WO2010086895A1 - 物体認識装置および物体認識方法 - Google Patents

物体認識装置および物体認識方法 Download PDF

Info

Publication number
WO2010086895A1
WO2010086895A1 PCT/JP2009/000346 JP2009000346W WO2010086895A1 WO 2010086895 A1 WO2010086895 A1 WO 2010086895A1 JP 2009000346 W JP2009000346 W JP 2009000346W WO 2010086895 A1 WO2010086895 A1 WO 2010086895A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target
information
detected
moving direction
Prior art date
Application number
PCT/JP2009/000346
Other languages
English (en)
French (fr)
Inventor
原田知明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010548251A priority Critical patent/JP5316549B2/ja
Priority to CN200980155815.4A priority patent/CN102301405B/zh
Priority to US13/143,615 priority patent/US8818703B2/en
Priority to DE112009004346.1T priority patent/DE112009004346B4/de
Priority to PCT/JP2009/000346 priority patent/WO2010086895A1/ja
Publication of WO2010086895A1 publication Critical patent/WO2010086895A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to an object recognition apparatus and an object recognition method that are mounted on a vehicle such as an automobile and predict a collision between an object and the vehicle, and more specifically, predict a risk of collision of an object approaching the vehicle.
  • the present invention relates to an object recognition apparatus and an object recognition method.
  • the object recognition device currently mass-produced detects an object with a millimeter-wave radar mounted on the host vehicle, there is a risk of collision based on position coordinate information with the object as a point. Judging. Therefore, the size of the object could not be judged.
  • the object recognition apparatus performs a collision determination based on the position coordinates of the location (capture point) captured by the radar on the object. Therefore, there is a possibility that the risk of collision between the own vehicle and the object is low depending on the position of the detected capture point of the object, even though the object and the own vehicle may collide. There is.
  • FIG. 1 a more specific description will be given with reference to FIG.
  • FIG. 14 is a diagram illustrating a state in which another vehicle VO approaches from the left front of the host vehicle VM.
  • the radar installed on the host vehicle VM is the right front end of the other vehicle VO present at the point B1 (the other vehicle VO closest to the host vehicle VM). Is detected as the capture point P.
  • the host vehicle VM advances to the point A2 and the other vehicle VO advances to the point B2
  • the host vehicle VM and the other vehicle VO collide only when considering the positional relationship between the capture point P and the host vehicle VM. It is thought that they can pass each other.
  • the size (length) of the other vehicle VO considering the size (length) of the other vehicle VO, as shown in FIG. 14, there is a high possibility that the host vehicle VM and the other vehicle VO actually collide. That is, since a general object recognition apparatus regards the target as a point and does not consider the size of the target, the case shown in FIG. 14 may occur.
  • Patent Document 1 As a technique for solving such a problem, for example, there is an apparatus disclosed in Patent Document 1.
  • the apparatus disclosed in Patent Document 1 searches the range centered on the detection point with the camera and detects the edge of the object. JP 2007-279892 A
  • the apparatus disclosed in Patent Document 1 extracts edge points from an image captured by a camera in addition to processing for calculating, for example, a relative position and a relative speed with respect to the host vehicle from information detected by a radar.
  • image processing needs to be performed and the processing becomes complicated.
  • the apparatus disclosed in Patent Document 1 is disadvantageous in terms of cost because it is necessary to install a camera in the host vehicle in addition to a radar for detecting an object.
  • installing a camera in addition to the radar on the host vehicle may affect the design of the host vehicle so far, it is also desirable not to install a camera.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an object recognition apparatus and object recognition that can estimate the size of an object detected by a radar with a simple configuration. It is to provide a method.
  • the present invention employs the following configuration. That is, the first aspect is an object recognition device mounted on a vehicle, wherein the detection unit detects an object by irradiating the object ahead of the vehicle with electromagnetic waves and receiving a reflected wave reflected from the object.
  • target information calculating means for calculating information including the detected moving direction of the object as target information, and using the information obtained from the vehicle, the moving direction of the vehicle Vehicle information calculation means for calculating information including the vehicle information, information indicating the movement direction of the object included in the target information, and information indicating the movement direction of the vehicle included in the vehicle information, It is estimated in which part of the object the electromagnetic wave is reflected in the object detected by the detecting means, and the object is detected with respect to the vehicle according to the estimation result.
  • processing means for calculating a present area for standing.
  • the second aspect is that, in the first aspect, it is considered that the object detected by the detection means is present in the existence area calculated by the processing means, and there is a risk that the vehicle and the object collide with each other.
  • the apparatus further includes a collision determination means for determining
  • a third aspect is characterized in that, in the first or second aspect, the part is a front end corner in the moving direction of the object.
  • the processing unit regards the object detected by the detection unit as another vehicle, and uses the position of the front end portion where the electromagnetic wave is reflected as a reference for the other vehicle. An area that assumes the shape of the image is calculated as the existence area.
  • the processing unit is configured to determine a collision angle between an angle formed by a line extending from the object in the moving direction of the object and a line extending from the vehicle in the moving direction of the vehicle. And based on the collision angle, it is estimated which of the front end portions the electromagnetic wave is reflected on the object detected by the detection means.
  • the processing means when the collision angle is a right angle or a substantially right angle, the processing means reflects the electromagnetic wave at the front end portion on the vehicle side among the front end portions. It is estimated that it was carried out.
  • the processing means when the collision angle is not a right angle or a substantially right angle, includes a line extending from the vehicle in the moving direction of the vehicle among the front end portions. On the other hand, it is estimated that the electromagnetic wave is reflected at the front end portion closest to the other vehicle.
  • the eighth aspect is an object recognition method mounted on a vehicle, wherein the object is detected by irradiating the object ahead of the vehicle with electromagnetic waves and receiving a reflected wave reflected from the object; Using the signal received in the detection step, a target information calculation step for calculating information including the detected moving direction of the object as target information, and using the information obtained from the vehicle, the moving direction of the vehicle is determined.
  • the detection based on a vehicle information calculation step of calculating information including the vehicle information as information, the information indicating the moving direction of the object included in the target information, and the information indicating the moving direction of the vehicle included in the vehicle information. It is estimated at which part of the object the electromagnetic wave is reflected in the object detected in the step, and the vehicle is applied to the vehicle according to the estimation result. Te and a processing step of calculating the existence region that is present above the object.
  • the size of the object that is, the existence region where the object exists with respect to the vehicle can be calculated from the moving direction of the object detected by the detecting unit and the moving direction of the vehicle. . Therefore, for example, the size of the object detected by the detecting means can be estimated with a simple configuration without installing a camera or the like in the vehicle.
  • the collision determination between the object and the vehicle is performed in consideration of the size of the object, the collision determination is performed while the detected object is regarded as a point as in the conventional device. This improves the accuracy of collision determination.
  • the third aspect it is possible to detect the tip of the object that is facing the vehicle.
  • the object detected by the detecting means is preliminarily regarded as another vehicle, it is more preferable in an environment where the vehicle equipped with the object recognition device is actually used, that is, in a general traveling environment. Can be used.
  • the angle formed by the line extending in the moving direction of the object and the line extending in the moving direction of the vehicle is calculated as the collision angle, and the position of the reflection point is predicted from the collision angle.
  • the position of the reflection point can be predicted in advance.
  • the size of the target can be taken into consideration. That is, the object detected by the detection means is not captured as a point but can be regarded as a vehicle having a predetermined direction and size, and therefore, when a collision is determined, it can be determined with higher accuracy.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a driving support system including an object recognition device.
  • FIG. 2 is a diagram illustrating a mounting example of each radar device 1 in the host vehicle VM.
  • FIG. 3 is a flowchart illustrating an example of processing performed in the radar ECU 2 of the object recognition apparatus according to the embodiment.
  • FIG. 4 is a diagram showing a coordinate system (xL, yL) with the installation position of the left radar device 1L as the origin, and a coordinate system (X, Y) with the center of the front of the host vehicle VM as the origin.
  • FIG. 5 is a flowchart illustrating the first half of an example of processing performed in each unit of the system ECU 3 of the object recognition apparatus according to the embodiment.
  • FIG. 6 is a flowchart illustrating the second half of an example of processing performed in each part of the system ECU 3 of the object recognition apparatus according to the present embodiment.
  • FIG. 7 is a diagram showing a target detection state stored in the target information storage unit 34.
  • FIG. 8 is a diagram for explaining the collision angle ⁇ L.
  • FIG. 9 is a diagram for explaining the collision angle ⁇ L when the host vehicle VM is in a turning state.
  • FIG. 10 is a diagram illustrating an example that applies to the first case.
  • FIG. 11 is a diagram illustrating an example applicable to the second case.
  • FIG. 12 is a diagram showing the target existence area when the first case is applicable.
  • FIG. 13 is a diagram illustrating a target existing area when the second case is applicable.
  • FIG. 14 is a diagram illustrating a situation in which another vehicle approaches from the left front of the host vehicle VM.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a driving support system including the object recognition apparatus.
  • the driving support system includes a right radar device 1R, a left radar device 1L, a radar ECU (Electronic Control Unit) 2, a system ECU (Electronic Control Unit) 3, and a safety And a system 8.
  • a radar ECU Electronic Control Unit
  • a system ECU Electronic Control Unit
  • the system ECU 3 is connected to a steering angle sensor 5, a yaw rate sensor 6, and a wheel speed sensor 7 for acquiring vehicle information of the host vehicle.
  • the right-side radar device 1R is installed at a predetermined position of the host vehicle VM (for example, a position where a headlight or a direction indicator on the right side of the front side of the host vehicle VM is mounted), and directed toward the outside of the host vehicle VM.
  • the electromagnetic waves are emitted to monitor the front of the host vehicle VM.
  • the right radar device 1R radiates electromagnetic waves toward the diagonally right front of the host vehicle VM, and a target (for example, AR within the detection range (AR in FIG. 2) of the right radar device 1R).
  • a target for example, AR within the detection range (AR in FIG. 2) of the right radar device 1R.
  • Other vehicles, bicycles, pedestrians, buildings, etc. are detected.
  • the left radar device 1L is installed at a predetermined position of the host vehicle VM (for example, a position where a headlight or a direction indicator on the left side of the front portion of the host vehicle VM is mounted), and is directed to the outside of the host vehicle VM.
  • the electromagnetic waves are emitted to monitor the front of the host vehicle VM.
  • the left radar device 1L irradiates electromagnetic waves toward the left front of the host vehicle VM, and the target (AL in FIG. 2) exists within the detection range of the left radar device 1L (AL in FIG. 2). For example, other vehicles, bicycles, pedestrians, buildings, etc.) are detected.
  • the right radar device 1R and the left radar device 1L irradiate electromagnetic waves and receive the reflected waves. Then, the right radar device 1R and the left radar device 1L detect a target that exists in front of the host vehicle VM, for example, and output a signal that detects the target to the radar ECU 2. Each radar device outputs a signal for each detected target. When each radar device detects a plurality of targets, each radar device outputs a signal for detecting the target to the radar ECU 2 for each target.
  • Each radar device has the same configuration except that the irradiation direction of electromagnetic waves is different. Therefore, in the following description, the above-mentioned radar devices are collectively referred to simply as “radar device 1”, unless the right radar device 1R and the left radar device 1L are particularly distinguished.
  • the radar device 1 corresponds to an example of a detection unit described in the claims.
  • the radar ECU 2 calculates target information such as the position, speed, and distance of the target with respect to the host vehicle VM using the signal acquired from the radar apparatus 1. For example, the radar ECU 2 uses the sum and difference between the irradiation wave irradiated by the radar device 1 and the received reflected wave, transmission / reception timing, and the like to determine the relative distance, relative speed, relative position, and the like of the target with respect to each radar device 1. calculate. Then, the radar ECU 2 uses the information including the distance, speed, position, etc. of the target with respect to the right radar apparatus 1R as the target information ir, and uses the information including the distance, speed, position, etc. of the target with respect to the left radar apparatus 1L as the target information il. Generate as
  • the radar ECU 2 uses the target information ir and the target information il to perform processing for converting the detected target position into coordinates based on a predetermined position in front of the host vehicle VM.
  • target position information included in the target information ir output from the right radar apparatus 1R is output in a coordinate system based on the position where the right radar apparatus 1R is installed (left radar apparatus 1L).
  • the radar ECU 2 converts the position information included in the target information ir and the target information il into a coordinate system based on a predetermined position of the front portion of the host vehicle VM in order to simplify processing in the system ECU 3 described later. Performs processing to convert the target position.
