% and “part” means mass part.
 以下に、第一実験例及び第二実験例を示す。 The following shows the first experimental example and the second experimental example.
 [第一実験例] [First experiment example]
 第一実験例において、近赤外線吸収能、耐熱性、耐光性及び酸価の評価方法は以下の通りである。 In the first experimental example, the methods for evaluating near-infrared absorptivity, heat resistance, light resistance and acid value are as follows.
(1)近赤外線吸収能(近赤外線透過率)の評価
 試験体をUV-3700(島津製作所製)を使用して、350~1500nmの透過スペクトルを測定した。近赤外線吸収能は、波長1000nmでの透過率により評価した。下記の表1において、波長1000nmでの透過率は、「1000nm透過率」と表記されている。
(1) Evaluation of near-infrared absorptivity (near-infrared transmittance) Using a test specimen UV-3700 (manufactured by Shimadzu Corporation), a transmission spectrum of 350 to 1500 nm was measured. Near-infrared absorptivity was evaluated by transmittance at a wavelength of 1000 nm. In Table 1 below, the transmittance at a wavelength of 1000 nm is expressed as “1000 nm transmittance”.
(2)耐熱性の評価
 試験体を80℃の恒温恒湿器中に500時間静置し、試験前後での350~1500nmの透過スペクトルを測定した。透過スペクトルの測定にはUV-3700(島津製作所製)を使用した。得られた試験前後の透過スペクトルから、λmaxにおける色素残存率(%)を評価した。また、得られた試験前後の透過スペクトルから色差を計算し、b*の変化を評価した。なお、λmaxは、測定された波長範囲において吸光度が最大となる波長を意味し、極大吸収波長とも称される。このλmaxは、試験前の測定結果に基づいて決定される。
(2) Evaluation of heat resistance The test specimen was left in a constant temperature and humidity chamber at 80 ° C. for 500 hours, and a transmission spectrum of 350 to 1500 nm before and after the test was measured. For measurement of the transmission spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. From the obtained transmission spectra before and after the test, the dye residual ratio (%) at λmax was evaluated. In addition, a color difference was calculated from the obtained transmission spectra before and after the test, and the change in b * was evaluated. Note that λmax means a wavelength at which the absorbance is maximum in the measured wavelength range, and is also referred to as a maximum absorption wavelength. This λmax is determined based on the measurement result before the test.
(3)耐光性の評価
 スガ試験機社製の「SX2-75 スーパーキセノンウェザーメーター」にて、63℃で且つ50%RHの環境下、試験片に、300~400nmにおける照射強度が60W/mである光を100時間照射した。この試験前後のそれぞれにおいて、350~1500nmの光の透過スペクトルを測定した。透過スペクトルの測定にはUV-3700(島津製作所製)を使用した。得られた試験前後の透過スペクトルから、λmaxにおける色素残存率(%)を評価した。また、得られた試験前後の透過スペクトルから色差を計算し、b*の変化を評価した。
(3) Evaluation of light resistance In an “SX2-75 Super Xenon Weather Meter” manufactured by Suga Test Instruments Co., Ltd., the irradiation intensity at 300 to 400 nm is 60 W / m at 63 ° C. and 50% RH. 2 was irradiated for 100 hours. Before and after this test, the transmission spectrum of light of 350 to 1500 nm was measured. For measurement of the transmission spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. From the obtained transmission spectra before and after the test, the dye residual ratio (%) at λmax was evaluated. In addition, a color difference was calculated from the obtained transmission spectra before and after the test, and the change in b * was evaluated.
 前述したように、耐熱性及び耐光性の評価においては、色素残存率(%)が測定された。試験後のλmaxでの吸光度がA1(%)とされ、試験前のλmaxでの吸光度がB1(%)とされるとき、色素残存率P1(%)は下記の式で計算される。
   P1=(A1/B1)×100
 なお、吸光度は、透過率をT(%)とするとき、下記式により求められる。
 吸光度=-log(T/100)
As described above, the dye residual ratio (%) was measured in the evaluation of heat resistance and light resistance. When the absorbance at λmax after the test is A1 (%) and the absorbance at λmax before the test is B1 (%), the dye residual ratio P1 (%) is calculated by the following equation.
P1 = (A1 / B1) × 100
The absorbance is obtained by the following formula when the transmittance is T (%).
Absorbance = −log (T / 100)
(4)ジイモニウム色素の溶解度
 5種類のサンプルを用いた前述の測定方法により測定された。 
(4) Solubility of diimonium dye It was measured by the above-described measurement method using five types of samples.
(5)酸価の測定
 樹脂0.5gを精秤し、トルエン50gを加えて均一に溶解させた。指示薬としてフェノールフタレイン/アルコール溶液を2~3滴加え、0.1N水酸化カリウム/アルコール溶液で滴定し、液の赤みが約30秒で消えなくなったときを終点とした。このときの滴定量と樹脂の固形分から酸価を求めた。酸価は、樹脂固形分1gを中和するのに必要な水酸化カリウムのmgで表される。
(5) Measurement of acid value 0.5 g of resin was precisely weighed, and 50 g of toluene was added and dissolved uniformly. Two to three drops of phenolphthalein / alcohol solution was added as an indicator and titrated with 0.1N potassium hydroxide / alcohol solution. The end point was when the redness of the solution did not disappear in about 30 seconds. The acid value was determined from the titration amount at this time and the solid content of the resin. The acid value is expressed in mg of potassium hydroxide necessary to neutralize 1 g of resin solids.
製造例1:
 モノマーとして、2-エチルヘキシルアクリレート(264.6g)、ブチルアクリレート(150g)、シクロヘキシルメタクリレート(180g)及び2-ヒドロキシエチルアクリレート(5.4g)を秤量し、十分に混合して、重合性モノマー混合物(1)を得た。
Production Example 1:
As monomers, 2-ethylhexyl acrylate (264.6 g), butyl acrylate (150 g), cyclohexyl methacrylate (180 g) and 2-hydroxyethyl acrylate (5.4 g) were weighed and mixed thoroughly to obtain a polymerizable monomer mixture ( 1) was obtained.
 160gの酢酸エチルと、300gの重合性モノマー混合物(1)とを、温度計、攪拌機、不活性ガス導入管、還流冷却器及び滴下ロートを備えたフラスコに入れた。また、上記滴下ロートに、300gの重合性モノマー混合物(1)、16gの酢酸エチル及び0.15gのナイパーBMT-K40(重合開始剤、日本油脂社製)を入れ、良く混合して、滴下用混合物(1)とした。 160 g of ethyl acetate and 300 g of the polymerizable monomer mixture (1) were placed in a flask equipped with a thermometer, a stirrer, an inert gas introduction tube, a reflux condenser, and a dropping funnel. In addition, 300 g of the polymerizable monomer mixture (1), 16 g of ethyl acetate and 0.15 g of Nyper BMT-K40 (polymerization initiator, manufactured by NOF Corporation) are mixed in the dropping funnel and mixed well. It became the mixture (1).
 窒素ガスを20ml/分で流通させながら、フラスコの内温を95℃まで上昇させ、重合開始剤であるナイパーBMT-K40(0.15g)をフラスコに投入し、重合反応を開始させた。重合開始剤の投入から30分後に、滴下ロートからの滴下用混合物(1)の滴下を開始した。滴下用混合物(1)は、90分かけて、均等に滴下された。滴下用混合物(1)の滴下終了後、粘度の上昇に応じて酢酸エチルで希釈を適宜行いながら、還流温度を維持しながら6時間熟成を行った。 While flowing nitrogen gas at a rate of 20 ml / min, the internal temperature of the flask was raised to 95 ° C., and a polymerization initiator, Niper BMT-K40 (0.15 g), was charged into the flask to initiate the polymerization reaction. 30 minutes after charging the polymerization initiator, the dropping of the dropping mixture (1) from the dropping funnel was started. The dropping mixture (1) was dropped evenly over 90 minutes. After completion of the dropwise addition of the mixture for dripping (1), the mixture was aged for 6 hours while maintaining the reflux temperature while appropriately diluting with ethyl acetate as the viscosity increased.
 反応終了後、不揮発分が約45%になるように酢酸エチルで反応液を希釈し、計算ガラス転移温度(Tg)が-35℃、計算溶解性パラメータが8.99である樹脂(1)を得た。この樹脂(1)は、粘着剤樹脂であった。樹脂(1)の重量平均分子量(Mw)は42万であり、樹脂(1)の酸価は0であった。 After completion of the reaction, the reaction solution is diluted with ethyl acetate so that the nonvolatile content is about 45%, and resin (1) having a calculated glass transition temperature (Tg) of −35 ° C. and a calculated solubility parameter of 8.99 is obtained. Obtained. This resin (1) was an adhesive resin. The weight average molecular weight (Mw) of the resin (1) was 420,000, and the acid value of the resin (1) was 0.
製造例2:
 486gのブチルアクリレートと、108.6gのメチルメタクリレートと、5.4gの2-ヒドロキシエチルアクリレートとを秤量し、十分に混合して、重合性モノマー混合物(2)を得た。上記重合性モノマー混合物(1)に代えて、この重合性モノマー混合物(2)が用いられた他は製造例1と同様にして、粘着剤樹脂としての樹脂(2)を得た。樹脂(2)は、計算ガラス転移温度(Tg)が-35.6℃であり、計算溶解性パラメータが9.84であり、重量平均分子量(Mw)が64万であり、酸価が0であった。
Production Example 2:
486 g of butyl acrylate, 108.6 g of methyl methacrylate and 5.4 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (2). A resin (2) as an adhesive resin was obtained in the same manner as in Production Example 1 except that the polymerizable monomer mixture (2) was used in place of the polymerizable monomer mixture (1). Resin (2) has a calculated glass transition temperature (Tg) of −35.6 ° C., a calculated solubility parameter of 9.84, a weight average molecular weight (Mw) of 640,000, and an acid value of 0. there were.
製造例3:
 570.6gのブチルアクリレートと、24gのアクリル酸と、5.4gの2-ヒドロキシエチルアクリレートとを秤量し、十分に混合して、重合性モノマー混合物(3)を得た。上記重合性モノマー混合物(1)に代えて、この重合性モノマー混合物(3)が用いられた他は製造例1と同様にして、粘着剤樹脂としての樹脂(3)を得た。樹脂(3)は、計算ガラス転移温度(Tg)が-50℃であり、計算溶解性パラメータが9.95であり、重量平均分子量(Mw)が82万であり、酸価が31.2であった。
Production Example 3:
570.6 g of butyl acrylate, 24 g of acrylic acid and 5.4 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (3). A resin (3) as an adhesive resin was obtained in the same manner as in Production Example 1 except that the polymerizable monomer mixture (3) was used in place of the polymerizable monomer mixture (1). Resin (3) has a calculated glass transition temperature (Tg) of −50 ° C., a calculated solubility parameter of 9.95, a weight average molecular weight (Mw) of 820,000, and an acid value of 31.2. there were.
分散体の合成例1:
 0.5gのIRG-022(日本化薬社製のジイモニウム色素)、9.5gのトルエン及び25gのジルコニアビーズ(粒子径300μm、ニッカトー社製)を50mlのスクリュー管に入れ、ペイントシェーカーで2時間振とうした後、ジルコニアビーズを濾別し、IRG-022粒子を含む分散体(1)を作製した。0.025mmのフローセル(GLサイエンス社製)に分散体(1)を注入し、これを紫外可視吸収スペクトルにより測定して、分散体(1)の透過スペクトルを得た。スペクトルの測定には、UV-3700(島津製作所製)を用いた。得られたスペクトルが図1に示されている。この図1のスペクトルを、IRG-022のMEK溶液の吸収スペクトルと比較すると、図1のスペクトルは、MEK溶液の吸収スペクトルと比較して、λmaxが長波長側にシフトしており、分散体であることが示されている。
Dispersion Synthesis Example 1:
0.5 g of IRG-022 (Nippon Kayaku Co., Ltd. diimonium dye), 9.5 g of toluene, and 25 g of zirconia beads (particle size 300 μm, manufactured by Nikkato Co., Ltd.) are placed in a 50 ml screw tube, and the mixture is shaken for 2 hours. After shaking, the zirconia beads were filtered off to prepare a dispersion (1) containing IRG-022 particles. Dispersion (1) was injected into a 0.025 mm flow cell (manufactured by GL Science), and this was measured by an ultraviolet-visible absorption spectrum to obtain a transmission spectrum of dispersion (1). For the measurement of spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. The resulting spectrum is shown in FIG. When the spectrum of FIG. 1 is compared with the absorption spectrum of the MEK solution of IRG-022, the spectrum of FIG. 1 shows that λmax is shifted to the longer wavelength side compared to the absorption spectrum of the MEK solution. It is shown that there is.
 IRG-022のMEK溶液の吸収スペクトルが図2に示される。この吸収スペクトルは、IRG-022を所定量のメチルエチルケトンに溶解させ、不溶分がないことを確認した後、吸収スペクトルを測定して得た。スペクトルの測定には、UV-3700(島津製作所製)が用いられ、測定セルとして、光路長10mmの石英製セルが使用された。 The absorption spectrum of the MEK solution of IRG-022 is shown in FIG. This absorption spectrum was obtained by dissolving IRG-022 in a predetermined amount of methyl ethyl ketone and confirming that there was no insoluble matter, and then measuring the absorption spectrum. For the measurement of the spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used, and a quartz cell having an optical path length of 10 mm was used as a measurement cell.
分散体の合成例2:
 IRG-022に代えてIRG-023(日本化薬社製のジイモニウム色素)を用いた他は合成例1と同様にして、分散体(2)を得た。この分散体(2)は、IRG-023粒子を含む液体である。0.025mmのフローセル(GLサイエンス社製)に分散体(2)を注入し、これを紫外可視吸収スペクトルにより測定して、分散体(2)の透過スペクトルを得た。スペクトルの測定には、UV-3700(島津製作所製)が用いられた。得られたスペクトルが図3に示されている。
Dispersion synthesis example 2:
A dispersion (2) was obtained in the same manner as in Synthesis Example 1, except that IRG-023 (Nippon Kayaku Co., Ltd. diimonium dye) was used instead of IRG-022. This dispersion (2) is a liquid containing IRG-023 particles. Dispersion (2) was injected into a 0.025 mm flow cell (GL Science Co., Ltd.), and this was measured by UV-visible absorption spectrum to obtain a transmission spectrum of dispersion (2). For the measurement of the spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. The resulting spectrum is shown in FIG.
 なお、IRG-023のMEK溶液の吸収スペクトルが図4に示される。この吸収スペクトルは、IRG-023を所定量のメチルエチルケトンに溶解させ、不溶分がないことを確認した後、吸収スペクトルを測定して得た。スペクトルの測定には、UV-3700(島津製作所製)が用いられ、測定セルとして、光路長10mmの石英製セルが使用された。 The absorption spectrum of the MEK solution of IRG-023 is shown in FIG. This absorption spectrum was obtained by dissolving IRG-023 in a predetermined amount of methyl ethyl ketone and confirming that there was no insoluble matter, and then measuring the absorption spectrum. For the measurement of the spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used, and a quartz cell having an optical path length of 10 mm was used as a measurement cell.
分散体の合成例3:
 IRG-022に代えてCIR-1085F(日本カーリット社製のジイモニウム色素)を用いた他は合成例1と同様にして、分散体(3)を得た。この分散体(3)は、CIR-1085F粒子を含む液体である。
Dispersion Synthesis Example 3:
A dispersion (3) was obtained in the same manner as in Synthesis Example 1, except that CIR-1085F (a diimonium dye manufactured by Nippon Carlit Co., Ltd.) was used instead of IRG-022. This dispersion (3) is a liquid containing CIR-1085F particles.
 [実施例1]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)をトルエンに溶解して、固形分2.75%の架橋剤溶液1を調整した。架橋促進剤であるジラウリン酸ジ-n-ブチルスズをトルエンに溶解し、固形分1%の架橋促進剤溶液1を調整した。製造例1で得られた樹脂(1)、合成例1で得られた分散体(1)、架橋剤溶液1および架橋促進剤溶液1を、固形分重量比で100/1/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物A1を得た。なお、この固形分重量比は、(樹脂(1)/分散体(1)/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。
[Example 1]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%. The resin (1) obtained in Production Example 1, the dispersion (1) obtained in Synthesis Example 1, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solid weight ratio of 100/1 / 0.25 /. It mixed so that it might become 0.05, and it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition A1 was obtained. In addition, this solid content weight ratio is described in the order of (resin (1) / dispersion (1) / crosslinking agent solution 1 / crosslinking accelerator solution 1).
 近赤外線吸収粘着剤組成物A1をアプリケーターにて、易接着処理PETフィルム(東洋紡績社製、コスモシャインA4300)上に塗工した。塗工時の厚みは、乾燥後の粘着剤組成物層の厚みが25μmとなるように設定した。次いで、100℃の熱風循環オーブン中にて2分間乾燥させた。この粘着剤組成物A1からなる層に離型フィルム(シリコン処理されたPETフィルム)を張り合わせた後、23℃で7日間養生させて、近赤外線吸収材B1を得た。離型フィルムを剥がした後、この近赤外線吸収材B1をガラス板に貼り付けて、実施例1に係る試験体を得た。この試験体について、近赤外線透過率、耐熱性及び耐光性の評価を行った。この評価結果が下記の表1に示される。 The near-infrared absorbing pressure-sensitive adhesive composition A1 was coated on an easy-adhesion-treated PET film (manufactured by Toyobo Co., Ltd., Cosmo Shine A4300) with an applicator. The thickness at the time of coating was set so that the thickness of the pressure-sensitive adhesive composition layer after drying was 25 μm. Subsequently, it was dried in a hot air circulating oven at 100 ° C. for 2 minutes. A release film (silicone-treated PET film) was laminated to the layer made of the pressure-sensitive adhesive composition A1, and then cured at 23 ° C. for 7 days to obtain a near-infrared absorbing material B1. After peeling off the release film, this near-infrared absorbing material B1 was attached to a glass plate to obtain a test body according to Example 1. About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
 [実施例2]
 上記分散体(1)に代えて分散体(2)が用いられた他は実施例1と同様にして、実施例2に係る試験体を得た。この試験体について、近赤外線透過率、耐熱性及び耐光性の評価を行った。この評価結果が下記の表1に示される。
[Example 2]
A test body according to Example 2 was obtained in the same manner as in Example 1 except that the dispersion (2) was used instead of the dispersion (1). About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
 [実施例3]
 上記分散体(1)に代えて分散体(3)が用いられた他は実施例1と同様にして、実施例3に係る試験体を得た。この試験体について、近赤外線透過率、耐熱性及び耐光性の評価を行った。この評価結果が下記の表1に示される。
[Example 3]
A test body according to Example 3 was obtained in the same manner as in Example 1 except that the dispersion (3) was used instead of the dispersion (1). About this test body, near-infrared transmittance, heat resistance, and light resistance were evaluated. The evaluation results are shown in Table 1 below.
 [実施例4]
 フタロシアニン色素である「イーエクスカラーIR-10A」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-10A」が5質量%となるようにして、IR-10A溶液を調整した。製造例1で得られた樹脂(1)、合成例1で得られた分散体(1)、上記IR-10A溶液、架橋剤溶液1および架橋促進剤溶液1を固形分重量比で100/1/1/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物A5を得た。なお、この固形分重量比は、(樹脂(1)/分散体(1)/IR-10A溶液/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物A1に代えて近赤外線吸収粘着剤組成物A5を用いた以外は、実施例1と同様にして、実施例4に係る試験体を得た。この試験体について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Example 4]
