WO2010084938A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2010084938A1
WO2010084938A1 PCT/JP2010/050758 JP2010050758W WO2010084938A1 WO 2010084938 A1 WO2010084938 A1 WO 2010084938A1 JP 2010050758 W JP2010050758 W JP 2010050758W WO 2010084938 A1 WO2010084938 A1 WO 2010084938A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
manufactured
epoxy resin
ion
Prior art date
Application number
PCT/JP2010/050758
Other languages
English (en)
French (fr)
Inventor
栄一 林
基之 高田
裕一 影山
浩恭 小藤
博 天野
滋 河原
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2010084938A1 publication Critical patent/WO2010084938A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions

Definitions

  • the present invention relates to a resin composition and a film for sealing an organic EL device using the same.
  • Organic EL (Electroluminescence) elements are vulnerable to moisture, and when organic EL elements are used to construct displays and lighting devices, the organic materials themselves are altered by moisture, resulting in a decrease in luminance or even no light emission. Or the interface between the electrode and the organic EL layer is peeled off due to the influence of moisture, or the metal is oxidized to increase the resistance. Therefore, for example, as shown in FIG. 4, the glass plate 4 provided with the hygroscopic material 3 is opposed to the organic EL element 2 formed on the glass substrate 1 at a predetermined interval, so that the substrate 1 and the glass plate 4 are aligned. Can sealing is performed in which the gap is sealed in an inert gas atmosphere or in a vacuum state. However, since the thickness of the sealing structure portion including the organic EL element and the two glass plates is increased, the display and the lighting device cannot be sufficiently thinned.
  • a curable resin composition layer 6 is formed on a glass substrate 1 having an organic EL element 2 formed on one side so as to cover the entire surface of the organic EL element 2, and from above A sealing structure in which the sealing substrate 7 is bonded and the curable resin composition layer 6 is cured to form a cured layer (hereinafter, this sealing structure is referred to as “entire surface sealing of an organic EL element” or simply “entire surface”). (Also referred to as “sealing”) has been proposed (Patent Document 1).
  • the curable resin composition described in Patent Document 1 is an acrylic ultraviolet curable resin composition
  • an acrylic resin is inferior in physical properties, such as heat resistance.
  • thermosetting composition mainly composed of an epoxy resin has been studied (for example, Patent Document 2).
  • Patent Document 2 in order to suppress the thermal degradation of the organic EL element, excellent low-temperature curability is necessary, and the cured epoxy resin is inferior in moisture permeability compared to the cured acrylic resin, Although it is essential to improve the moisture permeability of the cured product, a curable resin composition based on an epoxy resin that can sufficiently satisfy such a requirement has not been achieved yet.
  • An object of the present invention is to provide a resin composition that can be cured rapidly at a low temperature, exhibit excellent adhesion, and form a cured product excellent in moisture permeability resistance.
  • the present inventors have completed the present invention by using a resin composition containing an epoxy resin and an ionic liquid.
  • the present invention includes the following contents.
  • a resin composition comprising an epoxy resin and an ionic liquid.
  • the ionic liquid comprises an ammonium cation or a phosphonium cation and an N-acylamino acid ion or a carboxylic acid anion.
  • the resin composition as described in (1) or (2) above further comprising a hygroscopic metal oxide.
  • the resin composition sheet according to (5) which is for sealing an organic EL element.
  • An organic EL device comprising the resin composition sheet for sealing an organic EL element according to (6) above.
  • the resin composition of the present invention cures quickly at a low temperature of 140 ° C. or lower, preferably 120 ° C. or lower, and forms a cured product that is excellent in moisture permeability resistance and has excellent adhesion strength. be able to. Therefore, the resin composition of the present invention and the resin composition sheet using the resin composition are easily deteriorated by heat, and need to be moisture-proof. It can be suitably used as a material or the like, and a highly reliable covering structure, adhesive structure, sealing structure and the like having high moisture resistance can be easily formed. In particular, it is possible to provide a highly reliable organic EL display and organic EL lighting device.
  • FIG. 1 is a schematic cross-sectional view of a whole surface sealing structure of an organic EL element.
  • FIG. 2 is a schematic view of a production process of a test piece used in the evaluation test of Examples and Comparative Examples.
  • FIG. 3 is a schematic diagram of a sample (bonded product of two test pieces) subjected to a tensile test in an evaluation test of Examples and Comparative Examples.
  • FIG. 4 is a schematic cross-sectional view of a can sealing structure of an organic EL element.
  • the resin composition of the present invention is characterized by containing an epoxy resin and an ionic liquid.
  • the term “ionic liquid” generally means “a salt composed of an anion and a cation that can be melted in a temperature range of about 100 ° C. or lower”. It means a salt which can be melted in a temperature range below the curing temperature, which is composed of an anion and a cation. That is, it is a salt that can be melted in a temperature range of 140 ° C. or lower (preferably 120 ° C. or lower), and has an epoxy resin curing action.
  • Epoxy resin The epoxy resin used in the present invention only needs to have an average of two or more epoxy groups per molecule.
  • bisphenol A type epoxy resin for example, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine Type epoxy resin (for example, tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyl toluidine, diglycidyl aniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac Type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin having butadiene structure, diglycidyl etherified product of bisphenol, naphthalenediol Diglycidy
  • the epoxy resin is a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, a biphenyl aralkyl type, etc.
  • Epoxy resins, phenol aralkyl type epoxy resins, aromatic glycidyl amine type epoxy resins, epoxy resins having a dicyclopentadiene structure, and the like are preferable.
  • the epoxy resin may be liquid, solid, or both liquid and solid.
  • “liquid” and “solid” are states of the epoxy resin at normal temperature (25 ° C.). From the viewpoint of coatability, workability, and adhesiveness, it is preferable that at least 10% by weight or more of the entire epoxy resin to be used is liquid.
  • the epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity.
  • the epoxy equivalent is the gram number (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K 7236.
  • the ionic liquid used in the present invention functions as a resin curing agent.
  • the resin composition of the present invention it is desirable that the ionic liquid is uniformly dissolved in the epoxy resin.
  • Examples of cations constituting the ionic liquid include imidazolium ions, piperidinium ions, pyrrolidinium ions, pyrazonium ions, guanidinium ions, pyridinium ions, and other ammonium cations; tetraalkylphosphonium cations (for example, tetrabutylphosphonium ions, tributyl) Phosphonium cations such as hexylphosphonium ion; sulfonium cations such as triethylsulfonium ion, and the like.
  • halide anions such as fluoride ions, chloride ions, bromide ions and iodide ions; alkylsulfuric acid type anions such as methanesulfonate ions; trifluoromethanesulfonate ions and hexafluorophosphones
  • Fluorine-containing compound anions such as acid ion, trifluorotris (pentafluoroethyl) phosphonate ion, bis (trifluoromethanesulfonyl) imide ion, trifluoroacetate ion, tetrafluoroborate ion; phenol ion, 2-methoxyphenol ion, Phenolic anions such as 2,6-di-tert-butylphenol ion; acidic amino acid ions such as aspartate ion and glutamate ion; glycine ion, alanine ion, pheny
  • R—CO— is an acyl group derived from a linear or branched fatty acid having 1 to 5 carbon atoms, or a substituted or unsubstituted benzoyl group
  • —NH—CHX—CO 2 is Acidic amino acid ions such as aspartic acid and glutamic acid, or neutral amino acid ions such as glycine, alanine and phenylalanine.
  • the cation constituting the ionic liquid an ammonium cation and a phosphonium cation are preferable, and an imidazolium ion and a phosphonium ion are more preferable. More specifically, the imidazolium ion is 1-ethyl-3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1-propyl-3-methylimidazolium ion or the like.
  • the anion constituting the ionic liquid is preferably a phenolic anion, an N-acylamino acid ion or a carboxylic acid anion represented by the general formula (1), and more preferably an N-acylamino acid ion or a carboxylic acid anion.
  • phenol anions include 2,6-di-tert-butylphenol ion.
  • carboxylate anion include acetate ion, decanoate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, ⁇ -lipoic acid ion, lactate ion, tartrate ion, hippurate ion, N- Methyl hippurate ion and the like, among which acetate ion, 2-pyrrolidone-5-carboxylate ion, formate ion, lactate ion, tartrate ion, hippurate ion and N-methylhippurate ion are preferable, acetate ion, N -Methyl hippurate ion and formate ion are particularly preferred.
  • N-acylamino acid ion represented by the general formula (1) examples include N-benzoylalanine ion, N-acetylphenylalanine ion, aspartate ion, glycine ion, N-acetylglycine ion, and the like.
  • N-benzoylalanine ion, N-acetylphenylalanine ion and N-acetylglycine ion are preferable, and N-acetylglycine ion is particularly preferable.
  • Specific ionic liquids include, for example, 1-butyl-3-methylimidazolium lactate, tetrabutylphosphonium-2-pyrrolidone-5-carboxylate, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium tri Fluoroacetate, tetrabutylphosphonium ⁇ -lipoate, tetrabutylphosphonium formate, tetrabutylphosphonium lactate, bis (tetrabutylphosphonium) tartrate, tetrabutylphosphonium hippurate, tetrabutylphosphonium N-methylhippurate, benzoyl-DL -Alanine tetrabutylphosphonium salt, N-acetylphenylalanine tetrabutylphosphonium salt, 2,6-di-tert-butylphenoltetrabutylphosphonium Salt
  • a precursor composed of a cation moiety such as an alkylimidazolium, alkylpyridinium, alkylammonium, and alkylsulfonium ions and an anion moiety containing a halogen is added to NaBF 4 , NaPF 6. , CF 3 SO 3 Na, LiN (SO 2 CF 3 ) 2, etc., an anion exchange method, an amine substance reacts with an acid ester to introduce an alkyl group, and an organic acid residue becomes a counter anion Examples thereof include, but are not limited to, an acid ester method and a neutralization method in which amines are neutralized with an organic acid to obtain a salt.
  • an anion and a cation are used in an equivalent amount, and the solvent in the obtained reaction solution can be distilled off and used as it is, or an organic solvent (methanol, toluene, etc.). , Ethyl acetate, acetone, etc.) may be added and the solution concentrated.
  • the amount of the ionic liquid is not particularly limited as long as the epoxy resin is cured, but is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight per 100 parts by weight of the epoxy resin. When the amount is less than 0.1 parts by weight, the curability tends to decrease, and when the amount is more than 10 parts by weight, the pot life of the composition and the moisture permeability resistance of the cured product tend to decrease.
  • the resin composition of the present invention may contain a polythiol compound having two or more thiol groups in the molecule together with the ionic liquid. Inclusion of a polythiol compound having two or more thiol groups in the molecule can increase the curing speed.
  • trimethylolpropane tris thioglycolate
  • pentaerythritol tetrakis thioglycolate
  • ethylene glycol dithioglycolate trimethylolpropane tris
  • ⁇ -thiopropionate pentaerythritol tetrakis
  • ⁇ -thiol pentaerythritol tetrakis
  • ⁇ -thiol dipentaerythritol poly
  • thiol compound having two or more thiol groups in the molecule that does not require the use of a basic substance in production, such as a thiol compound obtained by an esterification reaction of a polyol and a mercapto organic acid.
  • alkyl polythiol compounds such as 1,4-butanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol; terminal thiol group-containing polyether; terminal thiol group-containing polythioether; epoxy compound and hydrogen sulfide
  • a basic substance as a reaction catalyst in the production process such as a thiol compound obtained by reaction; a thiol compound having a terminal thiol group obtained by reaction of a polythiol compound and an epoxy compound
  • a thiol compound having two or more thiol groups in the molecule that has been subjected to dealkalization treatment and has an alkali metal ion concentration of 50 ppm or less can be used.
  • the polythiol compound to be treated is dissolved in an organic solvent such as acetone or methanol, neutralized by adding an acid such as dilute hydrochloric acid or dilute sulfuric acid, and then desalted by extraction or washing.
  • an organic solvent such as acetone or methanol
  • the mixing ratio of the epoxy resin and the polythiol compound is preferably 0.2 to 1.2 in terms of SH equivalent number / epoxy equivalent number. If it is less than 0.2, sufficient rapid curability may not be obtained, while if it is more than 1.2, the physical properties of the cured product such as heat resistance may be impaired. From the viewpoint of stable adhesion, 0.5 to 1.0 is more preferable.
  • a hygroscopic metal oxide in the resin composition of the present invention, can be blended together with the ionic liquid in order to further improve the moisture permeability of the cured product.
  • the “hygroscopic metal oxide” means a metal oxide that has a capability of absorbing moisture and chemically reacts with moisture that has been absorbed to become a hydroxide.
  • Specific examples include calcium oxide, magnesium oxide, strontium oxide, and barium oxide. These may be used alone or in combination of two or more. Among them, calcium oxide is preferable from the viewpoint of high hygroscopicity, cost, and stability of raw materials.
  • the hygroscopic metal oxide has an average particle size of.
  • the average particle size is preferably in the range of 0.001 to 5 ⁇ m, more preferably in the range of 001 to 10 ⁇ m.
  • the hygroscopic metal oxide has an average particle diameter in the above-described preferable range and does not include coarse particles having a particle diameter of 20 ⁇ m or more. By not including such coarse particles, it is advantageous in that the EL element is hardly damaged in the sealing process.
  • the average particle diameter of the hygroscopic metal oxide can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the hygroscopic metal oxide can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • a hygroscopic metal oxide dispersed in water by ultrasonic waves can be preferably used.
