WO2010087120A1 - 自動分析装置、及び検体処理装置 - Google Patents

自動分析装置、及び検体処理装置 Download PDF

Info

Publication number
WO2010087120A1
WO2010087120A1 PCT/JP2010/000213 JP2010000213W WO2010087120A1 WO 2010087120 A1 WO2010087120 A1 WO 2010087120A1 JP 2010000213 W JP2010000213 W JP 2010000213W WO 2010087120 A1 WO2010087120 A1 WO 2010087120A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
nozzle
dispensing
fluctuation
automatic analyzer
Prior art date
Application number
PCT/JP2010/000213
Other languages
English (en)
French (fr)
Inventor
宇津木康
鬼澤邦昭
高倉健
清成能夫
山崎功夫
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to JP2010548394A priority Critical patent/JP5331824B2/ja
Priority to US13/146,582 priority patent/US8545757B2/en
Priority to CN201080005883.5A priority patent/CN102301242B/zh
Priority to DE112010002270T priority patent/DE112010002270B4/de
Publication of WO2010087120A1 publication Critical patent/WO2010087120A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced

Definitions

  • the present invention relates to an automatic analyzer that performs qualitative / quantitative analysis of a biological sample such as blood and urine, and a sample processing apparatus that applies a process such as centrifugation to a sample so that the analysis can be performed by the automatic analyzer.
  • the present invention relates to an automatic analyzer having a dispensing mechanism for dispensing a predetermined amount of a sample, and a specimen processing apparatus.
  • Patent Document 1 proposes a technique for performing a dispensing operation after the liquid level fluctuation is settled based on the knowledge that the liquid level fluctuation in the nozzle affects the dispensing accuracy.
  • a time during which the liquid level fluctuation will be settled is set in advance, and the dispensing operation is performed after stopping the dispensing nozzle for that time.
  • the time for the liquid level fluctuation to settle may vary depending on the amount of sample to be dispensed, and may also vary depending on physical properties such as the viscosity of the sample. Accordingly, if the setting is made so that any sample can be stably dispensed, it is necessary to stop the dispensing nozzle for a long time, which may cause a decrease in analysis ability.
  • An object of the present invention is to provide an automatic analyzer and a sample processing apparatus capable of accurately dispensing even a minute amount in an automatic analyzer and a sample processing apparatus having a dispensing mechanism.
  • the detection function can be set so that the discharge operation can be started by setting the number of confirmations, confirmation time, amplitude value, etc. If the pressure fluctuation does not fall within the range, the detection function can be used to generate an alarm.
  • the state of the specimen (aspiration / discharge / liquid level fluctuation) can be confirmed directly from the output signal of the pressure sensor by the detection function.
  • the discharge operation can be performed after the pressure fluctuation caused by the fluctuation of the liquid level caused by the movement operation of the dispensing head falls within a certain range, and a highly accurate discharge amount can be discharged.
  • by adding control for suppressing the fluctuation of the liquid level it is possible to shorten the stop time for eliminating the pressure fluctuation due to the fluctuation of the liquid level within a certain range.
  • the present invention is a method of dispensing treatment in a system that performs automatic centrifugation, removal of a blood collection tube stopper, and serum subdivision as a pretreatment of blood collected for blood tests in hospital laboratories and laboratories.
  • An embodiment of a detection function of a sample processing apparatus having a dispensing mechanism will be described with reference to an embodiment shown in FIGS.
  • FIG. 1 is a diagram illustrating an example of the configuration of a dispensing head of a sample processing apparatus.
  • nozzle base 9 attached to the casing 15, a nozzle chip 10 attached to the nozzle base 9, a bellows device 100 for sucking and discharging a specimen, and a suction
  • a pressure sensor 7 that converts a pressure change during discharge (internal pressure in a cavity 13 (described later) of the casing 15) into an electric signal
  • a diaphragm 6 that is a vibration source for vibrating the internal air when the liquid level is detected
  • a diaphragm 6 and a signal processing circuit 8 for exchanging electrical signals between the pressure detector 7, the motor 4, and the solenoid 5.
  • the casing 15 includes cavities 12 and 13 which are air passages communicating with the space inside the bellows 1 through the air holes 14 in addition to the space for accommodating the bellows 1.
  • the cavities 12 and 13 are connected to the external space via the nozzle base 9 and the nozzle tip 10. For example, when the nozzle tip 10 is inserted into the specimen and the bellows 1 is extended, the specimen 18 passes from the tip hole to the nozzle tip 10. Sucked inside. Since the dispensing head 200 is moved while the sample 18 is held in the nozzle tip 10, the sample in the nozzle tip 10 is shaken. This fluctuation can be detected as a variation of the pressure signal.
  • the signal processing circuit 8 is connected to an external signal processing circuit (not shown), and performs signal detection / dispensing processing / abnormality processing by a microprocessor or the like.
  • the liquid level of the specimen can also be detected by the method disclosed in Japanese Patent Laid-Open No. 2005-207898.
  • FIG. 8 shows an example of the relationship between the movement operation of the dispensing head and the output signal of the pressure sensor 7 in the suction / discharge operation of the sample processing apparatus.
  • the suction operation (201)
  • the inside of the dispensing head changes in pressure, and the change in pressure of the pressure sensor is detected. Since the dispensing process of the next process is performed after the suction process is completed, the movement is performed when the dispensing head moves to the X axis, the Y axis, and the Z axis (not shown) at the ejection position (202). Accordingly, a large pressure change occurs, and the discharge operation (203) is performed before the pressure change is settled.
  • FIG. 9 is an example showing the relationship of the output signals of the pressure sensor in the suction / discharge operation of the automatic analyzer.
  • the pressure of the pressure sensor changes due to the suction operation (201), and then a slight pressure change occurs during the movement operation (202) in which the dispensing mechanism moves to the discharge position. Operation (203) is performed.
  • the present invention directly monitors the pressure change of the pressure sensor mounted on the dispensing mechanism. In particular, since the pressure change before discharge affects obtaining a highly accurate discharge amount, the pressure before discharge is monitored, and it is determined that the change in pressure has been eliminated, and then the discharge operation is performed. Realizes high-precision dispensing performance.
  • FIG. 3 is a flow chart of an embodiment for explaining the operation with respect to the change of the pressure signal due to the liquid level fluctuation of the sample in the nozzle tip.
  • the fluctuation of the pressure signal due to the liquid level fluctuation of the sample 18 in the nozzle tip 10 due to the movement operation of the dispensing head 200 is directly monitored, and there is no fluctuation of the pressure signal (liquid level fluctuation) before the start of the discharge operation.
  • the suction operation is started (301), and the pressure signal fluctuates by sucking the specimen 18 into the nozzle chip 10.
  • the output signal of the pressure sensor 7 fluctuates due to the fluctuation of the liquid level.