  • the radar ECU 2 outputs the target information subjected to the coordinate conversion process to the system ECU 3.
  • the target information ir and the target information il that have been subjected to the coordinate conversion processing are represented as target information iR and target information iL, respectively.
  • the system ECU 3 includes a target trajectory calculation unit 31, a host vehicle trajectory calculation unit 32, a target determination unit 33, and a target information storage unit 34.
  • a steering angle sensor 5, a yaw rate sensor 6, and a wheel speed sensor 7 are connected to the system ECU 3.
  • the steering angle sensor 5 detects the steering angle based on the rotation information of the steering wheel of the host vehicle VM.
  • the yaw rate sensor 6 detects a yaw rate which is a speed (rotational angular speed) at which the rotation angle of the host vehicle VM in the turning direction when the host vehicle VM to be cornered is viewed from above.
  • the wheel speed sensor 7 detects the rotational speed of the wheel.
  • the target trajectory calculation unit 31 predicts the target traveling direction based on the target information iR and target information iL output from the radar ECU 2 (predicts the course that the target will be approaching from the vehicle VM).
  • the target trajectory calculation unit 31 corresponds to an example of a target calculation unit described in the claims.
  • the own vehicle trajectory calculation unit 32 predicts the traveling direction of the own vehicle VM based on information output from the steering angle sensor 5 and the yaw rate sensor 6 connected to the system ECU 3 (the own vehicle VM will proceed from now on). Predict the course of the deaf). Note that the host vehicle trajectory calculation unit 32 corresponds to an example of vehicle information calculation means.
  • the target determination unit 33 regards the target detected by each radar device 1 based on the movement characteristics of the target and the movement characteristics of the host vehicle VM, for example, as another vehicle. Estimate the capture position in another vehicle. Furthermore, the target determination unit 33 determines the risk of collision between the target regarded as the other vehicle and the host vehicle VM based on the estimated capture position. When the target determination unit 33 determines that there is a high possibility of a collision between the host vehicle VM and the target, the target determination unit 33 instructs the safety system 8 to take a safety measure to be described later.
  • the target determination unit 33 corresponds to an example of a processing unit and a collision determination unit described in the claims.
  • the safety system 8 alerts the driver of the host vehicle VM in accordance with an instruction from the target determination unit 33 when the risk of collision with the target is high. In addition, the safety system 8 reduces damage (for example, occupant protection) of the occupant of the host vehicle VM when a collision with the target cannot be avoided according to the instruction from the target determination unit 33.
  • damage for example, occupant protection
  • the operations performed by the safety system 8 are collectively referred to as safety measures.
  • the safety system 8 includes a display device such as a warning light and an alarm device such as an alarm buzzer.
  • the target determination unit 33 determines that there is a risk of a collision between the target and the host vehicle VM
  • the driver of the host vehicle VM is urged to call attention by a display device or an alarm device.
  • the safety system 8 also includes a danger avoidance device that assists the brake operation performed by the driver of the host vehicle VM to avoid the danger of a collision with the target. Further, the safety system 8 restrains the occupant of the host vehicle VM by winding the seat belt or driving the seat when the target determination unit 33 determines that a collision with the target is unavoidable.
  • a collision damage reduction device that enhances performance and reduces collision damage.
  • the operation of the collision damage reducing device may include releasing the safing of the airbag or changing the seat position to a position prepared for a collision.
  • the devices included in the above-described safety system 8 are examples, and are not limited to these devices.
  • FIG. 3 is a flowchart showing an example of processing performed in the radar ECU 2 of the object recognition apparatus according to the present embodiment. 3 is performed by the radar ECU 2 executing a predetermined program provided in the radar ECU 2. Further, a program for executing the processing shown in FIG. 3 is stored in advance in the storage area of the radar ECU 2, for example. Also, when the power of the radar ECU 2 is turned on (for example, when the driver of the host vehicle VM performs an operation to start the above process, or when the ignition switch of the host vehicle VM is turned on). The radar ECU 2 executes the processing of the flowchart shown in FIG.
  • step S301 of FIG. 3 the radar ECU 2 acquires a signal for detecting the target from each radar apparatus 1, and proceeds to the next step S302.
  • the right radar apparatus 1R does not detect the target (specifically, when the target does not exist in the detection range AR of the right radar apparatus 1R)
  • the right radar apparatus 1R has the target 0 (target Is output to the radar ECU 2.
  • the left radar device 1L does not detect the target (specifically, when the target does not exist in the detection range AL of the left radar device 1L)
  • the left radar device 1L has a target of 0 ( A signal indicating that there is no target) is output to the radar ECU 2.
  • step S302 the radar ECU 2 determines whether or not there is a target detected by each radar apparatus 1. Specifically, the radar ECU 2 determines whether or not the right radar apparatus 1R has detected a target based on the signal acquired from the right radar apparatus 1R in step S301. Similarly, the radar ECU 2 determines whether the left radar device 1L has detected a target based on the signal acquired from the left radar device 1L in step S301. If the determination is affirmed by the radar ECU 2 (YES), the process proceeds to the next step S303. If the determination is negative (NO), the process returns to step S301 to acquire the signal again. That is, the radar ECU 2 proceeds to step S303 if at least one of the radar apparatuses 1 actually detects the target, and proceeds to step S301 if neither the right radar apparatus 1R nor the left radar apparatus 1L has detected the target. Processing will be returned.
  • step S303 the radar ECU 2 generates target information ir for each target using the signal acquired from the right radar apparatus 1R. Specifically, the radar ECU 2 uses the signal from the right radar apparatus 1R to generate information including the target distance, speed, position, and the like with respect to the right radar apparatus 1R as target information ir. Similarly, the radar ECU 2 generates target information il for each target using a signal acquired from the left radar device 1L. Specifically, the radar ECU 2 uses the signal from the left radar device 1L to generate information including the target distance, speed, position, and the like with respect to the left radar device 1L as target information il. The radar ECU 2 then proceeds to the next step S304.
  • step S304 the radar ECU 2 performs a process of converting the position coordinates for all the targets currently stored in the target information storage unit 34 using the target information ir and il.
  • the coordinate conversion process performed by the radar ECU 2 in step S304 will be described using the left radar device 1L as an example with reference to FIG.
  • FIG. 4 is a diagram showing a coordinate system (xL, yL) with the installation position of the left radar device 1L as the origin, and a coordinate system (X, Y) with the center of the front portion of the host vehicle VM as the origin.
  • the position information of the target included in the target information il is indicated by a coordinate system with the installation position of the left radar device 1L as the origin. That is, the position information included in the target information il is processed by the radar ECU 2 as a value indicated by the coordinate system (xL, yL) with the installation position of the left radar device 1L as a reference.
  • the radar ECU 2 converts the coordinate system (xL, yL) of the left radar device 1L into a coordinate system (X, Y) with the center of the front portion of the host vehicle VM as the origin in order to simplify subsequent processing.
  • Perform coordinate conversion processing The radar ECU 2 may perform coordinate conversion processing using the width of the host vehicle VM that is known in advance, the installation position, the installation angle, and the like of the left radar device 1L in the host vehicle VM.
  • the radar ECU 2 performs a coordinate conversion process on the target information ir output from the right radar apparatus 1R. Then, the radar ECU 2 advances the process to step S305, which is the next process of the coordinate conversion process in step S304.
  • step S305 the radar ECU 2 outputs target information iR and target information iL to the system ECU 3. Then, the process proceeds to the next step S306.
  • step S306 the radar ECU 2 determines whether or not to end the process. For example, the radar ECU 2 turns off the power of the radar ECU 2 (for example, when the driver performs an operation for ending the processing, or when the ignition switch of the host vehicle VM is turned off). ) End the process. On the other hand, if the radar ECU 2 determines to continue the process, the radar ECU 2 returns to step S301 and repeats the process.
  • the radar ECU 2 generates the target information iR and the target information iL by repeating the flowchart shown in FIG. Then, the radar ECU 2 outputs the generated target information iR and target information iL to the system ECU 3.
  • FIG. 5 and FIG. 6 are flowcharts showing an example of processing performed in each part of the system ECU 3 of the object recognition apparatus according to the present embodiment.
  • the processing of the flowcharts shown in FIG. 5 and FIG. 6 is performed by each part of the system ECU 3 executing a predetermined program provided in the system ECU 3.
  • a program for executing the processes shown in FIGS. 5 and 6 is stored in advance in a storage area of the system ECU 3, for example.
  • the power supply of the system ECU 3 is turned on (for example, when the driver of the host vehicle VM performs an operation to start the above process, or when the ignition switch of the host vehicle VM is turned on).
  • the processing of the flowcharts shown in FIGS. 5 and 6 is executed by the system ECU 3.
  • step S501 the target trajectory calculation unit 31 acquires target information iL from the radar ECU 2. Then, the target trajectory calculation unit 31 proceeds to the next step S502.
  • step S502 the target trajectory calculation unit 31 determines whether or not the target information iL has been acquired. Specifically, the target trajectory calculation unit 31 determines whether or not the target information iL output by the radar ECU 2 has been acquired. If the target trajectory calculation unit 31 affirms the determination (YES), the process proceeds to the next step S503. If the determination is negative (NO), the process returns to step S501 to acquire the target information iL again. . In addition, the case where the process in this step is denied is a case where the left radar device 1L does not actually detect the target. That is, the target information iL is not output from the radar ECU 2 to the system ECU 3, and the target trajectory calculation unit 31 cannot acquire the target information iL. Then, the target trajectory calculation unit 31 returns the process to step S501 and repeats the process until the target information iL is output from the radar ECU 2.
  • the target trajectory calculation unit 31 temporarily stores the target information iL acquired at the present time in step S501 in the target information storage unit 34 in chronological order. Specifically, the target information iL is sequentially output from the radar ECU 2 to the system ECU 3 by repeating the process of the flowchart of FIG. The target information iL output from the radar ECU 2 is stored in the target information storage unit 34 in time series by the target trajectory calculation unit 31 in the process of the step.
  • the target information storage unit 34 can store K pieces of target information iL for one target
  • the target information storage unit 34 repeats the process of the flowchart, so that the target information iL is stored in the target information iL.
  • Information iL (1), iL (2), iL (3), iL (4), iL (k), iL (K-1),... IL (K) is stored in time series. .
  • the latest target information at this time is target information iL (K).
  • the target trajectory calculation unit 31 temporarily stores the target information iL in the target information storage unit 34 in chronological order, and then proceeds to the next step S504.
  • the target trajectory calculation unit 31 determines whether j target information iL is stored in the target information storage unit 34 for each target.
  • the target trajectory calculation unit 31 includes a plurality of past target information iL including the latest target information iL (K) at the present time in order to predict the traveling direction of the target. Necessary. Therefore, in the process of step S504, the target trajectory calculation unit 31 includes at least a predetermined number (hereinafter referred to as j) of target information iL including the latest target information iL (K), and the target information storage unit 34. It is determined whether or not it is stored.
  • the target trajectory calculation unit 31 affirms the determination (YES)
  • the process proceeds to the next step S505.
  • the determination is negative (NO)
  • the target trajectory calculation unit 31 returns the process to step S501. That is, the target trajectory calculation unit 31 repeats the process of acquiring the target information iL until at least j pieces of target information iL are stored in the target information storage unit 34 for each target.
  • step S505 the target trajectory calculation unit 31 calculates the estimated traveling direction VTL of the target.
  • the target trajectory calculation unit 31 calculates the estimated traveling direction VTL of the target.
  • FIG. 7 is a diagram showing a target detection state stored in the target information storage unit 34.
  • the target trajectory calculation unit 31 will be described assuming that the number of target information iL necessary for predicting the traveling direction of the target (corresponding to j in step S504) is 5. . That is, as shown in FIG. 7, from the latest target information iL (K), past target information iL (K-1), iL (K-2), iL (K-3), iL (K-4) is changed. To estimate the estimated traveling direction VTL of the target.
  • the target trajectory calculation unit 31 uses the target information iL stored in the target information storage unit 34 to determine the position of each target detected by the left radar device 1L in the front part of the host vehicle VM. In the coordinate system (X, Y) with the center as the origin, the points indicating the position of the target indicated by each target information are plotted. Then, the target trajectory calculation unit 31 obtains the slope of the approximate line for each point by the least square method or the like. Further, the target trajectory calculation unit 31 obtains a straight line that passes through the latest target (specifically, the point indicated by the target information iL (K)) and has the above-described inclination, and uses the straight line as a predicted traveling direction of the target. VTL is calculated. Then, the target trajectory calculation unit 31 advances the processing to the next step S506. Note that the direction of the vector (the direction of the arrow in the predicted travel direction VTL) is set in the direction in which the target travels.
  • step S506 the host vehicle trajectory calculation unit 32 calculates the estimated traveling direction VP of the host vehicle VM.