  • LA-500 manufactured by Horiba Ltd. can be used as a laser diffraction type particle size distribution measuring device.
  • hygroscopic metal oxide a surface treated with a surface treatment agent can be used.
  • a surface-treated hygroscopic metal oxide By using such a surface-treated hygroscopic metal oxide, the adhesion stability of the cured product can be further increased, and the moisture in the resin and the hygroscopic metal oxide react in the stage before curing. In addition, the thickening of the composition over time can be prevented.
  • the surface treatment agent used for the surface treatment for example, higher fatty acids, alkylsilanes, silane coupling agents and the like can be used, among which higher fatty acids or alkylsilanes are preferable.
  • the higher fatty acid is preferably a higher fatty acid having 18 or more carbon atoms such as stearic acid, montanic acid, myristic acid and palmitic acid. These can be used by selecting one or more. Of these, stearic acid is preferred.
  • Alkylsilanes include methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, octadecyltrimethoxysilane, dimethyldimethoxysilane, octyltriethoxysilane, n-octadecyldimethyl ( 3- (trimethoxysilyl) propyl) ammonium chloride and the like can be mentioned, and these can be used alone or in combination of two or more.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane ; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltri Amino silanes such as methoxysilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Coupling agents; Ureido silane coupling agents such
  • a surface treatment agent higher fatty acid, alkylsilanes or silane coupling agent
  • a mixer a well-known mixer can be used, for example, blenders, such as V blender, a ribbon blender, and a bubble cone blender, mixers, such as a Henschel mixer and a concrete mixer, a ball mill, a cutter mill, etc. are mentioned.
  • the hygroscopic material is pulverized with a ball mill or the like
  • a method of surface treatment by mixing the higher fatty acid, alkylsilanes or silane coupling agent is also possible.
  • the treatment amount of the surface treatment agent (higher fatty acid, alkylsilanes or silane coupling agent) varies depending on the type of the hygroscopic metal oxide or the type of the surface treatment agent, but is 1 to 10 for the hygroscopic metal oxide. % By weight is preferred, and 1 to 5% by weight is more preferred.
  • the content of the hygroscopic metal oxide is preferably in the range of 1 to 40% by weight, more preferably in the range of 1 to 30% by weight with respect to 100% by weight of the nonvolatile content in the resin composition.
  • the range of 5 to 20% by weight is more preferred, 7 to 18% by weight is even more preferred, and 9 to 16% by weight is even more preferred.
  • the content is too small, the effect of blending the hygroscopic metal oxide is not sufficiently obtained. If the content is too large, the viscosity of the composition tends to increase and the strength of the cured product decreases. It tends to be brittle.
  • the resin composition of the present invention can contain an inorganic filler from the viewpoints of moisture permeability of the cured product, prevention of repelling during film processing, and improvement in adhesion.
  • the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, boron nitride, aluminum borate, barium titanate, strontium titanate, Examples include calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate.
  • talc and mica are preferable from the viewpoint of maintaining low moisture permeability and high adhesion of the cured resin, and talc is particularly preferable.
  • the inorganic filler may be used alone or in combination of two or more.
  • the content of the inorganic filler is preferably in the range of 1 to 50% by weight with respect to 100% by weight of the nonvolatile content in the resin composition.
  • the range is preferably 1 to 40% by weight, more preferably 5 to 30% by weight, still more preferably 10 to 20% by weight. If the content is too small, the effect of blending the inorganic filler cannot be obtained sufficiently. If the content is too large, the viscosity of the composition tends to increase, and the strength of the cured product decreases and becomes brittle. It becomes a trend.
  • the upper limit of the average particle size of the inorganic filler used in the present invention is preferably 10 ⁇ m, more preferably 5 ⁇ m, even more preferably 2.5 ⁇ m, and even more preferably 1.5 ⁇ m from the viewpoint of handleability.
  • the lower limit of the average particle diameter of the inorganic filler is preferably 0.5 ⁇ m from the viewpoint of preventing the viscosity of the resin composition from increasing.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis with a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • a laser diffraction type particle size distribution measuring device for example, LA-500 manufactured by Horiba Ltd. can be used.
  • the resin composition of the present invention may contain rubber particles for the purpose of improving the mechanical strength of the cured product and relaxing the stress.
  • the rubber particles are not dissolved in an organic solvent when preparing the resin composition, are not compatible with components in the resin composition such as an epoxy resin, and exist in a dispersed state in the varnish of the resin composition Is preferred.
  • Such rubber particles can generally be prepared by increasing the molecular weight of the rubber component to a level that does not dissolve in an organic solvent or resin and making it into particles.
  • core-shell type rubber particles examples thereof include acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • the outer shell layer is a glassy polymer and the inner core layer is a rubbery polymer.
  • the inner core layer is a rubbery polymer.
  • examples include a three-layer structure in which the shell layer is a glassy polymer, the intermediate layer is a rubbery polymer, and the core layer is a glassy polymer.
  • the glass layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • core-shell type rubber particles include Staphyloid AC3832, AC3816N (manufactured by Ganz Kasei Co., Ltd.), Metabrene KW-4426 (manufactured by Mitsubishi Rayon Co., Ltd.), F351 (manufactured by Nippon Zeon Co., Ltd.), and the like. Can be mentioned.
  • Specific examples of acrylonitrile butadiene rubber (NBR) particles include XER-91 (manufactured by JSR Corporation).
  • SBR styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A and W450A (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the average particle diameter of the rubber particles is preferably in the range of 0.005 to 1 ⁇ m, more preferably in the range of 0.2 to 0.6 ⁇ m.
  • the average particle diameter of such rubber particles can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.), the particle size distribution of the rubber particles is created on a weight basis, and the median diameter is determined. The average particle diameter is measured.
  • the content of the rubber particles is preferably 0.1 to 20% by weight, preferably 0.1 to 10% by weight with respect to 100% by weight of the nonvolatile content in the resin composition. Weight percent is more preferred. If the amount is less than 0.1% by weight, the effect of blending the rubber particles cannot be sufficiently obtained. If the amount is more than 20% by weight, the heat resistance and moisture permeability may be lowered.
  • the resin composition of the present invention can contain a thermoplastic resin from the viewpoints of imparting flexibility to the cured product and maintaining good processability when coating the resin composition.
  • the thermoplastic resin include phenoxy resin, polyvinyl acetal resin, polyimide resin, polyamideimide resin, polyethersulfone resin, and polysulfone resin. Any one of these thermoplastic resins may be used, or two or more thereof may be mixed and used.
  • the thermoplastic resin preferably has a weight average molecular weight of 30,000 or more, more preferably 50,000 or more, from the viewpoint of imparting flexibility and preventing repelling during coating. However, if the weight average molecular weight is too large, the compatibility with the epoxy resin tends to be reduced. Therefore, the weight average molecular weight is preferably 1,000,000 or less, more preferably 800,000 or less. .
  • the “weight average molecular weight of the thermoplastic resin” herein is measured by a gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column.
  • -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
  • the phenoxy resin is particularly preferable as the thermoplastic resin.
  • the phenoxy resin is preferable because it has good compatibility with the “epoxy resin” and has little influence on the adhesion and moisture resistance of the cured product of the resin composition of the present invention.
  • phenoxy resin examples include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, Examples thereof include those having one or more skeletons selected from a trimethylcyclohexane skeleton. Two or more phenoxy resins may be mixed and used.
  • phenoxy resins examples include 1256, 4250 (bisphenol A skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., YX8100 (bisphenol S skeleton-containing phenoxy resin) manufactured by Japan Epoxy Resin Co., Ltd., Japan Epoxy Resin ( YX6954 (bisphenol acetophenone skeleton-containing phenoxy resin), Union Carbide PKHH (weight average molecular weight (Mw) 42600, number average molecular weight (Mn) 11200), and the like are suitable.
  • FX280, FX293 manufactured by Toto Kasei Co., Ltd. YL7553BH30, YL6794, YL7213, YL7290, YL7482 etc. manufactured by Japan Epoxy Resins Co., Ltd. can also be mentioned.
  • the content of the thermoplastic resin is preferably 1 to 50% by weight, preferably 3 to 25% by weight with respect to 100% by weight of the nonvolatile content in the resin composition. Is more preferable. If the amount is less than 1% by weight, the effect of blending the thermoplastic resin cannot be sufficiently obtained. If the amount is more than 50% by weight, the moisture permeability of the cured product tends to be lowered.
  • the resin composition of the present invention can contain a coupling agent from the viewpoints of adhesion to the adherend, cured product, moisture permeability resistance, and the like.
  • Examples of such coupling agents include titanium coupling agents, aluminum coupling agents, silane coupling agents, and the like.
  • a silane coupling agent is preferable.
  • a coupling agent can be used 1 type or in combination of 2 or more types.
  • silane coupling agent examples include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropyl (dimethoxy) methylsilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy.
  • Epoxy silane coupling agents such as silane; mercapto silane coupling agents such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane and 11-mercaptoundecyltrimethoxysilane ; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, N-phenyl-3-aminopropyltri Amino silanes such as methoxysilane, N-methylaminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyldimethoxymethylsilane Coupling agents; Ureido silane coupling agents such
  • the content of the coupling agent is preferably 0.5 to 10% by weight with respect to 100% by weight of the nonvolatile content in the resin composition, More preferred is ⁇ 5% by weight. When it contains outside this range, the adhesive improvement effect by coupling agent addition cannot be acquired.
  • the resin composition of the present invention may optionally contain various resin additives other than the components described above within the range where the effects of the present invention are exhibited.
  • resin additives include organic fillers such as silicon powder, nylon powder, and fluorine powder, thickeners such as olben and benton, silicone-based, fluorine-based, and polymer-based antifoaming agents or leveling agents.
  • Adhesion imparting agents such as triazole compounds, thiazole compounds, triazine compounds, and porphyrin compounds.
  • the resin composition of the present invention can be directly applied to an object to be coated or an object to be bonded to form a resin composition film (layer), but a resin having a layer of the resin composition of the present invention formed on a support A composition sheet may be prepared, and the resin composition sheet may be laminated on a necessary part of the covering object or the bonding object, and the resin composition layer may be transferred to the covering object or the bonding object. Industrially, a method using such a resin composition sheet is preferable.
  • the resin composition sheet is prepared by a method known to those skilled in the art, for example, by preparing a varnish in which the resin composition is dissolved in an organic solvent, applying the varnish on the support, and further heating or blowing hot air to the organic solvent. It can manufacture by making it dry and forming a resin composition layer.
  • the support used for the resin composition sheet examples include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and the like.
  • PET polyethylene terephthalate
  • the plastic film is mentioned.
  • PET is particularly preferable.
  • the support may be subjected to a release treatment in addition to a mat treatment and a corona treatment. Examples of the release treatment include a release treatment with a release agent such as a silicone resin release agent, an alkyd resin release agent, and a fluororesin release agent.
  • the thickness of the heel support is not particularly limited, but is preferably in the range of 10 to 150 ⁇ m, more preferably in the range of 20 to 100 ⁇ m, from the viewpoint of the handleability of the resin composition sheet.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (hereinafter abbreviated as “MEK”), cyclohexanone, and acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, and the like.
  • Carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • One of these organic solvents may be used alone, or two or more thereof may be used in combination.
  • Drying conditions are not particularly limited, but 50 to 100 ° C for 3 to 15 minutes is preferable.
  • the thickness of the resin composition layer formed after drying is preferably 3 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, still more preferably 5 ⁇ m to 50 ⁇ m.
  • a sealing substrate is laminated on a resin composition layer (cured layer) (see FIG. 1), since the intrusion of moisture is only from the side of the resin composition layer (cured layer), reducing the layer thickness of the resin composition layer reduces the contact area with the outside air and blocks moisture Desirable above.
  • the uniformity of the thickness of the coating film may be reduced after sealing on the substrate on which the organic EL element is formed (hereinafter also referred to as “organic EL element forming substrate”), There exists a tendency for workability
  • the resin composition layer may be protected with a protective film, and by protecting with a protective film, it is possible to prevent adhesion or scratches of dust or the like to the surface of the resin composition layer.
  • the protective film is preferably a plastic film similar to the support. Further, the protective film may be subjected to a release treatment in addition to the mat treatment and the corona treatment.
  • the thickness of the protective film is not particularly limited, but is preferably in the range of 1 to 40 ⁇ m, more preferably in the range of 10 to 30 ⁇ m.
  • Specific examples of uses of the resin composition and the resin composition sheet of the present invention include an organic EL element sealing resin composition and an organic EL element sealing resin composition sheet.
  • a resin composition layer is formed so as to cover the organic EL element on the organic EL element forming substrate.
  • the resin composition is used directly, it is applied to form a resin composition layer.
  • the resin composition is preferably used in a varnish state in which an epoxy resin, an ionic liquid, and other materials blended as necessary are mixed.
  • the above-described solvents and the like may be added as necessary to the extent that they do not affect the organic EL element.
  • the resin composition layer is formed by drying after coating.
  • the thickness of the resin composition layer is the same as the thickness of the above-described resin composition sheet.
  • a resin composition sheet When a resin composition sheet is used, if a resin composition sheet support having moisture resistance is used, it is used as a sealing substrate (that is, a substrate specified by reference numeral 7 in FIG. 1). Can be used.
  • the plastic film having moisture resistance include a plastic film in which an inorganic substance such as silicon oxide (silica), silicon nitride, SiCN, or amorphous silicon is deposited on the surface.
  • the same plastic film as exemplified above can be used.