  • the variation of the pressure signal is directly monitored (303), and if the pressure signal varies (304), loop processing is executed until there is no variation in the pressure signal in the nozzle chip 10.
  • the discharge operation is started (305) when it is confirmed that the pressure signal in the nozzle chip 10 no longer varies (304). Further, after the discharge operation is completed (306), when there is a discharge operation in the next process (307), the pressure signal variation in the nozzle tip 10 is confirmed again (303) (304), and when the pressure signal variation disappears Repeat the process of performing the discharge operation.
  • FIG. 4 shows the relationship between the dispensing head moving operation and the pressure sensor output signal in the suction / discharge operation using the detection function.
  • the detection function the output signal of the pressure sensor 7 is directly monitored before the discharge operation (203) after the dispensing head is moved (202), and the dispensing head operation is performed in order to determine the presence or absence of pressure fluctuation of the pressure sensor.
  • the discharge operation 203 is performed.
  • the liquid level fluctuation in the nozzle tip 10 can be eliminated, and a highly accurate sample amount can be discharged.
  • the liquid level fluctuation state confirmation can be automatically corrected by monitoring the pressure fluctuation.
  • FIG. 5 is a flow diagram of an embodiment in the case where conditions are used for the processing of pressure signal fluctuation in the operation for the pressure signal change due to the liquid level fluctuation of the sample in the nozzle tip.
  • the alarm flag may be displayed as an alarm (not shown) on the apparatus, or may be displayed (not shown) on the main operation unit to notify the operator.
  • a condition (501) for confirming the fluctuation of the pressure signal the same correspondence can be achieved by setting the monitoring time 503 of the pressure fluctuation, the amplitude value 504 of the fluctuation, and the like.
  • FIG. 6 and FIG. 7 are one example of a diagram showing the structure of a dispensing head that suppresses the fluctuation of the liquid level and the effect when the fluctuation of the liquid level is suppressed.
  • a method for directly monitoring the output signal of the pressure sensor 7 and controlling the fluctuation of the pressure signal liquid level fluctuation
  • two proposals are shown as examples.
  • the period (frequency) is calculated therefrom, and the frequency calculated using the diaphragm 6 (vibrator) is canceled.
  • the vibration of the diaphragm 6 can suppress the fluctuation of the pressure signal.
  • the bellows 1 when the bellows 1 is used and the fluctuation of the pressure signal in the nozzle tip 10 is amplified from the positive pressure to the negative pressure direction, the bellows 1 is driven in the contraction direction by driving the motor 4 to apply a reverse pressure, When the opposite negative pressure is amplified in the positive pressure direction, the fluctuation of the pressure signal can be suppressed by driving the motor 4 in the expansion / contraction direction of the bellows 1. In this way, by suppressing the fluctuation of the liquid level during the dispensing head movement operation (202), not only a more accurate discharge amount is discharged, but also the pressure fluctuation due to the fluctuation of the liquid level before the discharge operation is eliminated within the range. (701) can be shortened.
  • FIG. 10 shows a configuration example of an automatic analyzer to which the present invention is applied.
  • a sample disk 37 on which a plurality of sample containers 34 for holding a sample can be mounted, a first reagent disk 41 and a second reagent disk 42 on which a plurality of reagent containers 40 for holding a reagent can be mounted, and a plurality of reaction containers 35 are arranged on the circumference.
  • the sample dispensing head 200 a is connected to the metering pump 71 via the tube 72, and the pressure detector 7 is installed in the middle of the tube 72.
  • the same metering pump and pressure detector are also connected to the first reagent dispensing head 200b and the second reagent dispensing head 200c.
  • the sample dispensing head 200a is attached to a drive mechanism 73 that can move up and down and rotate.
  • the device of this embodiment operates as follows.
  • a sample object such as blood is placed in the sample container 34 and set in a sample disk 37.
  • the type of analysis required for each sample is input to the controller 60.
  • a sample collected by the sample dispensing head 200a is dispensed into the reaction container 35 arranged on the reaction disk 36, and a certain amount of reagent is dispensed from the reagent container 40 installed on the reagent disk 41 or 42. It is dispensed by the head 20 or 21 and stirred by the stirring device 30.
  • the reaction disk 36 is periodically rotated and stopped, and photometry is performed to detect the output signal of the spectroscopic optical system 51 at the timing when the reaction vessel 35 passes in front of the light source 50.
  • Photometry is repeated during a reaction time of 10 minutes, and then the reaction liquid in the reaction vessel 35 is discharged and washed by the vessel washing mechanism 45. In the meantime, in another reaction vessel 35, operations using different samples and reagents are performed in parallel. Based on the photometric results obtained during the reaction time, the computer 61 calculates the concentration of the target substance in the sample and outputs the result.
  • the sample is dispensed as follows.
  • the internal flow paths of the metering pump 71, the tube 72, and the sample dispensing head 200a are filled with water.
  • the driving device 73 rotates to move the sample dispensing head 200a onto the sample container 34, and the metering pump 71 is aspirated to suck a small amount of air at the tip of the sample dispensing head 200a.
  • the driving device 73 is lowered to insert the sample dispensing head 200a into the sample in the sample container 34, and the metering pump 71 is suctioned to suck a part of the sample into the dispensing head.
  • the drive mechanism 71 is raised, rotated, and lowered to insert the sample dispensing head 200 a into the reaction vessel 35.
  • the change in pressure in the flow channel during operation is measured by the pressure detector 7 and data is sent to the controller 60.
  • the controller 60 analyzes the pressure fluctuation, issues a command to the metering pump 71 after it falls within a predetermined change, and starts discharging.
  • the drive mechanism 73 moves up and rotates. The inside and outside of the flow path of the sample dispensing head 200a are washed by a washing mechanism (not shown) to prepare for the next dispensing.
  • Reagent dispensing is performed in the same procedure as sample dispensing.
  • the distance from the metering pump 71 to the sample dispensing head 200a is long, and the flow path therebetween is filled with water, so that the vibration caused by the movement of the sample dispensing head 200a and the operation of other mechanisms. Inertia force acts on the water in the flow path, causing pressure fluctuation. Further, water, contained bubbles, and flow path components are elastic bodies, and their volume changes due to pressure fluctuations. However, since the discharge operation is performed after the pressure fluctuation has subsided, the vibration does not affect the accuracy of the dispensing, the dispensing can be performed with high accuracy, and the concentration of the target substance can be analyzed accurately. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 圧力センサの圧力信号から吐出検出を行う検体処理装置において特許文献1の吐出前に予め設定している一定時間だけ、分注ノズルを停止させて吐出する方法では、分注ノズル内の検体の揺れの判別が不十分であり、正確な吐出量を確保できない可能性がある。本発明は更に正確な量を吐出可能にする検体処理装置を提供する。  圧力センサによる圧力信号を検出する検体処理装置において、圧力センサによる圧力信号を直接監視して、吐出動作前に液面の揺れに対する圧力変動を確認し、圧力変動が無くなったことを判断してから吐出動作を行う制御にする。圧力変動が無くならない場合でも確認回数や確認時間,振幅値などを設定することで吐出動作を開始させることも可能な検出機能にする。圧力変動が範囲内にならなかった場合はアラームを発生させることも可能な検出機能にする。

