WO2010084533A1 - 半導体集積回路の電源配線構造 - Google Patents

半導体集積回路の電源配線構造 Download PDF

Info

Publication number
WO2010084533A1
WO2010084533A1 PCT/JP2009/004119 JP2009004119W WO2010084533A1 WO 2010084533 A1 WO2010084533 A1 WO 2010084533A1 JP 2009004119 W JP2009004119 W JP 2009004119W WO 2010084533 A1 WO2010084533 A1 WO 2010084533A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
power supply
integrated circuit
semiconductor integrated
borderless
Prior art date
Application number
PCT/JP2009/004119
Other languages
English (en)
French (fr)
Inventor
武嶋秀明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010547312A priority Critical patent/JPWO2010084533A1/ja
Priority to CN2009801549066A priority patent/CN102282667A/zh
Publication of WO2010084533A1 publication Critical patent/WO2010084533A1/ja
Priority to US13/177,335 priority patent/US8441130B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power supply wiring structure of a semiconductor integrated circuit in which power supply wirings arranged in mutually different wiring layers are electrically connected by vias.
  • a power supply wiring structure using a multi-stack via is known as a structure for electrically connecting two power supply wirings arranged in two different wiring layers with vias. .
  • the conventional power supply wiring structure will be described below with reference to FIG.
  • FIG. 11 is a cross-sectional view of the LSI wiring layer
  • FIG. 13 is a plan view thereof.
  • L1 to L4 are first to fourth wiring layers
  • 51 is a first power supply wiring arranged in the first wiring layer L1
  • 52 is arranged in the fourth wiring layer L4.
  • the second and third wiring layers L2 and L3 are connected to connect both the power supply lines 51 and 52.
  • the second wiring 53 and the third wiring 54 are arranged, and the first to third vias 56, 57, and 58 are arranged in the three insulating layers I1 to I3, respectively.
  • the second and third wirings 53 and 54 and the first to third vias 56 to 58 have the shape shown in the top view of FIG. 13, and the vias 56 to 58 are close to two in the vertical direction of FIG.
  • the multiple vias (double in the figure) that are arranged side by side, and the wirings 53 and 54 connected to the multiple vias are formed wide in the vertical and horizontal directions so as to include the double vias inward when viewed from above.
  • the first via 56, the second wiring 53, the second via 57, the third wiring 54, and the third via 58 on one vertical line are on the same vertical line.
  • a multi-stack via having a stacked shape is formed, and this multi-stack via is used as one unit, and five units are formed in the same figure, whereby the first power supply wiring 51 and the fourth power supply wiring are formed.
  • 52 is connected to be electrically connected to one power supply wiring.
  • Patent Document 1 the amount of current flowing between the first and second power supply wirings 51 and 52 is calculated, the minimum number of units is calculated from the amount of current, and unnecessary vias are deleted. Thus, the wiring resources are increased, and the signal wiring 62 of the second wiring layer L2 is arranged between the five units as illustrated in FIG. 11 to increase the wiring efficiency and improve the wiring property. .
  • Non-Patent Document 1 a borderless via has been developed as a signal wiring connection structure apart from the power supply wiring structure described above.
  • This borderless via is a via that does not have a pad portion that is an extra wide wiring region that is mainstream in DFM (Design For Manufacturing) like the multi via shown in FIG. Since vias and wirings can be formed more precisely at predetermined positions, the vertical and horizontal lengths of the vias are set to be approximately equal to the vertical and horizontal lengths of the wirings connected thereto.
  • the reason why a large number of multi-stack vias are arranged in the power supply wiring structure of the semiconductor integrated circuit is for IR-DROP countermeasures and electromigration (hereinafter referred to as EM) countermeasures, and reduces the voltage drop to the target cell. This is to eliminate the disconnection at the via portion.
  • EM electromigration
  • the multi-stack vias may still be insufficient to maximize and optimize the wiring efficiency around the vias. is there. This will be described in detail with reference to FIG.
  • FIG. 12 is a partially enlarged view of the multi-stack via and the wiring in the region surrounded by a circle in FIG.
  • reference numeral 60 denotes a wiring track.
  • four wiring tracks 60 are shown, and there are wide pad portions 61 and 61 protruding from the wiring portion even though the two wiring tracks 60 are located between the multi-stack vias. Therefore, in order to observe a separation rule equivalent to the wiring width, only one wiring 62 can pass between the multi-stack vias.
  • the separation width to adjacent vertical and horizontal wiring tracks is essentially the distance So to the via 58 in the vicinity of the multi (double) stack via.
  • the distance Sx is shorter than the distance So by the length of the pad portion.
  • the horizontal track cannot be routed to the tracks B and E that can be originally wired, and as a result, the wiring resources that can be used for signal wiring can be secured in the vertical direction and in the vertical direction, the vertical length is 0.
  • the number of books is limited to two.
  • the present inventors have focused on the borderless via employed in the signal wiring as the power supply wiring structure of the semiconductor integrated circuit, and studied to use a single power supply wiring via and a stack borderless via.
  • this power supply wiring structure with a single borderless stack via there is no pad part of the multi-stack via, so that the wiring efficiency is improved and the wiring performance is improved.
  • IR-DROP countermeasures and EM countermeasures there are concerns about IR-DROP countermeasures and EM countermeasures.
  • the power supply wiring length to the target cell 40 is long and the parasitic resistance increases, but the single borderless stack shown in FIG.
  • the single borderless stacked vias are arranged in the form of scattered dots having a wider via interval than in FIG. 5B, and the single borderless stacked via is located near the target cell 40.
  • the wiring length can be shortened, and IR-DROP is reduced compared to the multi-stack via structure.
  • the EM that is regulated by the via portion if the number of vias is the same, the EM characteristics are considered to be the same for both single and multi vias. Therefore, it has been known that even if a single borderless stacked via structure is adopted as the power supply wiring structure, it is possible to improve the wiring efficiency by improving the wiring efficiency while satisfactorily securing the IR-DROP countermeasure and the EM countermeasure.
  • the present invention adopts a single borderless stack via structure as a power supply wiring structure of a semiconductor integrated circuit to connect power supply wirings of different wiring layers to each other, thereby taking measures against IR-DROP and EM.
  • the wiring efficiency is improved by improving the wiring efficiency while ensuring good.
  • the power supply wiring structure of the semiconductor integrated circuit according to the present invention includes a power supply wiring arranged in two mutually different wiring layers sandwiching at least one intermediate wiring layer, and a power supply arranged in the two wiring layers.
  • a single borderless stack via that electrically connects the wirings to form a wiring connection portion is provided.
  • the single borderless stack vias constituting the wiring connection portion are single vias respectively disposed in two or more insulating layers positioned between the two wiring layers.
  • a wiring having the same cross-sectional shape as a single via of each insulating layer disposed in the intermediate wiring layer, and each single via of each insulating layer and the wiring of the intermediate wiring layer are on the same vertical line A unit is configured by being electrically connected in an alternately stacked state.