  • plastic films with moisture resistance examples include Tech Barrier HX, AX, LX, L series (Mitsubishi Resin Co., Ltd.) and X-BARRIER (Mitsubishi Resin Co., Ltd.) with further improved moisture resistance. It is done.
  • a sealing substrate having a multilayer structure of two or more layers may be used.
  • the organic EL element is formed so that the resin composition sheet is in direct contact with the organic EL element formation substrate. Laminate to substrate.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the support of the resin composition sheet has moisture resistance (that is, a sealing substrate)
  • the support is not peeled off, and is described later.
  • the resin composition layer is thermally cured (this completes the sealing of the organic EL element).
  • the support when the support does not have moisture resistance, it is preferable to peel the support, press the sealing substrate onto the exposed resin composition layer, and perform the thermosetting operation of the resin composition layer described below.
  • the sealing substrate in addition to the above-mentioned moisture-proof plastic film, copper foil, aluminum foil or other metal foil, a glass plate or metal plate that is unsuitable for use as a support for a resin composition sheet
  • the base material which does not have flexibility, such as, can also be used.
  • the pressure at the time of pressure bonding of the sealing substrate is preferably about 0.5 to 10 kgf / cm 2 , and the temperature is about 50 to 130 ° C. when the pressure is applied under heating.
  • the thickness of the sealing substrate is preferably 5 mm or less from the viewpoint of making the organic EL device itself thin and light, more preferably 1 mm or less, particularly preferably 100 ⁇ m or less, and 5 ⁇ m or more from the viewpoint of preventing moisture permeation. More preferably, it is 10 ⁇ m or more, and particularly preferably 20 ⁇ m or more. Two or more sealing substrates may be bonded together.
  • the sealing substrate 7 is not necessarily transparent if the glass substrate 1 side is used as a display surface of a display or a light emitting surface of a lighting fixture. There is no need to use a material, and a metal plate, a metal foil, or the like can be used. On the contrary, when the organic EL element is formed on a substrate made of an opaque or low-transparency material, since the sealing substrate side needs to be the display surface of the display or the light emitting surface of the lighting fixture, As the sealing substrate, a glass plate, a transparent plastic film (or plate), or the like is used.
  • the resin composition The target sealing structure (sealing structure shown in FIG. 1) can be formed by thermosetting the layer.
  • thermosetting a resin composition layer There is no restriction
  • a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, heating by pressure bonding of a heat tool, and the like can be mentioned.
  • the resin composition of the present invention has extremely good low-temperature curability, and is generally not more than 120 minutes, preferably in a low temperature range of 140 ° C.
  • each of the curing temperature and the curing time is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, from the viewpoint of ensuring sufficiently satisfactory adhesiveness (adhesiveness) of the cured product.
  • the curing time is preferably 20 minutes or longer, and more preferably 30 minutes or longer.
  • the resin composition of the present invention is a resin composition containing an epoxy resin and an ionic liquid.
  • a cured product having excellent wettability and excellent adhesion strength can be formed.
  • cured material which further improved moisture permeability resistance can be formed by mix
  • Epoxy resin 828EL manufactured by Japan Epoxy Resin Co., Ltd.
  • NC3000 manufactured by Nippon Kayaku Co., Ltd.
  • GOT manufactured by Nippon Kayaku Co., Ltd.
  • Epicron EXA835LV (manufactured by DIC): liquid bisphenol F type epoxy resin, epoxy equivalent 160-170 g / eq.
  • Epicoat 828 (manufactured by Japan Epoxy Resin): Bisphenol A type epoxy resin low chlorine type.
  • Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.): solid bisphenol A type epoxy resin, epoxy equivalent (475 g / eq)
  • Phenoxy resin YX6954 (manufactured by Japan Epoxy Resin Co., Ltd.): A heat-resistant phenoxy resin, a weight average molecular weight (40000), and a 35 wt% solid MEK solution.
  • YL7213 (manufactured by Japan Epoxy Resin Co., Ltd.): A heat-resistant phenoxy resin, a weight average molecular weight (35000), and a 35 wt% solid MEK solution prepared for use.
  • -PKHH (manufactured by InChem): A heat-resistant phenoxy resin, a weight average molecular weight (42600), and a 20 wt% solid MEK solution prepared for use.
  • Rubber particles F351 (manufactured by Zeon Corporation): acrylic core-shell resin particles, average particle size (0.3 ⁇ m).
  • Inorganic filler SG95S manufactured by Nippon Talc
  • Talc average particle size (1.4 ⁇ m).
  • D-600 manufactured by Nippon Talc Co., Ltd.
  • compositions of Examples and Comparative Examples were prepared by the following procedure. The blending was carried out in the amounts by weight shown in Tables 1 and 2.
  • Example 1 Roll dispersion of acrylic core-shell resin (“F351” manufactured by Nippon Zeon Co., Ltd.) and liquid epoxy resin (“GOT” manufactured by Nippon Kayaku Co., Ltd.) with liquid bisphenol A type epoxy resin (“Japan EL Resin” “828EL”) MEK solution containing 70 wt% solids of the mixture (mixture G), biphenyl aralkyl type epoxy resin (“NC3000” manufactured by Nippon Kayaku Co., Ltd.), 35 wt% solid content of phenoxy resin (“YX6954” manufactured by Japan Epoxy Resin Co., Ltd.) MEK solution, talc powder (“SG95S” manufactured by Nippon Talc Co., Ltd.) and a coupling agent (“KBM-403” manufactured by Shin-Etsu Silicone Co., Ltd.) were blended and mixed with an Ajihomo mixer Robomix type mixing stirrer (manufactured by Primex).
  • Ajihomo mixer Robomix type mixing stirrer
  • Example 2 A varnish-like resin composition was prepared in the same manner as in Example 1 except that N-methylhippuric acid imidazolium salt was used as the ionic liquid curing agent, and a resin composition sheet was prepared.
  • Example 3 A varnish-like resin composition was prepared in the same manner as in Example 1 except that an imidazolium acetate salt was used as the ionic liquid curing agent, and a resin composition sheet was prepared.
  • Example 4 A varnish-like resin composition was prepared in the same manner as in Example 1 except that an imidazolium formate salt was used as the ionic liquid curing agent, and a resin composition sheet was prepared.
  • Example 5 Surface treatment was carried out by stirring calcium oxide (“Moystop # 10” manufactured by Sankyo Flour Milling Co., Ltd.) and a surface treatment agent (“Stearic acid” manufactured by Junsei Chemical Co., Ltd.) with a cutter mill pulverizer. Then, instead of the mixture H in Example 1, a liquid bisphenol A type epoxy resin (“828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and a liquid epoxy resin (“GOT” manufactured by Nippon Kayaku Co., Ltd.) are used.
  • Example 1 In place of the mixture G in Example 1, a liquid bisphenol A type epoxy resin (“828EL” manufactured by Japan Epoxy Resin Co., Ltd.) and a liquid epoxy resin (“GOT” manufactured by Nippon Kayaku Co., Ltd.) were replaced with an acrylic core-shell resin (Japan). Zeon's "F351”), a solid dispersion type curing agent (Ajinomoto Fine Techno's "MY-24") is used in a roll-dispersed mixture, and an ionic liquid curing agent (N-acetylglycine tetrabutylphosphonium salt) is added. A varnish-like resin composition was prepared in the same manner as described in Example 1 except that it was not used, and a resin composition sheet was prepared.
  • Example 6 Roll dispersion of acrylic core-shell resin (“F351” manufactured by Nippon Zeon Co., Ltd.) and liquid epoxy resin (“GOT” manufactured by Nippon Kayaku Co., Ltd.) with liquid bisphenol A type epoxy resin (“Japan EL Resin” “828EL”) A 70 wt% MEK solution of calcium oxide (“Moystop # 10” manufactured by Sankyo Flour & Co., Ltd.), biphenyl aralkyl type epoxy resin (“NC3000” manufactured by Nippon Kayaku Co., Ltd.), phenoxy resin (Japan Epoxy) A 35 wt% MEK solution of Resin “YX6954”), talc powder (“SG95S” manufactured by Nippon Talc Co., Ltd.), and a coupling agent (“KBM-403” manufactured by Shin-Etsu Silicone) are mixed together.
  • F351 manufactured by Nippon Zeon Co., Ltd.
  • liquid epoxy resin (“GOT” manufactured by Nippon Kayaku Co., Ltd
  • the mixture was mixed with a stirrer (manufactured by Primics) (mixture H). Then, this mixture (mixture H), an ionic liquid curing agent (N-acetylglycine tetrabutylphosphonium salt) and an organic solvent (MEK, acetone) are mixed and uniformly dispersed with a high-speed rotary mixer to obtain a varnish-like resin composition I got a thing.
  • the thickness of the resin composition layer after drying is 40 ⁇ m on the release treatment surface of a PET film (thickness 38 ⁇ m) obtained by treating this varnish-like resin composition with an alkyd mold release agent.
  • the resin composition sheet was obtained by uniformly coating with a die coater and drying at 60 to 80 ° C. for 6 minutes.
  • Example 7 After performing a surface treatment with decyltrimethoxysilane (“KBM3103” manufactured by Shin-Etsu Silicone Co., Ltd.) on calcium oxide (“MOYSTOP # 10” manufactured by Sankyo Flour Milling Co., Ltd.) using a stirring type surface processing apparatus, the same as in Example 6 By the method, a varnish-like resin composition was prepared to prepare a resin composition sheet.
  • the treatment amount of decyltrimethoxysilane in the surface treatment of calcium oxide was 2% by weight with respect to calcium oxide.
  • Example 8 After surface treatment with stearic acid (manufactured by Junsei Chemical Co., Ltd.) on calcium oxide (“MOISTOP # 10” manufactured by Sankyo Flour Milling Co., Ltd.) using a stirring type surface treatment apparatus, N-methyl hippuric acid 1 as an ionic liquid curing agent A varnish-like resin composition was prepared in the same manner as in Example 6 except that -ethyl-3-methylimidazolium salt was used to prepare a resin composition sheet. The treatment amount of stearic acid in the surface treatment of calcium oxide was 2% by weight with respect to calcium oxide.
  • Example 9 A mixture A in which a solid epoxy resin (“HP7200H” manufactured by DIC) was dissolved in a phenoxy resin (“YL7213” manufactured by Japan Epoxy Resin, 35 wt% solid MEK solution) was prepared.
  • a mixture B was prepared by adding and dispersing stearic acid to a MEK slurry (40 wt% as solid content) of calcined dolomite (made by wet grinding from Yoshizawa Lime Company).
  • Mixture A Mixture B, Talc (“D-600” manufactured by Nippon Talc Co., Ltd., wet pulverized, MEK slurry having a solid content of 30 wt%), rubber fine particle dispersed liquid epoxy resin (“BPA328” manufactured by Nippon Shokubai Co., Ltd.), Contains latent curing accelerator for epoxy resin ("U-CAT3502T” manufactured by Sun Apro), liquid epoxy resin ("GOT” manufactured by Nippon Kayaku Co., Ltd.), and silane coupling agent ("KBM-403" manufactured by Shin-Etsu Chemical Co., Ltd.) Then, the mixture was mixed with an Ajihomo mixer Robomix type mixing stirrer (manufactured by Primics).
  • An ionic liquid curing agent (N-acetylglycine tetrabutylphosphonium salt) was added thereto and dispersed uniformly with a high-speed rotary mixer to obtain a varnish-like resin composition.
  • a resin composition sheet was produced in the same manner as described in Example 1.
  • Example 10 A varnish-like resin composition was prepared in the same manner as in Example 9 according to the formulation table in Table 3 below. Using this resin composition, a resin composition sheet was produced in the same manner as described in Example 1.
  • Example 11 A varnish-like resin composition was prepared in the same manner as in Example 9 according to the formulation table in Table 3 below. Using this resin composition, a resin composition sheet was produced in the same manner as described in Example 1.
  • Comparative Examples 4 and 5 correspond to Examples 1 and 2 of Patent Document 2 (Japanese Patent Laid-Open No. 2006-70221).
  • a mild steel plate (JIS G3141, SPCD, first width: 100 mm ⁇ second width: 25 mm ⁇ thickness: 1.6 mm) whose surface is polished with an endless belt (JIS # 120) is prepared as shown in FIG.
  • the resin composition sheet 12 (first width: 12.5 mm ⁇ second width: 25 mm) 12 having a rectangular planar shape is formed on one end portion in the longitudinal direction of one side 11A of the mild steel plate 11.
  • the layer 12A was superposed and laminated by a vacuum laminator under conditions of a temperature of 80 ° C. and a pressure of 1 kgf / cm 2 (9.8 ⁇ 104 Pa) to produce a test piece 13. Note that two similar test pieces 13 were produced.
  • the two PET films 12B of the two test pieces 13 are peeled, the resin composition layers 12A are opposed to each other, and are bonded so as to overlap each other with a width of 12 mm. It was fixed with a clip so as to be a pressure of / cm 2 , and cured by heating at 120 ° C. for 90 minutes.
  • the tensile shear bond strength between the two test pieces was measured with a Tensilon universal tester (TENSILON UTM-5T manufactured by Toyo Seiki Co., Ltd.). The measurement conditions were such that the measurement temperature was 25 ° C. and the tensile speed was 1 mm / min.
  • the initial tensile shear bond strength immediately after the curing treatment is less than 17 MPa
  • the low-temperature curability is determined to be poor (x), and the case of 17 MPa or more and less than 19 MPa is determined as “good”, and the case of 19 MPa or more is extremely Good “ ⁇ ”.