Description

自動分析装置、及び検体処理装置
 本発明は、血液,尿などの生体サンプルの定性・定量分析を行う自動分析装置、及び自動分析装置での分析が可能となるように遠心分離などの処理を検体(サンプル)に施す検体処理装置(検体前処理装置とも称する)に係り、特に、サンプルを所定量分注する分注機構を備えた自動分析装置、及び検体処理装置に関する。
 自動分析装置や検体処理装置では、容器に入っているサンプルを分析や前処理のために別の容器に移送するための検体分注機構を備えることが普通である。このような検体分注機構では、希望する量のサンプルを正確に、かつ迅速に分注できることが要求される。更に、近年では、臨床検査のコスト低減の要求があり、1回あたりの分析に使用する試薬量を減らすことが求められている。試薬量が減った場合、それに対応して1回当たりの分析に使用するサンプル量も減るため、1桁マイクロリットルオーダーの微量においても正確な分注ができる分注機構が要求されている。
 微量分注を可能にする発明が、種々提案されている。例えば、特許文献1では、分注精度にノズル内の液面揺れが影響するとの知見に基づき、液面揺れが収まってから分注動作を行う技術が提案されている。
特開2007-316011号公報
 特許文献1に記載された技術では、液面揺れが収まるであろう時間を予め設定し、その時間だけ、分注ノズルを停止させた後に分注動作を行っている。しかし、液面揺れが収まる時間は、分注するサンプルの量によって変る可能性があり、またサンプルの粘性などの物理的性質などによっても変化する可能性がある。従い、どのようなサンプルに対しても安定して分注できるように設定すると、長い間分注ノズルを停止させる必要があり、分析能力の低下を招く怖れがあった。
 本発明は、分注機構を備えた自動分析装置,検体処理装置において、微量であっても正確な分注が可能な自動分析装置,検体処理装置を提供することを目的とする。
 圧力センサによる圧力信号を検出する検体処理装置において、圧力センサによる圧力信号を直接監視して、吐出動作前に液面の揺れに対する圧力変動を確認し、圧力変動が無くなったことを判断してから吐出動作を行う制御にする。圧力変動が無くならない場合でも確認回数や確認時間,振幅値などを設定することで吐出動作を開始させることも可能な検出機能にする。圧力変動が範囲内にならなかった場合はアラームを発生させることも可能な検出機能にする。
 以上説明したように、検出機能により検体の状態(吸引・吐出・液面揺れ)を圧力センサの出力信号から直接確認できることができる。これにより分注ヘッドの移動動作から生じる液面の揺れによる圧力変動が一定の範囲内になってから吐出動作することが可能となり、高精度な吐出量を吐出することができる。また、液面の揺れを抑える制御を追加することで液面の揺れによる圧力変動が一定の範囲内になくすための停止時間を短縮することが可能となる。
検体処理装置の分注ヘッドの構成を説明する一実施例の図である。 本発明による吸引・吐出動作における分注ヘッドの移動動作と圧力センサ7の出力信号の関係を示す図である。 ノズルチップ内の検体の液面揺れなどによる圧力信号の変化に対する動作を説明する一実施例のフロー図である。 検出機能を使用した吸引・吐出動作における分注ヘッドの移動動作と圧力センサの出力信号の関係を示す図である。 ノズルチップ内の検体の液面揺れなどによる圧力信号の変化に対する動作において圧力信号の変動の処理について条件を用いた場合の一実施例のフロー図である。 液面の揺れを抑える分注ヘッドの構造を示す図である。 液面の揺れを抑えた場合の効果を示す図である。 本発明による吸引・吐出動作および移動動作における圧力センサ7の出力信号の関係を示す図である。 本発明による吸引・吐出動作および移動動作における圧力センサ7の出力信号の関係を示す図である。 本発明を用いた自動分析装置の構成を示す図である。
 本発明は病院の検査室や検査センターなどで血液検査のために採血された血液の前処理として自動遠心や採血管の栓の取り外し、血清の小分け作業を実施するシステムの中で分注処理の分注機構を持つ検体処理装置の検出機能の実施例を図1から図7に示す一実施例により説明する。図1は検体処理装置の分注ヘッドの構成を説明する一実施例の図である。図1に示した分注ヘッド200は、主に、ケーシング15に取り付けられたノズル基部9と、ノズル基部9に装着されたノズルチップ10と、検体を吸引吐出するためのベローズ装置100と、吸引・吐出時の圧力変化(ケーシング15の空洞13(後述)の内圧)を電気信号に変換する圧力センサ7と、液面検出時に内部空気を振動させるための加振源であるダイアフラム6と、ダイアフラム6を駆動するソレノイド5と、圧力検出器7やモータ4,ソレノイド5との間で電気信号を授受する信号処理回路8とを備えている。
 ケーシング15は、ベローズ1を収容する空間の他、空気孔14を介してベローズ1の内部の空間に連通した空気通路である空洞12,13を備えている。空洞12,13はノズル基部9とノズルチップ10を介して外部空間に接続しており、例えばノズルチップ10を検体に挿入してベローズ1を伸長させた場合、検体18が先端孔からノズルチップ10内に吸い上げられる。ノズルチップ10内に検体18を保持した状態で分注ヘッド200を移動動作させるため、ノズルチップ10内の検体が揺れる。この揺れを圧力信号の変動分として検出できる。その後、例えばノズルチップ10の先端部を指定容器に挿入してベローズ1を圧縮させると、指定容器に検体が吐出される。信号処理回路8は外部信号処理回路(不図示)に接続され、マイクロプロセッサなどによって信号検出・分注処理・異常処理などが行われる。特開2005-207898号公報に開示された方法で検体の液面検出も可能である。