  • the host vehicle trajectory calculation unit 32 acquires the steering angle and yaw rate of the host vehicle VM from the steering angle sensor 5 and the yaw rate sensor 6 connected to the system ECU 3, for example, and The estimated traveling direction VP is calculated. And the own vehicle track
  • the target determination unit 33 calculates the estimated travel direction VTL of the target and the estimated travel direction VP of the host vehicle VM calculated by the target track calculation unit 31 and the host vehicle track calculation unit 32 in steps S505 and S506. Based on the above, the collision angle ⁇ L is calculated.
  • the collision angle ⁇ L is an angle formed by a straight line extending in the arrow direction of the estimated traveling direction VTL of the target and the traveling direction VP of the host vehicle VM (see FIG. 8).
  • the collision angle ⁇ L is 0 ° when the direction of the estimated traveling direction VTL of the target and the traveling direction VP of the host vehicle VM are opposite and parallel, and the clockwise direction is a positive value. That is, for example, when the collision angle ⁇ L is ⁇ 45 °, when the target is viewed from the host vehicle VM, the target advances from the left oblique front toward the host vehicle VM.
  • FIG. 8 shows the case where the host vehicle VM is traveling straight, but the collision angle ⁇ L can be calculated even when the host vehicle VM is turning.
  • FIG. 9 is a diagram illustrating a state when the host vehicle VM is turning right as an example.
  • the instantaneous vehicle speed direction (vehicle direction) in a turning state is determined with respect to a turning circle having a radius R drawn by the center of gravity G of the subject vehicle VM when the subject vehicle VM is turning. This can be shown as the tangential direction VV of the turning circle in which the center of gravity G of the host vehicle VM is located.
  • the intersection of the straight line extending in the direction of the arrow of the estimated traveling direction VTL of the target and the circumference of the turning circle is a predicted collision point between the target and the host vehicle VM. That is, the normal line of the intersection with the circumference is set as the estimated traveling direction VP of the host vehicle VM at the intersection. Accordingly, the collision angle ⁇ L at this time is an angle formed by the straight line extending in the arrow direction of the estimated traveling direction VTL of the target and the estimated traveling direction VP, as shown in FIG.
  • the curve radius R is calculated by the own vehicle trajectory calculation unit 32.
  • the calculation method may be a method generally known to those skilled in the art, a detailed description thereof will be omitted.
  • the host vehicle track calculation unit 32 acquires information indicating the steering angle and yaw rate of the host vehicle VM from the steering angle sensor 5 and the yaw rate sensor 6 connected to the system ECU 3, and calculates a curve radius using the information. To do.
  • the target determination unit 33 estimates the target capture position based on the collision angle ⁇ L calculated in step S ⁇ b> 507. Specifically, the target determination unit 33 regards the target as a vehicle having a general size (hereinafter simply referred to as another vehicle), and determines which part of the other vehicle is detected as a capture point. Based on ⁇ L, cases are classified according to the following case division conditions.
  • the target determination unit 33 estimates which part of the other vehicle is detected as a capture point depending on whether the first case or the second case is satisfied. In other words, depending on whether the first case or the second case is satisfied, the target determination unit 33 estimates that the front right end part of the other vehicle or the front end left part of the other vehicle is detected as the capture point.
  • part of other vehicles it is a corner
  • step S508 the processing performed by the target determination unit 33 in step S508 will be described more specifically with reference to FIGS.
  • the target detected by the left radar device 1L when viewed from the host vehicle VM, the target detected by the left radar device 1L is from the left side of the host vehicle VM. It will come.
  • the target determination unit 33 regards the target detected by the left radar device 1L as the other vehicle VO1, and the target determination unit 33 determines that the left radar device 1L is the other vehicle VO1. It is presumed that the right part of the front end is detected as the capture point P1.
  • the target determination unit 33 assumes the other vehicle VO1 coming from the left side of the host vehicle VM, and determines the other vehicle VO1 from the host vehicle VM. It is presumed that the closest location is detected as a capture point.
  • the target detected by the left radar device 1L is a diagonally forward left side of the host vehicle VM. Will come from.
  • the target determination unit 33 regards the target detected by the left radar device 1L as the other vehicle VO2, and the target determination unit 33 determines that the left radar device 1L is the other vehicle VO2.
  • the target determination unit 33 assumes the other vehicle VO2 coming from the left oblique front of the own vehicle VM, and the other vehicle VO2 from the own vehicle VM. It is presumed that the closest part of is detected as a capture point.
  • the target determination unit 33 determines whether the target regarded as the other vehicle is from the left side of the host vehicle VM based on the value of the collision angle ⁇ L, and whether the first condition or the second condition is satisfied. Determine which is the case.
  • ⁇ L ⁇ 90 °, which is the value of the collision angle ⁇ L, which is a reference for whether the target determination unit 33 applies to the first case or the second case, is not limited to this value. Absent.
  • the target determination unit 33 determines that the case where the target regarded as the other vehicle is coming from the left side of the host vehicle VM is almost from the left side is the first case.
  • the angle may be ⁇ 15 ° with respect to the angle, and the angle may be determined to be applicable in the first case. That is, ⁇ 105 ° ⁇ ⁇ L ⁇ ⁇ 75 ° may be set.
  • the target determination unit 33 may determine that the second case is applicable when the collision angle ⁇ L is not ⁇ 105 ° ⁇ ⁇ L ⁇ ⁇ 75 °.
  • the width of the angle described above, that is, ⁇ 15 ° is an example, and may be changed as appropriate.
  • the target determination unit 33 estimates the size of the target based on the position of the capture point estimated in the process of step S508.
  • an example of processing performed by the target determination unit 33 in this step will be specifically described with reference to the drawings.
  • the target determination unit 33 determines that the collision angle ⁇ L is applicable to the first case in the process of step S508, and the left radar device 1L estimates that the front right end portion of the other vehicle VO1 is detected as the capture point P1.
  • the target determination unit 33 uses the position of the capture point P1 as the front right portion of the other vehicle VO1, and the target detected by the left radar device 1L includes a point A1 including the capture point P1.
  • the object having the size indicated by the region S1 surrounded by the points B1 and C1 is estimated.
  • the target determination unit 33 determines that the collision angle ⁇ L is applicable to the second case in the process of step S508, and the left radar device 1L detects the front end left portion of the other vehicle VO2 as the capture point P2.
  • the target determination unit 33 uses the position of the capture point P2 as the front left portion of the other vehicle VO2, and the target detected by the left radar device 1L includes a point A2 including the capture point P2.
  • the object having the size indicated by the area S2 surrounded by the points B2 and C2 is estimated. Note that the orientations of the region S1 and the region S2 may be determined based on the collision angle ⁇ L.
  • the target determination unit 33 does not capture the target detected by the left radar device 1L as a point (specifically, the capture point P1 and the capture point P2) by performing the process of step S509. As described above, it is estimated that the object has a certain size. That is, in the example illustrated in FIG. 12, the target determination unit 33 determines that the object having the size indicated by the area S1 surrounded by the points A1, B1, and C1 including the capture point P1 is the left of the host vehicle VM. Presumed to come from the side.
  • the positions of the points A1, B1, and C1 forming the region S1 may be set based on the width and length of a general automobile with reference to the capture point P1.
  • the distance between the capture point P1 and the point A1 may be a general vehicle width
  • the distance between the point P1 and the point C1 may be a general vehicle length.
  • the positions of the points A2, B2, and C2 forming the region S2 it is assumed that a general automobile comes from the left oblique front with respect to the own vehicle VM with reference to the capture point P2. It only has to be set.
  • the region S1 and the region S2 have been described as rectangular frames assuming the size of other vehicles.
  • the region indicating the target size estimated in step S509 is the rectangular frame. It is not limited to. In other words, based on the estimated capture position, the target is not considered as a point, but as a figure of a predetermined size (an object having a certain size) assuming an object to be detected in advance. An area to be shown may be set. Furthermore, the size of the figure may be changed according to the strength of the electromagnetic wave (the strength of the radio wave strength).
  • step S ⁇ b> 510 of FIG. 6 the target determination unit 33 determines whether or not there is a possibility of collision between the target and the host vehicle VM. Specifically, in step S510, the target determination unit 33 determines whether there is a possibility that the target of the size (area) estimated in step S509 and the host vehicle VM may collide with each other.
  • step S512 when determination is denied (NO).
  • the target determination unit 33 affirms the process (YES), that is, if it is determined that there is a possibility of collision between the host vehicle VM and the target, the process proceeds to step S511.
  • the target determination unit 33 instructs the safety system 8 to take the safety measures described above.
  • step S510 the target determination unit 33 estimates the target speed included in the target information iL, the speed of the host vehicle VM output from the wheel speed sensor 7, and the target estimation calculated in step S505. Based on the traveling direction VTL and the estimated traveling direction VP of the host vehicle VM calculated in step S506, a time until the host vehicle VM collides with the target, that is, a predicted collision time (TTC (Time (to collision)). calculate. Then, the target determination unit 33 comprehensively determines the collision prediction time, the target size estimated in step S509, the size of the host vehicle VM, and the like, and the target and the host vehicle VM collide with each other. Judge whether there is a possibility of doing.
  • TTC Time (to collision)
  • the collision determination between the target and the host vehicle VM is performed in consideration of the size of the target and the size of the host vehicle VM, the collision determination is performed while the target detected by the right radar apparatus 1R is regarded as a point. This also improves the accuracy of collision determination.
  • step S512 the target determination unit 33 deletes the history. Specifically, the target determination unit 33 uses the target information iL (k) stored in the target information storage unit 34 as the oldest target information iL (k) stored in the target information storage unit 34. ) Sequentially. Then, the process proceeds to step S513.
  • step S513 the target determination unit 33 determines whether or not to end the process. For example, when the power source of the system ECU 3 is turned off (for example, when the driver performs an operation to end the process, or when the ignition switch of the host vehicle VM is turned off), the target determination unit 33 Etc.) End the process. On the other hand, if the target determination unit 33 determines to continue the process, the process returns to step S501 and repeats the process.
  • the object recognition device As described above, according to the object recognition device according to the present embodiment, the object exists with respect to the host vehicle VM from the estimated traveling direction VP of the host vehicle VM and the moving direction of the object detected by the radar device 1.
  • the existence area to be calculated can be calculated. Therefore, for example, the size of the object detected by the radar apparatus 1 can be estimated with a simple configuration without installing a camera or the like in the vehicle.
  • the system ECU 3 performs processing on the target detected by the left radar device 1L has been described by taking the left radar device 1L as an example. However, it goes without saying that the system ECU 3 can perform the above-described operation not only on the left radar device 1L but also on the target detected by the right radar device 1R.
  • the target trajectory calculation unit 31 acquires target information iR from the radar ECU 2 for the target detected by the right radar apparatus 1R, and estimates the estimated traveling direction of the detected target. VTR is calculated. Then, the target determination unit 33 is based on the estimated traveling direction VTR of the target detected by the right radar apparatus 1R and the estimated traveling direction VP of the host vehicle VM, which are calculated by the target track calculation unit 31 and the host vehicle track calculation unit 32. Thus, the collision angle ⁇ R is calculated. As described above, the collision angle is 0 ° when the estimated traveling direction VTR of the target and the traveling direction VP of the host vehicle VM are opposite and parallel, and the clockwise direction is a positive value. . That is, for example, when the collision angle ⁇ R is 45 °, when the target is viewed from the host vehicle VM, the target advances from the right oblique front toward the host vehicle VM.
  • the target determination unit 33 estimates the target capture position based on the calculated collision angle ⁇ R.
  • the target determination unit 33 assumes that the target (other vehicle) is facing from the right side or right side of the host vehicle VM toward the target (other vehicle). Estimate whether a location is detected as a capture point.
  • the target determination unit 33 also estimates the size of the target based on the target capture position estimated based on the collision angle ⁇ R as described above for the target detected by the right-side radar device 1R. Considering the size of the target, the collision determination between the host vehicle VM and the target is performed.
  • the target determination unit 33 determines that the case where the target regarded as the other vehicle comes from the right side of the host vehicle VM is almost from the right side is the first case.
  • the target determination unit 33 may determine that the second case is applicable when the collision angle ⁇ R is not 75 ° ⁇ ⁇ L ⁇ 105 °.
  • the width of the angle described above, that is, ⁇ 15 ° is an example, and may be changed as appropriate.
  • the object recognition apparatus and the object recognition method according to the present invention calculate, for an object detected by a radar, an existence region where the object exists with respect to the own vehicle in consideration of the movement of the object and the movement of the own vehicle. It can be used as an on-vehicle radar device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 簡易な構成で、レーダで検出した物体について、当該物体の大きさを推定することができる物体認識装置および物体認識方法を提供する。車両前方の物体に電磁波を照射し、当該物体から反射された反射波を受信することにより物体を検出する検出手段と、上記検出手段が受信した信号を用いて、当該検出された物体の移動方向を含む情報をターゲット情報として算出するターゲット情報算出手段と、上記車両から得られる情報を用いて、上記車両の移動方向を含む情報を車両情報として算出する車両情報算出手段と、上記ターゲット情報に含まれる上記物体の移動方向を示す情報と上記車両情報に含まれる上記車両の移動方向を示す情報とに基づいて、上記検出手段が検出した物体において上記電磁波が上記物体の何れの部位で反射されたかを推定し、当該推定結果に応じて、上記車両に対して上記物体が存在する存在領域を算出する処理手段と、を備える。

Description

物体認識装置および物体認識方法
 本発明は、自動車などの車両に搭載され、物体と当該車両との衝突を予測する物体認識装置および物体認識方法に関し、より特定的には、車両に接近する物体が衝突する危険性を予測する物体認識装置および物体認識方法に関する。
 近年、自車両の側方から接近してくる他車両を当該自車両に設置されたミリ波レーダなどにより検出し、自車両と他車両との衝突の危険性があるか否かを判断する物体認識装置が実用化されている。
 ところで、現在、量産化されている上記物体認識装置は、自車両に搭載されたミリ波レーダで対象物を検出した場合、当該対象物を点とした位置座標情報に基づいて、衝突の危険性を判断している。そのため、対象物の大きさまでは判断することができなかった。
 つまり、上記物体認識装置は、レーダが物体を検出した場合、当該物体において上記レーダが捕捉した箇所(捕捉点)の位置座標に基づいて衝突判断を行っている。そのため、物体と自車両とが衝突する可能性があるのにも関わらず、検出された物体の捕捉点の位置によっては、自車両と上記物体と衝突の危険性が低いと判断される可能性がある。以下、図14を用いてより具体的に説明する。
 図14は、自車両VMの左前方から他車両VOが接近してくる様子を示した図である。図14に示すように、例えば、自車両VMがA1地点に存在するとき、自車両VMに設置されたレーダがB1地点に存在する他車両VOの右前端(自車両VMから最も近い他車両VOの先端)を捕捉点Pとして検出したとする。その後、自車両VMがA2地点に進行し、他車両VOがB2地点に進行した場合、捕捉点Pと自車両VMの位置関係だけを考慮すると、自車両VMと他車両VOとは衝突することはなく、互いに通過することができると考えられる。しかしながら、他車両VOの大きさ(長さ)を考慮すると、図14に示すように、自車両VMと他車両VOは、実際には衝突する可能性が高い。つまり、一般的な物体認識装置は、ターゲットを点として捉えて、ターゲットの大きさを考慮していないために、図14に示すようなことが生じることがあった。
 このような問題を解消する技術として、例えば、特許文献1に開示された装置がある。上記特許文献1に開示されている装置は、レーダが対象物を検出したとき、検出点を中心とする範囲を上記カメラで探査し、対象物のエッジを検出する。
特開2007-279892号公報
 しかしながら、上記特許文献1に開示されている装置は、レーダが検出した情報から、例えば自車両に対する相対位置や相対速度などを算出する処理の他に、カメラが撮像した画像からエッジ点を抽出する画像処理を行う必要があり、処理が複雑になるといった問題点があった。さらに、上記特許文献1に開示されている装置は、対象物を検出するためのレーダに加えて、カメラを自車両に設置する必要があるためコスト面から不利であった。また、自車両にレーダの他にカメラを追加設置することは、自車両のこれまでの意匠性に影響することがあるので、カメラを設置しないことも望まれる。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、簡易な構成で、レーダで検出した物体について、当該物体の大きさを推定することができる物体認識装置および物体認識方法を提供することにある。
 上記目的を達成するために、本発明は以下の構成を採用した。すなわち第1の局面は、車両に搭載される物体認識装置であって、上記車両前方の物体に電磁波を照射し、当該物体から反射された反射波を受信することにより物体を検出する検出手段と、上記検出手段が受信した信号を用いて、当該検出された物体の移動方向を含む情報をターゲット情報として算出するターゲット情報算出手段と、上記車両から得られる情報を用いて、上記車両の移動方向を含む情報を車両情報として算出する車両情報算出手段と、上記ターゲット情報に含まれる上記物体の移動方向を示す情報と上記車両情報に含まれる上記車両の移動方向を示す情報とに基づいて、上記検出手段が検出した物体において上記電磁波が上記物体の何れの部位で反射されたかを推定し、当該推定結果に応じて、上記車両に対して上記物体が存在する存在領域を算出する処理手段とを備える。
 第2の局面は、上記第1の局面において、上記処理手段によって算出された上記存在領域に上記検出手段が検出した物体が存在するものとみなして、上記車両と上記物体とが衝突する危険性を判断する衝突判定手段を、さらに備える。
 第3の局面は、上記第1または第2の局面において、上記部位は、上記物体の移動方向における前端角部であることを特徴とする。
 第4の局面は、上記第3の局面において、上記処理手段は、上記検出手段が検出した物体を他車両とみなし、上記電磁波が反射された上記前端部位の位置を基準にして、上記他車両の形状を想定した領域を上記存在領域として算出することを特徴とする。
 第5の局面は、上記第4の局面において、上記処理手段は、上記物体から当該物体の移動方向に延ばした線と上記車両から当該車両の移動方向に延ばした線とがなす角を衝突角度として算出し、当該衝突角度に基づいて、上記検出手段が検出した物体において上記電磁波が何れの上記前端部位で反射されたかを推定することを特徴とする。
 第6の局面は、上記第5の局面において、上記処理手段は、上記衝突角度が直角または略直角であった場合、各上記前端部位のうち、上記車両側の上記前端部位で上記電磁波が反射されたと推定することを特徴とする。
 第7の局面は、上記第5の局面において、上記処理手段は、上記衝突角度が直角または略直角でなかった場合、各上記前端部位のうち、上記車両から当該車両の移動方向に延ばした線に対して上記他車両の最も近い上記前端部位で上記電磁波が反射されたと推定することを特徴とする。
 第8の局面は、車両に搭載される物体認識方法であって、上記車両前方の物体に電磁波を照射し、当該物体から反射された反射波を受信することにより物体を検出する検出ステップと、上記検出ステップで受信した信号を用いて、当該検出された物体の移動方向を含む情報をターゲット情報として算出するターゲット情報算出ステップと、上記車両から得られる情報を用いて、上記車両の移動方向を含む情報を車両情報として算出する車両情報算出ステップと、上記ターゲット情報に含まれる上記物体の移動方向を示す情報と上記車両情報に含まれる上記車両の移動方向を示す情報とに基づいて、上記検出ステップで検出した物体において上記電磁波が上記物体の何れの部位で反射されたかを推定し、当該推定結果に応じて、上記車両に対して上記物体が存在する存在領域を算出する処理ステップとを備える。
 上記第1の局面によれば、検出手段が検出した物体の移動方向と車両の移動方向から、当該物体の大きさ、つまり上記車両に対して上記物体が存在する存在領域を算出することができる。したがって、例えば、車両にカメラ等を設置しなくとも、簡易な構成で、検出手段が検出した物体について大きさを推定することができる。
 上記第2の局面によれば、物体の大きさまでも考慮して、当該物体と車両との衝突判定を行うので、従来の装置のように、検出した物体を点とみなしたままで衝突判断を行うよりも衝突判断の精度が向上する。
 上記第3の局面によれば、車両に対して向かってくる物体の先端を検出することができる。
 上記第4の局面によれば、検出手段が検出した物体を予め他車両とみなすので、物体認識装置が搭載された車両が実際に使用される環境、つまり一般的な走行環境において、より好適に使用することができる。
 上記第5の局面によれば、物体の移動方向に延ばした線と車両の移動方向に延ばした線とがなす角を衝突角度として算出し、当該衝突角度から反射点の位置を予測するので、前もって反射点の位置を予測することが可能となる。
 上記第6および第7の局面によれば、衝突角度に応じて、他車両とみなされた物体が車両に対して向かってくる方向を予想し、何れの前端部位で電磁波が反射されたかを推定するので、ターゲットの大きさを考慮することができる。つまり、検出手段が検出した物体を点として捉えるのではなく、所定の向きと大きさを持った車両とみなすことができるので、衝突判断を行う場合、より精度よく判断することができる。
 本発明の物体認識方法によれば、上述した本発明の物体認識装置と同様の効果を得ることができる。
図1は、物体認識装置を含む運転支援システムの構成の一例を示したブロック図である。 図2は、自車両VMにおける各レーダ装置1の搭載例を示した図である。 図3は、一実施形態に係る物体認識装置のレーダECU2において行われる処理の一例を示したフローチャートである。 図4は、左側レーダ装置1Lの設置位置を原点とした座標系(xL、yL)、および自車両VMの前部の中心を原点とする座標系(X、Y)を示した図である。 図5は、一実施形態に係る物体認識装置のシステムECU3の各部において行われる処理の一例の前半を示したフローチャートである。 図6は、本実施形態に係る物体認識装置のシステムECU3の各部において行われる処理の一例の後半示したフローチャートである。 図7は、ターゲット情報記憶部34に記憶されているターゲットの検出状況を示した図である。 図8は、衝突角度θLを説明するための図である。 図9は、自車両VMが旋回状態のときの衝突角度θLを説明するための図である。 図10は、第1の場合にあてはまる例を示す図である。 図11は、第2の場合にあてはまる例を示す図である。 図12は、第1の場合にあてはまるとき、ターゲットの存在領域を示す図である。 図13は、第2の場合にあてはまるとき、ターゲットの存在領域を示す図である。 図14は、自車両VMの左前方から他車両が接近してくる様子を示した図である。
符号の説明
 1R…右側レーダ
 1L…左側レーダ
 2…レーダECU
 3…システムECU
 31…ターゲット軌道算出部
 32…自車両軌道算出部
 33…ターゲット判定部
 34…ターゲット情報記憶部
 5…操舵角センサ
 6…ヨーレートセンサ
 7…車輪速センサ
 8…安全システム
 以下、図面を参照しつつ、本発明の一実施形態に係る物体認識装置について説明する。なお、本実施形態では、当該物体認識装置を含む運転支援システムが車両(以下、自車両VMと称す)に設置されている場合を想定して説明する。図1は、当該物体認識装置を含む運転支援システムの構成の一例を示したブロック図である。
 図1に示すように、本実施形態に係る運転支援システムは、右側レーダ装置1Rと、左側レーダ装置1Lと、レーダECU(Electronic Control Unit)2と、システムECU(Electronic Control Unit)3と、安全システム8とを備えている。
 また、システムECU3には、自車両の車両情報を取得するための操舵角センサ5とヨーレートセンサ6と車輪速センサ7が接続されている。
 右側レーダ装置1Rは、自車両VMの所定の位置(例えば、自車両VMの前部右側の前照灯や方向指示器などが搭載されている位置)に設置され、自車両VMの外側に向けて電磁波を照射し、自車両VM前方を監視している。図2に示すように、右側レーダ装置1Rは、自車両VMの斜め右前方に向けて電磁波を照射し、当該右側レーダ装置1Rの検出範囲内(図2のAR)に存在するターゲット(例えば、他車両、自転車、歩行者、建造物など)を検出する。
 左側レーダ装置1Lは、自車両VMの所定の位置(例えば、自車両VMの前部左側の前照灯や方向指示器などが搭載されている位置)に設置され、自車両VMの外側に向けて電磁波を照射し、自車両VM前方を監視している。図2に示すように、例えば、左側レーダ装置1Lは、自車両VMの斜め左前方に向けて電磁波を照射し、当該左側レーダ装置1Lの検出範囲内(図2のAL)に存在するターゲット(例えば、他車両、自転車、歩行者、建造物など)を検出する。
 具体的には、右側レーダ装置1Rおよび左側レーダ装置1Lは、電磁波を照射して、その反射波を受信する。そして、右側レーダ装置1Rおよび左側レーダ装置1Lは、例えば自車両VMの前方に存在するターゲットを検出し、当該ターゲットを検出した信号を、レーダECU2に出力する。また、各レーダ装置は、検出したターゲット毎に信号を出力する。なお、各レーダ装置が複数のターゲットを探知している場合、当該各レーダ装置は、ターゲットを検出した信号をターゲット毎にそれぞれレーダECU2に出力する。
 なお、各レーダ装置は、電磁波の照射方向が異なることを除いて構成は同様である。したがって、以下の説明において、右側レーダ装置1Rおよび左側レーダ装置1Lを特に区別する場合を除き、上記各レーダ装置を総称して、単に「レーダ装置1」と称す。また、レーダ装置1は、請求項に記載の検出手段の一例に相当する。
 図1の説明に戻って、図1に示すように、レーダECU2は、レーダ装置1から取得した信号を用いて、自車両VMに対するターゲットの位置、速度、距離等のターゲット情報を算出する。例えば、レーダECU2は、レーダ装置1が照射した照射波と受信した反射波との和および差や送受信タイミング等を用いて、各レーダ装置1に対するターゲットの相対距離、相対速度、および相対位置等を算出する。そして、レーダECU2は、右側レーダ装置1Rに対するターゲットの距離、速度、および位置等を含む情報をターゲット情報irとして、左側レーダ装置1Lに対するターゲットの距離、速度、および位置等を含む情報をターゲット情報ilとして生成する。
 さらに、レーダECU2は、詳細は後述するが、ターゲット情報irおよびターゲット情報ilを用い、検出したターゲットの位置を自車両VMの前部の所定の位置を基準とした座標に変換する処理を行う。一般的に、右側レーダ装置1Rから出力されるターゲット情報irに含まれるターゲットの位置情報は、当該右側レーダ装置1Rが設置されている位置を基準とした座標系で出力される(左側レーダ装置1Lについても同様)。そこで、レーダECU2は、後述するシステムECU3での処理を簡単にするために、ターゲット情報irおよびターゲット情報ilに含まれる位置情報を自車両VMの前部の所定の位置を基準とした座標系にターゲットの位置を変換する処理を行う。そして、レーダECU2は、座標変換処理されたターゲット情報をシステムECU3に出力する。なお、以降の説明において、座標変換処理されたターゲット情報irおよびターゲット情報ilをそれぞれターゲット情報iRおよびターゲット情報iLと表す。
 次に、図1に示すシステムECU3の説明に進む。図1に示すように、システムECU3は、ターゲット軌道算出部31、自車両軌道算出部32、ターゲット判定部33、およびターゲット情報記憶部34を備える。
 また、システムECU3には、操舵角センサ5、ヨーレートセンサ6、および車輪速センサ7が接続されている。操舵角センサ5は、自車両VMのステアリングホイールの回転情報に基づいて操舵角を検出するものである。ヨーレートセンサ6は、コーナリングする自車両VMを上から見たときの自車両VMの旋回方向への回転角が変化する速度(回転角速度)であるヨーレートを検出するものである。車輪速センサ7は、車輪の回転速度を検出するものである。
 ターゲット軌道算出部31は、レーダECU2から出力されるターゲット情報iRおよびターゲット情報iLに基づいて、ターゲットの進行方向を予測(ターゲットが自車両VMにこれから向かってくるであろう進路を予測)する。なお、ターゲット軌道算出部31は、請求項に記載のターゲット算出手段の一例に相当する。
 自車両軌道算出部32は、システムECU3に接続された操舵角センサ5およびヨーレートセンサ6から出力される情報に基づいて、自車両VMの進行方向を予測(自車両VMがこれから進んでいくであろう進路を予測)する。なお、自車両軌道算出部32は、車両情報算出手段の一例に相当する。