  • the moisture permeation resistance (60 ⁇ m) is judged as poor “x”, and the case where it is less than 250 g / m 2 ⁇ 24 hr and 150 g / m 2 ⁇ 24 hr or more is allowed “ ⁇ ”, Less than 150 g / m 2 ⁇ 24 hr, 100 g / m 2 ⁇ 24 hr or more was rated as“ good ”, and less than 100 g / m 2 ⁇ 24 hr was marked as“ good ”. When evaluation was not performed, “ ⁇ ” was shown.
  • the cured product of the laminated sheet-like material having a thickness of 560 ⁇ m was used as the measurement sample, assuming the entire sealing structure of the organic EL element shown in FIG. 1, and the thickness of the cured product of the laminated sheet-like material (560 ⁇ m). Is based on the width (W1 in FIG. 1) of the portion of the curable resin composition layer (cured layer) 6 in FIG. 1 that is in contact with the outside air located on the side of the organic EL element 2.
  • the moisture permeation resistance is judged as “poor”, and when it is less than 300 g / m 2 ⁇ 24 hr and 250 g / m 2 ⁇ 24 hr or more, “good” is given, and 250 g / M 2 ⁇ The case where it was less than 24 hr was marked as “Excellent”. When evaluation was not performed, “ ⁇ ” was shown.
  • the laminating workability was evaluated by the value of the minimum melt viscosity at the time of measuring the temperature rise of the resin composition layer in the resin composition sheets obtained in Examples and Comparative Examples.
  • the minimum melt viscosity is a model Rheosol-G3000 manufactured by UBM, the amount of resin is 1 g, a parallel plate with a diameter of 18 mm is used, a measurement start temperature of 60 ° C., a temperature increase rate of 5 ° C./min, and a measurement temperature of 60 ° C.- Measurement was performed at 200 ° C. and a frequency of 1 Hz / deg. The lowest viscosity value ( ⁇ ) was taken as the lowest melt viscosity.
  • the minimum melt viscosity was determined to be good ( ⁇ ) when the minimum melt viscosity was less than 20,000 poise, and poor (x) when the minimum melt viscosity was 20000 poise. When evaluation was not performed, “ ⁇ ” was shown.
  • test piece having a width of 10 mm and a length of 50 mm, and the length of the test piece was measured in accordance with the T-type peel test method of JIS K-6854. Directional adhesion was measured.
  • Tables 1 and 2 show the test results of and above.
  • the resin composition of the present invention is cured at a low temperature of 120 ° C. in a short time and is adhered with a high adhesive strength to obtain a stable adhesiveness, and the cured product is practical. It turns out that it has a sufficiently low moisture permeability. Further, it can be seen from Examples 9 to 11 that the adhesiveness to the base material is improved by containing an inorganic filler. Thereby, it turns out that it becomes still more useful for sealing of an organic EL element. Therefore, the resin composition of the present invention and the resin composition sheet using the resin composition are easily deteriorated by heat, and need to be moisture-proof. A highly reliable coating structure, adhesive structure, sealing structure and the like that can be suitably used as a material or the like and have high moisture resistance can be easily formed. It turns out that it is particularly suitable for providing an organic EL display device.
  • the resin composition of the present invention can be cured quickly at low temperatures to form a cured product with excellent adhesiveness and low moisture permeability. It can also be applied to applications such as resins, moisture-proof protective films for printed circuit boards, moisture-proof films for lithium ion batteries, and laminate films for packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 優れた低温硬化性を有し、かつ、優れた耐透湿性の硬化物を与え得る樹脂組成物の提供。 エポキシ樹脂及びイオン液体を含有する樹脂組成物。

Description

樹脂組成物
  本発明は樹脂組成物、及びそれを用いた有機EL素子封止用フィルム等に関する。
  有機EL(Electroluminescence)素子は水分に弱く、有機EL素子を用いてディスプレイや照明装置を構成する場合に、有機材料自体が水分によって変質して、輝度が低下したり、延いては、発光しなくなったり、また、電極と有機EL層との界面が水分の影響で剥離したり、金属が酸化して高抵抗化してしまったりするといった欠点がある。そこで、例えば、図4に示すような、ガラス基板1上に形成した有機EL素子2に、吸湿材3を付設したガラス板4を所定間隔を空けて対向させて、基板1とガラス板4の間を不活性ガス雰囲気或いは真空状態にして密封する缶封止が行われている。しかし、有機EL素子及び2枚のガラス板を含む封止構造部の厚みが大きくなってしまうため、ディスプレイや照明装置を十分に薄型化することができなくなってしまう。
  このため、図1に示されるように、その片面に有機EL素子2を形成したガラス基板1上に有機EL素子2の全面を覆うように硬化性樹脂組成物層6を形成し、その上から封止基材7を貼り合わせて、硬化性樹脂組成物層6を硬化させて硬化層を形成する封止構造(以下、この封止構造を「有機EL素子の全面封止」又は単に「全面封止」とも呼ぶ。)も提案されている(特許文献1)。しかし、該特許文献1に記載の硬化性樹脂組成物はアクリル系の紫外線硬化型樹脂組成物であるため、紫外線による有機EL素子の劣化の問題や、紫外線が届かない所(未硬化部)を発生して、信頼性の高い封止構造が得られにくいという問題がある。また、エポキシ樹脂と比較し、アクリル樹脂は耐熱性等の物性面で劣ることとなる。
  従って、近年、エポキシ樹脂を主剤とする熱硬化型組成物を使用することも検討されている(例えば、特許文献2等)。しかし、有機EL素子の熱劣化を抑制するためには優れた低温硬化性が必要であり、また、エポキシ樹脂の硬化物はアクリル系樹脂の硬化物に比べて耐透湿性の点で劣るため、硬化物の耐透湿性の向上が必須であるが、かかる要求を十分に満足できるエポキシ樹脂を主剤とする硬化性樹脂組成物は未だ達成できていないのが実状である。
特開平5-182759号公報 特開2006-70221号公報
  本発明の課題は、低温で速やかに硬化して、優れた接着性を示し、耐透湿性に優れた硬化物を形成し得る樹脂組成物を提供することである。
  本発明者等は、上記の課題を解決すべく鋭意研究をした結果、エポキシ樹脂及びイオン液体を含有する樹脂組成物を用いることにより本発明を完成するに至った。
  すなわち、本発明は以下の内容を含むものである。
(1)エポキシ樹脂及びイオン液体を含有することを特徴とする樹脂組成物。
(2)イオン液体が、アンモニウム系カチオン又はホスホニウム系カチオンと、N-アシルアミノ酸イオン又はカルボン酸系アニオンとから構成されることを特徴とする、上記(1)に記載の樹脂組成物。
(3)さらに吸湿性金属酸化物を含有することを特徴とする、上記(1)又は(2)に記載の樹脂組成物。
(4)さらに無機充填材を含有することを特徴とする、上記(1)~(3)のいずれかに記載の樹脂組成物。
(5)上記(1)~(4)のいずれかに記載の樹脂組成物の層が支持体上に形成されてなることを特徴とする、樹脂組成物シート。
(6)有機EL素子封止用である、上記(5)に記載の樹脂組成物シート。
(7)上記(6)に記載の有機EL素子封止用樹脂組成物シートを用いてなることを特徴とする、有機ELデバイス。
  本発明の樹脂組成物によれば、140℃以下、好適には120℃以下の低温度で速やかに硬化して、耐透湿性に優れ、しかも、優れた密着強度が得られる硬化物を形成することができる。したがって、本発明の樹脂組成物及びそれを用いた樹脂組成物シートは、熱劣化しやすく、かつ、防湿が必要である種々のデバイス及びその構成要素等に適用する被覆材、接着材、封止材等として好適に使用することができ、高い防湿性を有する高信頼性の被覆構造、接着構造、封止構造等を簡単に形成することができる。特に高信頼性の有機ELディスプレイや有機EL照明装置の提供を可能にすることができる。
図1は有機EL素子の全面封止構造の模式断面図である。 図2は実施例及び比較例の評価試験で使用した試験片の作製工程の模式図である。 図3は実施例及び比較例の評価試験での引張り試験に供した試料(2枚の試験片の貼合物)の模式図である。 図4は有機EL素子の缶封止構造の模式断面図である。
 以下、本発明をその好適な実施形態に即して説明する。
 本発明の樹脂組成物は、エポキシ樹脂及びイオン液体を含有することを特徴とする。
  ここで用語「イオン液体」とは、一般的には「アニオンとカチオンとから構成される約100℃以下の温度領域で融解しうる塩」のことを意味するが、本明細書においては、「アニオンとカチオンとから構成される硬化温度以下の温度領域で融解しうる塩」を意味する。すなわち、140℃以下(好ましくは120℃以下)の温度領域で融解しうる塩であって、エポキシ樹脂の硬化作用を有するものである。
[エポキシ樹脂]
  本発明で使用するエポキシ樹脂は、平均して1分子当り2個以上のエポキシ基を有するものであればよい。例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。かかるエポキシ樹脂はいずれか1種を使用するか2種以上を混合して用いることができる。
  エポキシ樹脂は、これらの中でも、本発明の樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。  
  また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、常温(25℃)でのエポキシ樹脂の状態である。塗工性、加工性、接着性の観点から、使用するエポキシ樹脂全体の少なくとも10重量%以上が液状であるのが好ましい。
  なお、本発明において、エポキシ樹脂は反応性の観点から、エポキシ当量が100~1000の範囲のものが好ましく、より好ましくは120~1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS  K  7236に規定された方法に従って測定されるものである。
[イオン液体]
  本発明で使用されるイオン液体は、樹脂硬化剤としての働きを有する。本発明の樹脂組成物においては、エポキシ樹脂に当該イオン液体を均一に溶解している状態で使用されるのが望ましい。
  イオン液体を構成するカチオンとしては、イミダゾリウムイオン、ピペリジニウムイオン、ピロリジニウムイオン、ピラゾニウムイオン、グアニジニウムイオン、ピリジニウムイオン等のアンモニウム系カチオン;テトラアルキルホスホニウムカチオン(例えば、テトラブチルホスホニウムイオン、トリブチルヘキシルホスホニウムイオン等)等のホスホニウム系カチオン;トリエチルスルホニウムイオン等のスルホニウム系カチオン等が挙げられる。
  イオン液体を構成するアニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物系アニオン;メタンスルホン酸イオン等のアルキル硫酸系アニオン;トリフルオロメタンスルホン酸イオン、ヘキサフルオロホスホン酸イオン、トリフルオロトリス(ペンタフルオロエチル)ホスホン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、トリフルオロ酢酸イオン、テトラフルオロホウ酸イオン等の含フッ素化合物系アニオン;フェノールイオン、2-メトキシフェノールイオン、2,6-ジ-tert-ブチルフェノールイオン等のフェノール系アニオン;アスパラギン酸イオン、グルタミン酸イオン等の酸性アミノ酸イオン;グリシンイオン、アラニンイオン、フェニルアラニンイオン等の中性アミノ酸イオン;N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオン等の下記一般式(1)で示されるN-アシルアミノ酸イオン;ギ酸イオン、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン、安息香酸イオン等のカルボン酸系アニオンが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R-CO-は炭素数1~5の直鎖状または分岐鎖状の脂肪酸より誘導されるアシル基、或いは、置換または無置換ベンゾイル基であり、-NH-CHX-COはアスパラギン酸、グルタミン酸等の酸性アミノ酸イオン、或いはグリシン、アラニン、フェニルアラニン等の中性アミノ酸イオンである。)