 図8は、検体処理装置の吸引・吐出動作における分注ヘッドの移動動作と圧力センサ7の出力信号の関係の一例を示す。吸引動作(201)において分注ヘッド内が圧力変化をし、圧力センサの圧力の変化を検出する。吸引の処理が完了後に次工程の吐出処理を行うため、吐出位置に分注ヘッドを図示されていないX軸,Y軸,Z軸の各軸に移動する機構で移動動作(202)すると、移動に伴って圧力変化が大きく発生し、圧力変化が収まる前に吐出動作(203)を行っている。
 同様に図9は自動分析装置の吸引・吐出動作における圧力センサの出力信号の関係を示す一例である。自動分析装置においても同様に吸引動作(201)により圧力センサの圧力が変化する、その後、吐出位置に分注機構が移動する移動動作(202)のときに微少な圧力変化が発生し、その後吐出動作(203)を行っている。このように移動動作において生じた圧力変化がある状態で吐出動作を行うと高精度な吐出量を要求される場合に影響が出る可能性がある。本発明は分注機構に実装されている圧力センサの圧力変化を直接監視する。特に、吐出前の圧力変化が高精度な吐出量を得るのに影響するため、吐出前の圧力を監視し、圧力の変化分がなくなったことを判断してから吐出動作を行うことで、より高精度な分注性能を実現するものである。
 図3は、ノズルチップ内の検体の液面揺れなどによる圧力信号の変化に対する動作を説明する一実施例のフロー図である。分注ヘッド200の移動動作などによるノズルチップ10内検体18の液面揺れなどによる圧力信号の変動分を直接監視して、吐出動作の開始前に圧力信号の変動(液面の揺れ)が無いかを確認する。吸引動作を開始し(301)、ノズルチップ10内に検体18を吸引することにより圧力信号が変動する。吸引完了後に(302)ある一定の圧力を保持した状態で分注ヘッド200を移動動作させると圧力センサ7の出力信号が液面の揺れなどにより変動する。その圧力信号の変動分を直接監視し(303)、圧力信号に変動がある場合(304)にはノズルチップ10内の圧力信号の変動が無くなるまでループ処理を実行する。ノズルチップ10内の圧力信号に変動が無くなったのを確認した時点(304)で吐出動作を開始する(305)。また、吐出動作完了後(306)、次工程で吐出動作がある場合(307)は再度ノズルチップ10内の圧力信号の変動を確認し(303)(304)、圧力信号の変動が無くなった時点で吐出動作をする処理を繰り返す。
 図4は、検出機能を使用した吸引・吐出動作における分注ヘッドの移動動作と圧力センサの出力信号の関係を示す。検出機能を使用することにより分注ヘッド移動後(202)の吐出動作前(203)に圧力センサ7の出力信号を直接監視し、圧力センサの圧力変動の有無を判断させるため分注ヘッド動作を停止させ(401)、圧力変動が無くなったことを確認してから吐出動作203を行う。これによりノズルチップ10内の液面揺れを無くし、高精度な検体量を吐出することが可能となる。また、吸引量で圧力変動が変化する場合でも、圧力変動を監視していることで液面揺れの状態確認は自動的に補正可能である。
 図5は、ノズルチップ内の検体の液面揺れなどによる圧力信号の変化に対する動作において圧力信号の変動の処理について条件を用いた場合の一実施例のフロー図である。図3に示したようにノズルチップ10内の圧力信号の変動が無くなってから(304)吐出動作を開始(305)するのでは処理時間を要してしまう。そこでノズルチップ10内の検体18の液面揺れなどによる圧力信号の変動を確認する処理において圧力変動の監視(303)をする処理回数を条件として設定しておき(502)、設定回数内に圧力変動が無くなれば次工程の吐出動作を行う処理とする。また、設定回数を超えた場合は次工程処理の吐出動作はそのまま処理をするが、アラーム505としてのフラグをたてる。このアラームフラグは装置に警報として表示(不図示)しても良いし、メインの操作部などに表示(不図示)してオペレータに知らせることも可能である。また、圧力信号の変動に対する確認の条件(501)としては、圧力変動の監視時間503や変動の振幅値504などを設定することにより同様の対応が図れる。
 図6と図7は、液面の揺れを抑える分注ヘッドの構造と液面の揺れを抑えた場合の効果を示す図の一実施例である。圧力センサ7の出力信号を直接監視し、圧力信号の変動(液面の揺れ)を制御する方法として2つの案を例として示す。ノズルチップ10内の検体18の液面揺れによる圧力変動を直接監視することにより、そこから周期(周波数)を算出し、ダイアフラム6(加振器)を使用し算出した周波数を打ち消すような周波数でダイアフラム6を振動させることで圧力信号の変動を抑制できる。また、同様にベローズ1を使用し、ノズルチップ10内の圧力信号の変動が正圧から負圧方向に増幅している場合はベローズ1を収縮方向にモータ4を駆動させて逆圧をかけ、反対の負圧から正圧方向に増幅している場合はベローズ1を伸縮方向にモータ4を駆動させることにより圧力信号の変動を抑えることが可能である。このように分注ヘッド移動動作時(202)の液面の揺れを抑えることで、より正確な吐出量を吐出するだけでなく、吐出動作前に液面揺れによる圧力変動を範囲内になくすための停止時間を短縮すること(701)が可能となる。