 ターゲット判定部33は、詳細は後述するが、各レーダ装置1が検出したターゲットについて、当該ターゲットの動きの特徴と自車両VMの動きの特徴とに基づいて、ターゲットを例えば他車両とみなし、当該他車両における捕捉位置を推定する。さらに、ターゲット判定部33は、当該推定された捕捉位置に基づいて、他車両とみなされたターゲットと自車両VMとの衝突の危険性を判断する。そして、ターゲット判定部33は、自車両VMとターゲットとの衝突の可能性が高いと判断した場合、安全システム8に指示し、後述する安全措置を講じる。なお、ターゲット判定部33は、請求項に記載の処理手段および衝突判定手段の一例に相当する。
 安全システム8は、ターゲット判定部33からの指示に従って、ターゲットとの衝突の危険性が高い場合には自車両VMのドライバーに対して注意喚起を行う。また、安全システム8は、ターゲット判定部33からの指示に従って、ターゲットとの衝突が避けられない場合に、自車両VMの乗員の被害を低減(例えば乗員保護など)する。以下、安全システム8が行う動作を総称して安全措置と称する。
 ここで、安全システム8を構成する装置の一例を挙げる。例えば、安全システム8は、警告灯等の表示装置や警報ブザー等の警報装置を含む。ターゲット判定部33が、ターゲットと自車両VMとの衝突の危険性があると判断した場合、表示装置や警報装置により自車両VMのドライバーに注意喚起を促す。また、安全システム8には、自車両VMのドライバーが、ターゲットとの衝突の危険を回避するために行うブレーキ操作をアシストする危険回避装置も含まれる。さらに、安全システム8には、ターゲット判定部33がターゲットとの衝突が避けられないと判断したときに、シートベルトを巻き取ったり、シートを駆動させたりすることにより、自車両VMの乗員の拘束性を高め、衝突被害を低減する衝突被害低減装置も含まれる。なお、当該衝突被害低減装置の動作として、エアバッグのセーフィング解除をしたり、シートポジションを衝突に備えたポジションに変更したりすることなどがある。なお、上述した安全システム8に含まれる装置は一例であり、これらの装置に限られるものではない。
 次に、フローチャートを参照し、レーダECU2およびシステムECU3について説明する。
 まず、図3を参照して、本実施形態に係る物体認識装置のレーダECU2が行う動作の一例を説明する。
 図3は、本実施形態に係る物体認識装置のレーダECU2において行われる処理の一例を示したフローチャートである。なお、図3に示したフローチャートの処理は、レーダECU2内に備わった所定のプログラムを当該レーダECU2が実行することによって行われる。さらに、図3に示した処理を実行するためのプログラムは、例えば、レーダECU2の記憶領域に予め格納されている。また、レーダECU2の電源がONになったとき(例えば、自車両VMのドライバーが上記処理を実行させる処理を開始させる操作等を行った場合、自車両VMのイグニッションスイッチがONされた場合等)当該レーダECU2によって、図3に示したフローチャートの処理が実行される。
 図3のステップS301において、レーダECU2は、各レーダ装置1からターゲットを検出した信号を取得し、次のステップS302に処理を進める。なお、右側レーダ装置1Rがターゲットを検出しなかった場合(具体的には、右側レーダ装置1Rの検出範囲ARにターゲットが存在しなかった場合)、当該右側レーダ装置1Rは、ターゲットは0(ターゲットは無し)であることを示す信号をレーダECU2に出力する。同様に、左レーダ装置1Lがターゲットを検出しなかった場合(具体的には、左側レーダ装置1Lの検出範囲ALにターゲットが存在しなかった場合)、当該左側レーダ装置1Lは、ターゲットは0(ターゲットは無し)であることを示す信号をレーダECU2に出力する。
 ステップS302において、レーダECU2は、各レーダ装置1が検出したターゲットはあるか否かを判断する。具体的には、レーダECU2は、上記ステップS301で右側レーダ装置1Rから取得した信号に基づいて、右側レーダ装置1Rは、ターゲットを検出したか否かを判断する。同様に、レーダECU2は、上記ステップS301で左側レーダ装置1Lから取得した信号に基づいて、左側レーダ装置1Lは、ターゲットを検出したか否かを判断する。そして、レーダECU2によって、判断が肯定された場合(YES)、次のステップS303に処理を進め、判断が否定された場合(NO)、ステップS301に戻って再び信号を取得する。つまり、レーダECU2は、各レーダ装置1の少なくとも一方が実際にターゲットを検出していれば、ステップS303へ進め、右側レーダ装置1Rおよび左側レーダ装置1Lともにターゲットを検出していない場合、ステップS301へ処理を戻すことになる。
 ステップS303において、レーダECU2は、右側レーダ装置1Rから取得した信号を用いて、ターゲット毎のターゲット情報irを生成する。具体的には、レーダECU2は、右側レーダ装置1Rからの信号を用いて、当該右側レーダ装置1Rに対するターゲットの距離、速度、および位置等を含む情報をターゲット情報irとして生成する。同様に、レーダECU2は、左側レーダ装置1Lから取得した信号を用いて、ターゲット毎のターゲット情報ilを生成する。具体的には、レーダECU2は、左側レーダ装置1Lからの信号を用いて、当該左側レーダ装置1Lに対するターゲットの距離、速度、および位置等を含む情報をターゲット情報ilとして生成する。そして、レーダECU2は、次のステップS304に処理を進める。
 ステップS304において、レーダECU2は、現時点でターゲット情報記憶部34に記憶されている、全てのターゲットについて、当該各ターゲット情報irおよびilを用いて位置座標を変換する処理を行う。ここで、図4を用いて、ステップS304でレーダECU2が行う座標変換処理について、左側レーダ装置1Lを例に説明する。
 図4は、左側レーダ装置1Lの設置位置を原点とした座標系(xL、yL)、および自車両VMの前部の中心を原点とする座標系(X、Y)を示した図である。図4において、ターゲット情報ilに含まれる当該ターゲットの位置情報は、左側レーダ装置1Lの設置位置を原点とした座標系で示される。つまり、ターゲット情報ilに含まれる位置情報は、左側レーダ装置1Lの設置位置を基準とした座標系(xL、yL)で示された値としてレーダECU2で処理される。そこで、レーダECU2は、後の処理を簡単にするため、左側レーダ装置1Lの座標系(xL、yL)を、自車両VMの前部の中心を原点とする座標系(X、Y)に変換する座標変換処理を行う。なお、レーダECU2は、予め分かっている自車両VMの幅、当該自車両VMにおける左側レーダ装置1Lの設置位置、設置角度等を用いて座標変換処理を行えばよい。また、右側レーダ装置1Rから出力されるターゲット情報irについても同様に、レーダECU2は座標変換処理を行う。そして、レーダECU2は、上記ステップS304における座標変換処理の次の処理であるステップS305に処理を進める。
 ステップS305において、レーダECU2は、システムECU3にターゲット情報iR、ターゲット情報iLを出力する。そして、次のステップS306に処理を進める。
 ステップS306において、レーダECU2は、処理を終了するか否かを判断する。例えば、レーダECU2は、当該レーダECU2の電源がOFFになったとき(例えば、ドライバーが上記処理を実行させる処理を終了させる操作等を行った場合、自車両VMのイグニッションスイッチがOFFされた場合等)処理を終了する。一方、レーダECU2は、処理を継続すると判断した場合、上記ステップS301に戻って処理を繰り返す。
 このように、レーダECU2は、図3に示すフローチャートを繰り返すことによって、ターゲット情報iRおよびターゲット情報iLを生成する。そして、レーダECU2は、当該生成されたターゲット情報iRおよびターゲット情報iLをシステムECU3に出力する。
 次に、図5および図6を参照して、本実施形態に係る物体認識装置のシステムECU3が行う動作の一例を説明する。
 図5および図6は、本実施形態に係る物体認識装置のシステムECU3の各部において行われる処理の一例を示したフローチャートである。なお、図5および図6に示したフローチャートの処理は、システムECU3内に備わった所定のプログラムを当該システムECU3の各部が実行することによって行われる。さらに、図5および図6に示した処理を実行するためのプログラムは、例えば、システムECU3の記憶領域に予め格納されている。また、システムECU3の電源がONになったとき(例えば、自車両VMのドライバーが上記処理を実行させる処理を開始させる操作等を行った場合、自車両VMのイグニッションスイッチがONされた場合等)当該システムECU3によって、図5および図6に示したフローチャートの処理が実行される。
 なお、以下の説明では、左側レーダ装置1Lを例に、当該左側レーダ装置1Lがターゲットを検出した場合を想定し、レーダECU2からターゲット情報iLを取得した場合の処理の一例について説明する。
 ステップS501において、ターゲット軌道算出部31は、レーダECU2からターゲット情報iLを取得する。そして、ターゲット軌道算出部31は、次のステップS502に処理を進める。
 ステップS502において、ターゲット軌道算出部31は、ターゲット情報iLを取得できたか否かを判断する。具体的には、ターゲット軌道算出部31は、レーダECU2によって出力されたターゲット情報iLを取得できたか否かを否かを判断する。そして、ターゲット軌道算出部31によって、判断が肯定された場合(YES)、次のステップS503に処理を進め、判断が否定された場合(NO)、ステップS501に戻って再びターゲット情報iLを取得する。なお、当該ステップでの処理が否定される場合とは、左側レーダ装置1Lが実際にターゲットを検出していない場合である。つまり、ターゲット情報iLは、レーダECU2からシステムECU3に出力されず、ターゲット軌道算出部31は、ターゲット情報iLを取得することができない場合である。そして、ターゲット軌道算出部31は、ステップS501に処理を戻し、レーダECU2からターゲット情報iLが出力されるまで処理を繰り返すことになる。
 ステップS503において、ターゲット軌道算出部31は、上記ステップS501で現時点で取得したターゲット情報iLを時系列順にターゲット情報記憶部34に一時的に記憶させる。具体的には、図3のフローチャートの処理が繰り返されることによって、レーダECU2からターゲット情報iLがシステムECU3に順次出力される。そして、レーダECU2から出力されるターゲット情報iLは、当該ステップの処理で、ターゲット軌道算出部31によって、ターゲット情報記憶部34に時系列順に記憶される。
 例えば、ターゲット情報記憶部34は、1つのターゲットにつき、K個のターゲット情報iLを記憶可能とした場合、ターゲット情報記憶部34には、当該フローチャートの処理を繰り返すことによって、ターゲット情報iLが、ターゲット情報iL(1)、iL(2)、iL(3)、iL(4)、iL(k)、iL(K-1)、…iL(K)と時系列的に記憶されていくことになる。なお、このときの現時点での最新のターゲット情報は、ターゲット情報iL(K)となる。そして、ターゲット軌道算出部31は、ターゲット情報iLを時系列順にターゲット情報記憶部34に一時的に記憶した後、次のステップS504に処理を進める。
 ステップS504において、ターゲット軌道算出部31は、ターゲット情報記憶部34に各ターゲット毎にj個のターゲット情報iLは記憶されているか否かを判断する。なお、後述より明らかとなるが、ターゲット軌道算出部31は、ターゲットの進行方向を予測するために、現時点における最新のターゲット情報iL(K)を含む、当該ターゲットの過去のターゲット情報iLが複数個必要となる。そのため、ステップS504の処理において、ターゲット軌道算出部31は、最新のターゲット情報iL(K)を含む、ターゲット情報iLを少なくとも予め定められた個数(以下、j個と称する)、ターゲット情報記憶部34に記憶されている否かを判断する。
 言い換えると、ターゲット軌道算出部31は、ステップS504の処理において、最新のターゲット情報iL(K)から過去のターゲット情報iL(K-(j-1))までのターゲット情報がターゲット情報記憶部34に記憶されているか否かを判断する。例えば、j=5とした場合、現時点における最新のターゲット情報iL(K)と過去のターゲット情報iL(K-1)、iL(K-2)、iL(K-3)、iL(K-4)の5つが必要になることになる。
 そして、ターゲット軌道算出部31は、判断を肯定した場合(YES)、次のステップS505に処理を進める。一方、ターゲット軌道算出部31は、判断を否定した場合(NO)、ステップS501に処理を戻す。つまり、ターゲット軌道算出部31は、ターゲット情報記憶部34に、少なくともj個のターゲット情報iLがターゲット毎に記憶されるまで、ターゲット情報iLを取得する処理を繰り返す。
 ステップS505において、ターゲット軌道算出部31は、ターゲットの推定進行方向VTLを算出する。ここで、図7を参照して、当該ステップでターゲット軌道算出部31が行う処理の一例について説明する。
 図7は、ターゲット情報記憶部34に記憶されているターゲットの検出状況を示した図である。なお、説明を簡単にするために、一例として、ターゲット軌道算出部31がターゲットの進行方向を予測するために必要なターゲット情報iLの個数(ステップS504でのj個に相当)を5として説明する。つまり、図7に示すように、最新のターゲット情報iL(K)から過去のターゲット情報iL(K-1)、iL(K-2)、iL(K-3)、iL(K-4)を用いて、ターゲットの推定進行方向VTLを予測する。
 具体的には、ターゲット軌道算出部31は、ターゲット情報記憶部34に記憶されているターゲット情報iLを用いて、左側レーダ装置1Lによって検出された各ターゲットの位置について、自車両VMの前部の中心を原点とする座標系(X、Y)において、各ターゲット情報で示されるターゲットの位置を示す点をプロットする。そして、ターゲット軌道算出部31は、当該各点について最小二乗法等により近似直線の傾きを求める。さらに、ターゲット軌道算出部31は、最新のターゲット(具体的には、ターゲット情報iL(K)で示される点)を通過し、かつ上記傾きを持つ直線を求め、当該直線をターゲットの予測進行方向VTLを算出する。そして、ターゲット軌道算出部31は、次のステップS506に処理を進める。なお、ベクトルの向き(予測進行方向VTLの矢印の向き)は、ターゲットが進む向きで設定される。
 ステップS506において、自車両軌道算出部32は、自車両VMの推定進行方向VPを算出する。具体的な処理の一例として、自車両軌道算出部32は、例えば、システムECU3に接続された操舵角センサ5およびヨーレートセンサ6から、自車両VMの舵角およびヨーレートを取得し、自車両VMの推定進行方向VPを算出する。そして、自車両軌道算出部32は、次のステップS507に処理を進める。
 ステップS507において、ターゲット判定部33は、上記ステップS505およびステップS506でターゲット軌道算出部31および自車両軌道算出部32によって算出された、ターゲットの推定進行方向VTLと自車両VMの推定進行方向VPとに基づいて、衝突角度θLを算出する。なお、衝突角度θLとは、ターゲットの推定進行方向VTLの矢印方向に延ばした直線と自車両VMの進行方向VPとがなす角のことである(図8参照)。なお、衝突角度θLは、ターゲットの推定進行方向VTLと自車両VMの進行方向VPとの向きが逆で、平行である場合に0°とし、右回りを正の値として示す。つまり、例えば、衝突角度θLが-45°であった場合、自車両VMから、ターゲットを見た場合、左斜前方から当該自車両VMに向かってターゲットが進んでくることになる。
 なお、図8で示した例は、自車両VMが直進している場合を示したが、自車両VMが旋回している場合でも衝突角度θLを算出することは可能である。
 例えば、自車両VMが旋回状態である場面、つまり自車両VMが右カーブを走行している場面を想定して、図9を用いて説明する。図9は、一例として自車両VMが右旋回をしているときの様子を示した図である。一般的に旋回状態における瞬間的な車両の速度方向(車両の向き)は、自車両VMが旋回しているときに当該自車両VMの重心Gが描く半径Rの旋回円に対して、現時点の自車両VMの重心Gが位置する当該旋回円の接線方向VVとして示すことができる。この場合、ターゲットの推定進行方向VTLの矢印方向に延ばした直線と当該上記旋回円の円周上との交点が、ターゲットと自車両VMとの衝突予測地点である。つまり、上記円周上との交点の法線を、当該交点での自車両VMの推定進行方向VPとする。したがって、このときの衝突時角度θLは、図9に示すように、ターゲットの推定進行方向VTLの矢印方向に延ばした直線と推定進行方向VPとがなす角になる。
 なお、カーブ半径Rは、自車両軌道算出部32によって算出されるが、当該算出方法は、当業者において一般的に知られている方法を用いればよいので詳細な説明は省略する。例えば、自車両軌道算出部32は、システムECU3に接続された操舵角センサ5およびヨーレートセンサ6から、自車両VMの舵角およびヨーレートを示す情報を取得し、当該情報を用いてカーブ半径を算出する。
 なお、説明を簡単にするために、以下の説明では、自車両VMは、直進している場合(旋回状態ではない場合)を想定して説明する。
 図6の説明に戻って、図6のステップS508において、ターゲット判定部33は、上記ステップS507で算出された衝突角度θLに基づいて、ターゲットの捕捉位置を推定する。具体的には、ターゲット判定部33は、ターゲットを一般的な大きさの車両(以下、単に他車両と称す)とみなして、当該他車両の、どの箇所を捕捉点として検出したかを衝突角度θLに基づいて、次の場合分け条件によって場合分けを行う。
(第1の場合)衝突角度θLがθL=-90°のとき:他車両の前端右部位
(第2の場合)衝突角度θLがθL=-90°ではないとき:他車両の前端左部位
つまり、ターゲット判定部33は、第1の場合または第2の場合のどちらを満たすか否かによって、他車両のどの箇所を捕捉点として検出したかを推定する。言い換えると、第1の場合または第2の場合のどちらを満たすか否かによって、ターゲット判定部33は、他車両の前端右部位または他車両の前端左部位を捕捉点として検出したと推定する。なお、前端右部位または他車両の前端左部位における、当該部位の一例として、例えば、他車両の角部である。
 ここで、図10および図11を用いて、ステップS508においてターゲット判定部33が行う処理について、より具体的に説明する。
 まず、第1の場合にあてはまる例を図10を用いて説明する。図10は、一例として衝突角度θLがθL=-90°のときを示した図である。図10の(a)に示すように、衝突角度θLがθL=-90°のときとは、自車両VMから見ると、左側レーダ装置1Lが検出したターゲットは、当該自車両VMの左真横から向かってくることになる。この場合、図10の(b)に示すように、ターゲット判定部33は、左側レーダ装置1Lが検出したターゲットを他車両VO1とみなし、当該ターゲット判定部33は、左側レーダ装置1Lは他車両VO1の前端右部位を捕捉点P1として検出したと推定する。つまり、言い換えると、衝突角度θLが、第1の場合にあてはまるとき、ターゲット判定部33は、自車両VMの左真横から向かってくる他車両VO1を想定し、自車両VMから当該他車両VO1の最も近い箇所を捕捉点として検出したと推定する。
 次に、第2の場合にあてはまる例を図11を用いて説明する。図11は、一例として衝突角度θLがθL=-45°のときを示した図である。図11の(a)に示すように、衝突角度θLがθL=-45°のときとは、自車両VMから見ると、左側レーダ装置1Lが検出したターゲットは、当該自車両VMの左斜前方から向かってくることになる。この場合、図11の(b)に示すように、ターゲット判定部33は、左側レーダ装置1Lが検出したターゲットを他車両VO2とみなし、当該ターゲット判定部33は、左側レーダ装置1Lは他車両VO2の前端左部位を捕捉点P2として検出したと推定する。つまり、言い換えると、衝突角度θLが、第2の場合にあてはまるとき、ターゲット判定部33は、自車両VMの左斜前方から向かってくる他車両VO2を想定し、自車両VMから当該他車両VO2の最も近い箇所を捕捉点として検出したと推定する。
 つまり、ターゲット判定部33は、衝突角度θLの値から、他車両とみなしたターゲットが自車両VMからみて左真横から向かってくるか否かで、上記第1の条件または上記第2の条件のどちらにあてはまるかを判断する。
 なお、ターゲット判定部33が、上記第1の場合または上記第2の場合のどちらにあてはまるかの基準となる衝突角度θLの値である、θL=-90°は、この値に限られるものではない。ターゲット判定部33は、他車両とみなしたターゲットが自車両VMからみて、ほぼ左真横から向かってくる場合も上記第1の場合と判断するために、例えば、衝突角度θLが、θL=-90°を基準に±15°と角度に幅を持たせて、第1の場合にあてはまると判断してもよい。つまり、-105°≦θL≦-75°としてもよい。また、同様に、ターゲット判定部33は、衝突角度θLが、-105°≦θL≦-75°にないとき、第2の場合にあてはまると判断してもよい。なお、上述した角度に幅の幅、つまり、±15°は一例であり、適宜変更されてもよいことは言うまでもない。
 図6の説明に戻って、図6のステップS509において、ターゲット判定部33は、上記ステップS508での処理で推定した捕捉点の位置に基づいて、ターゲットの大きさを推定する。以下、当該ステップにおいて、ターゲット判定部33が行う処理の一例を図を参照し、具体的に説明する。
 例えば、ターゲット判定部33は、上記ステップS508の処理で衝突角度θLは第1の場合にあてはまると判断し、左側レーダ装置1Lは、他車両VO1の前端右部位を捕捉点P1として検出したと推定したとする。この場合、図12に示すように、例えば、ターゲット判定部33は、捕捉点P1の位置を他車両VO1の前端右部位として、左側レーダ装置1Lが検出したターゲットは、捕捉点P1を含む点A1、点B1、点C1で囲まれる領域S1で示される大きさを持つ物体であると推定する。
 一方、例えば、ターゲット判定部33は、上記ステップS508の処理で衝突角度θLは第2の場合にあてはまると判断し、左側レーダ装置1Lは、他車両VO2の前端左部位を捕捉点P2として検出したと推定したとする。この場合、図13に示すように、例えば、ターゲット判定部33は、捕捉点P2の位置を他車両VO2の前端左部位として、左側レーダ装置1Lが検出したターゲットは、捕捉点P2を含む点A2、点B2、点C2で囲まれる領域S2で示される大きさを持つ物体であると推定する。なお、領域S1および領域S2の向きは、衝突角度θLに基づいて決定されればよい。
 このように、ターゲット判定部33は、当該ステップS509の処理を行うことにより、左側レーダ装置1Lが検出したターゲットを点(具体的には捕捉点P1および捕捉点P2)として捉えるのではなく、上述したように、一定の大きさを持った物体であると推定する。つまり、図12に示した例では、ターゲット判定部33は、捕捉点P1を含む点A1、点B1、点C1で囲まれる領域S1で示される大きさを持つ物体が、当該自車両VMの左真横から向かってくると推定する。
 なお、領域S1をなす点A1、点B1、点C1の各点の位置は、捕捉点P1を基準に、一般的な自動車の幅と長さに基づいて設定されればよい。例えば、捕捉点P1と点A1との距離を一般的な車両の幅とし、点P1と点C1との距離を一般的な車両の長さとすればよい。同様に、領域S2をなす点A2、点B2、点C2の各点の位置についても、捕捉点P2を基準に一般的な自動車が自車両VMに対して左斜前方から向かってくると想定し設定されればよい。
 また、上述した例では、領域S1および領域S2は、他車両の大きさを想定した矩形の枠として説明したが、上記ステップS509で推定されるターゲットの大きさを示す領域は、当該矩形の枠に限られるものではない。つまり、推定された捕捉位置に基づいて、ターゲットを点として考えるのではなく、予め検出対象とされる物体を想定した所定サイズの図形(一定の大きさを持った物体)としてターゲットの大きさを示す領域を設定すればよい。さらに、電磁波の強度(電波強度の強さ)に応じて、上記図形のサイズの大きさを変更してもよい。
 図6の説明に戻って、図6のステップS510において、ターゲット判定部33は、ターゲットと自車両VMとが衝突する可能性があるか否かを判断する。具体的には、当該ステップS510において、ターゲット判定部33は、上記ステップS509で推定された大きさ(領域)のターゲットと自車両VMとが衝突する可能性があるか否かを判断する。
 そして、ターゲット判定部33は、判断を否定した場合(NO)、ステップS512に処理を進める。一方、ターゲット判定部33は、処理を肯定した場合(YES)、すなわち自車両VMとターゲットとが衝突する可能性がある、衝突は避けられないと判断した場合、ステップS511に処理を進める。そして、ステップS511において、ターゲット判定部33は、安全システム8に指示し、上述したような安全措置を講じる。
 なお、上記ステップS510おいて、ターゲット判定部33は、例えば、ターゲット情報iLに含まれるターゲットの速度および車輪速センサ7から出力される自車両VMの速度、上記ステップS505で算出されたターゲットの推定進行方向VTLをおよび上記ステップS506で算出された自車両VMの推定進行方向VPに基づいて、自車両VMとターゲットとが衝突するまでの時間、つまり衝突予測時間(TTC(Time to collision))を算出する。そして、ターゲット判定部33は、上記衝突予測時間、上記ステップS509で推定されたターゲットの大きさ、および自車両VMの大きさ等を総合的に判断して、当該ターゲットと自車両VMとが衝突する可能性があるか否かを判断する。したがって、ターゲットの大きさや自車両VMの大きさまでも考慮して、当該ターゲットと自車両VMとの衝突判定を行うので、右側レーダ装置1Rで検出したターゲットを点とみなしたままで衝突判断を行うよりも衝突判断の精度が向上することになる。
 ステップS512において、ターゲット判定部33は、履歴を消去する。具体的には、ターゲット判定部33は、ターゲット情報記憶部34に記憶されているターゲット情報iL(k)を、当該ターゲット情報記憶部34に記憶されているうちの最も過去のターゲット情報iL(k)から順次消去する。そして、ステップS513に処理を進める。
 ステップS513において、ターゲット判定部33は、処理を終了するか否かを判断する。例えば、ターゲット判定部33は、システムECU3の電源がOFFになったとき(例えば、ドライバーが上記処理を実行させる処理を終了させる操作等を行った場合、自車両VMのイグニッションスイッチがOFFされた場合等)処理を終了する。一方、ターゲット判定部33は、処理を継続すると判断した場合、上記ステップS501に戻って処理を繰り返す。
 以上説明したように、本実施形態に係る物体認識装置によれば、自車両VMの推定進行方向VPとレーダ装置1が検出した物体の移動方向から、上記自車両VMに対して上記物体が存在する存在領域を算出することができる。したがって、例えば、車両にカメラ等を設置しなくとも、簡易な構成で、レーダ装置1が検出した物体について大きさを推定することができる。
 さらに、物体の大きさ(上記自車両VMに対して上記物体が存在する存在領域)までも考慮して、当該物体と自車両VMとの衝突判定を行うことができるので、従来の装置のように、検出した物体を点とみなしたままで衝突判断を行うよりも衝突判断の精度が向上する。
 なお、以上説明した例では、左側レーダ装置1Lを例に、当該左側レーダ装置1Lが検出したターゲットについて、システムECU3が処理を行う場合を説明した。しかしながら、左側レーダ装置1Lだけではなく、右側レーダ装置1Rが検出したターゲットについても、システムECU3は、上述した動作を行うことができることは言うまでもない。
 例えば、右側レーダ装置1Rがターゲットを検出した場合、ターゲット軌道算出部31は、右側レーダ装置1Rが検出したターゲットについて、レーダECU2からターゲット情報iRを取得して、当該検出されたターゲットの推定進行方向VTRを算出する。そして、ターゲット判定部33は、ターゲット軌道算出部31および自車両軌道算出部32によって算出された、右側レーダ装置1Rが検出したターゲットの推定進行方向VTRと自車両VMの推定進行方向VPとに基づいて、衝突角度θRを算出する。なお、上述したように、衝突角度とは、ターゲットの推定進行方向VTRと自車両VMの進行方向VPとの向きが逆で、平行である場合に0°とし、右回りを正の値として示す。つまり、例えば、衝突角度θRが45°であった場合、自車両VMから、ターゲットを見た場合、右斜前方から当該自車両VMに向かってターゲットが進んでくることになる。
 さらに、ターゲット判定部33は、当該算出された衝突角度θRに基づいて、ターゲットの捕捉位置を推定する。なお、右側レーダ装置1Rが検出したターゲットについて、当該ターゲットの捕捉位置を推定するときの場合分け条件は、以下のようになる。
(第1の場合)衝突角度θRがθR=90°のとき:他車両の前端左部位
(第2の場合)衝突角度θRがθR=90°ではないとき:他車両の前端右部位
つまり、右側レーダ装置1Rがターゲットを検出した場合、ターゲット判定部33は、自車両VMの右真横または右側方から他車両が向かってターゲット(他車両)が向かってきていると想定して、他車両のどの箇所を捕捉点として検出したかを推定する。
 そして、右側レーダ装置1Rが検出したターゲットについても、上述したようにターゲット判定部33は、衝突角度θRに基づいて推定されたターゲットの捕捉位置を基準に、ターゲットの大きさを推定し、当該推定されたターゲットの大きさを考慮し、自車両VMとターゲットとの衝突判断を行う。
 なお、ターゲット判定部33が、右側レーダ装置1Rを想定した、上記第1の場合または上記第2の場合のどちらにあてはまるかの基準となる衝突角度θRの値である、θR=90°は、この値に限られるものではない。ターゲット判定部33は、他車両とみなしたターゲットが自車両VMからみて、ほぼ右真横から向かってくる場合も上記第1の場合と判断するために、例えば、衝突角度θRが、θR=90°を基準に±15°と角度に幅を持たせて、第1の場合にあてはまると判断してもよい。つまり、75°≦θL≦105°としてもよい。また、同様に、ターゲット判定部33は、衝突角度θRが、75°≦θL≦105°にないとき、第2の場合にあてはまると判断してもよい。なお、上述した角度に幅の幅、つまり、±15°は一例であり、適宜変更されてもよいことは言うまでもない。
 上記実施形態で説明した態様は、単に具体例を示すものであり、本願発明の技術的範囲を何ら限定するものではない。よって、本願の効果を奏する範囲において、任意の構成を採用することが可能である。
 本発明に係る物体認識装置および物体認識方法は、レーダが検出した物体について、当該物体の動きと自車両の動きとを考慮し、自車両に対して当該物体が存在する存在領域を算出することができる、車載用レーダ装置等として利用することが可能である。

Claims (8)

  1.  車両に搭載される物体認識装置であって、
     前記車両前方の物体に電磁波を照射し、当該物体から反射された反射波を受信することにより物体を検出する検出手段と、
     前記検出手段が受信した信号を用いて、当該検出された物体の移動方向を含む情報をターゲット情報として算出するターゲット情報算出手段と、
     前記車両から得られる情報を用いて、前記車両の移動方向を含む情報を車両情報として算出する車両情報算出手段と、
     前記ターゲット情報に含まれる前記物体の移動方向を示す情報と前記車両情報に含まれる前記車両の移動方向を示す情報とに基づいて、前記検出手段が検出した物体において前記電磁波が前記物体の何れの部位で反射されたかを推定し、当該推定結果に応じて、前記車両に対して前記物体が存在する存在領域を算出する処理手段とを備える、物体認識装置。
  2.  前記処理手段によって算出された前記存在領域に前記検出手段が検出した物体が存在するものとみなして、前記車両と前記物体とが衝突する危険性を判断する衝突判定手段をさらに備える、請求項1に記載の物体認識装置。
  3.  前記部位は、前記物体の移動方向における前端角部であることを特徴とする、請求項1または2に記載の物体認識装置。
  4.  前記処理手段は、前記検出手段が検出した物体を他車両とみなし、前記電磁波が反射された前記前端部位の位置を基準にして、前記他車両の形状を想定した領域を前記存在領域として算出することを特徴とする、請求項3に記載の物体認識装置。
  5.  前記処理手段は、前記物体から当該物体の移動方向に延ばした線と前記車両から当該車両の移動方向に延ばした線とがなす角を衝突角度として算出し、当該衝突角度に基づいて、前記検出手段が検出した物体において前記電磁波が何れの前記前端部位で反射されたかを推定することを特徴とする、請求項4に記載の物体認識装置。
  6.  前記処理手段は、前記衝突角度が直角または略直角であった場合、各前記前端部位のうち、前記車両側の前記前端部位で前記電磁波が反射されたと推定することを特徴とする、請求項5に記載の物体認識装置。
  7.  前記処理手段は、前記衝突角度が直角または略直角でなかった場合、各前記前端部位のうち、前記車両から当該車両の移動方向に延ばした線に対して前記他車両の最も近い前記前端部位で前記電磁波が反射されたと推定することを特徴とする、請求項5に記載の物体認識装置。
  8.  車両に搭載される物体認識方法であって、
     前記車両前方の物体に電磁波を照射し、当該物体から反射された反射波を受信することにより物体を検出する検出ステップと、
     前記検出ステップで受信した信号を用いて、当該検出された物体の移動方向を含む情報をターゲット情報として算出するターゲット情報算出ステップと、
     前記車両から得られる情報を用いて、前記車両の移動方向を含む情報を車両情報として算出する車両情報算出ステップと、
     前記ターゲット情報に含まれる前記物体の移動方向を示す情報と前記車両情報に含まれる前記車両の移動方向を示す情報とに基づいて、前記検出ステップで検出した物体において前記電磁波が前記物体の何れの部位で反射されたかを推定し、当該推定結果に応じて、前記車両に対して前記物体が存在する存在領域を算出する処理ステップとを備える、物体認識方法。
PCT/JP2009/000346 2009-01-29 2009-01-29 物体認識装置および物体認識方法 WO2010086895A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010548251A JP5316549B2 (ja) 2009-01-29 2009-01-29 物体認識装置および物体認識方法
CN200980155815.4A CN102301405B (zh) 2009-01-29 2009-01-29 物体识别装置以及物体识别方法
US13/143,615 US8818703B2 (en) 2009-01-29 2009-01-29 Object recognition device and object recognition method
DE112009004346.1T DE112009004346B4 (de) 2009-01-29 2009-01-29 Objekterkennungsvorrichtung und Objekterkennungsverfahren
PCT/JP2009/000346 WO2010086895A1 (ja) 2009-01-29 2009-01-29 物体認識装置および物体認識方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000346 WO2010086895A1 (ja) 2009-01-29 2009-01-29 物体認識装置および物体認識方法

Publications (1)

Publication Number Publication Date
WO2010086895A1 true WO2010086895A1 (ja) 2010-08-05

Family

ID=42395171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000346 WO2010086895A1 (ja) 2009-01-29 2009-01-29 物体認識装置および物体認識方法

Country Status (5)

Country Link
US (1) US8818703B2 (ja)
JP (1) JP5316549B2 (ja)
CN (1) CN102301405B (ja)
DE (1) DE112009004346B4 (ja)
WO (1) WO2010086895A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383163A1 (en) * 2009-06-02 2011-11-02 Panasonic Corporation Electric motor vehicle and method for controlling the same
JP2012131463A (ja) * 2010-12-24 2012-07-12 Honda Motor Co Ltd 車両の歩行者衝突位置判定装置
WO2012113366A1 (de) * 2011-02-23 2012-08-30 S.M.S. Smart Microwave Sensors Gmbh Verfahren und radar-sensoranordnung zur detektion von ort und geschwindigkeit von objekten relativ zu einem messort, insbesondere fahrzeug
US8847792B2 (en) 2010-09-24 2014-09-30 Toyota Jidosha Kabushiki Kaisha Object detection apparatus and object detection program
KR20230005543A (ko) * 2021-07-01 2023-01-10 현대모비스 주식회사 충돌 경고 장치 및 그것을 포함하는 차량

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678611B2 (ja) * 2008-06-05 2011-04-27 トヨタ自動車株式会社 障害物検出装置および障害物検出システム
WO2011070650A1 (ja) * 2009-12-08 2011-06-16 トヨタ自動車株式会社 物体検出装置及び物体検出方法
EP2800081A4 (en) * 2011-12-28 2015-06-24 Toyota Motor Co Ltd OBSTACLE DETERMINATION DEVICE
JP5867273B2 (ja) * 2012-04-27 2016-02-24 富士通株式会社 接近物体検知装置、接近物体検知方法及び接近物体検知用コンピュータプログラム
JP5870908B2 (ja) * 2012-12-11 2016-03-01 株式会社デンソー 車両の衝突判定装置
WO2014178131A1 (ja) * 2013-05-01 2014-11-06 古河電気工業株式会社 レーダシステム
KR101480647B1 (ko) * 2013-11-15 2015-01-09 현대자동차주식회사 협로 주행을 위한 조향 위험도 판단 시스템 및 그 판단 방법
US9255988B2 (en) * 2014-01-16 2016-02-09 GM Global Technology Operations LLC Object fusion system of multiple radar imaging sensors
TWI590969B (zh) * 2014-08-20 2017-07-11 啟碁科技股份有限公司 預警方法及車用雷達系統
TWI571399B (zh) 2014-08-20 2017-02-21 啟碁科技股份有限公司 預警方法及車用雷達系統
KR20160023193A (ko) * 2014-08-21 2016-03-03 현대자동차주식회사 긴급 제동 시스템에서 전방위 확장 적용을 위한 충돌 위험 판단 방법 및 장치
JP6413620B2 (ja) * 2014-10-22 2018-10-31 株式会社Soken 物体検出装置
US9440649B2 (en) * 2014-10-29 2016-09-13 Robert Bosch Gmbh Impact mitigation by intelligent vehicle positioning
JP2016103194A (ja) * 2014-11-28 2016-06-02 パナソニックIpマネジメント株式会社 車両走行支援装置及び車両走行支援方法
US9573592B2 (en) * 2014-12-23 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Risk mitigation for autonomous vehicles relative to oncoming objects
US9766336B2 (en) * 2015-03-16 2017-09-19 Here Global B.V. Vehicle obstruction detection
JP6421935B2 (ja) * 2015-03-31 2018-11-14 パナソニックIpマネジメント株式会社 車両移動推定装置および車両移動推定方法
BR112018001047B1 (pt) * 2015-07-21 2023-03-28 Nissan Motor Co., Ltd Dispositivo de determinação de cena, aparelho de auxílio de deslocamento e método para determinação de cena
JP6580982B2 (ja) * 2015-12-25 2019-09-25 日立建機株式会社 オフロードダンプトラック及び障害物判別装置
DE102016204113A1 (de) * 2016-03-14 2017-09-14 Conti Temic Microelectronic Gmbh Vorrichtung und Verfahren zur Detektion eines Objekts
JP6600271B2 (ja) * 2016-03-31 2019-10-30 株式会社デンソー 物体認識装置及び物体認識方法
JP6563849B2 (ja) * 2016-05-06 2019-08-21 株式会社Soken 推定装置
JP6631796B2 (ja) * 2016-05-31 2020-01-15 パナソニックIpマネジメント株式会社 移動物体検出装置、プログラムおよび記録媒体
JP6701983B2 (ja) * 2016-06-02 2020-05-27 株式会社デンソー 物標検出装置
JP6619697B2 (ja) * 2016-06-09 2019-12-11 株式会社デンソー レーダ装置
US11423783B2 (en) * 2016-08-30 2022-08-23 Hyundai Motor Company Apparatus and method for implementing LCDAS
JP6729287B2 (ja) * 2016-10-20 2020-07-22 株式会社デンソー 位置認識装置
US10730465B2 (en) 2016-12-07 2020-08-04 Joyson Safety Systems Acquisition Llc 3D time of flight active reflecting sensing systems and methods
JP6666289B2 (ja) * 2017-03-15 2020-03-13 株式会社東芝 移動体用空間情報算出装置及び衝突回避システム
US10703361B2 (en) * 2017-06-14 2020-07-07 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle collision mitigation
JP7103759B2 (ja) * 2017-06-16 2022-07-20 株式会社デンソーウェーブ 車両認識装置、車両認識システム、車両認識プログラム
JP6930394B2 (ja) * 2017-11-24 2021-09-01 トヨタ自動車株式会社 物体認識装置
CN111801593A (zh) * 2018-03-02 2020-10-20 松下知识产权经营株式会社 物体检测装置
WO2020022780A1 (en) * 2018-07-25 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for establishing device connection
KR102592825B1 (ko) * 2018-08-31 2023-10-23 현대자동차주식회사 충돌 회피 제어 장치 및 그 방법
CN109828583A (zh) * 2019-02-28 2019-05-31 北京百度网讯科技有限公司 无人驾驶车辆控制方法和装置
JP7156195B2 (ja) * 2019-07-17 2022-10-19 トヨタ自動車株式会社 物体認識装置
KR102667971B1 (ko) * 2020-12-24 2024-05-22 주식회사 에이치엘클레무브 객체 크기 추정 장치 및 방법
CN112764035B (zh) * 2020-12-28 2024-01-30 南京市德赛西威汽车电子有限公司 一种基于bsd雷达左右通信的虚假目标检测优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104062A (ja) * 1993-09-30 1995-04-21 Honda Motor Co Ltd 衝突防止装置
JP2003232853A (ja) * 2002-02-06 2003-08-22 Hitachi Ltd 車両の物体検出装置,安全制御方法,自動車
JP2007279892A (ja) * 2006-04-04 2007-10-25 Honda Motor Co Ltd 衝突予知システムの制御装置、衝突予知方法および乗員保護システム
JP2008267826A (ja) * 2007-04-16 2008-11-06 Toyota Motor Corp 物体検出装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249157A (en) * 1990-08-22 1993-09-28 Kollmorgen Corporation Collision avoidance system
US5983161A (en) * 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
US7418346B2 (en) * 1997-10-22 2008-08-26 Intelligent Technologies International, Inc. Collision avoidance methods and systems
US7426437B2 (en) * 1997-10-22 2008-09-16 Intelligent Technologies International, Inc. Accident avoidance systems and methods
DE69611278T2 (de) * 1995-11-10 2001-05-23 Toyota Motor Co Ltd Radargerät zur Erfassung der Richtung des Zentrums eines Ziels
JP3708650B2 (ja) * 1996-06-11 2005-10-19 トヨタ自動車株式会社 障害物検知装置を用いた乗員保護装置
JP3866349B2 (ja) * 1996-12-27 2007-01-10 富士重工業株式会社 車両の衝突防止装置
JP3684776B2 (ja) * 1997-07-23 2005-08-17 株式会社デンソー 車両用障害物認識装置
US7899616B2 (en) * 1997-10-22 2011-03-01 Intelligent Technologies International, Inc. Method for obtaining information about objects outside of a vehicle
US8260537B2 (en) * 1997-10-22 2012-09-04 Intelligent Technologies International, Inc. Method for modifying an existing vehicle on a retrofit basis to integrate the vehicle into an information exchange system
DE10011263A1 (de) * 2000-03-08 2001-09-13 Bosch Gmbh Robert Objektdetektionssystem
US6683560B2 (en) * 2000-12-29 2004-01-27 Honeywell International Inc. System and technique for enhanced radar object detection
JP3744860B2 (ja) 2001-03-15 2006-02-15 富士通テン株式会社 スキャン式レーダの信号処理方法
US20030016143A1 (en) * 2001-07-23 2003-01-23 Ohanes Ghazarian Intersection vehicle collision avoidance system
US6643588B1 (en) * 2002-04-11 2003-11-04 Visteon Global Technologies, Inc. Geometric based path prediction method using moving and stop objects
JP3997837B2 (ja) * 2002-05-27 2007-10-24 株式会社デンソー 車載レーダ装置、プログラム
US6728617B2 (en) * 2002-07-23 2004-04-27 Ford Global Technologies, Llc Method for determining a danger zone for a pre-crash sensing system in a vehicle having a countermeasure system
JP4074550B2 (ja) 2003-05-23 2008-04-09 ダイハツ工業株式会社 物体認識装置及び認識方法
JP4293865B2 (ja) * 2003-09-02 2009-07-08 富士通テン株式会社 物体検出装置
US7369941B2 (en) * 2004-02-18 2008-05-06 Delphi Technologies, Inc. Collision detection system and method of estimating target crossing location
JP4020089B2 (ja) * 2004-03-03 2007-12-12 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP4396400B2 (ja) * 2004-06-02 2010-01-13 トヨタ自動車株式会社 障害物認識装置
US7409295B2 (en) * 2004-08-09 2008-08-05 M/A-Com, Inc. Imminent-collision detection system and process
JP2006201013A (ja) * 2005-01-20 2006-08-03 Hitachi Ltd 車載用レーダ
JP4598653B2 (ja) * 2005-05-13 2010-12-15 本田技研工業株式会社 衝突予知装置
US7729857B2 (en) * 2005-08-18 2010-06-01 Gm Global Technology Operations, Inc. System for and method of detecting a collision and predicting a vehicle path
JP4304517B2 (ja) * 2005-11-09 2009-07-29 トヨタ自動車株式会社 物体検出装置
JP4265803B2 (ja) * 2005-11-22 2009-05-20 三菱電機株式会社 レーダシステム
JP2007232498A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 障害物検知システム
US7671725B2 (en) * 2006-03-24 2010-03-02 Honda Motor Co., Ltd. Vehicle surroundings monitoring apparatus, vehicle surroundings monitoring method, and vehicle surroundings monitoring program
JP4940767B2 (ja) * 2006-06-05 2012-05-30 マツダ株式会社 車両周辺情報報知装置
US20080018523A1 (en) * 2006-07-18 2008-01-24 Kelly Jr Thomas M Method and system for radar processing
US7504989B2 (en) * 2006-08-09 2009-03-17 Fujitsu Ten Limited On-vehicle radar device
US7592945B2 (en) * 2007-06-27 2009-09-22 Gm Global Technology Operations, Inc. Method of estimating target elevation utilizing radar data fusion
JP5110356B2 (ja) * 2007-07-10 2012-12-26 オムロン株式会社 検出装置および方法、並びに、プログラム
US7545261B1 (en) * 2008-09-02 2009-06-09 International Business Machines Corporation Passive method and apparatus for alerting a driver of a vehicle of a potential collision condition
US8154422B2 (en) * 2009-07-24 2012-04-10 Automotive Research & Testing Center Vehicle collision avoidance system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104062A (ja) * 1993-09-30 1995-04-21 Honda Motor Co Ltd 衝突防止装置
JP2003232853A (ja) * 2002-02-06 2003-08-22 Hitachi Ltd 車両の物体検出装置,安全制御方法,自動車
JP2007279892A (ja) * 2006-04-04 2007-10-25 Honda Motor Co Ltd 衝突予知システムの制御装置、衝突予知方法および乗員保護システム
JP2008267826A (ja) * 2007-04-16 2008-11-06 Toyota Motor Corp 物体検出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383163A1 (en) * 2009-06-02 2011-11-02 Panasonic Corporation Electric motor vehicle and method for controlling the same
EP2383163A4 (en) * 2009-06-02 2014-02-05 Panasonic Corp ELECTRIC MOTOR VEHICLE AND CONTROL PROCESS THEREFOR
US8706332B2 (en) 2009-06-02 2014-04-22 Panasonic Corporation Electric vehicle and method of controlling the same
US8847792B2 (en) 2010-09-24 2014-09-30 Toyota Jidosha Kabushiki Kaisha Object detection apparatus and object detection program
JP2012131463A (ja) * 2010-12-24 2012-07-12 Honda Motor Co Ltd 車両の歩行者衝突位置判定装置
WO2012113366A1 (de) * 2011-02-23 2012-08-30 S.M.S. Smart Microwave Sensors Gmbh Verfahren und radar-sensoranordnung zur detektion von ort und geschwindigkeit von objekten relativ zu einem messort, insbesondere fahrzeug
KR20230005543A (ko) * 2021-07-01 2023-01-10 현대모비스 주식회사 충돌 경고 장치 및 그것을 포함하는 차량
KR102592665B1 (ko) * 2021-07-01 2023-10-24 현대모비스 주식회사 충돌 경고 장치 및 그것을 포함하는 차량

Also Published As

Publication number Publication date
CN102301405B (zh) 2014-01-15
DE112009004346B4 (de) 2014-05-28
US20110301845A1 (en) 2011-12-08
JPWO2010086895A1 (ja) 2012-07-26
US8818703B2 (en) 2014-08-26
DE112009004346T5 (de) 2012-06-06
JP5316549B2 (ja) 2013-10-16
CN102301405A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5316549B2 (ja) 物体認識装置および物体認識方法
JP4883246B2 (ja) 物体検出装置及び物体検出方法
JP5278776B2 (ja) 物体検出装置および物体検出方法
JP5083404B2 (ja) プリクラッシュセーフティシステム
JP4680294B2 (ja) 物体検出装置および物体検出方法
US9470790B2 (en) Collision determination device and collision determination method
US20140333467A1 (en) Object detection device
EP3007149B1 (en) Driving assistance device for vehicles and onboard computer
US10527719B2 (en) Object detection apparatus and object detection method
WO2017138329A1 (ja) 衝突予測装置
WO2016158634A1 (ja) 車両制御装置及び車両制御方法
JP2014078107A (ja) 衝突予測装置
US20190073906A1 (en) Driving support apparatus
JP6657673B2 (ja) 車両制御装置および車両制御方法
JP2011113286A (ja) 衝突予測装置
JP7328863B2 (ja) 制御装置
JP6593682B2 (ja) 衝突予測システム
JP7265971B2 (ja) 制御装置
JP2011034138A (ja) 物体検出装置
WO2017154471A1 (ja) 横断判定装置
WO2023162560A1 (ja) 運転支援装置および運転支援プログラム
WO2020070908A1 (ja) 検知装置、移動体システム、及び検知方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155815.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010548251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009004346

Country of ref document: DE

Ref document number: 1120090043461

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839090

Country of ref document: EP

Kind code of ref document: A1