  上述の中でも、イオン液体を構成するカチオンとしては、アンモニウム系カチオン、ホスホニウム系カチオンが好ましく、イミダゾリウムイオン、ホスホニウムイオンがより好ましい。イミダゾリウムイオンは、より詳細には、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-プロピル-3-メチルイミダゾリウムイオン等である。
  また、イオン液体を構成するアニオンとしては、フェノール系アニオン、一般式(1)で示されるN-アシルアミノ酸イオン又はカルボン酸系アニオンが好ましく、N-アシルアミノ酸イオン又はカルボン酸系アニオンがより好ましい。
  フェノール系アニオンの具体例としては、2,6-ジ-tert-ブチルフェノールイオンが挙げられる。また、カルボン酸系アニオンの具体例としては、酢酸イオン、デカン酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、α-リポ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオン等が挙げられ、中でも、酢酸イオン、2-ピロリドン-5-カルボン酸イオン、ギ酸イオン、乳酸イオン、酒石酸イオン、馬尿酸イオン、N-メチル馬尿酸イオンが好ましく、酢酸イオン、N-メチル馬尿酸イオン、ギ酸イオンが殊更好ましい。また、一般式(1)で示されるN-アシルアミノ酸イオンの具体例としては、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、アスパラギン酸イオン、グリシンイオン、N-アセチルグリシンイオン等が挙げられ、中でも、N-ベンゾイルアラニンイオン、N-アセチルフェニルアラニンイオン、N-アセチルグリシンイオンが好ましく、N-アセチルグリシンイオンが殊更好ましい。
  具体的なイオン液体としては、例えば、1-ブチル-3-メチルイミダゾリウムラクテート、テトラブチルホスホニウム-2-ピロリドン-5-カルボキシレート、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムトリフルオロアセテート、テトラブチルホスホニウムα-リポエート、ギ酸テトラブチルホスホニウム塩、テトラブチルホスホニウムラクテート、酒石酸ビス(テトラブチルホスホニウム)塩、馬尿酸テトラブチルホスホニウム塩、N-メチル馬尿酸テトラブチルホスホニウム塩、ベンゾイル-DL-アラニンテトラブチルホスホニウム塩、N-アセチルフェニルアラニンテトラブチルホスホニウム塩、2,6-ジ-tert-ブチルフェノールテトラブチルホスホニウム塩、L-アスパラギン酸モノテトラブチルホスホニウム塩、グリシンテトラブチルホスホニウム塩、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムラクテート、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩、酒石酸ビス(1-エチル-3-メチルイミダゾリウム)塩、N-アセチルグ
リシン1-エチル-3-メチルイミダゾリウム塩が好ましく、N-アセチルグリシンテトラブチルホスホニウム塩、1-エチル-3-メチルイミダゾリウムアセテート、ギ酸1-エチル-3-メチルイミダゾリウム塩、馬尿酸1-エチル-3-メチルイミダゾリウム塩、N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩が殊更好ましい。
  本発明で使用するイオン液体の合成法としては、アルキルイミダゾリウム、アルキルピリジニウム、アルキルアンモニウム及びアルキルスルホニウムイオン等のカチオン部位と、ハロゲンを含むアニオン部位から構成される前駆体に、NaBF、NaPF、CFSONaやLiN(SOCF等を反応させるアニオン交換法、アミン系物質と酸エステルとを反応させてアルキル基を導入しつつ、有機酸残基が対アニオンになるような酸エステル法、及びアミン類を有機酸で中和して塩を得る中和法等があるがこれらに限定されない。アニオンとカチオンと溶媒による中和法では、アニオンとカチオンとを当量使用し、得られた反応液中の溶媒を留去して、そのまま用いることも可能であるし、更に有機溶媒(メタノール、トルエン、酢酸エチル、アセトン等)を加え、液濃縮しても構わない。
  イオン液体の配合量は、エポキシ樹脂が硬化しさえすれば特に制限は無いが、エポキシ樹脂100重量部当たり0.1~10重量部が好ましく、0.5~5重量部がより好ましい。0.1重量部よりも少ないと硬化性が低下する傾向にあり、10重量部より多いと、組成物のポットライフ、硬化物の耐透湿性が低下する傾向にある。
[ポリチオール化合物]
  本発明の樹脂組成物には、イオン液体とともに分子内にチオール基を2個以上有するポリチオール化合物を含有させてもよい。分子内にチオール基を2個以上有するポリチオール化合物を含有させることで硬化速度を速めることができる。具体的には、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(β-チオプロピオネート)、ペンタエリスリトールテトラキス(β-チオプロピオネート)、ジペンタエリスリトールポリ(β-チオプロピオネート)が挙げられる。ポリオールとメルカプト有機酸のエステル化反応によって得られるチオール化合物のように、製造上塩基性物質の使用を必要としない、分子内にチオール基を2個以上有するチオール化合物がある。
  同様に、1,4-ブタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール等のアルキルポリチオール化合物;末端チオール基含有ポリエーテル;末端チオール基含有ポリチオエーテル;エポキシ化合物と硫化水素との反応によって得られるチオール化合物;ポリチオール化合物とエポキシ化合物との反応によって得られる末端チオール基を有するチオール化合物等のように、その製造工程上反応触媒として、塩基性物質を使用するものにあっては、脱アルカリ処理を行いアルカリ金属イオン濃度を50ppm以下とした分子内にチオール基を2個以上有するチオール化合物が使用できる。かかる脱アルカリ処理の方法としては、例えば処理を行うポリチオール化合物をアセトン、メタノールなどの有機溶媒に溶解し、希塩酸、希硫酸等の酸を加えることにより中和した後、抽出・洗浄等により脱塩する方法やイオン交換樹脂を用いて吸着する方法、蒸留により精製する方法等が挙げられるが、これらに限定されるものではない。
  本発明の樹脂組成物において、かかるポリチオール化合物を使用する場合、エポキシ樹脂とポリチオール化合物の混合比は、SH当量数/エポキシ当量数で0.2~1.2とすることが好ましい。0.2よりも少ないと十分な速硬化性が得られない場合があり、他方、1.2より多いと耐熱性などの硬化物の物性が損なわれる場合がある。接着性が安定するという観点から0.5~1.0がより好ましい。
[吸湿性金属酸化物]
  本発明の樹脂組成物には、硬化物の耐透湿性をより高めるためにイオン液体とともに吸湿性金属酸化物を配合する事ができる。ここで、「吸湿性金属酸化物」とは、水分を吸収する能力をもち、吸湿した水分と化学反応して水酸化物になる金属酸化物を意味する。具体的には、酸化カルシウム、酸化マグネシウム、酸化ストロンチウム、酸化バリウム等が挙げられる。これらは1種又は2種以上を選択して使用できるが、中でも、吸湿性が高い点、コスト、原料の安定性の点から、酸化カルシウムが好ましい。
  吸湿性金属酸化物は粒子径が大き過ぎると、封止する工程にて粗粒子が有機EL素子を損傷するという不具合が生じる恐れがあり、また、樹脂成分との界面結合力を高める観点からは、粒子径が小さいほど有利であるが、粒子径が小さくなるほど粒子同士の凝集が起きやすくなるため、組成物中での分散不良によって硬化物に十分に高い耐透湿性を付与することが困難になる恐れがある。したがって、吸湿性金属酸化物は平均粒子径が.001~10μmの範囲にあるのが好ましく、より好ましくは平均粒子径が0.001~5μmの範囲のものである。
  また、吸湿性金属酸化物は平均粒子径が上記の好適範囲内にあって、粒子径が20μm以上の粗大粒子を含まないものが特に好ましい。このような粗大粒子を含まないことで、封止工程でEL素子に損傷を与えにくいという点で有利に作用する。
  吸湿性金属酸化物の平均粒子径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、吸湿性金属酸化物の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、吸湿性金属酸化物を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、株式会社堀場製作所製  LA-500を使用することができる。
  吸湿性金属酸化物は、表面処理剤で表面処理したものを用いることができる。このような表面処理吸湿性金属酸化物を使用することで、硬化物の接着安定性をより高めることができ、硬化前の段階で、樹脂中の水分と吸湿性金属酸化物が反応してしまうことや組成物の経時に於ける増粘を防止できる。
  表面処理に使用する表面処理剤としては、例えば、高級脂肪酸、アルキルシラン類、シランカップリング剤等を使用することができ、中でも、高級脂肪酸又はアルキルシラン類が好適である。
  高級脂肪酸は、例えば、ステアリン酸、モンタン酸、ミリスチン酸、パルミチン酸などの炭素数18以上の高級脂肪酸が好ましい。これらは1種又は2種以上を選択して使用できる。中でも、ステアリン酸が好ましい。
  アルキルシラン類としては、メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、ジメチルジメトキシシラン、オクチルトリエトキシシラン、n-オクタデシルジメチル(3-(トリメトキシシリル)プロピル)アンモニウムクロライド等が挙げられ、これらは1種又は2種以上を選択して使用できる。
  シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン及び11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらは1種又は2種以上を選択して使用できる。
  表面処理は、例えば、未処理の吸湿性金属酸化物を混合機で常温にて攪拌分散させながら、表面処理剤(高級脂肪酸、アルキルシラン類又はシランカップリング剤)を添加噴霧して5~60分間攪拌することによって行なうことができる。混合機としては、公知の混合機を使用することができ、例えば、Vブレンダー、リボンブレンダー、バブルコーンブレンダー等のブレンダー、ヘンシェルミキサー及びコンクリートミキサー等のミキサー、ボールミル、カッターミル等が挙げられる。又、ボールミルなどで吸湿材を粉砕する際に、前記の高級脂肪酸、アルキルシラン類又はシランカップリング剤を混合し、表面処理する方法も可能である。表面処理剤(高級脂肪酸、アルキルシラン類又はシランカップリング剤)の処理量は吸湿性金属酸化物の種類又は表面処理剤の種類等によっても異なるが、吸湿性金属酸化物に対して1~10重量%が好ましく、1~5重量%がより好ましい。
  本発明の樹脂組成物において、吸湿性金属酸化物の含有量は樹脂組成物中の不揮発分100重量%に対して1~40重量%の範囲が好ましく、1~30重量%の範囲がより好ましく、5~20重量%の範囲が更に好ましく、7~18重量%が更に一層好ましく、9~16重量%が殊更好ましい。含有量が少なすぎると、吸湿性金属酸化物を配合することの効果が十分に得られず、含有量が多すぎると、組成物の粘度が上昇する傾向や、硬化物の強度が低下して脆くなる傾向となる。
[無機充填材]
  本発明の樹脂組成物には、硬化物の耐透湿性、フィルム加工時のはじき防止、密着性向上等の点から、無機充填材を含有させることができる。無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。これらの中でも、樹脂硬化物の低い透湿性、高い密着性を維持する観点から、タルク、マイカが好ましく、タルクが特に好ましい。無機充填材は1種又は2種以上を組み合わせて使用してもよい。
  本発明の樹脂組成物において、無機充填材を使用する場合、無機充填材の含有量は、樹脂組成物中の不揮発分100重量%に対し、1~50重量%の範囲であるのが好ましく、1~40重量%の範囲であるのがより好ましく、5~30重量%が更に好ましく、10~20重量%が更に一層好ましい。含有量が少なすぎると、無機充填材を配合することの効果が十分に得られず、含有量が多すぎると、組成物の粘度が上昇する傾向や、硬化物の強度が低下して脆くなる傾向となる。
 本発明において使用される無機充填材の平均粒径の上限値は、取り扱い性という観点から、10μmが好ましく、5μmがより好ましく、2.5μmが更に好ましく、1.5μmが更に一層好ましい。一方、無機充填材の平均粒径の下限値は、樹脂組成物の粘度が高くなるのを防止するという観点から、0.5μmが好ましい。 
 無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、株式会社堀場製作所製  LA-500等を使用することができる。
[ゴム粒子]
  本発明の樹脂組成物には、硬化物の機械強度の向上や応力緩和等の目的からゴム粒子を含有させてもよい。当該ゴム粒子は、樹脂組成物を調製する際の有機溶媒にも溶解せず、エポキシ樹脂等の樹脂組成物中の成分とも相溶せず、樹脂組成物のワニス中では分散状態で存在するものが好ましい。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製することができ、具体的には、コアシェル型ゴム粒子、架橋アクリルニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子等が挙げられる。コアシェル型ゴム粒子は、粒子がコア層とシェル層を有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマー、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマー、中間層がゴム状ポリマー、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(以上、ガンツ化成(株)製)、メタブレンKW-4426(三菱レイヨン(株)製)、F351(日本ゼオン(株)製)等が挙げられる。アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(JSR(株)製)などが挙げられる。スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A、W450A(以上、三菱レイヨン(株)製)を挙げることができる。
  ゴム粒子の平均粒子径は0.005~1μmの範囲が好ましく、0.2~0.6μmの範囲がより好ましい。かかるゴム粒子の平均粒子径は、動的光散乱法を用いて測定することが出来る。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、FPRA-1000(大塚電子(株)製)を用いて、ゴム粒子の粒度分布を重量基準で作成し、そのメディアン径を平均粒子径とすることで測定される。
  本発明の樹脂組成物において、ゴム粒子を使用する場合、ゴム粒子の含有量は、樹脂組成物中の不揮発分100重量%に対して0.1~20重量%が好ましく、0.1~10重量%がより好ましい。0.1重量%よりも少ないとゴム粒子を配合することの効果が十分に得られず、20重量%より多いと、耐熱性、耐透湿性が低下する場合がある。
[熱可塑性樹脂]
  本発明の樹脂組成物には、硬化物への可撓性の付与、樹脂組成物をコーティングする際の良好な加工性を維持する等の観点から、熱可塑性樹脂を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂等を挙げることができる。これらの熱可塑性樹脂はいずれか1種を使用しても2種以上を混合して用いてもよい。熱可塑性樹脂は可撓性の付与、コーティング時のはじき防止の点から、重量平均分子量が30,000以上が好ましく、50,000以上がより好ましい。しかし、重量平均分子量が大きすぎると、エポキシ樹脂との相溶性が低下する等の傾向があることから、重量平均分子量は1,000,000以下であるのが好ましく、800,000以下がより好ましい。
  なお、ここでいう「熱可塑性樹脂の重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)社製Shodex  K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