 図10は本発明を適用した自動分析装置の構成例である。
 試料を保持するサンプル容器34を複数搭載可能なサンプルディスク37、試薬を保持する試薬容器40を複数搭載可能な第1試薬ディスク41および第2試薬ディスク42、周上に複数の反応容器35を配置した反応ディスク36、サンプル容器34から吸引した試料を反応容器35に分注するサンプル分注ヘッド200a、第1試薬ディスク41内の試薬容器40から吸引した試薬を反応容器35に分注する第1試薬分注ヘッド200b、第2試薬ディスク42内の試薬容器40から吸引した試薬を反応容器35に分注する第2試薬分注ヘッド200c、反応容器35内の液体を撹拌する攪拌装置30、反応容器35を洗浄する容器洗浄機構45、反応ディスク36の外周付近に設置された光源50、分光光学系51,分光光学系51に接続されたコンピュータ61、装置全体の動作を制御し、外部とのデータの交換を行うコントローラ60からなる。サンプル分注ヘッド200aはチューブ72を介して定量ポンプ71と接続され、チューブ72の途中には圧力検出器7が設置されている。図示しないが、第1試薬分注ヘッド200bおよび第2試薬分注ヘッド200cにも同様の定量ポンプと圧力検出器が接続されている。サンプル分注ヘッド200aは上下動、および回転動が可能な駆動機構73に取り付けられている。
 本実施例の装置は以下のように動作する。サンプル容器34には血液等の検査対象の試料が入れられ、サンプルディスク37にセットされる。それぞれの試料で必要な分析の種類はコントローラ60に入力される。サンプル分注ヘッド200aによって採取された試料は反応ディスク36に並べられている反応容器35に一定量分注され、一定量の試薬が試薬ディスク41または42に設置された試薬容器40から試薬分注ヘッド20または21により分注され、攪拌装置30にて攪拌される。反応ディスク36は周期的に回転,停止を繰り返し、反応容器35が光源50の前を通過するタイミングで分光光学系51の出力信号を検出する測光が行われる。10分間の反応時間の間に測光を繰り返し、その後、容器洗浄機構45で反応容器35内の反応液の排出および洗浄がなされる。それらの間に別の反応容器35では、別の試料,試薬を用いた動作が並行して実施される。反応時間の間に行われた測光結果に基づいて、コンピュータ61で試料内の対象物質の濃度が計算され、結果が出力される。
 試料の分注は、次のように行われる。定量ポンプ71,チューブ72,サンプル分注ヘッド200aの内部流路は水で満たされている。コントローラ60からの指令により駆動装置73が回転してサンプル分注ヘッド200aをサンプル容器34上に移動し、定量ポンプ71を吸引動作させてサンプル分注ヘッド200aの先端に少量の空気を吸引する。次に駆動装置73を下降動作してサンプル分注ヘッド200aをサンプル容器34内の試料に挿入し、定量ポンプ71を吸引動作して試料の一部を分注ヘッド内に吸引する。次に駆動機構71を上昇,回転,下降してサンプル分注ヘッド200aを反応容器35に挿入する。動作中の流路内の圧力の変化は圧力検出器7で測定されてコントローラ60にデータが送られている。コントローラ60は圧力変動を分析して、所定の変化内に収まってから定量ポンプ71に指令を出して吐出を開始する。吐出が終わってから、駆動機構73で上昇,回転する。サンプル分注ヘッド200aの流路内部,外部は図示しない洗浄機構で洗浄されて、次の分注に備える。
 試薬の分注も、試料分注と同様の手順で行われる。
 本実施例では、定量ポンプ71からサンプル分注ヘッド200aまでの距離が長く、その間の流路が水で満たされているため、サンプル分注ヘッド200aの移動や他の機構の動作に伴う振動によって、流路内の水に慣性力が働き、圧力変動が生じる。また水や含有気泡,流路構成部材は弾性体であり、圧力変動で体積変化する。しかし、圧力変動が収まってから吐出動作をするため、振動が分注の正確性に影響することがなく、精度の高い分注が行え、対象物質の濃度を正確に分析することが可能である。
 また本実施例の場合は、並列して複数の分析を行うため、振動が収まるのを待てる時間に制限があるが、制限内に動作が終了できるかどうかをコントローラ60が判別して処理することができ、信頼性の高い分析動作が可能になる。
1 ベローズ
2,3 永久磁石
4 モータ
5 ソレノイド
6 ダイアフラム
7 圧力検出器
8 信号処理回路
9 ノズル基部
10 ノズルチップ
11,12,13 空洞
14 空気孔
15 ケーシング
16 ベローズ駆動機構
17 付勢手段
18 検体
34 サンプル容器
35 反応容器
36 反応ディスク 
37 サンプルディスク
40 試薬容器
41 第1試薬ディスク
42 第2試薬ディスク
45 容器洗浄機構
50 光源
51 分光光学系
60 コントローラ
61 コンピュータ
71 定量ポンプ
72 チューブ
73 駆動装置
100 ベローズ装置
200 分注ヘッド
201 吸引動作
202 分注ヘッド移動動作
203 吐出動作
301 吸引開始
302 吸引完了
303 圧力変動監視
304 圧力変動有無
305 吐出開始
306 吐出完了
307 次工程判別
401 停止
501 確認条件
502 監視回数
503 監視時間
504 変動振幅値
505 アラーム
701 停止

Claims (8)

  1.  試料を分注するノズルと、該ノズル内の圧力を変化させる圧力変化機構と、該ノズルを移動させるノズル移動機構と、を備えた自動分析装置において、
     前記ノズル内の圧力を検出する圧力検出機構と、該圧力検出機構の出力に基づいて圧力変動を算出する圧力変動算出機構と、該液面揺れ算出機構の出力に基づいて前記ノズル移動機構を制御する制御機構を備えたことを特徴とする自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記圧力変動算出機構の出力が予め定めた値以下になった時に、前記ノズル移動機構を移動させるように前記制御機構が動作することを特徴とする自動分析装置。
  3.  請求項1記載の自動分析装置において、
     前記圧力変動算出機構液面揺れ算出機構の出力が予め定めた時間内に、予め定めた値以下にならない場合はその旨を表示する表示手段を備えたことを特徴とする自動分析装置。
  4.  請求項1記載の自動分析装置において、
     前記圧力変動算出機構の出力に基づいて、液面揺れを打ち消すように前記ノズル内に圧力を加える圧力印加機構を備えたことを特徴とする自動分析装置。
  5.  試料を分注するノズルと、該ノズル内の圧力を変化させる圧力変化機構と、該ノズルを移動させるノズル移動機構と、を備えた検体処理装置において、
     前記ノズル内の圧力を検出する圧力検出機構と、該圧力検出機構の出力に基づいて圧力変動を算出する圧力変動算出機構と、該液面揺れ算出機構の出力に基づいて前記ノズル移動機構を制御する制御機構を備えたことを特徴とする検体処理装置。
  6.  請求項5記載の自動分析装置において、
     前記圧力変動算出機構の出力が予め定めた値以下になった時に、前記ノズル移動機構を移動させるように前記制御機構が動作することを特徴とする自動分析装置。
  7.  請求項5記載の自動分析装置において、
     前記圧力変動算出機構液面揺れ算出機構の出力が予め定めた時間内に、予め定めた値以下にならない場合はその旨を表示する表示手段を備えたことを特徴とする自動分析装置。
  8.  請求項5記載の自動分析装置において、
     前記圧力変動算出機構の出力に基づいて、液面揺れを打ち消すように前記ノズル内に圧力を加える圧力印加機構を備えたことを特徴とする自動分析装置。
PCT/JP2010/000213 2009-01-30 2010-01-18 自動分析装置、及び検体処理装置 WO2010087120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010548394A JP5331824B2 (ja) 2009-01-30 2010-01-18 自動分析装置、及び検体処理装置
US13/146,582 US8545757B2 (en) 2009-01-30 2010-01-18 Automatic analyzer and sample treatment apparatus
CN201080005883.5A CN102301242B (zh) 2009-01-30 2010-01-18 自动分析装置及检测体处理装置
DE112010002270T DE112010002270B4 (de) 2009-01-30 2010-01-18 Automatischer Analysator und Probenbehandlungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-018941 2009-01-30
JP2009018941 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087120A1 true WO2010087120A1 (ja) 2010-08-05

Family

ID=42395386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000213 WO2010087120A1 (ja) 2009-01-30 2010-01-18 自動分析装置、及び検体処理装置

Country Status (5)

Country Link
US (1) US8545757B2 (ja)
JP (1) JP5331824B2 (ja)
CN (1) CN102301242B (ja)
DE (1) DE112010002270B4 (ja)
WO (1) WO2010087120A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057514A (ja) * 2011-09-07 2013-03-28 Hitachi High-Technologies Corp 分注装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277214B2 (ja) * 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
GB2506892B (en) * 2012-10-11 2015-06-10 Thermo Fisher Scient Bremen Apparatus and method for improving throughput in spectrometry
CN107831324B (zh) 2013-03-15 2021-11-19 雅培制药有限公司 具有后面可进入轨道***的自动化诊断分析仪及相关方法
JP6165961B2 (ja) 2013-03-15 2017-07-19 アボット・ラボラトリーズAbbott Laboratories 前処理カルーセルを有する診断分析装置および関連方法
EP4109106A1 (en) 2013-03-15 2022-12-28 Abbott Laboratories Automated diagnostic analyzers having vertically arranged carousels and related methods
US20140354734A1 (en) * 2013-06-04 2014-12-04 The Regents Of The University Of California Non-contact bio-printing
JP6914887B2 (ja) * 2018-05-16 2021-08-04 日本電子株式会社 自動分析装置、および自動分析方法
CN111514952A (zh) * 2020-05-14 2020-08-11 广东体必康生物科技有限公司 一种可自检气密性并准确提取的移液装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174731A (ja) * 1992-12-01 1994-06-24 Toshiba Corp 自動分析装置
JP2005207898A (ja) * 2004-01-23 2005-08-04 Hitachi High-Technologies Corp 液面検出装置及びそれを用いた分注装置
JP2005265689A (ja) * 2004-03-19 2005-09-29 Olympus Corp 液体吐出ヘッド及び液体吐出ヘッドの駆動方法並びに液体分注装置
JP2007316011A (ja) * 2006-05-29 2007-12-06 Olympus Corp 分注装置と分析装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1321940C (en) * 1987-05-02 1993-09-07 Teruaki Itoh Apparatus for distributing sample liquid
JPH087222B2 (ja) * 1990-01-18 1996-01-29 持田製薬株式会社 自動分注希釈装置
DE4212821C2 (de) * 1991-04-19 1994-07-28 Olympus Optical Co Vorrichtung zum Entfernen eines Verschlusses von der Öffnung eines Behälters und zur Entnahme von flüssigen Inhalten
US6521187B1 (en) * 1996-05-31 2003-02-18 Packard Instrument Company Dispensing liquid drops onto porous brittle substrates
US6203759B1 (en) * 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
US5665601A (en) * 1996-01-22 1997-09-09 Johnson & Johnson Clinical Diagnostics, Inc. Avoiding bubble formation while sensing air-liquid interface using pressurized air flow
JP3964946B2 (ja) * 1996-03-28 2007-08-22 アロカ株式会社 分注装置
JPH1038898A (ja) * 1996-07-30 1998-02-13 Hitachi Koki Co Ltd 分注装置
CA2278146A1 (en) * 1997-01-17 1998-07-23 John Gerald Gleason Apparatus and process for arraying beads
JPH11125638A (ja) * 1997-10-21 1999-05-11 Srl:Kk 分注装置
AUPP058197A0 (en) * 1997-11-27 1997-12-18 A.I. Scientific Pty Ltd Pathology sample tube distributor
US6121049A (en) * 1997-12-05 2000-09-19 Bayer Corporation Method of verifying aspirated volume in automatic diagnostic system
US7470547B2 (en) * 2003-07-31 2008-12-30 Biodot, Inc. Methods and systems for dispensing sub-microfluidic drops
US6937955B2 (en) * 2002-03-29 2005-08-30 Ortho-Clinical Diagnostics, Inc. Method for automatic alignment of metering system for a clinical analyzer
US7361509B2 (en) * 2002-04-29 2008-04-22 Ortho-Clinical Diagnostics Dynamic metered fluid volume determination method and related apparatus
JP4117181B2 (ja) * 2002-11-21 2008-07-16 株式会社日立ハイテクノロジーズ 自動分析装置
JP4021335B2 (ja) * 2003-01-31 2007-12-12 ユニバーサル・バイオ・リサーチ株式会社 監視機能付分注装置および分注装置の監視方法
JP4102863B2 (ja) * 2003-02-14 2008-06-18 株式会社スタックシステム 分注機及び分注装置
US7396512B2 (en) * 2003-11-04 2008-07-08 Drummond Scientific Company Automatic precision non-contact open-loop fluid dispensing
JP4320266B2 (ja) * 2004-01-22 2009-08-26 シスメックス株式会社 分注装置およびそれを備えた分析装置
JP2005241263A (ja) * 2004-02-24 2005-09-08 Olympus Corp 液体吐出ヘッド
US7479391B2 (en) * 2004-12-10 2009-01-20 Tecan Trading Ag Pipetting apparatus with integrated liquid level and/or gas bubble detection
DE202006010293U1 (de) * 2005-07-22 2006-08-31 Tecan Trading Ag Pipettiergerät mit Computerprogrammprodukt zum Akzeptieren oder Verwerfen von pipettierten Flüssigkeitsproben
EP1745851B1 (de) * 2005-07-22 2015-02-25 Tecan Trading AG Verfahren, Vorrichtung und Computerprogrammprodukt zum Klassifizieren einer Flüssigkeit
US7581660B2 (en) * 2005-11-09 2009-09-01 Hamilton Bonaduz Ag Drip-resistant pipetting device and drip-resistant pipetting method
JP4949389B2 (ja) * 2006-05-11 2012-06-06 ベックマン コールター, インコーポレイテッド 自動分析装置
JP2008002897A (ja) * 2006-06-21 2008-01-10 Olympus Corp 分注装置および自動分析装置
DE102006034245C5 (de) * 2006-07-21 2014-05-28 Stratec Biomedical Systems Ag Positioniereinrichtung zur Positionierung von Pipetten
JP2008180644A (ja) * 2007-01-25 2008-08-07 Esutekku:Kk 液状試料のサンプリング量測定手段
CN103913585B (zh) * 2007-03-30 2016-08-31 希森美康株式会社 配液器、配液方法及吸液管
JP4982266B2 (ja) * 2007-06-22 2012-07-25 株式会社日立ハイテクノロジーズ 分注処理装置
JP4538478B2 (ja) * 2007-08-31 2010-09-08 株式会社日立ハイテクノロジーズ 自動分析装置
JP2009075082A (ja) * 2007-08-31 2009-04-09 Olympus Corp 分注装置、分注方法及び自動分析装置
JP4538477B2 (ja) * 2007-08-31 2010-09-08 株式会社日立ハイテクノロジーズ 自動分析装置
JP5517467B2 (ja) * 2009-02-20 2014-06-11 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174731A (ja) * 1992-12-01 1994-06-24 Toshiba Corp 自動分析装置
JP2005207898A (ja) * 2004-01-23 2005-08-04 Hitachi High-Technologies Corp 液面検出装置及びそれを用いた分注装置
JP2005265689A (ja) * 2004-03-19 2005-09-29 Olympus Corp 液体吐出ヘッド及び液体吐出ヘッドの駆動方法並びに液体分注装置
JP2007316011A (ja) * 2006-05-29 2007-12-06 Olympus Corp 分注装置と分析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057514A (ja) * 2011-09-07 2013-03-28 Hitachi High-Technologies Corp 分注装置

Also Published As

Publication number Publication date
DE112010002270T5 (de) 2012-12-06
CN102301242A (zh) 2011-12-28
CN102301242B (zh) 2014-07-23
JPWO2010087120A1 (ja) 2012-08-02
JP5331824B2 (ja) 2013-10-30
US8545757B2 (en) 2013-10-01
US20120039771A1 (en) 2012-02-16
DE112010002270B4 (de) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5331824B2 (ja) 自動分析装置、及び検体処理装置
EP3594693B1 (en) Device for detecting leading end of pipette tip, and program for detecting leading end of pipette tip
JP5277214B2 (ja) 自動分析装置
JP6581905B2 (ja) 自動分析装置
JP5554418B2 (ja) 自動分析装置
WO2010095375A1 (ja) 自動分析装置
EP2045607B1 (en) Automatic analyzer
JP5752545B2 (ja) 自動分析装置
WO2014013836A1 (ja) 自動分析装置
JP2001021572A (ja) 流体の吸引体積を確認する方法
JP6654881B2 (ja) 自動分析装置及び自動分析装置の異常判定方法
EP2019321A1 (en) Cleaning equipment and automatic analyzer
WO2022224604A1 (ja) 自動分析装置及び分析方法
JP7261617B2 (ja) 自動分析装置
JP6554301B2 (ja) 分注装置、自動分析装置および分注方法
JP2010271203A (ja) 液体のサンプリング方法、及び自動分析装置
JP3120180U (ja) 自動分析装置
WO2009148013A1 (ja) 検体分注装置のプローブ洗浄方法、検体分注装置及び自動分析装置
JP6121743B2 (ja) 自動分析装置
JPH05306973A (ja) 液体の分注方法及び液体の分注装置
JP2003254983A (ja) 液面検知装置及びこれを用いた自動分析装置
JP2011094985A (ja) 自動分析装置およびサンプル分注方法
WO2013042551A1 (ja) 自動分析装置
WO2019176296A1 (ja) 自動分析装置
WO2021215068A1 (ja) 分注装置、自動分析装置、分注方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005883.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010548394

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010002270

Country of ref document: DE

Ref document number: 1120100022704

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13146582

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10735592

Country of ref document: EP

Kind code of ref document: A1