  • the single borderless stack via unit in the power supply wiring structure of the semiconductor integrated circuit, includes a single via disposed in each of three insulating layers and two intermediate layers sandwiched between the three insulating layers. It is characterized by comprising one wiring arranged in each wiring layer.
  • the present invention is characterized in that, in the power supply wiring structure of the semiconductor integrated circuit, a plurality of the single borderless stack via units are formed, and the intervals between the units are equally spaced.
  • a plurality of the single borderless stack via units are formed, and the intervals between the units are a mixture of equal intervals and unequal intervals. .
  • a plurality of the single borderless stack via units are formed, and a signal wiring is provided in an area between any two adjacent units of the plurality of units. Is arranged.
  • a distance between the single borderless stack via and the signal wiring is equal to a distance between the signal wiring and another signal wiring adjacent to the signal wiring.
  • the power supply wirings arranged in the two wiring layers are electrically connected to each other.
  • a multi-stack via constituting the connecting portion is provided.
  • the multi-stack via in the power supply wiring structure of the semiconductor integrated circuit, includes a plurality of vias arranged in two or more insulating layers positioned between the two wiring layers, and the intermediate wiring layer And a wiring having a pad portion so as to include a plurality of vias in each insulating layer in an inward direction when viewed from above, a plurality of vias in each insulating layer and a wiring in the intermediate wiring layer Are electrically connected in a state of being alternately stacked on the same vertical line.
  • the single borderless stack via constituting the wiring connection portion is disposed in a signal wiring region, and the multi-stack via constituting the other wiring connection portion is It is arranged in a non-wiring area where signals are not wired.
  • the multi-stack via constituting the other wiring connection portion is disposed in a region having a predetermined signal wiring density in the signal wiring region, and the wiring connection portion
  • the single borderless stacked via constituting the signal wiring region is arranged in a wiring region having a signal wiring density higher than the predetermined density in the signal wiring region.
  • the single borderless stack vias are arranged at a plurality of locations, and the plurality of single borderless stack vias are separated from each other within the same insulating layer of the multistack vias. It is characterized by being wider than the separation between individual vias.
  • the wiring efficiency can be higher than the multi-stack via having a wide pad portion as in the prior art, The wiring property can be improved. As a result, the chip area can be effectively reduced, and IR-DROP and EM can be maintained or improved well.
  • the present invention since there are two types of single borderless stack vias and multi-stack vias as wiring connection portions for connecting two power supply wirings, the combined resistance of the entire power supply wirings even when an OPEN failure of the vias occurs.
  • the increase in value can be effectively suppressed, and the yield can be improved.
  • the wiring efficiency can be improved and the wiring property can be improved, and the chip area can be reduced.
  • IR-DROP and EM can be maintained or improved well, and the affinity with the EDA tool is increased and TAT (Turn Around Time) can be shortened.
  • a multi-stack via is also provided as a wiring connection portion, an increase in the combined resistance value of the entire power supply wiring when an OPEN failure of the via occurs can be effectively suppressed, and the yield is improved. Can do.
  • FIG. 1 is a cross-sectional view of the main part of the power supply wiring structure of the semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 2 is a top view of the power supply wiring structure.
  • FIG. 3 is an enlarged view of a portion surrounded by a circle in the power supply wiring structure of FIG.
  • FIG. 4A is an explanatory diagram showing that IR-DROP is improved in the same power supply wiring structure
  • FIG. 4B is an explanatory diagram of IR-DROP in the conventional power supply wiring structure.
  • FIG. 5 is a top view in which a semiconductor integrated circuit having the same power supply wiring structure is constituted by one chip.
  • FIG. 6 is a top view in which a semiconductor integrated circuit having a conventional power supply wiring structure is constituted by one chip.
  • FIG. 7 is a top view in which a semiconductor integrated circuit having a power supply wiring structure according to the second embodiment of the present invention is constituted by one chip.
  • FIG. 8A is a diagram showing a change in resistance value when an OPEN failure occurs in the single stack via structure provided in the power supply wiring structure
  • FIG. 8B is a multi-stack via structure provided in the power supply wiring structure. It is a figure which shows the change of resistance value when the OPEN defect
  • FIG. 9 is a flowchart showing the creation of the power supply wiring structure.
  • FIG. 10A is a layout diagram in a wiring region having a low signal wiring density of the semiconductor integrated circuit having the power supply wiring structure of the third embodiment of the present invention, and FIG.
  • FIG. 10B is a signal wiring density of the semiconductor integrated circuit.
  • FIG. 6 is a layout diagram in a high wiring area.
  • FIG. 11 is a cross-sectional view of a main part of a power supply wiring structure of a conventional semiconductor integrated circuit.
  • 12 is an enlarged view of a portion surrounded by a circle in the power supply wiring structure of FIG.
  • FIG. 13 is a top view of the power supply wiring structure.
  • FIG. 1 shows a cross-sectional view of a power supply wiring structure of a semiconductor integrated circuit according to the present invention
  • FIG. 2 shows a top view thereof, and illustrates a four-layer wiring structure.
  • L1 is the first wiring layer
  • L4 is the fourth wiring layer
  • L2 and L3 are the second and third wiring layers arranged between the first and fourth wiring layers L1 and L4. This is an intermediate wiring layer.
  • Numeral 1 is a first power supply wiring arranged in the first wiring layer L1
  • 4 is a fourth power supply wiring arranged in the fourth wiring layer L4.
  • first power supply line 1 and the fourth power supply line 4 are connected as one power supply line
  • both the power supply lines 1 and 4 are connected to the second and third intermediate wiring layers L2 and L3.
  • the second wiring 2 and the third wiring 3 are arranged, and the first to third vias 5, 6 and 7 are arranged in the three insulating layers I1 to I3, respectively.
  • the first to third vias 5 to 7 are each a single via
  • the second and third wirings 2 and 3 connected to the single via are as follows:
  • the single vias have the same vertical and horizontal lengths and the same cross-sectional shape. That is, each of the single vias 5 to 7 is constituted by a borderless via having no wide pad portion as shown in FIG.
  • the first single via 5, the second wiring 2, the second single via 6, the third wiring 3, and the third single via 7 on one vertical line One single borderless stack via 8 having a shape stacked on the same vertical line is formed, and this single borderless stack via 8 is a wiring connection for electrically connecting the first and fourth power supply wires 1 and 4. Parts.
  • the unit is composed of one single via 5 to 7 for each of the three insulating layers I1 to I3 and one wiring 2 and 3 for the two intermediate wiring layers L2 and L3. In order to form a via, it may be configured by each single via of at least two insulating layers and wiring of one intermediate wiring layer.