  熱可塑性樹脂は上述した例示物の中でもフェノキシ樹脂が特に好ましい。フェノキシ樹脂は「エポキシ樹脂」との相溶性が良く、また、本発明の樹脂組成物の硬化物の接着性、耐湿性への影響が少ないという点からも好ましい。
  フェノキシ樹脂としては、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、トリメチルシクロヘキサン骨格から選択される1種以上の骨格を有するものが挙げられる。フェノキシ樹脂は2種以上を混合して用いてもよい。
  フェノキシ樹脂の市販品としては、例えば、ジャパンエポキシレジン(株)製1256、4250(ビスフェノールA骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX8100(ビスフェノールS骨格含有フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX6954(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂)、ユニオンカーバイド社製PKHH(重量平均分子量(Mw)42600、数平均分子量(Mn)11200)等が好適であり、東都化成(株)製FX280、FX293、ジャパンエポキシレジン(株)製YL7553BH30、YL6794、YL7213、YL7290、YL7482等も挙げることができる。
  本発明の樹脂組成物において、熱可塑性樹脂を使用する場合、熱可塑性樹脂の含有量は、樹脂組成物中の不揮発分100重量%に対し、1~50重量%が好ましく、3~25重量%がより好ましい。1重量%よりも少ないと熱可塑性樹脂を配合することの効果が十分に得られず、50重量%より多いと、硬化物の透湿性などが低下する傾向にある。
[カップリング剤]  
  本発明の樹脂組成物には、被着体との密着性、硬化物、耐透湿性等の点からカップリング剤を含有させることができる。かかるカップリング剤としては、例えば、チタン系カップリング剤、アルミニウム系カップリング剤、シランカップリング剤等を挙げることができる。中でも、シランカップリング剤が好ましい。また、カップリング剤は1種又は2種以上を組み合わせて使用することができる。
  シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシランおよび2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン及び11-メルカプトウンデシルトリメトキシシランなどのメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランおよびN-(2-アミノエチル)-3-アミノプロピルジメトキシメチルシランなどのアミノ系シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド系シランカップリング剤、ビニルトリメトキシシラン、ビニルトリエトキシシランおよびビニルメチルジエトキシシランなどのビニル系シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル系シランカップリング剤;3-アクリルオキシプロピルトリメトキシシランおよび3-メタクリルオキシプロピルトリメトキシシランなどのアクリレート系シランカップリング剤;3-イソシアネートプロピルトリメトキシシランなどのイソシアネート系シランカップリング剤、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド系シランカップリング剤;フェニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を挙げることができる。これらの中でも、エポキシ系シランカップリング剤が特に好適である。
  本発明の樹脂組成物において、カップリング剤を使用する場合、カップリング剤の含有量は、樹脂組成物中の不揮発分100重量%に対して0.5~10重量%が好ましく、0.5~5重量%がより好ましい。この範囲外で含有した場合、カップリング剤添加による密着性の改善効果を得ることができない。
  本発明の樹脂組成物は、本発明の効果が発揮される範囲で、上述した成分以外の各種樹脂添加剤を任意で含有させても良い。このような樹脂添加剤としては、例えば、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等の密着性付与剤等を挙げることができる。
[樹脂組成物シート]
  本発明の樹脂組成物は被覆対象物や接着対象物に直接塗布して樹脂組成物被膜(層)を形成することができるが、支持体上に本発明の樹脂組成物の層を形成した樹脂組成物シートを作製し、該樹脂組成物シートを被覆対象物や接着対象物の必要箇所にラミネートしてその樹脂組成物層を被覆対象物や接着対象物に転写するようにしてもよい。工業的には、かかる樹脂組成物シートを用いる方法が好適である。
  樹脂組成物シートは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解したワニスを調製し、支持体上にワニスを塗布し、更に加熱、あるいは熱風吹きつけ等によって有機溶剤を乾燥させて樹脂組成物層を形成させることによって製造することができる。
  樹脂組成物シートに使用する支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどのプラスチックフィルムが挙げられる。プラスチックフィルムとしては、とくにPETが好ましい。支持体はマット処理、コロナ処理の他、離型処理を施してあってもよい。離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。
  支持体の厚さは特に限定されないが、樹脂組成物シートの取り扱い性等の観点から、10~150μmの範囲が好ましく、より好ましくは20~100μmの範囲で用いられる。
  有機溶剤としては、例えば、アセトン、メチルエチルケトン(以下、「MEK」とも略称する)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。かかる有機溶剤はいずれか1種を単独で使用しても2種以上を組み合わせて用いてもよい。
  乾燥条件は特に制限はないが、50~100℃で3~15分が好適である。
  乾燥後に形成される樹脂組成物層の厚みは、3μm~200μmが好ましく、より好ましくは5μm~100μm、更に好ましくは5μm~50μmの範囲である。なお、後述のように、有機EL素子封止用樹脂組成物シートとして使用する場合、その封止構造においては、樹脂組成物層(硬化層)上に封止基材が積層されるので(図1参照)、水分の浸入は樹脂組成物層(硬化層)の側面からのみとなるため、樹脂組成物層は層厚を薄くするのが、外気との接触面積が少なくなり、水分を遮断する上で望ましい。なお、層厚が小さすぎると、有機EL素子が形成された基板(以下、「有機EL素子形成基板」とも略称する。)上に転写後、塗膜の厚みの均一性が低下したり、封止基材を貼り合わせる場合の作業性が低下する傾向にある。
  樹脂組成物層は、保護フィルムで保護されていてもよく、保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムは、支持体と同様のプラスチックフィルムを用いるのが好ましい。また、保護フィルムもマット処理、コロナ処理の他、離型処理を施してあってもよい。保護フィルムの厚さは特に制限されないが、1~40μmの範囲が好ましく、より好ましくは10~30μmの範囲で用いられる。
[有機EL素子の封止]
 本発明の樹脂組成物及び樹脂組成物シートの用途の具体例としては、例えば、有機EL素子封止用樹脂組成物及び有機EL素子封止用樹脂組成物シートが挙げられる。本発明の樹脂組成物又は樹脂組成物シートを使用して有機EL素子を封止する場合、先ず、有機EL素子形成基板に有機EL素子を被覆するように樹脂組成物層を形成する。
 樹脂組成物を直接使用する場合は、それを塗布して樹脂組成物層を形成する。樹脂組成物は、エポキシ樹脂及びイオン液体、並びに、必要に応じて配合されるその他の材料を混合したワニスの状態で使用されるのが好ましい。有機EL素子に影響のない程度に上述した溶媒等を必要に応じて添加してよい。溶媒を使用した場合は、塗布後に乾燥を行い樹脂組成物層を形成する。かかる樹脂組成物層の厚みは前述の樹脂組成物シートの厚みと同様である。
  樹脂組成物シートを使用する場合、樹脂組成物シートの支持体に防湿性を有するものを使用すれば、それを封止基材(すなわち、図1中の符号7で特定される基材)として使用することができる。かかる防湿性を有する支持体(=封止基材)には、防湿性を有するプラスチックフィルム、または、銅箔、アルミニウム箔などの金属箔等が使用される。防湿性を有するプラスチックフィルムとしては表面に酸化ケイ素(シリカ)、窒化ケイ素、SiCN、アモルファスシリコン等の無機物を蒸着させたプラスチックフィルム等が挙げられる。ここでのプラスチックフィルムは、上記で例示したのと同様のものを用いることができる。市販されている防湿性を有するプラスチックフィルムの例としては、テックバリアHX、AX、LX、Lシリーズ(三菱樹脂社製)や更に防湿効果を高めたX-BARRIER(三菱樹脂社製)等が挙げられる。封止基材は2層以上の複層構造を有するものを使用しても良い。
  樹脂組成物シートの樹脂組成物層が保護フィルムで保護されている場合はこれを剥離した後、樹脂組成物シートをその樹脂組成物層が有機EL素子形成基板に直接接するように有機EL素子形成基板にラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。樹脂組成物シートの支持体が防湿性を有する(すなわち、封止基材である)場合は、樹脂組成物シートを有機EL素子形成基板にラミネートした後、支持体を剥離せず、そのまま後述の樹脂組成物層の熱硬化作業を行う(これによって、有機EL素子の封止が完了する)。
  一方、支持体が防湿性を有しない場合は、支持体を剥離し、露出した樹脂組成物層に封止基材を圧着し、後述の樹脂組成物層の熱硬化作業を行なうのが好ましい。この場合、封止基材としては、前述の防湿性を有するプラスチックフィルムや銅箔、アルミニウム箔などの金属箔の他、樹脂組成物シートの支持体として使用するには不向きなガラス板、金属板等の可とう性を有しない基材を用いることもできる。封止基材の圧着時の圧力は0.5~10kgf/cm程度が好適であり、加熱下に圧着する場合、その温度は50~130℃程度である。また、封止基材の厚みは有機ELデバイス自体を薄くかつ軽くするという観点から5mm以下が好ましく、より好ましくは1mm以下、特に好ましくは100μm以下であり、水分透過を防ぐ観点から、5μm以上が好ましく、より好ましくは10μm以上、特に好ましくは20μm以上である。封止基材は2枚またはそれ以上を貼り合わせて使用しても良い。
  図1のように、ガラス基板1上に有機EL素子2が形成されている場合、ガラス基板1側をディスプレイの表示面や照明器具の発光面にすれば、封止基材7には必ずしも透明材料を使用する必要はなく、金属板、金属箔等を使用することができる。これとは逆に有機EL素子が不透明または透明性の低い材料からなる基板上に形成されている場合、封止基材側をディスプレイの表示面や照明器具の発光面にする必要から、通常、封止基材にはガラス板や透明プラスチックフィルム(または板)等が使用される。
  封止基材の圧着後(有機EL素子封止用樹脂組成物シートの支持体を封止基材として使用する場合は、有機EL素子封止用樹脂組成物シートのラミネート後)、樹脂組成物層を熱硬化することで、目的の封止構造(図1に示す封止構造)を形成することができる。樹脂組成物層を熱硬化する方法は特に制限はなく、種々のものを使用できる。例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱などが挙げられる。本発明の樹脂組成物は極めて良好な低温硬化性を有しており、140℃以下、好適には120℃以下、さらに好適には110℃以下という低温域で、概ね120分以下、好適には90分以下、さらに好適には60分以下の短時間で硬化し得る。従って、有機EL素子の熱による劣化を極めて少なくすることができる。なお、硬化温度及び硬化時間のそれぞれの下限値は、十分に満足できる硬化物の接着性(密着性)を確保する観点から、硬化温度においては、50℃以上が好ましく、55℃以上がより好ましく、硬化時間においては20分以上が好ましく、30分以上がより好ましい。
  以下に記載の実施例及び比較例からも分かるように、本発明の樹脂組成物は、エポキシ樹脂及びイオン液体を含有する樹脂組成物であることから、低温度で速やかに硬化して、耐透湿性に優れ、しかも、優れた密着強度が得られる硬化物を形成することができる。特に、耐透湿性に優れ、経時による接着力が低下しない安定な接着性を有する硬化物被膜(層)を実現できる。また、エポキシ樹脂にイオン液体とともに吸湿性金属酸化物を配合することで、耐透湿性が一層向上した硬化物を形成することができる。
  以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。
  実施例及び比較例で用いた材料(原料)は以下の通りである。
(A)エポキシ樹脂
  ・828EL(ジャパンエポキシレジン社製):液状ビスフェノールA型エポキシ樹脂、エポキシ当量(185g/eq)、低塩素型エポキシ樹脂。
  ・NC3000(日本化薬社製):ビフェニルアラルキル型エポキシ樹脂、エポキシ当量(275g/eq)、70wt%固形分のMEK溶液に調製して使用。
  ・GOT(日本化薬社製):オルソトルイジンジグリシジルアミン(液状)、エポキシ当量(135g/eq)。
  ・エピクロンEXA835LV(DIC社製):液状ビスフェノールF型エポキシ樹脂、エポキシ当量160-170g/eq。
  ・エピコート828(ジャパンエポキシレジン社製):ビスフェノールA型エポキシ樹脂低塩素型。
  ・エピコート1001(ジャパンエポキシレジン社製):固形ビスフェノールA型エポキシ樹脂、エポキシ当量(475g/eq)
(B)硬化剤
(イオン液体)
  ・N-アセチルグリシンテトラブチルホスホニウム塩
  ・N-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩  
  ・酢酸1-エチル-3-メチルイミダゾリウム塩(1-エチル-3-メチルイミダゾリウムアセテート)
  ・蟻酸1-エチル-3-メチルイミダゾリウム塩
(固体分散型硬化剤)
  ・アミキュアMY-24(味の素ファインテクノ社製、平均粒子径10μm)
  ・2PZ-CNS-PW(四国化成社製):1-シアノエチル-2-フェニルイミダゾリウムトリメリテイトの粉砕品、平均粒子径10μm  
(酸無水物型硬化剤)
  ・リカシッドMH-700(新日本理化社製):メチルヘキサヒドロ無水フタル酸
(液状硬化剤)
  ・2E4MZ(四国化成社製):2-エチル-4-メチルイミダゾール 
 ・1B2MZ(四国化成社製):1-ベンジル-2-メチルイミダゾール
(C)フェノキシ樹脂
  ・YX6954(ジャパンエポキシレジン社製):高耐熱型フェノキシ樹脂、重量平均分子量(40000)、35wt%固形分のMEK溶液に調製して使用。
  ・YL7213(ジャパンエポキシレジン社製):高耐熱型フェノキシ樹脂、重量平均分子量(35000)、35wt%固形分のMEK溶液に調製して使用。
  ・PKHH(InChem社製):高耐熱型フェノキシ樹脂、重量平均分子量(42600)、20wt%固形分のMEK溶液に調製して使用。
(D)ゴム粒子
  ・F351(日本ゼオン社製):アクリル系コアシェル樹脂粒子、平均粒径(0.3μm)。
(E)吸湿性金属酸化物
 ・ モイストップ#10(三共製粉社製):酸化カルシウム、平均粒子径(4μm)、最大粒子径(15μm)。
 ・焼成ドロマイト:吉澤石灰社製「軽焼ドロマイト」を湿式粉砕したもののMEKスラリー(固形分として40wt%、平均粒径:0.87μm)。
(F)無機充填材
  ・SG95S(日本タルク社製):タルク、平均粒径(1.4μm)。
  ・D-600(日本タルク社製):タルクを湿式粉砕したもののMEKスラリー(固形分として30wt%、平均粒径:0.72μm)
(G)表面処理剤
  ・KBM3103(信越シリコーン社製):デシルトリメトキシシラン
  ・ステアリン酸(純正化学社製)
(H)カップリング剤
  ・KBM-403(信越シリコーン社製):3-グリシドキシプロピルトリメトキシシラン
  次に示す手順にて実施例及び比較例の各組成物を調整した。配合は表1、2に示す重量部の量で行った。
(実施例1)