Toluene was added to “e-ex color IR-10A” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-10A solution so that “e-ex color IR-10A” was 5% by mass. The resin (1) obtained in Production Example 1, the dispersion (1) obtained in Synthesis Example 1, the IR-10A solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a weight ratio of 100/1. /1/0.25/0.05 It mixed so that it might become solid content, and it diluted with toluene so that it might become 25%, and near-infrared absorption adhesive composition A5 was obtained. This solid content weight ratio is expressed in the order of (resin (1) / dispersion (1) / IR-10A solution / crosslinking agent solution 1 / crosslinking accelerator solution 1). A test body according to Example 4 was obtained in the same manner as in Example 1 except that the near-infrared absorbing adhesive composition A5 was used in place of the near-infrared absorbing adhesive composition A1. This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
 [実施例5]
 樹脂(1)に代えて、製造例2で得られた樹脂(2)を用いた他は、実施例1と同様にして、実施例5に係る試験体を得た。この試験体について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Example 5]
A test body according to Example 5 was obtained in the same manner as in Example 1 except that the resin (2) obtained in Production Example 2 was used in place of the resin (1). This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
 [実施例6]
 樹脂(1)に代えて、製造例3で得られた樹脂(3)を用いた他は、実施例1と同様にして、実施例6に係る試験体を得た。この試験体について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Example 6]
A test body according to Example 6 was obtained in the same manner as in Example 1 except that the resin (3) obtained in Production Example 3 was used in place of the resin (1). This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
 [実施例7]
 希釈溶剤(E)としてのトルエンがメチルエチルケトンに変更された他は実施例1と同様にして、実施例7に係る試験体を得た。この試験体について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Example 7]
A test body according to Example 7 was obtained in the same manner as in Example 1 except that toluene as the diluent solvent (E) was changed to methyl ethyl ketone. This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
 [比較例1]
 IRG-022(日本化薬社製)をメチルエチルケトンに溶解して、IRG-022を5質量%含むジイモニウム溶液1を調整した。製造例1で得られた樹脂(1)、ジイモニウム溶液1、架橋剤溶液1および架橋促進剤溶液1を、固形分重量比で100/1/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物A3を得た。なお、この固形分重量比は、(樹脂(1)/ジイモニウム溶液1/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物A1に代えて近赤外線吸収粘着剤組成物A3を用いた他は実施例1と同様にして、比較例1に係る試験体を得た。この試験体について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Comparative Example 1]
IRG-022 (manufactured by Nippon Kayaku Co., Ltd.) was dissolved in methyl ethyl ketone to prepare Diimonium Solution 1 containing 5% by mass of IRG-022. The resin (1) obtained in Production Example 1, the diimonium solution 1, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed so that the solid content weight ratio was 100/1 / 0.25 / 0.05. And it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition A3 was obtained. In addition, this solid content weight ratio is described in the order of (resin (1) / diimonium solution 1 / crosslinking agent solution 1 / crosslinking accelerator solution 1). A test body according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the near-infrared absorbing adhesive composition A3 was used instead of the near-infrared absorbing adhesive composition A1. This test body was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1 below.
 [比較例2]
 IRG-023(日本化薬社製)をメチルエチルケトンに溶解して、IRG-023を5質量%含むジイモニウム溶液2を調整した。製造例1で得られた樹脂(1)、ジイモニウム溶液2、架橋剤溶液1および架橋促進剤溶液1を、固形分重量比で100/1/0.25/0.05となるように混合し、固形分が25%となるようにメチルエチルケトンで希釈して、近赤外線吸収粘着剤組成物A4を得た。なお、この固形分重量比は、(樹脂(1)/ジイモニウム溶液2/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物A1に代えて近赤外線吸収粘着剤組成物A4を用いた他は実施例1と同様にして、比較例2に係る試験体Th2を得た。この試験体Th2について、実施例1と同様の評価を行った。この評価結果が下記の表1で示される。
[Comparative Example 2]
IRG-023 (manufactured by Nippon Kayaku Co., Ltd.) was dissolved in methyl ethyl ketone to prepare a diimonium solution 2 containing 5% by mass of IRG-023. The resin (1) obtained in Production Example 1, the diimonium solution 2, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 are mixed so that the solid content weight ratio is 100/1 / 0.25 / 0.05. The mixture was diluted with methyl ethyl ketone so that the solid content was 25%, and a near-infrared absorbing adhesive composition A4 was obtained. The solid content weight ratio is expressed in the order of (resin (1) / diimonium solution 2 / crosslinking agent solution 1 / crosslinking accelerator solution 1). A test specimen Th2 according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the near-infrared absorbing adhesive composition A4 was used instead of the near-infrared absorbing adhesive composition A1. Evaluation similar to Example 1 was performed about this test body Th2. The evaluation results are shown in Table 1 below.
 なお、下記の表1において、メチルエチルケトンが、「MEK」と表記されている。 In Table 1 below, methyl ethyl ketone is represented as “MEK”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、トルエンにおけるIRG-022の溶解度は0.1質量%以下であり、トルエンにおけるIRG-023の溶解度は0.1質量%以下であり、メチルエチルケトンにおけるIRG-022の溶解度は5質量%以上であり、メチルエチルケトンにおけるIRG-023の溶解度は5質量%以上であり、トルエンにおけるCIR-1085Fの溶解度は0.01質量%以下であった。 The solubility of IRG-022 in toluene is 0.1% by mass or less, the solubility of IRG-023 in toluene is 0.1% by mass or less, and the solubility of IRG-022 in methyl ethyl ketone is 5% by mass or more. The solubility of IRG-023 in methyl ethyl ketone was 5% by mass or more, and the solubility of CIR-1085F in toluene was 0.01% by mass or less.
 実施例1の試験体の透過スペクトルが、図5で示される。図5には、試験前、耐熱性試験後及び耐光性試験後の透過スペクトルが示されている。実施例2の試験体の透過スペクトルが、図6で示される。図6には、試験前、耐熱性試験後及び耐光性試験後の透過スペクトルが示されている。比較例1の試験体の透過スペクトルが、図7で示される。図7には、試験前、耐熱性試験後及び耐光性試験後の透過スペクトルが示されている。 The transmission spectrum of the specimen of Example 1 is shown in FIG. FIG. 5 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test. The transmission spectrum of the specimen of Example 2 is shown in FIG. FIG. 6 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test. The transmission spectrum of the test sample of Comparative Example 1 is shown in FIG. FIG. 7 shows transmission spectra before the test, after the heat resistance test, and after the light resistance test.
 次に、第二実験例について説明する。 Next, the second experimental example will be described.
 [第二実験例] [Second experiment example]
 第二実験例における評価方法は以下の通りである。 The evaluation method in the second experimental example is as follows.
(1)溶解度、計算ガラス転移点Tg、計算溶解性パラメータ及び酸価の評価
 前述の通りとされた。
(1) Evaluation of solubility, calculated glass transition point Tg, calculated solubility parameter, and acid value.
(2)ヘイズの評価
 ヘイズの測定は、濁度計NDH2000(日本電色工業製)にて行った。試験体の3箇所のヘイズを測定し、それらの平均値を採用した。
(2) Evaluation of haze The haze was measured with a turbidimeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.). The haze at three points of the test body was measured, and the average value thereof was adopted.
(3)耐熱試験
 試験体を80℃の恒温恒湿器中に1000時間静置し、試験前後での350~1500nmの透過スペクトルを測定した。透過スペクトルの測定にはUV-3700(島津製作所製)を使用した。得られた試験前後の透過スペクトルから、λmaxにおける色素残存率(%)を評価した。また、得られた試験前後の透過スペクトルから色差を計算し、b*の変化を評価した。また試験後のヘイズから試験前のヘイズを引くことにより、△Hzを算出した。なお、λmaxは、測定された波長範囲において吸光度が最大となる波長を意味する。このλmaxは、試験前の測定結果に基づいて決定される。
(3) Heat resistance test The test specimen was left in a constant temperature and humidity chamber at 80 ° C. for 1000 hours, and a transmission spectrum of 350 to 1500 nm before and after the test was measured. For measurement of the transmission spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. From the obtained transmission spectra before and after the test, the dye residual ratio (%) at λmax was evaluated. In addition, a color difference was calculated from the obtained transmission spectra before and after the test, and the change in b * was evaluated. Further, ΔHz was calculated by subtracting the haze before the test from the haze after the test. Note that λmax means the wavelength at which the absorbance is maximum in the measured wavelength range. This λmax is determined based on the measurement result before the test.
(4)耐湿熱性の評価
 試験体を60℃で且つ90%RHの恒温恒湿器中に1000時間静置し、試験前後での350~1500nmの透過スペクトルを測定した。透過スペクトルの測定にはUV-3700(島津製作所製)を使用した。得られた試験前後の透過スペクトルから、λmaxにおける色素残存率(%)を評価した。また、得られた試験前後の透過スペクトルから色差を計算し、b*の変化を評価した。また試験後のヘイズから試験前のヘイズを引くことにより、△Hzを算出した。なお、λmaxは、測定された波長範囲において吸光度が最大となる波長を意味する。このλmaxは、試験前の測定結果に基づいて決定される。
(4) Evaluation of heat-and-moisture resistance The specimen was allowed to stand in a thermo-hygrostat at 60 ° C. and 90% RH for 1000 hours, and a transmission spectrum of 350 to 1500 nm before and after the test was measured. For measurement of the transmission spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. From the obtained transmission spectra before and after the test, the dye residual ratio (%) at λmax was evaluated. In addition, a color difference was calculated from the obtained transmission spectra before and after the test, and the change in b * was evaluated. Further, ΔHz was calculated by subtracting the haze before the test from the haze after the test. Note that λmax means the wavelength at which the absorbance is maximum in the measured wavelength range. This λmax is determined based on the measurement result before the test.
(5)耐光性の評価
 スガ試験機社製の「SX2-75 スーパーキセノンウェザーメーター」にて、63℃で且つ50%RHの環境下、試験片に、300~400nmにおける照射強度が60W/mである光を100時間照射した。この試験前後のそれぞれにおいて、350~1500nmの光の透過スペクトルを測定した。透過スペクトルの測定にはUV-3700(島津製作所製)を使用した。得られた試験前後の透過スペクトルから、λmaxにおける色素残存率(%)を評価した。また、得られた試験前後の透過スペクトルから色差を計算し、b*の変化を評価した。また試験後のヘイズから試験前のヘイズを引くことにより、△Hzを算出した。なお、λmaxは、測定された波長範囲において吸光度が最大となる波長を意味する。このλmaxは、試験前の測定結果に基づいて決定される。
(5) Evaluation of light resistance In an “SX2-75 Super Xenon Weather Meter” manufactured by Suga Test Instruments Co., Ltd., the irradiation intensity at 300 to 400 nm is 60 W / m at 63 ° C. and 50% RH. 2 was irradiated for 100 hours. Before and after this test, the transmission spectrum of light of 350 to 1500 nm was measured. For measurement of the transmission spectrum, UV-3700 (manufactured by Shimadzu Corporation) was used. From the obtained transmission spectra before and after the test, the dye residual ratio (%) at λmax was evaluated. In addition, a color difference was calculated from the obtained transmission spectra before and after the test, and the change in b * was evaluated. Further, ΔHz was calculated by subtracting the haze before the test from the haze after the test. Note that λmax means the wavelength at which the absorbance is maximum in the measured wavelength range. This λmax is determined based on the measurement result before the test.
 前述したように、耐熱性、耐湿熱性及び耐光性の評価においては、色素残存率(%)が測定された。この測定方法は、[第一実験例]と同じである。 As described above, the dye residual ratio (%) was measured in the evaluation of heat resistance, moist heat resistance and light resistance. This measurement method is the same as in [First Experimental Example].
(6)モル吸光係数
 測定された吸光度を、濃度が1g/Lの場合の吸光度に換算して、換算吸光度を得る。この換算吸光度に、測定された化合物(ジイモニウム色素)の分子量をかけた値が、モル吸光係数である。λmaxにおけるモル吸光係数が下記の例で示される。
(6) Molar extinction coefficient The measured absorbance is converted into the absorbance when the concentration is 1 g / L to obtain the converted absorbance. A value obtained by multiplying the converted absorbance by the molecular weight of the measured compound (diimonium dye) is the molar extinction coefficient. The molar extinction coefficient at λmax is shown in the following example.
製造例1a:
 モノマーとして、2-エチルヘキシルアクリレート(360.6g)、ブチルアクリレート(60g)、シクロヘキシルメタクリレート(156g)、アクリル酸(18g)及び2-ヒドロキシエチルアクリレート(5.4g)を秤量し、十分に混合して、重合性モノマー混合物(1a)を得た。
Production Example 1a:
As monomers, weigh 2-ethylhexyl acrylate (360.6 g), butyl acrylate (60 g), cyclohexyl methacrylate (156 g), acrylic acid (18 g) and 2-hydroxyethyl acrylate (5.4 g) and mix well. A polymerizable monomer mixture (1a) was obtained.
 160gの酢酸エチルと、300gの重合性モノマー混合物(1a)とを、温度計、攪拌機、不活性ガス導入管、還流冷却器及び滴下ロートを備えたフラスコに入れた。また、上記滴下ロートに、300gの重合性モノマー混合物(1a)、16gの酢酸エチル及び0.15gのナイパーBMT-K40(重合開始剤、日本油脂社製)を入れ、良く混合して、滴下用混合物(1a)とした。 160 g of ethyl acetate and 300 g of the polymerizable monomer mixture (1a) were placed in a flask equipped with a thermometer, a stirrer, an inert gas introduction tube, a reflux condenser, and a dropping funnel. In addition, 300 g of the polymerizable monomer mixture (1a), 16 g of ethyl acetate and 0.15 g of Nyper BMT-K40 (polymerization initiator, manufactured by NOF Corporation) are mixed in the above dropping funnel and mixed well. It was set as the mixture (1a).
 窒素ガスを20ml/分で流通させながら、フラスコの内温を95℃まで上昇させ、重合開始剤であるナイパーBMT-K40(0.15g)をフラスコに投入し、重合反応を開始させた。重合開始剤の投入から30分後に、滴下ロートからの滴下用混合物(1a)の滴下を開始した。滴下用混合物(1a)は、90分かけて、均等に滴下された。滴下用混合物(1a)の滴下終了後、粘度の上昇に応じて酢酸エチルで希釈を適宜行いながら、還流温度を維持しながら6時間熟成を行った。 While flowing nitrogen gas at a rate of 20 ml / min, the internal temperature of the flask was raised to 95 ° C., and a polymerization initiator, Niper BMT-K40 (0.15 g), was charged into the flask to initiate the polymerization reaction. 30 minutes after charging the polymerization initiator, the dropping of the dropping mixture (1a) from the dropping funnel was started. The dropping mixture (1a) was dropped evenly over 90 minutes. After completion of the dropwise addition of the mixture for dropping (1a), the mixture was aged for 6 hours while maintaining the reflux temperature while appropriately diluting with ethyl acetate as the viscosity increased.
 反応終了後、不揮発分が約45%になるように酢酸エチルで反応液を希釈し、計算ガラス転移温度(Tg)が-38.5℃、計算溶解性パラメータが9.08である樹脂(1a)を得た。この樹脂(1a)は、粘着剤樹脂であった。樹脂(1a)の重量平均分子量(Mw)は43万であり、樹脂(1a)の酸価は23.4であった。 After completion of the reaction, the reaction solution is diluted with ethyl acetate so that the nonvolatile content is about 45%, a resin (1a) having a calculated glass transition temperature (Tg) of −38.5 ° C. and a calculated solubility parameter of 9.08. ) This resin (1a) was an adhesive resin. The weight average molecular weight (Mw) of the resin (1a) was 430,000, and the acid value of the resin (1a) was 23.4.
製造例2a:
 312gの2-エチルヘキシルアクリレートと、132gのブチルアクリレートと、120gのシクロヘキシルメタクリレートと、36gのアクリル酸とを秤量し、十分に混合して、重合性モノマー混合物(2a)を得た。上記重合性モノマー混合物(1a)に代えて、この重合性モノマー混合物(2a)が用いられた他は製造例1aと同様にして、粘着剤樹脂としての樹脂(2a)を得た。樹脂(2a)は、計算ガラス転移温度(Tg)が-39.9℃であり、計算溶解性パラメータが9.31であり、重量平均分子量(Mw)が51万であり、酸価が46.8であった。
Production Example 2a:
312 g of 2-ethylhexyl acrylate, 132 g of butyl acrylate, 120 g of cyclohexyl methacrylate, and 36 g of acrylic acid were weighed and mixed thoroughly to obtain a polymerizable monomer mixture (2a). A resin (2a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (2a) was used in place of the polymerizable monomer mixture (1a). The resin (2a) has a calculated glass transition temperature (Tg) of −39.9 ° C., a calculated solubility parameter of 9.31, a weight average molecular weight (Mw) of 510,000, and an acid value of 46. It was 8.
製造例3a:
 上記製造例1と同様にして、樹脂(3a)を得た。この樹脂(3a)は、上記樹脂(1)と同じである。
Production Example 3a:
Resin (3a) was obtained in the same manner as in Production Example 1. This resin (3a) is the same as the resin (1).
製造例4a:
 507.6gのブチルアクリレートと、90.6gのメチルメタクリレートと、1.8gの2-ヒドロキシエチルアクリレートとを秤量し、十分に混合して、重合性モノマー混合物(4a)を得た。上記重合性モノマー混合物(1a)に代えて、この重合性モノマー混合物(4a)が用いられた他は製造例1aと同様にして、粘着剤樹脂としての樹脂(4a)を得た。樹脂(4a)は、計算ガラス転移温度(Tg)が-40.0℃であり、計算溶解性パラメータが9.80であり、重量平均分子量(Mw)が68万であり、酸価が0であった。
Production Example 4a:
507.6 g of butyl acrylate, 90.6 g of methyl methacrylate, and 1.8 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (4a). A resin (4a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (4a) was used in place of the polymerizable monomer mixture (1a). The resin (4a) has a calculated glass transition temperature (Tg) of −40.0 ° C., a calculated solubility parameter of 9.80, a weight average molecular weight (Mw) of 680,000, and an acid value of 0. there were.
製造例5a:
 502.9gのブチルアクリレートと、31.1gのメチルメタクリレートと、48gのアクリル酸と、18gの2-ヒドロキシエチルアクリレートとを秤量し、十分に混合して、重合性モノマー混合物(5a)を得た。上記重合性モノマー混合物(1a)に代えて、この重合性モノマー混合物(5a)が用いられた他は製造例1aと同様にして、粘着剤樹脂としての樹脂(5a)を得た。樹脂(5a)は、計算ガラス転移温度(Tg)が-40.9℃であり、計算溶解性パラメータが10.19であり、重量平均分子量(Mw)が128万であり、酸価が62.3であった。
Production Example 5a:
502.9 g of butyl acrylate, 31.1 g of methyl methacrylate, 48 g of acrylic acid, and 18 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (5a). . A resin (5a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (5a) was used in place of the polymerizable monomer mixture (1a). The resin (5a) has a calculated glass transition temperature (Tg) of −40.9 ° C., a calculated solubility parameter of 10.19, a weight average molecular weight (Mw) of 1.28 million, and an acid value of 62. 3.
製造例6a:
 495.1gのブチルアクリレートと、74.9gのメチルメタクリレートと、30gの2-ヒドロキシエチルアクリレートとを秤量し、十分に混合して、重合性モノマー混合物(6a)を得た。上記重合性モノマー混合物(1a)に代えて、この重合性モノマー混合物(6a)が用いられた他は製造例1aと同様にして、粘着剤樹脂としての樹脂(6a)を得た。樹脂(6a)は、計算ガラス転移温度(Tg)が-40.9℃であり、計算溶解性パラメータが10.00であり、重量平均分子量(Mw)が95万であり、酸価が0であった。
Production Example 6a:
495.1 g of butyl acrylate, 74.9 g of methyl methacrylate, and 30 g of 2-hydroxyethyl acrylate were weighed and mixed well to obtain a polymerizable monomer mixture (6a). A resin (6a) as an adhesive resin was obtained in the same manner as in Production Example 1a except that the polymerizable monomer mixture (6a) was used in place of the polymerizable monomer mixture (1a). The resin (6a) has a calculated glass transition temperature (Tg) of −40.9 ° C., a calculated solubility parameter of 10.00, a weight average molecular weight (Mw) of 950,000, and an acid value of 0. there were.
 製造例1aから6aの配合と評価結果が下記の表2に示される。 The composition and evaluation results of Production Examples 1a to 6a are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
合成例1a:
 100質量部のDMFに、10質量部のN,N,N’,N’-テトラキス-(p-アミノフェニル)-p-フェニレンジアミン、63質量部のシクロヘキシルメチルヨーダイド及び30質量部の炭酸カリウムを加え、120℃で10時間反応させた。次に、この反応液を500質量部の水に加え、生じた沈殿を濾過し、500質量部のメチルアルコールで洗浄後、100℃で乾燥して、24.1部のN,N,N’,N’-テトラキス-{p-ジ(シクロヘキシルメチル)アミノフェニル}-p-フェニレンジアミンを得た。
Synthesis Example 1a:
100 parts by weight of DMF, 10 parts by weight of N, N, N ′, N′-tetrakis- (p-aminophenyl) -p-phenylenediamine, 63 parts by weight of cyclohexylmethyl iodide and 30 parts by weight of potassium carbonate And reacted at 120 ° C. for 10 hours. Next, this reaction solution was added to 500 parts by mass of water, and the resulting precipitate was filtered, washed with 500 parts by mass of methyl alcohol, dried at 100 ° C., and 24.1 parts of N, N, N ′. , N′-tetrakis- {p-di (cyclohexylmethyl) aminophenyl} -p-phenylenediamine was obtained.
  この24.1部のN,N,N’,N’-テトラキス-{p-ジ(シクロヘキシルメチル)アミノフェニル}-p-フェニレンジアミンに、200質量部のDMFと、7.9質量部のヘキサフルオロリン酸銀を加え、60℃で3時間反応させ、生成した銀を濾別した。次に、得られた濾液に200質量部の水を加え、生成した沈殿を濾過し、乾燥させて、27.0質量部のヘキサフルオロリン酸-N,N,N’,N’-テトラキス-{p-ジ(シクロヘキシルメチル)アミノフェニル}-p-フェニレンジイモニウムを得た。以下、このジイモニウム塩が、ジイモニウム塩(a)とも称される。酢酸エチル中におけるジイモニウム塩(a)の溶解度は、0.01質量%以下であった。 To 24.1 parts of N, N, N ′, N′-tetrakis- {p-di (cyclohexylmethyl) aminophenyl} -p-phenylenediamine, 200 parts by weight of DMF and 7.9 parts by weight of hexa Silver fluorophosphate was added and reacted at 60 ° C. for 3 hours, and the resulting silver was filtered off. Next, 200 parts by mass of water was added to the obtained filtrate, the resulting precipitate was filtered and dried, and 27.0 parts by mass of hexafluorophosphoric acid-N, N, N ′, N′-tetrakis- {P-di (cyclohexylmethyl) aminophenyl} -p-phenylenediimonium was obtained. Hereinafter, this diimonium salt is also referred to as diimonium salt (a). The solubility of the diimonium salt (a) in ethyl acetate was 0.01% by mass or less.
 0.5質量部のジイモニウム塩(a)、9.5質量部の酢酸エチル及び70質量部のジルコニアビーズ(粒径0.3mm)を50mlのガラス容器に入れ、ペイントシェーカーで2時間振とうした後、ジルコニアビーズを濾別し、色素濃度を2質量%に調整して、液状の分散体(a)を得た。 0.5 parts by mass of dimonium salt (a), 9.5 parts by mass of ethyl acetate and 70 parts by mass of zirconia beads (particle size: 0.3 mm) were placed in a 50 ml glass container and shaken for 2 hours with a paint shaker. Thereafter, the zirconia beads were separated by filtration and the pigment concentration was adjusted to 2% by mass to obtain a liquid dispersion (a).
 ジイモニウム塩(a)の濃度が100mg/L、50mg/L、10mg/L及び5mg/Lのそれぞれとなるように、分散体(a)を酢酸エチルで希釈した。これらの4種類の希釈液のそれぞれについて、吸光度を測定し、モル吸光係数に変換したスペクトルが、図8に示される。この100mg/Lの希釈液の極大吸収波長(λmax)は1093nmであった。また、この100mg/Lの希釈液のλmaxにおけるモル吸光係数は、75300(mol-1・L・cm-1)であった。 The dispersion (a) was diluted with ethyl acetate so that the concentration of the dimonium salt (a) was 100 mg / L, 50 mg / L, 10 mg / L, and 5 mg / L, respectively. A spectrum obtained by measuring the absorbance of each of these four types of dilutions and converting it to a molar extinction coefficient is shown in FIG. The maximum absorption wavelength (λmax) of this 100 mg / L diluted solution was 1093 nm. The molar extinction coefficient at λmax of this 100 mg / L diluted solution was 75300 (mol −1 · L · cm −1 ).
 分散媒が酢酸エチルの場合、ジイモニウム塩が会合体である場合の極大吸収波長(λmax)は、分散媒がトルエンの場合とは相違する。なお、ジイモニウム塩が分散体(a)と同一であり、且つ、分散媒がトルエンである分散体(b)(後述)においてジイモニウム色素が会合状態にあることを考慮すると、分散体(a)においても、ジイモニウム塩(a)は会合体であると考えられる。 When the dispersion medium is ethyl acetate, the maximum absorption wavelength (λmax) when the diimonium salt is an aggregate is different from that when the dispersion medium is toluene. In consideration of the fact that the diimonium dye is in the associated state in the dispersion (b) (described later) in which the diimonium salt is the same as the dispersion (a) and the dispersion medium is toluene, the dispersion (a) However, the diimonium salt (a) is considered to be an aggregate.
合成例2a:
 分散溶媒が酢酸エチルからトルエンに変更された他は合成例1aと同様にして、液状の分散体(b)を得た。トルエン中におけるジイモニウム塩(a)の溶解度は、0.01質量%以下であった。ジイモニウム塩(a)の濃度が100mg/L、50mg/L、20mg/L及び5mg/Lのそれぞれとなるように、分散体(b)をトルエンで希釈した。これらの4種類の希釈液のそれぞれについて、吸光度を測定し、モル吸光係数に変換したスペクトルが、図9に示される。この100mg/Lの希釈液の極大吸収波長(λmax)は1119nmであった。また、この100mg/Lの希釈液のλmaxにおけるモル吸光係数は、103634(mol-1・L・cm-1)であり、70000mol-1・L・cm-1以上であった。
Synthesis Example 2a:
A liquid dispersion (b) was obtained in the same manner as in Synthesis Example 1a except that the dispersion solvent was changed from ethyl acetate to toluene. The solubility of the diimonium salt (a) in toluene was 0.01% by mass or less. The dispersion (b) was diluted with toluene so that the concentration of the dimonium salt (a) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively. FIG. 9 shows a spectrum obtained by measuring the absorbance of each of these four types of diluted solutions and converting them to molar extinction coefficients. The maximum absorption wavelength (λmax) of this 100 mg / L diluted solution was 1119 nm. Further, the molar extinction coefficient at λmax of this diluted solution of 100 mg / L was 103634 (mol −1 · L · cm −1 ), which was 70000 mol −1 · L · cm −1 or more.
 このように、上記分散体(b)よりも低い濃度(100mg/L)において、ジイモニウム塩(a)が会合状態であることが確認された。よって、トルエンによる希釈濃度がより高い分散体(b)においても、ジイモニウム色素(a)は会合状態にあると考えられる。 Thus, it was confirmed that the diimonium salt (a) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (b). Therefore, the diimonium dye (a) is considered to be in an associated state even in the dispersion (b) having a higher dilution concentration with toluene.
 また、分散体(b)に、更にトルエンを加え、ジイモニウム塩が溶解状態になるまで希釈して、希釈体(b)を得た。この希釈体(b)の極大吸収波長(λmax)は、1094nmであり、1119nmよりも小さい値であった。 Further, toluene was further added to the dispersion (b) and diluted until the diimonium salt was in a dissolved state to obtain a diluted body (b). The maximum absorption wavelength (λmax) of this diluted body (b) was 1094 nm, which was a value smaller than 1119 nm.
合成例3a:
 合成例1aで用いられた63質量部のシクロヘキシルメチルヨーダイドに代えて、同じモル数の1-ヨード-3-フルオロプロパンを用いた他は合成例1aと同様にして、ヘキサフルオロリン酸-N,N,N’,N’-テトラキス-{p-ジ(3-フルオロプロピル)アミノフェニル}-p-フェニレンジイモニウムを得た。以下、このジイモニウム塩が、ジイモニウム塩(c)とも称される。このジイモニウム塩(c)を用いた他は、合成例2aと同様にして、液状の分散体(c)を得た。トルエン中におけるジイモニウム塩(c)の溶解度は、0.01質量%以下であった。
Synthesis Example 3a:
Instead of 63 parts by mass of cyclohexylmethyl iodide used in Synthesis Example 1a, the same mole number of 1-iodo-3-fluoropropane was used as in Synthesis Example 1a. , N, N ′, N′-tetrakis- {p-di (3-fluoropropyl) aminophenyl} -p-phenylenediimonium was obtained. Hereinafter, this diimonium salt is also referred to as diimonium salt (c). A liquid dispersion (c) was obtained in the same manner as in Synthesis Example 2a except that this dimonium salt (c) was used. The solubility of the diimonium salt (c) in toluene was 0.01% by mass or less.
 ジイモニウム塩(c)の濃度が100mg/L、50mg/L、20mg/L及び5mg/Lのそれぞれとなるように、分散体(c)をトルエンで希釈した。これらの4種類の希釈液のそれぞれについて、吸光度を測定し、モル吸光係数に変換したスペクトルが、図10に示される。この100mg/Lの希釈液の極大吸収波長(λmax)は1120nmであった。また、この100mg/Lの希釈液のλmaxにおけるモル吸光係数は、83775(mol-1・L・cm-1)であり、70000mol-1・L・cm-1以上であった。 The dispersion (c) was diluted with toluene so that the concentration of the dimonium salt (c) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively. FIG. 10 shows a spectrum obtained by measuring the absorbance of each of these four types of diluted solutions and converting them to molar extinction coefficients. The maximum absorption wavelength (λmax) of this 100 mg / L diluted solution was 1120 nm. Further, the molar extinction coefficient at λmax of the diluted solution of 100 mg / L was 83775 (mol −1 · L · cm −1 ), which was 70000 mol −1 · L · cm −1 or more.
 このように、上記分散体(c)よりも低い濃度(100mg/L)において、ジイモニウム塩(c)が会合状態であることが確認された。よって、トルエンによる希釈濃度がより高い分散体(c)においても、ジイモニウム色素(c)は会合状態にあると考えられる。 Thus, it was confirmed that the diimonium salt (c) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (c). Therefore, it is considered that the diimonium dye (c) is in an associated state even in the dispersion (c) having a higher dilution concentration with toluene.
 このジイモニウム塩(c)は、トルエンに対してほどんど不溶であったため、分散媒をトルエンから塩化メチレンに変更し、濃度が10mg/Lとなるように希釈して、ジイモニウム塩(c)が溶解した希釈体(c)を得た。この希釈体(c)について、吸光度を測定し、モル吸光係数に変換したスペクトルが、図11に示される。この希釈体(c)の極大吸収波長(λmax)は、1050nmであり、1120nmよりも小さい値であった。 Since this dimonium salt (c) was almost insoluble in toluene, the dispersion medium was changed from toluene to methylene chloride and diluted to a concentration of 10 mg / L to dissolve the dimonium salt (c). A diluted product (c) was obtained. FIG. 11 shows a spectrum obtained by measuring the absorbance of the diluted product (c) and converting it to a molar extinction coefficient. The maximum absorption wavelength (λmax) of this diluted body (c) was 1050 nm, which was a value smaller than 1120 nm.
合成例4a:
 合成例1aで用いられた63質量部のシクロヘキシルメチルヨーダイドに代えて、同じモル数のイソブチルヨーダイドを用いた他は合成例1aと同様にして、ヘキサフルオロリン酸-N,N,N’,N’-テトラキス-{p-ジ(イソブチル)アミノフェニル}-p-フェニレンジイモニウムを得た。以下、このジイモニウム塩が、ジイモニウム塩(d)とも称される。このジイモニウム塩(d)を用いた他は、合成例2aと同様にして、液状の分散体(d)を得た。トルエン中におけるジイモニウム塩(d)の溶解度は、0.01質量%以下であった。
Synthesis Example 4a:
Hexafluorophosphoric acid-N, N, N ′ was prepared in the same manner as in Synthesis Example 1a except that isobutyl iodide having the same mole number was used instead of 63 parts by mass of cyclohexylmethyl iodide used in Synthesis Example 1a. , N′-Tetrakis- {p-di (isobutyl) aminophenyl} -p-phenylenediimonium was obtained. Hereinafter, this diimonium salt is also referred to as diimonium salt (d). A liquid dispersion (d) was obtained in the same manner as in Synthesis Example 2a except that this dimonium salt (d) was used. The solubility of the diimonium salt (d) in toluene was 0.01% by mass or less.
 ジイモニウム塩(d)の濃度が100mg/L、50mg/L、20mg/L及び5mg/Lのそれぞれとなるように、分散体(d)をトルエンで希釈した。これらの4種類の希釈液のそれぞれについて、吸光度を測定し、モル吸光係数に変換したスペクトルが、図12に示される。この100mg/Lの希釈液の極大吸収波長(λmax)は1220nmであった。また、この100mg/Lの希釈液のλmaxにおけるモル吸光係数は、112693(mol-1・L・cm-1)であり、70000mol-1・L・cm-1以上であった。 The dispersion (d) was diluted with toluene so that the concentration of the dimonium salt (d) was 100 mg / L, 50 mg / L, 20 mg / L, and 5 mg / L, respectively. FIG. 12 shows a spectrum obtained by measuring the absorbance of each of these four types of dilutions and converting them to molar extinction coefficients. The maximum absorption wavelength (λmax) of this 100 mg / L diluted solution was 1220 nm. Further, the molar extinction coefficient at λmax of this 100 mg / L diluted solution was 11293 (mol −1 · L · cm −1 ), which was 70000 mol −1 · L · cm −1 or more.
 このように、上記分散体(d)よりも低い濃度(100mg/L)において、ジイモニウム塩(d)が会合状態であることが確認された。よって、トルエンによる希釈濃度がより高い分散体(d)においても、ジイモニウム色素(d)は会合状態にあると考えられる。 Thus, it was confirmed that the diimonium salt (d) was in an associated state at a concentration (100 mg / L) lower than that of the dispersion (d). Therefore, it is considered that the diimonium dye (d) is in an associated state even in the dispersion (d) having a higher dilution concentration with toluene.
 また、分散体(d)に、更にトルエンを加え、ジイモニウム塩が溶解状態になるまで希釈して、希釈体(d)を得た。この希釈体(d)の極大吸収波長(λmax)は、1081nmであり、1220nmよりも小さい値であった。 Further, toluene was further added to the dispersion (d) and diluted until the diimonium salt was in a dissolved state to obtain a diluted body (d). The maximum absorption wavelength (λmax) of this diluted body (d) was 1081 nm, which was a value smaller than 1220 nm.
 合成例1aから4aで合成されたジイモニウム塩及び分散体の一覧が、下記の表3に示される。 A list of diimonium salts and dispersions synthesized in Synthesis Examples 1a to 4a is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)を酢酸エチルに溶解して、固形分2.75%の架橋剤溶液1を調整した。製造例1aで得られた樹脂(1a)、合成例1aで得られた分散体(a)及び架橋剤溶液1を、固形分重量比で100/1.0/0.5となるように混合し、固形分が25%となるように酢酸エチルで希釈して、近赤外線吸収粘着剤組成物Aa1を得た。なお、この固形分重量比は、(樹脂(1a)/分散体(a)/架橋剤溶液1)の順で表記されている。
[Example 1a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%. The resin (1a) obtained in Production Example 1a, the dispersion (a) obtained in Synthesis Example 1a, and the crosslinking agent solution 1 are mixed so that the solid content weight ratio is 100 / 1.0 / 0.5. And it diluted with ethyl acetate so that solid content might be 25%, and near-infrared absorption adhesive composition Aa1 was obtained. In addition, this solid content weight ratio is described in the order of (resin (1a) / dispersion (a) / crosslinking agent solution 1).
 近赤外線吸収粘着剤組成物Aa1をアプリケーターにて、易接着処理PETフィルム(東洋紡績社製、コスモシャインA4300)上に塗工した。塗工時の厚みは、乾燥後の粘着剤組成物層の厚みが25μmとなるように設定した。次いで、100℃の熱風循環オーブン中にて2分間乾燥させた。この粘着剤組成物Aa1からなる層に離型フィルム(シリコン処理されたPETフィルム)を張り合わせた後、23℃で7日間養生させて、近赤外線吸収材Ba1を得た。離型フィルムを剥がした後、この近赤外線吸収材Ba1をガラス板に貼り付けて、実施例1aに係る試験体Z1を得た。この試験体Z1について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表4に示される。 The near-infrared absorbing pressure-sensitive adhesive composition Aa1 was coated on an easy-adhesion-treated PET film (Toyobo Co., Ltd., Cosmo Shine A4300) with an applicator. The thickness at the time of coating was set so that the thickness of the pressure-sensitive adhesive composition layer after drying was 25 μm. Subsequently, it was dried in a hot air circulating oven at 100 ° C. for 2 minutes. A release film (silicone-treated PET film) was laminated to the layer made of the pressure-sensitive adhesive composition Aa1, and then cured at 23 ° C. for 7 days to obtain a near-infrared absorbing material Ba1. After peeling off the release film, this near-infrared absorbing material Ba1 was attached to a glass plate to obtain a test specimen Z1 according to Example 1a. About this test body Z1, the heat test, the moist heat test, and the light resistance test were done. The evaluation results are shown in Table 4 below.
 [実施例2a]
 フタロシアニン色素である「イーエクスカラーIR-14」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-14」が5質量%となるようにして、IR-14溶液を調整した。また、フタロシアニン色素である「イーエクスカラーTX-EX-820」(日本触媒製)にトルエンを加え、「イーエクスカラーTX-EX-820」が5質量%となるようにして、TX-EX-820溶液を調整した。製造例1aで得られた樹脂(1a)、合成例1aで得られた分散体(a)、上記IR-14溶液、上記TX-EX-820溶液及び架橋剤溶液1を固形分重量比で100/1.1/0.35/0.17/0.5となるように混合し、固形分が25%となるように酢酸エチルで希釈して、近赤外線吸収粘着剤組成物Aa2を得た。なお、この固形分重量比は、(樹脂(1a)/分散体(a)/IR-14溶液/TX-EX-820溶液/架橋剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えて近赤外線吸収粘着剤組成物Aa2が用いられた他は、実施例1aと同様にして、実施例2aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表4に示される。
[Example 2a]
Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass. In addition, toluene is added to “e-ex color TX-EX-820” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, so that “e-ex color TX-EX-820” is 5% by mass, so that TX-EX- 820 solution was prepared. The resin (1a) obtained in Production Example 1a, the dispersion (a) obtained in Synthesis Example 1a, the IR-14 solution, the TX-EX-820 solution, and the crosslinking agent solution 1 were mixed at a solid content weight ratio of 100. /1.1/0.35/0.17/0.5, and the mixture was diluted with ethyl acetate so that the solid content was 25% to obtain a near-infrared absorbing adhesive composition Aa2. . The solid content weight ratio is expressed in the order of (resin (1a) / dispersion (a) / IR-14 solution / TX-EX-820 solution / crosslinking agent solution 1). A test body according to Example 2a was obtained in the same manner as Example 1a except that near-infrared absorbing adhesive composition Aa2 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
 [実施例3a]
 フタロシアニン色素である「イーエクスカラーIR-14」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-14」が5質量%となるようにして、IR-14溶液を調整した。製造例1aで得られた樹脂(1a)、合成例2aで得られた分散体(b)、上記IR-14溶液及び架橋剤溶液1を固形分重量比で100/1.3/0.7/0.25となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa3を得た。なお、この固形分重量比は、(樹脂(1a)/分散体(b)/IR-14溶液/架橋剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えて近赤外線吸収粘着剤組成物Aa3が用いられた他は、実施例1aと同様にして、実施例3aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表4に示される。
Example 3a
Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to prepare an IR-14 solution so that “e-ex color IR-14” was 5% by mass. The resin (1a) obtained in Production Example 1a, the dispersion (b) obtained in Synthesis Example 2a, the IR-14 solution and the crosslinking agent solution 1 were mixed at a solids weight ratio of 100 / 1.3 / 0.7. The mixture was mixed so as to be /0.25, and diluted with toluene so that the solid content was 25%, to obtain a near-infrared absorbing adhesive composition Aa3. The solid content weight ratio is expressed in the order of (resin (1a) / dispersion (b) / IR-14 solution / crosslinking agent solution 1). A test body according to Example 3a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa3 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
 [実施例4a]
 樹脂(1a)に代えて、製造例2aで得られた樹脂(2a)が用いられた他は実施例2aと同様にして、実施例4aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表4に示される。
[Example 4a]
A test body according to Example 4a was obtained in the same manner as in Example 2a except that the resin (2a) obtained in Production Example 2a was used instead of the resin (1a). The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
 [実施例5a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)を酢酸エチルに溶解して、固形分2.75%の架橋剤溶液1を調整した。架橋促進剤であるジラウリン酸ジ-n-ブチルスズを酢酸エチルに溶解し、固形分1%の架橋促進剤溶液2を調整した。製造例3aで得られた樹脂(3a)、合成例1aで得られた分散体(a)、架橋剤溶液1及び架橋促進剤溶液2を、固形分重量比で100/1.0/0.5/0.05となるように混合し、固形分が25%となるように酢酸エチルで希釈して、実施例5aに係る近赤外線吸収粘着剤組成物Aa5を得た。なお、この固形分重量比は、(樹脂(3a)/分散体(a)/架橋剤溶液1/架橋促進剤溶液2)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えてこの近赤外線吸収粘着剤組成物Aa5が用いられた他は実施例1aと同様にして、実施例5aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表4に示される。
[Example 5a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in ethyl acetate to prepare a crosslinking accelerator solution 2 having a solid content of 1%. The resin (3a) obtained in Production Example 3a, the dispersion (a) obtained in Synthesis Example 1a, the cross-linking agent solution 1 and the cross-linking accelerator solution 2 are 100 / 1.0 / 0. It mixed so that it might become 5 / 0.05, and it diluted with ethyl acetate so that solid content might be 25%, and the near-infrared absorption adhesive composition Aa5 which concerns on Example 5a was obtained. The solid content weight ratio is expressed in the order of (resin (3a) / dispersion (a) / crosslinking agent solution 1 / crosslinking accelerator solution 2). A test body according to Example 5a was obtained in the same manner as Example 1a except that this near-infrared absorbing adhesive composition Aa5 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
 [実施例6a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)を酢酸エチルに溶解して、固形分2.75%の架橋剤溶液1を調整した。架橋促進剤であるジラウリン酸ジ-n-ブチルスズを酢酸エチルに溶解し、固形分1%の架橋促進剤溶液2を調整した。製造例4aで得られた樹脂(4a)、合成例1aで得られた分散体(a)、架橋剤溶液1及び架橋促進剤溶液2を、固形分重量比で100/1.0/0.5/0.05となるように混合し、固形分が25%となるように酢酸エチルで希釈して、実施例6aに係る近赤外線吸収粘着剤組成物Aa6を得た。なお、この固形分重量比は、(樹脂(4a)/分散体(a)/架橋剤溶液1/架橋促進剤溶液2)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えてこの近赤外線吸収粘着剤組成物Aa6が用いられた他は実施例1aと同様にして、実施例6aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表4に示される。
[Example 6a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in ethyl acetate to prepare a crosslinking accelerator solution 2 having a solid content of 1%. The resin (4a) obtained in Production Example 4a, the dispersion (a) obtained in Synthesis Example 1a, the cross-linking agent solution 1 and the cross-linking accelerator solution 2 are 100 / 1.0 / 0. It mixed so that it might become 5 / 0.05, and it diluted with ethyl acetate so that solid content might be 25%, and the near-infrared absorption adhesive composition Aa6 which concerns on Example 6a was obtained. In addition, this solid content weight ratio is described in the order of (resin (4a) / dispersion (a) / crosslinking agent solution 1 / crosslinking accelerator solution 2). A test body according to Example 6a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa6 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 4 below.
 [実施例7a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)をトルエンに溶解して、固形分2.75%の架橋剤溶液1を調整した。製造例1aで得られた樹脂(1a)、合成例3aで得られた分散体(c)及び架橋剤溶液1を、固形分重量比で100/1.3/0.5となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa7を得た。なお、この固形分重量比は、(樹脂(1a)/分散体(c)/架橋剤溶液1)の順で表記されている。
[Example 7a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. The resin (1a) obtained in Production Example 1a, the dispersion (c) obtained in Synthesis Example 3a, and the crosslinking agent solution 1 are mixed so that the solid content weight ratio is 100 / 1.3 / 0.5. And it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa7 was obtained. In addition, this solid content weight ratio is described in the order of (resin (1a) / dispersion (c) / crosslinking agent solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Aa7が用いられた他は、実施例1aと同様にして、実施例7aに係る試験体を得た。この試験体について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表4に示される。 A test body according to Example 7a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa7 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 4 below.
 [実施例8a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)をトルエンに溶解して、固形分2.75%の架橋剤溶液1を調整した。架橋促進剤であるジラウリン酸ジ-n-ブチルスズをトルエンに溶解し、固形分1%の架橋促進剤溶液1を調整した。製造例3aで得られた樹脂(3a)、合成例3aで得られた分散体(c)、架橋剤溶液1及び架橋促進剤溶液1を、固形分重量比で100/1.3/0.5/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa8を得た。なお、この固形分重量比は、(樹脂(3a)/分散体(c)/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。
[Example 8a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%. The resin (3a) obtained in Production Example 3a, the dispersion (c) obtained in Synthesis Example 3a, the cross-linking agent solution 1 and the cross-linking accelerator solution 1 are 100 / 1.3 / 0. It mixed so that it might become 5 / 0.05, and it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa8 was obtained. In addition, this solid content weight ratio is described in the order of (resin (3a) / dispersion (c) / crosslinking agent solution 1 / crosslinking accelerator solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Aa8が用いられた他は、実施例1aと同様にして、実施例8aに係る試験体を得た。この試験体について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表5に示される。 A test body according to Example 8a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa8 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 5 below.
 [実施例9a]
 樹脂(1a)に代えて、製造例5aで得られた樹脂(5a)が用いられた他は実施例7aと同様にして、実施例9aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表5に示される。
Example 9a
A test body according to Example 9a was obtained in the same manner as in Example 7a except that the resin (5a) obtained in Production Example 5a was used instead of the resin (1a). The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
 [実施例10a]
 架橋剤であるコロネートL-55E(日本ポリウレタン社製)をトルエンに溶解して、固形分2.75%の架橋剤溶液1を調整した。架橋促進剤であるジラウリン酸ジ-n-ブチルスズをトルエンに溶解し、固形分1%の架橋促進剤溶液1を調整した。製造例6aで得られた樹脂(6a)、合成例3aで得られた分散体(c)、架橋剤溶液1及び架橋促進剤溶液1を、固形分重量比で100/1.3/0.5/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa10を得た。なお、この固形分重量比は、(樹脂(6a)/分散体(c)/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。
[Example 10a]
Coronate L-55E (manufactured by Nippon Polyurethane Co., Ltd.) as a crosslinking agent was dissolved in toluene to prepare a crosslinking agent solution 1 having a solid content of 2.75%. Di-n-butyltin dilaurate, which is a crosslinking accelerator, was dissolved in toluene to prepare a crosslinking accelerator solution 1 having a solid content of 1%. The resin (6a) obtained in Production Example 6a, the dispersion (c) obtained in Synthesis Example 3a, the cross-linking agent solution 1 and the cross-linking accelerator solution 1 are 100 / 1.3 / 0. It mixed so that it might become 5 / 0.05, and it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa10 was obtained. In addition, this solid content weight ratio is described in the order of (resin (6a) / dispersion (c) / crosslinking agent solution 1 / crosslinking accelerator solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Aa10が用いられた他は、実施例1aと同様にして、実施例10aに係る試験体を得た。この試験体について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表5に示される。 A test body according to Example 10a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Aa10 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 5 below.
 [実施例11a]
 フタロシアニン色素である「イーエクスカラーIR-10A」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-10A」が5質量%となるようにして、IR-10A溶液を調整した。製造例3aで得られた樹脂(3a)、合成例4aで得られた分散体(d)、上記IR-10A溶液、架橋剤溶液1および架橋促進剤溶液1を固形分重量比で100/1.0/1.0/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa11を得た。なお、この固形分重量比は、(樹脂(3a)/分散体(d)/IR-10A溶液/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えて近赤外線吸収粘着剤組成物Aa11が用いられた他は、実施例1aと同様にして、実施例11aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表5に示される。
[Example 11a]
Toluene was added to “e-ex color IR-10A” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-10A solution so that “e-ex color IR-10A” was 5% by mass. The resin (3a) obtained in Production Example 3a, the dispersion (d) obtained in Synthesis Example 4a, the IR-10A solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solid content weight ratio of 100/1. The mixture was mixed to 0.0 / 1.0 / 0.25 / 0.05, and diluted with toluene so that the solid content was 25% to obtain a near-infrared absorbing adhesive composition Aa11. The solid content weight ratio is expressed in the order of (resin (3a) / dispersion (d) / IR-10A solution / crosslinking agent solution 1 / crosslinking accelerator solution 1). A test body according to Example 11a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa11 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
 [実施例12a]
 フタロシアニン色素である「イーエクスカラーIR-14」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-14」が5質量%となるようにして、IR-14溶液を調整した。製造例1aで得られた樹脂(1a)、合成例4aで得られた分散体(d)、上記IR-14溶液および架橋剤溶液1を固形分重量比で100/1.0/1.0/0.25となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa12を得た。なお、この固形分重量比は、(樹脂(1a)/分散体(d)/IR-14溶液/架橋剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えて近赤外線吸収粘着剤組成物Aa12が用いられた他は、実施例1aと同様にして、実施例12aに係る試験体を得た。この試験体について、実施例1aと同様の評価を行った。この評価結果が下記の表5に示される。
[Example 12a]
Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass. The resin (1a) obtained in Production Example 1a, the dispersion (d) obtained in Synthesis Example 4a, the IR-14 solution and the crosslinking agent solution 1 were mixed at a solids weight ratio of 100 / 1.0 / 1.0. The mixture was mixed so as to be /0.25, and diluted with toluene so that the solid content was 25%, to obtain a near-infrared absorbing adhesive composition Aa12. The solid content weight ratio is expressed in the order of (resin (1a) / dispersion (d) / IR-14 solution / crosslinking agent solution 1). A test body according to Example 12a was obtained in the same manner as Example 1a, except that near-infrared absorbing adhesive composition Aa12 was used instead of near-infrared absorbing adhesive composition Aa1. The test body was evaluated in the same manner as in Example 1a. The evaluation results are shown in Table 5 below.
 [実施例13a]
 フタロシアニン色素である「イーエクスカラーIR-14」(日本触媒製)にトルエンを加え、「イーエクスカラーIR-14」が5質量%となるようにして、IR-14溶液を調整した。製造例3aで得られた樹脂(3a)、合成例2で得られた分散体(2)、上記IR-14溶液、上記架橋剤溶液1および架橋促進剤溶液1を固形分重量比で100/2.0/0.45/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Aa13を得た。なお、この固形分重量比は、(樹脂(3a)/分散体(2)/IR-14溶液/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。
[Example 13a]
Toluene was added to “e-ex color IR-14” (manufactured by Nippon Shokubai Co., Ltd.), which is a phthalocyanine dye, to adjust the IR-14 solution so that “e-ex color IR-14” was 5% by mass. The resin (3a) obtained in Production Example 3a, the dispersion (2) obtained in Synthesis Example 2, the IR-14 solution, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were mixed at a solids weight ratio of 100 / It mixed so that it might become 2.0 / 0.45 / 0.25 / 0.05, and it diluted with toluene so that solid content might be 25%, and near-infrared absorption adhesive composition Aa13 was obtained. The solid content weight ratio is expressed in the order of (resin (3a) / dispersion (2) / IR-14 solution / crosslinking agent solution 1 / crosslinking accelerator solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Aa13が用いられた他は、実施例1aと同様にして、実施例13aに係る試験体を得た。この試験体について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表6に示される。 A test body according to Example 13a was obtained in the same manner as in Example 1a, except that this near-infrared absorbing adhesive composition Aa13 was used instead of the near-infrared absorbing adhesive composition Aa1. The test body was subjected to a heat resistance test, a moist heat resistance test, and a light resistance test. The evaluation results are shown in Table 6 below.
 [比較例1a]
 合成例1aで得られたジイモニウム塩(a)をメチルエチルケトンで希釈して1質量%の濃度とし、ジイモニウム塩(a)が溶解したジイモニウム塩溶液h1aを調整した。製造例1aで得られた樹脂(1a)、ジイモニウム塩溶液h1a及び上記架橋剤溶液1を固形分重量比で100/1.0/0.5となるように混合し、固形分が25%となるようにメチルエチルケトンで希釈して、近赤外線吸収粘着剤組成物Ah1aを得た。なお、この固形分重量比は、(樹脂(1a)/ジイモニウム塩溶液h1a/架橋剤溶液1)の順で表記されている。
[Comparative Example 1a]
The diimonium salt (a) obtained in Synthesis Example 1a was diluted with methyl ethyl ketone to a concentration of 1% by mass to prepare a diimonium salt solution h1a in which the diimonium salt (a) was dissolved. The resin (1a) obtained in Production Example 1a, the diimonium salt solution h1a and the crosslinking agent solution 1 were mixed so that the solid content weight ratio was 100 / 1.0 / 0.5, and the solid content was 25%. The mixture was diluted with methyl ethyl ketone to obtain a near-infrared absorbing adhesive composition Ah1a. In addition, this solid content weight ratio is described in the order of (resin (1a) / diimonium salt solution h1a / crosslinking agent solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Ah1aが用いられた他は、実施例1aと同様にして、比較例1aに係る試験体T1を得た。この試験体T1について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表6に示される。 A test body T1 according to Comparative Example 1a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Ah1a was used in place of the near-infrared absorbing adhesive composition Aa1. About this test body T1, the heat resistance test, the heat-and-moisture resistance test, and the light resistance test were done. The evaluation results are shown in Table 6 below.
 [比較例2a]
 合成例4aで得られたジイモニウム塩(d)をメチルエチルケトンで希釈して1質量%の濃度とし、ジイモニウム塩(d)が溶解したジイモニウム塩溶液h2aを調整した。製造例3aで得られた樹脂(3a)、ジイモニウム塩溶液h2a、上記架橋剤溶液1及び上記架橋促進剤溶液1を固形分重量比で100/1.0/0.5/0.05となるように混合し、固形分が25%となるようにメチルエチルケトンで希釈して、近赤外線吸収粘着剤組成物Ah2aを得た。なお、この固形分重量比は、(樹脂(3a)/ジイモニウム塩溶液h2a/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。
[Comparative Example 2a]
The dimonium salt (d) obtained in Synthesis Example 4a was diluted with methyl ethyl ketone to a concentration of 1% by mass to prepare a dimonium salt solution h2a in which the dimonium salt (d) was dissolved. The resin (3a) obtained in Production Example 3a, the dimonium salt solution h2a, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 are in a solid content weight ratio of 100 / 1.0 / 0.5 / 0.05. And diluted with methyl ethyl ketone so that the solid content was 25%, to obtain a near-infrared absorbing adhesive composition Ah2a. The solid content weight ratio is expressed in the order of (resin (3a) / diimonium salt solution h2a / crosslinking agent solution 1 / crosslinking accelerator solution 1).
 近赤外線吸収粘着剤組成物Aa1に代えて、この近赤外線吸収粘着剤組成物Ah2aが用いられた他は、実施例1aと同様にして、比較例2aに係る試験体T2を得た。この試験体T2について、耐熱試験、耐湿熱試験及び耐光試験を行った。この評価結果が下記の表6に示される。 A specimen T2 according to Comparative Example 2a was obtained in the same manner as in Example 1a except that this near-infrared absorbing adhesive composition Ah2a was used instead of the near-infrared absorbing adhesive composition Aa1. The specimen T2 was subjected to a heat test, a moist heat test and a light resistance test. The evaluation results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、近赤外線吸収粘着剤組成物中におけるジイモニウム塩の状態を確認するため、以下の実験例1及び実験例2を行った。 In addition, in order to confirm the state of the dimonium salt in the near-infrared absorbing adhesive composition, the following Experimental Example 1 and Experimental Example 2 were performed.
 [実験例1]
 実施例1aで得られた近赤外線吸収粘着剤組成物Aa1を内径0.1mmのセルに入れて透過スペクトルを測定したところ、λmaxは1123nmであった。この組成物Aa1の透過スペクトルが図13に示される。また、上記近赤外線吸収材Ba1をガラス板に貼り付けて得られた上記試験体Z1について、透過スペクトルを測定したところ、λmaxは1169nmであった。この試験体Z1の透過スペクトルが図14に示される。
[Experimental Example 1]
When the near-infrared absorbing adhesive composition Aa1 obtained in Example 1a was put in a cell having an inner diameter of 0.1 mm and measured for a transmission spectrum, λmax was 1123 nm. The transmission spectrum of this composition Aa1 is shown in FIG. Moreover, when the transmission spectrum was measured about the said test body Z1 obtained by affixing the said near-infrared absorber Ba1 on a glass plate, (lambda) max was 1169 nm. The transmission spectrum of this specimen Z1 is shown in FIG.
 一方、上記比較例1aで得られた近赤外線吸収粘着剤組成物Ah1aを内径0.1mmのセルに入れて透過スペクトルを測定したところ、λmaxは978nmであった。また、比較例1aに係る上記試験体T1について透過スペクトルを測定したところ、λmaxは959nmであった。このように、分散体(a)を用いた近赤外線吸収粘着剤組成物では、ジイモニウム塩(a)の溶解液を用いた組成物と比較して、λmaxが長波長側にシフトしている。このように、上記実施例の近赤外線吸収粘着剤組成物及び近赤外線吸収材では、ジイモニウム塩が会合状態にあることが示唆される。 On the other hand, when the near-infrared absorbing adhesive composition Ah1a obtained in Comparative Example 1a was put in a cell having an inner diameter of 0.1 mm and the transmission spectrum was measured, λmax was 978 nm. Moreover, when the transmission spectrum was measured about the said test body T1 which concerns on the comparative example 1a, (lambda) max was 959 nm. Thus, in the near-infrared absorbing pressure-sensitive adhesive composition using the dispersion (a), λmax is shifted to the longer wavelength side as compared with the composition using the solution of the diimonium salt (a). Thus, in the near-infrared absorption adhesive composition and near-infrared absorber of the said Example, it is suggested that a diimonium salt exists in an association state.
 [実験例2]
  製造例3aで得られた樹脂(3a)、合成例4aで得られた分散体(d)、架橋剤溶液1および架橋促進剤溶液1を固形分重量比で100/1.0/0.25/0.05となるように混合し、固形分が25%となるようにトルエンで希釈して、近赤外線吸収粘着剤組成物Az2を得た。なお、この固形分重量比は、(樹脂(3a)/分散体(d)/架橋剤溶液1/架橋促進剤溶液1)の順で表記されている。近赤外線吸収粘着剤組成物Aa1に代えて近赤外線吸収粘着剤組成物Az2が用いられた他は、実施例1aと同様にして、実験例2に係る試験体Z2を得た。
[Experiment 2]
The resin (3a) obtained in Production Example 3a, the dispersion (d) obtained in Synthesis Example 4a, the crosslinking agent solution 1 and the crosslinking accelerator solution 1 were 100 / 1.0 / 0.25 in weight ratio by solid content. The resulting mixture was mixed with toluene so that the solid content was 25%, and a near-infrared absorbing pressure-sensitive adhesive composition Az2 was obtained. The solid content weight ratio is expressed in the order of (resin (3a) / dispersion (d) / crosslinking agent solution 1 / crosslinking accelerator solution 1). A specimen Z2 according to Experimental Example 2 was obtained in the same manner as in Example 1a except that the near-infrared absorbing adhesive composition Az2 was used instead of the near-infrared absorbing adhesive composition Aa1.
 この近赤外線吸収粘着剤組成物Az2を内径0.1mmのセルに入れて透過スペクトルを測定したところ、λmaxは1255nmであった。この組成物Az2の透過スペクトルが、図15に示される。また、上記試験体Z2について、透過スペクトルを測定したところ、λmaxは1245nmであった。この試験体Z2の透過スペクトルが、図16に示される。 When this near-infrared absorbing adhesive composition Az2 was put in a cell having an inner diameter of 0.1 mm and a transmission spectrum was measured, λmax was 1255 nm. The transmission spectrum of this composition Az2 is shown in FIG. Moreover, when the transmission spectrum was measured about the said test body Z2, (lambda) max was 1245 nm. The transmission spectrum of this specimen Z2 is shown in FIG.
 一方、上記比較例2aで得られた近赤外線吸収粘着剤組成物Ah2aについて、内径0.1mmのセルに入れて透過スペクトルを測定したところ、λmaxは1052nmであった。また、上記比較例2aに係る試験体T2の透過スペクトルを測定したところ、λmaxは1011nmであった。このように、実験例2の結果からも、近赤外線吸収粘着剤組成物中におけるジイモニウム塩のλmaxが長波長側へシフトしていることが確認された。 On the other hand, when the near-infrared absorbing adhesive composition Ah2a obtained in Comparative Example 2a was placed in a cell having an inner diameter of 0.1 mm and measured for a transmission spectrum, λmax was 1052 nm. Further, when the transmission spectrum of the specimen T2 according to Comparative Example 2a was measured, λmax was 1011 nm. Thus, also from the result of Experimental Example 2, it was confirmed that λmax of the diimonium salt in the near-infrared absorbing adhesive composition was shifted to the long wavelength side.
 [実施例8]
1.重合性ポリシロキサン(M-1)の合成
 攪拌機、温度計および冷却管を備えた300mlの四つ口フラスコにテトラメトキシシラン144.5部、γ-メタクリロキシプロピルトリメトキシシラン23.6部、水19.0部、メタノール30.0部およびアンバーリスト15(商品名:オルガノ社製の陽イオン交換樹脂)5.0部を入れ、65℃で2時間攪拌し、反応させた。反応混合物を室温まで冷却した後、冷却管に代えて蒸留塔、これに接続させた冷却管および流出口を設け、常圧下でフラスコ内温約80℃まで2時間かけて昇温し、メタノールが流出しなくなるまで同温度で保持した。さらに、2.67×10kPaの圧力下90℃の温度で、メタノールが流出しなくなるまで保持し、反応を更に進行させた。再び、室温まで冷却した後、アンバーリスト15を濾過し、数平均分子量が1,800の重合性ポリシロキサン(M-1)を得た。
[Example 8]
1. Synthesis of polymerizable polysiloxane (M-1) In a 300 ml four-necked flask equipped with a stirrer, a thermometer and a condenser tube, 144.5 parts of tetramethoxysilane, 23.6 parts of γ-methacryloxypropyltrimethoxysilane, water 19.0 parts, 30.0 parts of methanol, and 5.0 parts of Amberlyst 15 (trade name: cation exchange resin manufactured by Organo) were added and stirred at 65 ° C. for 2 hours for reaction. After cooling the reaction mixture to room temperature, a distillation column, a cooling tube connected to the distillation tube, and an outlet were provided instead of the cooling tube, and the temperature was raised to about 80 ° C. in the flask over 2 hours under normal pressure. It was kept at the same temperature until it did not flow out. Further, the reaction was further proceeded by maintaining methanol at a temperature of 90 ° C. under a pressure of 2.67 × 10 kPa until methanol no longer flowed out. After cooling to room temperature again, Amberlyst 15 was filtered to obtain polymerizable polysiloxane (M-1) having a number average molecular weight of 1,800.
2.有機ポリマー(P-1)の合成
 攪拌機、滴下口、温度計、冷却管およびN2ガス導入口を備えた1リットルのフラスコに、有機溶剤として酢酸n-ブチル260部を入れ、N2ガスを導入し、攪拌しながら、フラスコ内温を110℃まで加熱した。ついで重合性ポリシロキサン(M-1)12部、tert-ブチルメタクリレート19部、ブチルアクリレート94部、2-ヒドロキシエチルメタクリレート67部、パーフルオトオクチルエチルメタクリレート(ライトエステルFM-108、共栄社化学社製)48部および2,2’-アゾビス-(2-メチルブチロニトリル)2.5部を混合した溶液が、滴下口より3時間かけて滴下された。滴下後も同温度で1時間攪拌を続けた後、tert-ブチルパーオキシ-2-エチルヘキサノエート0.1部を30分おきに2回添加し、さらに2時間加熱して共重合を行なった。その結果、数平均分子量が12,000であり重量平均分子量が27,000である有機ポリマー(P-1)が酢酸n-ブチルに溶解した溶液を得た。得られた溶液の固形分は48.2%であった。
2. Synthesis of organic polymer (P-1) Into a 1 liter flask equipped with a stirrer, a dripping port, a thermometer, a condenser tube and an N2 gas introduction port, 260 parts of n-butyl acetate as an organic solvent was introduced, and N2 gas was introduced. While stirring, the temperature inside the flask was heated to 110 ° C. Next, 12 parts of polymerizable polysiloxane (M-1), 19 parts of tert-butyl methacrylate, 94 parts of butyl acrylate, 67 parts of 2-hydroxyethyl methacrylate, perfluorooctylethyl methacrylate (light ester FM-108, manufactured by Kyoeisha Chemical Co., Ltd.) ) A solution in which 48 parts and 2.5 parts of 2,2′-azobis- (2-methylbutyronitrile) were mixed was added dropwise from the dropping port over 3 hours. After the dropwise addition, stirring was continued at the same temperature for 1 hour, and then 0.1 part of tert-butylperoxy-2-ethylhexanoate was added twice every 30 minutes, followed by further heating for 2 hours for copolymerization. It was. As a result, a solution in which an organic polymer (P-1) having a number average molecular weight of 12,000 and a weight average molecular weight of 27,000 was dissolved in n-butyl acetate was obtained. The solid content of the obtained solution was 48.2%.
3.有機ポリマー複合無機微粒子分散体(S-1)の合成
 攪拌機、2つの滴下口(滴下口αと滴下口β)、温度計を備えた500mlの四つ口フラスコに、酢酸n-ブチル200部およびメタノール500部を入れておき、内温を40℃に調整した。ついでフラスコ内を攪拌しながら、有機ポリマー(P-1)の酢酸n-ブチル溶液10g、テトラメトキシシラン30部および酢酸n-ブチル5部の混合液(原料液A)を滴下口αから2時間かけて滴下すると同時に、25%アンモニア水5部、脱イオン水10部およびメタノール15部の混合液(原料液B)を滴下口βから2時間かけて滴下した。滴下後、冷却管に代えて蒸留塔、これに接続させた冷却管および流出口を設け、40kPaの圧力下、フラスコ内温を100℃まで昇温し、アンモニア、メタノールおよび酢酸n-ブチルを固形分が30%となるまで留去して、有機ポリマー複合無機微粒子が酢酸n-ブチルに分散した分散体(S-1)を得た。この分散体(S-1)において、上記有機ポリマー複合無機微粒子中の無機微粒子と有機ポリマーとの比率は、70/30であった。この比率は、重量比である。得られた有機ポリマー複合無機微粒子の平均粒子径は23.9nmであった。なお、有機ポリマー複合無機微粒子中の無機微粒子と有機ポリマーの比率は、有機ポリマー複合微粒子分散体を1.33×10kPaの圧力下、130℃で24時間乾燥したものについて元素分析を行ない、灰分を有機ポリマー複合無機微粒子含有量として求めた。また、平均粒子径は、有機ポリマー複合無機微粒子分散体(S-1)1部を酢酸n-ブチル99部で希釈した溶液を用いて、透過型電子顕微鏡により粒子を撮影し、任意の100個の粒子の直径を読み取り、その平均を平均粒子径として求めた。
3. Synthesis of organic polymer composite inorganic fine particle dispersion (S-1) In a 500 ml four-necked flask equipped with a stirrer, two dropping ports (dropping port α and dropping port β), a thermometer, 200 parts of n-butyl acetate and 500 parts of methanol was added and the internal temperature was adjusted to 40 ° C. Next, while stirring the flask, 10 g of an organic polymer (P-1) n-butyl acetate solution, 30 parts of tetramethoxysilane and 5 parts of n-butyl acetate (raw material A) were added from the dropping port α for 2 hours. At the same time, 5 parts of 25% ammonia water, 10 parts of deionized water and 15 parts of methanol (raw material liquid B) were dropped from the dropping port β over 2 hours. After dropping, a distillation column, a cooling tube connected to the distillation column, and an outlet are provided instead of the cooling tube. The temperature inside the flask is raised to 100 ° C. under a pressure of 40 kPa, and ammonia, methanol, and n-butyl acetate are solidified. Distillation was carried out until the content reached 30% to obtain a dispersion (S-1) in which organic polymer composite inorganic fine particles were dispersed in n-butyl acetate. In this dispersion (S-1), the ratio of inorganic fine particles to organic polymer in the organic polymer composite inorganic fine particles was 70/30. This ratio is a weight ratio. The average particle diameter of the obtained organic polymer composite inorganic fine particles was 23.9 nm. The ratio of the inorganic fine particles to the organic polymer in the organic polymer composite inorganic fine particles was determined by conducting an elemental analysis on the organic polymer composite fine particle dispersion dried at 130 ° C. for 24 hours under a pressure of 1.33 × 10 kPa, and calculating the ash content. It calculated | required as organic polymer composite inorganic fine particle content. The average particle size was determined by photographing particles with a transmission electron microscope using a solution obtained by diluting 1 part of the organic polymer composite inorganic fine particle dispersion (S-1) with 99 parts of n-butyl acetate. The diameter of the particles was read and the average was determined as the average particle diameter.
4.反射防止フィルム
 ジぺンタエリスリトールヘキサアクリレート(DPE-6A、共栄社化学社製)8部およびペンタエリスリトールトリアクリレート(PE-3A、共栄社化学社製)2部を混合し、メチルエチルケトン40部に溶解した溶液を作製した。この溶液に、光重合開始剤(イルガキュア907、チバガイギー社製)0.5部をメチルエチルケトン2部に溶解した溶液を加え、ハードコート層塗布液を調製した。
4). Antireflective film 8 parts of dipentaerythritol hexaacrylate (DPE-6A, manufactured by Kyoeisha Chemical Co., Ltd.) and 2 parts of pentaerythritol triacrylate (PE-3A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed and a solution dissolved in 40 parts of methyl ethyl ketone was prepared. Produced. A solution obtained by dissolving 0.5 part of a photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy Co., Ltd.) in 2 parts of methyl ethyl ketone was added to this solution to prepare a hard coat layer coating solution.
 有機ポリマー複合無機微粒子分散体(S-1)9部、デスモジュールN3200(商品名、住化バイエルウレタン社製のイソシアネート硬化剤)0.3部、ジラウリン酸ジ-n-ブチルスズ0.003部およびメチルイソブチルケトン110部を混合し、低屈折率層塗布液を調製した。 9 parts of organic polymer composite inorganic fine particle dispersion (S-1), 0.3 part of Desmodur N3200 (trade name, isocyanate curing agent manufactured by Sumika Bayer Urethane Co., Ltd.), 0.003 part of di-n-butyltin dilaurate and 110 parts of methyl isobutyl ketone was mixed to prepare a low refractive index layer coating solution.
 厚さ188μmのポリエチレンテレフタレートフィルム(コスモシャインA4300、東洋紡績社製)に上記ハードコート層塗布液を、バーコーターを用いて塗布し、塗布層hを得た。この塗布層hを、100℃で15分乾燥した後、高圧水銀灯で200mJ/cmの紫外線を照射することにより硬化させ、膜厚5μmのハードコート層を形成した。このハードコート層の上に上記低屈折率塗布液をバーコーターを用いて塗布し、ポリエチレンテレフタレートフィルム上に反射防止膜を作成した。 The hard coat layer coating solution was applied to a 188 μm thick polyethylene terephthalate film (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) using a bar coater to obtain a coating layer h. The coating layer h was dried at 100 ° C. for 15 minutes and then cured by irradiating with 200 mJ / cm 2 of ultraviolet light with a high-pressure mercury lamp to form a hard coat layer having a thickness of 5 μm. On the hard coat layer, the above low refractive index coating solution was applied using a bar coater to form an antireflection film on the polyethylene terephthalate film.
 フィルムの反射防止膜側とは反対側の面をスチールウールで粗面化した。この粗面化された面に黒インキを塗った。反射防止膜側の面の入射角5°における鏡面反射スペクトルを紫外可視分光光度計(UV-3100、島津製作所製)を用いて測定し、反射率が最小値を示す波長およびその波長における反射率(最小反射率)を求めた。得られた反射防止フィルムにおいて、反射率が最小値を示す波長は波長550nmであり、その波長における反射率(最小反射率)は0.45%であった。 The surface opposite to the antireflection film side of the film was roughened with steel wool. Black ink was applied to the roughened surface. The specular reflection spectrum of the surface on the antireflection film side at an incident angle of 5 ° is measured using an ultraviolet-visible spectrophotometer (UV-3100, manufactured by Shimadzu Corporation), and the wavelength at which the reflectance shows the minimum value and the reflectance at that wavelength. (Minimum reflectance) was determined. In the obtained antireflection film, the wavelength at which the reflectance showed a minimum value was a wavelength of 550 nm, and the reflectance at that wavelength (minimum reflectance) was 0.45%.
5.光学フィルター
 上記反射防止フィルムの裏面側に、実施例1で得られた近赤外線吸収粘着剤組成物A1について、実施例1と同様に塗工および乾燥し、光学フィルター1を得た。光学フィルター1の近赤外線透過率、全光線透過率、耐熱性、耐湿熱性、耐光性、耐クラック性および耐溶剤性は良好だった。
5). Optical filter On the back side of the antireflection film, the near-infrared absorbing adhesive composition A1 obtained in Example 1 was coated and dried in the same manner as in Example 1 to obtain an optical filter 1. The near-infrared transmittance, total light transmittance, heat resistance, moist heat resistance, light resistance, crack resistance and solvent resistance of the optical filter 1 were good.
 [実施例9]
 上記近赤外線吸収粘着剤組成物A1に代えて、上記実施例7aで得られた近赤外線吸収粘着剤組成物Aa7が用いられた他は実施例8と同様にして、光学フィルター2を得た。光学フィルター2の近赤外線透過率、全光線透過率、耐熱性、耐湿熱性、耐光性、耐クラック性および耐溶剤性は良好だった。
[Example 9]
An optical filter 2 was obtained in the same manner as in Example 8, except that the near-infrared absorbing adhesive composition Aa7 obtained in Example 7a was used instead of the near-infrared absorbing adhesive composition A1. The optical filter 2 had good near-infrared transmittance, total light transmittance, heat resistance, heat and humidity resistance, light resistance, crack resistance and solvent resistance.
 本発明の近赤外線吸収粘着剤組成物は、近赤外線吸収能の持続性及び可視領域の透明性が高く、耐熱性、耐湿熱性及び耐光性に優れることから、薄型ディスプレー用の光学フィルターとして有用である。また、光情報記録材料としても使用することができる。 The near-infrared-absorbing pressure-sensitive adhesive composition of the present invention is useful as an optical filter for thin displays because it has a long-infrared-absorbing ability and high transparency in the visible region, and is excellent in heat resistance, moist heat resistance and light resistance. is there. It can also be used as an optical information recording material.

Claims (26)

  1.  ジイモニウム色素を溶剤(D)を含む組成物中に分散させた分散体(A)が混合されており、ガラス転移温度が0℃以下である樹脂(B)を含有している近赤外線吸収粘着剤組成物。 A near-infrared absorbing pressure-sensitive adhesive containing a resin (B) having a glass transition temperature of 0 ° C. or less mixed with a dispersion (A) in which a diimonium dye is dispersed in a composition containing a solvent (D) Composition.
  2.  上記分散体(A)中において、上記ジイモニウム色素が会合状態である請求項1に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 1, wherein the dimonium dye is in an associated state in the dispersion (A).
  3.  ジイモニウム色素の会合体(X)と、溶剤(D)と、ガラス転移温度が0℃以下である樹脂(B)とを含有する近赤外線吸収粘着剤組成物。 A near-infrared absorbing pressure-sensitive adhesive composition containing an aggregate (X) of a diimonium dye, a solvent (D), and a resin (B) having a glass transition temperature of 0 ° C. or lower.
  4.  粒子状のジイモニウム色素と溶剤(D)とを含む液体(C)が混合されており、ガラス転移温度が0℃以下である樹脂(B)を含有する近赤外線吸収粘着剤組成物であって、
     上記溶剤(D)における上記ジイモニウム色素の溶解度が5質量%以下である近赤外線吸収粘着剤組成物。
    A near-infrared absorbing pressure-sensitive adhesive composition containing a resin (B) in which a liquid (C) containing a particulate dimonium dye and a solvent (D) is mixed, and having a glass transition temperature of 0 ° C. or less,
    The near-infrared absorption adhesive composition whose solubility of the said diimonium pigment | dye in the said solvent (D) is 5 mass% or less.
  5.  上記ジイモニウム色素が、下記式(1)で示されるジイモニウムカチオンを有する請求項1から4のいずれかに記載の近赤外線吸収粘着剤組成物。
    Figure JPOXMLDOC01-appb-C000020

     ただし、式(1)中、RからRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1以上22以下のアルキル基または置換基を有する炭素数1以上22以下のアルキル基を表わす。
    The near-infrared-absorbing pressure-sensitive adhesive composition according to any one of claims 1 to 4, wherein the dimonium dye has a dimonium cation represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000020

    However, in formula (1), R 1 to R 8 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 22 carbon atoms, or an alkyl group having 1 to 22 carbon atoms having a substituent. Represent.
  6.  上記ジイモニウム色素のジイモニウムアニオンが、ヘキサフルオロリン酸イオンである請求項1から5のいずれかに記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to any one of claims 1 to 5, wherein the diimonium anion of the diimonium dye is a hexafluorophosphate ion.
  7.  上記RからRのうちの少なくとも一つが、ハロゲン原子で置換されていてもよい直鎖又は分岐状の炭素数1から10のアルキル基、炭素数が3から12のシクロアルキル基、又はシクロアルキル環が置換されていてもよい[C3-12シクロアルキル-C1-10アルキル基]である請求項5又は6に記載の近赤外線吸収粘着剤組成物。 At least one of R 1 to R 8 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or cyclo The near-infrared absorbing adhesive composition according to claim 5 or 6, wherein the alkyl ring is a [C 3-12 cycloalkyl-C 1-10 alkyl group] optionally substituted.
  8.  上記RからRの少なくとも1つが、下記式(2)で示される有機基である請求項7に記載の近赤外線吸収粘着剤組成物。
    Figure JPOXMLDOC01-appb-C000021

     ただし、式(2)中、Rは、炭素数1以上10以下の直鎖状又は分岐状のアルキル基を示し、mは3以上12以下の整数を示す。
    At least one of R 8 from the R 1, but the near infrared absorbing pressure-sensitive adhesive composition according to claim 7 is an organic group represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000021

    However, in formula (2), R 9 represents a linear or branched alkyl group having 1 to 10 carbon atoms, and m represents an integer of 3 to 12 inclusive.
  9.  上記式(2)で示される有機基が、シクロヘキシルメチル基である請求項8に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing pressure-sensitive adhesive composition according to claim 8, wherein the organic group represented by the formula (2) is a cyclohexylmethyl group.
  10.  上記RからRの全てがシクロヘキシルメチル基である請求項9に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 9, wherein all of R 1 to R 8 are cyclohexylmethyl groups.
  11.  上記RからRの少なくとも1つが、下記式(3)で示される有機基である請求項7に記載の近赤外線吸収粘着剤組成物。
    Figure JPOXMLDOC01-appb-C000022

     ただし、式(3)中、nは1以上9以下の整数を示し、Xはハロゲン原子を示す。
    The near-infrared absorbing adhesive composition according to claim 7, wherein at least one of R 1 to R 8 is an organic group represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000022

    In formula (3), n represents an integer of 1 to 9, and X represents a halogen atom.
  12.  上記式(3)で示される有機基が、3-フルオロプロピル基である請求項11に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 11, wherein the organic group represented by the formula (3) is a 3-fluoropropyl group.
  13.  上記RからRの全てが3-フルオロプロピル基である請求項12に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 12, wherein all of R 1 to R 8 are 3-fluoropropyl groups.
  14.  上記RからRの少なくとも1つが、炭素数が3以上12以下の分岐状アルキル基である請求項7に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 7, wherein at least one of R 1 to R 8 is a branched alkyl group having 3 to 12 carbon atoms.
  15.  上記分岐状アルキル基がイソブチル基である請求項14に記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to claim 14, wherein the branched alkyl group is an isobutyl group.
  16.  前記樹脂(B)の酸価が0以上300以下である請求項1から15のいずれかに記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to any one of claims 1 to 15, wherein the acid value of the resin (B) is 0 or more and 300 or less.
  17.  前記樹脂(B)の計算溶解性パラメータが10.2以下である請求項1から16のいずれかに記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing adhesive composition according to any one of claims 1 to 16, wherein the calculated solubility parameter of the resin (B) is 10.2 or less.
  18.  前記樹脂(B)が、下記単量体(1a)から(3a)を下記の比率で共重合してなるポリマーである請求項1から17のいずれかに記載の近赤外線吸収粘着剤組成物。
    (1a)炭素数が1以上12以下であるアルキル基を有する(メタ)アクリル酸エステル:60質量%以上99.9質量%以下
    (2a)官能基含有モノマー:0.1質量%以上20質量%以下 
    (3a)その他共重合可能な単量体:0質量%以上30質量%以下
    The near-infrared absorbing adhesive composition according to any one of claims 1 to 17, wherein the resin (B) is a polymer obtained by copolymerizing the following monomers (1a) to (3a) at the following ratio.
    (1a) (meth) acrylic acid ester having an alkyl group having 1 to 12 carbon atoms: 60% by mass to 99.9% by mass (2a) Functional group-containing monomer: 0.1% by mass to 20% by mass Less than
    (3a) Other copolymerizable monomers: 0% by mass to 30% by mass
  19.  さらに、フタロシアニン系色素を含む請求項1から18のいずれかに記載の近赤外線吸収粘着剤組成物。 Furthermore, the near-infrared absorption adhesive composition in any one of Claim 1 to 18 containing a phthalocyanine type pigment | dye.
  20.  上記ジイモニウム色素の溶解度が5質量%以下である希釈溶剤(E)により希釈されてなる請求項1から19のいずれかに記載の近赤外線吸収粘着剤組成物。 The near-infrared absorbing pressure-sensitive adhesive composition according to any one of claims 1 to 19, wherein the composition is diluted with a diluting solvent (E) having a solubility of the diimonium dye of 5% by mass or less.
  21.  請求項1から20のいずれかに記載の近赤外線吸収粘着剤組成物を含む近赤外線吸収材。 A near-infrared absorbing material comprising the near-infrared absorbing adhesive composition according to any one of claims 1 to 20.
  22.  請求項1から20のいずれかに記載の近赤外線吸収粘着剤組成物が透明基材に積層されてなる請求項21に記載の近赤外線吸収材。 The near-infrared absorbing material according to claim 21, wherein the near-infrared absorbing adhesive composition according to any one of claims 1 to 20 is laminated on a transparent substrate.
  23.  前記透明基材は、ガラス、PETフィルム、易接着性PETフィルム、TACフィルム、反射防止フィルムまたは電磁波シールドフィルムである、請求項22に記載の近赤外線吸収材。 The near-infrared absorbing material according to claim 22, wherein the transparent substrate is glass, PET film, easy-adhesive PET film, TAC film, antireflection film or electromagnetic wave shielding film.
  24.  請求項21から23のいずれかに記載の近赤外線吸収材を用いてなる、薄型ディスプレー用光学フィルター。 An optical filter for thin display, comprising the near infrared ray absorbing material according to any one of claims 21 to 23.
  25.  請求項21から23のいずれかに記載の近赤外線吸収材を用いてなる、光半導体素子用光学フィルター。 An optical filter for an optical semiconductor element, comprising the near infrared ray absorbing material according to any one of claims 21 to 23.
  26.  請求項1から20のいずれかに記載の近赤外線吸収粘着剤組成物、請求項21から23のいずれかに記載の近赤外線吸収材または請求項24に記載の光学フィルターを用いてなる、薄型ディスプレー。 A thin display comprising the near-infrared absorbing adhesive composition according to any one of claims 1 to 20, the near-infrared absorbing material according to any one of claims 21 to 23, or the optical filter according to claim 24. .
PCT/JP2010/000266 2009-02-20 2010-01-19 Near-infrared absorbing pressure-sensitive adhesive composition WO2010095349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-038476 2009-02-20
JP2009038476A JP2010018773A (en) 2008-06-12 2009-02-20 Near-infrared ray absorbing pressure-sensitive adhesive composition

Publications (1)

Publication Number Publication Date
WO2010095349A1 true WO2010095349A1 (en) 2010-08-26

Family

ID=42634778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000266 WO2010095349A1 (en) 2009-02-20 2010-01-19 Near-infrared absorbing pressure-sensitive adhesive composition

Country Status (2)

Country Link
KR (1) KR20110116235A (en)
WO (1) WO2010095349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
WO2015186685A1 (en) * 2014-06-05 2015-12-10 Dic株式会社 Protective adhesive film, image display device, and portable electronic terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419434B1 (en) * 2013-04-04 2014-08-12 경도화학공업주식회사 UV-curable Paint Varnish Composition Having Rubber-Acrylic Adhesive for Optical Film Coating

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624146A (en) * 1992-05-12 1994-02-01 Canon Inc Infrared absorption compound and optical recording medium using said compound
JP2001019898A (en) * 1999-07-05 2001-01-23 Mitsubishi Chemicals Corp Infrared-absorbing film and preparation thereof
WO2003005076A1 (en) * 2001-07-04 2003-01-16 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound, and near-infrared ray absorbing filter and optical information recording medium
JP2004161792A (en) * 2002-11-08 2004-06-10 Hitachi Chem Co Ltd Near-infrared ray shielding resin composition and near-infrared ray shielding laminated product
JP2004361733A (en) * 2003-06-05 2004-12-24 Mitsubishi Chemicals Corp Optical filter
JP2005325292A (en) * 2004-05-17 2005-11-24 Japan Carlit Co Ltd:The Near infrared ray-absorbing coloring matter and near infrared ray-blocking filter
WO2007097368A1 (en) * 2006-02-22 2007-08-30 Hitachi Maxell, Ltd Diimmonium salt compound, near-infrared absorbing composition containing same, near-infrared absorbing filter and front plate for display
WO2007145289A1 (en) * 2006-06-14 2007-12-21 Hitachi Maxell, Ltd. Diimmonium salt compound, near-infrared absorbing composition containing the same, near-infrared absorbing filter, and front plate for display
JP2008009206A (en) * 2006-06-30 2008-01-17 Fujifilm Corp Near-infrared absorption filter
WO2008026786A1 (en) * 2006-08-31 2008-03-06 Nippon Shokubai Co., Ltd. Salt for near infrared ray absorbing composition and near infrared ray absorbing pressure sensitive adhesive composition
WO2008078806A1 (en) * 2006-12-27 2008-07-03 Fujifilm Corporation Near-infrared absorptive filter and process for producing the same
JP2008163197A (en) * 2006-12-28 2008-07-17 Nippon Shokubai Co Ltd Near-infrared-absorbing self-adhesive composition
WO2009017160A1 (en) * 2007-07-31 2009-02-05 Sony Chemical & Information Device Corporation Adhesive composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624146A (en) * 1992-05-12 1994-02-01 Canon Inc Infrared absorption compound and optical recording medium using said compound
JP2001019898A (en) * 1999-07-05 2001-01-23 Mitsubishi Chemicals Corp Infrared-absorbing film and preparation thereof
WO2003005076A1 (en) * 2001-07-04 2003-01-16 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound, and near-infrared ray absorbing filter and optical information recording medium
JP2004161792A (en) * 2002-11-08 2004-06-10 Hitachi Chem Co Ltd Near-infrared ray shielding resin composition and near-infrared ray shielding laminated product
JP2004361733A (en) * 2003-06-05 2004-12-24 Mitsubishi Chemicals Corp Optical filter
JP2005325292A (en) * 2004-05-17 2005-11-24 Japan Carlit Co Ltd:The Near infrared ray-absorbing coloring matter and near infrared ray-blocking filter
WO2007097368A1 (en) * 2006-02-22 2007-08-30 Hitachi Maxell, Ltd Diimmonium salt compound, near-infrared absorbing composition containing same, near-infrared absorbing filter and front plate for display
WO2007145289A1 (en) * 2006-06-14 2007-12-21 Hitachi Maxell, Ltd. Diimmonium salt compound, near-infrared absorbing composition containing the same, near-infrared absorbing filter, and front plate for display
JP2008009206A (en) * 2006-06-30 2008-01-17 Fujifilm Corp Near-infrared absorption filter
WO2008026786A1 (en) * 2006-08-31 2008-03-06 Nippon Shokubai Co., Ltd. Salt for near infrared ray absorbing composition and near infrared ray absorbing pressure sensitive adhesive composition
WO2008078806A1 (en) * 2006-12-27 2008-07-03 Fujifilm Corporation Near-infrared absorptive filter and process for producing the same
JP2008163197A (en) * 2006-12-28 2008-07-17 Nippon Shokubai Co Ltd Near-infrared-absorbing self-adhesive composition
WO2009017160A1 (en) * 2007-07-31 2009-02-05 Sony Chemical & Information Device Corporation Adhesive composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
JPWO2014168189A1 (en) * 2013-04-10 2017-02-16 旭硝子株式会社 Infrared shielding filter
WO2015186685A1 (en) * 2014-06-05 2015-12-10 Dic株式会社 Protective adhesive film, image display device, and portable electronic terminal
JP6002969B2 (en) * 2014-06-05 2016-10-05 Dic株式会社 Protective adhesive film, image display device and portable electronic terminal
JPWO2015186685A1 (en) * 2014-06-05 2017-04-20 Dic株式会社 Protective adhesive film, image display device and portable electronic terminal

Also Published As

Publication number Publication date
KR20110116235A (en) 2011-10-25

Similar Documents

Publication Publication Date Title
JP2010018773A (en) Near-infrared ray absorbing pressure-sensitive adhesive composition
JP5033632B2 (en) Borate and near infrared absorbing materials
JP2010502563A (en) Salt for near-infrared absorbing composition and near-infrared absorbing adhesive composition
JP2011213969A (en) Near infrared rays-absorbing adhesive composition
JP4926074B2 (en) Adhesive composition containing near infrared absorber
WO2010119683A1 (en) Near infrared ray-absorbable adhesive composition
JP5143256B2 (en) Adhesive optical film and plasma display panel
JPWO2007029508A1 (en) Near-infrared absorbing material and manufacturing method thereof
JP2008163197A (en) Near-infrared-absorbing self-adhesive composition
JP4436888B1 (en) Near-infrared absorbing adhesive composition
JP6301841B2 (en) Paint and near infrared absorption filter
JP2009227851A (en) Adhesive composition for optical filter, and optical filter
JP2008230969A (en) Borate and visible light-absorbing material, luminous material
WO2010095349A1 (en) Near-infrared absorbing pressure-sensitive adhesive composition
JP2009203301A (en) Near-infrared ray absorbing adhesive composition
JP5575017B2 (en) Adhesive optical film and adhesive composition
JP2007131748A (en) Pressure-sensitive adhesive composition comprising near infrared light absorber and use thereof
JP2011068780A (en) Near-infrared ray absorbing adhesive composition
JP2014106309A (en) Near-infrared absorbing resin composition and near-infrared absorbing film
JP2007279676A (en) Near-infrared absorbing composition and near-infrared absorbent material
JP2008224926A (en) Near-infrared ray absorption coating agent
JP2007070605A (en) Near infrared absorbing composition
WO2007097368A1 (en) Diimmonium salt compound, near-infrared absorbing composition containing same, near-infrared absorbing filter and front plate for display
JP2011116878A (en) Near-infrared shielding adhesive composition
JP2011157443A (en) Method for producing dispersion of diimonium salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117021583

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10743482

Country of ref document: EP

Kind code of ref document: A1