  • FIG. 3 is an enlarged view of a portion surrounded by a circle in FIG. Even if they are arranged at the same interval as in FIG. 12, the borderless vias 5 to 7 do not have the pad portion 61 shown in FIG. Even if the wiring separation rule is taken into consideration, the wiring property is improved as compared with the case where only one signal wiring 62 in FIG.
  • the wiring resources that can be used for signal wiring are 4 for the vertical track and 2 for the horizontal track, and 0 for the vertical track in the conventional example shown in FIG. It is obvious that the wiring property is better than the case of two.
  • the signal wiring 10 adjacent to the wiring 2 of the single borderless stack via 8 when the signal wiring 10 adjacent to the wiring 2 of the single borderless stack via 8 is disposed, the signal wiring 10 is disposed on the wiring track 12. Therefore, the separation between the signal wiring 10 and the wiring 2 of the single borderless stack via 8 is equal to the separation between the signal wiring 10 and another signal wiring 10 adjacent to the signal wiring 10.
  • this signal wiring 62 even if one signal wiring 62 can be arranged between two multi-vias having a pad portion 61 as shown in FIG. 12 showing the conventional example, this signal wiring 62 is connected between two wiring tracks 60. And cannot be placed on the wiring track 60. Therefore, in the present embodiment, the signal wiring 10 around the single borderless stack via 8 can be arranged on the wiring track 12, and the compatibility with the EDA tool is good.
  • two single vias 6 are arranged within a predetermined area occupied by six vertical tracks and three horizontal tracks, and a multi (double) within the same area shown in FIG.
  • the number of stacked vias is the same as two vias.
  • EM electromigration
  • the EM characteristics are considered to be the same for both single and multi vias. Therefore, even in the single borderless stacked via structure of the present embodiment, the EM characteristics are maintained well, and occurrence of disconnection in the via portion is effectively reduced.
  • two single vias 6 are arranged in the predetermined area.
  • two single vias 6 are arranged in the predetermined area.
  • both the single vias 6 may be arranged such that only one signal wiring 10 is arranged between the vias 6, It is also possible to arrange so that three or four signal wirings 10 are arranged.
  • the single borderless stacked via 8 is highly arbitrary in the arrangement position. Therefore, in this embodiment, as shown in FIG. 4A, for example, four single vias 6 can be arranged at positions where their mutual separation is wide. As a result, as shown in FIG. 4B, the power supply to the target standard cell 40 that receives power supply is provided as compared with the case where the four vias 58 constituting the conventional multi-stack via are arranged close to each other. The wiring length can be shortened, the parasitic resistance can be reduced accordingly, and IR-DROP can be reduced and improved.
  • FIG. 5 shows a schematic diagram in which a semiconductor integrated circuit having a single borderless stacked via structure of this embodiment is integrated on one chip.
  • all vias are constituted by single borderless stacked vias 20 and the number thereof is 24.
  • FIG. 6 shows a conventional semiconductor integrated circuit in which six multi-stack vias including four vias 70 are arranged to constitute one chip. The total number of vias 70 is 24 as in FIG.
  • the vias 20 are arranged evenly over the entire chip surface as compared to FIG. Accordingly, it can be seen that the power wiring length to the target cell (not shown in FIGS. 5 and 6) that receives power supply can be shortened, and the IR-DROP can be reduced and improved.
  • FIG. 7 shows a power supply wiring structure of the semiconductor integrated circuit of this embodiment.
  • a power supply wiring structure in which single borderless stacked vias 20 are arranged in a scattered manner at a plurality of predetermined locations, and a multi (double) stacked via 75 including a plurality of (two in the figure) vias 71 are provided.
  • 2 shows a semiconductor integrated circuit provided with two types of power supply wiring structures, including a plurality of power supply wiring structures provided as wiring connection portions.
  • the detailed structure of the multi-stack via 75 is the same as the structure shown in FIGS. 11 to 13 and has already been described, and the description thereof will be omitted. However, as can be seen from FIG.
  • the separation between the less stack vias 20 is naturally set wider than the separation between the two vias 71 of the multi stack via 75.
  • the arrangement area of the single borderless stack via 20 is a signal wiring area 30, and the arrangement area of the multi-stack via 75 is a non-wiring area 31 where no signal is wired.
  • the reason for this is that when the OPEN defect of the via occurs, it is considered that the power wiring structure having the single borderless stacked via 20 has a larger increase in resistance value.
  • the resistance value of one via is R
  • the combined resistance of the entire two units is 2R.
  • the wiring having the pad portion between the two vias plays a role of insurance, and the combined resistance is 3 / 2R and there is little drop in resistance. Therefore, a single power supply wiring is provided with two types, a single borderless stack via structure and a multi-stack via structure, and the combined resistance value of the entire power supply wiring is kept low even when an open failure of the via occurs. Thus, it is possible to suppress power supply wiring defects and improve the wiring property in the signal wiring region 30 while improving the yield.
  • FIG. 9 shows a flow of creating the two types of power supply wiring structures shown in FIG. 7.
  • step S1 the number of single stack vias 20 determined by design is arranged in the signal wiring region 30, and then in step S2.
  • wiring layout processing (wiring processing) is performed.
  • step S3 the presence / absence of wiring near the single stacked via 20 is determined. If no wiring exists, it is determined as a non-wiring area, and the multi-stack via 75 is set in step S4. Deploy.
  • the steps S3 and S4 are repeated for all the single stack vias 20 and the determination of the presence / absence of wiring for all the single stack vias 20 is completed, the wiring is completed in step S5.
  • FIG. 10 shows a power supply wiring structure of the semiconductor integrated circuit of this embodiment.
  • FIG. 7 showing the second embodiment, only the single borderless stack via 20 is arranged in the signal wiring region 30, but in this embodiment, a single signal is formed in the signal wiring region 30 according to the signal wiring density. Borderless stack vias and multi-stack vias are arranged and sorted.
  • FIGS. 10A and 10B show a part of the signal wiring region, and FIG. 10A shows the signal wirings 43 and 44 arranged in the signal wiring region, but the signal wiring density is low.
  • the wiring area is a high-density wiring area and has many empty areas.
  • a multi-stack via 75 is arranged in the empty area.
  • the multi-stack via 75 illustrates a configuration having two vias (double vias) 71 in FIG.
  • the signal wiring area shown in FIG. 5B a large number of signal wirings 45 to 49 are arranged, and there are few empty areas, and the signal wiring density in the wiring area shown in FIG. This is a wiring area of wiring density.
  • a single borderless stack via 20 is disposed in the wiring region having a high signal wiring density.
  • the single borderless stack via 20 is disposed in the wiring region having a high signal wiring density shown in FIG. 4B, a large number of signal wirings 45 to 49 can be wired efficiently.
  • the signal wirings 47 and 49 can be wired with a short wiring length without wastefully bypassing the vicinity of the single borderless stacked via 20.
  • the multi-stack via 75 is arranged in the wiring region having a low signal wiring density shown in FIG. 5A.
  • the number of the signal wirings 43 and 44 is small and there are many free regions, There is no hindrance in the selection of the wiring route, and the wiring efficiency is secured high.
  • the single borderless stack via 20 and the multi-stack via 75 are connected in parallel to the power supply wiring (first and fourth power supply wirings 1 and 4 shown in FIG. 1), an OPEN defect of the via has occurred. Even in this case, as described in detail in the second embodiment, the resistance value of the power supply wiring can be kept low, and the yield of the chip can be improved.
  • a single borderless stack via is provided as a wiring connection part for electrically connecting wirings of different wiring layers
  • a multi-stack of double or more having a wide pad part is provided.
  • Wiring performance is better than vias, chip area can be reduced, IR-DROP can also be improved, and signal wiring around single borderless stack vias must be securely placed on wiring tracks Therefore, the compatibility with the EDA tool can be improved, which is useful as a power supply wiring structure for various semiconductor integrated circuits.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 半導体集積回路の電源配線構造において、相互に異なる2つの配線層の電源配線同士を電気的に接続して配線接続部を構成するシングルボーダレススタックビア20と、前記電源配線同士を電気的に接続する他の配線接続部として機能し且つ幅広のパッド部を持つマルチスタックビア75とを有する。前記シングルボーダレススタックビア20は信号の配線密度の高い配線領域に配置され、前記マルチスタックビア75は信号配線密度の低い配線領域に配置される。従って、信号配線密度の高い領域での配線効率が高くなり、配線性が向上して、チップの小面積化が可能であると共に、EDAツールとの親和性が増し、IR-DROPも良化できる。

Description

半導体集積回路の電源配線構造
 本発明は,相互に異なる配線層に配置された電源配線同士をビアで電気的に接続する半導体集積回路の電源配線構造に関する。
 従来、半導体集積回路において、相互に異なる2つの配線層に配置された2本の電源配線同士をビアで電気的に接続する構造としては、マルチスタックビアを用いた電源配線構造が知られている。以下、この従来の電源配線構造を図11を用いて説明する。
 図11はLSI配線層の断面図、図13はその平面図を各々示す。これ等の図において、L1~L4は第1~第4の配線層、51は前記第1の配線層L1に配置された第1の電源配線、52は前記第4の配線層L4に配置された第4の電源配線である。1本の電源配線として第1の電源配線51と第4の電源配線52とを接続するに際して、第2及び第3の配線層L2、L3には、この両電源配線51、52を接続するための第2の配線53及び第3の配線54が配置され、3つの絶縁層I1~I3には各々第1~第3のビア56、57、58が配置されている。前記第2及び第3の配線53、54と第1~第3のビア56~58は、図13の上面図に示す形状を持ち、ビア56~58は各々図13上下方向に2個近傍に並んだマルチ(同図ではダブル)ビアであると共に、このマルチビアに接続される配線53、54は、前記ダブルビアを平面から見て内方に含むように縦及び横に幅広に形成される。
 そして、図11から判るように、1本の垂直線上にある第1のビア56、第2の配線53、第2のビア57、第3の配線54、第3のビア58により、同一垂直線上に積み上げた形状の1つのマルチスタックビアを構成し、このマルチスタックビアを1つのユニットとして、同図では5つのユニットを形成し、これ等により前記第1の電源配線51と第4の電源配線52とを接続して電気的に接続された1本の電源配線としている。
 更に、特許文献1では、第1及び第2の電源配線51、52間を流れる電流量を計算し、この電流量から必要最小限のユニットの個数を算出して、不要なビアを削除することにより、配線リソースを増やして、図11に例示するように5つのユニットの間に第2の配線層L2の信号配線62を配置して、配線効率を上げて、配線性の向上を図っている。
 一方、前記した電源配線構造とは別に、信号配線の接続構造としては、非特許文献1に記載されるように、ボーダレスビアが開発されている。このボーダレスビアは、前記図13に示したマルチビアのようにDFM(Design For Manufacture)的に主流である余分な幅広の配線領域であるパッド部分がないビアであって、半導体の製造プロセスの進化により、より精確にビアや配線を所定位置に形成できることから、ビアの縦及び横の長さをこれに接続する配線の縦及び横の長さにほぼ等しく設定されるビアである。
特開2003-86681号公報
SEMIジャパン出版"半導体プロセス教本"P362~363
 ところで、前記半導体集積回路の電源配線構造において、マルチスタックビアを数多く配置する理由は、IR-DROP対策やエレクトロマイグレーション(以下、EMと言う)対策のためであり、目的セルまでの電圧降下を低減したり、ビア部分での断線をなくすためである。
 しかしながら、前記マルチスタックビアをIR-DROP対策やEM対策とは別観点の高集積化設計という観点から見ると、ビア周辺の配線効率を最大化、最適化するには、まだ不十分な場合がある。これを図12を用いて詳細に説明する。
 図12は、前記図11中で○印で囲む領域でのマルチスタックビア及び配線を一部拡大したものである。同図において、60は配線トラックを示す。同図では、4本分の配線トラック60を示しており、マルチスタックビア間には2本の配線トラック60が位置するにも拘わらず、配線部に突出した幅広のパッド部61、61が存在するために、配線幅と同等のセパレーションルールを守るためにはマルチスタックビア間に配線62が1本しか通すことができない。
 このことは、前記図13の上面図から見ると更に顕著である。同図では、横トラックを6本、縦トラックを3本とすると、マルチ(同図ではダブル)スタックビア付近では、近接する縦及び横の配線トラックまでのセパレーション幅は本来ビア58までの距離Soであるところ、配線54のパッド部61の存在に起因して、前記距離Soよりもパッド部の長さだけ短い距離Sxとなるため、縦トラックでは本来配線可能なトラック1、3にも配線できず、横トラックでは本来配線可能なトラックB、Eにも配線できず、結果として、信号配線に使える配線リソースは、本来ならば縦に2本、横に4本確保できるのが、縦に0本、横に2本に制限されることになる。
 そこで、本発明者等は、半導体集積回路の電源配線構造として、前記信号配線で採用されるボーダレスビアに着目し、電源配線のビアをシングルにし且つスタックのボーダレスビアを適用すること検討した。このシングルボーダレススタックビアを持つ電源配線構造では、マルチスタックビアの持つパッド部がない分、配線効率が上がり、配線性の向上が図られる一方、IR-DROP対策やEM対策が懸念されるところ、IR-DROP対策については、図4(b)に示す従来のマルチスタックビア構造では、目的セル40までの電源配線長が長くて寄生抵抗が大きくなるが、同図(a)に示すシングルボーダレススタックビアでは、このシングルボーダレススタックビアが同図(b)に比べてビア間隔が広い散点状に配置されて、目的セル40の近くにシングルボーダレススタックビアが位置するので、目的セル40までの電源配線長を短くでき、マルチスタックビア構造に比べてIR-DROPは低減される。また、ビア部で律束されるEMについては、ビアの個数が同一個数であればEM特性はシングルビアでもマルチビアでも同じであると考えられる。従って、電源配線構造としてシングルボーダレススタックビア構造を採用しても、IR-DROP対策やEM対策を良好に確保しつつ、配線効率を上げて配線性の向上を図れることを知悉した。
 以上の検討から、本願発明は、半導体集積回路の電源配線構造として、相互に異なる配線層の電源配線同士を接続するのにシングルボーダレススタックビア構造を採用して、IR-DROP対策やEM対策を良好に確保しつつ、配線効率を上げて配線性の向上を図ることとする。
 即ち、本発明の半導体集積回路の電源配線構造は、少なくとも1つの中間配線層を間に挟んだ2つの相互に異なる配線層に配置された電源配線と、前記2つの配線層に配置された電源配線同士を電気的に接続して配線接続部を構成するシングルボーダレススタックビアとを備えたことを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記配線接続部を構成するシングルボーダレススタックビアは、前記2つの配線層の間に位置する2つ以上の絶縁層に各々配置されるシングルビアと、前記中間配線層に配置され、前記各絶縁層のシングルビアと同一断面形状を有する配線とを有し、前記各絶縁層の各シングルビアと前記中間配線層の配線とが同一垂直線上に交互に重ねられた状態で電気的に接続されてユニットを構成することを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアのユニットは、3つの絶縁層に各々1つ配置されたシングルビアと、前記3つの絶縁層に挟まれた2つの中間配線層に各々1本配置された配線とにより構成されることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアのユニットは複数本形成され、前記各ユニット間の離隔は、等間隔であることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアのユニットは複数本形成され、前記各ユニット間の離隔は、等間隔と不等間隔とが混在することを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアのユニットは複数本形成され、前記複数本のユニットのうち隣接する何れか2本のユニット間の領域には、信号配線が配置されることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアと前記信号配線との離隔は、前記信号配線とこの信号配線に隣接する他の信号配線との離隔に等しいことを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記配線接続部を構成する前記シングルボーダレススタックビアと共に、前記2つの配線層に配置された電源配線同士を電気的に接続して他の配線接続部を構成するマルチスタックビアを備えたことを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記マルチスタックビアは、前記2つの配線層の間に位置する2つ以上の絶縁層に各々複数個配置されるビアと、前記中間配線層に配置され、前記各絶縁層の複数個のビアを平面から見て内方に含むようにパッド部を有する配線とを有し、前記各絶縁層の複数個のビアと前記中間配線層の配線とが同一垂直線上に交互に重ねられた状態で電気的に接続されることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記配線接続部を構成する前記シングルボーダレススタックビアは、信号配線領域に配置され、前記他の配線接続部を構成する前記マルチスタックビアは、信号が配線されない非配線領域に配置されることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記他の配線接続部を構成する前記マルチスタックビアは、信号配線領域のうち信号配線密度が所定密度の領域に配置され、前記配線接続部を構成する前記シングルボーダレススタックビアは、前記信号配線領域のうち信号配線密度が前記所定密度よりも高い配線領域に配置されることを特徴とする。
 本発明は、前記半導体集積回路の電源配線構造において、前記シングルボーダレススタックビアは複数箇所に配置され、前記複数箇所のシングルボーダレススタックビア間の離隔は、前記マルチスタックビアの同一絶縁層内の複数個のビア間の離隔よりも広いことを特徴とする。
 以上により、本発明では、相互に異なる配線層の電源配線同士をシングルボーダレススタックビアで電気的に接続するので、従来のように幅広のパッド部を持つマルチスタックビアよりも配線効率を高くでき、配線性の向上を図ることができ、その結果、チップ面積を有効に削減することができると共に、IR-DROPやEMも良好に維持ないし良化することが可能である。
 しかも、従来ではマルチスタックビア周囲の信号配線をEDAツールで定義される配線トラックに乗せることが難しかったが、シングルボーダーレススタックビア周囲の信号配線を良好に配線トラックに乗せることができ、EDAツールとの親和性も良い。
 特に、本発明では、2つの電源配線を接続する配線接続部としてシングルボーダレススタックビアとマルチスタックビアとの2種を備えるので、ビアのOPEN不良が生じた場合にも、電源配線全体の合成抵抗値の増大を有効に抑制することができ、歩留まりの向上を図ることができる。
 以上説明したように、本発明の半導体集積回路の電源配線構造によれば、シングルボーダレススタックビア構造を採用したので、配線効率を上げて配線性の向上を図り得てチップ面積の削減が可能であると共に、IR-DROPやEMを良好に維持ないし良化でき、しかも、EDAツールとの親和性が増し、TAT(Turn Around Time)を短くできる効果を奏する。
 特に、本発明によれば、配線接続部としてマルチスタックビアも備えるので、ビアのOPEN不良が生じた場合の電源配線全体の合成抵抗値の増大を有効に抑制できて、歩留まりの向上を図ることができる。
図1は本発明の第1の実施形態の半導体集積回路の電源配線構造の要部断面図である。 図2は同電源配線構造の上面図である。 図3は図1の電源配線構造の○印で囲む部分の拡大図である。 図4(a)は同電源配線構造でのIR-DROPが良化されることの説明図、同図(b)は従来の同電源配線構造でのIR-DROPの説明図である。 図5は同電源配線構造を有する半導体集積回路を1チップで構成した上面図である。 図6は従来の電源配線構造を有する半導体集積回路を1チップで構成した上面図である。 図7は本発明の第2の実施形態の電源配線構造を持つ半導体集積回路を1チップで構成した上面図である。 図8(a)は同電源配線構造に備えるシングルスタックビア構造でのOPEN不良が発生した場合の抵抗値の変化を示す図、同図(b)は同電源配線構造に備えるマルチスタックビア構造でのOPEN不良が発生した場合の抵抗値の変化を示す図である。 図9は同電源配線構造の作成を示すフローチャート図である。 図10(a)は本発明の第3の実施形態の電源配線構造を持つ半導体集積回路の信号配線密度の低い配線領域でのレイアウト図、同図(b)は同半導体集積回路の信号配線密度の高い配線領域でのレイアウト図である。 図11は従来の半導体集積回路の電源配線構造の要部断面図である。 図12は図11の電源配線構造の○印で囲む部分の拡大図である。 図13は同電源配線構造の上面図である。
 (第1の実施形態)
 以下、本発明の第1の実施形態について図面を参照しながら説明する。
 図1は本発明に係る半導体集積回路の電源配線構造の断面図を示し、図2は同上面図を示し、4層配線構造を例示している。これらの図において、L1は第1の配線層、L4は第4の配線層、L2及びL3は前記第1及び第4の2つの配線層L1、L4の間に配置された第2及び第3の中間配線層である。
 また、1は前記第1の配線層L1に配置された第1の電源配線、4は前記第4の配線層L4に配置された第4の電源配線である。1本の電源配線として第1の電源配線1と第4の電源配線4とを接続するに際して、第2及び第3の中間配線層L2、L3には、この両電源配線1、4を接続するための第2の配線2及び第3の配線3が配置され、3つの絶縁層I1~I3には各々第1~第3のビア5、6、7が配置されている。図2に示した上面図からも判るように、第1~第3のビア5~7は各々シングルビアであると共に、このシングルビアに接続される第2及び第3の配線2、3は、前記シングルビアの縦及び横の長さが同一の縦及び横長さを有して同一断面形状をしている。すなわち、各シングルビア5~7は、前記従来の図13に示した幅広のパッド部を有しないボーダーレスビアで構成される。
 そして、図1から判るように、1本の垂直線上にある第1のシングルビア5、第2の配線2、第2のシングルビア6、第3の配線3、第3のシングルビア7により、同一垂直線上に積み上げた形状の1つのシングルボーダーレススタックビア8を構成し、このシングルボーダーレススタックビア8は前記第1及び第4の2つの電源配線1、4を電気的に接続する配線接続部を構成する。
 そして、前記シングルボーダーレススタックビア8を1つのユニット(柱)として、図1では5本のユニットが形成され、これ等のユニットにより前記第1の電源配線1と第4の電源配線4とを接続して電気的に接続された1本の電源配線としている。尚、図1では、5つのユニットを全て等間隔に形成しているが、全て等間隔に形成する必要はなく、等間隔と不等間隔とが混在する形でも良い。また、前記ユニットは、3つの絶縁層I1~I3に各々1つのシングルビア5~7と、2つの中間配線層L2、L3に1本の配線2、3とにより構成したが、スタック(積上げ)ビアとするためには、少なくとも2つの絶縁層の各シングルビアと1つの中間配線層の配線とにより構成すれば良い。
 前記のシングルボーダーレススタックビア構造の採用により、本実施形態では、図1の○で囲った部分の拡大図である図3から判るように、各ユニット間でのスタックビアの間隔を従来例の図12と同間隔に配置したとしても、ボーダーレスビア5~7には、前記従来の図12に示すパッド部61がないので、各ユニット間のビア間に位置する2つの配線トラック12には、配線セパレーションルールを考慮しても、各々1本の信号配線10を配置でき、同従来の図12の1本の信号配線62のみしか配置できない場合に比して、配線性が向上する。
 また、図2の上面図から判るように、信号配線に使える配線リソースは、縦トラックに4本、横トラックに2本となり、従来の図13に示した例の縦トラックに0本、横トラックに2本の場合と比べて、配線性が良いことは明白である。
 更に、図3及び図2の上面図からも判るように、シングルボーダーレススタックビア8の配線2に隣る信号配線10を配置する場合には、この信号配線10は配線トラック12上に配置されるので、この信号配線10とシングルボーダーレススタックビア8の配線2との間の離隔は、この信号配線10とこの信号配線10に隣接する他の信号配線10との間の離隔に等しい。これに対して、従来例を示す図12のようにパッド部61を持つ2つのマルチビア間にたとえ1本の信号配線62を配置できたとしても、この信号配線62は2本の配線トラック60間に配置されて、配線トラック60上に配置できない。従って、本実施形態では、シングルボーダーレススタックビア8周りの信号配線10を配線トラック12上に配置できて、EDAツールとの親和性が良い。
 しかも、図2の上面図では、縦トラック6本、横トラック3本で占める所定面積内には、シングルビア6が2個配置され、従来の図13に示した同面積内のマルチ(ダブル)スタックビアの2個のビアと個数が同一である。EM(エレクトロマイグレーション)はビア部で律束され、そのビアの個数が同一個数であれば、EM特性はシングルビアでもマルチビアでも同一特性と考えられる。従って、本実施形態のシングルボーダーレススタックビア構造においても、EM特性は良好に維持され、ビア部で断線が生じることは有効に低減される。
 更に、図2の上面図において、前記所定面積内に2個のシングルビア6を配置したが、本実施形態のシングルボーダーレススタックビア構造では、この所定面積内に2個のシングルビア6を配置する限り、これ等のシングルビア6は何れの位置に配置しても良く、例えばこの両シングルビア6を、これらビア6間に1本の信号配線10のみが配置されるように配置したり、3本や4本の信号配線10が配置されるように配置することも可能である。
 以上のように、本実施形態では、シングルボーダーレススタックビア8は配置位置に任意性が高い。従って、本実施形態では、図4(a)に示すように、例えば4個のシングルビア6をその相互離隔が広い位置に配置することができる。その結果、同図(b)に示すように従来のマルチスタックビアを構成する4個のビア58が相互に近接して配置される場合に比べて、電源供給を受ける目的スタンダードセル40までの電源配線長を短くでき、その分だけ寄生抵抗が小さくできて、IR-DROPを小さく良化できる。
 図5は、本実施形態のシングルボーダーレススタックビア構造を持つ半導体集積回路を1チップに集積した概略図を示す。同図では、全てのビアはシングルボーダレススタックビア20で構成され、その個数は24個の場合を例示している。図6は従来の4個のビア70よりなるマルチスタックビアを6個配置して1チップを構成した半導体集積回路を示し、ビア70の合計個数は図5と同様に24個である。図5及び図6を対比して判るように、本実施形態のシングルボーダーレススタックビア構造を持つ図5の半導体集積回路では、図6に比してビア20をチップ全面に亘って均等に配置でき、その分、電源供給受ける目的セル(図5及び図6では図示せず)までの電源配線長を短くでき、IR-DROPを小さく良化できることが判る。
 (第2の実施形態)
 次に、本発明の第2の実施形態について図面を参照しながら説明する。
 図7は、本実施形態の半導体集積回路の電源配線構造を示す。同図では、シングルボーダーレススタックビア20を多数の所定箇所に散点状に配置した電源配線構造と、複数個(同図では2個)のビア71よりなるマルチ(ダブル)スタックビア75を他の配線接続部として複数個備えた電源配線構造との2種の電源配線構造を備えた半導体集積回路を示している。前記マルチスタックビア75の詳細な構成は、前記図11~図13に示した構成の通りであって、既述したので、その説明は省略するが、図7から判るように、複数のシングルボーダーレススタックビア20間の離隔は、マルチスタックビア75の2個のビア71相互間の離隔に比して、当然に広く設定される。
 前記シングルボーダーレススタックビア20の配置領域は信号配線領域30であり、前記マルチスタックビア75の配置領域は信号が配線されない非配線領域31である。このようにする理由は、ビアのOPEN不良が発生した場合には、シングルボーダーレススタックビア20を持つ電源配線構造の方が抵抗値の増大が大きい点を考慮するからである。例えば、図8に示すように、配線3層、ビア2層の場合には、同図(a)に示すシングルスタックビア構造の場合には、ビアのOPEN不良が発生すると、そのユニットには電流を流すことができなくなり、ビア1個の抵抗値をRとすると、2本のユニット全体では合成抵抗は2Rとなるが、同図(b)に示すマルチ(ダブル)スタックビア構造の場合には、2つのビア間のパッド部を持つ配線が保険の役割をして、合成抵抗は3/2Rと抵抗の落ち込みは少ない。従って、1本の電源配線にシングルボーダーレススタックビア構造とマルチスタックビア構造との2種を備えて、ビアのOPEN不良が生じた場合にも、その電源配線全体の合成抵抗値を低く保持して電源配線不良を抑制でき、歩留りの向上を実現しつつ信号配線領域30での配線性の向上を図ることが可能である。
 図9は、図7に示した2種の電源配線構造の作成フローを示し、ステップS1では信号配線領域30内において設計上求められた個数のシングルスタックビア20を配置し、次いで、ステップS2においてその配線領域30において配線のレイアウト処理(配線処理)を行う。その後は、ステップS3において、その配置した1つのシングルスタックビア20付近での配線の有無を判別し、配線が存在しない場合には、非配線領域と判断して、ステップS4においてマルチスタックビア75を配置する。前記ステップS3及びS4を全てのシングルスタックビア20について繰り返し行って、全てのシングルスタックビア20について配線の有無の判別を終了すると、ステップS5において配線の完了とする。
 (第3の実施形態)
 続いて、本発明の第3の実施形態について図面を参照しながら説明する。
 図10は、本実施形態の半導体集積回路の電源配線構造を示す。前記第2の実施形態を示す図7では、信号配線領域30内ではシングルボーダーレススタックビア20のみを配置したが、本実施形態では、その信号配線領域30内では信号の配線密度に応じてシングルボーダーレススタックビアとマルチスタックビアとを配置仕分ける構成としている。
 図10(a)及び(b)は何れも信号配線領域の一部を示し、同図(a)は信号配線領域内において信号配線43、44が配置されるが、その信号配線密度が低い所定密度の配線領域であって、空き領域が多い配線領域を示している。この配線領域では、前記空き領域にマルチスタックビア75が配置される。このマルチスタックビア75は、同図では、2個のビア(ダブルビア)71を有する構成を例示している。
 一方、同図(b)に示す信号配線領域は、多数本の信号配線45~49が配置されて、空き領域が少なく、同図(a)に示した配線領域の信号配線密度よりも高い信号配線密度の配線領域である。この信号配線密度の高い配線領域には、シングルボーダーレススタックビア20が配置される。
 従って、本実施形態では、同図(b)に示す信号配線密度の高い配線領域には、シングルボーダーレススタックビア20が配置されるので、多数の信号配線45~49を配線効率良く配線できる。例えば、信号配線47、49は、シングルボーダーレススタックビア20の近傍を無駄に迂回などすることなく、短い配線長で配線することが可能である。
 一方、同図(a)に示す信号配線密度の低い配線領域には、マルチスタックビア75が配置されるが、信号配線43、44の本数が少なく、空き領域が多いので、これ等信号配線の配線経路の選択に支障はなく、配線効率は高く確保される。
 更に、前記シングルボーダーレススタックビア20とマルチスタックビア75とが並列に電源配線(図1に示す第1及び第4の電源配線1、4)に接続されるので、ビアのOPEN不良が発生した場合にも、前記第2の実施形態で詳述の通り、電源配線の抵抗値を低く保持することができ、チップの歩留まりを良くすることが可能である。
 以上説明したように、本発明によれば、相互に異なる配線層の配線同士を電気的に接続する配線接続部としてシングル・ボーダレススタックビアを有するので、幅広のパッド部を持つダブル以上のマルチスタックビアよりも配線性が良く、チップ面積の削減を実現することができ、またIR-DROPも良化することができると共に、シングル・ボーダレススタックビア周囲の信号配線を確実に配線トラックに配置することができ、EDAツールとの親和性も良くすることができるので、種々の半導体集積回路の電源配線構造として有用である。
1     第1の電源配線
2     第2の配線
3     第3の配線
4     第4の電源配線
5     第1のビア
6     第2のビア
7     第3のビア
8、20  シングルボーダレススタックビア
10、11 信号配線
12    配線トラック
30    信号配線領域
31    非配線領域
40    目的スタンダードセル
61    パッド部
71    ビア
75    マルチスタックビア

Claims (12)

  1.  少なくとも1つの中間配線層を間に挟んだ2つの相互に異なる配線層に配置された電源配線と、
     前記2つの配線層に配置された電源配線同士を電気的に接続して配線接続部を構成するシングルボーダレススタックビアとを備えた
     ことを特徴とする半導体集積回路の電源配線構造。
  2.  前記請求項1記載の半導体集積回路の電源配線構造において、
     前記配線接続部を構成するシングルボーダレススタックビアは、
     前記2つの配線層の間に位置する2つ以上の絶縁層に各々配置されるシングルビアと、
     前記中間配線層に配置され、前記各絶縁層のシングルビアと同一断面形状を有する配線とを有し、
     前記各絶縁層の各シングルビアと前記中間配線層の配線とが同一垂直線上に交互に重ねられた状態で電気的に接続されてユニットを構成する
     ことを特徴とする半導体集積回路の電源配線構造。
  3.  前記請求項2記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアのユニットは、
     3つの絶縁層に各々1つ配置されたシングルビアと、
     前記3つの絶縁層に挟まれた2つの中間配線層に各々1本配置された配線とにより構成される
     ことを特徴とする半導体集積回路の電源配線構造。
  4.  前記請求項2記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアのユニットは複数本形成され、
     前記各ユニット間の離隔は、等間隔である
     ことを特徴とする半導体集積回路の電源配線構造。
  5.  前記請求項2記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアのユニットは複数本形成され、
     前記各ユニット間の離隔は、等間隔と不等間隔とが混在する
     ことを特徴とする半導体集積回路の電源配線構造。
  6.  前記請求項2記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアのユニットは複数本形成され、
     前記複数本のユニットのうち隣接する何れか2本のユニット間の領域には、信号配線が配置される
     ことを特徴とする半導体集積回路の電源配線構造。
  7.  前記請求項6記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアと前記信号配線との離隔は、前記信号配線とこの信号配線に隣接する他の信号配線との離隔に等しい
     ことを特徴とする半導体集積回路の電源配線構造。
  8.  前記請求項1又は2記載の半導体集積回路の電源配線構造において、
     前記配線接続部を構成する前記シングルボーダレススタックビアと共に、
     前記2つの配線層に配置された電源配線同士を電気的に接続して他の配線接続部を構成するマルチスタックビアを備えた
     ことを特徴とする半導体集積回路の電源配線構造。
  9.  前記請求項8記載の半導体集積回路の電源配線構造において、
     前記マルチスタックビアは、
     前記2つの配線層の間に位置する2つ以上の絶縁層に各々複数個配置されるビアと、
     前記中間配線層に配置され、前記各絶縁層の複数個のビアを平面から見て内方に含むようにパッド部を有する配線とを有し、
     前記各絶縁層の複数個のビアと前記中間配線層の配線とが同一垂直線上に交互に重ねられた状態で電気的に接続される
     ことを特徴とする半導体集積回路の電源配線構造。
  10.  前記請求項8又は9記載の半導体集積回路の電源配線構造において、
     前記配線接続部を構成する前記シングルボーダレススタックビアは、信号配線領域に配置され、
     前記他の配線接続部を構成する前記マルチスタックビアは、信号が配線されない非配線領域に配置される
     ことを特徴とする半導体集積回路の電源配線構造。
  11.  前記請求項8又は9記載の半導体集積回路の電源配線構造において、
     前記他の配線接続部を構成する前記マルチスタックビアは、信号配線領域のうち信号配線密度が所定密度の領域に配置され、
     前記配線接続部を構成する前記シングルボーダレススタックビアは、前記信号配線領域のうち信号配線密度が前記所定密度よりも高い配線領域に配置される
     ことを特徴とする半導体集積回路の電源配線構造。
  12.  前記請求項10又は11記載の半導体集積回路の電源配線構造において、
     前記シングルボーダレススタックビアは複数箇所に配置され、
     前記複数箇所のシングルボーダレススタックビア間の離隔は、前記マルチスタックビアの同一絶縁層内の複数個のビア間の離隔よりも広い
     ことを特徴とする半導体集積回路の電源配線構造。
PCT/JP2009/004119 2009-01-20 2009-08-26 半導体集積回路の電源配線構造 WO2010084533A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010547312A JPWO2010084533A1 (ja) 2009-01-20 2009-08-26 半導体集積回路の電源配線構造
CN2009801549066A CN102282667A (zh) 2009-01-20 2009-08-26 半导体集成电路的电源布线构造
US13/177,335 US8441130B2 (en) 2009-01-20 2011-07-06 Power supply interconnect structure of semiconductor integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009972 2009-01-20
JP2009-009972 2009-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/177,335 Continuation US8441130B2 (en) 2009-01-20 2011-07-06 Power supply interconnect structure of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2010084533A1 true WO2010084533A1 (ja) 2010-07-29

Family

ID=42355612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004119 WO2010084533A1 (ja) 2009-01-20 2009-08-26 半導体集積回路の電源配線構造

Country Status (4)

Country Link
US (1) US8441130B2 (ja)
JP (1) JPWO2010084533A1 (ja)
CN (1) CN102282667A (ja)
WO (1) WO2010084533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155597A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015355A (ja) * 2010-07-01 2012-01-19 Toshiba Corp 半導体装置及びその製造方法
US10032674B2 (en) 2015-12-07 2018-07-24 International Business Machines Corporation Middle of the line subtractive self-aligned contacts
US10410934B2 (en) * 2017-12-07 2019-09-10 Micron Technology, Inc. Apparatuses having an interconnect extending from an upper conductive structure, through a hole in another conductive structure, and to an underlying structure
CN110349947A (zh) * 2018-04-02 2019-10-18 台湾积体电路制造股份有限公司 半导体装置、其设计方法及包括其的***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891799A (en) * 1997-08-18 1999-04-06 Industrial Technology Research Institute Method for making stacked and borderless via structures for multilevel metal interconnections on semiconductor substrates
JP2001156168A (ja) * 1999-11-25 2001-06-08 Nec Corp 半導体装置及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335484A (ja) 1992-06-01 1993-12-17 Hitachi Ltd 半導体集積回路の電源配線方法
US6225211B1 (en) * 1999-04-29 2001-05-01 Industrial Technology Research Institute Method for making stacked and borderless via structures on semiconductor substrates for integrated circuits
JP2002134720A (ja) * 2000-10-20 2002-05-10 Seiko Epson Corp 半導体装置
JP4786836B2 (ja) 2001-09-07 2011-10-05 富士通セミコンダクター株式会社 配線接続部設計方法及び半導体装置
JP3989358B2 (ja) * 2002-11-13 2007-10-10 株式会社日立製作所 半導体集積回路装置および電子システム
JP2009016776A (ja) * 2007-06-08 2009-01-22 Renesas Technology Corp 半導体集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891799A (en) * 1997-08-18 1999-04-06 Industrial Technology Research Institute Method for making stacked and borderless via structures for multilevel metal interconnections on semiconductor substrates
JP2001156168A (ja) * 1999-11-25 2001-06-08 Nec Corp 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155597A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置
JP7080845B2 (ja) 2019-03-20 2022-06-06 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
US8441130B2 (en) 2013-05-14
CN102282667A (zh) 2011-12-14
US20110260335A1 (en) 2011-10-27
JPWO2010084533A1 (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP4786836B2 (ja) 配線接続部設計方法及び半導体装置
US20080054307A1 (en) Power supply wiring configuration in semiconductor integrated circuit
US20090166883A1 (en) Semiconductor integrated circuit having improved power supply wiring
WO2010084533A1 (ja) 半導体集積回路の電源配線構造
US7786566B2 (en) Semiconductor integrated circuit
JP5028714B2 (ja) 半導体集積回路装置、および配線方法
US8823173B2 (en) Semiconductor device having plurality of wiring layers and designing method thereof
KR20020046899A (ko) 다층 배선 구조의 반도체 장치, 배선 방법, 배선 장치 및기록 매체
JP4993929B2 (ja) 半導体集積回路装置
JP4539916B2 (ja) 半導体集積回路、半導体集積回路の設計方法、及び半導体集積回路の設計用プログラム
JP2007250933A (ja) 半導体集積回路およびそのレイアウト設計方法
US20090243119A1 (en) Semiconductor integrated circuit
JP4757660B2 (ja) 半導体装置
JP2000068383A (ja) 半導体集積回路装置の設計方法および半導体集積回路装置
WO2020044438A1 (ja) 半導体集積回路装置
JP5168872B2 (ja) 半導体集積回路
JP2007165487A (ja) 半導体装置及びその設計方法
US6989597B2 (en) Semiconductor integrated circuit and method of manufacturing the same
US20080251930A1 (en) Semiconductor device and dummy pattern arrangement method
JP2009252806A (ja) 半導体装置及びそのレイアウト方法
JP5177951B2 (ja) 半導体集積回路
WO2022254676A1 (ja) 半導体集積回路装置
JP2011151065A (ja) 半導体集積回路
JP5640438B2 (ja) 半導体装置
US20080017979A1 (en) Semiconductor structure having extra power/ground source connections and layout method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154906.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547312

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838727

Country of ref document: EP

Kind code of ref document: A1