WO2010092990A1 - 農業用フィルム - Google Patents

農業用フィルム Download PDF

Info

Publication number
WO2010092990A1
WO2010092990A1 PCT/JP2010/051984 JP2010051984W WO2010092990A1 WO 2010092990 A1 WO2010092990 A1 WO 2010092990A1 JP 2010051984 W JP2010051984 W JP 2010051984W WO 2010092990 A1 WO2010092990 A1 WO 2010092990A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating film
hydrophilic coating
mass
agricultural
Prior art date
Application number
PCT/JP2010/051984
Other languages
English (en)
French (fr)
Inventor
卓也 中尾
朱美 加藤
阿部 啓介
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP20100741267 priority Critical patent/EP2397029B1/en
Priority to CN201080007858.0A priority patent/CN102316718B/zh
Priority to JP2010550542A priority patent/JP5621597B2/ja
Publication of WO2010092990A1 publication Critical patent/WO2010092990A1/ja
Priority to US13/185,666 priority patent/US8349442B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1438Covering materials therefor; Materials for protective coverings used for soil and plants, e.g. films, canopies, tunnels or cloches
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Definitions

  • the present invention relates to an agricultural film having a hydrophilic coating film.
  • a facility for example, a greenhouse
  • a plant cultivation facility is called an agricultural house
  • the transparent synthetic resin film used for a roof or a side wall is called an agricultural film.
  • hydrophilicity is imparted to the surface of agricultural films for the purpose of improving anti-fogging property, flowability (property of water droplets spreading uniformly and forming a water film), antifouling properties, etc. ing.
  • An antifogging agent composition containing silica sol and alumina sol having different average particle diameters, a surfactant, and a liquid dispersion medium is applied to the surface of a base film and dried to form a coating film (see Patent Document 1) Examples 4 to 6).
  • a coating solution containing a specific amount of colloidal alumina, colloidal silica, and anionic surfactant applied to the surface of the base film and dried to form a coating film Example 1 of Patent Document 2 ⁇ 7).
  • An aqueous medium, colloidal alumina, colloidal silica, a coating antifogging agent containing a water-soluble resin in a specific ratio is applied to the surface of the base film and dried to form a coating film (Example of Patent Document 3) 1-14).
  • the average aspect ratio of the aggregated particles in the dispersion medium is 3 to 20, the average particle diameter in the major axis direction is 100 to 500 nm, and the average particle diameter in the minor axis direction is 2 to 100 nm.
  • An inorganic coating composition containing alumina particles, silica-alumina composite particles having an average particle diameter of 150 nm or less in the dispersion medium, and water was applied to the surface of the base film and dried to form a coating film. Thing (patent document 4).
  • the alumina particles and the silica particles are simply adhered to the surface of the base film by the surfactant, and the coating film and the base film are in close contact with each other. Insufficient sex. Therefore, the scratch resistance of the coating film is insufficient. Moreover, since the water resistance of the coating film is low, the hydrophilicity cannot be maintained for a long time. In the agricultural film of (3), since the coating film contains a water-soluble resin (binder), the adhesion is improved compared to the agricultural film of (1) and (2), but it is still applied. Adhesion between the membrane and the substrate film is insufficient. Therefore, the scratch resistance of the coating film is insufficient.
  • hydrophilicity cannot be maintained for a long time.
  • the adhesion between the coating film and the substrate film is high, and the scratch resistance of the coating film is good.
  • hydrophilicity can be maintained for a long time in the accelerated weathering test.
  • the present invention is an agricultural film having a high transparency and formed with a coating film excellent in scratch resistance (adhesion), hydrophilicity (antifogging property, drip property, antifouling property) and hydrophilic durability. I will provide a.
  • the agricultural film of the present invention comprises a porous hydrophilic coating containing the base film and the boehmite particles, silica particles and binder formed on the base film and satisfying the following (a) to (c): And a film.
  • the atomic ratio of Al to Si (Al / Si) is 0.2 to 5.0.
  • the silica particles have an average particle size of 5 to 50 nm.
  • the crystallite diameter calculated from the diffraction peak of the (120) plane of the boehmite particles is 20 to 50 nm.
  • the binder is preferably a nonionic water-soluble organic binder.
  • the nonionic water-soluble organic binder is preferably a water-soluble polyvinyl alcohol.
  • the base film is preferably a fluororesin film.
  • the fluororesin film is preferably a tetrafluoroethylene / ethylene copolymer film.
  • the hydrophilic coating film preferably has a thickness of 100 to 700 nm.
  • the total pore volume with a pore diameter of 1 to 60 nm in the hydrophilic coating film of the agricultural film of the present invention is preferably 1.0 to 20.0 [ ⁇ 10 ⁇ 4 cc / g].
  • the ratio of the binder in the hydrophilic coating film is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass in total of boehmite particles and silica particles.
  • the haze of the hydrophilic coating film is preferably 5% or less.
  • the method for producing an agricultural film of the present invention is a method for forming a hydrophilic coating film by applying a composition containing boehmite particles, silica particles, a binder and water to the surface of a base film and drying it. It is preferable that the base film in the said manufacturing method is a fluororesin film, and it is preferable to give the surface treatment which improves a wettability previously to the surface in which the hydrophilic coating film of the fluororesin film is formed.
  • Film can be provided.
  • FIG. 1 is a cross-sectional view showing an example of an agricultural film of the present invention.
  • the agricultural film 10 includes a base film 12 and a hydrophilic coating film 14 formed on one side of the base film 12.
  • Base film examples of the material for the base film include transparent synthetic resin materials such as polyethylene terephthalate resin, acrylic resin, polycarbonate resin, polyolefin resin, polyvinyl chloride resin, and fluororesin. Durability, weather resistance, chemical resistance, hydrophilicity A base material made of a fluororesin is preferable from the viewpoint of adhesion to the coating film. Since the surface of the fluororesin tends to be negatively charged, the adhesiveness with the positively charged boehmite particles becomes high.
  • the fluororesin is a fluoroolefin homopolymer or a copolymer of two or more fluoroolefins, or a copolymer of one or more fluoroolefins and one or more other monomers.
  • the fluoroolefin is a monomer having a polymerizable unsaturated bond and a fluorine atom, and may further have a hydrogen atom, a chlorine atom, an oxygen atom or the like.
  • a fluoroolefin for example, tetrafluoroethylene, vinyl fluoride, vinylidene fluoride, perfluoro (alkyl vinyl ether), chlorotrifluoroethylene, and hexafluoropropylene are preferable.
  • Perfluoro (alkyl vinyl ether) is particularly preferably perfluoro (propyl vinyl ether).
  • Other monomers are preferably non-fluorine monomers, and olefins such as ethylene, propylene, butene and norbornene; alkenyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, 2-ethylhexyl vinyl ether and ethyl allyl ether.
  • Alkenyl esters such as vinyl acetate, vinyl pivalate, vinyl versatate, allyl pivalate, allyl versatate are preferred.
  • Fluoropolymers obtained by polymerizing the monomers include tetrafluoroethylene / ethylene copolymers, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymers, polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene, chloro Trifluoroethylene / ethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, vinylidene fluoride / tetra A fluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / propylene copolymer, and a tetrafluoroethylene / hexafluoropropylene /
  • tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer a tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer is preferable.
  • tetrafluoroethylene / ethylene copolymers are particularly preferred from the viewpoint of processability and physical properties of the film used.
  • the base film may be subjected to surface treatment in advance on the surface on which the hydrophilic coating film is formed.
  • surface treatment By applying the surface treatment, the wettability of the base film is improved, so that the adhesion of the hydrophilic coating film to the base material and the uniformity of the hydrophilic coating film can be improved.
  • the surface treatment include discharge treatment (plasma treatment, corona discharge treatment, etc.), UV treatment, ozone treatment, chemical treatment using acid, alkali, etc., physical treatment using an abrasive, and the like.
  • the hydrophilic coating film is a porous film containing boehmite particles, silica particles, and a binder. It has been conventionally known that a porous film containing silica particles exhibits hydrophilicity. However, how silica particles affect hydrophilicity and porosity, and how is the porosity of the coating film quantitatively evaluated and how it is related to hydrophilicity (droplet properties, etc.) No consideration has been made so far. Therefore, the porosity of the hydrophilic coating film is quantified from the composition of the hydrophilic coating film, the shape and size of the particles constituting the hydrophilic coating film, and the pore characteristics of the hydrophilic coating film. )) And its correlation with persistence, it was found that a hydrophilic coating film satisfying all of the following (a) to (c) can exhibit the effects of the present invention.
  • the hydrophilic coating film contains Al, that is, contains positively charged boehmite particles, adhesion to a base film, particularly a fluororesin film in which the surface charge tends to be negatively charged, is improved. Therefore, if Al / Si is 0.2 or more, the adhesion between the hydrophilic coating film and the substrate film is improved. Moreover, if Al / Si is 5.0 or less, the fall of the film
  • Silica particles and boehmite particles are charged to different charges and easily aggregate in the coating composition for forming a hydrophilic coating film.
  • aggregation can be appropriately controlled, and as a result, a large pore volume that expresses hydrophilicity (such as droplet properties).
  • a porous coating film having a transparent coating film and a transparent coating film can be formed.
  • the average particle diameter of the silica particles is 5 to 50 nm, both high hydrophilicity (such as droplet properties) and transparency can be achieved.
  • the average particle diameter of the silica particles is preferably 5 to 30 nm, more preferably 8 to 15 nm.
  • the average particle diameter of the silica particles is obtained by measuring the lengths of the major axis and minor axis of 20 silica particles randomly extracted from a transmission electron microscope (TEM) image and averaging them.
  • TEM transmission electron microscope
  • Boehmite particles are particles having a plate shape or the like as described later, and silica particles are spherical particles or the like as described later. Therefore, boehmite particles and silica particles having different shapes and sizes in a TEM image are clearly defined. Differentiated.
  • silica particles examples include a spherical shape and a chain shape in which spherical particles are connected, and a spherical shape is preferable.
  • the silica particles may be commercially available or may be obtained by a known production method.
  • a coating film having good scratch resistance and hydrophilicity a coating film containing silica particles having an average particle diameter of 10 to 30 nm and a nonionic water-soluble organic binder is known.
  • the coating film has low water resistance, it does not have hydrophilic durability. It has been found that water resistance is improved by further adding boehmite particles. However, since conventional boehmite particles have a small particle size, the scratch resistance is lowered. Thus, it has been found that the inclusion of boehmite particles having a crystallite diameter of 20 nm or more improves the water resistance without reducing the scratch resistance. It is considered that the boehmite particles are oriented in the hydrophilic coating film to improve the scratch resistance and water resistance.
  • the crystallite diameter of the boehmite particles is too large, the stability of the coating composition for forming a hydrophilic coating film is lowered, and the haze of the hydrophilic coating film is also increased.
  • the crystallite diameter calculated from the diffraction peak of the (120) plane of the boehmite particles is 20 to 50 nm, both high hydrophilicity (such as droplet properties) and transparency can be achieved, and scratch resistance and hydrophilic durability can be achieved.
  • the crystallite diameter calculated from the diffraction peak of the (120) plane of boehmite particles can be calculated by X-ray diffraction (XRD) analysis.
  • the crystallite size of the boehmite particles is preferably 30 to 40 nm.
  • boehmite particles examples include a plate shape, a needle shape, a fiber shape, a feather shape, and the like, and a plate shape is preferable.
  • a plate shape By including plate-like boehmite particles in the hydrophilic coating film, crystal orientation can be obtained, so that the adhesion of the hydrophilic coating film to the substrate is further increased, and the scratch resistance is maintained for a long period of time.
  • the hydrophilic coating can sufficiently follow a flexible base material (film or the like).
  • the boehmite particles may be commercially available or obtained by a known production method.
  • the boehmite particles were produced by aging a hydrated gel obtained by mixing an alkali metal aluminate, an acidic aluminum salt (aluminum chloride, aluminum nitrate, aluminum sulfate, etc.) and, in some cases, an acidic solution. Thereafter, a method of dissolving by adding an acid; a method of ripening a hydrated gel obtained by ion exchange of an acidic aluminum salt; a method of dissolving after hydrating an aluminum alkoxide, and the like It is done.
  • the thickness of the hydrophilic coating film is preferably from 100 to 700 nm, more preferably from 250 to 450 nm. If the thickness of the hydrophilic coating film is 100 nm or more, a decrease in hydrophilicity and hydrophilic sustainability can be suppressed. If the thickness of the hydrophilic coating film is 700 nm or less, the hydrophilic coating film is hardly cracked, interference fringes are not easily generated, and when scratches are made, the scratches are not noticeable.
  • the total pore volume of the hydrophilic coating film of an agricultural film with a pore diameter of 1 to 60 nm is preferably 1.0 to 20.0 [ ⁇ 10 ⁇ 4 cc / g], and 2.0 to 10.0 [ ⁇ 10 ⁇ 4 cc / g] is more preferable.
  • the hydrophilic coating film becomes highly porous, can sufficiently adsorb water, and has hydrophilic properties (such as droplet properties). It can be fully expressed. Further, even if a part of the hydrophilic coating film decreases with time, hydrophilicity (such as droplet dropping property) can be maintained, and as a result, the hydrophilic durability is improved. If the total pore volume is 20.0 [ ⁇ 10 ⁇ 4 cc / g] or less, a decrease in scratch resistance is suppressed, and the haze value is not easily increased.
  • the total pore volume can be measured by nitrogen adsorption pore measurement.
  • nitrogen adsorption pore measurement Conventionally, there have been many examples of measuring the pore volume of a powder.
  • the pore volume of a hydrophilic coating film greatly affects the hydrophilicity (such as droplet properties). If the film is scraped off into a powder, the pore volume of the original hydrophilic coating film cannot be measured. Therefore, in the present invention, a new technique has been established in which a hydrophilic coating film on a base film is measured as it is together with the base film.
  • the base film is a fluororesin film
  • the amount of nitrogen adsorbed on the base film is very small and is negligible compared to the amount of hydrophilic coating. By doing so, the pore volume of the hydrophilic coating film can be evaluated. In the case of a film made of another synthetic resin, in the case of a film with little nitrogen adsorption, it can be measured in the same manner as the fluororesin film.
  • the hydrophilic coating film is required to be transparent.
  • the transparency of the hydrophilic coating film can be evaluated by the haze value.
  • the haze value of the hydrophilic coating film is preferably 5.0% or less, and more preferably 3.0% or less. If the haze value is 5.0% or less, it can be said that the hydrophilic coating film has sufficient transparency as an agricultural film.
  • the haze value of the hydrophilic coating film can be calculated by subtracting the haze value of the base film from the haze value of the agricultural film.
  • the hydrophilicity of the hydrophilic coating can be evaluated by the contact angle with water.
  • the contact angle of the hydrophilic coating film with water is preferably 40 ° or less, more preferably 20 ° or less, and even more preferably 10 ° or less.
  • the contact angle is 40 ° or less, the hydrophilic coating film has sufficient hydrophilicity, and the flowability is easily expressed.
  • the contact angle with water is increased, and in many cases, the droplets do not flow. Since the surface of the hydrophilic coating film in the present invention gradually flows out and is renewed, flowability can be maintained for a long time.
  • the hydrophilic coating film contains a binder
  • the film forming property and scratch resistance of the hydrophilic coating film are improved.
  • the binder include an organic binder or an inorganic binder (metal oxide or the like), and an organic binder is preferable.
  • the binder is preferably a hydrophilic binder.
  • a hydrophobic binder is used, the contact angle with respect to water of a hydrophilic coating film may rise, and hydrophilicity may fall.
  • a water-soluble hydrophilic binder is particularly preferable as the binder.
  • a nonionic water-soluble organic binder is more preferable.
  • nonionic water-soluble organic binders Compared to ionic water-soluble organic binders, nonionic water-soluble organic binders have less aggregation of inorganic particles and high liquid storage stability.
  • nonionic water-soluble organic binders include polyethylene glycol, polyvinyl alcohol, modified polyvinyl alcohol, and water-soluble cellulose derivatives.
  • modified polyvinyl alcohol means what converted some hydroxyl groups of polyvinyl alcohol into another group. Examples thereof include those obtained by esterifying a hydroxyl group with carboxylic acid (excluding acetic acid), those obtained by formalizing a hydroxyl group with aldehydes, and those obtained by alkylating a hydroxyl group.
  • the modified polyvinyl alcohol a modified product in which a reactive group is introduced into a part of the hydroxyl group is preferable.
  • the modified polyvinyl alcohol (trade name: Goosephimer Z100) used in the examples is a modified polyvinyl alcohol in which an acetoacetyl group is introduced into a part of the hydroxyl group.
  • the binder polyvinyl alcohol and modified polyvinyl alcohol (hereinafter collectively referred to as water-soluble polyvinyl alcohols) are preferable for the following reasons.
  • a plurality of different types of water-soluble polyvinyl alcohols such as saponification degree, molecular weight and modification can be used as a binder.
  • the hydrophilic coating film contains water-soluble polyvinyl alcohols
  • the pore characteristics of the hydrophilic coating film become good, and both high hydrophilicity (such as droplet resistance) and transparency can be achieved, and scratch resistance is also provided. Furthermore, it is excellent also in the uniform formation property of a hydrophilic coating film.
  • the adhesion with the base material is improved, and the scratch resistance tends to be improved. The scratch resistance can be improved by adding a small amount.
  • the hydrophilic coating film contains water-soluble polyvinyl alcohol can be confirmed by 1 H-NMR analysis.
  • the sample liquid for measurement was obtained by diluting a powder sample collected by scraping off the hydrophilic coating film from the base film to 5% by mass with water, and dispersing the mixture for 30 minutes with an ultrasonic dispersion device.
  • the solution can be prepared by centrifugal sedimentation, separating into a supernatant and a precipitate, and concentrating the supernatant.
  • the inorganic binder examples include a metal oxide precursor, and a silica or alumina precursor is preferable.
  • the precursor of silica or alumina can be obtained by a known production method.
  • Silica precursors obtained by hydrolyzing silicate alkoxides (ethyl silicate, etc.); those obtained by decomposing alkali metal silicates with acid and then electrodialyzing; alkalis Examples thereof include those obtained by a method of dissolving metal silicate; those obtained by a method of dialyzing an alkali metal silicate with an ion exchange resin, and the like.
  • the alumina precursor include those obtained by hydrolyzing aluminum alkoxides; water-soluble aluminum salts, aluminum chelate compounds, and the like.
  • the ratio of the binder in the hydrophilic coating film is preferably 0.5 to 15 parts by mass and more preferably 3 to 10 parts by mass with respect to 100 parts by mass in total of the boehmite particles and the silica particles.
  • the binder is 15 parts by mass or less, the pores of the hydrophilic coating film are not easily filled with the binder, and a large pore volume can be expressed. If the binder is 0.5 parts by mass or more, the effect of improving the scratch resistance is likely to be exhibited.
  • Hydrophilic coatings if necessary, metal oxide particles other than boehmite particles and silica particles, surfactants, antifoaming agents, crosslinking agents, water-resistant curing agents, coloring dyes, pigments, UV absorbers, antioxidants
  • An additive such as an agent may be included. 50 mass parts or less are preferable with respect to a total of 100 mass parts of boehmite particle
  • the hydrophilic coating film may contain metal oxide particles other than boehmite particles and silica particles as necessary.
  • metal oxide particles other than boehmite particles and silica particles as necessary.
  • cerium oxide particles ultraviolet cut performance can be imparted.
  • titanium oxide particles ultraviolet cut performance and photocatalytic performance can be imparted.
  • ITO indium-doped tin oxide
  • ATO antimony-doped tin oxide
  • tin oxide particles conductivity and infrared cut performance can be imparted.
  • alumina particles other than boehmite particles are included, the hydrophilicity of the hydrophilic coating film (droplet property, etc.) and the film strength can be further improved.
  • the average particle diameter of the metal oxide particles is preferably 1 to 500 nm, and more preferably 1 to 200 nm. When the average particle diameter of the metal oxide particles is 1 nm or more, the characteristics of the metal oxide particles are easily developed. When the average particle diameter of the metal oxide particles is 500 nm or less, a decrease in the transparency of the hydrophilic coating film can be suppressed.
  • the ratio of the metal oxide particles is preferably 30 parts by mass or less with respect to 100 parts by mass in total of boehmite particles and silica particles. In order to exhibit the above characteristics using metal oxide particles, the amount is preferably 1 part by mass or more with respect to 100 parts by mass in total of boehmite particles and silica particles.
  • a coating composition for forming a hydrophilic coating film contains a surfactant
  • the coating property of the coating composition is improved, and a hydrophilic coating film having a uniform and good appearance is obtained. It can be formed, and the hydrophilicity of the hydrophilic coating film is also improved.
  • the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • the surfactant may be a surfactant in which a hydrogen atom in the alkyl group portion is substituted with a fluorine atom (that is, a fluorine-based surfactant).
  • a nonionic surfactant is preferable because the dispersion stability of boehmite particles and silica particles in the coating composition for forming a hydrophilic coating film is improved.
  • Nonionic surfactants include —CH 2 CH 2 CH 2 O—, —CH 2 CH 2 O—, —SO 2 —, —NR— (wherein R is a hydrogen atom or an organic group), — A compound having one or more structural units selected from the group consisting of NH 2 , —SO 3 Y, and —COOY (where Y is a hydrogen atom, a sodium atom, a potassium atom, or an ammonium group) is preferable.
  • Examples of the compound include alkyl polyoxyethylene ether, alkyl polyoxyethylene-polyoxypropylene ether, fatty acid polyoxyethylene ester, fatty acid polyoxyethylene sorbitan ester, fatty acid polyoxyethylene sorbitol ester, alkyl polyoxyethylene amine, alkyl polyoxy
  • Examples thereof include ethyleneamide and polyether-modified silicone surfactants.
  • the ratio of the surfactant in the coating composition for forming a hydrophilic coating film is preferably 15 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass in total of boehmite particles and silica particles.
  • the amount is preferably 1 part by mass or more with respect to 100 parts by mass in total of boehmite particles and silica particles.
  • binder crosslinking agents examples include inorganic compounds such as inorganic aluminum compounds, inorganic boron compounds, inorganic zirconium compounds, and inorganic titanium compounds, and organic compounds such as glyoxal, hydrazide compounds, and isocyanate compounds.
  • inorganic compounds such as inorganic aluminum compounds, inorganic boron compounds, inorganic zirconium compounds, and inorganic titanium compounds
  • organic compounds such as glyoxal, hydrazide compounds, and isocyanate compounds.
  • a crosslinking agent is 10 mass parts or less, stability of a coating liquid will be acquired and the haze raise of a hydrophilic coating film will be suppressed.
  • the amount is preferably 0.1 parts by mass or more with respect to 100 parts by mass in total of boehmite particles and silica particles.
  • water-resistant curing agents include acrylic resin, polyester resin, polyolefin resin, urethane resin, aqueous emulsion of vinyl acetate resin, aqueous dispersion, and the like.
  • the hydrophilic coating film is formed by applying and drying a coating composition for forming a hydrophilic coating film containing boehmite particles, silica particles, a binder and water on the surface of the substrate film.
  • a coating composition for forming a hydrophilic coating film containing boehmite particles, silica particles, a binder and water on the surface of the substrate film.
  • the coating method include brush coating, roller coating, hand coating, spin coating, dip coating, coating by various printing methods, bar coating, curtain flow, die coating, flow coating, spray coating, and the like. From the viewpoint of uniform application, application by a gravure coater is preferable.
  • heating or irradiation with ultraviolet rays, electron beams or the like may be performed.
  • the heating temperature may be determined in consideration of the heat resistance of the substrate film. For example, in the case of a fluororesin film, 40 to 100 ° C. is preferable.
  • the coating composition for forming a hydrophilic coating film can be prepared by mixing boehmite sol containing boehmite particles, silica sol containing silica particles, and a binder.
  • water or an organic solvent ethanol, methanol, etc.
  • Boehmite sol is obtained by dispersing boehmite particles in water, a mixed medium of water and a water-soluble organic solvent, or other aqueous media.
  • water-soluble organic solvent water-soluble alcohols such as ethanol, methanol and isopropanol are preferable.
  • the solid content concentration of the boehmite sol is preferably 0.1 to 30% by mass, and more preferably 3 to 20% by mass.
  • the boehmite sol preferably contains an anion (chlorine ion, sulfate ion, acetate ion, etc.) derived from an inorganic acid or an organic acid in order to stabilize boehmite particles in the dispersion medium.
  • the anion concentration is preferably 35 parts by mass or less with respect to 100 parts by mass of Al. If an anion concentration is 35 mass parts or less, the water resistance of a hydrophilic coating film and a hydrophilic fall will be suppressed.
  • the pH of the boehmite sol is preferably 4 to 6.8. Thereby, since the coating film excellent in water resistance and transparency is obtained, it is preferable. If pH is 4 or more, the water resistance of a hydrophilic coating film will become favorable, without increasing anion too much. If pH is 6.8 or less, boehmite particles are hard to aggregate, and the transparency of a hydrophilic coating film, the adhesiveness with a base material, and the abrasion-resistant fall are suppressed.
  • the solid content concentration of the silica sol is preferably 5 to 40% by mass, and more preferably 10 to 35% by mass.
  • the pH of the silica sol is preferably 9 to 10.5 in terms of stability.
  • a silica sol having a pH of 7 or less can be used, and a silica sol having a pH of 9 to 10.5 can be adjusted to a pH of 7 or less before mixing with the boehmite sol.
  • the pH of the coating composition for forming a hydrophilic coating film of the present invention is preferably 2.5 to 7.
  • the pH of the coating composition for forming a hydrophilic coating film can be adjusted to 2.5 to 7 by mixing with a boehmite sol having a low pH. If necessary, the pH of the composition may be adjusted to 2.5 to 7 after mixing with boehmite sol or the like.
  • the pH of the composition is preferably adjusted by adding an inorganic acid such as nitric acid.
  • the coating composition for forming a hydrophilic coating film contains boehmite particles, silica particles, a binder and water, and optionally contains organic solvents, surfactants, boehmite particles and metal oxide particles other than silica particles, additives. Etc. may be included.
  • the solid concentration of the coating composition for forming a hydrophilic coating film is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass. If the solid content concentration is 0.1% by mass or more, unevenness is less likely to occur when the coating composition for forming a hydrophilic coating film is applied to the surface of the substrate, and performance such as hydrophilicity is exhibited. Cheap. When the solid content concentration is 20% by mass or less, the workability at the time of coating is improved, the transparency of the hydrophilic coating film is hardly lowered, and further, the storage stability of the coating composition for forming a hydrophilic coating film is stable. The property is also good.
  • the solid content concentration is preferably 1 to 15% by mass, and more preferably 3 to 10% by mass.
  • the pH of the coating composition for forming a hydrophilic coating film is preferably 2.5 to 7, more preferably pH 3.5 to 7, and further preferably pH 4 to 6. If pH is 2.5 or more, dissolution of boehmite particles will be suppressed. If pH is 7 or less, the dispersion stability of a silica particle and a boehmite particle
  • the ratio of silica particles is 20 to 80% by mass, preferably 40 to 60% by mass, based on the total amount of boehmite particles and silica particles. If silica particle is 20 mass% or more, the fall of the film
  • the ratio of the binder is 0.5 to 15 parts by mass, and preferably 1 to 5 parts by mass with respect to 100 parts by mass of boehmite particles and silica particles in total.
  • the binder is 15 parts by mass or less, the pores of the hydrophilic coating film are not easily filled with the binder, and a large pore volume can be expressed. If the binder is 0.5 parts by mass or more, the effect of improving the scratch resistance is likely to be exhibited.
  • Water serves as a dispersion medium for dispersing boehmite particles and silica particles in the coating composition for forming a hydrophilic coating film.
  • the proportion of water is preferably 500 to 100,000 parts by weight, more preferably 600 to 10,000 parts by weight, and even more preferably 1000 to 3000 parts by weight with respect to 100 parts by weight of the total solid content of the coating composition for forming a hydrophilic coating film. . If water is 500 mass parts or more, the density
  • the coating composition for forming a hydrophilic coating film may contain an organic solvent as long as the dispersion stability of boehmite particles and silica particles is not inhibited.
  • an organic solvent a water-soluble organic solvent is preferable, and it is preferable to use an amount less than the solubility in water.
  • the boiling point of the organic solvent is preferably 120 ° C. or less, and particularly preferably 100 ° C. or less.
  • the organic solvent include water-soluble alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, and ethylene glycol.
  • the coating composition for forming a hydrophilic coating film is applied to a substrate, it is preferable to contain a water-soluble organic solvent, and the water-soluble organic solvent is in any proportion with water.
  • a water-soluble alcohol to be mixed is preferable.
  • the amount of alcohol is preferably 10 to 70% by mass with respect to the total amount of water and alcohol. If alcohol is 10 mass% or more, a defoaming effect will be acquired, and if alcohol is 70 mass% or less, the stability of the coating composition for hydrophilic coating film formation will become favorable.
  • this water-soluble alcohol methanol, ethanol, and isopropanol are preferable from the viewpoint of stability. Alcohol may be used individually by 1 type and may use 2 or more types together. The ratio of alcohol to the total amount of water and alcohol is more preferably 30 to 60% by mass.
  • an antifouling film when the hydrophilic coating film is formed only on one surface of the base film, an antifouling film, an antistatic film, a heat insulating film, an ultraviolet cut film, etc. are formed on the other surface. It may be provided.
  • the hydrophilic coating film formed on the base film contains boehmite particles, silica particles, and a binder, and satisfies the above (a) to (c). Because of its high quality hydrophilic coating, the hydrophilic coating has high transparency, scratch resistance (adhesion), hydrophilicity (antifogging property, drip resistance, antifouling property) and hydrophilic durability. It will be excellent.
  • Examples are shown below. Examples 1 to 3, 8 to 10, 12, 13, and 15 to 17 are examples, and examples 4 to 7, 11, 14, and 18 to 20 are comparative examples.
  • a tetrafluoroethylene / ethylene copolymer film manufactured by Asahi Glass Co., Ltd., trade name: Aflex, thickness: 100 ⁇ m
  • the hydrophilic coating film was formed on the surface of the ETFE film treated with corona discharge (surface wetting index after corona discharge treatment: 42).
  • the powder sample recovered by scraping off the hydrophilic coating film from the base film was diluted with water to 5% by mass, and subjected to a dispersion treatment for 30 minutes with an ultrasonic dispersion device to obtain a dispersion.
  • the dispersion was diluted with water to obtain a diluted solution having a solid content concentration of about 0.1% by mass, and then the diluted solution was dropped on the collodion film and dried to form an observation film.
  • the observation film was observed with a TEM, and the long axis and uniaxial length of 20 silica particles randomly extracted from the TEM image were measured, and these were averaged to obtain the average particle diameter of the silica particles. Asked. (TEM) manufactured by JEOL Ltd., model: JEM-1230.
  • Total pore volume The agricultural film was cut into a size of about 8 mm ⁇ 30 mm with a cutter, and about 2.5 g of the cut piece was enclosed in a glass sample cell. Subsequently, the total pore volume in the pore diameter range of 1 to 60 nm was measured by nitrogen adsorption pore measurement.
  • Apparatus Manufactured by Cantachrome, Model: Autosorb MP-1.
  • NLDFT method NLDFT method.
  • the haze value of the agricultural film and the base film is measured using a haze computer (Model: HGM-3DP, manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7105, and the haze value of the base film is determined from the haze value of the agricultural film.
  • the haze value of the hydrophilic coating film was calculated by subtracting the value. Those having a haze value of 5% or less were accepted and those exceeding 5% were rejected.
  • the contact angle with respect to water of the hydrophilic coating film of an agricultural film was measured at any five different points using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model: CA-X150), and these were averaged.
  • the contact angle is a hydrophilic index.
  • a sample was set in an environmental test chamber similar to the evaluation of low temperature drop property, and the environmental test chamber was set to 20 ° C., the constant temperature water bath was set to 80 ° C., and left for 3 months. After 3 months, the sample was removed. Next, the sample was evaluated for low temperature drop property, and the state of water droplets on the surface of the hydrophilic coating film was observed, and judged according to the same criteria as the low temperature drop property evaluation.
  • Example 1 8 g of 1N nitric acid was added to 792 g of ion-exchanged water, and 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.0 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex OS, solid content concentration: 20 mass%, pH: 3.0
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., 315.4 g of trade name: Solmix AP-1
  • 29.1 g of 5% by weight aqueous solution of polyvinyl alcohol manufactured by Kuraray Co., Ltd., trade name: PVA105, saponification degree: 98 to 99 mol%, polymerization degree: 500
  • 104.5 g of ion-exchanged water was added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a solid content ratio of boehmite: 55 parts by mass, silica: 45 parts by mass, polyvinyl alcohol: 4 parts by mass, solid content concentration: 6% by mass, pH: 4.1 is obtained. It was.
  • Example 2 As boehmite, instead of Sasol's product name: DISPAL11N7-80, Sasol's product name: DISPAL10F4 was used, and instead of polyvinyl alcohol (Kuraray Co., Ltd., product name: PVA105), modified polyvinyl alcohol (Nippon Synthesis) A coating composition for forming a hydrophilic coating film having a pH of 4.5 was obtained in the same manner as in Example 1 except that Chemicals, Inc., trade name: Gohsephimer Z100) was used. Further, an agricultural film was obtained in the same manner as in Example 1 using the coating composition. The said evaluation was performed about this agricultural film. The evaluation results are shown in Table 1.
  • Example 3 A boehmite dispersion was obtained in the same manner as in Example 1. To 100 g of boehmite dispersion, 66.7 g of silica sol (manufactured by Nissan Chemical Co., Ltd., trade name: organosilica sol IPA-ST, solid content concentration: 30% by mass), 10% by mass aqueous solution of polyethylene glycol (PEG 2000, molecular weight: 2000) 56 g of surfactant, 0.8 g of surfactant (manufactured by Sannopco, trade name: SN Wet L), 280 g of ion-exchanged water, 270 g of industrial ethanol (trade name: Solmix AP-1 by Nippon Alcohol Sales Co., Ltd.) was added with stirring and stirred for 5 minutes.
  • Boehmite 50 parts by mass, silica: 50 parts by mass, PEG 2000: 14 parts by mass, surfactant: 2 parts by mass, solid content concentration: 6% by mass, pH: 5.5
  • a forming coating composition was obtained. Further, an agricultural film was obtained in the same manner as in Example 1 using the coating composition. The said evaluation was performed about this agricultural film. The evaluation results are shown in Table 1.
  • Example 4 Comparative Example A hydrophilic coating was formed in the same manner as in Example 1 except that the product name: DISPAL18N4-80 manufactured by Sasol was used in place of the product name DISPAR11N7-80 manufactured by Sasol as boehmite. An agricultural film was obtained in the same manner as in Example 1 using the coating composition. The said evaluation was performed about this agricultural film. The evaluation results are shown in Table 1.
  • Example 5 Comparative Example An agricultural film was obtained in the same manner as in Example 1 except that the amount of boehmite dispersion was changed to 163.6 g and the amount of silica sol was changed to 18.2 g. The said evaluation was performed about this agricultural film. The evaluation results are shown in Table 1.
  • Example 6 Comparative Example An agricultural film was obtained in the same manner as in Example 1 except that the amount of boehmite dispersion was changed to 18.2 g and the amount of silica sol was changed to 163.6 g. The said evaluation was performed about this agricultural film. The evaluation results are shown in Table 1.
  • Example 7 Comparative Example 200 g of boehmite (manufactured by Sasol, trade name: DISPAL18N4-80) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 3.6 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used.
  • the agricultural film is subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 8 200 g of boehmite (manufactured by Sasol, trade name: DISPAL 14N4-80) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 4.0 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex S, solid content concentration: 30% by mass, pH: 10
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., Product name: 50.0 g of Solmix AP-1
  • 1.5 g of 1N nitric acid, 7% by mass of polyvinyl alcohol manufactured by Kuraray Co., Ltd., trade name: PVA105, degree of saponification: 98 to 99 mol%, degree of polymerization: 500
  • 6.0 g of the aqueous solution and 19.0 g of ion-exchanged water were added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 55 mass parts, silica: 45 mass parts, polyvinyl alcohol: 6 mass parts, a solid content concentration of 7 mass%, and a pH of 5.1 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 9 To 800 g of ion-exchanged water, 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 55 parts by mass, silica: 45 parts by mass, polyvinyl alcohol: 4 parts by mass, a solid content concentration of 7% by mass, and a pH of 5.8 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 10 To 800 g of ion-exchanged water, 200 g of boehmite (manufactured by Sasol, trade name: DISPAL10F4) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 4.0 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex S, solid content concentration: 30% by mass, pH: 10
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., Product name: 50.0 g of Solmix AP-1
  • 1.5 g of 1N nitric acid 6.0 g of a 7% by mass aqueous solution of modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name: Goseifamer Z100), ion exchange 19.0 g of water was added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 7% by mass and a pH of 5.2 with boehmite of 55 parts by mass, silica: 45 parts by mass, and polyvinyl alcohol: 6 parts by mass was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 11 Comparative Example 200 g of boehmite (manufactured by Sasol, trade name: DISPAL 60) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 7.0 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex S, solid content concentration: 30% by mass, pH: 10
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., Product name: 50.0 g of Solmix AP-1
  • 1.5 g of 1N nitric acid 6.0 g of a 7% by mass aqueous solution of modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name: Goseifamer Z100), ion exchange 19.0 g of water was added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 55 mass parts, silica: 45 mass parts, polyvinyl alcohol: 6 mass parts, a solid content concentration of 7 mass%, and a pH of 6.8 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 12 To 800 g of ion-exchanged water, 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • a coating composition for forming a hydrophilic coating film with a solid content concentration of 7% by mass and a pH of 5.5 was obtained with a solid content ratio of boehmite: 55 parts by mass, silica: 45 parts by mass, and polyvinyl alcohol: 6 parts by mass.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 13 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex 20L, solid content concentration: 20% by mass, pH: 10
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., Product name: 50 g of Solmix AP-1
  • 1.2 g of 1N nitric acid 6.0 g of a 7% by weight aqueous solution of modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, product name: Goseifamer Z100), ion-exchanged water 13.8 g was added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 55 mass parts, silica: 45 mass parts, and polyvinyl alcohol: 6 mass parts, a solid content concentration of 7 mass%, and a pH of 4.9 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 14 (Comparative Example) To 800 g of ion-exchanged water, 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 55 mass parts, silica: 45 mass parts, polyvinyl alcohol: 6 mass parts, a solid content concentration of 7 mass%, and a pH of 4.7 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 15 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • a coating composition for forming a hydrophilic coating film having a solid content ratio of 45 mass parts, silica: 55 mass parts, polyvinyl alcohol: 6 mass parts, a solid content concentration of 7 mass%, and a pH of 4.9 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 16 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added to 800 g of ion-exchanged water with stirring, and the mixture was stirred for 30 minutes and then allowed to stand at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • a coating composition for forming a hydrophilic coating film having a solid content concentration of 7% by mass and a pH of 5.0 was obtained with a solid content ratio of boehmite: 80 parts by mass, silica: 20 parts by mass, and polyvinyl alcohol: 6 parts by mass.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 17 To 800 g of ion-exchanged water, 200 g of boehmite (manufactured by Sasol, trade name: DISPAL11N7-80) was added with stirring, and stirring was continued for 30 minutes, followed by standing at room temperature for 1 day. A boehmite dispersion having a solid content concentration of 20% by mass and a pH of 5.3 was obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., trade name: Snowtex S, solid content concentration: 30% by mass, pH: 10
  • industrial ethanol manufactured by Nippon Alcohol Sales Co., Ltd., Product name: 50.0 g of Solmix AP-1
  • 2.6 g of 1N nitric acid 6.0 g of a 7% by weight aqueous solution of modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name: Gosei Femer Z100), ion exchange 21.6 g of water was added with stirring and stirred for 5 minutes.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 18 (Comparative Example) An agricultural film was obtained in the same manner as in Example 1 except that a coating composition having a composition obtained by removing the modified polyvinyl alcohol from the hydrophilic coating of Example 11 was produced and the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 19 (Comparative Example) Of 35.0 g of silica sol (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex OS, solid content concentration: 20 mass%, pH: 3), industrial ethanol (trade name: Solmix AP-1 by Nippon Alcohol Sales Co., Ltd.) 50.0 g, 6.0 g of a 7% by mass aqueous solution of modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name: Gohsephimer Z100), and 15.0 g of ion-exchanged water were added with stirring and stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having a silica content of 100 parts by mass and a polyvinyl alcohol content of 6 parts by mass, a solid content concentration of 7% by mass, and a pH of 3.3 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • Example 20 Boehmite dispersion 35.0 g of Example 3, 50.0 g of industrial ethanol (trade name: Solmix AP-1 manufactured by Nippon Alcohol Sales Co., Ltd.), modified polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry, trade name: Gohsefamer) 6.0 g of a 7 mass% aqueous solution of Z100) and 15.0 g of ion-exchanged water were added with stirring, and the mixture was stirred for 5 minutes.
  • a coating composition for forming a hydrophilic coating film having boehmite: 100 parts by mass, polyvinyl alcohol: 6 parts by mass, solid content concentration: 7% by mass, and pH 5.0 was obtained.
  • An agricultural film was obtained in the same manner as in Example 1 except that the coating composition was used. The agricultural film was subjected to the above evaluation, and the evaluation results are shown in Table 1.
  • the agricultural film on which the hydrophilic coating film of the present invention is formed can provide high drip sustainability, and the agricultural film can be used for a long time.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-030955 filed on February 13, 2009 and Japanese Patent Application No. 2009-030956 filed on the same day are here. It is incorporated by reference as a disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Greenhouses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 高い透明性を有し、耐擦傷性(密着性)、親水性(防曇性、流滴性、防汚性)および親水持続性に優れた塗膜が形成された農業用フィルムを提供する。 基材フィルム12と、基材フィルム12上に形成された多孔質の親水性塗膜14とを有する農業用フィルム10。前記親水性塗膜14は、ベーマイト粒子、シリカ粒子およびバインダを含み、(a)AlとSiとの原子比(Al/Si)が0.2~5.0であり、(b)シリカ粒子の平均粒子径が5~50nmであり、(c)ベーマイト粒子の(120)面の回折ピークより算出した結晶子径が20~50nmである。前記親水性塗膜14は、ベーマイト粒子、シリカ粒子、バインダおよび水を含む組成物を、基材フィルムの表面に塗布、乾燥して形成される。

Description

農業用フィルム
 本発明は、親水性塗膜を有する農業用フィルムに関する。
 透明な屋根材や透明な側壁材から構成され、内部で植物栽培が行なわれる施設(例えば、温室など)として、屋根や側壁が透明合成樹脂フィルムで構成された施設がある。本発明では、このような植物栽培施設を農業用ハウスといい、屋根や側壁に使用される透明合成樹脂フィルムを農業用フィルムという。
 農業用ハウスに展張された農業用フィルムにおいては、植物栽培時に、その表面に結露や曇りを生じると、太陽光線の透過率が低下し、植物の成長に悪影響を与えることがある。よって、防曇性、流滴性(水滴が均一に濡れ拡がり水膜を形成する性質。)、防汚性等の向上を目的に、農業用フィルムの表面に親水性を付与することが行われている。
 表面に親水性が付与された農業用フィルムとしては、下記のものが知られている。
 (1)平均粒子径の異なるシリカゾルならびにアルミナゾル、界面活性剤、および液状分散媒を含む防曇剤組成物を基材フィルムの表面に塗布、乾燥して塗膜を形成したもの(特許文献1の実施例4~6)。
 (2)コロイド状アルミナ、コロイド状シリカ、アニオン性界面活性剤を特定の割合で含む塗布液を基材フィルムの表面に塗布、乾燥して塗膜を形成したもの(特許文献2の実施例1~7)。
 (3)水系媒体、コロイダルアルミナ、コロイダルシリカ、水溶性樹脂を特定の割合で含む塗布防曇剤を基材フィルムの表面に塗布、乾燥して塗膜を形成したもの(特許文献3の実施例1~14)。
 (4)分散媒中における凝集粒子の、アスペクト比の平均が3~20であり、長軸方向の平均粒子径が100~500nmであり、かつ短軸方向の平均粒子径が2~100nmであるアルミナ粒子と、分散媒中における凝集粒子の平均粒子径が150nm以下であるシリカアルミナ複合粒子と、水とを含む無機塗料組成物を基材フィルムの表面に塗布、乾燥して塗膜を形成したもの(特許文献4)。
 しかし、(1)、(2)の農業用フィルムにおいては、アルミナ粒子およびシリカ粒子が界面活性剤により基材フィルムの表面に単に付着しているだけであり、塗膜と基材フィルムとの密着性が不充分である。そのため、塗膜の耐擦傷性が不充分である。また、塗膜の耐水性が低いため、親水性を長期間維持できない。
 (3)の農業用フィルムにおいては、塗膜が水溶性樹脂(バインダ)を含むため、(1)、(2)の農業用フィルムに比べれば、密着性は向上しているが、それでもなお塗膜と基材フィルムとの密着性が不充分である。そのため、塗膜の耐擦傷性が不充分である。また、塗膜の耐水性が低いため、親水性を長期間維持できない。
 (4)の農業用フィルムにおいては、(1)~(3)の農業用フィルムに比べ、塗膜と基材フィルムとの密着性が高く、塗膜の耐擦傷性が良好である。また、促進耐候試験において親水性を長期間維持できる。しかし、実際の屋外曝露試験においては、親水性がある時期に急に低下する。よって、親水性の持続性(以下、親水持続性と記す。)のさらなる向上が求められている。
特開昭60-69181号公報 特開平7-53747号公報 特開2003-49003号公報 特開2007-63477号公報
 本発明は、高い透明性を有し、耐擦傷性(密着性)、親水性(防曇性、流滴性、防汚性)および親水持続性に優れた塗膜が形成された農業用フィルムを提供する。
 本発明の農業用フィルムは、基材フィルムと、該基材フィルム上に形成された、ベーマイト粒子、シリカ粒子およびバインダを含む、下記(a)~(c)を満たす、多孔質の親水性塗膜とを有することを特徴とする。
 (a)AlとSiとの原子比(Al/Si)が、0.2~5.0である。
 (b)前記シリカ粒子の平均粒子径が、5~50nmである。
 (c)前記ベーマイト粒子の(120)面の回折ピークより算出した結晶子径が、20~50nmである。
 前記バインダは、ノニオン性の水溶性有機バインダであることが好ましい。
 前記ノニオン性の水溶性有機バインダは、水溶性ポリビニルアルコール類であることが好ましい。
 前記基材フィルムは、フッ素樹脂フィルムであることが好ましい。
 前記フッ素樹脂フィルムがテトラフルオロエチレン/エチレン系共重合体フィルムであることが好ましい。
 前記親水性塗膜の厚さは、100~700nmであることが好ましい。
 本発明の農業用フィルムの前記親水性塗膜における細孔直径1~60nmの全細孔容積は、1.0~20.0[×10-4cc/g]であることが好ましい。
 前記親水性塗膜中のバインダの割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、0.5~15質量部であることが好ましい。
 前記親水性塗膜のへーズが、5%以下であることが好ましい。
 本発明の農業用フィルムの製造方法は、ベーマイト粒子、シリカ粒子、バインダおよび水を含む組成物を、基材フィルムの表面に塗布、乾燥して親水性塗膜を形成する方法である。
 前記製造方法における基材フィルムはフッ素樹脂フィルムであることが好ましく、そのフッ素樹脂フィルムの親水性塗膜が形成される面にあらかじめ濡れ性を向上させる表面処理を施すことが好ましい。
 本発明によれば、高い透明性を有し、耐擦傷性(密着性)、親水性(防曇性、流滴性、防汚性)および親水持続性に優れた塗膜が形成された農業用フィルムを提供できる。
本発明の農業用フィルムの一例を示す断面図である。
<農業用フィルム>
 図1は、本発明の農業用フィルムの一例を示す断面図である。農業用フィルム10は、基材フィルム12と、基材フィルム12の片面に形成された親水性塗膜14とを有する。
(基材フィルム)
 基材フィルムの材料としては、ポリエチレンテレフタレート樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、フッ素樹脂等の透明合成樹脂材料が挙げられ、耐久性、耐候性、耐薬品性、親水性塗膜との密着性等の点から、フッ素樹脂からなる基材が好ましい。フッ素樹脂は、表面が負に帯電しやすいことから、正に帯電しているベーマイト粒子との密着性が高くなる。
 フッ素樹脂は、フルオロオレフィンの単独重合体もしくはフルオロオレフィンの2種以上の共重合体、または1種以上のフルオロオレフィンと1種以上のその他のモノマーとの共重合体である。
 フルオロオレフィンは、重合性不飽和結合とフッ素原子とを有するモノマーであり、他に水素原子、塩素原子、酸素原子等を有していてもよい。フルオロオレフィンとしては、たとえば、テトラフルオロエチレン、フッ化ビニル、フッ化ビニリデン、パーフルオロ(アルキルビニルエーテル)、クロロトリフルオロエチレン、ヘキサフルオロプロピレンが好ましい。パーフルオロ(アルキルビニルエーテル)としては、パーフルオロ(プロピルビニルエーテル)が特に好ましい。
 その他のモノマーとしては、非フッ素系モノマーが好ましく、エチレン、プロピレン、ブテン、ノルボルネン等のオレフィン類;シクロヘキシルメチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、2-エチルヘキシルビニルエーテル、エチルアリルエーテル等のアルケニルエーテル類;酢酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、ピバリン酸アリル、バーサチック酸アリル等のアルケニルエステル類が好ましい。
 前記モノマーを重合したフッ素樹脂としては、テトラフルオロエチレン/エチレン系共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/エチレン共重合体、フッ化ビニリデン/テトラフルオロエチレン系共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/エチレン系共重合体が好ましい。テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体においては、テトラフルオロエチレン/パーフルオロ(プロピルビニルエーテル)共重合体が好ましい。これらのうち、加工性および使用されるフィルム物性の点から、テトラフルオロエチレン/エチレン系共重合体が特に好ましい。
 基材フィルムには、親水性塗膜が形成される面にあらかじめ表面処理が施してもよい。表面処理を施すことによって、基材フィルムの濡れ性がよくなるため、親水性塗膜の基材への密着性や親水性塗膜の均一性を向上できる。表面処理としては、放電処理(プラズマ処理、コロナ放電処理等。)、UV処理、オゾン処理、酸、アルカリ等を用いた化学的処理、研磨材を用いた物理的処理等が挙げられる。
(親水性塗膜)
 親水性塗膜は、ベーマイト粒子、シリカ粒子およびバインダを含む、多孔質の膜である。
 シリカ粒子を含む多孔質の膜が、親水性を発現することは従来から知られている。しかし、シリカ粒子が親水性や多孔性にどのように影響しているか、また、塗膜の多孔性を定量的に評価し、親水性(流滴性等。)とどのように関連付けられるのかについての検討は、これまで行われていない。そこで、親水性塗膜の多孔性を、親水性塗膜の組成、親水性塗膜を構成する粒子の形状やサイズ、親水性塗膜の細孔特性から定量化し、親水性(流滴性等。)およびその持続性との相関を明らかにすることによって、下記(a)~(c)をすべて満たす親水性塗膜が、本発明の効果を発揮できることを見出した。
 (a)AlとSiとの原子比(Al/Si)が、0.2~5.0である。
 (b)シリカ粒子の平均粒子径が、5~50nmである。
 (c)ベーマイト粒子の(120)面の回折ピークより算出した結晶子径が、20~50nmである。
 (a)について:
 親水性塗膜がAlを含む、すなわち正に帯電しているベーマイト粒子を含むことにより、基材フィルム、特に表面の電荷が負に帯電しやすいフッ素樹脂フィルムに対する密着性が向上する。よって、Al/Siが0.2以上であれば、親水性塗膜と基材フィルムとの密着性が向上する。また、Al/Siが5.0以下であれば、親水性塗膜の膜強度の低下が抑えられ、親水性塗膜の透明性も向上する。Al/Siは、0.4~2.1がより好ましく、0.6~1.4が最も好ましい。
 Al/Siは、蛍光X線解析により定量できる。
 (b)について:
 シリカ粒子とベーマイト粒子とは異なる電荷に帯電しており、親水性塗膜形成用塗料組成物中で凝集しやすい。シリカ粒子の平均粒子径およびベーマイト粒子の前記結晶子径を前記範囲とすることによって、凝集を適度にコントロールすることができ、結果として親水性(流滴性等。)を発現する大きい細孔容積を有する多孔質の塗膜、そして透明な塗膜を形成できる。シリカ粒子の平均粒子径が5~50nmであれば、高い親水性(流滴性等。)および透明性を両立できる。シリカ粒子の平均粒子径は、5~30nmが好ましく、さらに8~15nmがより好ましい。
 シリカ粒子の平均粒子径は、透過型電子顕微鏡(TEM)像の中から無作為に抽出された20個のシリカ粒子の長軸および短軸の長さを測定し、これらを平均したものである。ベーマイト粒子は後述のように板状等の形状を有する粒子であり、シリカ粒子は後述のように球状等の粒子であるため、TEM像において形状およびサイズが異なるベーマイト粒子とシリカ粒子とは明確に区別される。
(シリカ粒子)
 シリカ粒子の形状としては、球状、球状粒子が連結した鎖状が挙げられ、球状が好ましい。
 シリカ粒子は、市販されているものであってもよく、公知の製造方法により得られるものであってもよい。
 (c)について:
 耐擦傷性および親水性が良好な塗膜としては、平均粒子径が10~30nmのシリカ粒子およびノニオン性の水溶性有機バインダを含む塗膜が知られている。しかし、該塗膜は耐水性が低いため、親水持続性がない。ベーマイト粒子をさらに含ませることによって耐水性が改善されることが分かったが、従来のベーマイト粒子は粒径が小さいため、耐擦傷性が低下してしまう。そこで、前記結晶子径が20nm以上のベーマイト粒子を含ませることにより、耐擦傷性を低下させることなく、耐水性が良好となることが分かった。ベーマイト粒子が親水性塗膜中で配向して、耐擦傷性、耐水性が良くなっているものと考えられる。ただし、ベーマイト粒子の前記結晶子径が大きすぎると、親水性塗膜形成用塗料組成物の安定性が低くなり、また、親水性塗膜のヘーズも高くなる。
 ベーマイト粒子の(120)面の回折ピークより算出した結晶子径が20~50nmであれば、高い親水性(流滴性等。)および透明性を両立でき、かつ耐擦傷性および親水持続性も発現する。
 ベーマイト粒子の(120)面の回折ピークより算出した結晶子径は、X線回折(XRD)解析により算出できる。ベーマイト粒子の結晶子径は、30~40nmが好ましい。
 ベーマイト粒子の形状としては、板状、針状、繊維状、羽毛状等が挙げられ、板状が好ましい。親水性塗膜中に板状のベーマイト粒子を含むことにより、結晶配向性が得られるため、親水性塗膜の基材に対する密着性がさらに高くなり、耐擦傷性が長期間持続し、また、親水性塗膜が可撓性のある基材(フィルム等。)に充分に追随できる。
 ベーマイト粒子は、市販されているものであってもよく、公知の製造方法により得られたものであってもよい。ベーマイト粒子の製造方法としては、アルミン酸アルカリ金属塩と、酸性アルミニウム塩(塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等。)と、場合によっては酸性溶液とを混合して得られる水和ゲルを熟成した後、酸を添加して解こうする方法;酸性アルミニウム塩をイオン交換して得られる水和ゲルを熟成した後、解こうする方法;アルミニウムアルコキシドを加水分解した後、解こうする方法等が挙げられる。
 親水性塗膜の厚さは、100~700nmが好ましく、250~450nmがより好ましい。親水性塗膜の厚さが100nm以上であれば、親水性および親水持続性の低下を抑制できる。親水性塗膜の厚さが700nm以下であれば、親水性塗膜にクラックが入りにくく、干渉縞が発生しにくく、傷が入った場合にはその傷が目立ちにくい。
 農業用フィルムの親水性塗膜の細孔直径1~60nmの全細孔容積は、1.0~20.0[×10-4cc/g]が好ましく、2.0~10.0[×10-4cc/g]がより好ましい。全細孔容積が1.0[×10-4cc/g]以上であれば、親水性塗膜の多孔性が高くなり、充分に水を吸着でき、親水性(流滴性等。)を充分に発現できる。また、経時的に親水性塗膜の一部が減少しても親水性(流滴性等。)を維持でき、結果として親水持続性が良好となる。全細孔容積が20.0[×10-4cc/g]以下であれば、耐擦傷性の低下が抑えられ、また、ヘーズ値が大きくなりにくい。
 全細孔容積は、窒素吸着細孔測定により測定できる。従来、粉末の細孔容積を測定する例は多く見られたが、本発明においては、親水性塗膜の細孔容積が親水性(流滴性等。)に大きく影響するため、親水性塗膜を掻き取って粉末にしてしまうと、本来の親水性塗膜の細孔容積を測定できないという問題がある。そこで、本発明においては、基材フィルム上の親水性塗膜をそのまま基材フィルムごと測定するという手法を新規に確立した。
 基材フィルム込みで窒素吸着細孔測定を実施すると、基材フィルムの窒素吸着が大きい場合は、基材フィルムへの吸着量が大きくなり、本来の親水性塗膜の細孔容積を正しく測定できない場合もある。しかし、基材フィルムがフッ素樹脂フィルムの場合は、基材フィルムの窒素吸着量は非常に小さく、親水性塗膜の吸着量に比して無視できる程度のものとなるため、基材フィルムごと測定することで親水性塗膜の細孔容積を評価できる。他の合成樹脂からなるフィルムの場合も、窒素吸着が少ないフィルムの場合は、フッ素樹脂フィルムと同様に測定できる。
 親水性塗膜には透明性が要求される。親水性塗膜の透明性は、ヘーズ値で評価できる。親水性塗膜のヘーズ値は、5.0%以下が好ましく、3.0%以下がより好ましい。ヘーズ値が5.0%以下であれば、農業用フィルムとしては、親水性塗膜が充分な透明性を有しているといえる。
 親水性塗膜のヘーズ値は、農業用フィルムのヘーズ値から基材フィルムのヘーズ値を引くことにより算出できる。
 親水性塗膜の親水性は、水に対する接触角で評価できる。親水性塗膜の水に対する接触角は40°以下が好ましく、20°以下がより好ましく、10°以下がさらに好ましい。接触角が40°以下であれば、親水性塗膜の親水性が充分となり、流適性が発現されやすい。親水性塗膜の表面に汚れが付着した場合、水に対する接触角が上昇して、流滴しなくなることが多い。本発明における親水性塗膜は、徐々に表面が流出、更新されるため、流適性を長期間維持できる。
(バインダ)
 親水性塗膜がバインダを含むことにより、親水性塗膜の造膜性および耐擦傷性が向上する。
 バインダとしては、有機バインダまたは無機バインダ(金属酸化物等。)が挙げられ、有機バインダが好ましい。また、バインダは親水性のバインダであることが好ましい。疎水性のバインダを使用すると、親水性塗膜の水に対する接触角が上昇し、親水性が低下する場合がある。また、親水性塗膜は水性の塗料組成物から形成されることが好ましいことより、バインダとしては、特に水溶性の親水性バインダが好ましい。水溶性の親水性バインダとしては、ノニオン性の水溶性有機バインダがより好ましい。イオン性水溶性有機バインダに比較してノニオン性の水溶性有機バインダは、無機粒子の凝集が少なく、液の貯蔵安定性が高い。ノニオン性の水溶性有機バインダとしては、ポリエチレングリコール、ポリビニルアルコール、変性ポリビニルアルコール、水溶性セルロース誘導体等が挙げられる。
 なお、本発明において変性ポリビニルアルコールとは、ポリビニルアルコールの水酸基の一部を他の基に変換したものをいう。例えば、カルボン酸(酢酸を除く)などで水酸基をエステル化したもの、アルデヒド類で水酸基をホルマール化したもの、水酸基をアルキルエーテル化したもの、などが挙げられる。変性ポリビニルアルコールとしては、水酸基の一部に反応性を有する基を導入した変性物が好ましい。例えば、実施例に使用した変性ポリビニルアルコール(商品名:ゴーセファイマーZ100)は、水酸基の一部にアセトアセチル基を導入した変性ポリビニルアルコールである。
 さらに、バインダとしては、下記の理由から、ポリビニルアルコールと変性ポリビニルアルコール(以下、これらをまとめて水溶性ポリビニルアルコール類と記す。)が好ましい。ケン化度や分子量、変性化など、異なる種類の水溶性ポリビニルアルコール類を複数組み合わせてバインダとして使用することができる。
 親水性塗膜が水溶性ポリビニルアルコール類を含むと、親水性塗膜の細孔特性が良好となり、高い親水性(流滴性等。)と透明性とを両立でき、また、耐擦傷性も付与でき、さらに、親水性塗膜の均一形成性にも優れる。また、水溶性バインダとしてポリエチレングリコールを用いた場合と比較しても、基材との密着性が向上し、耐擦傷性も良好になる傾向があることより、水溶性ポリビニルアルコール類を用いることで、少量の添加で耐擦傷性を改良できる。
 親水性塗膜が水溶性ポリビニルアルコール類を含むかどうかは、H-NMR解析により確認できる。測定用サンプル液は、基材フィルムから親水性塗膜を掻き取って回収した粉末サンプルを、水で5質量%に希釈し、超音波分散装置にて30分間分散処理して分散液を得て、該液を遠心沈降し、上澄み分と沈殿物とに分け、上澄み液を濃縮することにより調製できる。
 無機バインダとしては、金属酸化物の前駆体が挙げられ、シリカまたはアルミナの前駆体が好ましい。シリカまたはアルミナの前駆体は、公知の製造方法により得られる。
 シリカ前駆体としては、ケイ酸アルコキシド(ケイ酸エチル等。)を加水分解する方法により得られたもの;アルカリ金属ケイ酸塩を酸で分解した後、電解透析する方法により得られたもの;アルカリ金属ケイ酸塩を解こうする方法により得られたもの;アルカリ金属ケイ酸塩をイオン交換樹脂により透析する方法により得られたもの等が挙げられる。
 アルミナ前駆体としては、アルミニウムアルコキシドを加水分解する方法により得られたもの;水溶性アルミニウム塩、アルミニウムキレート化合物等が挙げられる。
 親水性塗膜中のバインダの割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、0.5~15質量部が好ましく、3~10質量部がより好ましい。バインダが15質量部以下であれば、親水性塗膜の細孔がバインダで埋まりにくく、大きい細孔容積を発現できる。バインダが0.5質量部以上であれば、耐擦傷性の向上効果が発現しやすい。
(他の成分)
 親水性塗膜は、適宜必要に応じてベーマイト粒子およびシリカ粒子以外の金属酸化物粒子、界面活性剤、消泡剤、架橋剤、耐水硬化剤、着色用染料、顔料、紫外線吸収剤、酸化防止剤等の添加剤を含んでいてもよい。固形分となる他の成分の合計量は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、50質量部以下が好ましく、30質量部以下がより好ましい。固形分となる他の成分の合計量が多くなりすぎると、必須成分により発揮される特性が低下するおそれが生じる。
 親水性塗膜は、ベーマイト粒子およびシリカ粒子以外の金属酸化物粒子を適宜必要に応じて含んでいてもよい。たとえば、酸化セリウム粒子を含む場合、紫外線カット性能を付与できる。酸化チタン粒子を含む場合、紫外線カット性能や光触媒性能を付与できる。インジウムドープ酸化スズ(ITO)粒子、アンチモンドープ酸化スズ(ATO)粒子、または酸化スズ粒子を含む場合、導電性や赤外線カット性能を付与できる。ベーマイト粒子以外のアルミナ粒子を含む場合、親水性塗膜の親水性(流滴性等。)、膜強度をさらに向上できる。
 金属酸化物粒子の平均粒子径は、1~500nmが好ましく、1~200nmがより好ましい。金属酸化物粒子の平均粒子径が1nm以上であれば、金属酸化物粒子が有する特性が発現しやすい。金属酸化物粒子の平均粒子径が500nm以下であれば、親水性塗膜の透明性の低下が抑えられる。
 金属酸化物粒子の割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、30質量部以下が好ましい。金属酸化物粒子を使用して上記特性を発揮させるためには、その量は、ベーマイト粒子とシリカ粒子の合計100質量部に対して1質量部以上とすることが好ましい。
 親水性塗膜を形成するための塗料組成物(以下、単に塗料組成物という。)が界面活性剤を含む場合、塗料組成物の塗布性が向上し、均質で外観良好な親水性塗膜を形成でき、また、親水性塗膜の親水性も向上する。塗料組成物に界面活性剤を配合することにより、結果的に親水性塗膜中に界面活性剤が含まれることになる。
 界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、ノニオン性界面活性剤が挙げられる。該界面活性剤は、アルキル基部分の水素原子がフッ素原子に置換された界面活性剤(すなわち、フッ素系界面活性剤)であってもよい。界面活性剤としては、親水性塗膜形成用塗料組成物中におけるベーマイト粒子およびシリカ粒子の分散安定性が良好になる点から、ノニオン性界面活性剤が好ましい。
 ノニオン性界面活性剤としては、-CHCHCHO-、-CHCHO-、-SO-、-NR-(ただし、Rは水素原子または有機基である。)、-NH、-SOY、および-COOY(ただし、Yは水素原子、ナトリウム原子、カリウム原子またはアンモニウム基である。)からなる群から選ばれる1種以上の構造単位を有する化合物が好ましい。該化合物としては、アルキルポリオキシエチレンエーテル、アルキルポリオキシエチレン-ポリオキシプロピレンエーテル、脂肪酸ポリオキシエチレンエステル、脂肪酸ポリオキシエチレンソルビタンエステル、脂肪酸ポリオキシエチレンソルビトールエステル、アルキルポリオキシエチレンアミン、アルキルポリオキシエチレンアミド、ポリエーテル変性のシリコーン系界面活性剤が挙げられる。
 親水性塗膜形成用塗料組成物における界面活性剤の割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、15質量部以下が好ましく、10質量部以下がより好ましい。界面活性剤が15質量部以下であれば、親水性塗膜の耐擦傷性の低下が抑えられる。界面活性剤を使用して上記特性を発揮させるためには、その量は、ベーマイト粒子とシリカ粒子の合計100質量部に対して1質量部以上とすることが好ましい。
 バインダの架橋剤としては、無機アルミニウム化合物、無機ホウ素化合物、無機ジルコニウム化合物、無機チタン化合物などの無機化合物、グリオキザール、ヒドラジド化合物、イソシアネート化合物などの有機化合物などが挙げられる。架橋剤を使用してバインダを架橋させることにより、親水性塗膜の擦傷性の低下を抑制し、流滴持続性を向上させることができる。親水性塗膜形成用塗料組成物における架橋剤の割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。架橋剤が10質量部以下であれば、塗布液の安定性が得られ、親水性塗膜のヘイズ上昇が抑えられる。架橋剤を使用して上記特性を発揮させるためには、その量はベーマイト粒子とシリカ粒子の合計100質量部に対して0.1質量部以上であることが好ましい。
 耐水硬化剤として、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ウレタン樹脂、酢酸ビニル樹脂の水性エマルジョン、水性ディスパージョンなどが挙げられる。
(親水性塗膜の形成方法)
 親水性塗膜は、ベーマイト粒子、シリカ粒子、バインダおよび水を含む親水性塗膜形成用の塗料組成物を、基材フィルムの表面に塗布、乾燥して形成される。
 塗布方法としては、たとえば、はけ塗り、ローラ塗布、手塗り、回転塗布、浸漬塗布、各種印刷方式による塗布、バーコート、カーテンフロー、ダイコート、フローコート、スプレーコート等が挙げられ、大面積に均一に塗布できる点から、グラビアコータによる塗布が好ましい。
 親水性塗膜の膜強度を高める目的で、加熱、または紫外線、電子線等の照射を行ってもよい。加熱温度は、基材フィルムの耐熱性を加味して決定すればよく、たとえば、フッ素樹脂フィルムの場合は、40~100℃が好ましい。
 
(親水性塗膜を形成するための塗料組成物)
 親水性塗膜形成用塗料組成物は、ベーマイト粒子を含むベーマイトゾルとシリカ粒子を含むシリカゾルとバインダとを混合することにより調製できる。親水性塗膜形成用塗料組成物を調製する際には、適宜必要に応じて、水、有機溶剤(エタノール、メタノール等。)を加えてもよい。
 ベーマイトゾルは、水、水と水溶性有機溶媒の混合媒体、その他の水性媒体中にベーマイト粒子が分散しているものである。水溶性有機溶媒としてはエタノール、メタノール、イソプロパノール等の水溶性アルコールが好ましい。ベーマイトゾルの固形分濃度は、0.1~30質量%が好ましく、3~20質量%がより好ましい。
 ベーマイトゾルは、分散媒体中でベーマイト粒子を安定化させるために、無機酸または有機酸に由来する陰イオン(塩素イオン、硫酸イオン、酢酸イオン等。)を含むことが好ましい。陰イオン濃度は、Alの100質量部に対して、35質量部以下が好ましい。陰イオン濃度が35質量部以下であれば、親水性塗膜の耐水性や親水性の低下が抑えられる。ベーマイトゾル中の陰イオン濃度が高い場合には、イオン交換樹脂、電気透析、限外濾過等によって陰イオン濃度を低減することが好ましい。
 ベーマイトゾルのpHは、4~6.8が好ましい。これにより、耐水性と透明性に優れた塗膜が得られるので好ましい。pHが4以上であれば、陰イオンが多くなりすぎることなく、親水性塗膜の耐水性が良好となる。pHが6.8以下であれば、ベーマイト粒子が凝集しにくく、親水性塗膜の透明性、基材との密着性、耐擦傷性の低下が抑えられる。
 シリカゾルの固形分濃度は、5~40質量%が好ましく、10~35質量%がより好ましい。シリカゾルのpHは、9~10.5が安定性の面で好ましい。pHが7以下のシリカゾルを使用することもでき、また、pHが9~10.5のシリカゾルをベーマイトゾルと混合する前にpHが7以下に調整して使用することもできる。
 前記のように、本発明の親水性塗膜形成用塗料組成物のpHは2.5~7が好ましい。pHが9~10.5のシリカゾルを使用しても、pHの低いベーマイトゾルと混合することにより、親水性塗膜形成用塗料組成物のpHを2.5~7とすることができる。また、必要により、ベーマイトゾル等と混合後、組成物のpHを2.5~7に調整してもよい。組成物のpHの調整は硝酸などの無機酸の添加で行なうことが好ましい。
 さらに、親水性塗膜形成用塗料組成物は、ベーマイト粒子、シリカ粒子、バインダおよび水を含み、必要に応じて有機溶剤、界面活性剤、ベーマイト粒子およびシリカ粒子以外の金属酸化物粒子、添加剤等を含んでいてもよい。
 親水性塗膜形成用塗料組成物の固形分濃度は、0.1~20質量%が好ましく、0.1~10質量%がより好ましい。固形分濃度が0.1質量%以上であれば、親水性塗膜形成用塗料組成物を基材の表面に塗布した際、ムラが発生しにくくなり、また、親水性等の性能が発揮されやすい。固形分濃度が20質量%以下であれば、塗布する際の作業性が良好となり、また、親水性塗膜の透明性が低下しにくく、さらに、親水性塗膜形成用塗料組成物の保存安定性も良好となる。該固形分濃度は、1~15質量%が好ましく、3~10質量%がより好ましい。
 親水性塗膜形成用塗料組成物のpHは、2.5~7が好ましく、pH3.5~7がより好ましく、pH4~6がさらに好ましい。pHが2.5以上であれば、ベーマイト粒子の溶解が抑えられる。pHが7以下であれば、シリカ粒子とベーマイト粒子の分散安定性が良好となる。
 シリカ粒子の割合は、ベーマイト粒子とシリカ粒子の合計量に対して、20~80質量%であり、40~60質量%が好ましい。シリカ粒子が20質量%以上であれば、親水性塗膜の膜強度の低下が抑えられる。シリカ粒子が80質量%以下であれば、親水性塗膜の基材との密着性や親水性が良好となる。
 バインダの割合は、ベーマイト粒子とシリカ粒子の合計100質量部に対して、0.5~15質量部であり、1~5質量部が好ましい。バインダが15質量部以下であれば、親水性塗膜の細孔がバインダで埋まりにくく、大きい細孔容積を発現できる。バインダが0.5質量部以上であれば、耐擦傷性の向上効果が発現しやすい。
 水は、親水性塗膜形成用塗料組成物において、ベーマイト粒子およびシリカ粒子を分散させる分散媒としての役割を果たす。
 水の割合は、親水性塗膜形成用塗料組成物の全固形分100質量部に対して、500~100000質量部が好ましく、600~10000質量部がより好ましく、1000~3000質量部がさらに好ましい。水が500質量部以上であれば、親水性塗膜形成用塗料組成物の濃度が高すぎず、保存安定性が良好となる。水が100000質量部以下であれば、親水性塗膜形成用塗料組成物の濃度が低すぎず、充分な厚さの親水性塗膜を形成できる。
親水性塗膜形成用塗料組成物は、ベーマイト粒子およびシリカ粒子の分散安定性を阻害しない範囲で、有機溶剤を含んでいてもよい。有機溶剤としては、水溶性の有機溶剤が好ましく、その量は水に対する溶解度以下の量を使用することが好ましい。また、有機溶剤の沸点は120℃以下が好ましく、特に100℃以下が好ましい。
 有機溶剤としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、エチレングリコール等の水溶性のアルコールが挙げられる。
 親水性塗膜形成用塗料組成物を基材に塗布した際の消泡性を得るためには、水溶性有機溶剤を含有させることが好ましく、その水溶性有機溶剤としては水と任意の割合で混合する水溶性のアルコールが好ましい。この場合、アルコールの量は、水とアルコールの合計量に対してアルコールの割合を、10~70質量%とすることが好ましい。アルコールが10質量%以上であれば、消泡効果が得られ、アルコールが70質量%以下であれば、親水性塗膜形成用塗料組成物の安定性が良好となる。この水溶性のアルコールとしては、安定性の点から、メタノール、エタノール、イソプロパノールが好ましい。アルコールは、1種を単独で用いてもよく、2種以上を併用してもよい。水とアルコールの合計量に対するアルコールの割合は、30~60質量%がより好ましい。
(他の膜)
 本発明の農業用フィルムにおいて、親水性塗膜を基材フィルムの一方の表面のみに形成した場合、他方の面には防汚性膜、帯電防止膜、断熱性膜、紫外線カット性膜等を設けてもよい。
 以上説明した本発明の農業用フィルムにあっては、基材フィルム上に形成された親水性塗膜が、ベーマイト粒子、シリカ粒子およびバインダを含む、前記(a)~(c)を満たす、多孔質の親水性塗膜であるため、親水性塗膜が、高い透明性を有し、耐擦傷性(密着性)、親水性(防曇性、流滴性、防汚性)および親水持続性に優れたものとなる。
 以下に、実施例を示す。
 例1~3、8~10、12、13、15~17は実施例であり、例4~7、11,14,18~20は比較例である。
 農業用フィルムの基材としては、テトラフルオロエチレン/エチレン共重合体フィルム(旭硝子社製、商品名:アフレックス、厚さ:100μm)の片面にコロナ放電処理を施したものを使用した(以下、ETFEフィルムという)。親水性塗膜はETFEフィルムのコロナ放電処理した面(コロナ放電処理後の表面濡れ指数:42)に形成した。
〔Al/Si〕
 農業用フィルムからサンプルを切り出し、該サンプルについて、基材フィルムごと親水性塗膜の蛍光X線解析を行い、SiおよびAlの付着量(μg/cm2)を算出し、ついでAl/Si(原子比)を算出した。
 (蛍光X線装置)リガク社製、型式:RIX3000。
 (測定方法)薄膜FP法。
 (付着量の算出方法)ノンスタンダード定量。
 (励起条件)ターゲット:Rh、管電圧(KV):50、管電流(mA):50。
 (光学系条件)分光結晶:PET、検出器:PC。
 (PHA条件)100~300。
 (スキャン条件)スキャン方法:ステップスキャン、ステップ:0.050deg、測定時間:0.40sec。
 (Alのピーク)144.610deg。
 (Siのピーク)109.040deg。
〔シリカ粒子の平均粒子径〕
 基材フィルムから親水性塗膜を掻き取って回収した粉末サンプルを、水で5質量%に希釈し、超音波分散装置にて30分間分散処理して分散液を得た。該分散液を水で希釈して固形分濃度が約0.1質量%の希釈液とした後、該希釈液をコロジオン膜上に滴下し、乾燥させて観察用膜を形成した。該観察用膜をTEM観察し、TEM像の中から無作為に抽出された20個のシリカ粒子の長軸および単軸の長さを測定し、これらを平均してシリカ粒子の平均粒子径を求めた。
 (TEM)日本電子社製、型式:JEM-1230。
〔ベーマイト粒子の結晶子径〕
 基材フィルムから親水性塗膜を掻き取って回収した粉末サンプルについて、XRD解析を2回行い、ベーマイト粒子の(120)面の回折ピークより結晶子径を算出した。
 (XRD装置)リガク社製、型式:TTR-III。
 (測定条件)X線出力:50kV-300mA、光学系:平行ビーム、スキャンスピード:2°/min、回転:あり(100RPM)、サンプリング間隔:0.02°/step。
 (解析条件)ソフト:JADE7、校正標準:Si粉末(NIST SRM640c)、解析ピーク:ベーマイト(120)面、フィッティング関数:Pearson-VII、べき指数:1.5、ベースライン:4次多項式。
〔親水性塗膜の厚さ〕
 農業用フィルムを剃刀にて切断し、切断面について、走査型電子顕微鏡(SEM)にて観察し、3箇所の親水性塗膜の厚さを測定し、これらを平均した。
 (SEM)日立製作所社製、型式:S-4300。
 (測定条件)加速電圧:5kV、導電コート:Pt。
〔全細孔容積〕
 農業用フィルムをカッターで約8mm×30mmのサイズに切断し、その切断片をガラス製サンプルセルに約2.5g封入した。ついで、窒素吸着細孔測定によって細孔直径1~60nmの範囲の全細孔容積を測定した。
 (装置)カンタクローム社製、型式:オートソーブMP-1。
 (測定条件)窒素吸着法、窒素相対圧:0.0001~0.990。
 (解析方法)NLDFT法。
〔外観〕
 農業用フィルムの親水性塗膜の外観を目視で評価し、異物欠点、反り、クラック、ムラのいずれもないものを○(良好)、いずれかの欠点があるものを×(不良)とした。
〔ヘーズ値〕
 農業用フィルムおよび基材フィルムのヘーズ値を、JIS K7105に則り、ヘーズコンピューター(スガ試験機社製、型式:HGM-3DP)を用いて測定し、農業用フィルムのヘーズ値から基材フィルムのヘーズ値を引くことにより親水性塗膜のヘーズ値を算出した。
 ヘーズ値が5%以下のものを合格、5%を超えるものを不合格とした。
〔透過率〕
 農業用フィルムの全光線透過率を、JIS K7105(1981年)に則り、ヘーズメーター(スガ試験機社製、型式:HGM-2K、SMカラーコンピューターモデルSM-5)を用いて測定した。
〔接触角〕
 農業用フィルムの親水性塗膜の水に対する接触角を、接触角計(協和界面科学社製、型式:CA-X150)を用いて任意の異なる5つの箇所で測定し、これらを平均した。接触角は親水性の指標となる。
〔低温流滴性〕
 農業用フィルムから縦14cm×横8cmのサンプルを切り出した。温度一定の環境試験室内に設置した恒温水槽の上に、アクリル樹脂製屋根型フレームを水平面に対して15度の傾斜をつけて設置し、該フレームにサンプルを、親水性塗膜を下にしてセットした。環境試験室を10℃とし、恒温水槽を20℃とした。親水性塗膜の表面の水滴の様子を観察し、下記の基準で判定した。◎、○、△を合格とし、×、××を不合格とした。
 ◎(優):評価開始1時間後に塗膜表面が均一に濡れている。
 ○(良):評価開始2時間後に塗膜表面が均一に濡れている。
 △(可):評価開始3時間後に塗膜表面が均一に濡れている。
 ×(不可):評価開始3時間後に塗膜表面に部分的に水滴付着部がある。
 ××(悪):評価開始3時間後に塗膜表面に全体的に水滴が付着し白く曇っている。
〔流滴持続性〕
 低温流滴性の評価と同様な環境試験室内にサンプルをセットし、環境試験室を20℃とし、恒温水槽を80℃として、3ヶ月間放置した。3ヶ月経過後、サンプルを取り外した。ついで、該サンプルについて、低温流滴性の評価を行い、親水性塗膜の表面の水滴の様子を観察し、低温流滴性の評価と同じ基準で判定した。
 農業用ハウスにおいては、外気温が低い冬期、早朝、夕方に農業用フィルムが曇りやすくなるため、農業用フィルムには曇りの抑制が求められる。曇りの抑制については、「低温流滴性」が指標となる。また、農業用フィルムには長期曝露後にも流滴性が発現することが求められ、これについては、「流滴持続性」が指標となる。
〔耐擦傷性〕
 農業用フィルムのサンプルを平面摩擦試験機(コーティングテスター工業社製、型式:TESTER SANGYO AB-301 COLOR FASTNESS RUBBING TESTER)にセットし、ベンコット(旭化成工業社製、商品名:BEMCOT M-1)を摩耗材として取り付け、荷重:200g、接触面積:15mm×20mm、摩耗回数:1往復の条件で親水性塗膜の擦傷試験を行い、試験前後におけるAl付着量(μg/cm2)を蛍光X線装置(RIGAKU社製、型式:RIX3000)で測定して、試験後Al付着量/初期Al付着量×100(%)により評価した。Al付着量が初期に対して70%以上であるものを合格とした。
〔例1〕
 イオン交換水の792gに1N硝酸の8gを加え、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.0のベーマイト分散液を得た。
 ベーマイト分散液の100gに、シリカゾル(日産化学社製、商品名:スノーテックスOS、固形分濃度:20質量%、pH:3.0)の81.8g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の315.4g、ポリビニルアルコール(クラレ社製、商品名:PVA105、ケン化度:98~99mol%、重合度:500)の5質量%水溶液の29.1g、イオン交換水の104.5gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:4質量部となる、固形分濃度:6質量%、pH:4.1の親水性塗膜形成用塗料組成物を得た。
 上記塗料組成物の2mLを、サイズA4のETFEフィルムの表面に、バーコータで塗布した後、80℃で5分間乾燥し、厚さ:0.35μmの親水性塗膜を形成し、農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例2〕
 ベーマイトとして、サソール社製の商品名:DISPAL11N7-80の代わりに、サソール社製の商品名:DISPAL10F4を用い、ポリビニルアルコール(クラレ社製、商品名:PVA105)の代わりに、変性ポリビニルアルコール(日本合成化学社製、商品名:ゴーセファイマーZ100)を用いた以外は、例1と同様にしてpH4.5の親水性塗膜形成用塗料組成物を得た。さらに、該塗料組成物を用いて例1と同様にして農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例3〕
 例1と同様にしてベーマイト分散液を得た。
 ベーマイト分散液の100gに、シリカゾル(日産化学社製、商品名:オルガノシリカゾルIPA-ST、固形分濃度:30質量%)の66.7g、ポリエチレングリコール(PEG2000、分子量:2000)の10質量%水溶液の56g、界面活性剤(サンノプコ社製、商品名:SNウェットL)の0.8g、イオン交換水の280g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の270gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:50質量部、シリカ:50質量部、PEG2000:14質量部、界面活性剤:2質量部となる、固形分濃度:6質量%、pH:5.5の親水性塗膜形成用塗料組成物を得た。さらに、該塗料組成物を用いて、例1と同様にして農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例4〕比較例
 ベーマイトとして、サソール社製の商品名:DISPAL11N7-80の代わりに、サソール社製の商品名:DISPAL18N4-80を用いた以外は、例1と同様にして親水性塗膜形成用塗料組成物を製造し、さらに、該塗料組成物を用いて例1と同様にして農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例5〕比較例
 ベーマイト分散液の量を163.6gに変更し、シリカゾルの量を18.2gに変更した以外は、例1と同様にして農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例6〕比較例
 ベーマイト分散液の量を18.2gに変更し、シリカゾルの量を163.6gに変更した以外は、例1と同様にして農業用フィルムを得た。
 該農業用フィルムについて、前記評価を行った。評価結果を表1に示す。
〔例7〕(比較例)
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL18N4-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:3.6のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の10.3g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、ポリビニルアルコール(クラレ社製、商品名:PVA105、ケン化度:98~99mol%、重合度:500)の7質量%水溶液の6.0g、イオン交換水の18.9gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.0の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例8〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL14N4-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:4.0のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の10.3g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、ポリビニルアルコール(クラレ社製、商品名:PVA105、ケン化度:98~99mol%、重合度:500)の7質量%水溶液の6.0g、イオン交換水の19.0gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.1の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例9〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の10.3g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の4.0g、オキシ塩化ジルコニウム八水和物10%水溶液の1.0gイオン交換水の19.0g、界面活性剤(サンノプコ社製、商品名:SNウェットL)の10質量%水溶液の1.0gを撹拌しながら加え5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:4質量部となる、固形分濃度:7質量%、pH5.8の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例10〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL10F4)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:4.0のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の10.3g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の19.0gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.2の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例11〕(比較例)
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL60)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:7.0のベーマイト分散液を得た。
ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の10.3g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の19.0gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH6.8の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例12〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックスXS、固形分濃度:20質量%、pH:10)の15.5g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.2g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の13.8gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.5の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例13〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(日産化学社製、商品名:スノーテックス20L、固形分濃度:20質量%、pH:10)の15.5g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50g、1N硝酸1.2g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の13.8gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH4.9の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例14〕(比較例)
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の19.0gに、シリカゾル(触媒化成工業製、商品名:カタロイドSI80P、固形分濃度:40質量%、pH:10)の7.7g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.5g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の21.6gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:55質量部、シリカ:45質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH4.7の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例15〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の15.5gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の12.6g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸1.8g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の12.6gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:45質量部、シリカ:55質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH4.9の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例16〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の27.6gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の4.6g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸0.6g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の17.0gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:80質量部、シリカ:20質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.0の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例17〕
 イオン交換水の800gに、撹拌しながらベーマイト(サソール社製、商品名:DISPAL11N7-80)の200gを加え、30分撹拌を続けた後、室温で1日静置した。固形分濃度:20質量%、pH:5.3のベーマイト分散液を得た。
 ベーマイト分散液の6.9gに、シリカゾル(日産化学社製、商品名:スノーテックスS、固形分濃度:30質量%、pH:10)の18.4g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、1N硝酸2.6g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の21.6gを撹拌しながら加え、5分間撹拌した。固形分比でベーマイト:20質量部、シリカ:80質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH4.7の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例18〕(比較例)
 例11の親水性塗料から変性ポリビニールアルコールを除いた組成の塗料組成物を製造し、該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例19〕(比較例)
 シリカゾル(日産化学社製、商品名スノーテックスOS、固形分濃度:20質量%、pH:3)の35.0g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の15.0gを撹拌しながら加え、5分間撹拌した。シリカ:100質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH3.3の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
〔例20〕(比較例)
例3のベーマイト分散液35.0g、工業用エタノール(日本アルコール販売社製、商品名:ソルミックスAP-1)の50.0g、変性ポリビニルアルコール(日本合成化学工業製、商品名:ゴーセファイマーZ100)の7質量%水溶液の6.0g、イオン交換水の15.0gを撹拌しながら加え、5分間撹拌した。ベーマイト:100質量部、ポリビニルアルコール:6質量部となる、固形分濃度:7質量%、pH5.0の親水性塗膜形成用塗料組成物を得た。
 該塗料組成物を用いた以外は、例1と同様にして農業用フィルムを得た。該農業用フィルムについて、前記評価を行い、その評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の親水性塗膜を形成した農業用フィルムにより、高い流滴持続性を提供でき、長期に渡り農業用フィルムを使用できる。
 なお、2009年2月13日に出願された日本特許出願2009-030955号および同日出願の日本特許出願2009-030956号の、明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 農業用フィルム
 12 基材フィルム
 14 親水性塗膜

Claims (12)

  1.  基材フィルムと、
     該基材フィルム上に形成された、ベーマイト粒子、シリカ粒子およびバインダを含む、下記(a)~(c)を満たす、多孔質の親水性塗膜と
     を有する、農業用フィルム。
     (a)AlとSiとの原子比(Al/Si)が、0.2~5.0である。
     (b)前記シリカ粒子の平均粒子径が、5~50nmである。
     (c)前記ベーマイト粒子の(120)面の回折ピークより算出した結晶子径が、20~50nmである。
  2.  前記バインダが、ノニオン性の水溶性有機バインダである、請求項1に記載の農業用フィルム。
  3.  前記ノニオン性の水溶性有機バインダが、水溶性ポリビニルアルコール類である、請求項2に記載の農業用フィルム。
  4.  前記基材フィルムが、フッ素樹脂フィルムである、請求項1~3のいずれかに記載の農業用フィルム。
  5.  前記フッ素樹脂フィルムがテトラフルオロエチレン/エチレン系共重合体フィルムである、請求項4に記載の農業用フィルム。
  6.  前記親水性塗膜の厚さが、100~700nmである、請求項1~5のいずれかに記載の農業用フィルム。
  7.  前記親水性塗膜における細孔直径1~60nmの全細孔容積が、1.0~20.0[×10-4cc/g]である、請求項1~6のいずれかに記載の農業用フィルム。
  8.  前記親水性塗膜中のバインダの割合が、ベーマイト粒子とシリカ粒子の合計100質量部に対して、0.5~15質量部である、請求項1~7のいずれかに記載の農業用フィルム。
  9.  前記親水性塗膜のへーズが、5%以下である、請求項1~8のいずれかに記載の農業用フィルム。
  10.  ベーマイト粒子、シリカ粒子、バインダおよび水を含む組成物を、基材フィルムの表面に塗布、乾燥して親水性塗膜を形成する、請求項1~9のいずれかに記載の農業用フィルムの製造方法。
  11.  前記基材フィルムが、フッ素樹脂フィルムである、請求項10に記載の農業用フィルムの製造方法。
  12.  前記フッ素樹脂フィルムの親水性塗膜が形成される面にあらかじめ濡れ性を向上させる表面処理を施す、請求項11に記載の農業用フィルムの製造方法。
PCT/JP2010/051984 2009-02-13 2010-02-10 農業用フィルム WO2010092990A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20100741267 EP2397029B1 (en) 2009-02-13 2010-02-10 Agricultural film
CN201080007858.0A CN102316718B (zh) 2009-02-13 2010-02-10 农业用膜
JP2010550542A JP5621597B2 (ja) 2009-02-13 2010-02-10 農業用フィルム
US13/185,666 US8349442B2 (en) 2009-02-13 2011-07-19 Agricultural film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-030955 2009-02-13
JP2009-030956 2009-02-13
JP2009030955 2009-02-13
JP2009030956 2009-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/185,666 Continuation US8349442B2 (en) 2009-02-13 2011-07-19 Agricultural film

Publications (1)

Publication Number Publication Date
WO2010092990A1 true WO2010092990A1 (ja) 2010-08-19

Family

ID=42561831

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/051986 WO2010092991A1 (ja) 2009-02-13 2010-02-10 親水性塗膜形成用塗料組成物
PCT/JP2010/051984 WO2010092990A1 (ja) 2009-02-13 2010-02-10 農業用フィルム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051986 WO2010092991A1 (ja) 2009-02-13 2010-02-10 親水性塗膜形成用塗料組成物

Country Status (5)

Country Link
US (2) US8349442B2 (ja)
EP (2) EP2397528B1 (ja)
JP (2) JP5621597B2 (ja)
CN (2) CN102307958B (ja)
WO (2) WO2010092991A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103990A (ja) * 2011-11-14 2013-05-30 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物および、それを用いてなるフィルム、防曇用フィルム、抗菌用フィルム、並びにコーティング剤
JP2016189728A (ja) * 2015-03-31 2016-11-10 三菱製紙株式会社 調光シート
JP2017047530A (ja) * 2015-08-31 2017-03-09 デンカ株式会社 農業用フッ素含有積層フィルム及びそれを用いてなる農業用被覆資材
WO2017175824A1 (ja) * 2016-04-08 2017-10-12 デンカ株式会社 農業用フッ素系樹脂フィルム及び農業用被覆資材
WO2018066584A1 (ja) 2016-10-05 2018-04-12 デンカ株式会社 樹脂組成物及びそれを用いた膜構造物
WO2021192407A1 (ja) * 2020-03-25 2021-09-30 竹本油脂株式会社 高分子フィルム用コーティング剤組成物及びそれを用いた改質フィルムの製造方法並びに改質フィルム
JP2023509128A (ja) * 2019-12-31 2023-03-07 サン-ゴバン パフォーマンス プラスティックス コーポレイション チューブおよびチューブの製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559025B (zh) * 2011-11-18 2013-07-31 上海沪正纳米科技有限公司 高性能透明玻璃隔热涂料的制备方法
CN102660047A (zh) * 2012-04-26 2012-09-12 天津达一琦精细化工有限公司 农膜流滴剂
CN105246984A (zh) * 2013-05-30 2016-01-13 3M创新有限公司 聚(乙烯醇)和二氧化硅纳米粒子多层涂层及方法
CN104675009B (zh) * 2013-11-29 2019-03-12 日吉华株式会社 建筑板及其制造方法
EP2924077A1 (en) * 2014-03-24 2015-09-30 Toto Ltd. Photocatalyst coating composition
WO2016014946A2 (en) 2014-07-25 2016-01-28 University Of Florida Research Foundation, Inc. Superoleophobic alumina coatings
JP6527164B2 (ja) * 2014-09-22 2019-06-05 富士フイルム株式会社 抗菌シート、抗菌コート、積層体、抗菌液
TWI537317B (zh) * 2014-10-16 2016-06-11 Eu Top Corp Non - pesticide physical isolation pests and diseases transparent polymer film
CN105347438A (zh) * 2014-12-18 2016-02-24 青岛木力新能源科技有限公司 一种利用反渗透亲水材料建设的污水处理设备
JP6598186B2 (ja) * 2015-01-27 2019-10-30 ジャパンマテックス株式会社 ePTFEフィルムの接着方法及びePTFEフィルム接合材
JP6521749B2 (ja) * 2015-06-01 2019-05-29 株式会社ブリヂストン 積層体及びタイヤ
TWM519743U (zh) * 2015-11-17 2016-04-01 Wei-Xian Lai 護目鏡片結構
CN105670350A (zh) * 2016-02-17 2016-06-15 上海新安纳电子科技有限公司 一种成膜硅溶胶及其制备方法与应用
CN106142789A (zh) * 2016-06-08 2016-11-23 韩立 农业用膜
JP6657028B2 (ja) * 2016-06-21 2020-03-04 株式会社ブリヂストン タイヤ
CN109714964A (zh) * 2016-07-06 2019-05-03 农作物增强公司 用于农业用途的无毒覆层浓缩液
JP6348197B1 (ja) * 2017-02-22 2018-06-27 竹本油脂株式会社 農業フィルム用コーティング剤組成物及び農業用改質熱可塑性高分子フィルム
CN107745558A (zh) * 2017-12-06 2018-03-02 徐州市贾汪区珞孜农业科技有限公司 一种农业用膜
CN112020543B (zh) * 2018-04-27 2022-05-24 巴斯夫涂料有限公司 作为水性涂料组合物中的流变助剂的表面改性氧化铝氢氧化物粒子
WO2020104699A1 (de) 2018-11-23 2020-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Beschichtete etfe-folie, verfahren zur herstellung und verwendung derselben
WO2020180837A1 (en) 2019-03-07 2020-09-10 Liquid X Printed Metals, Inc. Thermal cure dielectric ink
CN114450359B (zh) * 2019-09-27 2023-08-29 日东电工株式会社 可剥离涂膜、涂料组及亲水性涂膜形成用涂料
IT201900022593A1 (it) * 2019-11-29 2021-05-29 Maflon S P A Granulo idrofilo, uso e preparazione
CN113004773A (zh) * 2019-12-19 2021-06-22 深圳正峰印刷有限公司 一种亲水涂布液和亲水膜及其制备方法
EP3903570A1 (en) * 2020-04-29 2021-11-03 Instituto Politécnico de Coimbra Cork stabilization greenhouse and stabilization method
JP2023546422A (ja) * 2020-10-16 2023-11-02 エービー ルドヴィグ スヴェンソン 防曇効果を有する温室スクリーン
JP6991626B1 (ja) * 2021-06-11 2022-01-12 竹本油脂株式会社 高分子フィルム用コーティング剤組成物、並びにそれを用いた改質フィルムの製造方法及び改質フィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069181A (ja) 1983-09-26 1985-04-19 Mitsubishi Monsanto Chem Co 防曇剤組成物
JPH0753747A (ja) 1993-08-09 1995-02-28 Sumitomo Chem Co Ltd 農業用フィルム
JP2003049003A (ja) 2001-02-05 2003-02-21 Sekisui Chem Co Ltd 熱可塑性樹脂フィルム、塗布防曇剤及び農業用フィルム
JP2007063477A (ja) 2005-09-01 2007-03-15 Asahi Glass Co Ltd 無機塗料組成物、親水性塗膜及び農業用フィルム
JP2007099884A (ja) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd 無機塗料組成物の製造方法、親水性塗膜および農業用フィルム
JP2009030956A (ja) 2007-07-25 2009-02-12 Chunghwa Telecom Co Ltd エアコン設備調整・制御管理システム
JP2009030955A (ja) 2007-06-29 2009-02-12 Furukawa Sky Kk 熱交換器の熱交換部ユニット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074453A (zh) * 1992-01-17 1993-07-21 住友化学工业株式会社 聚烯烃树脂组合物和农用薄膜
JP2002080830A (ja) * 2000-09-08 2002-03-22 Toto Ltd 親水性部材およびその製造方法
JP2002192830A (ja) * 2000-12-25 2002-07-10 Konica Corp インクジェット記録用紙
JP4944311B2 (ja) * 2001-04-27 2012-05-30 積水化学工業株式会社 塗布防曇剤及び農業用フィルム
JP2003054118A (ja) * 2001-08-17 2003-02-26 Konica Corp インクジェット記録用紙
JP2004299300A (ja) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd 画像形成体および画像形成方法、ならびにこの画像形成体作成用の熱転写シート
JP2005126840A (ja) * 2003-10-22 2005-05-19 Seiko Epson Corp 記録用紙
WO2006060510A2 (en) * 2004-12-01 2006-06-08 Sasol North America Inc. High solids content boehmite alumina dispersions and coated substrates made therefrom
JP2006265525A (ja) * 2005-02-25 2006-10-05 Canon Finetech Inc 高分子化合物および被記録媒体
CN1786094A (zh) * 2005-06-28 2006-06-14 潘印华 卷材涂料组合物及其应用
US20080161471A1 (en) * 2006-02-10 2008-07-03 Mitsui Chemicals, Inc. Resin Composition for Sealing Material, Sealing Material, Sealing Method, and Electroluminescent Display
US20070196597A1 (en) * 2006-02-17 2007-08-23 Fujifilm Corporation Inorganic fine particle dispersion, method for forming same, ink jet recording medium and method for manufacturing same
JP2007228828A (ja) * 2006-02-28 2007-09-13 Sumitomo Chemical Co Ltd 農業用シート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069181A (ja) 1983-09-26 1985-04-19 Mitsubishi Monsanto Chem Co 防曇剤組成物
JPH0753747A (ja) 1993-08-09 1995-02-28 Sumitomo Chem Co Ltd 農業用フィルム
JP2003049003A (ja) 2001-02-05 2003-02-21 Sekisui Chem Co Ltd 熱可塑性樹脂フィルム、塗布防曇剤及び農業用フィルム
JP2007063477A (ja) 2005-09-01 2007-03-15 Asahi Glass Co Ltd 無機塗料組成物、親水性塗膜及び農業用フィルム
JP2007099884A (ja) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd 無機塗料組成物の製造方法、親水性塗膜および農業用フィルム
JP2009030955A (ja) 2007-06-29 2009-02-12 Furukawa Sky Kk 熱交換器の熱交換部ユニット
JP2009030956A (ja) 2007-07-25 2009-02-12 Chunghwa Telecom Co Ltd エアコン設備調整・制御管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397029A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103990A (ja) * 2011-11-14 2013-05-30 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物および、それを用いてなるフィルム、防曇用フィルム、抗菌用フィルム、並びにコーティング剤
JP2016189728A (ja) * 2015-03-31 2016-11-10 三菱製紙株式会社 調光シート
JP2017047530A (ja) * 2015-08-31 2017-03-09 デンカ株式会社 農業用フッ素含有積層フィルム及びそれを用いてなる農業用被覆資材
WO2017175824A1 (ja) * 2016-04-08 2017-10-12 デンカ株式会社 農業用フッ素系樹脂フィルム及び農業用被覆資材
JPWO2017175824A1 (ja) * 2016-04-08 2019-02-21 デンカ株式会社 農業用フッ素系樹脂フィルム及び農業用被覆資材
WO2018066584A1 (ja) 2016-10-05 2018-04-12 デンカ株式会社 樹脂組成物及びそれを用いた膜構造物
JP2023509128A (ja) * 2019-12-31 2023-03-07 サン-ゴバン パフォーマンス プラスティックス コーポレイション チューブおよびチューブの製造方法
WO2021192407A1 (ja) * 2020-03-25 2021-09-30 竹本油脂株式会社 高分子フィルム用コーティング剤組成物及びそれを用いた改質フィルムの製造方法並びに改質フィルム

Also Published As

Publication number Publication date
US20110274914A1 (en) 2011-11-10
CN102307958B (zh) 2014-04-09
EP2397029A4 (en) 2012-11-14
EP2397528A1 (en) 2011-12-21
EP2397528B1 (en) 2016-04-20
WO2010092991A1 (ja) 2010-08-19
EP2397029B1 (en) 2013-09-18
US20110274912A1 (en) 2011-11-10
US8349442B2 (en) 2013-01-08
CN102316718B (zh) 2014-02-19
JPWO2010092990A1 (ja) 2012-08-16
EP2397528A4 (en) 2012-11-14
CN102307958A (zh) 2012-01-04
JP5614288B2 (ja) 2014-10-29
EP2397029A1 (en) 2011-12-21
JP5621597B2 (ja) 2014-11-12
CN102316718A (zh) 2012-01-11
JPWO2010092991A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5621597B2 (ja) 農業用フィルム
EP1760120B1 (en) Inorganic coating composition, hydrophilic coating and agricultural film
US10208223B2 (en) Fluoropolymer coatings comprising aziridine compounds
JP5968469B2 (ja) 無機酸化物ナノ粒子及び有機塩基を含む塩基性組成物、コーティングされた基材、物品、及び方法
JP2014534289A (ja) コーティング組成物およびそれから製造される反射防止コーティング
JP5761346B2 (ja) 無機親水性コート液、それから得られる親水性被膜及びこれを用いた部材
CN101501130A (zh) 低折射率组合物
JP2009234048A (ja) フィルムおよびその製造方法
CN101501118A (zh) 低折射率组合物
JP6443041B2 (ja) シリカゾル分散液及びシリカ多孔質膜形成用組成物
JP6328006B2 (ja) 防眩性付与剤
JP5298401B2 (ja) 無機塗料組成物の製造方法、親水性塗膜および農業用フィルム
KR101606738B1 (ko) 방오성 코팅제로 코팅된 영상판에 사용하는 영상 타일 및 이를 사용한 영상판
JPH0559300A (ja) コーテイング組成物
JP6455142B2 (ja) シリカゾル分散液及びシリカ多孔質膜形成用組成物
JP2000262367A (ja) 防曇鏡およびその製造方法
JP6713760B2 (ja) ゲルの製造方法、空隙構造フィルム製造用塗料の製造方法、および空隙構造フィルムの製造方法
JP2007112861A (ja) 無機塗料組成物の製造方法、親水性塗膜および物品
JP6997081B2 (ja) 農業用フッ素系樹脂フィルム及び農業用被覆資材
JP2017061604A (ja) 低屈折率膜製造用ゲル、低屈折率膜製造用ゲルの製造方法、低屈折率膜製造用塗料、低屈折率膜製造用塗料の製造方法、積層フィルムの製造方法および画像表示装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007858.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550542

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010741267

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE