WO2010091805A2 - Verfahren zum abtrennen von stickstoff - Google Patents

Verfahren zum abtrennen von stickstoff Download PDF

Info

Publication number
WO2010091805A2
WO2010091805A2 PCT/EP2010/000615 EP2010000615W WO2010091805A2 WO 2010091805 A2 WO2010091805 A2 WO 2010091805A2 EP 2010000615 W EP2010000615 W EP 2010000615W WO 2010091805 A2 WO2010091805 A2 WO 2010091805A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
fraction
feed
rich
heat exchanger
Prior art date
Application number
PCT/EP2010/000615
Other languages
English (en)
French (fr)
Other versions
WO2010091805A3 (de
Inventor
Rainer Sapper
Georg Schopfer
Daniel Garthe
Arndt-Erik Schael
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to RU2011137412/06A priority Critical patent/RU2524312C2/ru
Priority to MX2011007887A priority patent/MX2011007887A/es
Priority to AU2010213189A priority patent/AU2010213189B2/en
Priority to US13/148,484 priority patent/US8435403B2/en
Publication of WO2010091805A2 publication Critical patent/WO2010091805A2/de
Priority to NO20111226A priority patent/NO20111226A1/no
Publication of WO2010091805A3 publication Critical patent/WO2010091805A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system

Definitions

  • the invention relates to a process for separating a nitrogen-rich fraction from a feed fraction containing essentially nitrogen and hydrocarbons, wherein the feed fraction is partially condensed and rectified into a nitrogen-rich and a methane-rich fraction.
  • the feed fraction containing essentially nitrogen and hydrocarbons which originates, for example, from an upstream LNG plant, is introduced. It preferably has a pressure which is greater than 25 bar. It may have been subjected to a pretreatment such as sulfur removal, carbon dioxide removal, drying, etc. In the heat exchanger E1 it is cooled against process streams, which will be discussed in more detail below, and partially condensed. After the valve d, the partially condensed feed fraction is then fed via line 1 'to a high-pressure column T1.
  • This high-pressure column T1 together with the low-pressure column T2, forms a double column T1 / T2.
  • a hydrocarbon-rich liquid fraction is withdrawn via line 2, subcooled in the heat exchanger E2 against process streams, which will be discussed in more detail below, and then fed via line 2 'and expansion valve a to the low-pressure column T2 in the upper region.
  • a liquid nitrogen-rich fraction is withdrawn from the upper region of the pre-separation column T1.
  • a partial stream of this fraction is added via line 3 1 as reflux to the pre-separation column T1.
  • the withdrawn via line 3 Nitrogen-rich fraction is supercooled in the heat exchanger E2 and fed via line 3 "and expansion valve b of the low pressure column T2 above the feed point of the above-described methane-rich fraction.
  • a methane-rich liquid fraction which in addition to methane includes the higher hydrocarbons contained in the feed fraction withdrawn. Their nitrogen content is typically less than 5 mole%.
  • the methane-rich fraction is pumped by the pump P to the highest possible pressure - this is usually between 5 and 15 bar - pumped.
  • the methane-rich liquid fraction is heated and optionally partially evaporated. Via line 5 1 , it is then fed to the heat exchanger E1 and completely evaporated in this against the feed fraction to be cooled and superheated.
  • the methane-rich fraction is then compressed to the desired discharge pressure, which is usually more than 25 bar, and withdrawn from the process via line 5 ".
  • NRUs Nelculation Unit
  • Nitrogen separation from nitrogen / hydrocarbon mixtures is always carried out when an increased nitrogen content prevents the intended use of the nitrogen / hydrocarbon mixture. For example, one exceeds
  • NRUs Nitrogen content of more than 5 mol% Typical specifications of natural gas pipelines in which the nitrogen / hydrocarbon mixture is transported. Even gas turbines can only be operated up to a certain nitrogen content in the fuel gas.
  • Such NRUs are typically constructed similarly to an air fractionator with a double column, such as described with reference to FIG 1, as Monef process unit and arranged as a rule in a so-called. CoId box.
  • NRU feed gas nitrogen and hydrocarbons-containing feed fraction
  • U. may last longer than a week. This long warm start-up startup time is lost as production time and can therefore lead to significant financial losses. This is particularly the case when the NRU is integrated with other installations whose production depends on the functioning of the NRU; LNG plants with a fuel gas treatment for gas turbines by the NRU are mentioned as examples.
  • the object of the present invention is to provide a generic method for separating a nitrogen-rich fraction from a feed fraction containing essentially nitrogen and hydrocarbons, which avoids the disadvantages described above.
  • a generic method for separating a nitrogen-rich fraction from a feed fraction containing essentially nitrogen and hydrocarbons is proposed, which is characterized in that the (n) separation column (n) used for the rectification separation during an interruption of the feed fraction ( n) and the heat exchangers used for the partial condensation of the feed fraction and the cooling and heating of resulting in the rectificational separation process streams heat exchanger are maintained by means of one or more different cooling media at temperature levels substantially the temperature levels during normal operation of the separation column (s) and correspond to the heat exchanger.
  • a temperature level is to be understood that differs by no more than 20 K from the temperature level prevailing during normal operation and which ensures that none Disadvantages associated with the heating of the separation column (s) and / or the heat exchanger occur.
  • the cooling medium is a hydrocarbon-rich fraction, preferably liquefied natural gas (LNG), boil-off gas, liquid and / or gaseous nitrogen is used.
  • the NRU is now kept cold during an interruption of the supply of the feed fraction by the separation column (s), lines, pumps, heat exchangers, etc. of the NRU are cooled during the interruption period by supplying one or more different cooling media.
  • Embodiments discussed only the differences from the procedure shown in the figure 1.
  • the double separation column T1 / T2 is closed during the interruption of the feed fraction - the valves c and d in the line 1 or 1 'are closed during this period - via the lines 6 to 6 a cooling medium, preferably liquefied natural gas (LNG), suitable for the cooling of the columns T1 and T2 is fed in.
  • a cooling medium preferably liquefied natural gas (LNG)
  • LNG liquefied natural gas
  • the supply of liquefied natural gas via the lines 6 and 6 'in the low-pressure column T2 is of particular importance, since in the case of heating of this column, the liquid evaporated in it to the atmosphere or in a torch system must be delivered. If it comes to a warming of the high-pressure column T1 and an associated evaporation of the liquid contained in it, the resulting gas would condense again due to the capacitor E3. However, this recondensation only works as long as there is a sufficiently large and cold amount of liquid in the bottom of the separation column T2. Nevertheless, in the case of a longer interruption also a supply of cooling medium via the lines 6 "and 6 '" in the column T1 is required, but at least useful. In particular, leaks at the valves a and b lead to prolonged downtime to fluid losses in the high-pressure column T1.
  • a cooling medium is passed through the heat exchanger E1.
  • This cooling medium must have a temperature which is similar to the temperature which the feed fraction fed to the heat exchanger E1 in the normal operation via the line 1 has.
  • gaseous nitrogen is advantageously used. After passing through the heat exchanger E1, the nitrogen is released via line T to the atmosphere.
  • a cooling medium is passed through the heat exchangers E 2 and E 1 via the line sections 8, 4 1 and 4 "This cooling medium, which is advantageously cold, gaseous nitrogen, has a temperature which is similar to the temperature of the The nitrogen-rich stream withdrawn in normal operation via line 4.
  • the supply of the cooling medium (s) to the heat exchangers E1 and E2 must in practice be designed in such a way that the lines between the heat exchangers and the columns are cooled as completely as possible.
  • the temperature profiles of the columns T1 / T2 and the heat exchanger E1 / E2 can be maintained during the interruption period, so that after completion of the
  • FIG. 4 A further advantageous embodiment of the method according to the invention is shown in FIG.
  • warm, gaseous nitrogen and liquefied natural gas are mixed via the lines 10 and 11 and fed via line 12 to the line section 4 and led through the line sections 4 1 and 4 "through the heat exchangers E 2 and E 1.
  • the supply of a further cooling medium via line 9 Optionally, it can be implemented as described above
  • the embodiment of the method according to the invention shown in FIG. 4 has the advantage that the often expensive provision of cold nitrogen can be dispensed with.
  • Separation process or the NRU in a LNG or NGL plant can also be used accumulating boil-off gas as a cooling medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion, wobei die Einsatzfraktion partiell kondensiert und rektifikatorisch in eine Stickstoff-reiche und eine Methan-reiche Fraktion aufgetrennt wird, beschrieben. Erfindungsgemäß werden während einer Unterbrechung der Zuführung der Einsatzfraktion die für die rektifikatorische Auftrennung verwendete(n) Trennkolonne(n) (T1/T2) sowie die für die partielle Kondensation (E1) der Einsatzfraktion und die der Abkühlung und Anwärmung von bei der rektifikatorischen Auftrennung anfallenden Verfahrensströmen dienenden Wärmetauscher (E2) mittels eines oder mehrerer unterschiedlicher Kühlmedien (6 - 11 ) auf Temperaturniveaus gehalten, die im Wesentlichen den Temperaturniveaus während des Normalbetriebes der Trennkolonne(n) (T1/T2) und der Wärmetauscher (E1, E2) entsprechen.

Description

Beschreibung
Verfahren zum Abtrennen von Stickstoff
Die Erfindung betrifft ein Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion, wobei die Einsatzfraktion partiell kondensiert und rektifikatorisch in eine Stickstoff-reiche und eine Methan-reiche Fraktion aufgetrennt wird.
Ein gattungsgemäßes Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion sei nachfolgend anhand des in der Figur 1 dargestellten Prozesses erläutert.
Über Leitung 1 wird die im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltende Einsatzfraktion, die bspw. aus einer vorgeschalteten LNG-Anlage stammt, herangeführt. Sie weist vorzugsweise einen Druck auf, der größer als 25 bar ist. Sie wurde ggf. einer Vorbehandlung, wie Schwefelentfernung, Kohlendioxid-Entfernung, Trocknung, etc., unterworfen. Im Wärmetauscher E1 wird sie gegen Verfahrensströme, auf die im Folgenden noch näher eingegangen werden wird, abgekühlt und partiell kondensiert. Nach dem Ventil d wird die partiell kondensierte Einsatzfraktion anschließend über Leitung 1' einer Hochdruckkolonne T1 zugeführt.
Diese Hochdruckkolonne T1 bildet zusammen mit der Niederdruckkolonne T2 eine Doppelkolonne T1/T2. Die thermische Kopplung der Trennkolonnen T1 und T2 erfolgt über den Kondensator/Aufkocher E3.
Aus dem Sumpf der Hochdruckkolonne T1 wird über Leitung 2 eine Kohlenwasserstoffreiche Flüssigfraktion abgezogen, im Wärmetauscher E2 gegen Verfahrensströme, auf die im Folgenden noch näher eingegangen werden wird, unterkühlt und anschließend über Leitung 2' und Entspannungsventil a der Niederdruckkolonne T2 im oberen Bereich zugeführt.
Über Leitung 3 wird aus dem oberen Bereich der Vortrennkolonne T1 eine flüssige Stickstoff-reiche Fraktion abgezogen. Ein Teilstrom dieser Fraktion wird über Leitung 31 als Rücklauf auf die Vortrennkolonne T1 gegeben. Die über Leitung 3 abgezogene Stickstoff-reiche Fraktion wird im Wärmetauscher E2 unterkühlt und über die Leitung 3" und Entspannungsventil b der Niederdruckkolonne T2 oberhalb des Einspeisepunktes der vorbeschriebenen Methan-reichen Fraktion zugeführt.
Über Leitung 4 wird am Kopf der Niederdruckkolonne T2 eine Stickstoff-reiche
Gasfraktion abgezogen. Deren Methan-Gehalt beträgt typischerweise weniger als 1 Mol-%. In den Wärmetauschern E2 und E1 wird die Stickstoff-reiche Fraktion anschließend angewärmt und ggf. überhitzt, bevor sie über Leitung 4" abgezogen und in die Atmosphäre entlassen oder ggf. einer anderen Verwendung zugeführt wird.
Über Leitung 5 wird aus dem Sumpf der Niederdruckkolonne T2 eine Methan-reiche Flüssigfraktion, die neben Methan die in der Einsatzfraktion enthaltenen höheren Kohlenwasserstoffe beinhaltet, abgezogen. Deren Stickstoff-Gehalt beträgt typischerweise weniger als 5 Mol-%. Die Methan-reiche Fraktion wird mittels der Pumpe P auf einen möglichst hohen Druck - dieser liegt üblicherweise zwischen 5 und 15 bar - gepumpt. Im Wärmetauscher E2 wird die Methan-reiche Flüssigfraktion angewärmt und ggf. teilverdampft. Über Leitung 51 wird sie anschließend dem Wärmetauscher E1 zugeführt und in diesem gegen die abzukühlende Einsatzfraktion vollständig verdampft und überhitzt.
Mittels des Verdichters V wird die Methan-reiche Fraktion anschließend auf den gewünschten Abgabedruck, der im Regelfall mehr als 25 bar beträgt, verdichtet und über Leitung 5" aus dem Prozess abgezogen.
Gattungsgemäße Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion werden in sog. NRUs (Nitrogen Rejection Unit) realisiert. Eine Stickstoff-Abtrennung aus Stickstoff/Kohlenwasserstoff-Gemischen wird immer dann durchgeführt, wenn ein erhöhter Stickstoff-Gehalt die bestimmungsgemäße Verwendung des Stickstoff/Kohlenwasserstoff-Gemisches verhindert. So überschreitet bspw. ein
Stickstoff-Gehalt von mehr als 5 Mol-% typische Spezifikationen von Erdgaspipelines, in denen das Stickstoff/Kohlenwasserstoff-Gemisch transportiert wird. Auch Gasturbinen können nur bis zu einem bestimmten Stickstoff-Gehalt im Brenngas betrieben werden. Derartige NRUs werden in der Regel ähnlich einem Luftzerleger mit einer Doppelkolonne, wie bspw. anhand der Figur 1 beschrieben, als zentralef Prozesseinheit gebaut und im Regelfall in einer sog. CoId Box angeordnet.
Abhängig von dem Einsatzgebiet, kann die Verfügbarkeit einer NRU von großer
Bedeutung sein. Ein Hindernis für eine hohe Verfügbarkeit ist die lange Zeitdauer, die benötigt wird, um den Prozess nach Ausfall der im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion (NRU-Einsatzgas) erneut in Betrieb zu nehmen. Ausfälle des NRU-Einsatzgases können abhängig von den vorgeschalteten Prozessen bzw. Anlagen mehrmals pro Jahr auftreten, bspw. durch den Ausfall eines vorgeschalteten NRU-Einsatzgasverdichters oder einer vorgeschalteten LNG/NGL-Anlage. Darüber hinaus kann es innerhalb der NRU zu einer Störung kommen, die eine Unterbrechung der Zuführung des NRU-Einsatzgases erforderlich macht.
In diesem Zusammenhang ist zwischen der Neuinbetriebnahme aus dem warmen Zustand (Warm Start-up) und dem kalten Zustand (CoId Restart) zu unterscheiden. Der Warm Start-up ist vergleichsweise zeitintensiv, da das komplette Equipment erneut auf tiefkalte Temperaturen abgekühlt werden muss und die Flüssigstände im Prozess aufgebaut werden müssen. Ein CoId Restart nach vergleichsweise kurzen Ausfällen des NRU-Einsatzgases - hierunter sind Ausfallzeiten zwischen wenigen Minuten und 24 Stunden zu verstehen - aus dem kalten Zustand heraus, kann hingegen relativ schnell durchgeführt werden.
Während eines Stillstandes der NRU kommt es aufgrund von unvermeidlichen Isolationsverlusten zu einer Erwärmung der Trennkolonne(n) sowie der Wärmetauscher, Leitungen, etc. Nach einer bestimmten Anwärmzeit, die von der Anlagengröße und den Umgebungsbedingungen bestimmt wird, ist ein CoId Restart nicht mehr möglich. Der Grund hierfür liegt in den zwangsläufig auftretenden, unzulässigen mechanischen Spannungen, die dann auftreten, wenn die (teilweise) aufgewärmten Wärmetauscher mit kalten Flüssigkeiten oder Gasen aus dem Prozess beaufschlagt werden. In einem derartigen Fall muss die NRU daher auf Umgebungstemperatur angewärmt werden, bevor ein Warm Start-up durchgeführt werden kann. Im Falle längerer Ausfälle des NRU-Einsatzgases, die durch Anlagenfehler oder Wartungsarbeiten verursacht sein können, muss die NRU daher vollständig angewärmt werden, bevor ein zeitintensiver Warm Start-up durchgeführt werden kann. Diese Prozedur kann u. U. länger als eine Woche andauern. Diese lange Warm Start-up- Anfahrzeit geht als Produktionszeit verloren und kann daher zu erheblichen finanziellen Verlusten führen. Dies ist insbesondere dann der Fall, wenn die NRU in andere Anlagen, deren Produktion von der Funktionsfähigkeit der NRU abhängig ist, integriert ist; beispielhaft genannt seien LNG-Anlagen mit einer Brenngasaufbereitung für Gasturbinen durch die NRU.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion anzugeben, das die vorbeschriebenen Nachteile vermeidet.
Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion vorgeschlagen, das dadurch gekennzeichnet ist, dass während einer Unterbrechung der Zuführung der Einsatzfraktion die für die rektifikatorische Auftrennung verwendete(n) Trennkolonne(n) sowie die für die partielle Kondensation der Einsatzfraktion und die der Abkühlung und Anwärmung von bei der rektifikatorischen Auftrennung anfallenden Verfahrensströmen dienenden Wärmetauscher mittels eines oder mehrerer unterschiedlicher Kühlmedien auf Temperaturniveaus gehalten werden, die im Wesentlichen den Temperaturniveaus während des Normalbetriebes der Trennkolonne(n) und der Wärmetauscher entsprechen.
Unter der Begriffsfolge "auf einem Temperaturniveau halten, das im Wesentlichen dem Temperaturniveau während des Normalbetriebes entspricht" sei ein Temperaturniveau zu verstehen, dass sich um nicht mehr als 20 K von dem Temperaturniveau, das während des Normalbetriebes herrscht, unterscheidet und das sicherstellt, dass keine mit der Anwärmung der Trennkolonne(n) und/oder der Wärmetauscher verbundenen Nachteile auftreten. Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion ist dadurch gekennzeichnet, dass als Kühlmedium eine Kohlenwasserstoff-reiche Fraktion, vorzugsweise verflüssigtes Erdgas (LNG), Boil-off-Gas, flüssiger und/oder gasförmiger Stickstoff verwendet wird bzw. werden.
Erfindungsgemäß wird während einer Unterbrechung der Zuführung der Einsatzfraktion nunmehr die NRU dadurch kalt gehalten, indem durch die Zuführung eines oder mehrerer unterschiedlicher Kühlmedien die Trennkolonne(n), Leitungen, Pumpen, Wärmetauscher, etc. der NRU während des Unterbrechungszeitraumes gekühlt werden.
Das erfindungsgemäße Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion sowie weitere vorteilhafte Ausgestaltungen desselben, die Gegenstände der abhängigen Patentansprüche darstellen, seien im Folgenden anhand der in den Figuren 2 bis 4 dargestellten Ausführungsbeispiele näher erläutert.
Nachfolgend wird bei der Erläuterung der in den Figuren 2 bis 4 dargestellten
Ausführungsbeispiele nur auf die Unterschiede zu der in der Figur 1 dargestellten Verfahrensweise eingegangen.
Bei der in der Figur 2 dargestellten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Doppeltrennkolonne T1/T2 während der Unterbrechung der Zuführung der Einsatzfraktion - die Ventile c und d in der Leitung 1 bzw. 1' sind während dieses Zeitraumes geschlossen - über die Leitungen 6 bis 6'" ein für die Kühlung der Kolonnen T1 und T2 geeignetes Kühlmedium, vorzugsweise verflüssigtes Erdgas (LNG), zugeführt. In den Figuren 2 bis 4 nicht dargestellt sind die in den Leitungen 6 bis 6'" vorzusehenden Regelventile, mittels derer die Kühlmediummengen geregelt werden können.
Die Zuführung von verflüssigtem Erdgas über die Leitungen 6 und 6' in die Niederdruckkolonne T2 ist hierbei von besonderer Bedeutung, da im Falle der Erwärmung dieser Kolonne die in ihr verdampfte Flüssigkeit an die Atmosphäre bzw. in ein Fackelsystem abgegeben werden muss. Kommt es zu einer Anwärmung der Hochdruckkolonne T1 und einem damit verbundenen Verdampfen der in ihr enthaltenen Flüssigkeit, so würde das entstandene Gas aufgrund des Kondensators E3 erneut kondensieren. Dieses Rückkondensieren funktioniert jedoch nur so lange im Sumpf der Trennkolonne T2 eine ausreichend große und kalte Flüssigkeitsmenge vorhanden ist. Nichtsdestotrotz ist im Falle einer längeren Unterbrechung auch eine Zuführung von Kühlmedium über die Leitungen 6" und 6'" in die Kolonne T1 erforderlich, zumindest jedoch sinnvoll. Insbesondere Undichtigkeiten an den Ventilen a und b führen bei längeren Stillstandzeiten zu Flüssigkeitsverlusten in der Hochdruckkolonne T1.
Über die Leitungsabschnitte 7,1 und T wird ein Kühlmedium durch den Wärmetauscher E1 geführt. Dieses Kühlmedium muss eine Temperatur aufweisen, die ähnlich der Temperatur ist, die die im Normalbetrieb über die Leitung 1 dem Wärmetauscher E1 zugeführte Einsatzfraktion aufweist. Als Kühlmedium kommt in vorteilhafter weise warmer, gasförmiger Stickstoff zur Anwendung. Nach Durchgang durch den Wärmetauscher E1 wird der Stickstoff über Leitung T an die Atmosphäre abgegeben.
Des Weiteren wird über die Leitungsabschnitte 8, 41 und 4" ein Kühlmedium durch die Wärmetauscher E2 und E1 geführt. Dieses Kühlmedium, bei dem es sich in vorteilhafter weise um kalten, gasförmigen Stickstoff handelt, weist eine Temperatur auf, die ähnlich der Temperatur des im Normalbetrieb über Leitung 4 abgezogenen Stickstoff-reichen Stromes ist. Die Zuführung des bzw. der Kühlmedien zu den Wärmetauschern E1 und E2 ist in der Praxis so auszugestalten, dass die Leitungen zwischen den Wärmetauschern und den Kolonnen möglichst vollständig mitgekühlt werden.
Mittels der vorbeschriebenen Kühlmedienströme können die Temperaturprofile der Kolonnen T1/T2 sowie der Wärmetauscher E1/E2 während des Unterbrechungszeitraumes gehalten werden, so dass nach Beendigung des
Unterbrechungszeitraumes ein schnelles Wiederanfahren des Trennprozesses bzw. der NRU realisiert werden kann, ohne dass unerwünschte thermische Spannungen an den Materialien der Kolonnen, Wärmetauscher, etc. auftreten. Bei der in der Figur 3 dargestellten Ausgestaltung des erfindungsgemäßen Verfahrens wird über die Leitungsabschnitte 9, 5' und 9" ein weiteres Kühlmedium durch die Wärmetauscher E2 und E1 geführt. Hierbei kommt als Kühlmedium vorzugsweise kalte, gasförmiger Stickstoff oder verflüssigtes Erdgas zur Anwendung. Mittels dieser Ausgestaltung wird das Kalthalten des Trennprozesses bzw. der NRU zusätzlich unterstützt.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist in der Figur 4 dargestellt. Bei dieser werden über die Leitungen 10 und 11 warmer, gasförmiger Stickstoff und verflüssigtes Erdgas gemischt und über Leitung 12 dem Leitungsabschnitt 4 zugeführt und über die Leitungsabschnitte 41 und 4" durch die Wärmetauscher E2 und E1 geführt. Die Zuführung eines weiteren Kühlmediums über Leitung 9, wie sie vorstehend beschrieben wurde, kann optional realisiert werden. Die in der Figur 4 dargestellte Ausgestaltung des erfindungsgemäßen Verfahrens hat den Vorteil, dass auf die oft aufwändige Bereitstellung von kaltem Stickstoff verzichtet werden kann.
Es ist offensichtlich, dass neben dem erwähnten verflüssigten Erdgas und Stickstoff auch andere ein- oder mehrkomponentige, gasförmige oder flüssige Medien als Kühlmedien zur Anwendung kommen können. Im Falle der Einbindung des
Trennprozesses bzw. der NRU in eine LNG- oder NGL-Anlage kann auch anfallendes Boil-off-Gas als Kühlmedium verwendet werden.
Mittels der erfindungsgemäßen Verfahrensweise kann nunmehr auch nach längeren Unterbrechungen der Zuführung des NRU-Einsatzgases eine schnelle Aufnahme des Normalbetriebes realisiert werden, da die die NRU bildenden Apparate (Trennkolonnen, Wärmetauscher, etc.) mittels des oder der Kühlmedien auf den Temperaturniveaus gehalten werden, die im Wesentlichen den Temperaturniveaus während des Normalbetriebes der NRU entsprechen.
Der für das erfindungsgemäße Verfahren erforderliche apparative und verfahrenstechnische Mehraufwand, dies schließt die Bereitstellung des bzw. der erforderlichen Kühlmedien ein, ist vergleichsweise gering, so dass die mit dem erfindungsgemäßen Verfahren erzielten Vorteile diesen Mehraufwand zweifelsohne rechtfertigen.

Claims

Patentansprüche
1. Verfahren zum Abtrennen einer Stickstoff-reichen Fraktion aus einer im Wesentlichen Stickstoff und Kohlenwasserstoffe enthaltenden Einsatzfraktion,
- wobei die Einsatzfraktion partiell kondensiert und rektifikatorisch in eine Stickstoff- reiche und eine Methan-reiche Fraktion aufgetrennt wird, dadurch gekennzeichnet, dass während einer Unterbrechung der Zuführung der Einsatzfraktion die für die rektifikatorische Auftrennung verwendete(n) Trennkolonne(n) (T1/T2) sowie die für die partielle Kondensation (E1) der Einsatzfraktion und die der Abkühlung und Anwärmung von bei der rektifikatorischen Auftrennung anfallenden Verfahrensströmen dienenden
Wärmetauscher (E2) mittels eines oder mehrerer unterschiedlicher Kühlmedien (6 - 11) auf Temperatumiveaus gehalten werden, die im Wesentlichen den Temperaturniveaus während des Normalbetriebes der Trennkolonne(n) (T1/T2) und der Wärmetauscher (E1 , E2) entsprechen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Kühlmedium (6 - 11) eine Kohlenwasserstoff-reiche Fraktion, vorzugsweise verflüssigtes Erdgas (LNG), Boil-off-Gas, flüssiger und/oder gasförmiger Stickstoff verwendet wird bzw. werden.
PCT/EP2010/000615 2009-02-10 2010-02-02 Verfahren zum abtrennen von stickstoff WO2010091805A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011137412/06A RU2524312C2 (ru) 2009-02-10 2010-02-02 Способ удаления азота
MX2011007887A MX2011007887A (es) 2009-02-10 2010-02-02 Metodo para separar nitrogeno.
AU2010213189A AU2010213189B2 (en) 2009-02-10 2010-02-02 Method for removing nitrogen
US13/148,484 US8435403B2 (en) 2009-02-10 2010-02-02 Process for removing nitrogen
NO20111226A NO20111226A1 (no) 2009-02-10 2011-09-09 Fremgangsmate for utskillelse av nitrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008229.8 2009-02-10
DE102009008229A DE102009008229A1 (de) 2009-02-10 2009-02-10 Verfahren zum Abtrennen von Stickstoff

Publications (2)

Publication Number Publication Date
WO2010091805A2 true WO2010091805A2 (de) 2010-08-19
WO2010091805A3 WO2010091805A3 (de) 2013-04-18

Family

ID=42317491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/000615 WO2010091805A2 (de) 2009-02-10 2010-02-02 Verfahren zum abtrennen von stickstoff

Country Status (7)

Country Link
US (1) US8435403B2 (de)
AU (1) AU2010213189B2 (de)
DE (1) DE102009008229A1 (de)
MX (1) MX2011007887A (de)
NO (1) NO20111226A1 (de)
RU (1) RU2524312C2 (de)
WO (1) WO2010091805A2 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036366A1 (de) 2009-08-06 2011-02-10 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff
FR2971331B1 (fr) 2011-02-09 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation cryogenique d'un debit riche en methane
US9487458B2 (en) 2014-02-28 2016-11-08 Fluor Corporation Configurations and methods for nitrogen rejection, LNG and NGL production from high nitrogen feed gases
DE102015004120A1 (de) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff aus einer Kohlenwasserstoff-reichen Fraktion
TWI603044B (zh) 2015-07-10 2017-10-21 艾克頌美孚上游研究公司 使用液化天然氣製造液化氮氣之系統與方法
TWI606221B (zh) 2015-07-15 2017-11-21 艾克頌美孚上游研究公司 一倂移除溫室氣體之液化天然氣的生產系統和方法
TWI608206B (zh) 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 藉由預冷卻天然氣供給流以增加效率的液化天然氣(lng)生產系統
KR102137939B1 (ko) * 2015-12-14 2020-07-27 엑손모빌 업스트림 리서치 캄파니 액체 질소로 보강된, 팽창기-기반 lng 생산 방법
SG11201803521SA (en) 2015-12-14 2018-06-28 Exxonmobil Upstream Res Co Method of natural gas liquefaction on lng carriers storing liquid nitrogen
KR102137940B1 (ko) 2015-12-14 2020-07-27 엑손모빌 업스트림 리서치 캄파니 액화 질소를 사용하여 액화 천연 가스로부터 질소를 분리하기 위한 방법 및 시스템
SG11201906786YA (en) 2017-02-24 2019-09-27 Exxonmobil Upstream Res Co Method of purging a dual purpose lng/lin storage tank
US11536510B2 (en) 2018-06-07 2022-12-27 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2020036711A1 (en) 2018-08-14 2020-02-20 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
JP7179155B2 (ja) 2018-08-22 2022-11-28 エクソンモービル アップストリーム リサーチ カンパニー 高圧エキスパンダプロセスのための一次ループ始動方法
JP7179157B2 (ja) 2018-08-22 2022-11-28 エクソンモービル アップストリーム リサーチ カンパニー 高圧エキスパンダプロセスのための熱交換器構成及びそれを用いた天然ガス液化方法
CA3109918C (en) 2018-08-22 2023-05-16 Exxonmobil Upstream Research Company Managing make-up gas composition variation for a high pressure expander process
WO2020106397A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
WO2020106394A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
WO2020159671A1 (en) 2019-01-30 2020-08-06 Exxonmobil Upstream Research Company Methods for removal of moisture from lng refrigerant
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11686528B2 (en) 2019-04-23 2023-06-27 Chart Energy & Chemicals, Inc. Single column nitrogen rejection unit with side draw heat pump reflux system and method
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
WO2021055020A1 (en) 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
KR20220062653A (ko) 2019-09-24 2022-05-17 엑손모빌 업스트림 리서치 캄파니 선박의 이중 목적 극저온 탱크 또는 lng 및 액화 질소용 부유식 저장 유닛용 화물 스트리핑 기능

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125934A (en) * 1990-09-28 1992-06-30 The Boc Group, Inc. Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) * 1990-09-28 1993-06-22 The Boc Group, Inc. Argon recovery from argon-oxygen-decarburization process waste gases
US5233839A (en) * 1991-03-13 1993-08-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for operating a heat exchanger
FR2682964B1 (fr) * 1991-10-23 1994-08-05 Elf Aquitaine Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane.
DE4135302A1 (de) * 1991-10-25 1993-04-29 Linde Ag Anlage zur tieftemperaturzerlegung von luft
JP3373013B2 (ja) * 1993-11-16 2003-02-04 日本エア・リキード株式会社 窒素ガス製造装置
DE19919932A1 (de) * 1999-04-30 2000-11-02 Linde Ag Verfahren zum Gewinnen einer Reinmethanfraktion
FR2825119B1 (fr) * 2001-05-23 2003-07-25 Air Liquide Procede et installation d'alimentation d'une unite de separation d'air au moyen d'une turbine a gaz
GB0116977D0 (en) * 2001-07-11 2001-09-05 Boc Group Plc Nitrogen rejection method and apparatus
GB0220791D0 (en) * 2002-09-06 2002-10-16 Boc Group Plc Nitrogen rejection method and apparatus
GB0226983D0 (en) * 2002-11-19 2002-12-24 Boc Group Plc Nitrogen rejection method and apparatus
RU2265778C1 (ru) * 2004-04-30 2005-12-10 Савинов Михаил Юрьевич Способ очистки и разделения смеси ректификацией
KR101188502B1 (ko) * 2004-07-01 2012-10-08 바스프 에스이 프로판으로부터 아크롤레인, 아크릴산, 또는 이들의혼합물의 제조 방법
US7552599B2 (en) * 2006-04-05 2009-06-30 Air Products And Chemicals, Inc. Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen
DE102010020282A1 (de) * 2010-05-12 2011-11-17 Linde Aktiengesellschaft Stickstoff-Abtrennung aus Erdgas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
NO20111226A1 (no) 2011-09-09
DE102009008229A1 (de) 2010-08-12
RU2524312C2 (ru) 2014-07-27
AU2010213189B2 (en) 2016-01-14
MX2011007887A (es) 2011-08-15
WO2010091805A3 (de) 2013-04-18
RU2011137412A (ru) 2013-03-20
US20120041248A1 (en) 2012-02-16
AU2010213189A1 (en) 2011-08-18
US8435403B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
WO2010091805A2 (de) Verfahren zum abtrennen von stickstoff
EP2386814B1 (de) Stickstoff-Abtrennung aus Erdgas
EP0895045B1 (de) Verfahren zur Luftzerlegung
DE102007010032A1 (de) Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
DE102008007925A1 (de) Verfahren zur Helium-Gewinnung
WO2020083528A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2006092266A1 (de) Verfahren zum gleichzeitigen gewinnen einer helium-und einer stickstoff-reinfraktion
DE102009008230A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE4415747C2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2010112206A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
WO2010094396A2 (de) Verfahren zum abtrennen von stickstoff
EP2669613A1 (de) Verfahren und Vorrichtung zur Stickstoffverflüssigung
DE102007047147A1 (de) Verfahren zur Heliumanreicherung
EP2347206B1 (de) Verfahren zum abtrennen von stickstoff
DE69414282T2 (de) Verfahren und Anlage zur Herstellung von Drucksauerstoff
DE102006021620A1 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE19821242A1 (de) Verfahren und Vorrichtung zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2016155863A1 (de) Verfahren zum abtrennen von stickstoff aus einer kohlenwasserstoff-reichen fraktion
DE102010035230A1 (de) Verfahren zum Abtrennen von Stickstoff aus Erdgas
EP2347205B1 (de) Verfahren zum abtrennen von stickstoff
EP1001236A2 (de) Verfahren zur Gewinnung von ultrareinem Stickstoff
DE102011115987B4 (de) Erdgasverflüssigung
DE102005008059A1 (de) Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-enthaltenden Kohlenwasserstoff-reichen Fraktion
DE102014000324A1 (de) Verfahren zum Abtrennen von Stickstoff
EP4390279A1 (de) Verfahren zum anwärmen einer kalten anlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703012

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010213189

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/007887

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010213189

Country of ref document: AU

Date of ref document: 20100202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011137412

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13148484

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10703012

Country of ref document: EP

Kind code of ref document: A2