  液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)と、液状エポキシ樹脂(日本化薬社製「GOT」)とに、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)をロール分散させた混合物(混合物G)、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製「NC3000」)の70wt%固形分のMEK溶液、フェノキシ樹脂(ジャパンエポキシレジン社製「YX6954」)の35wt%固形分のMEK溶液、タルク粉末(日本タルク社製「SG95S」)、カップリング剤(信越シリコーン社製「KBM-403」)を配合し、アジホモミキサーロボミックス型混合攪拌機(プライミクス社製)にて混合した(混合物H)。そして、この混合物(混合物H)、イオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)および有機溶剤(MEK、アセトン)を混合し、高速回転ミキサーで均一に分散して、ワニス状の樹脂組成物を得た。次に、このワニス状の樹脂組成物をアルキッド系離型剤で処理されたPETフィルム(厚さ38μm)の離型処理面上に、乾燥後の樹脂組成物層の厚さが40μmになるよう、ダイコーターにて均一に塗布し、60~80℃で6分間乾燥させることにより、樹脂組成物シートを得た。
(実施例2)
  イオン液体硬化剤にN-メチル馬尿酸イミダゾリウム塩を用いた以外は、実施例1と同様の方法にて、ワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(実施例3)
  イオン液体硬化剤に酢酸イミダゾリウム塩を用いた以外は、実施例1と同様の方法にて、ワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(実施例4)
  イオン液体硬化剤に蟻酸イミダゾリウム塩を用いた以外は、実施例1と同様の方法にて、ワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(実施例5)
  カッターミル粉砕装置にて酸化カルシウム(三共製粉社製「モイストップ#10」)と表面処理剤(純正化学社「ステアリン酸」)を攪拌して表面処理を行った。そして、実施例1における混合物Hに代えて、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)と、液状エポキシ樹脂(日本化薬社製「GOT」)とに、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)をロール分散させた混合物、上記の表面処理した酸化カルシウム、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製「NC3000」)の70wt%固形分のMEK溶液、フェノキシ樹脂(ジャパンエポキシレジン社製「YX6954」)の35wt%固形分のMEK溶液、タルク粉末(日本タルク社製「SG95S」)、カップリング剤(信越シリコーン社製「KBM-403」)を配合し、アジホモミキサーロボミックス型混合攪拌機(プライミクス社製)にて混合した混合物を用いた以外は、実施例1に記載の方法と同様の方法にてワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(比較例1)
  実施例1における混合物Gに代えて、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)と、液状エポキシ樹脂(日本化薬社製「GOT」)とに、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)、固体分散型硬化剤(味の素ファインテクノ社製「MY-24」)をロール分散させた混合物を用い、さらにイオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)を使用しなかったこと以外は、実施例1に記載の方法と同様の方法にてワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(比較例2)
  実施例1における混合物Gに代えて、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)と、液状エポキシ樹脂(日本化薬社製「GOT」)とに、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)、カチオン重合触媒型硬化剤(2-エチル-4-メチルイミダゾール、四国化成社製「2E4MZ」)をロール分散させた混合物を用い、さらにイオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)を使用しなかったこと以外は、実施例1に記載の方法と同様の方法にてワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。
(比較例3)
  液状ビスフェノールF型エポキシ樹脂(DIC社製「EXA-835LV」)と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート1001」)とに固体分散硬化剤(1-シアノエチル-2-フェニルイミダゾリウムトリメリテイトの粉砕品、四国化成社製「2PZ-CNS-PW」)を均一に分散した混合物、フェノキシ樹脂(InChem社製「PKHH」)の20wt%固形分のMEK溶液、シランカップリング剤(信越シリコーン社製「KBM403」)を所定量で配合して樹脂組成物を得た。この樹脂組成物を用いて、実施例1に記載の方法と同様の方法にて樹脂組成物シートを作製した。
(比較例4)
  エピクロンEXA-835LV(液状ビスフェノールF型エポキシ樹脂、DIC社製)、リカシッドMH-700(メチルヘキサヒドロ無水フタル酸、新日本理化社製)、1B2MZ(1-ベンジル-2-メチルイミダゾール、四国化成社製)を所定量混合して樹脂組成物を得た。この樹脂組成物を用い、金型を用いて厚み40μmのシート状硬化物を得た。
(比較例5)
  エピコート828(ビスフェノールA型エポキシ樹脂低塩素型、ジャパンエポキシレジン社製)、リカシッドMH-700(メチルヘキサヒドロ無水フタル酸、新日本理化社製)、1B2MZ(1-ベンジル-2-メチルイミダゾール、四国化成社製)を所定量混合して樹脂組成物を得た。この樹脂組成物を用い、金型を用いて厚み40μmのシート状硬化物を得た。
(実施例6)
  液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)と、液状エポキシ樹脂(日本化薬社製「GOT」)とに、アクリル系コアシェル樹脂(日本ゼオン社製「F351」)をロール分散させた混合物(混合物G)に、酸化カルシウム(三共製粉社製「モイストップ#10」)、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製「NC3000」)の70wt%MEK溶液、フェノキシ樹脂(ジャパンエポキシレジン社製「YX6954」)の35wt%MEK溶液、タルク粉末(日本タルク社製「SG95S」)、カップリング剤(信越シリコーン社製「KBM-403」)を配合し、アジホモミキサーロボミックス型混合攪拌機(プライミクス社製)にて混合した(混合物H)。そして、この混合物(混合物H)、イオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)および有機溶剤(MEK、アセトン)を混合し、高速回転ミキサーで均一に分散して、ワニス状の樹脂組成物を得た。次に、このワニス状の樹脂組成物をアルキッド系離型剤で処理されたPETフィルム(厚さ38μm)の離型処理面上に、乾燥後の樹脂組成物層の厚さが40μmになるよう、ダイコーターにて均一に塗布し、60~80℃で6分間乾燥させることにより、樹脂組成物シートを得た。
(実施例7)
  攪拌式表面処理装置を用いて酸化カルシウム(三共製粉社製「モイストップ#10」)にデシルトリメトキシシラン(信越シリコーン社製「KBM3103」)による表面処理を行った後、実施例6と同様の方法にて、ワニス状の樹脂組成物を調製し、樹脂組成物シートを作製した。なお、酸化カルシウムの表面処理におけるデシルトリメトキシシランの処理量は酸化カルシウムに対して2重量%で行った。
(実施例8)
  攪拌式表面処理装置を用いて酸化カルシウム(三共製粉社製「モイストップ#10」)にステアリン酸(純正化学社製)による表面処理を行った後、イオン液体硬化剤としてN-メチル馬尿酸1-エチル-3-メチルイミダゾリウム塩を使用した以外は実施例6と同様の方法にて、ワニス状の樹脂組成物を調整し、樹脂組成物シートを作成した。なお、酸化カルシウムの表面処理におけるステアリン酸の処理量は酸化カルシウムに対して2重量%で行った。
(実施例9)
 固形エポキシ樹脂(DIC社製「HP7200H」)をフェノキシ樹脂(ジャパンエポキシレジン社製「YL7213」、35wt%固形分のMEK溶液)に溶解させた混合物Aを作成した。一方、焼成ドロマイト(吉澤石灰社製を湿式粉砕したもの)のMEKスラリー(固形分として40wt%)にステアリン酸を添加分散し混合物Bを作成した。混合物A、混合物B、タルク(日本タルク社製「D-600」を湿式粉砕したもので、固形分30wt%のMEKスラリー)、ゴム微粒子分散液状エポキシ樹脂(日本触媒社製「BPA328」)と、エポキシ樹脂用潜在性硬化促進剤(サンアプロ社製「U-CAT3502T」)、液状エポキシ樹脂(日本化薬社製「GOT」)、シランカップリング剤(信越化学社製「KBM-403」)を配合し、アジホモミキサーロボミックス型混合攪拌機(プライミクス社製)にて混合した。これにイオン液体硬化剤(N-アセチルグリシンテトラブチルホスホニウム塩)を添加して高速回転ミキサーで均一に分散して、ワニス状の樹脂組成物を得た。この樹脂組成物を用いて、実施例1に記載の方法と同様の方法にて樹脂組成物シートを作製した。
(実施例10)
 実施例9と同様の方法により、下記表3の配合表に従い、ワニス状の樹脂組成物を調製した。この樹脂組成物を用いて、実施例1に記載の方法と同様の方法にて樹脂組成物シートを作製した。
(実施例11)
 実施例9と同様の方法により、下記表3の配合表に従い、ワニス状の樹脂組成物を調製した。この樹脂組成物を用いて、実施例1に記載の方法と同様の方法にて樹脂組成物シートを作製した。
  なお、比較例4、5は特許文献2(特開2006-70221号公報)の実施例1、2に相当する。
 各種測定方法・評価方法について説明する。
1.低温硬化性、保存安定性の測定及び評価
  実施例及び比較例で得られた樹脂組成物シートについて、その樹脂組成物層を120℃、90分の条件で加熱硬化したときの軟鋼板に対する低温硬化性、保存安定性を評価した。
  先ず、表面をエンドレスベルト(JIS#120)で研磨した平面形状が矩形の軟鋼板(JISG3141、SPCCD、第1幅:100mm×第2幅:25mm×厚み:1.6mm)を用意し、図2に示すように、この軟鋼板11の片面11Aの長手方向の片末端部分に、平面形状が矩形の樹脂組成物シート(第1幅:12.5mm×第2幅:25mm)12の樹脂組成物層12Aを重ね合わせて、真空ラミネータにより、温度80℃、圧力1kgf/cm(9.8×104Pa)の条件でラミネートして試験片13を作製した。なお、該試験片13は同様のものを2枚作製した。
  次に、図3に示すように、2枚の試験片13の双方のPETフィルム12Bを剥離し、樹脂組成物層12A同士を対向させ、12mm幅でオーバーラップするように貼り合わせて、約300g/cmの圧力になるようにクリップで固定し、120℃/90分間加熱硬化した。そして、かかる2枚の試験片間の引張り剪断接着強さを、テンシロン万能試験機(東洋精機(株)製TENSILON  UTM-5T)にて測定した。測定条件は、測定温度が25℃、引張り速度が1mm/minとなるようにした。硬化処理直後(初期)と硬化処理後に室温(25℃、40%RH)下で24時間保管後の引張り剪断接着強さを測定した。
 硬化処理直後の初期の引張り剪断接着強さが17MPaに満たない場合は、低温硬化性が不良(×)と判定し、17MPa以上19MPa未満の場合を良好「○」とし、19MPa以上の場合を極めて良好「◎」とした。
 また、保存安定性は「24時間保管後の引張り剪断接着強さ」/「初期の引張り剪断接着強さ」×100(%)を接着保持率とし、接着保持率が70%に満たない場合、保存安定性は不十分(×)と判定し、70%以上85%未満の場合を許容「△」とし、85%以上100%未満の場合を良好「○」とし、100%以上の場合を極めて良好「◎」とした。ただし、24時間保管後の引張り剪断接着強さが15MPa未満に低下する場合は接着力不足の観点から不適「×」とし、15MPa以上であれば良好「○」とした。
2.耐透湿性(560μm)の測定及び評価
 実施例及び比較例で得られた厚み40μmの樹脂組成物層を有する樹脂組成物シートを14枚用意し、それらを前項記載条件で順次ラミネートして14層の樹脂組成物層を積み重ねた総厚みが560μmの積層シート状物を得た。これを120℃/90分間熱硬化させた硬化物をJISZ0208に準拠する方法にて、温度85℃、湿度85%RH、24時間の条件にて、水蒸気透過量を測定し、1mあたりの水蒸気透過量を求めた。水蒸気透過量が250g/m・24hr以上の場合は耐透湿性(560μm)は不良「×」と判定し、250g/m・24hr未満、150g/m・24hr以上の場合を許容「△」とし、150g/m・24hr未満、100g/m・24hr以上の場合を良好「○」とし、100g/m・24hr未満の場合を極めて良好「◎」とした。評価を行っていない場合は、「-」と示した。
  なお、測定試料に厚みが560μmの積層シート状物の硬化物を使用したのは、図1に示す有機EL素子の全面封止構造を想定し、積層シート状物の硬化物の厚み(560μm)を、図1中の硬化性樹脂組成物層(硬化層)6における有機EL素子2の側部に位置する外気と接触する部位の幅(図1中のW1)に見立てたことによる。
3.耐透湿性(40μm)の測定及び評価
 実施例及び比較例で作製した樹脂組成物シートの樹脂組成物層(厚み:40μm)を120℃/90分間熱硬化させ、支持体(PETフィルム)から剥離した硬化層に対し、JISZ0208に準拠する方法にて、温度85℃、湿度85%RH、24時間の条件にて、水蒸気透過量を測定し、1mあたりの水蒸気透過量を求めた。
水蒸気透過量が300g/m・24hr以上の場合は耐透湿性は不良「×」と判定し、300g/m・24hr未満250g/m・24hr以上の場合を良好「○」とし、250g/m・24hr未満の場合を極めて良好「◎」とした。評価を行っていない場合は、「-」と示した。
4.ラミネート加工性の評価
  実施例および比較例で得られた樹脂組成物シートにおける樹脂組成物層の昇温測定時の最低溶融粘度の値でラミネート加工性を評価した。最低溶融粘度は、ユービーエム社製の型式Rheosol-G3000を用い、樹脂量は1g、直径18mmのパラレルプレートを使用し、測定開始温度60℃、昇温速度5℃/分、測定温度60℃~200℃、振動数1Hz/degにて測定を行った。最低の粘度値(η)を最低溶融粘度とした。ラミネート加工性は、最低溶融粘度が20000ポイズ未満を良好(○)、20000ポイズ以上を不良(×)とした。評価を行っていない場合は、「-」と示した。
5.基材との接着性の測定
 アルミニウム箔(幅50mm、長さ50mm、厚み50um)を2枚用意し、1枚目のアルミニウム箔の片面に、支持体上にある樹脂組成物層(幅40mm、長さ50mm)を重ね合わせて、真空ラミネーターにより、温度80℃、圧力1kgf/cm(9.8×104Pa)の条件でラミネートした。そして、支持体を剥離し、露出した樹脂組成物層上に2枚目のアルミニウム箔を重ねて同じ条件にてラミネートを行い、アルミニウム箔、樹脂組成物層、アルミニウム箔の3層構造の試験片を作成した。この試験片を110℃、30分の条件で加熱硬化後、幅10mm、長さ50mmの矩形の試験片にカットし、JIS K―6854のT型剥離試験方法に準拠して、試験片の長手方向の接着性を測定した。
  以上の試験結果を表1、2に記載した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
  実施例と比較例の対比から、本発明の樹脂組成物は、120℃という低温で短時間で硬化して高い接着強さで接着して安定した接着性が得られ、しかも、硬化物は実用上十分に低い透湿性を有するものであることが分かる。また、実施例9~11から無機充填材を含有させる事により基材との密着性が向上することが分かる。これにより、有機EL素子の封止にとって更に有用となる事がわかる。従って、本発明の樹脂組成物及びそれを用いた樹脂組成物シートは、熱劣化しやすく、かつ、防湿が必要である種々のデバイスやその構成要素等に適用する被覆材、接着剤、封止材等として好適に使用でき、高い防湿性を有する高信頼性の被覆構造、接着構造、封止構造等を簡単に形成することができる。特に有機EL表示装置の提供に好適であることが分かる。
  本発明の樹脂組成物は、低温で速やかに硬化し、優れた接着性と低い透湿性の硬化物を形成できることから、有機EL素子の封止用途以外にも、例えば、フラットパネル用の封止樹脂、プリント回路板の防湿保護フィルム、リチウムイオン電池の防湿フィルム、包装用ラミネートフィルム等の用途にも適用できる。
  1、4  ガラス板
  2  有機EL素子
  3  吸湿材
  5  封止材
  6  硬化性樹脂組成物層(硬化層)
  7  封止基材
  11  軟鋼板
  12  樹脂組成物シート
  12A  樹脂組成物層
  12B  PETフィルム
  13  試験片
 本出願は日本で出願された特願2009-013684号及び特願2009-013686号、を基礎としており、それらの内容は本明細書に全て包含される。

Claims (7)

  1.  エポキシ樹脂及びイオン液体を含有することを特徴とする樹脂組成物。
  2.  イオン液体が、アンモニウム系カチオン又はホスホニウム系カチオンと、N-アシルアミノ酸イオン又はカルボン酸系アニオンとから構成されることを特徴とする、請求項1に記載の樹脂組成物。
  3.  さらに吸湿性金属酸化物を含有することを特徴とする、請求項1又は2に記載の樹脂組成物。
  4.  さらに無機充填材を含有することを特徴とする、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.   請求項1~4のいずれか1項に記載の樹脂組成物の層が支持体上に形成されてなることを特徴とする、樹脂組成物シート。
  6.   有機EL素子封止用である、請求項5に記載の樹脂組成物シート。
  7.  請求項6に記載の有機EL素子封止用樹脂組成物シートを用いてなることを特徴とする、有機ELデバイス。
PCT/JP2010/050758 2009-01-23 2010-01-22 樹脂組成物 WO2010084938A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009013684 2009-01-23
JP2009013686 2009-01-23
JP2009-013686 2009-01-23
JP2009-013684 2009-01-23

Publications (1)

Publication Number Publication Date
WO2010084938A1 true WO2010084938A1 (ja) 2010-07-29

Family

ID=42355990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050758 WO2010084938A1 (ja) 2009-01-23 2010-01-22 樹脂組成物

Country Status (2)

Country Link
TW (1) TWI473854B (ja)
WO (1) WO2010084938A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533673A (ja) * 2009-07-20 2012-12-27 エルジー・ケム・リミテッド 発光素子封止用組成物、発光ダイオード及び液晶表示装置
JP2014001291A (ja) * 2012-06-18 2014-01-09 Nagase Chemtex Corp 一液型エポキシ樹脂組成物
EP2754693A4 (en) * 2011-09-06 2015-05-13 Univ Kurume EMBEDDING OF A RESIN COMPOSITION FOR AN ELECTRON MICROSCOPE AND METHOD FOR SAMPLING OBSERVATIONS ON AN ELECTRONIC MICROSCOPE USING THIS COMPOSITION
JP5966113B1 (ja) * 2015-02-13 2016-08-10 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
EP3067392A4 (en) * 2013-11-08 2017-07-05 Ajinomoto Co., Inc. Sealing resin composition and sealing sheet
WO2017184953A1 (en) * 2016-04-22 2017-10-26 Prc-Desoto International, Inc. Ionic liquid catalyst in sulfur-containing polymer compositions
CN108504041A (zh) * 2018-04-11 2018-09-07 四川大学 一种环氧树脂/聚离子液体复合材料及其制备方法
WO2018216670A1 (ja) * 2017-05-23 2018-11-29 味の素株式会社 封止体の製造方法
WO2023276814A1 (ja) * 2021-06-29 2023-01-05 ナミックス株式会社 エポキシ樹脂組成物、半導体装置および半導体装置の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170116A (ja) * 1983-03-16 1984-09-26 Sanyurejin Kk 液状エポキシ樹脂組成物
JPH07228670A (ja) * 1993-12-20 1995-08-29 Sumitomo Bakelite Co Ltd 樹脂組成物
JP2001267065A (ja) * 2000-03-22 2001-09-28 Casio Comput Co Ltd 電界発光素子
JP2004098199A (ja) * 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd 固体電解質、それを含む可撓性積層体およびそれよりなる全固体アクチュエータ
JP2004231938A (ja) * 2002-09-13 2004-08-19 Sekisui Chem Co Ltd 有機el素子封止用光硬化性接着剤組成物、有機el素子の封止方法および有機el素子
JP2005122910A (ja) * 2003-10-14 2005-05-12 Hitachi Ltd 有機elディスプレイ装置および有機el素子の構造体の製造方法
JP2006321855A (ja) * 2005-05-17 2006-11-30 Nippon Shokubai Co Ltd 導電性付与剤及び導電性材料
WO2007018239A1 (ja) * 2005-08-09 2007-02-15 The Yokohama Rubber Co., Ltd. 通電剥離用組成物およびそれを用いた接着剤、通電剥離性多層接着剤
JP2007184279A (ja) * 2005-12-30 2007-07-19 Samsung Sdi Co Ltd 有機発光素子およびその製造方法
JP2008274266A (ja) * 2007-04-02 2008-11-13 Dainippon Printing Co Ltd 帯電防止性(及びハードコート性)を実現できる組成物、単層体、部材又は積層体
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物
JP2009259656A (ja) * 2008-04-18 2009-11-05 Toyo Ink Mfg Co Ltd 封止剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI225501B (en) * 2002-11-06 2004-12-21 Delta Optoelectronics Inc Packaging material used for a display device and method of forming thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170116A (ja) * 1983-03-16 1984-09-26 Sanyurejin Kk 液状エポキシ樹脂組成物
JPH07228670A (ja) * 1993-12-20 1995-08-29 Sumitomo Bakelite Co Ltd 樹脂組成物
JP2001267065A (ja) * 2000-03-22 2001-09-28 Casio Comput Co Ltd 電界発光素子
JP2004098199A (ja) * 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd 固体電解質、それを含む可撓性積層体およびそれよりなる全固体アクチュエータ
JP2004231938A (ja) * 2002-09-13 2004-08-19 Sekisui Chem Co Ltd 有機el素子封止用光硬化性接着剤組成物、有機el素子の封止方法および有機el素子
JP2005122910A (ja) * 2003-10-14 2005-05-12 Hitachi Ltd 有機elディスプレイ装置および有機el素子の構造体の製造方法
JP2006321855A (ja) * 2005-05-17 2006-11-30 Nippon Shokubai Co Ltd 導電性付与剤及び導電性材料
WO2007018239A1 (ja) * 2005-08-09 2007-02-15 The Yokohama Rubber Co., Ltd. 通電剥離用組成物およびそれを用いた接着剤、通電剥離性多層接着剤
JP2007184279A (ja) * 2005-12-30 2007-07-19 Samsung Sdi Co Ltd 有機発光素子およびその製造方法
JP2008274266A (ja) * 2007-04-02 2008-11-13 Dainippon Printing Co Ltd 帯電防止性(及びハードコート性)を実現できる組成物、単層体、部材又は積層体
WO2009014270A1 (ja) * 2007-07-26 2009-01-29 Ajinomoto Co., Inc. 樹脂組成物
JP2009259656A (ja) * 2008-04-18 2009-11-05 Toyo Ink Mfg Co Ltd 封止剤

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716395B2 (en) 2009-07-20 2014-05-06 Lg Chem, Ltd. Light-emitting-element encapsulating composition, light-emitting diode and liquid-crystal display device
US9018777B2 (en) 2009-07-20 2015-04-28 Lg Chem, Ltd. Light-emitting-element encapsulating composition, light-emitting diode and liquid crystal display device
JP2012533673A (ja) * 2009-07-20 2012-12-27 エルジー・ケム・リミテッド 発光素子封止用組成物、発光ダイオード及び液晶表示装置
EP2754693A4 (en) * 2011-09-06 2015-05-13 Univ Kurume EMBEDDING OF A RESIN COMPOSITION FOR AN ELECTRON MICROSCOPE AND METHOD FOR SAMPLING OBSERVATIONS ON AN ELECTRONIC MICROSCOPE USING THIS COMPOSITION
US9870894B2 (en) 2011-09-06 2018-01-16 Kurume University Embedding resin composition for electron microscopey and method for observing sample with electron microscope using the same
JP2014001291A (ja) * 2012-06-18 2014-01-09 Nagase Chemtex Corp 一液型エポキシ樹脂組成物
US10385185B2 (en) 2013-11-08 2019-08-20 Ajinomoto Co., Inc. Sealing resin composition and sealing sheet
EP3067392A4 (en) * 2013-11-08 2017-07-05 Ajinomoto Co., Inc. Sealing resin composition and sealing sheet
JP5966113B1 (ja) * 2015-02-13 2016-08-10 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
WO2016129472A1 (ja) * 2015-02-13 2016-08-18 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子用封止剤
KR20160147285A (ko) * 2015-02-13 2016-12-22 세키스이가가쿠 고교가부시키가이샤 유기 일렉트로루미네선스 표시 소자용 봉지제
KR101717035B1 (ko) 2015-02-13 2017-03-15 세키스이가가쿠 고교가부시키가이샤 유기 일렉트로루미네선스 표시 소자용 봉지제
WO2017184953A1 (en) * 2016-04-22 2017-10-26 Prc-Desoto International, Inc. Ionic liquid catalyst in sulfur-containing polymer compositions
JP2019515067A (ja) * 2016-04-22 2019-06-06 ピーアールシー−デソト インターナショナル,インコーポレイティド 硫黄含有ポリマー組成物におけるイオン液体触媒
US10035926B2 (en) 2016-04-22 2018-07-31 PRC—DeSoto International, Inc. Ionic liquid catalysts in sulfur-containing polymer compositions
AU2017252429B2 (en) * 2016-04-22 2019-11-21 Prc-Desoto International, Inc. Ionic liquid catalyst in sulfur-containing polymer compositions
WO2018216670A1 (ja) * 2017-05-23 2018-11-29 味の素株式会社 封止体の製造方法
JPWO2018216670A1 (ja) * 2017-05-23 2020-03-26 味の素株式会社 封止体の製造方法
JP7268596B2 (ja) 2017-05-23 2023-05-08 味の素株式会社 封止体の製造方法
CN108504041A (zh) * 2018-04-11 2018-09-07 四川大学 一种环氧树脂/聚离子液体复合材料及其制备方法
WO2023276814A1 (ja) * 2021-06-29 2023-01-05 ナミックス株式会社 エポキシ樹脂組成物、半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
TWI473854B (zh) 2015-02-21
TW201038659A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
JP5601202B2 (ja) 樹脂組成物
JP6376180B2 (ja) フィルム
WO2010084938A1 (ja) 樹脂組成物
JP6369475B2 (ja) 封止用樹脂組成物及び封止用シート
JP5577667B2 (ja) 樹脂組成物
WO2015068787A1 (ja) ハイドロタルサイトを含有する封止用樹脂組成物及び封止用シート
JP7120017B2 (ja) 封止用の樹脂組成物および封止用シート
JP6572887B2 (ja) 封止体の製造方法
JPWO2017135112A1 (ja) 封止用の熱硬化性樹脂組成物および封止用シート
JP6428432B2 (ja) 封止用シート、その製造方法および評価方法
JP2016180036A (ja) 封止用樹脂組成物及び封止用シート
JP7268596B2 (ja) 封止体の製造方法
TW202344652A (zh) 樹脂組成物及熱硬化型接著薄片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP