WO2010074091A1 - 脆性材料基板の割断方法、装置及び車両用窓ガラス - Google Patents

脆性材料基板の割断方法、装置及び車両用窓ガラス Download PDF

Info

Publication number
WO2010074091A1
WO2010074091A1 PCT/JP2009/071341 JP2009071341W WO2010074091A1 WO 2010074091 A1 WO2010074091 A1 WO 2010074091A1 JP 2009071341 W JP2009071341 W JP 2009071341W WO 2010074091 A1 WO2010074091 A1 WO 2010074091A1
Authority
WO
WIPO (PCT)
Prior art keywords
brittle material
material substrate
cleaving
scribe line
laser beam
Prior art date
Application number
PCT/JP2009/071341
Other languages
English (en)
French (fr)
Inventor
寧司 深澤
彰則 松本
斎藤 勲
早苗 藤田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010544090A priority Critical patent/JP5533668B2/ja
Priority to EP09834892A priority patent/EP2377823A4/en
Priority to RU2011130891/03A priority patent/RU2011130891A/ru
Priority to CN200980152660.9A priority patent/CN102264659B/zh
Publication of WO2010074091A1 publication Critical patent/WO2010074091A1/ja
Priority to US13/162,879 priority patent/US20110250423A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention is a method of cleaving the brittle material substrate by irradiating with a laser beam. Specifically, the irradiation position of the laser beam on the surface of the brittle material substrate is relatively moved along the scribe line, and the brittle material substrate cleaving method for cleaving the brittle material substrate, and the vehicle window glass obtained by the cleaving method, In addition, the present invention relates to a cleaving device for a brittle material substrate.
  • a scribe line is formed on the surface of the brittle material substrate, and the irradiation position of the laser beam when irradiating the surface of the brittle material substrate is relatively moved along the scribe line and heated by the laser beam.
  • a method is known in which a brittle material substrate is cleaved by cooling the region using a cooling device (see, for example, Patent Document 1).
  • the laser beam irradiation position on the substrate surface is directed from the center of curvature of the scribe line toward the edge (that is, radially outward at the radius of curvature). Since the offset is made, the quality of the cut section can be improved.
  • the method described in Patent Document 1 discloses that the offset value is set according to the cleaving speed, the radius of curvature, the beam spot size, and the thickness of the substrate.
  • the substrate is cleaved behind the irradiation position in the movement direction. That is, the method described in Patent Document 1 does not explain the case where the substrate is cleaved in the moving direction from the irradiation position.
  • the present invention has been made in view of the above problems, and a brittle material substrate cleaving method capable of cleaving a brittle material substrate having a desired planar shape by automatic machine production without complicating the apparatus and the cleaving method. It aims at providing the window glass for vehicles obtained by a method, and the cleaving apparatus of a brittle material board. It is another object of the present invention to provide a method for cleaving a brittle material substrate having an excellent cross-sectional quality of a cleaved glass plate.
  • a brittle material substrate cleaving method of the present invention is a method of condensing and irradiating a brittle material substrate with a laser beam and cleaving the brittle material substrate, wherein And a second step of cleaving the brittle material substrate forward in the movement direction from the irradiation position by relatively moving the irradiation position of the laser beam on the surface of the brittle material substrate along the scribe line. Steps in the above order.
  • vehicle window glass of the present invention is obtained by cleaving a glass plate by the brittle material substrate cleaving method of the present invention.
  • the brittle material substrate cleaving apparatus of the present invention forms a scribe line on the surface of the brittle material substrate in advance, and relatively moves the irradiation position of the laser beam on the surface of the brittle material substrate along the scribe line.
  • An apparatus for cleaving the brittle material substrate forward in the movement direction from the irradiation position, A stage for supporting the brittle material substrate;
  • An optical system that focuses the laser light oscillated from the oscillator toward the brittle material substrate;
  • a drive mechanism for relatively moving the stage, the oscillator, and the optical system; Control means for controlling the output of the oscillator and the output of the drive mechanism.
  • a brittle material substrate cleaving method capable of cleaving a brittle material substrate having a desired planar shape by automatic machine production without complicating the apparatus, a vehicle window glass obtained by the cleaving method, and A brittle material substrate cleaving apparatus can be realized.
  • a brittle material substrate cleaving method having excellent cross-sectional quality of the cleaved glass plate can be realized.
  • the production by an automatic machine is not limited to a production method that is completely automated and incorporated in a production process such as a factory, but it is only necessary to be able to produce industrially mainly using an automatic machine.
  • it includes semi-automatic machine production in which a part of the process is complemented by an operator and machine production that is continuously extracted from a machine production line by a conveyor or the like.
  • FIG. 6 is a diagram showing a positional deviation between a substrate front surface G1 side and a substrate back surface G2 side of a split section in Examples 1 to 3 and Comparative Example 1.
  • Example 4 and Comparative Example 2 it is a figure which shows the position shift with the board
  • an X direction, a Y direction, and a Z direction indicate a width direction, a length direction, and a thickness direction of the brittle material substrate G, respectively.
  • FIG. 1 is a schematic view showing an embodiment of a brittle material substrate cleaving apparatus 10 according to the present invention.
  • FIG. 1A shows a first step of the cleaving method realized by the cleaving apparatus 10
  • FIG. 1B shows a second step of the cleaving method realized by the cleaving apparatus 10.
  • A shows the irradiation position of the laser beam on the surface G1 of the brittle material substrate G
  • B shows the cleaving tip position on the surface G1 of the brittle material substrate G.
  • the cleaving device 10 In order to cleave the substrate G along the cutting line L1, the cleaving device 10 first forms a scribe line L2 along the cutting line L1 on the substrate surface G1, as shown in FIG. Next, as shown in FIG. 1B, the irradiation position A of the laser beam on the substrate surface G1 is relatively moved along the scribe line L2, and the substrate G is cleaved by thermal stress.
  • the cleaving apparatus 10 includes a stage 20 that supports the brittle material substrate G, a processing head 30 that processes the brittle material substrate G, and a drive mechanism that relatively moves the stage 20 and the processing head 30. 40 and control means 50.
  • the brittle material substrate G to be cleaved by the cleaving apparatus 10 is a plate-like member having a property of absorbing laser light.
  • a glass plate such as soda lime glass or alkali-free glass
  • a metal plate such as metal silicon, alumina Etc. Ceramic plate.
  • the thickness of the substrate G can be appropriately set depending on the use of the brittle material substrate G. For example, for a vehicle application, 1 to 6 mm is preferable. When the thickness is reduced, the air-cooling strengthening heat treatment is difficult, and when it is less than 1 mm, it is difficult to obtain sufficient strength for vehicle use. If the thickness is 6 mm or more, the weight becomes too heavy.
  • the stage 20 includes a support surface 22 that supports the back surface G2 of the brittle material substrate G.
  • the stage 20 may support the entire surface of the substrate back surface G2, or may support a part of the substrate back surface G2.
  • the substrate G may be adsorbed and fixed to the support surface 22 or may be bonded and fixed to the support surface 22.
  • the processing head 30 stands by above the stage 20 and is moved in the X direction, the Y direction, and the Z direction with respect to the stage 20 (that is, the substrate G).
  • the processing head 30 incorporates a scribe cutter 32, an oscillator 34, and an optical system 36.
  • the apparatus 10 can be simplified and miniaturized by integrally mounting the laser device including the scribing device 32, the laser oscillator 34, and the condensing optical system 36 on one processing head. This is advantageous in terms of cost.
  • the scribe cutter 32 forms the scribe line L2 on the brittle material substrate G.
  • the scribe line L2 is formed by pressing the tip of the cutter 32 against the substrate surface G1 and drawing a line.
  • the scribe line L2 of this embodiment has shown the example formed using the scribe cutter 32.
  • the scribe line L2 may be formed by thermal stress using laser light, and the means for forming the scribe line L2 is not limited.
  • the tip of the cutter 32 is formed of, for example, diamond or super steel alloy.
  • the cutter 32 may be accommodated inside the outer cylinder of the processing head 30 so as not to accidentally damage the substrate surface G1, and may be projected outside the outer cylinder of the processing head 30 as necessary.
  • the cleaving apparatus 10 irradiates the scribe line L2 with a laser beam, and develops a crack starting from the scribe line L2 to cleave the substrate G.
  • the laser oscillator 34 oscillates laser light.
  • a high-power and high-efficiency semiconductor laser that oscillates laser light having one or a plurality of predetermined specific wavelengths within the range of 795 to 1030 nm is suitable.
  • an Al-free and long-life InGaAsP semiconductor laser (wavelength: 808 nm, 940 nm) is preferably used.
  • a part of the laser light having a specific wavelength within a wavelength range of 795 to 1030 nm is transmitted through the glass plate G, the other part is absorbed as heat by the glass plate G, and the rest is reflected by the glass plate G. . That is, the laser light within the wavelength range of 795 to 1030 nm has sufficient transmittance and absorptance of the laser light, so that the thermal stress distribution can be optimized.
  • the brittle material substrate to be cleaved does not move spatially because it is broken by thermal stress. Therefore, the sections do not rub at the time of cleaving.
  • the effects that can be expected include reduction in quality defects due to glass dust stains, simplification of the cleaning process, and extension of life due to reduction in wear of the manufacturing apparatus.
  • the wavelength of the laser beam is long as described above, it becomes difficult to manufacture a high-power laser oscillator having a semiconductor laser oscillator of, for example, 100 W or more. Furthermore, absorption at the surface G1 of the solime glass plate G increases at a long wavelength (for example, a wavelength of 10.6 ⁇ CO 2 ). If it is 5 microns or more, almost 100% of the surface is absorbed and the glass plate cannot be directly heated by the laser beam.
  • the substrate surface G1 of the soda lime glass plate G since the glass generally has low thermal conductivity, the substrate surface G1, that is, the scribe line L2 is overheated. Become. As a result, cracks propagate in the in-plane direction (X direction, Y direction) starting from fine chipping at the time of forming the scribe line L2. As a result, the amount of glass waste at the time of cleaving increases, or the quality of the cleaved surface decreases.
  • the transmittance of the laser beam increases, so that it is difficult to obtain a thermal stress sufficient for cleaving.
  • the output of the laser beam can be set as appropriate according to the amount of irradiation energy per unit volume ⁇ time.
  • the temperature of the irradiated portion of the soda lime glass that is the cleaving object is a temperature below the strain point. Therefore, it is preferably 50 to 300 ° C. If the output is low, it will be difficult to obtain sufficient thermal stress for cleaving.
  • the laser light oscillated from the laser oscillator 34 is condensed toward the substrate G by an optical system 36 such as a condensing lens and irradiated onto the substrate surface G1.
  • FIG. 2 is a diagram showing an example of a state in which the laser beam is irradiated onto the substrate surface G1, (A) is a perspective view, and (B) is a cross-sectional view orthogonal to the moving direction of the irradiation position A.
  • 3A and 3B are diagrams showing another example of the state in which the laser beam is irradiated onto the substrate surface G1, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view orthogonal to the moving direction of the irradiation position A.
  • F indicates a condensing position of the laser beam.
  • the laser light has a circular cross section, and is condensed concentrically along the optical axis of the laser light.
  • the cross-sectional shape of the laser beam is changed along the optical axis of the laser beam with a dimension W in a direction orthogonal to the moving direction of the irradiation position A.
  • the laser beam has a rectangular cross section and is condensed along the optical axis of the laser beam.
  • the cross-sectional shape of the laser beam is changed along the optical axis of the laser beam with a dimension W in a direction orthogonal to the moving direction of the irradiation position A.
  • the dimension V in the direction parallel to the moving direction of the irradiation position A is substantially constant along the optical axis of the laser beam.
  • the condensing position F of the laser beam may be on the same side as the substrate back surface G2 with reference to the substrate surface G1 as shown in FIGS. 2 and 3, for example. Further, it may be on the opposite side of the substrate back surface G2 with respect to the substrate surface G1.
  • the condensing angle ⁇ (see FIGS. 2 and 3) of the laser beam is preferably 10 ° to 34 ° in the cross section orthogonal to the moving direction of the irradiation position A.
  • the condensing angle ⁇ exceeds 34 °
  • the cross-sectional shape of the laser light greatly changes along the optical axis.
  • the thermal stress difference between the substrate front surface G1 and the substrate back surface G2 becomes too large, and the quality of the cut section is degraded.
  • the cross-sectional shape of the laser beam changes greatly along the optical axis, the influence of the error of the condensing position F on the thermal stress distribution becomes too great, and the quality of the fractured surface becomes unstable.
  • the laser light preferably has a dimension W (see FIGS. 2 and 3) of 2 to 10 mm in the direction perpendicular to the moving direction of the irradiation position A on the substrate surface G1.
  • the scribe line L2 is overheated.
  • the crack also develops in the in-plane direction (X direction, Y direction) orthogonal to the scribe line L2, and the quality of the fractured surface deteriorates. Further, the influence of the error of the irradiation position A on the thermal stress distribution becomes large, and the quality of the cut section becomes unstable.
  • the machining head 30 is moved relative to the stage 20 in the X, Y, and Z directions by the drive mechanism 40.
  • the stage 20 that supports the substrate G may be fixed and the processing head 30 may be moved relatively by the drive mechanism 40.
  • the processing head 30 may be fixed and the stage 20 that supports the substrate G may be moved relatively by the drive mechanism 40.
  • the drive mechanism 40 may have a known configuration, and includes, for example, an XYZ guide rail that guides the machining head 30 in the X direction, the Y direction, and the Z direction, and an actuator that drives the machining head 30.
  • the scribe line L2 is formed on the substrate surface G1, and the irradiation position A of the laser beam on the substrate surface G1 is relatively moved along the scribe line L2.
  • the output control of the oscillator 34 and the output control of the drive mechanism 40 are realized by the control means 50 composed of a microcomputer.
  • a position sensor (not shown) for measuring the position coordinates of the machining head 30 is connected to the control means 50.
  • the control means 50 controls various operations of the cleaving device 10 described below based on an output signal from a position sensor or the like. Next, a method for cleaving the brittle material substrate of this embodiment will be described with reference to FIG.
  • the substrate G is placed on the stage 20, and the processing head 30 is moved to a position facing the starting end of the breaking line L1 of the substrate G.
  • the machining head 30 starts to descend.
  • the scribe cutter 32 of the processing head 30 is lowered and pressed against the substrate surface G1 with a predetermined pressure. Further, as shown in FIG. 1A, the scribe line L2 is drawn at a predetermined speed.
  • the machining head 30 and the scribe cutter 32 are raised, and the machining head 30 is moved again to a position facing the starting end of the scribe line L2. Next, the machining head 30 starts to descend.
  • laser light is oscillated from the oscillator 34.
  • the laser light oscillated from the oscillator 34 is collected by the optical system 36 and applied to the starting end of the scribe line L2.
  • the irradiation position A of the laser beam on the substrate surface G1 is moved along the scribe line L2. Then, the substrate G is cleaved ahead of the irradiation position A in the moving direction. That is, the cleaving tip position B is ahead of the laser beam irradiation position A in the movement direction.
  • the irradiation center of the laser beam on the substrate surface G1 is moved on the scribe line L2. Then, in the vicinity of the cleaving tip position B ahead of the laser beam irradiation position A in the moving direction, the tensile stress becomes symmetrical with respect to the scribe line L2. Quality is improved.
  • the split section is inclined with respect to the thickness direction (Z direction), and the quality of the split section is deteriorated.
  • the scribe line L2 when the irradiation position A is relatively moved along the scribe line L2 including the curved portion, the scribe line L2 is changed according to the shape of the scribe line L2. Relative displacement in the direction perpendicular to Thereby, thermal stress distribution can be optimized and the quality of a fractured surface can be improved.
  • the scribe line L2 has linear portions L2-1 and L2-3 and an arcuate curved portion L2-2.
  • the irradiation position A is relatively gradually displaced outward in the radial direction from the start point to the intermediate point of the arc-shaped portion L2-2.
  • it is relatively gradually displaced inward in the radial direction from the intermediate point to the end point of the arc-shaped portion L2-2.
  • the “intermediate point” means a position between the start point and the end point, and is relatively close to either the start point or the end point as well as a midpoint equidistant from both the start point and the end point. Includes location.
  • the above-described radial direction refers to a radial direction for obtaining the radius of curvature of an arcuate portion such as a circular arc.
  • the displacement of the irradiation position A is not limited to the moving speed of the laser light irradiation position A on the substrate surface G1, the laser light irradiation shape on the substrate surface G1, the condensing position F, and the substrate G.
  • the thickness, processing speed, processing shape, and physical properties (linear thermal expansion coefficient, transmittance) of the substrate G may be set as appropriate. The amount of displacement described above is selected so as to obtain an optimum thermal stress distribution required for cutting along the desired scribe line and for making the cut section vertical.
  • the irradiation position A of the laser beam on the substrate surface G1 is relatively moved along the scribe line L2, and the substrate G is cleaved forward in the movement direction from the irradiation position A by thermal stress. To do. Therefore, a cooling device is not necessary, and the substrate G can be cleaved without complicating the device 10.
  • the irradiation position A when the irradiation position A is relatively moved along the scribe line L2 including the curved portion, the irradiation position A is relatively relative to the direction perpendicular to the scribe line L2 according to the shape of the scribe line L2. To displace. Thereby, thermal stress distribution can be optimized and the quality of a fractured surface can be improved.
  • the split section is inclined with respect to the thickness direction (Z direction), and the quality of the split section is degraded. To do.
  • Examples 1 to 4 A green soda lime glass plate (manufactured by Asahi Glass Co., Ltd .: automotive glass substrate) having a thickness of 3.5 mm manufactured by the float process is prepared.
  • This glass plate G was placed on the stage 20 shown in FIG.
  • the diamond cutter 32 was pressed against the glass plate surface G1 with a force of 55 N, and the scribe line L2 was drawn at a speed of 200 mm / sec.
  • the scribe line L2 includes a first linear portion L2-1, a 1/4 arc-shaped portion L2-2, and a second linear portion L2-3 in sequence. Have.
  • Table 1 shows the shape of the scribe line L2 in each of Examples 1 to 4.
  • the above-mentioned 1/4 circle arc-shaped portion refers to a portion that becomes 1/4 of a circle when a circle is drawn by the circle arc (the same applies hereinafter).
  • the laser beam shown in FIG. 3 is irradiated on the surface G1 of the glass plate G, and the irradiation position A of the laser beam on the substrate surface G1 is relatively moved along the scribe line L2 at a speed of 100 mm / s to cause the glass by thermal stress.
  • the board G was cleaved. Specifically, first, the irradiation center of the laser beam on the substrate surface G1 was relatively moved on the first linear portion L2-1. Next, when the irradiation position A of the laser beam on the substrate surface G1 is relatively moved along the 1 ⁇ 4 arc-shaped portion L2-2, the diameter increases from the start point to the midpoint of the 1 ⁇ 4 arc-shaped portion L2-2. The displacement was relatively gradually made outward in the direction.
  • Table 2 shows the wavelength of the laser beam, the converging position F, the output, the irradiation shape (dimension W ⁇ dimension V) on the substrate surface G1, and the maximum displacement amount of the irradiation position A in each of Examples 1 to 4.
  • “Outside: OUTSIDE-DEFOCUS” means that the condensing position F is on the opposite side of the substrate back surface G2 (from the oscillator 34) with respect to the substrate surface G1.
  • “inside: INSIDE-DEFOCUS” means that the condensing position F is on the same side as the substrate back surface G2 (with the oscillator 34) with respect to the substrate surface G1.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, the scribing line L2 is the same as in Examples 1 to 4, except that the irradiation center of the laser beam on the substrate surface G1 is relatively moved on the quarter arc-shaped portion L2-2. The glass plate G was cut.
  • the positional deviations of the cut surfaces of Examples 1 to 4 and Comparative Examples 1 to 2 were measured.
  • the misalignment of the split section was measured along the quarter arc-shaped portion L2-2.
  • the measurement results are shown in FIGS. 5 and 6, the horizontal axis is the rotation angle ⁇ from the starting point of the 1 ⁇ 4 arc-shaped portion L2-2, and the vertical axis is the radial deviation between the substrate surface G1 side and the substrate back surface G2 side of the split section. is there.
  • the deviation in the radial direction was negative when the substrate back surface G2 side was shifted radially outward as compared to the substrate surface G1 side.
  • the substrate surface G1 side of the fractured surface substantially coincided with the 1/4 arc-shaped portion L2-2.
  • FIG. 5 is a diagram showing a positional shift between the substrate front surface G1 side and the substrate back surface G2 side of the cut surface in Examples 1 to 3 and Comparative Example 1.
  • FIG. 6 is a diagram illustrating a positional shift between the substrate front surface G1 side and the substrate back surface G2 side of the split section in Example 4 and Comparative Example 2.
  • Example 8 to 14 Comparative Examples 4 to 8
  • the scribe line L2 was formed in the same manner as in Examples 5 to 7.
  • Table 4 also shows the evaluation results of the amount of glass waste at the time of cleaving and the quality of the fractured surface.
  • the condensing angle ⁇ was set in the range of 10 to 34 °. As a result, the quality of the fractured surface was good.
  • Comparative Examples 4 to 6 the condensing angle ⁇ was too small, 0 ° and 8 °, and the quality of the fractured surface deteriorated.
  • Example 15 Comparative Examples 9 to 10
  • the scribe line L2 was formed as in Examples 5 to 7.
  • Table 5 also shows the evaluation results of the amount of glass scrap at the time of cleaving and the quality of the fractured surface.
  • the wavelength of the laser beam was set in the range of 780 to 940 nm. As a result, the transmittance and absorptance of the laser beam were sufficient, and the quality of the cut surface was good.
  • the irradiation position A when the irradiation position A is relatively moved along the arcuate portion L2-2, the irradiation position A is relatively displaced in the radial direction of the arcuate portion L2-2. Is not limited to this.
  • the irradiation position A when the irradiation position A is relatively moved along the first linear portion L2-1, the irradiation position A may be relatively displaced in a direction orthogonal to the first linear portion L2-1. Thereby, thermal stress distribution can be optimized and the quality of a fractured surface can be improved.
  • the scribe line L2 includes the linear portions L2-1 and L2-3 and the arc-shaped portion L2-2.
  • the present invention is not limited to this.
  • the scribe line L2 may have an S-shaped portion including a first arc-shaped portion and a second arc-shaped portion.
  • the S shape two circular arc-shaped portions exist in opposite directions.
  • the irradiation position A is relatively moved along each arcuate portion, the irradiation position A is relatively gradually displaced radially outward from the starting point to the intermediate point of each arcuate portion. Next, it is relatively gradually displaced inward in the radial direction from the intermediate point to the end point. Thereby, thermal stress distribution can be optimized and the quality of a fractured surface can be improved.
  • the irradiation center of the laser beam on the substrate surface G1 is made to coincide with the arc-shaped portion L2-2 at the start point and the end point of the arc-shaped portion L2-2. It is not limited.
  • the irradiation center of the laser beam on the substrate surface G1 may be offset radially outward or inward at the start point and end point of the arc-shaped portion L2-2.
  • the laser beam has a circular cross section or a rectangular cross section, but may have an elliptical cross section.
  • the present invention can be applied to the manufacture of window glass for vehicles represented by automobiles, window glass for other vehicles, aircraft, ships, buildings, etc., glass substrates for thin display panels, and substrates for hard disks. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-329734 filed on December 25, 2008 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

 装置を複雑化することなく自動機械生産で所望の平面形状の脆性材料基板を割断することができる脆性材料基板の割断方法及び該割断方法により得られる車両用窓ガラス、並びに脆性材料基板の割断装置を提供すること。 脆性材料基板の割断方法は、脆性材料基板Gの表面G1にスクライブ線L2を形成する第1工程と、脆性材料基板Gの表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って相対的に移動させて脆性材料基板Gを照射位置Aより移動方向前方で割断する第2工程とを有する。

Description

脆性材料基板の割断方法、装置及び車両用窓ガラス
 本発明は、レーザ光を照射して該脆性材料基板を割断する方法である。詳しくは、脆性材料基板の表面におけるレーザ光の照射位置をスクライブ線に沿って相対的に移動させ、脆性材料基板を割断する脆性材料基板の割断方法及び該割断方法により得られる車両用窓ガラス、並びに脆性材料基板の割断装置に関する。
 従来から、脆性材料基板の表面にスクライブ線を形成し、脆性材料基板の表面にレーザ光を照射する際のレーザ光の照射位置をスクライブ線に沿って相対的に移動させ、レーザ光により加熱された領域を冷却装置を利用して冷却して脆性材料基板を割断する方法が知られている(例えば、特許文献1参照)。
 一方で、脆性材料基板の表面にスクライブ線を形成し、曲げ応力を加えて基板を割断する従来の切り折り法では、割断が難しい形状が存在する。例えば、ガラス板の外周が内側へえぐれるように曲がっている形状(所謂インカーブ形状)を割断しようとすると、そのインカーブ形状の曲率、深さ、幅などにより、オンラインで連続して自動機械による切り折り生産ができない場合があった。このため、これらの割断加工の難しいインカーブ形状の基板を得る方法は、自動機械による生産ライン外に設けられたオフラインで熟練した技能を持った作業者が行う手作業による割断に頼るしかなく、大量生産はできないとされている。
 レーザ光により脆性材料基板を割断する場合、割断線(割断予定線)が直線状で基板表面におけるレーザ光の照射中心を割断予定線に沿ったスクライブ線上で相対的に移動させたとしても、その割断線や割断面は左右対称になるとは限らない。これは、基板表面におけるレーザ光の照射中心をスクライブ線上で相対的に移動させるときに、基板の温度履歴の影響や、残留応力、割断位置の端部からの距離などの影響によって対称性が失われるためと考えられる。その結果、脆性材料基板を安定した割断面の品質を得ることが難しい。
 さらに、割断線が曲線状である場合、割断位置精度や垂直性などの所望の断面品質の割断面を得ることはさらに難しくなる。これは、基板の温度履歴などそれぞれが割断に与える影響がより複雑になり、その制御が難しくなるためと予想できる。
 上記特許文献1記載の方法によれば、割断線が曲線状である場合、基板表面におけるレーザ光の照射位置をスクライブ線の曲率中心から縁に向けて(即ち、曲率半径における径方向外方に向けて)オフセットさせるので、割断面の品質を向上することができる。
特許3027768号公報
 しかしながら、上記特許文献1記載の方法では、レーザ光により加熱された領域を冷却するので、冷却装置が必要になり、割断装置が複雑化する。尚、レーザ光により加熱された領域を冷却して基板を割断するので、基板を照射位置より移動方向後方で割断することになる。
 照射位置よりも後方で割断が進行すると熱応力を発生させるための加熱-冷却にタイムラグがあるので、加熱部位の範囲が広がり応力の発生範囲も広範になる。その結果、割断位置精度や断面品質が低下する。また、加熱-冷却にタイムラグを小さくするためには、冷却装置とレーザ装置の位置を近付けることが望ましい。しかし、加熱-冷却装置が同一軌跡を通るような装置を作製しようとした場合、装置同士の空間的な干渉により割断装置のヘッド部の小型化が難しく曲率の小さい割断へ対応が難しいという問題もある。
 また、上記特許文献1記載の方法は、オフセット値を割断速度、曲率半径、ビームスポット寸法、及び基板の厚さに応じて設定することについて開示している。しかし、特許文献1記載の発明は照射位置より移動方向後方で基板が割断される。つまり、特許文献1に記載の方法は基板を照射位置より移動方向前方で割断する場合について説明するものではない。
 本発明は、上記課題に鑑みてなされたものであって、装置を複雑化することなく自動機械生産で所望の平面形状の脆性材料基板を割断することができる脆性材料基板の割断方法及び該割断方法により得られる車両用窓ガラス、並びに脆性材料基板の割断装置を提供することを目的とする。また、割断されたガラス板の断面品質の優れた脆性材料基板の割断方法を提供することを目的とする。
 上記目的を解決するため、本発明の脆性材料基板の割断方法は、脆性材料基板にレーザ光を集光照射して該脆性材料基板を割断する方法であって、脆性材料基板の表面にスクライブ線を形成する第1工程と、前記脆性材料基板の表面におけるレーザ光の照射位置を前記スクライブ線に沿って相対的に移動させて前記脆性材料基板を前記照射位置より移動方向前方で割断する第2工程とを、上記順番で有する。
 また、本発明の車両用窓ガラスは、ガラス板を本発明の脆性材料基板の割断方法により割断して得られる。
 また、本発明の脆性材料基板の割断装置は、あらかじめ脆性材料基板の表面にスクライブ線を形成し、前記脆性材料基板の表面におけるレーザ光の照射位置を前記スクライブ線に沿って相対的に移動させて前記脆性材料基板を前記照射位置より移動方向前方で割断する装置であって、
 前記脆性材料基板を支持するステージと、
 前記レーザ光を発振する発振器と、
 前記発振器から発振された前記レーザ光を前記脆性材料基板に向けて集光する光学系と、
 前記ステージと前記発振器及び前記光学系とを相対的に移動させる駆動機構と、
 前記発振器の出力及び前記駆動機構の出力を制御する制御手段とを備える。
 本発明によれば、装置を複雑化することなく自動機械生産で所望の平面形状の脆性材料基板を割断することができる脆性材料基板の割断方法及び該割断方法により得られる車両用窓ガラス、並びに脆性材料基板の割断装置を実現できる。また、割断されたガラス板の断面品質の優れた脆性材料基板の割断方法を実現できる。
 なお、自動機械による生産とは、完全に自動化されて工場などの生産工程に組み込まれた生産方法のみでなく、主として自動機械を用いて工業的に生産が可能であればよい。例えば、工程の一部を作業者が補完しながら行う半自動機械生産や連続的にコンベアなどで機械生産されるラインから抜き出して行う機械生産なども含むものとする。
本発明による割断装置10の一実施形態を示す概略図である。 レーザ光が基板表面G1に照射される様子の一例を示す図である。 レーザ光が基板表面G1に照射される様子の別の例を示す図である。 レーザ光の照射位置Aをスクライブ線L2の曲線状部分L2-2に沿って相対的に移動させる様子の一例を示す模式図である。 実施例1~3及び比較例1における、割断面の基板表面G1側と基板裏面G2側との位置ずれを示す図である。 実施例4及び比較例2における、割断面の基板表面G1側と基板裏面G2側との位置ずれを示す図である。
 以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。尚、各図において、X方向、Y方向、及びZ方向は、それぞれ、脆性材料基板Gの幅方向、長さ方向、厚さ方向を示す。
 図1は、本発明による脆性材料基板の割断装置10の一実施形態を示す概略図である。
図1(A)は、割断装置10により実現される割断方法の第1工程を示し、図1(B)は割断装置10により実現される割断方法の第2工程を示す。図1(B)において、Aは脆性材料基板Gの表面G1におけるレーザ光の照射位置を示し、Bは脆性材料基板Gの表面G1における割断の先端位置を示す。
 割断装置10は、割断線L1に沿って基板Gを割断するため、先ず、図1(A)に示すように、基板表面G1にスクライブ線L2を割断線L1に沿って形成する。次いで、図1(B)に示すように、基板表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って相対的に移動させて熱応力により基板Gを割断する。
 図1に示すように、割断装置10は、脆性材料基板Gを支持するステージ20と、脆性材料基板Gを加工する加工ヘッド30と、ステージ20と加工ヘッド30とを相対的に移動させる駆動機構40と、制御手段50とを備える。
 割断装置10の割断対象となる脆性材料基板Gは、レーザ光を吸収する性質を有する板状部材であり、例えば、ソーダライムガラスや無アルカリガラス等のガラス板、金属シリコン等の金属板、アルミナ等のセラミックス板である。
 基板Gの厚さは、脆性材料基板Gの用途により適宜設定可能である。例えば、車両用途であれば1~6mmが好ましい。厚さが薄くなると風冷強化熱処理が難しくなり、1mm未満であると、車両用途に十分な強度が得ることが難しい。厚さが6mm以上では重量が重くなりすぎる。
 ステージ20は、脆性材料基板Gの裏面G2を支持する支持面22を備える。ステージ20は、基板裏面G2の全面を支持してもよいし、基板裏面G2の一部を支持していてもよい。基板Gは、支持面22に吸着固定されてもよいし、支持面22に接着固定されてもよい。
 加工ヘッド30は、ステージ20の上方に待機しており、ステージ20(即ち、基板G)に対してX方向、Y方向、Z方向に移動される。この加工ヘッド30には、スクライブカッター32、発振器34、光学系36が組み込まれている。
 前述のように、一つの加工ヘッドにスクライブ装置32と、レーザ発振器34と集光用の光学系36とを備えたレーザ装置を一体化して搭載することにより、装置10が簡素化、小型化できコスト的にも有利になる。一方で、スクライブ装置32と、レーザ発振器34と集光用の光学系36とを備えたレーザ装置をそれぞれ別の加工ヘッドに分離して搭載することも可能である。分離して搭載した場合、タクトアップが可能になり、さらに同一軌跡を通る制御が容易になるとともに、スクライブ線L2とレーザ照射位置Aの意図的なずらし(オフセット)制御が容易になる。
 スクライブカッター32は、脆性材料基板Gにスクライブ線L2を形成するものである。スクライブ線L2は、カッター32の先端を基板表面G1に押し付けて線を引くことにより形成される。尚、本実施形態のスクライブ線L2はスクライブカッター32を用いて形成される例を示している。しかし、レーザ光を用いて熱応力によりスクライブ線L2を形成してもよく、スクライブ線L2を形成する手段に制限はない。
 カッター32の先端は、例えば、ダイヤモンドや超鋼合金で形成される。カッター32は、基板表面G1を誤って傷つけないように、加工ヘッド30の外筒の内部に収容され、必要に応じて加工ヘッド30の外筒の外に突き出されてもよい。
 割断装置10は、スクライブ線L2にレーザ光を照射して、スクライブ線L2を起点として亀裂を進展させて基板Gを割断する。
 レーザ発振器34は、レーザ光を発振するものである。レーザ発振器34には、基板Gとしてソーダライムガラス板を割断する場合、795~1030nmの範囲内の所定の特定波長の1又は複数を有するレーザ光を発振する高出力で高効率な半導体レーザが好適に用いられる。例えば、Alフリーで長寿命なInGaAsP系半導体レーザ(波長:808nm,940nm)が好適に用いられる。795~1030nmの波長の範囲内の特定波長を有するレーザ光は、一部がガラス板Gを透過し、他の一部がガラス板Gに熱として吸収され、残部がガラス板Gによって反射される。即ち、795~1030nmの波長の範囲内のレーザ光は、レーザ光の透過率及び吸収率が十分であるので、熱応力分布を最適化することができる。
 また、本発明のレーザ割断を用いると、従来の曲げ応力による割断方法と異なり、熱応力で割れるため割断すべき脆性材料基板が空間的に移動することがない。よって、割断時に断面同士がこすれることがない。その結果、割断時のガラス屑(カレット)の発生量を低減することができ、且つ、割断面の品質を向上することができる。
 これは、製品の歩留まりを向上させるのみではなく、カレットが減少することによる効果ももたらす。その期待できる効果とは、ガラス屑汚れによる品質不良の低減、洗浄工程の簡素化、製造装置の摩耗低減による寿命の延長などである。
 前述よりレーザ光の波長が長いと半導体レーザ発振機の例えば100W以上の高出力レーザ発振機の作製が困難になる。さらに、長い波長においては(例えば波長10.6μCO)でソーライムガラス板Gの表面G1での吸収が増加する。5ミクロン以上ではほぼ100%表面吸収されてしまい、ガラス板の内部にレーザ光により直接加熱することができなくなる。
 また、レーザ光の大部分がソーダライムガラス板Gの表面G1近傍で熱として吸収されると、ガラスは一般に熱伝導率が低いので、基板表面G1、即ち、スクライブ線L2が過熱されることになる。これにより、スクライブ線L2形成時の微細なチッピングを起点として亀裂が面内方向(X方向、Y方向)にも進展する。その結果、割断時のガラス屑の量が多くなったり、割断面の品質が低下したりする。
 一方、レーザ光の波長が短いと、レーザ光の透過率が高くなるので、割断に十分な熱応力を得ることが困難になる。
 また、レーザ光の出力は、単位体積×時間当たりの照射量エネルギー量によって適宜設定可能である。ソーダライムガラスを割断する場合は、割断対象物であるソーダライムガラスの照射部分の温度が歪点以下の温度である必要がある。よって、50~300℃となることが好ましい。出力が低いと割断に十分な熱応力を得ることが困難になる。
 レーザ発振器34から発振されたレーザ光は、集光レンズ等の光学系36によって基板Gに向けて集光され、基板表面G1に照射される。
 図2は、レーザ光が基板表面G1に照射される様子の一例を示す図であり、(A)は斜視図、(B)は照射位置Aの移動方向と直交する断面図である。図3は、レーザ光が基板表面G1に照射される様子の別の例を示す図であり、(A)は斜視図、(B)は照射位置Aの移動方向と直交する断面図である。図2、図3において、Fはレーザ光の集光位置を示す。
 図2に示す例では、レーザ光は、断面円形状であり、レーザ光の光軸に沿って同心円状に集光される。レーザ光の断面形状は、照射位置Aの移動方向と直交する方向の寸法Wで、レーザ光の光軸に沿って変化させる。
 図3に示す例では、レーザ光は、断面矩形状であり、レーザ光の光軸に沿って集光される。レーザ光の断面形状は、照射位置Aの移動方向と直交する方向の寸法Wで、レーザ光の光軸に沿って変化させる。照射位置Aの移動方向と平行な方向の寸法Vは、レーザ光の光軸に沿って略一定とされる。
 レーザ光の集光位置Fは、例えば図2及び図3に示すように基板表面G1を基準として基板裏面G2と同じ側にあってもよい。また、基板表面G1を基準として基板裏面G2と反対側にあってもよい。
 レーザ光の集光角α(図2、図3参照)は、照射位置Aの移動方向と直交する断面において、10°~34°が好ましい。
 集光角αが34°を超えると、レーザ光の断面形状が光軸に沿って大きく変化する。その結果、基板表面G1と基板裏面G2とにおける熱応力差が大きくなりすぎ、割断面の品質が低下する。また、レーザ光の断面形状が光軸に沿って大きく変化するので、集光位置Fの誤差が熱応力分布に及ぼす影響が大きくなりすぎ、割断面の品質が不安定になる。
 一方、集光角αが10°未満になると、基板表面G1と基板裏面G2とにおける熱応力差が小さくなりすぎて、割断面の品質が低下する。
 また、レーザ光は、基板表面G1において、照射位置Aの移動方向と直交する方向の寸法W(図2、図3参照)が2~10mmであることが好ましい。
 基板表面G1における寸法Wが2mm未満になると、スクライブ線L2が過熱される。その結果、亀裂がスクライブ線L2と直交する面内方向(X方向、Y方向)にも進展し、割断面の品質が低下する。また、照射位置Aの誤差が熱応力分布に及ぼす影響が大きくなり、割断面の品質が不安定になる。
 一方、基板表面G1における寸法Wが10mmを超えると、不要な部分が加熱される。その結果、不要な熱応力が生じて割断面の品質が低下する。また、熱が分散するので、スクライブ線L2において発生する引張応力が小さくなり、割断に十分な熱応力を得ることが困難になる。
 加工ヘッド30は、駆動機構40によってステージ20に対してX方向、Y方向、Z方向に相対的に移動される。上記機能を実現するためには、基板Gを支持するステージ20を固定しておき加工ヘッド30を駆動機構40により相対的に移動させてもよい。また、加工ヘッド30を固定しておき基板Gを支持するステージ20を駆動機構40により相対的に移動させてもよい。駆動機構40は、周知の構成であってよく、例えば、加工ヘッド30をX方向、Y方向、Z方向に案内するXYZガイドレールと、加工ヘッド30を駆動するアクチュエータとを含み構成される。
 このようにして、本実施形態では、基板表面G1にスクライブ線L2を形成し、基板表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って相対的に移動させる。発振器34の出力制御や、駆動機構40の出力制御は、マイクロコンピュータからなる制御手段50により実現される。
 制御手段50には、加工ヘッド30の位置座標を計測する位置センサ(図示せず)等が接続されている。制御手段50は、位置センサ等からの出力信号に基づいて、以下で説明する割断装置10の各種動作を制御する。
 次に、本実施形態の脆性材料基板の割断方法について、図1を参照して説明する。
 先ず、基板Gがステージ20上に載置され、加工ヘッド30が基板Gの割断線L1の始端に対向する位置まで移動される。次に、加工ヘッド30が下降し始める。その後、加工ヘッド30のスクライブカッター32が下降し、基板表面G1に所定圧で押し当てられる。さらに、図1(A)に示すように、スクライブ線L2が所定速度で引かれる。
 次いで、加工ヘッド30およびスクライブカッター32が上昇し、加工ヘッド30がスクライブ線L2の始端に対向する位置まで再移動する。次に、加工ヘッド30が下降し始める。
 その後、加工ヘッド30が基板表面G1に対して所定距離まで近づくと、レーザ光が発振器34から発振される。発振器34から発振されたレーザ光は、光学系36によって集光され、スクライブ線L2の始端に照射される。
 レーザ光の照射領域では、レーザ光の一部が熱として吸収されるので、照射領域の周囲と比較して高温になる。すると、図2及び図3に示すように、熱膨張により圧縮応力が発生する。
 一方、照射領域の周囲では、反作用により引張応力が発生する。この引張応力により、スクライブ線L2を起点として亀裂を進展させて割断を開始する。尚、スクライブ線L2を起点として亀裂を進展させて割断するので、割断面の基板表面G1側はスクライブ線L2に略一致する。
 この状態で、基板表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って移動させる。すると、基板Gが照射位置Aより移動方向前方で割断される。即ち、割断の先端位置Bがレーザ光の照射位置Aより移動方向前方にある。
 スクライブ線L2が直線状である場合、基板表面G1におけるレーザ光の照射中心をスクライブ線L2上で移動させる。すると、レーザ光の照射位置Aより移動方向前方にある割断の先端位置Bの近傍において、引張応力がスクライブ線L2に対して左右対称になるその結果、割断面の垂直性や直線性などの断面品質が向上する。
 ところで、上述の如く、スクライブ線L2が曲線状である場合、基板表面G1におけるレーザ光の照射中心をスクライブ線L2上で相対的に移動させると、割断面の品質に悪影響を及ぼす。この影響は割断面の基板裏面G2側を基板表面G1側に比較して曲率半径における径方向外方にずらす傾向がある。従って、割断面が厚さ方向(Z方向)に対して傾斜して、割断面の品質が低下する。
 そこで、本実施形態では、図4に示すように、照射位置Aを、曲線状部分を含むスクライブ線L2に沿って相対的に移動させる際に、スクライブ線L2の形状に応じて、スクライブ線L2と直交する方向に相対的に変位させる。これにより、熱応力分布を最適化して、割断面の品質を向上することができる。
 図4に示す例では、スクライブ線L2は、直線状部分L2-1、L2-3と円弧状の曲線状部分L2-2とを有する。この場合、照射位置Aを、円弧状部分L2-2に沿って移動させる際に、円弧状部分L2-2の始点から中間点にかけて径方向外方に向けて相対的に漸次変位させる。一方で、円弧状状部分L2-2の中間点から終点にかけて径方向内方に向けて相対的に漸次変位させる。ここで、「中間点」とは、始点と終点との間の位置を意味し、始点と終点との両方から等距離の中点のみならず、始点と終点とのいずれか一方に比較的近い位置を含む。なお、上記した径方向とは、円孤等の孤状部分の曲率半径を求めるに当たっての半径方向をいう。
 尚、照射位置Aの変位は、スクライブ線L2の形状の他に、基板表面G1におけるレーザ光の照射位置Aの移動速度、基板表面G1におけるレーザ光の照射形状、及び集光位置F、基板Gの厚み、加工速度、加工形状、基板Gの物性(線熱膨張係数、透過率)に応じて適宜設定されてもよい。上記した変位量は、所望のスクライブ線に沿って割断され、かつ割断面が垂直となるようにするために要求される最適な熱応力分布となるように選ばれる。
 以上のように、本実施形態によれば、基板表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って相対的に移動させて熱応力により基板Gを照射位置Aより移動方向前方で割断する。よって、冷却装置が不要となり、装置10を複雑化することなく基板Gを割断することができる。
 また、本実施形態によれば、照射位置Aを、曲線部分を含むスクライブ線L2に沿って相対的に移動させる際に、スクライブ線L2の形状に応じて、スクライブ線L2と直交する方向に相対的に変位させる。これにより、熱応力分布を最適化して、割断面の品質を向上することができる。一方、仮に、例えば基板表面G1におけるレーザ光の照射中心をスクライブ線L2上で相対的に移動させると、割断面が厚さ方向(Z方向)に対して傾斜して、割断面の品質が低下する。
 以下、実施例により本発明を更に詳細に説明する。
(実施例1~4)
 フロート法によって製造された厚さ3.5mmの緑系ソーダライムガラス板 (旭硝子社製:自動車用ガラス基板)を用意する。このガラス板Gを図1に示すステージ20上に載置した。次に、ダイヤモンドカッター32をガラス板表面G1に55Nの力で押し当て、スクライブ線L2を速度200mm/secで引いた。スクライブ線L2は、図4に示すように、順次連続的に、第1の直線状部分L2-1と、1/4円弧状部分L2-2と、第2の直線状部分L2-3とを有する。各実施例1~4における、スクライブ線L2の形状を表1に示す。なお、上記した1/4円孤状部分とは、当該円孤により円を描いたときの円の1/4となる部分をいう(以下同じ)。
Figure JPOXMLDOC01-appb-T000001
 次いで、図3に示すレーザ光をガラス板Gの表面G1に照射し、基板表面G1におけるレーザ光の照射位置Aをスクライブ線L2に沿って速度100mm/sで相対的に移動させ熱応力によりガラス板Gを割断した。具体的には、まず、基板表面G1におけるレーザ光の照射中心を第1の直線状部分L2-1上で相対的に移動させた。次いで、基板表面G1におけるレーザ光の照射位置Aを、1/4円弧状部分L2-2に沿って相対的に移動させる際に、1/4円弧状部分L2-2の始点から中点にかけて径方向外方に向けて相対的に漸次変位させた。次に、中点から終点にかけて径方向内方に向けて相対的に漸次変位させた。照射位置Aの変位量は、始点からの回転角β(図4参照)に比例して変化させた。また、円弧状部分L2-2の始点(β=0°)及び終点(β=90°)では、基板表面G1におけるレーザ光の照射中心を1/4円弧状部分L2-2に一致させた。最後に、基板表面G1におけるレーザ光の照射中心を第2の直線状部分L2-3上で相対的に移動させた。
 各実施例1~4における、レーザ光の波長、集光位置F、出力、及び基板表面G1における照射形状(寸法W×寸法V)、並びに、照射位置Aの最大変位量を表2に示す。尚、各表2~5において、「アウトサイド:OUTSIDE-DEFOCUS」とは、集光位置Fが基板表面G1を基準として基板裏面G2と(発振器34と)反対側にあることを意味する。一方で、「インサイド:INSIDE-DEFOCUS」とは、集光位置Fが基板表面G1を基準として基板裏面G2と(発振器34と)同じ側にあることを意味する。
Figure JPOXMLDOC01-appb-T000002
(比較例1~2)
 比較例1~2では、基板表面G1におけるレーザ光の照射中心を1/4円弧状部分L2-2上で相対的に移動させた他は、実施例1~4と同様にして、スクライブ線L2を形成し、ガラス板Gを割断した。
 実施例1~4及び比較例1~2の割断面の位置ずれを測定した。割断面の位置ずれは、1/4円弧状部分L2-2に沿って測定した。測定結果を図5及び図6に示す。図5及び図6において、横軸は1/4円弧状部分L2-2の始点からの回転角βであり、縦軸は割断面の基板表面G1側と基板裏面G2側との径方向ずれである。径方向ずれは、基板裏面G2側が基板表面G1側に比較して径方向外方にずれる場合を負とした。尚、各実施例1~4及び比較例1~2において、割断面の基板表面G1側は1/4円弧状部分L2-2に略一致した。
 図5は、実施例1~3及び比較例1における、割断面の基板表面G1側と基板裏面G2側との位置ずれを示す図である。図6は、実施例4及び比較例2における、割断面の基板表面G1側と基板裏面G2側との位置ずれを示す図である。
 図5及び図6によれば、実施例1~4では、照射位置Aを径方向に相対的に漸次変位させたので、径方向ずれが良好な値を示していることが分かる。これに対し、比較例1~2では、照射位置Aを径方向に相対的に変位させなかったので、径方向ずれが適正な範囲から外れていることが分かる。比較例1~2では、割断面の基板裏面G2側が径方向外方にずれる傾向があった。
(実施例5~7、比較例3)
 実施例5~7及び比較例3では、ガラス板表面の中央に直線状のスクライブ線L2を形成した他は、実施例1~4と同様にスクライブ線L2を形成した。次に、図2に示すレーザ光を用いて、表3に記載の条件でガラス板を割断した。割断時のガラス屑の量及び割断面の品質の評価結果を表3に併せて示す。
 表3によれば、実施例5~7では、基板表面G1における寸法Wを2~10mmの範囲内としたので、割断面の品質が良好であった。これに対し、比較例3では、基板表面G1における寸法Wが1mmと小さすぎた。このため、スクライブ線L2が過熱され、スクライブ線L2形成時の微細なチッピングを起点として亀裂が面内方向(X方向、Y方向)にも進展して割断面の品質が低下した。
Figure JPOXMLDOC01-appb-T000003
(実施例8~14、比較例4~8)
 実施例8~14及び比較例4~8では、実施例5~7と同様にスクライブ線L2を形成した。次に、図2又は図3に示すレーザ光を用いて、表4に記載の条件でガラス板を割断した。割断時のガラス屑の量及び割断面の品質の評価結果を表4に併せて示す。
 表4によれば、実施例8~14では、集光角αを10~34°の範囲内とした。その結果、割断面の品質が良好であった。一方、比較例4~6では、集光角αが0°、8°と小さすぎ、割断面の品質が低下した。これは、基板表面G1と基板裏面G2とにおける熱応力差が小さすぎたためと推定される。また、比較例7~8では、集光角αが60°と大きすぎ、割断面の品質が低下した。これは、基板表面G1と基板裏面G2とにおける熱応力差が大きすぎたためと推定される。
Figure JPOXMLDOC01-appb-T000004
(実施例15、比較例9~10)
 実施例15及び比較例9~10では、実施例5~7と同様にスクライブ線L2を形成した。次に、図2又は図3に示すレーザ光を用いて、表5に記載の条件でガラス板を割断した。割断時のガラス屑の量及び割断面の品質の評価結果を表5に併せて示す。
 表5によれば、実施例15では、レーザ光の波長を780~940nmの範囲内とした。その結果、レーザ光の透過率及び吸収率が十分であり、割断面の品質が良好であった。一方、比較例9~10では、レーザ光の波長が長く、基板表面G1が過熱されるので、スクライブ線L2が過熱された。その結果、スクライブ線L2形成時の微細なチッピングを起点として亀裂が面内方向(X方向、Y方向)にも進展した。このため、割断時のガラス屑(カレット)の量が多くなったり、割断面の品質が低下したりした。
Figure JPOXMLDOC01-appb-T000005
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはない。本発明を逸脱することのない範囲で、上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述した図4では、照射位置Aを、円弧状部分L2-2に沿って相対的に移動させる際に、円弧状部分L2-2の径方向に相対的に変位させたが、本発明はこれに限定されない。例えば、照射位置Aを、第1の直線状部分L2-1に沿って相対的に移動させる際に、第1の直線状部分L2-1と直交する方向に相対的に変位させてもよい。これにより、熱応力分布を最適化して、割断面の品質を向上することができる。
 また、上述した図4では、スクライブ線L2は、直線状部分L2-1、L2-3と、円弧状部分L2-2とを有するとしたが、本発明はこれに限定されない。例えば、スクライブ線L2は、第1の円弧状部分及び第2の円弧状部分からなるS字状部分を有するとしてもよい。S字状の場合には、二つの円孤状部分が逆向きに存在することになる。この場合も、照射位置Aを、各円弧状部分に沿って相対的に移動させる際に、各円弧状部分の始点から中間点にかけて径方向外方に向けて相対的に漸次変位させる。次に、中間点から終点にかけて径方向内方に向けて相対的に漸次変位させる。これにより、熱応力分布を最適化して、割断面の品質を向上することができる。
 また、上述した実施例1~4では、円弧状部分L2-2の始点及び終点で基板表面G1におけるレーザ光の照射中心を円弧状部分L2-2に一致させるとしたが、本発明はこれに限定されない。例えば、円弧状部分L2-2の始点及び終点では、基板表面G1におけるレーザ光の照射中心を径方向外方又は内方にオフセットさせてもよい。
 また、上述した図2及び図3では、レーザ光は、断面円形状、又は断面矩形状であるとしたが、断面楕円形状であってもよい。
 本発明は、自動車に代表される車両用窓ガラス、その他の車両、航空機、船舶又は建築物等の窓ガラス、薄型ディスプレイパネル用ガラス基板、ハードディスク用基板の製造に適用できる。
 なお、2008年12月25日に出願された日本特許出願2008-329734号の明細書、特許請求の範囲、図面、要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10  脆性材料基板の割断装置
 20  ステージ
 30  加工ヘッド
 32  スクライブカッター
 34  レーザ発振器
 36  光学系(集光レンズ)
 40  駆動機構
 50  制御手段

Claims (19)

  1.  脆性材料基板にレーザ光を集光照射して該脆性材料基板を割断する方法であって、
     前記脆性材料基板の表面にスクライブ線を形成する第1工程と、
     前記脆性材料基板の表面におけるレーザ光の照射位置を前記スクライブ線に沿って相対的に移動させて前記脆性材料基板を前記照射位置より移動方向前方で割断する第2工程とを有する脆性材料基板の割断方法。
  2.  前記スクライブ線が、1または複数の直線状部分と1または複数の曲線状部分とを含み、
     前記曲線状部分は、一または複数の曲率により形成される弧状であり、
     前記照射位置を、弧状部分に沿って相対的に移動させる際に、前記弧状部分の始点から中間点にかけて曲率半径における径方向外方に向けて漸次変位させ、前記弧状部分の前記中間点から終点にかけて径方向内方に向けて漸次変位させる請求項1に記載の脆性材料基板の割断方法。
  3.  前記スクライブ線が、1または複数の曲線状部分を含み、前記曲線状部分は、一または複数の曲率により形成される弧状であり、前記照射位置を、弧状部分に沿って相対的に移動させる際に、前記弧状部分の始点から中間点にかけて曲率半径における径方向外方に向けて漸次変位させ、前記弧状部分の前記中間点から終点にかけて径方向内方に向けて漸次変位させる請求項1に記載の脆性材料基板の割断方法。
  4.  前記レーザ光は前記脆性材料基板に向けて集光され、前記レーザ光の一部が前記脆性材料基板を透過して、前記レーザ光の他の一部が前記脆性材料基板に熱として吸収される請求項1~3のいずれか一項に記載の脆性材料基板の割断方法。
  5.  前記脆性材料基板がガラス板である請求項1~4のいずれか一項に記載の脆性材料基板の割断方法。
  6.  前記レーザ光として、795~1030nmの範囲内の所定の特定波長の1または複数の波長を有するレーザ光を用い、前記脆性材料基板として、ソーダライムガラス板を用いる請求項4に記載の脆性材料基板の割断方法。
  7.  前記レーザ光として、半導体レーザを用いる請求項6に記載の脆性材料基板の割断方法。
  8.  前記レーザ光の集光角は、前記照射位置の移動方向と直交する断面において、10°~34°である請求項4~7のいずれか一項に記載の脆性材料基板の割断方法。
  9.  前記レーザ光は、前記脆性材料基板の表面において、前記照射位置の移動方向と直交する方向の寸法が2~10mmである請求項4~8のいずれか一項に記載の脆性材料基板の割断方法。
  10.  前記第1工程において、スクライブカッターによりスクライブ線を形成する請求項1~9のいずれか一項に記載の脆性材料基板の割断方法。
  11.  前記第1工程において、レーザ光を用いてスクライブ線を形成する請求項1~9のいずれか一項に記載の脆性材料基板の割断方法。
  12.  前記脆性材料基板の厚さは、1~6mmである請求項1~11のいずれか一項に記載の脆性材料基板の割断方法。
  13.  ガラス板を請求項12に記載の脆性材料基板の割断方法により割断して得られる車両用窓ガラス。
  14.  脆性材料基板にレーザ光を照射して熱応力により該脆性材料基板を割断する割断装置であって、
     前記脆性材料基板を支持するステージと、
     前記レーザ光を発振するレーザ発振器と、
     前記発振器から発振された前記レーザ光を前記脆性材料基板に向けて集光する光学系と、
     前記ステージと前記レーザ発振器及び前記光学系とを相対的に移動させる駆動機構と、
     前記レーザ発振器の出力及び前記駆動機構の出力を制御する制御手段とを
    備え、あらかじめ表面にスクライブ線を形成した前記脆性材料基板の表面におけるレーザ光の照射位置を前記スクライブ線に沿って相対的に移動させ、前記脆性材料基板を前記照射位置より移動方向前方で割断するようになした脆性材料基板の割断装置。
  15.  前記脆性材料基板の割断装置は加工ヘッドを備え、該加工ヘッドはスクライブ装置とレーザ発振器を備える請求項14に記載の前記脆性材料基板の割断装置。
  16.  前記スクライブ線は、曲線状部分を含み、
     前記制御手段は、前記照射位置を、前記スクライブ線に沿って相対的に移動させる際に、前記スクライブ線の形状に応じて、前記スクライブ線と直交する方向に相対的に変位させる請求項14または15に記載の脆性材料基板の割断装置。
  17.  前記レーザ発振器が、795~1030nmの波長の範囲内の所定の特定波長の1又は複数の波長のレーザ光を発信する請求項14~16のいずれか一項に記載の脆性材料基板の割断装置。
  18.  前記脆性材料基板が、ガラス板である請求項14~17のいずれか一項に記載の脆性材料基板の割断装置。
  19.  前記脆性材料基板が、厚さ1~6mmのソーダライムガラス板である請求項14~18のいずれか一項に記載の脆性材料基板の割断装置。
PCT/JP2009/071341 2008-12-25 2009-12-22 脆性材料基板の割断方法、装置及び車両用窓ガラス WO2010074091A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010544090A JP5533668B2 (ja) 2008-12-25 2009-12-22 脆性材料基板の割断方法、装置及び車両用窓ガラス
EP09834892A EP2377823A4 (en) 2008-12-25 2009-12-22 METHOD AND DEVICE FOR CUTTING SPROUTS MATERIAL PLATES AND GLASS FOR A VEHICLE
RU2011130891/03A RU2011130891A (ru) 2008-12-25 2009-12-22 Способ и система для резки пластины из хрупкого материала, и оконное стекло для транспортного средства
CN200980152660.9A CN102264659B (zh) 2008-12-25 2009-12-22 脆性材料基板的割断方法、装置及车辆用窗玻璃
US13/162,879 US20110250423A1 (en) 2008-12-25 2011-06-17 Process and system for cutting a brittle-material plate, and window glass for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329734 2008-12-25
JP2008329734 2008-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/162,879 Continuation US20110250423A1 (en) 2008-12-25 2011-06-17 Process and system for cutting a brittle-material plate, and window glass for a vehicle

Publications (1)

Publication Number Publication Date
WO2010074091A1 true WO2010074091A1 (ja) 2010-07-01

Family

ID=42287699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071341 WO2010074091A1 (ja) 2008-12-25 2009-12-22 脆性材料基板の割断方法、装置及び車両用窓ガラス

Country Status (7)

Country Link
US (1) US20110250423A1 (ja)
EP (1) EP2377823A4 (ja)
JP (1) JP5533668B2 (ja)
KR (1) KR20110106275A (ja)
CN (1) CN102264659B (ja)
RU (1) RU2011130891A (ja)
WO (1) WO2010074091A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162392A1 (ja) * 2010-06-25 2011-12-29 旭硝子株式会社 割断方法および割断装置
US20120211923A1 (en) * 2011-02-18 2012-08-23 Sean Matthew Garner Laser cutting method
CN104136967A (zh) * 2012-02-28 2014-11-05 伊雷克托科学工业股份有限公司 用于分离增强玻璃的方法及装置及由该增强玻璃生产的物品
US20150114044A1 (en) * 2012-07-10 2015-04-30 Asahi Glass Company, Limited Method for processing glass plate

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346130B2 (en) 2008-12-17 2016-05-24 Electro Scientific Industries, Inc. Method for laser processing glass with a chamfered edge
CN102470549A (zh) * 2009-07-03 2012-05-23 旭硝子株式会社 脆性材料基板的切割方法、切割装置以及通过该切割方法获得的车辆用窗玻璃
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
US8720228B2 (en) * 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
US9828278B2 (en) 2012-02-28 2017-11-28 Electro Scientific Industries, Inc. Method and apparatus for separation of strengthened glass and articles produced thereby
US10357850B2 (en) 2012-09-24 2019-07-23 Electro Scientific Industries, Inc. Method and apparatus for machining a workpiece
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
US9908806B2 (en) * 2012-07-27 2018-03-06 Nippon Electric Glass Co., Ltd. Sheet glass, method for manufacturing sheet glass, and device for manufacturing sheet glass
KR101355807B1 (ko) * 2012-09-11 2014-02-03 로체 시스템즈(주) 비금속 재료의 곡선 절단방법
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
TWI471188B (zh) * 2012-10-19 2015-02-01 Metal Ind Res & Dev Ct 硬脆材料切割方法
WO2015013475A1 (en) 2013-07-26 2015-01-29 Corning Incorporated Corrugated sheet, method of manufacture thereof, and mold therefor
US20150059411A1 (en) * 2013-08-29 2015-03-05 Corning Incorporated Method of separating a glass sheet from a carrier
WO2015084668A1 (en) 2013-12-03 2015-06-11 Corning Incorporated Apparatus and method for severing a glass sheet
WO2015126805A1 (en) * 2014-02-20 2015-08-27 Corning Incorporated Methods and apparatus for cutting radii in flexible thin glass
WO2015153251A1 (en) * 2014-03-31 2015-10-08 Corning Incorporated Machining methods of forming laminated glass structures
JP6638514B2 (ja) 2015-03-31 2020-01-29 日本電気硝子株式会社 脆性基板の切断方法
US10373830B2 (en) * 2016-03-08 2019-08-06 Ostendo Technologies, Inc. Apparatus and methods to remove unbonded areas within bonded substrates using localized electromagnetic wave annealing
JP7416802B2 (ja) 2018-12-21 2024-01-17 マジック リープ, インコーポレイテッド 形状を切断するための構成可能な固定具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997545A (ja) * 1982-11-22 1984-06-05 Stanley Electric Co Ltd ガラスセルのブレイキング方法
JPH0327768B2 (ja) 1980-11-03 1991-04-17 Fichtel & Sachs Ag
JP2001026435A (ja) * 1999-07-14 2001-01-30 Nakamura Tome Precision Ind Co Ltd 硬質脆性板の割断方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
MY120533A (en) * 1997-04-14 2005-11-30 Schott Ag Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass.
DE19963939B4 (de) * 1999-12-31 2004-11-04 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum Durchtrennen von flachen Werkstücken aus sprödbrüchigem Material
JP3516233B2 (ja) * 2000-11-06 2004-04-05 日本板硝子株式会社 情報記録媒体用ガラス基板の製造方法
US20090320524A1 (en) * 2008-06-27 2009-12-31 Anatoli Anatolyevich Abramov Glass sheet cutting by laser-guided gyrotron beam
US8327666B2 (en) * 2009-02-19 2012-12-11 Corning Incorporated Method of separating strengthened glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327768B2 (ja) 1980-11-03 1991-04-17 Fichtel & Sachs Ag
JPS5997545A (ja) * 1982-11-22 1984-06-05 Stanley Electric Co Ltd ガラスセルのブレイキング方法
JP2001026435A (ja) * 1999-07-14 2001-01-30 Nakamura Tome Precision Ind Co Ltd 硬質脆性板の割断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2377823A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162392A1 (ja) * 2010-06-25 2011-12-29 旭硝子株式会社 割断方法および割断装置
US20120211923A1 (en) * 2011-02-18 2012-08-23 Sean Matthew Garner Laser cutting method
US8584490B2 (en) * 2011-02-18 2013-11-19 Corning Incorporated Laser cutting method
CN104136967A (zh) * 2012-02-28 2014-11-05 伊雷克托科学工业股份有限公司 用于分离增强玻璃的方法及装置及由该增强玻璃生产的物品
CN104136967B (zh) * 2012-02-28 2018-02-16 伊雷克托科学工业股份有限公司 用于分离增强玻璃的方法及装置及由该增强玻璃生产的物品
US20150114044A1 (en) * 2012-07-10 2015-04-30 Asahi Glass Company, Limited Method for processing glass plate
US9334188B2 (en) * 2012-07-10 2016-05-10 Asahi Glass Company, Limited Method for processing glass plate

Also Published As

Publication number Publication date
CN102264659A (zh) 2011-11-30
JP5533668B2 (ja) 2014-06-25
RU2011130891A (ru) 2013-01-27
EP2377823A4 (en) 2012-06-13
US20110250423A1 (en) 2011-10-13
EP2377823A1 (en) 2011-10-19
JPWO2010074091A1 (ja) 2012-06-21
KR20110106275A (ko) 2011-09-28
CN102264659B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5533668B2 (ja) 脆性材料基板の割断方法、装置及び車両用窓ガラス
JP5609870B2 (ja) 脆性材料基板の割断方法及び割断装置並びにその割断方法により得られる車両用窓ガラス
JP5113462B2 (ja) 脆性材料基板の面取り方法
US8497451B2 (en) Brittle nonmetallic workpiece and method and device for making same
KR101163394B1 (ko) 취성 재료로 이루어진 곡선형 기판을 자유로운 형태로 절단하는 방법
JP5345334B2 (ja) 脆性材料の熱応力割断方法
EP3107868B1 (en) Methods for cutting radii in flexible thin glass
JP2008115067A (ja) フラットパネルディスプレィ薄板の割断方法
JP2008127223A (ja) フラットパネルディスプレィ薄板の割断方法
WO2009128334A1 (ja) 脆性材料基板の加工方法
JP6500917B2 (ja) 脆性材料の切断方法、脆性材料の切断装置、切断脆性材料の製造方法及び切断脆性材料
WO2014175147A1 (ja) ガラス板の切断方法
KR20110106360A (ko) 취성 재료의 분할 장치 및 할단 방법
JP2007076937A (ja) スクライブしたガラスの割断方法及び装置
WO2020159760A1 (en) Methods and apparatus for free-form cutting of flexible thin glass
JP2006137169A (ja) 脆性材料の割断方法及び装置
JP4298072B2 (ja) 硬質脆性板の割断方法
WO2021157305A1 (ja) ガラス板の製造方法
JP2006137168A (ja) 脆性材料の割断方法及び装置
JP5678816B2 (ja) ガラス基板の割断方法および割断装置
WO2014175146A1 (ja) ガラス板の切断方法
JP2008127224A (ja) 脆性材料をフルカットするレーザ割断方法
WO2011162392A1 (ja) 割断方法および割断装置
JP2006137170A (ja) 脆性材料の割断方法及び装置
JP2007076936A (ja) 脆性材料の割断方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152660.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010544090

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117009804

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4521/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009834892

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011130891

Country of ref document: RU