WO2010074002A1 - Polishing liquid composition for magnetic-disk substrate - Google Patents

Polishing liquid composition for magnetic-disk substrate Download PDF

Info

Publication number
WO2010074002A1
WO2010074002A1 PCT/JP2009/071160 JP2009071160W WO2010074002A1 WO 2010074002 A1 WO2010074002 A1 WO 2010074002A1 JP 2009071160 W JP2009071160 W JP 2009071160W WO 2010074002 A1 WO2010074002 A1 WO 2010074002A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
magnetic disk
copolymer
acid
substrate
Prior art date
Application number
PCT/JP2009/071160
Other languages
French (fr)
Japanese (ja)
Inventor
浜口剛吏
土居陽彦
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009173203A external-priority patent/JP5571915B2/en
Priority claimed from JP2009207201A external-priority patent/JP5571926B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN200980151924.9A priority Critical patent/CN102265339B/en
Priority to US13/133,736 priority patent/US9070399B2/en
Priority to GB1110652.3A priority patent/GB2478250B/en
Priority to SG2011045572A priority patent/SG172309A1/en
Publication of WO2010074002A1 publication Critical patent/WO2010074002A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a polishing liquid composition for a magnetic disk substrate and a method for producing a magnetic disk substrate using the same.
  • Magnetic disk substrates have improved smoothness and flatness (reduced surface roughness, waviness, and edge sagging) and reduced defects (scratches, protrusions, pits) in order to reduce the flying height of the magnetic head and secure a recording area. Etc.) is becoming stricter.
  • a polishing liquid composition containing a copolymer having a functional group such as a carboxyl group or a sulfonic acid group has been proposed (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 is a polishing liquid composition suitable for chemical mechanical polishing (CMP) of a semiconductor component, and includes a polymer having a sulfonic acid group to flatten the surface of an object to be polished and polishing rate. Disclosed is a polishing composition that can increase the thickness.
  • CMP chemical mechanical polishing
  • Patent Document 2 discloses a polishing composition for semiconductor parts suitable for chemical mechanical polishing (CMP), which is a polymer having a carboxylic acid group, a polymer having a sulfonic acid group, and a polymer having a phosphonic acid group.
  • CMP chemical mechanical polishing
  • a polishing liquid composition that can contain at least two polymers among them to reduce the surface roughness of the object to be polished and increase the polishing rate.
  • Patent Document 3 is a composition for polishing a Ni metal-containing substrate, which is a copolymer resin particle having a functional group capable of coordinating to a metal ion such as a sulfonic acid group in place of inorganic abrasive grains such as alumina and silica. Disclosed is a polishing composition capable of suppressing the occurrence of defects such as scratches and protrusions.
  • the recording method on the magnetic disk has shifted from the horizontal magnetic recording method to the perpendicular magnetic recording method.
  • the texture process required for aligning the magnetization direction in the horizontal magnetic recording method is not required, and a magnetic layer is formed directly on the polished substrate surface.
  • the required characteristics for quality are becoming stricter.
  • Conventional polishing liquid compositions cannot sufficiently satisfy the small number of nanoprotrusions and the low surface waviness.
  • the present invention provides a polishing composition for a magnetic disk substrate that can reduce nano-protrusion defects and surface waviness on the polished substrate surface in addition to scratches, and a method for manufacturing a magnetic disk substrate using the same. .
  • the present invention relates to a copolymer having a structural unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a structural unit having a sulfonic acid group, and a main chain of which is a saturated hydrocarbon chain, or a salt thereof Further, the present invention relates to a polishing composition for a magnetic disk substrate containing an abrasive and water.
  • the magnetic disk substrate manufacturing method of the present invention also relates to a magnetic disk substrate manufacturing method including a step of polishing a substrate to be polished using the magnetic disk substrate polishing liquid composition of the present invention.
  • a magnetic disk substrate in addition to scratches on the surface of the substrate after polishing, a magnetic disk substrate, particularly a perpendicular magnetic recording system, in which nano-projection defects and surface waviness after polishing are reduced.
  • the effect that the magnetic disk substrate can be manufactured is preferably achieved.
  • “scratch” is a fine scratch on the surface of a substrate having a depth of 1 nm or more, a width of 100 nm or more, and a length of 1000 nm or more, such as the Candela 6100 series manufactured by KLA Tencor, which is an optical defect detection device, It can be detected by NS 1500 series manufactured by Hitachi High-Technology Corporation and can be quantitatively evaluated as the number of scratches. Further, the size and shape of the detected scratch can be analyzed with an atomic force microscope (AFM), a scanning electron microscope (SEM), and a transmission electron microscope (TEM).
  • AFM atomic force microscope
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the “nanoprotrusion defect” refers to a defect on the surface of a substrate after polishing in a manufacturing process of a magnetic disk substrate, and a convex defect having a size of less than 10 nm that can be detected optically.
  • the distance between the magnetic head and the magnetic disk needs to be less than 10 nm. Therefore, the remaining nanoprotrusions are a cause of the consumption of the magnetic head and the recording density of the magnetic disk drive. May cause degradation or instability. If the nanoprojection defects are reduced in the polished substrate, the flying height of the magnetic head can be reduced, and the recording density of the magnetic disk substrate can be improved.
  • the “undulation” of the substrate surface means irregularities on the substrate surface having a longer wavelength than the roughness, and generally includes a long wavelength undulation (wavelength 0.4 to 2 mm) and a short wavelength undulation (wavelength 5 to 50 ⁇ m). In the present specification, it refers to short wavelength waviness unless otherwise specified.
  • the present invention provides a polishing composition
  • a polishing composition comprising a copolymer having a structural unit having a sulfonic acid group and a hydrophobic structural unit derived from a monomer such as styrene or methyl methacrylate.
  • a monomer such as styrene or methyl methacrylate.
  • the present invention relates to a copolymer having a structural unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a structural unit having a sulfonic acid group, and the main chain is a saturated hydrocarbon chain.
  • the present invention relates to a magnetic disk substrate polishing liquid composition (hereinafter also referred to as “the polishing liquid composition of the present invention”) containing the salt, an abrasive, and water.
  • the polishing composition of the present invention in the substrate after polishing, not only the scratch can be reduced, but also the effect of reducing the nanoprojection defect and the substrate surface waviness can be achieved.
  • the polishing composition of the present invention can reduce not only scratches but also nano-protrusion defects and substrate surface waviness after polishing are not clear. It is presumed that the amount of adsorption to the polishing pad increases and the vibration of the polishing pad is suppressed, and as a result, scratches after polishing, nanoprotrusion defects, and substrate surface waviness are reduced.
  • the present invention is not limited to this mechanism.
  • the polishing composition of the present invention has a constitutional unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a constitutional unit having a sulfonic acid group, and the main chain is a saturated hydrocarbon chain.
  • a polymer or a salt thereof hereinafter also referred to as “copolymer of the present invention”.
  • a structural unit derived from a monomer having a solubility in 100 g of water at 20 ° C. of 2 g or less is also referred to as a “hydrophobic structural unit”.
  • the arrangement of the hydrophobic structural unit and the structural unit having a sulfonic acid group may be random, block, or graft.
  • the copolymer of this invention may contain structural units other than these structural units in the range which satisfy
  • the hydrophobic structural unit in the copolymer of the present invention is a structural unit derived from a monomer having a solubility in 100 g of water at 20 ° C. of 2 g or less (hereinafter also referred to as “hydrophobic monomer”).
  • the solubility of the hydrophobic monomer in 100 g of water at 20 ° C. is preferably 0 to 1 g, more preferably 0 to 0.1 g from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
  • hydrophobic monomers examples include alkyl acrylate monomers, alkyl methacrylate monomers, polyalkylene glycol acrylate monomers excluding polyethylene glycol acrylate monomers, polyalkylene glycol methacrylate monomers excluding polyethylene glycol methacrylate monomers, and styrene monomers.
  • Preferred examples include monomers, alkylacrylamide monomers, alkylmethacrylamide monomers and the like.
  • the alkyl group contained in these monomers includes not only a linear or branched hydrocarbon group but also a hydrocarbon group having a monocyclic or polycyclic aliphatic ring or aromatic ring, In addition, it preferably further includes a hydrocarbon group having a linear or branched alkyl group as a substituent.
  • the structural unit derived from the hydrophobic monomer is represented by the following general formulas (1) and (2) from the viewpoints of improving hydrolysis resistance and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. It is preferable that it is at least 1 structural unit selected from the group which consists of structural units represented by these.
  • R 1 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 is a hydrogen atom, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, carbon An alkoxy group having 1 to 4 carbon atoms or an aryl group is preferable
  • R 4 is preferably a hydrocarbon chain having 1 to 22 carbon atoms.
  • R 1 represents an increase in the amount of the copolymer adsorbed on the polishing pad, and the viewpoint of reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing. Therefore, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is more preferable. Even more preferred.
  • R 2 in the above general formula (1) may be one substituent at any of the ortho, meta, and para positions, may be a substituent at two positions in the meta position, and other two or more positions. May be a substituent.
  • R 2 is a hydrogen atom, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, from the viewpoint of increasing the amount of adsorption of the copolymer to the polishing pad and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, An alkoxy group having 1 to 4 carbon atoms or an aryl group is preferable, a hydrogen atom or one or more alkyl groups having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is further preferable.
  • R 2 When there are a plurality of R 2 , they may be the same or different.
  • the alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms may have a linear structure or a branched structure.
  • the copolymer of this invention may also contain the hydrophobic structural unit represented by the said 2 or more types of general formula (1).
  • the content of the hydrophobic structural unit represented by the above general formula (1) in all the structural units constituting the copolymer of the present invention is the reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. From the viewpoint, it is preferably 5 to 95 mol%, more preferably 5 to 70 mol%, still more preferably 10 to 60 mol%, still more preferably 15 to 50 mol%, still more preferably 20 to 40 mol%.
  • Monomers that give the hydrophobic structural unit represented by the general formula (1) include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ , 2-dimethylstyrene.
  • reactivity and scratches after polishing, nanoprotrusion defects, And styrene is preferable from a viewpoint of reduction of the waviness of the substrate surface.
  • R 3 represents an increase in the amount of the copolymer adsorbed on the polishing pad, scratches after polishing, nanoprotrusion defects, and the substrate surface.
  • a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, and hydrogen Even more preferred are atoms or methyl groups.
  • R 4 in the general formula (2) represents a hydrocarbon chain having 1 to 22 carbon atoms from the viewpoint of increasing the amount of the copolymer adsorbed on the polishing pad and reducing scratches, nanoprotrusion defects, and substrate surface waviness after polishing.
  • the number of carbon atoms is preferably 1 to 18, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 4.
  • the hydrocarbon chain may be a straight chain structure, a branched chain structure, or a cyclic structure, and is preferably an alkyl group, an alkenyl group, a phenyl group, or a cycloalkyl group, and more preferably an alkyl group.
  • the copolymer of the present invention may contain two or more kinds of hydrophobic structural units represented by the general formula (2).
  • the content of the hydrophobic structural unit represented by the above general formula (2) in all the structural units constituting the copolymer of the present invention is the reduction of scratches after polishing, nanoprojection defects, and substrate surface waviness. From the viewpoint, it is preferably 5 to 95 mol%, more preferably 30 to 95 mol%, still more preferably 40 to 90 mol%, still more preferably 50 to 85 mol%, still more preferably 60 to 80 mol%.
  • Preferred hydrophobic monomers that provide the hydrophobic structural unit represented by the general formula (2) include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, ethyl hexyl methacrylate, Decyl methacrylate, lauryl methacrylate (LMA), palmityl methacrylate, cetyl methacrylate, stearyl methacrylate (SMA), isostearyl methacrylate (ISMA), behenyl methacrylate (BMA), phenyl methacrylate, benzyl methacrylate (BzMA) ), Cyclohexyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, ethyl hexyl acrylate, decyl acrylate, la
  • methyl methacrylate and ethyl methacrylate are preferable, and methyl methacrylate is more preferable.
  • the structural unit having a sulfonic acid group in the copolymer of the present invention can be obtained, for example, by polymerizing a monomer having a sulfonic acid group.
  • the structural unit having a sulfonic acid group is preferably represented by the following general formula (3) from the viewpoint of reducing scratches after polishing, nanoprojection defects, and substrate surface waviness.
  • R 5 in the following general formula (3) is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
  • R 6 in the following general formula (3) is an aryl substituted with one or a plurality of sulfonic acid groups from the viewpoint of the solubility / dispersibility of the copolymer and the reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing.
  • the phenyl group having a sulfonic acid group at the para position is more preferable.
  • the copolymer of the present invention may contain a structural unit having two or more kinds of sulfonic acid groups. These sulfonic acid groups may take the form of neutralized salts.
  • R 5 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 6 is preferably an aryl group having one or more sulfonic acid groups.
  • the counter ion of the sulfonic acid group is not particularly limited, and specific examples include ions of metals, ammonium, alkylammonium, and the like.
  • Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8.
  • metals belonging to Group 1A, 3B, or Group 8 are preferable from the viewpoint of surface roughness and scratch reduction, and sodium and potassium belonging to Group 1A are more preferable.
  • alkylammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like.
  • these salts ammonium salts, sodium salts, and potassium salts are more preferable.
  • the content of the structural unit having a sulfonic acid group in all the structural units constituting the copolymer of the present invention is 5 to 95 mol from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. % Is preferred.
  • the hydrophobic structural unit of the copolymer of the present invention is the hydrophobic structural unit represented by the general formula (1)
  • the content of the structural unit having a sulfonic acid group is 40 to 90 mol from the same viewpoint. % Is more preferable, 50 to 85 mol% is more preferable, and 60 to 80 mol% is still more preferable.
  • the hydrophobic structural unit of the copolymer of the present invention is a hydrophobic structural unit represented by the general formula (2)
  • the content of the structural unit having a sulfonic acid group is 5 to 70 mol% is more preferable, 10 to 60 mol% is more preferable, 15 to 50 mol% is still more preferable, and 20 to 40 mol% is still more preferable.
  • 2- (meth) acrylamido-2-methylpropanesulfonic acid from the viewpoint of improving hydrolysis resistance by making the main chain a saturated hydrocarbon chain, examples thereof include styrene sulfonic acid, vinyl benzyl sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamylene sulfonic acid, naphthalene sulfonic acid, and salts thereof.
  • styrene sulfonic acid methyl styrene sulfonic acid, and salts thereof are preferable from the viewpoint of storage stability of the copolymer and reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing. More preferred are acids and salts thereof.
  • the structural unit having a sulfonic acid group may be obtained by sulfonating a (co) polymer (base polymer) containing the hydrophobic structural unit described above with a known sulfonating agent or the like.
  • the total content of the hydrophobic structural unit and the structural unit having a sulfonic acid group in all the structural units constituting the copolymer of the present invention is the number of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. From the viewpoint of reduction, it is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%.
  • the molar ratio of the hydrophobic structural unit and the structural unit having a sulfonic acid group in the total structural units constituting the copolymer of the present invention (mol% of hydrophobic structural unit / mol of the structural unit having a sulfonic acid group) %) Is preferably 5/95 to 95/5 from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
  • the hydrophobic structural unit of the copolymer of the present invention is the hydrophobic structural unit represented by the general formula (1)
  • the molar ratio is more preferably 10/90 to 60/40 from the same viewpoint, 15 / 85 to 50/50 is more preferable, and 20/80 to 40/60 is even more preferable.
  • the hydrophobic structural unit of the copolymer of the present invention is a hydrophobic structural unit represented by the general formula (2)
  • the content of the structural unit having a sulfonic acid group is 30 / 70-95 / 5 is more preferred, 40 / 60-90 / 10 is more preferred, 50 / 50-85 / 15 is even more preferred, and 60 / 40-80 / 20 is even more preferred.
  • the copolymer of this invention may have other structural units other than said hydrophobic structural unit and the structural unit which has a sulfonic acid group.
  • Other structural units include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and crotonic acid; hydroxyethyl acrylate, hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, ethylene glycol Hydroxy or glycidyl group-containing ethylenic monomers such as acrylate, ethylene glycol dimethacrylate, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate; acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-diacetone Ethylenic amides such as acrylamide; aminoethyl acrylate, aminoethyl acrylate,
  • the content of other structural units in the total structural units constituting the copolymer of the present invention is 0 to 30 mol% from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
  • 0 to 20 mol% is more preferable, 0 to 10 mol% is further preferable, 0 to 5 mol% is still more preferable, and substantially 0 mol% is more preferable.
  • Examples of the method for producing the copolymer of the present invention include a monomer copolymerization method, a method obtained by using a sulfonating agent for the polymer, and the like, but are not limited to these methods.
  • Preferred is a monomer copolymerization method.
  • a known polymerization method such as bulk polymerization or solution polymerization can be used.
  • the polymerization solvent for obtaining the copolymer of the present invention may be any as long as the solubility in water (20 ° C.) is 10% by weight or more. Examples include water, alcohols, ketones, and ethers.
  • Examples of the alcohol solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, secondary butanol, tertiary butanol, isobutanol, diacetone alcohol and the like.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cyclohexanone.
  • Examples of ether solvents include tetrahydrofuran, dioxane, glyme, cellosolves and the like. One or more of these can be mixed and used.
  • a known radical initiator is used as the polymerization initiator.
  • persulfates represented by ammonium persulfate, potassium persulfate, sodium persulfate hydroperoxides represented by t-butyl hydroperoxide, dialkyl peroxides represented by di-t-butyl peroxide Acetyl peroxide, diacyl peroxides represented by benzoyl peroxide, ketone peroxides represented by methyl ethyl ketone per
  • the initiator concentration is preferably from 1 to 100 mol%, more preferably from 3 to 50 mol%, still more preferably from 5 to 30 mol%, based on the monomer. Moreover, a chain transfer agent can be used as needed.
  • the monomer concentration during the polymerization is preferably 0.5 to 90% by weight, more preferably 1.0 to 50% by weight, and still more preferably 3.0 to 30% by weight.
  • the polymerization temperature is preferably 40 to 300 ° C, more preferably 50 to 250 ° C, and further preferably 60 to 200 ° C. When two or more types of monomers are copolymerized, drop polymerization is preferred in order to equalize the monomer conversion rate over time. The dropping speed and dropping time are adjusted as appropriate.
  • the conversion ratio of the monomer is a ratio of the monomer changed to a polymer, and can be represented by the following formula.
  • Conversion of monomer (%) ((amount of charged monomer) ⁇ (amount of unreacted monomer)) / (amount of charged monomer) ⁇ 100
  • the conversion ratio of the two or more monomers is preferably 0.7 to 1.3, more preferably 0.8 to 1.2, and still more preferably 0.9 to 1.1.
  • the weight average molecular weight of the copolymer of the present invention is preferably 500 or more and 120,000 or less, more preferably 1000 or more and 100,000 or less, and more preferably 1000 or more, from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. 30,000 or less is more preferable, 1000 or more and 10,000 or less are more preferable, and 1500 or more and 8000 or less are even more preferable.
  • the weight average molecular weight is a value measured under the conditions described in Examples using gel permeation chromatography (GPC).
  • the counter ion is not particularly limited, and as in the case of the sulfonate group described above, ions of metal, ammonium, alkylammonium, etc. Is mentioned.
  • the content of the copolymer of the present invention in the polishing composition is preferably from 0.001 to 1% by weight, more preferably from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. 005 to 0.5% by weight, more preferably 0.01 to 0.2% by weight, even more preferably 0.01 to 0.1% by weight, and particularly preferably 0.01 to 0.075% by weight.
  • the polishing composition of the present invention is a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness while maintaining the polishing rate. It is preferable to contain.
  • the heterocyclic aromatic compound preferably has 3 or more nitrogen atoms in the heterocyclic ring, more preferably 3 to 9, more preferably 3 to 5, and still more preferably 3 or 4.
  • Heteroaromatic compounds are pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1,2,4-triazine, 1, from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
  • 1H-benzotriazole 1H-tolyltriazole is more preferable, and 1H-benzotriazole is more preferable.
  • alkyl group of the alkyl-substituted product include a lower alkyl group having 1 to 4 carbon atoms, and more specifically, a methyl group and an ethyl group.
  • amine-substituted product include 1- [N, N-bis (hydroxyethylene) aminomethyl] benzotriazole and 1- [N, N-bis (hydroxyethylene) aminomethyl] tolyltriazole.
  • the content of the heterocyclic aromatic compound in the polishing composition is 0.01 to 10 with respect to the total weight of the polishing composition from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. % By weight is preferred, 0.05 to 5% by weight is more preferred, and 0.1 to 1% by weight is even more preferred.
  • the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.
  • the concentration ratio between the abrasive and the heterocyclic aromatic compound is a scratch after polishing, From the viewpoint of reducing nanoprotrusion defects and substrate surface waviness, 2 to 100 is preferable, 5 to 50 is more preferable, and 10 to 25 is even more preferable.
  • the concentration ratio [heterocyclic aromatic compound concentration (wt%) / copolymer concentration (wt%)] of the heterocyclic aromatic compound and the copolymer in the polishing liquid composition is determined after polishing. From the viewpoint of reducing scratches, nanoprotrusion defects, and substrate surface waviness, 1 to 100 is preferable, 2 to 50 is more preferable, and 2.5 to 25 is even more preferable.
  • abrasives generally used for polishing can be used, including metal, metal or metalloid carbide, nitride, oxide, boride, diamond. Etc.
  • the metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type).
  • Specific examples of the abrasive include aluminum oxide (alumina), silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, silica, and the like, and one or more of these are used. This is preferable from the viewpoint of improving the polishing rate.
  • alumina and colloidal silica are preferable from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness, and colloidal silica is more preferable.
  • the colloidal silica may be obtained by a known production method or the like produced from a silicic acid aqueous solution.
  • the usage form of the silica particles is preferably a slurry from the viewpoint of operability.
  • the present invention is preferably based on the knowledge that by combining predetermined silica particles described later with the above-mentioned copolymer, scratches after polishing, nanoprotrusion defects, and substrate surface waviness can be further reduced.
  • the present invention focuses on the difference between the CV values ( ⁇ CV values) at two different detection angles in addition to the average particle diameter that has been conventionally controlled, and these two parameters.
  • an abrasive controlled by using the above-described copolymer is based on the knowledge that, in addition to scratches after polishing, nanoprotrusion defects and substrate surface waviness can be further reduced.
  • the average particle size of the abrasive includes two types of average particle size, that is, the average particle size (S2) measured by transmission electron microscope observation, and the detection angle of 90 degrees in the dynamic light scattering method.
  • S2 average particle size measured by transmission electron microscope observation
  • the average particle diameter based on the scattering intensity distribution measured in (1) is used, and specifically measured by the method described in the examples.
  • the average particle size based on the scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method is preferably 1 to 40 nm from the viewpoint of reducing waviness and nanoprotrusion defects on the polished substrate surface, and 5 to 37 nm. Is more preferably 10 to 35 nm. Further, from the same viewpoint, the average particle diameter (S2) measured by transmission electron microscope observation is preferably 1 to 40 nm, more preferably 5 to 37 nm, and further preferably 10 to 35 nm.
  • the ⁇ CV value of the abrasive is the standard deviation of the particle diameter measured based on the scattering intensity distribution at a detection angle of 30 degrees (forward scattering) by the dynamic light scattering method, and the detection angle of 30 by the dynamic light scattering method.
  • the ⁇ CV value of the abrasive used in the polishing composition of the present invention is preferably 0 to 14% from the viewpoint of reducing scratches after polishing, nanoprojection defects, and substrate surface waviness without impairing productivity. 0 to 10% is more preferable, 0.01 to 10% is more preferable, 0.01 to 7% is still more preferable, and 0.01 to 5% is still more preferable.
  • the CV value of the colloidal silica abrasive is a value of a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution in the dynamic light scattering method by the average particle diameter and multiplying by 100.
  • the CV value measured at a detection angle of 90 degrees is referred to as CV90
  • the CV value measured at a detection angle of 30 degrees is referred to as CV30
  • CV30 the CV value measured at a detection angle of 30 degrees (forward scatter) as CV30, specifically by the method described in the examples.
  • the CV90 of the colloidal silica abrasive used in the polishing composition of the present invention is preferably 1 to 35% from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness without impairing productivity. 5 to 34% is more preferable, and 10 to 33% is more preferable.
  • the inventors have found that there is a correlation between the ⁇ CV value of the abrasive and the content of the abrasive agglomerates (non-spherical particles), and by using an abrasive having a ⁇ CV value within a predetermined range, It was found that scratches, nanoprotrusion defects, and substrate surface waviness can be reduced. The reason why such an effect is achieved is not clear, but by controlling the ⁇ CV value, 50 to 200 nm of abrasive aggregates (non-spherical particles) generated by agglomeration of primary particles of the abrasive are reduced, and such aggregates are reduced.
  • the formation of the agglomerates that occur during polishing is further suppressed, and friction vibration during polishing is reduced to polish from the opening of the polishing pad. It is presumed that the material aggregates are further prevented from falling off, and in addition to scratching of the substrate after polishing, nano-projection defects and substrate surface waviness after polishing are further reduced.
  • the present invention is not limited to these estimation mechanisms.
  • D ⁇ / q 2
  • the angle dependency shown in the graph plotting ⁇ / q 2 with respect to the scattering vector q 2 the more the average shape of the particles in the dispersion is judged to be spherical, and the angle dependency is The larger the particle size, the more the average shape of the particles in the dispersion is judged to be non-spherical.
  • the conventional method using the angular dependence of the diffusion coefficient measured by the dynamic scattering method as an index assumes that the uniform shape of particles is dispersed throughout the system, and the particle shape, particle size, etc. It is a method of detecting and measuring. Therefore, it is difficult to detect non-spherical particles present in a part of the dispersion sample in which spherical particles are predominant.
  • the dynamic light scattering method when measuring a spherical particle dispersion solution of 200 nm or less in principle, the measurement result does not depend on the detection angle because the scattering intensity distribution is almost constant regardless of the detection angle. .
  • the scattering intensity distribution of dynamic light scattering of a spherical dispersion containing non-spherical particles varies greatly depending on the detection angle due to the presence of non-spherical particles, and the distribution of the scattering intensity distribution becomes broader at lower detection angles. .
  • the measurement result of the scattering intensity distribution of dynamic light scattering depends on the detection angle, and the ⁇ CV value, which is one of the indicators of “angle dependency of the scattering intensity distribution measured by the dynamic light scattering method”, is It is considered that a few non-spherical particles existing in the spherical particle dispersion solution can be measured by measuring. Note that the present invention is not limited to these mechanisms.
  • scattering intensity distribution means three particle size distributions of sub-micron or less particles obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It means the particle size distribution of scattering intensity among (scattering intensity, volume conversion, number conversion).
  • the sub-micron particles have Brownian motion in a solvent, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light.
  • an autocorrelation function is obtained using a photon correlation method (JIS Z 8826), and a diffusion coefficient (D) indicating a Brownian motion velocity is calculated by cumulant method analysis.
  • the average particle diameter (d: hydrodynamic diameter) can be obtained using the Einstein-Stokes equation.
  • particle size distribution analysis includes histogram method (Marquardt method), Laplace inverse transformation method (CONTIN method), non-negative least square method (NNLS method), etc. There is.
  • the polydispersity index (PI) by the cumulant method is generally widely used.
  • the average particle size from the particle size distribution analysis by the histogram method (Marquardt method) or the Laplace inverse transform method (CONTIN method)
  • d50 the particle size distribution analysis by the histogram method
  • CONTIN method Laplace inverse transform method
  • angle dependency of the scattering intensity distribution of the particle dispersion means scattering according to the scattering angle when the scattering intensity distribution of the particle dispersion is measured at different detection angles by the dynamic light scattering method.
  • the magnitude of fluctuation in intensity distribution For example, if the difference in the scattering intensity distribution between the detection angle of 30 degrees and the detection angle of 90 degrees is large, it can be said that the angle dependence of the scattering intensity distribution of the particle dispersion is large. Therefore, in this specification, the measurement of the angle dependence of the scattered intensity distribution includes obtaining a difference ( ⁇ CV value) between measured values based on the scattered intensity distribution measured at two different detection angles.
  • the forward scattering detection angle is preferably 0 to 80 degrees, more preferably 0 to 60 degrees, further preferably 10 to 50 degrees, and still more preferably 20 to 40 degrees.
  • the detection angle of the side or back scattering is preferably 80 to 180 degrees, and more preferably 85 to 175 degrees. In the present invention, 30 degrees and 90 degrees are used as two detection angles for obtaining the ⁇ CV value.
  • Examples of the method for adjusting the ⁇ CV value of the abrasive include the following methods for preventing formation of abrasive aggregates (non-spherical particles) of 50 to 200 nm in the preparation of the polishing composition.
  • the ⁇ CV value can be reduced by removing silica aggregates of 50 to 200 nm by, for example, centrifugation or fine filter filtration (Japanese Patent Laid-Open No. 2006-102829 and Japanese Patent Laid-Open No. 2006-136996).
  • a colloidal silica aqueous solution appropriately diluted so as to have a silica concentration of 20% by weight or less can be removed under conditions where 50 nm particles calculated from the Stokes equation can be removed (for example, 10,000 G or more, centrifuge tube height of about 10 cm).
  • the ⁇ CV value can be reduced by a method of centrifuging for 2 hours or more, a method of pressure filtration using a membrane filter (for example, Advantech, Sumitomo 3M, Millipore) having a pore size of 0.05 ⁇ m or 0.1 ⁇ m.
  • a membrane filter for example, Advantech, Sumitomo 3M, Millipore
  • Colloidal silica is usually 1) a mixed solution (seed solution) of less than 10% by weight of No. 3 sodium silicate and seed particles (small particle silica) is put in a reaction layer and heated to 60 ° C. or higher. ) Dropping an acidic active silicic acid aqueous solution obtained by passing No. 3 sodium silicate through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) dropwise to grow a spherical particle with a constant pH, 3) It can be obtained by concentrating by an evaporation method or ultrafiltration method after aging (Japanese Patent Laid-Open No. 47-1964, Japanese Patent Publication No. 1-223412, Japanese Patent Publication No.
  • non-spherical particles can be produced by slightly changing the process in the same production process.
  • activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced.
  • the temperature of the reaction layer evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface
  • the pH of the reaction layer silica particles are liable to be linked below 9
  • SiO 2 / M 2 O of the reaction layer is often reported that non-spherical particles can be produced by slightly changing the process in the same production process.
  • activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced.
  • the temperature of the reaction layer evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface
  • the pH of the reaction layer silica particles are liable to be linked
  • non-spherical silica can be produced by changing the molar ratio (selectively producing non-spherical silica at 30 to 60) (Japanese Patent Publication No. 8-5657, Patent 2803134, JP 2006-80406, JP 2007-153671). Therefore, in the above-mentioned B), in the known spherical colloidal silica production process, the ⁇ CV value can be adjusted to be small by performing process control so as not to be a condition for generating non-spherical silica locally.
  • the true sphere ratio measured by observation of the abrasive with a transmission electron microscope is a circle with the projected area (A1) of one abrasive particle obtained by the transmission electron microscope and the circumference of the particle as the circumference.
  • the ratio to the area (A2) that is, the value of “A1 / A2”, for example, the value of “A1 / A2” for any 50 to 100 abrasives in the polishing composition of the present invention It can be calculated as an average value.
  • the true sphericity of the abrasive can be measured by the method described in Examples.
  • the sphericity of the abrasive used in the polishing composition of the present invention is preferably 0.75 to 1, preferably 0.75 to 0.00. 95 is more preferable, and 0.75 to 0.85 is still more preferable.
  • the surface roughness of the abrasive is the specific surface area (SA2) calculated from the specific surface area (SA1) measured by the sodium titration method and the average particle diameter (S2) measured by transmission electron microscope observation.
  • SA1 / SA2 which is the ratio of the above, is specifically measured by the method described in the examples.
  • the abrasive is preferably silica.
  • the specific surface area (SA1) measured by the sodium titration method is obtained from the consumption amount of the sodium hydroxide solution when the sodium hydroxide solution is titrated against the abrasive, and the actual surface area is calculated as follows.
  • the specific surface area (SA1) increases as the surface of the abrasive material is richer in undulations or ridges.
  • the specific surface area (SA2) calculated from the average particle diameter (S2) measured by a transmission electron microscope is calculated assuming that the abrasive is an ideal spherical particle.
  • the specific surface area (SA2) decreases as the average particle size (S2) increases.
  • the specific surface area indicates the surface area per unit mass, and the value of the surface roughness (SA1 / SA2) is so large that the abrasive is spherical and has many hook-like protrusions on the abrasive surface. The value is smaller, the smaller the number of wrinkle-like protrusions on the surface of the abrasive and the smoother the surface, the smaller the value.
  • the surface roughness (SA1 / SA2) of the abrasive used in the polishing composition of the present invention is preferably 1.3 or more. 3 to 2.5 is more preferable, and 1.3 to 2.0 is even more preferable.
  • the true sphericity, surface roughness (SA1 / SA2) and average particle size of the abrasive can be adjusted using a conventionally known method for producing an abrasive.
  • SA1 / SA2 surface roughness
  • SA2 surface roughness
  • SA2 average particle size of the abrasive
  • the method of adjusting the particle size distribution of the abrasive is not particularly limited, and a method of giving a desired particle size distribution by adding particles as a new nucleus in the process of particle growth in the production stage, Examples include a method of mixing two or more kinds of abrasive particles having different particle size distributions so as to have a desired particle size distribution.
  • the content of the abrasive in the polishing liquid composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate, and 4% by weight or more. Is even more preferred. Further, from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, it is preferably 20% by weight or less, more preferably 15% by weight or less, further preferably 13% by weight or less, and more preferably 10% by weight or less. Even more preferred. That is, the content of the abrasive is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, further preferably 3 to 13% by weight, and still more preferably 4 to 10% by weight.
  • the concentration ratio between the abrasive and the copolymer is determined by scratches after polishing, nanoprojection defects, In view of reducing the surface waviness of the substrate, 5 to 5000 is preferable, 10 to 1000 is more preferable, and 25 to 500 is more preferable.
  • the polishing composition of the present invention can contain water as a medium, and distilled water, ion exchange water, ultrapure water, or the like can be used as the water. From the viewpoint of the surface cleanliness of the substrate to be polished, ion exchange water and ultrapure water are preferable, and ultrapure water is more preferable.
  • the water content in the polishing composition is preferably 60 to 99.4% by weight, more preferably 70 to 98.9% by weight. Moreover, you may mix
  • the polishing liquid composition of the present invention preferably contains an acid and / or a salt thereof.
  • the acid used in the polishing composition of the present invention is preferably a compound having a pK1 of 2 or less from the viewpoint of improving the polishing rate, and preferably has a pK1 of 1.5 or less from the viewpoint of reducing scratches. More preferably, it is a compound exhibiting strong acidity that cannot be expressed by pK1, more preferably 1 or less.
  • Preferred acids include nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, 2-aminoethylphosphonic acid, 1 -Hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1,1,1 2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, methane Hydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxy
  • a carboxylic acid etc. are mentioned. Of these, inorganic acids, carboxylic acids, and organic phosphonic acids are preferred from the viewpoint of reducing scratches. Among inorganic acids, phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, and perchloric acid are more preferable, and phosphoric acid and sulfuric acid are more preferable. Among the carboxylic acids, citric acid, tartaric acid, and maleic acid are more preferable, and citric acid is more preferable.
  • 1-hydroxyethylidene-1,1-diphosphonic acid aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are more preferable, and 1-hydroxyethylidene- More preferred are 1,1-diphosphonic acid and aminotri (methylenephosphonic acid).
  • acids and salts thereof may be used alone or in combination of two or more, but from the viewpoint of improving the polishing rate, reducing nanoprotrusions and improving the cleaning property of the substrate, use two or more in combination.
  • pK1 is a logarithmic value of the reciprocal of the first acid dissociation constant (25 ° C.) of the organic compound or inorganic compound.
  • the pK1 of each compound is described in, for example, the revised 4th edition Chemical Handbook (Basic) II, pp316-325 (Edited by Chemical Society of Japan).
  • the counter ion in the case of using these acid salts is not particularly limited, and specific examples thereof include salts with metals, ammonium, alkylammonium and the like.
  • Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8.
  • a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing scratches.
  • the content of the acid and the salt thereof in the polishing liquid composition is preferably 0.001 to 5% by weight from the viewpoint of improving the polishing rate and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, More preferably, the content is 0.01 to 4% by weight, still more preferably 0.05 to 3% by weight, and still more preferably 0.1 to 2.0% by weight.
  • the polishing composition of the present invention preferably contains an oxidant.
  • an oxidizing agent that can be used in the polishing liquid composition of the present invention from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.
  • Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc.
  • examples of the permanganic acid or salt thereof include potassium permanganate
  • examples of the chromic acid or salt thereof include chromium.
  • Peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, peroxodisulfate metal salts, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, and performic acid.
  • Peroxyacetic acid, perbenzoic acid, perphthalic acid, etc., and oxygen acids or salts thereof include hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, hypochlorous acid. Examples thereof include sodium chlorate and calcium hypochlorite.
  • Metal salts include iron chloride (III), iron sulfate (III), iron nitrate (III), citric acid (III), ammonium iron (III), and the like.
  • the oxidizing agent include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate.
  • hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive.
  • These oxidizing agents may be used alone or in admixture of two or more.
  • the content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. From the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, it is preferably 4% by weight or less, more preferably 2% by weight or less, and even more preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1%. % By weight.
  • polishing composition of the present invention other components can be blended as necessary.
  • other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant.
  • the content of these other optional components in the polishing composition is preferably 0 to 10% by weight, more preferably 0 to 5% by weight.
  • the polishing composition of the present invention can exhibit the effect of reducing scratches, nanoprotrusion defects, and substrate surface waviness after polishing without containing other components, particularly surfactants.
  • the polishing composition of the present invention can contain alumina abrasive grains and can be used in a rough polishing step prior to the final polishing step.
  • the pH of the polishing composition of the present invention is preferably 4 or less, more preferably 3.5 or less, still more preferably 3 or less, and even more preferably 2.5 or less, from the viewpoint of improving the polishing rate. Moreover, 0.5 or more is preferable from a viewpoint of surface roughness reduction, More preferably, it is 0.8 or more, More preferably, it is 1.0 or more, More preferably, it is 1.2 or more. Further, the waste liquid pH of the polishing composition is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3.0 or less from the viewpoint of improving the polishing rate.
  • the waste liquid pH of the polishing composition is preferably 0.8 or more, more preferably 1.0 or more, still more preferably 1.2 or more, and even more preferably 1.5 or more. It is.
  • the waste liquid pH refers to the polishing waste liquid in the polishing step using the polishing liquid composition, that is, the pH of the polishing liquid composition immediately after being discharged from the polishing machine.
  • polishing liquid composition of the present invention for example, water, an abrasive, a copolymer, and, if desired, an acid and / or a salt thereof, an oxidizing agent, and other components are mixed by a known method.
  • the abrasive may be mixed in a concentrated slurry state or may be mixed after being diluted with water or the like.
  • concentration of each component in the polishing liquid composition of this invention are the ranges mentioned above, you may prepare the polishing liquid composition of this invention as a concentrate as another aspect.
  • the present invention relates to a method of manufacturing a magnetic disk substrate (hereinafter also referred to as a manufacturing method of the present invention).
  • the manufacturing method of the present invention includes a step of polishing a substrate to be polished using the above-described polishing liquid composition of the present invention (hereinafter, also referred to as “polishing process using the polishing liquid composition of the present invention”). It is a manufacturing method of a disk substrate.
  • the manufacturing method of the present invention is particularly suitable for a method for manufacturing a magnetic disk substrate for perpendicular magnetic recording. Therefore, as another aspect, the manufacturing method of the present invention is a method of manufacturing a magnetic disk substrate for a perpendicular magnetic recording system including a polishing step using the polishing composition of the present invention.
  • the substrate to be polished is sandwiched between a surface plate to which a polishing pad such as a non-woven organic polymer polishing cloth is attached.
  • a method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while supplying the polishing composition of the invention to the polishing machine can be mentioned.
  • the polishing process using the polishing composition of the present invention is preferably performed in the second stage or more, and more preferably performed in the final polishing process.
  • different polishing machines may be used, and when different polishing machines are used, polishing is performed for each polishing process. It is preferable to clean the substrate.
  • the polishing composition of the present invention can also be used in cyclic polishing in which the used polishing liquid is reused.
  • the polishing machine is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.
  • the polishing pad used in the present invention is not particularly limited, and a polishing pad of a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used. From the viewpoint, a suede type polishing pad is preferable.
  • the average pore diameter of the surface member of the polishing pad is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less, and even more preferably 35 ⁇ m or less, from the viewpoint of scratch reduction and pad life.
  • the average pore diameter is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably, in order to keep the polishing liquid in the pores and prevent the liquid from running out. It is 1 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the maximum value of the pore size of the polishing pad is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 60 ⁇ m or less, and particularly preferably 50 ⁇ m or less from the viewpoint of maintaining the polishing rate.
  • the polishing load in the polishing step using the polishing liquid composition of the present invention is preferably 5.9 kPa or more, more preferably 6.9 kPa or more, and further preferably 7.5 kPa or more.
  • the polishing load refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing.
  • the polishing load is preferably 20 kPa or less, more preferably 18 kPa or less, and further preferably 16 kPa or less.
  • the polishing load is preferably 5.9 to 20 kPa, more preferably 6.9 to 18 kPa, and even more preferably 7.5 to 16 kPa.
  • the polishing load can be adjusted by applying air pressure or weight to at least one of the surface plate and the substrate to be polished.
  • the supply rate of the polishing liquid composition of the present invention in the polishing step using the polishing liquid composition of the present invention is preferably 0.05 to 15 mL / min per 1 cm 2 of the substrate to be polished. More preferably 0.06 to 10 mL / min, still more preferably 0.07 to 1 mL / min, even more preferably 0.08 to 0.5 mL / min, even more preferably 0.12 to 0.5 mL / min. Minutes.
  • a method of supplying the polishing composition of the present invention to a polishing machine for example, a method of continuously supplying using a pump or the like can be mentioned.
  • supplying the polishing composition to the polishing machine in addition to the method of supplying one component containing all the components, considering the stability of the polishing composition, etc., it is divided into a plurality of compounding component liquids, Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition of the present invention.
  • Examples of the material of the substrate to be polished preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, or an alloy containing these metals as a main component is preferable. In particular, Ni—P plated aluminum alloy substrates and aluminosilicate glass are suitable. Aluminosilicate glass includes those having a crystal structure and those subjected to chemical strengthening treatment. You may perform a chemical strengthening process after grinding
  • a magnetic disk substrate with reduced waviness and nanoprotrusion defects on the substrate surface after polishing can be provided, so that high surface smoothness is required. It can be suitably used for polishing a perpendicular magnetic recording type magnetic disk substrate.
  • the shape of the substrate to be polished is not particularly limited, and may be, for example, a shape having a flat portion such as a disc shape, a plate shape, a slab shape, or a prism shape, or a shape having a curved surface portion such as a lens.
  • a disk-shaped substrate to be polished is suitable.
  • its outer diameter is, for example, about 2 to 95 mm
  • its thickness is, for example, about 0.5 to 2 mm.
  • the present invention relates to a method for polishing a substrate to be polished, which comprises polishing the substrate to be polished while bringing the above-mentioned polishing composition into contact with a polishing pad.
  • a polishing method of the present invention in addition to scratching of the substrate surface after polishing, waviness and nanoprotrusion defects on the substrate surface after polishing are reduced, particularly a perpendicular magnetic recording type magnetic disk substrate.
  • the substrate to be polished in the polishing method of the present invention include those used in the manufacture of a magnetic disk substrate and a magnetic recording medium substrate as described above. A substrate used for production is preferred.
  • the specific polishing method and conditions can be as described above.
  • St / NaSS Copolymer styrene / styrene sulfonic acid copolymer sodium salt
  • NaSS polystyrene sulfonic acid sodium salt
  • AA / NaSS acrylic acid / styrene sulfonic acid copolymer sodium salt
  • the prepared substrate was polished, and scratches after polishing, nanoprojection defects, and substrate surface waviness were evaluated.
  • the average particle diameter in the following Table 1 is an average particle diameter based on a scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method.
  • the evaluation results are shown in Table 2 below.
  • the method for producing the copolymer, the method for preparing the polishing liquid composition, the method for measuring each parameter, the polishing conditions (polishing method), and the evaluation method are as follows.
  • the copolymer had a weight average molecular weight of 7,100.
  • the copolymers of Examples I-2 to I-16 and Comparative Example I-2 were polymerized by changing the monomer ratio according to the method described above.
  • Comparative Example I-1 polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used.
  • Comparative Example I-3 acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used.
  • the polymerization ratio and weight average molecular weight of each (co) polymer are as shown in Table 2 below. The weight average molecular weight was measured by gel permeation chromatography (GPC) method under the following measurement conditions.
  • the polishing liquid compositions of Examples I-1 to I-16 and Comparative Examples I-1 to I-3 were prepared.
  • the contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition are 4.5% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively.
  • the coal content was as shown in Table 2 below.
  • the average particle size of colloidal silica was determined.
  • the CV value was obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the average particle diameter and multiplying by 100 to obtain the CV value (CV90).
  • [ ⁇ CV value] The CV value (CV30) of the colloidal silica particles at a detection angle of 30 degrees was measured according to the above-described measurement method, and a value obtained by subtracting CV90 from CV30 was obtained to obtain a ⁇ CV value.
  • the measurement conditions for CV90 and CV30 are as follows. (Measurement conditions for DLS-6500) Detection angle: 90 ° Sampling time: 4 ( ⁇ m) Correlation Channel: 256 (ch) Correlation Method: TI Sampling temperature: 26.0 (° C.) Detection angle: 30 ° Sampling time: 10 ( ⁇ m) Correlation Channel: 1024 (ch) Correlation Method: TI Sampling temperature: 26.0 (° C.)
  • the area (A2) of the circle to be measured was measured, and the ratio (A1 / A2) between the projected area (A1) of the particles and the area (A2) obtained from the circumference of the particles was calculated as the true sphere ratio.
  • the numerical value of following Table 1 calculates these average values, after calculating
  • SA1 specific surface area of colloidal silica by sodium titration method
  • a sample containing colloidal silica corresponding to 1.5 g as SiO 2 is collected in a beaker and transferred to a constant temperature reaction tank (25 ° C.), and pure water is added to make the liquid volume 90 ml. The following operation is performed in a constant temperature reaction tank maintained at 25 ° C. 2) A 0.1 mol / L hydrochloric acid solution is added so that the pH is 3.6 to 3.7. 3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
  • a pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
  • a calibration curve is prepared, where X is the titer of 1 mol / L sodium hydroxide solution and Y is the pH value at that time.
  • the average value is computed and it is set as the average particle diameter (S2) measured by transmission electron microscope observation.
  • the value of the average particle diameter (S2) obtained above is substituted into the following formula (4) to obtain the specific surface area (SA2).
  • SA2 6000 / (S2 ⁇ ⁇ ) (4) ( ⁇ : density of sample) ⁇ : 2.2 (in the case of colloidal silica)
  • the substrate to be polished a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni—P in advance with a polishing composition containing an alumina abrasive was used.
  • the substrate to be polished has a thickness of 1.27 mm, an outer diameter of 95 mm, an inner diameter of 25 mm, a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM), 1 nm, and a long wavelength.
  • the amplitude of the undulation (wavelength 0.4 to 2 mm) was 2 nm, and the amplitude of the short wavelength undulation (wavelength 5 to 50 ⁇ m) was 2 nm.
  • Polishing tester "Fast double-sided 9B polishing machine” manufactured by Speedfam Polishing pad: Fujibo's suede type (thickness 0.9mm, average hole diameter 30 ⁇ m) Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of polishing substrate: 0.072 mL / min) Lower platen rotation speed: 32.5 rpm Polishing load: 7.9 kPa Polishing time: 4 minutes
  • Measuring instrument OSA6100, manufactured by Candela Instruments Evaluation: Four substrates were randomly selected from the substrates put in the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure nanoprotrusion defects and scratches. The total number of scratches (lines) on each of the four substrates was divided by 8 to calculate the number of nanoprotrusion defects and scratches per substrate surface. The results are shown in Table 2 as relative values with Comparative Example I-1 as 100.
  • Example I-6 shows that the use of an abrasive having a ⁇ CV value of 10 or less can further reduce scratches, undulations, and nanoprotrusions on the substrate after polishing.
  • Examples I-17 to I-24, Comparative Examples I-4 to I-6 Polishing of Glass Substrate> Glass substrates were polished under the following polishing conditions using the polishing composition of Examples I-17 to I-24 and Comparative Examples I-4 to I-6 prepared as described below. Evaluation of nanoprotrusion defects and waviness was performed by the following method. The results are shown in Table 3 below. The data shown in the following Table 3 shows that after polishing 10 substrates to be polished for each example and each comparative example, 4 samples were selected at random, measured on both sides of each substrate, and a total of 8 substrates were measured. The average of surface data was used.
  • colloidal silica a (Table 1), (co) polymer shown in Table 3 below, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, thermophos Diquest 2010) manufactured by Japan Co., Ltd. was added to ion-exchanged water, and these were mixed to prepare the polishing liquid compositions of Examples I-17 to I-24 and Comparative Examples I-4 to I-6. .
  • the contents of colloidal silica, sulfuric acid, and HEDP in the polishing liquid composition are 8.0% by weight, 0.4% by weight, and 0.13% by weight, respectively, and the copolymer content is shown in Table 3 below. It was as shown in.
  • the copolymer of Example I-17 was produced in the same manner as the copolymer of Example I-1, and each of the copolymers of Examples I-18 to I-24 was prepared according to the method described above.
  • the polymerization was carried out by changing the monomer ratio.
  • Comparative Example I-4 polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used.
  • Comparative Example I-5 acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used.
  • the polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 3 below.
  • the weight average molecular weight was measured by the gel permeation chromatography (GPC) method of the above-mentioned measurement conditions.
  • GPC gel permeation chromatography
  • lauryl sulfate Na (Emal 0, manufactured by Kao Corporation) was used instead of the copolymer.
  • Glass substrate As the glass substrate, an aluminosilicate glass substrate coarsely polished in advance with a polishing liquid containing ceria abrasive grains was used.
  • the glass substrate had a thickness of 0.635 mm, an outer diameter of 65 mm, an inner diameter of 20 mm, and a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM) of 3 nm.
  • AFM Digital Instrument Nanoscope IIIa Multi Mode AFM
  • Polishing tester "Fast double-sided 9B polishing machine” manufactured by Speedfam Polishing pad: Suede type (thickness 0.9mm, average hole diameter 30 ⁇ m) Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of substrate to be polished: about 0.3 mL / min) Lower platen rotation speed: 32.5 rpm Polishing load: 8.4 kPa
  • Measuring machine New View 5032 (manufactured by Zygo) Lens: 2.5 times zoom: 0.5 times Measurement wavelength: 159 to 500 ⁇ m (Medium wave swell) Measurement position: Radius 27mm from the center of the board Analysis software: Zygo Metro Pro (manufactured by Zygo)
  • Examples II-1 to II-7 Comparative Examples II-1 to II-3> Copolymer methyl methacrylate / styrene sulfonic acid copolymer sodium salt (MMA / NaSS), polystyrene sulfonic acid sodium salt (NaSS), acrylic acid / styrene sulfonic acid copolymer sodium salt (AA / NaSS), or A polishing liquid composition was prepared using acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS) and colloidal silica a ′ to c ′ shown in Table 4 below as an abrasive.
  • MMA / NaSS Copolymer methyl methacrylate / styrene sulfonic acid copolymer sodium salt
  • NaSS polystyrene sulfonic acid sodium salt
  • AA / NaSS acrylic acid / styrene sulfonic acid copoly
  • the substrate to be polished was prepared and the substrate was polished, and the waviness, scratches and nanoprojection defects of the substrate after polishing were evaluated.
  • the average particle diameter of colloidal silica shown in the following Table 4 is an average particle diameter based on a scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method.
  • the evaluation results are shown in Table 5 below.
  • the substrate to be polished is a Ni—P plated aluminum alloy substrate, a method for producing a copolymer, a method for preparing a polishing composition, a method for measuring each parameter, a polishing condition (polishing method), and an evaluation method as described above and below. It is as follows.
  • the copolymers of Examples II-2 to II-7 and Comparative Example II-2 were polymerized by changing the monomer ratio according to the method described above.
  • Comparative Example II-1 polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used.
  • Comparative Example II-3 acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, Toagosei Co., Ltd.) was used.
  • the polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 5 below. The weight average molecular weight was measured by the gel permeation chromatography (GPC) method described above and under the following measurement conditions.
  • colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition are 4.5% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively.
  • the content of the coalesced was as shown in Table 5 below.
  • Example II-8, Comparative Examples II-4 to II-5 Polishing of Glass Substrate> Using the polishing liquid compositions of Example II-8 and Comparative Examples II-4 to II-5 prepared as described below, the above glass substrate was used as the substrate to be polished, and polishing was performed under the above glass substrate polishing conditions. . Nanoprojection defects and waviness were evaluated in the same manner as in Example I-17. The results are shown in Table 6 below. In the data shown in Table 6 below, after polishing 10 substrates for each example and each comparative example, 4 substrates were selected at random, measured on both sides of each substrate, and a total of 8 substrates were measured. The average of surface data was used.
  • colloidal silica a ′ (Table 5 above), (co) polymer shown in Table 6 below, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid,
  • the polishing compositions of Example II-8 and Comparative Examples II-4 to II-5 were prepared by adding Dequest 2010) manufactured by Thermophos Japan Co., Ltd. to ion-exchanged water and mixing them.
  • the contents of colloidal silica, sulfuric acid, and HEDP in the polishing liquid composition are 8.0% by weight, 0.4% by weight, and 0.13% by weight, respectively. It was as shown in.
  • the copolymer of Example II-8 was produced in the same manner as the copolymer of Example II-1.
  • Comparative Example II-4 polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used.
  • Comparative Example II-5 acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used.
  • the polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 6 below.
  • the weight average molecular weight was measured by the gel permeation chromatography (GPC) method of the above-mentioned measurement conditions.
  • Example II-8 As shown in Table 6 above, when the polishing composition of Example II-8 was used, the substrate surface waviness and nanoprotrusions after polishing could be reduced as compared with Comparative Examples II-4 to II-5. .
  • Examples III-1 to III-5 Comparative Example III-1>
  • the polishing liquid compositions of Examples III-1 to III-5 and Comparative Example III-1 were prepared as described below to polish the substrate to be polished, and scratches and nanoprotrusion defects of the substrate after polishing were evaluated.
  • the evaluation results are shown in Table 8 below.
  • the polymer used, the method for preparing the polishing composition, the method for measuring each parameter, the polishing conditions (polishing method) and the evaluation method are as follows.
  • the copolymer used for the polishing composition is as follows.
  • the copolymer and its weight average molecular weight are shown in Table 7 below.
  • the weight average molecular weight of these copolymers was measured by the gel permeation chromatography (GPC) method in the above-mentioned measurement conditions.
  • Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 60/40, molecular weight 4000, synthesized by the following method); Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, molecular weight 5600, synthesized by the following method); Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, molecular weight 28000, synthesized by the following method); Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 30/70, molecular weight 7000, synthesized by the following method)
  • Azobis (2-methylpropionamidine) dihydrochloride (7.2 g, V-50, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a reaction initiator, and 101.4 g (20% by weight of the total reaction solution) of which was 200 mL dropping funnel. The mixture was then added dropwise at 83 ⁇ 2 ° C. over 2 hours, and further aged for 2 hours. Thereafter, the solvent was removed under reduced pressure to obtain a white powder polymer (St / NaSS copolymer, molar ratio 30). / 70, molecular weight 7000). Other St / NaSS copolymers were polymerized by the above-described method while changing the monomer species and the monomer ratio.
  • polishing liquid composition Heterocyclic aromatic compound (1H-benzotriazole), polymer (Table 8), colloidal silica (silica a ′′ to c ′′, all manufactured by JGC Catalysts and Chemicals, Table 7), sulfuric acid having the composition shown below HEDP (1-Hydroxyethylidene-1,1-diphosphonic acid Thermophos Japan Co., Ltd., Dequest 2010), hydrogen peroxide (oxidant), etc. were added to ion-exchanged water, and these were mixed to give an example.
  • Polishing liquid compositions of III-1 to III-5 and Comparative Example III-1 were prepared. Specifically, the concentration of each component in the polishing composition was prepared as follows.
  • Examples III-1 to III-5 Heterocyclic aromatic compound (1H-benzotriazole, concentration shown in Table 8), polymer 0.05% by weight, silica particles 5% by weight, sulfuric acid 0.5% by weight, HEDP0 1 wt%, hydrogen peroxide 0.5 wt% (pH 1.4-1.5); Comparative Example III-1: Heterocyclic aromatic compound (1H-benzotriazole, concentration shown in Table 8), silica particles 5% by weight, orthophosphoric acid 2% by weight, K 2 HPO 4 0.8% by weight, hydrogen peroxide 0 .62% by weight (pH 2)
  • the physical properties of the silica a ′′ used (average particle diameter measured by dynamic light scattering method (DLS), CV90, ⁇ CV value, specific surface areas SA1 and SA2, average particle diameter S2, surface roughness, and The true sphere ratio) was measured by the method described above, and the results are shown in Table 7 below.
  • Polishing rate ( ⁇ m / min) weight reduction rate (g / min) / substrate single-sided area (mm 2 ) / Ni—P plating density (g / cm 3 ) ⁇ 10 6 (Calculated on the surface of one side of the substrate: 6597 mm 2 and Ni—P plating density: 7.9 g / cm 3 )
  • Examples IV-1 to IV-2 Comparative Example IV-1: Evaluation Method of Storage Test
  • a polishing composition was prepared by mixing 3 g of sulfuric acid, 3 g of hydrogen peroxide, 0.5 g of copolymer, and 93.5 g of ion-exchanged water in a 300 CC plastic container, and stored at 80 ° C. for 1 week. The weight average molecular weight before and after storage was measured, and the substrate to be polished was polished.
  • Example IV-1 The copolymer of Example I-3 above was used as Example IV-1, the copolymer of Example II-5 above was used as Example IV-2, and in the main chain as Comparative Example IV-1.
  • CS1106 styrene / isoprenesulfonic acid Na copolymer, manufactured by JSR
  • the substrate to be polished and the polishing conditions were the same as in Example I-3 above, and the molecular weight measurement method and the number of scratches and nanoprotrusions were the same as described above.
  • the numbers are shown in Table 9 below as relative values with the value before storage as 100.
  • Production Example 1 A 1 L four-necked flask is charged with 91 g of isopropyl alcohol (manufactured by Kishida Chemical), 137 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), up to 83 ⁇ 2 ° C.
  • isopropyl alcohol manufactured by Kishida Chemical
  • ion-exchanged water 10 g
  • styrene manufactured by Kishida Chemical
  • 40 g of sodium styrenesulfonate manufactured by Wako Pure Chemical Industries
  • the temperature was raised and 6.6 g of ammonium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a reaction initiator, followed by polymerization for 2 hours, further aging for 2 hours, and then removal of the solvent under reduced pressure to remove styrene / A sodium styrenesulfonate copolymer (33/67 mol%) was obtained.
  • the weight average molecular weight of this copolymer was 16000.
  • Production Example 2 A 1 L four-necked flask is charged with 230 g of isopropyl alcohol (manufactured by Kishida Chemical), 345 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), and 6.6 g of ammonium persulfate. (Wako Pure Chemical Industries, Ltd.) was used as a reaction initiator, and 189.4 g (30% by weight of the total reaction solution) was transferred to a 200 mL dropping funnel and added dropwise at 65 ⁇ 5 ° C.
  • the copolymer had a weight average molecular weight of 11,000.
  • Polishing experiments were conducted using the copolymers of Production Examples 1 and 2. The results are shown in Table 10.
  • the polishing composition was the same as in Example I-3, and the above-mentioned silica a was used as the polishing material.
  • the substrate to be polished and the polishing conditions were also the same as in Example I-3, and the method described above was used as the method for measuring the molecular weight and the method for measuring the number of scratches and nanoprotrusions.
  • the start time indicating the conversion ratio in Production Example 1, after the temperature was raised to 83 ⁇ 2 ° C., the time after adding ammonium persulfate was set to 0 minutes. In Production Example 2, after the temperature was raised to 65 ⁇ 5 ° C., the dropping start time was 0 minute.
  • a magnetic disk substrate suitable for high recording density can be provided.

Abstract

A polishing liquid composition for magnetic-disk substrates which is capable of giving a polished substrate reduced in scratches, nanometer-order projection defects, and surface undulations.  The polishing liquid composition for magnetic-disk substrates comprises a copolymer or a salt thereof, an abrasive material, and water, the copolymer having a structural unit derived from a monomer having a solubility in 100 g of 20ºC water of 2 g or less and a structural unit that has a sulfo group and having a saturated hydrocarbon chain as the main chain.

Description

磁気ディスク基板用研磨液組成物Polishing liquid composition for magnetic disk substrate
 本発明は、磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法に関する。 The present invention relates to a polishing liquid composition for a magnetic disk substrate and a method for producing a magnetic disk substrate using the same.
 近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化するために、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上するため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性・平坦性の向上(表面粗さ、うねり、端面ダレの低減)と欠陥低減(スクラッチ、突起、ピット等の低減)に対する要求が厳しくなっている。このような要求に対して、カルボキシル基やスルホン酸基などの官能基を有する共重合体を含有する研磨液組成物が提案されている(例えば、特許文献1~3参照)。 In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. In order to increase the recording density, the unit recording area is reduced, and in order to improve the detection sensitivity of the weakened magnetic signal, technological development for lowering the flying height of the magnetic head has been advanced. Magnetic disk substrates have improved smoothness and flatness (reduced surface roughness, waviness, and edge sagging) and reduced defects (scratches, protrusions, pits) in order to reduce the flying height of the magnetic head and secure a recording area. Etc.) is becoming stricter. In response to such demands, a polishing liquid composition containing a copolymer having a functional group such as a carboxyl group or a sulfonic acid group has been proposed (see, for example, Patent Documents 1 to 3).
 特許文献1は、半導体部品の化学的機械研磨(CMP)に適した研磨液組成物であって、スルホン酸基を有する重合体を含有することにより被研磨物の表面を平坦にし、かつ研磨速度を高くできる研磨液組成物を開示する。 Patent Document 1 is a polishing liquid composition suitable for chemical mechanical polishing (CMP) of a semiconductor component, and includes a polymer having a sulfonic acid group to flatten the surface of an object to be polished and polishing rate. Disclosed is a polishing composition that can increase the thickness.
 特許文献2は、化学的機械研磨(CMP)に適した半導体部品用研磨液組成物であって、カルボン酸基を有する重合体、スルホン酸基を有する重合体、及びホスホン酸基を有する重合体のうち少なくとも2種の重合体を含有することにより被研磨物の表面粗さを低く、かつ研磨速度を高くできる研磨液組成物を開示する。 Patent Document 2 discloses a polishing composition for semiconductor parts suitable for chemical mechanical polishing (CMP), which is a polymer having a carboxylic acid group, a polymer having a sulfonic acid group, and a polymer having a phosphonic acid group. Disclosed is a polishing liquid composition that can contain at least two polymers among them to reduce the surface roughness of the object to be polished and increase the polishing rate.
 特許文献3は、Ni金属含有基板の研磨用組成物であって、アルミナやシリカ等の無機砥粒に替えてスルホン酸基などの金属イオンに配位可能な官能基を有する共重合体樹脂粒子を含む、スクラッチや突起等の欠陥の発生を抑制できる研磨用組成物を開示する。 Patent Document 3 is a composition for polishing a Ni metal-containing substrate, which is a copolymer resin particle having a functional group capable of coordinating to a metal ion such as a sulfonic acid group in place of inorganic abrasive grains such as alumina and silica. Disclosed is a polishing composition capable of suppressing the occurrence of defects such as scratches and protrusions.
特開2001-64631号公報JP 2001-64631 A 特開2008-155368号公報JP 2008-155368 A 特開2007-231209号公報JP 2007-231209 A
 磁気ディスクドライブのさらなる大容量化を実現するためには、従来の研磨液組成物によるスクラッチの低減だけでは不十分であり、スクラッチに加えて、ナノ突起欠陥や基板表面うねりをよりいっそう低減する必要がある。 In order to realize further increase in the capacity of magnetic disk drives, it is not sufficient to reduce scratches by using a conventional polishing composition. In addition to scratches, it is necessary to further reduce nanoprotrusion defects and substrate surface waviness. There is.
 また、大容量化に伴い、磁気ディスクにおける記録方式が水平磁気記録方式から垂直磁気記録方式へと移行した。垂直磁気記録方式の磁気ディスクの製造工程では、水平磁気記録方式で磁化方向を揃えるために必要であったテクスチャ工程が不要となり、研磨後の基板表面に直接磁性層が形成されるため、基板表面品質に対する要求特性はさらに厳しくなっている。従来の研磨液組成物では、ナノ突起の少なさ、並びに表面うねりの低さを十分に満足することができない。 Also, with the increase in capacity, the recording method on the magnetic disk has shifted from the horizontal magnetic recording method to the perpendicular magnetic recording method. In the manufacturing process of a perpendicular magnetic recording type magnetic disk, the texture process required for aligning the magnetization direction in the horizontal magnetic recording method is not required, and a magnetic layer is formed directly on the polished substrate surface. The required characteristics for quality are becoming stricter. Conventional polishing liquid compositions cannot sufficiently satisfy the small number of nanoprotrusions and the low surface waviness.
 そこで、本発明は、スクラッチに加えて、研磨後の基板表面のナノ突起欠陥や表面うねり低減を実現できる磁気ディスク基板用研磨液組成物、及びこれを用いた磁気ディスク基板の製造方法を提供する。 Accordingly, the present invention provides a polishing composition for a magnetic disk substrate that can reduce nano-protrusion defects and surface waviness on the polished substrate surface in addition to scratches, and a method for manufacturing a magnetic disk substrate using the same. .
 本発明は、20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位及びスルホン酸基を有する構成単位を有しかつ主鎖が飽和炭化水素鎖である共重合体又はその塩と、研磨材と、水とを含有する磁気ディスク基板用研磨液組成物に関する。 The present invention relates to a copolymer having a structural unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a structural unit having a sulfonic acid group, and a main chain of which is a saturated hydrocarbon chain, or a salt thereof Further, the present invention relates to a polishing composition for a magnetic disk substrate containing an abrasive and water.
 また、本発明の磁気ディスク基板の製造方法は、本発明の磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む磁気ディスク基板の製造方法に関する。 The magnetic disk substrate manufacturing method of the present invention also relates to a magnetic disk substrate manufacturing method including a step of polishing a substrate to be polished using the magnetic disk substrate polishing liquid composition of the present invention.
 本発明の磁気ディスク基板用研磨液組成物によれば、研磨後の基板表面のスクラッチに加えて、研磨後のナノ突起欠陥や基板表面のうねりが低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板を製造できるという効果が好ましくは奏されうる。 According to the polishing composition for a magnetic disk substrate of the present invention, in addition to scratches on the surface of the substrate after polishing, a magnetic disk substrate, particularly a perpendicular magnetic recording system, in which nano-projection defects and surface waviness after polishing are reduced. The effect that the magnetic disk substrate can be manufactured is preferably achieved.
 [スクラッチ]
 本明細書において「スクラッチ」とは、深さが1nm以上、幅が100nm以上、長さが1000nm以上の基板表面の微細な傷で、光学式欠陥検出装置であるKLA Tencor社製のCandela6100シリーズや日立ハイテクノロジ-社製のNS1500シリーズで検出可能であり、スクラッチ数として定量評価できる。さらに、検出したスクラッチは原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)で大きさや形状を解析することができる。
[scratch]
In this specification, “scratch” is a fine scratch on the surface of a substrate having a depth of 1 nm or more, a width of 100 nm or more, and a length of 1000 nm or more, such as the Candela 6100 series manufactured by KLA Tencor, which is an optical defect detection device, It can be detected by NS 1500 series manufactured by Hitachi High-Technology Corporation and can be quantitatively evaluated as the number of scratches. Further, the size and shape of the detected scratch can be analyzed with an atomic force microscope (AFM), a scanning electron microscope (SEM), and a transmission electron microscope (TEM).
 [ナノ突起欠陥]
 本明細書において「ナノ突起欠陥」とは、磁気ディスク基板の製造工程における研磨後の基板表面の欠陥であって、光学的に検出され得る10nm未満程度の大きさの凸欠陥をいう。磁気ディスクの高密度化・大容量化のためには、磁気ヘッドと磁気ディスクとの間隔は10nm未満となる必要があるため、ナノ突起の残存は磁気ヘッドの消耗及び磁気ディスクドライブの記録密度の低下や不安定をもたらし得る。研磨後の基板においてナノ突起欠陥が低減されれば、磁気ヘッドの浮上量が低減でき、磁気ディスク基板の記録密度向上が可能となる。
[Nanoprotrusion defects]
In the present specification, the “nanoprotrusion defect” refers to a defect on the surface of a substrate after polishing in a manufacturing process of a magnetic disk substrate, and a convex defect having a size of less than 10 nm that can be detected optically. In order to increase the density and capacity of the magnetic disk, the distance between the magnetic head and the magnetic disk needs to be less than 10 nm. Therefore, the remaining nanoprotrusions are a cause of the consumption of the magnetic head and the recording density of the magnetic disk drive. May cause degradation or instability. If the nanoprojection defects are reduced in the polished substrate, the flying height of the magnetic head can be reduced, and the recording density of the magnetic disk substrate can be improved.
 [うねり]
 本明細書において基板表面の「うねり」とは、粗さよりも波長の長い基板表面の凹凸をいい、一般に、長波長うねり(波長0.4~2mm)と短波長うねり(波長5~50μm)を含むが、本明細書においては特に言及しない限り短波長うねりを指す。研磨後の基板表面のうねりが低減されることにより、磁気ヘッドの浮上量が低減でき、磁気ディスク基板の記録密度向上が可能となる。
[undulation]
In this specification, the “undulation” of the substrate surface means irregularities on the substrate surface having a longer wavelength than the roughness, and generally includes a long wavelength undulation (wavelength 0.4 to 2 mm) and a short wavelength undulation (wavelength 5 to 50 μm). In the present specification, it refers to short wavelength waviness unless otherwise specified. By reducing the waviness of the substrate surface after polishing, the flying height of the magnetic head can be reduced, and the recording density of the magnetic disk substrate can be improved.
 本発明は、スルホン酸基を有する構成単位とスチレンやメタクリル酸メチル等の単量体に由来する疎水性の構成単位とを有する共重合体を含有する研磨液組成物を使用すれば、研磨後の基板のスクラッチの低減に加えて、研磨後の基板表面のナノ突起欠陥及びうねりの低減を達成できるという知見に基づく。 The present invention provides a polishing composition comprising a copolymer having a structural unit having a sulfonic acid group and a hydrophobic structural unit derived from a monomer such as styrene or methyl methacrylate. In addition to the reduction of the scratch of the substrate, it is based on the knowledge that the reduction of the nano-projection defect and the undulation of the substrate surface after polishing can be achieved.
 すなわち、本発明は、20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位及びスルホン酸基を有する構成単位を有しかつ主鎖が飽和炭化水素鎖である共重合体又はその塩と、研磨材と、水とを含有する磁気ディスク基板用研磨液組成物(以下、「本発明の研磨液組成物」ともいう)に関する。 That is, the present invention relates to a copolymer having a structural unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a structural unit having a sulfonic acid group, and the main chain is a saturated hydrocarbon chain. The present invention relates to a magnetic disk substrate polishing liquid composition (hereinafter also referred to as “the polishing liquid composition of the present invention”) containing the salt, an abrasive, and water.
 本発明の研磨液組成物によれば、研磨後の基板において、スクラッチの低減のみならず、ナノ突起欠陥や基板表面うねりを低減するという効果を奏し得る。 According to the polishing composition of the present invention, in the substrate after polishing, not only the scratch can be reduced, but also the effect of reducing the nanoprojection defect and the substrate surface waviness can be achieved.
 本発明の研磨液組成物がスクラッチのみならず研磨後のナノ突起欠陥や基板表面うねりを低減できるメカニズムの詳細は明らかでないが、共重合体に疎水性構成単位が含まれることにより共重合体の研磨パッドへの吸着量が増加し、研磨パッドの振動が抑制され、その結果、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりが低減すると推定される。但し、本発明はこのメカニズムに限定されない。 The details of the mechanism by which the polishing composition of the present invention can reduce not only scratches but also nano-protrusion defects and substrate surface waviness after polishing are not clear. It is presumed that the amount of adsorption to the polishing pad increases and the vibration of the polishing pad is suppressed, and as a result, scratches after polishing, nanoprotrusion defects, and substrate surface waviness are reduced. However, the present invention is not limited to this mechanism.
 [共重合体]
 本発明の研磨液組成物は、20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位及びスルホン酸基を有する構成単位を有しかつ主鎖が飽和炭化水素鎖である共重合体又はその塩(以下、「本発明の共重合体」ともいう。)を含有する。以下、20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位を「疎水性構成単位」ともいう。なお、疎水性構成単位とスルホン酸基を有する構成単位の配列は、ランダム、ブロック、又はグラフトのいずれでも良い。また、本発明の共重合体は、後述するとおり、所定の含有量の範囲をすべて満たす範囲で、これら構成単位以外の構成単位を含んでいてもよい。本発明の共重合体は、主鎖に二重結合を含まないため、主鎖に二重結合を有する共重合体に比べて耐加水分解性に優れ、研磨液組成物としての品質安定性が向上するという利点がある。
[Copolymer]
The polishing composition of the present invention has a constitutional unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a constitutional unit having a sulfonic acid group, and the main chain is a saturated hydrocarbon chain. Contains a polymer or a salt thereof (hereinafter also referred to as “copolymer of the present invention”). Hereinafter, a structural unit derived from a monomer having a solubility in 100 g of water at 20 ° C. of 2 g or less is also referred to as a “hydrophobic structural unit”. The arrangement of the hydrophobic structural unit and the structural unit having a sulfonic acid group may be random, block, or graft. Moreover, the copolymer of this invention may contain structural units other than these structural units in the range which satisfy | fills all the ranges of predetermined content, as mentioned later. Since the copolymer of the present invention does not contain a double bond in the main chain, it is superior in hydrolysis resistance compared to a copolymer having a double bond in the main chain, and the quality stability as a polishing liquid composition is excellent. There is an advantage of improvement.
 [疎水性構成単位]
 本発明の共重合体における疎水性構成単位は、20℃の水100gに対する溶解度が2g以下の単量体(以下、「疎水性単量体」ともいう。)に由来する構成単位である。疎水性単量体の20℃の水100gに対する溶解度は、研磨後のスクラッチ、ナノ突起欠陥及び基板表面うねりの低減の観点から、0~1gが好ましく、0~0.1gがより好ましい。
[Hydrophobic building blocks]
The hydrophobic structural unit in the copolymer of the present invention is a structural unit derived from a monomer having a solubility in 100 g of water at 20 ° C. of 2 g or less (hereinafter also referred to as “hydrophobic monomer”). The solubility of the hydrophobic monomer in 100 g of water at 20 ° C. is preferably 0 to 1 g, more preferably 0 to 0.1 g from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness.
 疎水性単量体としては、例えば、アルキルアクリレート系モノマー、アルキルメタクリレート系モノマー、ポリエチレングリコールアクリレート系モノマーを除くポリアルキレングリコールアクリレート系モノマー、ポリエチレングリコールメタクリレート系モノマーを除くポリアルキレングリコールメタクリレート系モノマー、スチレン系モノマー、アルキルアクリルアミド系モノマー、アルキルメタクリルアミド系モノマー等が好適に挙げられる。これらの単量体(モノマー)に含有されるアルキル基は、直鎖もしくは分岐鎖の炭化水素基のみならず、単環もしくは多環の脂肪族環もしくは芳香環を有する炭化水素基を含み、環にさらに直鎖又は分岐のアルキル基を置換基として有する炭化水素基をも含むことが好ましい。 Examples of hydrophobic monomers include alkyl acrylate monomers, alkyl methacrylate monomers, polyalkylene glycol acrylate monomers excluding polyethylene glycol acrylate monomers, polyalkylene glycol methacrylate monomers excluding polyethylene glycol methacrylate monomers, and styrene monomers. Preferred examples include monomers, alkylacrylamide monomers, alkylmethacrylamide monomers and the like. The alkyl group contained in these monomers (monomers) includes not only a linear or branched hydrocarbon group but also a hydrocarbon group having a monocyclic or polycyclic aliphatic ring or aromatic ring, In addition, it preferably further includes a hydrocarbon group having a linear or branched alkyl group as a substituent.
 疎水性単量体に由来する構成単位は、耐加水分解性向上の観点、並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、下記一般式(1)及び(2)で表される構成単位からなる群から選択される少なくとも1つの構成単位であることが好ましい。 The structural unit derived from the hydrophobic monomer is represented by the following general formulas (1) and (2) from the viewpoints of improving hydrolysis resistance and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. It is preferable that it is at least 1 structural unit selected from the group which consists of structural units represented by these.
Figure JPOXMLDOC01-appb-C000003

[式(1)及び(2)中、R及びRは水素原子又は炭素数1~4のアルキル基が好ましく、Rは水素原子、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はアリール基が好ましく、Rは炭素数1~22の炭化水素鎖が好ましい。]
Figure JPOXMLDOC01-appb-C000003

[In the formulas (1) and (2), R 1 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 is a hydrogen atom, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, carbon An alkoxy group having 1 to 4 carbon atoms or an aryl group is preferable, and R 4 is preferably a hydrocarbon chain having 1 to 22 carbon atoms. ]
 上記一般式(1)で表される疎水性構成単位において、Rは共重合体の研磨パッドへの吸着量の増加、並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子、メチル基、又はエチル基がさらに好ましく、水素原子又はメチル基がさらよりに好ましい。上記一般式(1)のRは、オルト、メタ、パラ位のいずれかで1つの置換基であってもよく、メタ位の2箇所における置換基であってもよく、その他の2箇所以上の置換基であってもよい。Rは、共重合体の研磨パッドへの吸着量増加並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、水素原子、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はアリール基が好ましく、水素原子又は1つ又は複数の炭素数1~4のアルキル基がより好ましく、水素原子がさらに好ましい。Rが複数の場合、それらは同一でもよいし異なってもよい。なお、前記炭素数1~4のアルキル基及び炭素数1~4のアルコキシは、直鎖構造でも分岐鎖構造でもよい。また、本発明の共重合体は、二種類以上の上記一般式(1)で表される疎水性構成単位を含んでもよい。 In the hydrophobic structural unit represented by the general formula (1), R 1 represents an increase in the amount of the copolymer adsorbed on the polishing pad, and the viewpoint of reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing. Therefore, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is more preferable. Even more preferred. R 2 in the above general formula (1) may be one substituent at any of the ortho, meta, and para positions, may be a substituent at two positions in the meta position, and other two or more positions. May be a substituent. R 2 is a hydrogen atom, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, from the viewpoint of increasing the amount of adsorption of the copolymer to the polishing pad and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, An alkoxy group having 1 to 4 carbon atoms or an aryl group is preferable, a hydrogen atom or one or more alkyl groups having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is further preferable. When there are a plurality of R 2 , they may be the same or different. The alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms may have a linear structure or a branched structure. Moreover, the copolymer of this invention may also contain the hydrophobic structural unit represented by the said 2 or more types of general formula (1).
 本発明の共重合体を構成する全構成単位中に占める上記一般式(1)で表される疎水性構成単位の含有率は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、5~95モル%が好ましく、5~70モル%がより好ましく、10~60モル%がさらにより好ましく、15~50モル%がさらにより好ましく、20~40モル%がさらにより好ましい。 The content of the hydrophobic structural unit represented by the above general formula (1) in all the structural units constituting the copolymer of the present invention is the reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. From the viewpoint, it is preferably 5 to 95 mol%, more preferably 5 to 70 mol%, still more preferably 10 to 60 mol%, still more preferably 15 to 50 mol%, still more preferably 20 to 40 mol%.
 上記一般式(1)で表される疎水性構成単位を与える単量体としては、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α,2-ジメチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、2,4,6-トリメチルスチレン、2-エチルスチレン、4-エチルスチレン、4-イソプロピルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、4-エトキシスチレン、4-フェノキシスチレン、4-フェニルスチレン、2-ヒドロキシスチレン、4-ヒドロキシスチレンなどが挙げられ、これらのなかでも、反応性及び研磨後のスクラッチ、ナノ突起欠陥、及び、基板表面のうねりの低減の観点から、スチレンが好ましい。 Monomers that give the hydrophobic structural unit represented by the general formula (1) include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α, 2-dimethylstyrene. 2,4-dimethylstyrene, 2,5-dimethylstyrene, 2,4,6-trimethylstyrene, 2-ethylstyrene, 4-ethylstyrene, 4-isopropylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4 -Methoxy styrene, 4-ethoxy styrene, 4-phenoxy styrene, 4-phenyl styrene, 2-hydroxy styrene, 4-hydroxy styrene, etc. Among these, reactivity and scratches after polishing, nanoprotrusion defects, And styrene is preferable from a viewpoint of reduction of the waviness of the substrate surface.
 本発明の共重合体における上記一般式(2)で表される疎水性構成単位において、Rは共重合体の研磨パッドへの吸着量増加並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子、メチル基、又はエチル基がさらに好ましく、水素原子又はメチル基がさらにより好ましい。上記一般式(2)のRは共重合体の研磨パッドへの吸着量増加並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、炭素数1~22の炭化水素鎖が好ましく、炭素数は、1~18がより好ましく、1~12がさらに好ましく、1~8がさらにより好ましく、1~4がさらにより好ましい。また、炭化水素鎖としては、直鎖構造でも分岐鎖構造でも環状構造でもよく、アルキル基、アルケニル基、フェニル基、又はシクロアルキル基が好ましく、アルキル基がより好ましい。また、本発明の共重合体は、二種類以上の上記一般式(2)で表される疎水性構成単位を含んでもよい。 In the hydrophobic structural unit represented by the above general formula (2) in the copolymer of the present invention, R 3 represents an increase in the amount of the copolymer adsorbed on the polishing pad, scratches after polishing, nanoprotrusion defects, and the substrate surface. From the viewpoint of reducing waviness, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is more preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, and hydrogen Even more preferred are atoms or methyl groups. R 4 in the general formula (2) represents a hydrocarbon chain having 1 to 22 carbon atoms from the viewpoint of increasing the amount of the copolymer adsorbed on the polishing pad and reducing scratches, nanoprotrusion defects, and substrate surface waviness after polishing. The number of carbon atoms is preferably 1 to 18, more preferably 1 to 12, still more preferably 1 to 8, and still more preferably 1 to 4. The hydrocarbon chain may be a straight chain structure, a branched chain structure, or a cyclic structure, and is preferably an alkyl group, an alkenyl group, a phenyl group, or a cycloalkyl group, and more preferably an alkyl group. In addition, the copolymer of the present invention may contain two or more kinds of hydrophobic structural units represented by the general formula (2).
 本発明の共重合体を構成する全構成単位中に占める上記一般式(2)で表される疎水性構成単位の含有率は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、5~95モル%が好ましく、30~95モル%がより好ましく、40~90モル%がさらに好ましく、50~85モル%がさらにより好ましく、60~80モル%がさらに好ましい。 The content of the hydrophobic structural unit represented by the above general formula (2) in all the structural units constituting the copolymer of the present invention is the reduction of scratches after polishing, nanoprojection defects, and substrate surface waviness. From the viewpoint, it is preferably 5 to 95 mol%, more preferably 30 to 95 mol%, still more preferably 40 to 90 mol%, still more preferably 50 to 85 mol%, still more preferably 60 to 80 mol%.
 上記一般式(2)で表される疎水性構成単位を提供する好ましい疎水性単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル(LMA)、メタクリル酸パルミチル、メタクリル酸セチル、メタクリル酸ステアリル(SMA)、メタクリル酸イソステアリル(ISMA)、メタクリル酸ベヘニル(BMA)、メタクリル酸フェニル、メタクリル酸ベンジル(BzMA)、メタクリル酸シクロヘキシル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸エチルヘキシル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸パルミチル、アクリル酸セチル、アクリル酸ステアリル、アクリル酸イソステアリル、アクリル酸ベヘニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸シクロヘキシル等が挙げられ、これらのなかでも、反応性並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、メタクリル酸メチル、メタクリル酸エチルが好ましく、メタクリル酸メチルがより好ましい。 Preferred hydrophobic monomers that provide the hydrophobic structural unit represented by the general formula (2) include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, ethyl hexyl methacrylate, Decyl methacrylate, lauryl methacrylate (LMA), palmityl methacrylate, cetyl methacrylate, stearyl methacrylate (SMA), isostearyl methacrylate (ISMA), behenyl methacrylate (BMA), phenyl methacrylate, benzyl methacrylate (BzMA) ), Cyclohexyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, ethyl hexyl acrylate, decyl acrylate, lauryl acrylate, acrylic Examples include palmityl, cetyl acrylate, stearyl acrylate, isostearyl acrylate, behenyl acrylate, phenyl acrylate, benzyl acrylate, and cyclohexyl acrylate. Among these, reactivity and scratches after polishing and nanoprotrusions From the viewpoint of reducing defects and waviness on the substrate surface, methyl methacrylate and ethyl methacrylate are preferable, and methyl methacrylate is more preferable.
 [スルホン酸基を有する構成単位]
 本発明の共重合体におけるスルホン酸基を有する構成単位は、例えば、スルホン酸基を有する単量体を重合することにより得られる。スルホン酸基を有する構成単位は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、下記一般式(3)で表されることが好ましい。下記一般式(3)のRは、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、水素原子又は炭素数1~4のアルキル基が好ましく、水素原子又は炭素数1~3のアルキル基がより好ましく、水素原子、メチル基、又はエチル基がさらに好ましく、水素原子又はメチル基がさらにより好ましく、メチル基がさらにより好ましい。下記一般式(3)のRは共重合体の溶解・分散性並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、1又は複数のスルホン酸基で置換されたアリール基であり、1又は複数のスルホン酸基で置換されたフェニル基が好ましく、オルト、メタ、パラ位のいずれかで1つのスルホン酸基を有するフェニル基又はメタ位の2箇所でスルホン酸基を有するフェニル基がより好ましく、パラ位でスルホン酸基を有するフェニル基がさらに好ましい。本発明の共重合体は、二種類以上のスルホン酸基を有する構成単位を含んでもよい。なお、これらのスルホン酸基は中和された塩の形態を取ってもよい。
[Structural unit having sulfonic acid group]
The structural unit having a sulfonic acid group in the copolymer of the present invention can be obtained, for example, by polymerizing a monomer having a sulfonic acid group. The structural unit having a sulfonic acid group is preferably represented by the following general formula (3) from the viewpoint of reducing scratches after polishing, nanoprojection defects, and substrate surface waviness. R 5 in the following general formula (3) is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. An alkyl group of 1 to 3 is more preferable, a hydrogen atom, a methyl group, or an ethyl group is more preferable, a hydrogen atom or a methyl group is still more preferable, and a methyl group is still more preferable. R 6 in the following general formula (3) is an aryl substituted with one or a plurality of sulfonic acid groups from the viewpoint of the solubility / dispersibility of the copolymer and the reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing. A phenyl group substituted with one or a plurality of sulfonic acid groups, a phenyl group having one sulfonic acid group at any of the ortho, meta and para positions, or a sulfonic acid group at two positions of the meta position. The phenyl group having a sulfonic acid group at the para position is more preferable. The copolymer of the present invention may contain a structural unit having two or more kinds of sulfonic acid groups. These sulfonic acid groups may take the form of neutralized salts.
Figure JPOXMLDOC01-appb-C000004

[式(3)中、Rは水素原子又は炭素数1~4のアルキル基が好ましく、Rは1又は複数のスルホン酸基を有するアリール基が好ましい。]
Figure JPOXMLDOC01-appb-C000004

[In Formula (3), R 5 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 is preferably an aryl group having one or more sulfonic acid groups. ]
 スルホン酸基の対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等のイオンが挙げられる。金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの金属の中でも、表面粗さ及びスクラッチ低減の観点から1A、3B、又は8族に属する金属が好ましく、1A族に属するナトリウム及びカリウムがより好ましい。アルキルアンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。これらの塩の中では、アンモニウム塩、ナトリウム塩及びカリウム塩がより好ましい。 The counter ion of the sulfonic acid group is not particularly limited, and specific examples include ions of metals, ammonium, alkylammonium, and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these metals, metals belonging to Group 1A, 3B, or Group 8 are preferable from the viewpoint of surface roughness and scratch reduction, and sodium and potassium belonging to Group 1A are more preferable. Specific examples of alkylammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like. Among these salts, ammonium salts, sodium salts, and potassium salts are more preferable.
 本発明の共重合体を構成する全構成単位中に占めるスルホン酸基を有する構成単位の含有率は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、5~95モル%が好ましい。本発明の共重合体の疎水性構成単位が上記一般式(1)で表される疎水性構成単位である場合、スルホン酸基を有する構成単位の含有率は同様の観点から、40~90モル%がより好ましく、50~85モル%がさらに好ましく、60~80モル%がさらにより好ましい。また、本発明の共重合体の疎水性構成単位が上記一般式(2)で表される疎水性構成単位である場合、スルホン酸基を有する構成単位の含有率は同様の観点から、5~70モル%がより好ましく、10~60モル%がさらに好ましく、15~50モル%がさらにより好ましく、20~40モル%がさらに好ましい。 The content of the structural unit having a sulfonic acid group in all the structural units constituting the copolymer of the present invention is 5 to 95 mol from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. % Is preferred. When the hydrophobic structural unit of the copolymer of the present invention is the hydrophobic structural unit represented by the general formula (1), the content of the structural unit having a sulfonic acid group is 40 to 90 mol from the same viewpoint. % Is more preferable, 50 to 85 mol% is more preferable, and 60 to 80 mol% is still more preferable. When the hydrophobic structural unit of the copolymer of the present invention is a hydrophobic structural unit represented by the general formula (2), the content of the structural unit having a sulfonic acid group is 5 to 70 mol% is more preferable, 10 to 60 mol% is more preferable, 15 to 50 mol% is still more preferable, and 20 to 40 mol% is still more preferable.
 スルホン酸基を有する構成単位を提供する単量体としては、主鎖を飽和炭化水素鎖とすることによる耐加水分解性向上の観点から、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、ビニルベンジルスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、ナフタレンスルホン酸及びそれらの塩等が挙げられる。これらのなかでも、共重合体の保存安定性、並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、スチレンスルホン酸、メチルスチレンスルホン酸及びそれらの塩が好ましく、スチレンスルホン酸及びその塩がより好ましい。あるいは、スルホン酸基を有する構成単位は、上述した疎水性構成単位を含む(共)重合体(ベースポリマー)を公知のスルホン化剤などによりスルホン化することで得てもよい。 As a monomer that provides a structural unit having a sulfonic acid group, 2- (meth) acrylamido-2-methylpropanesulfonic acid, from the viewpoint of improving hydrolysis resistance by making the main chain a saturated hydrocarbon chain, Examples thereof include styrene sulfonic acid, vinyl benzyl sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamylene sulfonic acid, naphthalene sulfonic acid, and salts thereof. Among these, styrene sulfonic acid, methyl styrene sulfonic acid, and salts thereof are preferable from the viewpoint of storage stability of the copolymer and reduction of scratches, nanoprotrusion defects, and substrate surface waviness after polishing. More preferred are acids and salts thereof. Alternatively, the structural unit having a sulfonic acid group may be obtained by sulfonating a (co) polymer (base polymer) containing the hydrophobic structural unit described above with a known sulfonating agent or the like.
 本発明の共重合体を構成する全構成単位中に占める上記の疎水性構成単位及びスルホン酸基を有する構成単位の合計の含有率は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、70~100モル%が好ましく、80~100モル%がより好ましく、90~100モル%がさらに好ましく、95%~100モル%がさらにより好ましい。 The total content of the hydrophobic structural unit and the structural unit having a sulfonic acid group in all the structural units constituting the copolymer of the present invention is the number of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. From the viewpoint of reduction, it is preferably 70 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%.
 本発明の共重合体を構成する全構成単位中に占める上記の疎水性構成単位及びスルホン酸基を有する構成単位のモル比(疎水性構成単位のモル%/スルホン酸基を有する構成単位のモル%)は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、5/95~95/5が好ましい。本発明の共重合体の疎水性構成単位が上記一般式(1)で表される疎水性構成単位である場合、該モル比は同様の観点から10/90~60/40がより好ましく、15/85~50/50がさらに好ましく、20/80~40/60がさらにより好ましい。また、本発明の共重合体の疎水性構成単位が上記一般式(2)で表される疎水性構成単位である場合、スルホン酸基を有する構成単位の含有率は同様の観点から、30/70~95/5がより好ましく、40/60~90/10がさらに好ましく、50/50~85/15がさらにより好ましく、60/40~80/20がさらにより好ましい。 The molar ratio of the hydrophobic structural unit and the structural unit having a sulfonic acid group in the total structural units constituting the copolymer of the present invention (mol% of hydrophobic structural unit / mol of the structural unit having a sulfonic acid group) %) Is preferably 5/95 to 95/5 from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. When the hydrophobic structural unit of the copolymer of the present invention is the hydrophobic structural unit represented by the general formula (1), the molar ratio is more preferably 10/90 to 60/40 from the same viewpoint, 15 / 85 to 50/50 is more preferable, and 20/80 to 40/60 is even more preferable. When the hydrophobic structural unit of the copolymer of the present invention is a hydrophobic structural unit represented by the general formula (2), the content of the structural unit having a sulfonic acid group is 30 / 70-95 / 5 is more preferred, 40 / 60-90 / 10 is more preferred, 50 / 50-85 / 15 is even more preferred, and 60 / 40-80 / 20 is even more preferred.
 [その他の構成単位]
 本発明の共重合体は、上記の疎水性構成単位及びスルホン酸基を有する構成単位以外のその他の構成単位を有してもよい。その他の構成単位としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸等のエチレン性不飽和カルボン酸;ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート等のヒドロキシ基又はグリシジル基含有エチレン性単量体;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N-ダイアセトンアクリルアミド等のエチレン性アミド;アミノエチルアクリレート、アミノエチルメタクリレート、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルアクリレート、N,N-ジエチルアミノエチルメタクリレート、N,N,N-トリメチルアミノエチルアクリレート、N,N,N-トリメチルアミノエチルメタクリレート等のエチレン性アミン又はその塩などが挙げられる。本発明の共重合体を構成する全構成単位中に占めるその他の構成単位の含有率は、並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、0~30モル%が好ましく、0~20モル%がより好ましく、0~10モル%がさらに好ましく、0~5モル%がさらにより好ましく、さらには、実質的に0モル%が好ましい。
[Other structural units]
The copolymer of this invention may have other structural units other than said hydrophobic structural unit and the structural unit which has a sulfonic acid group. Other structural units include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and crotonic acid; hydroxyethyl acrylate, hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, ethylene glycol Hydroxy or glycidyl group-containing ethylenic monomers such as acrylate, ethylene glycol dimethacrylate, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate; acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-diacetone Ethylenic amides such as acrylamide; aminoethyl acrylate, aminoethyl methacrylate, N, N-dimethyla Noethyl acrylate, N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, N, N, N-trimethylaminoethyl acrylate, N, N, N-trimethylaminoethyl methacrylate And ethylenic amines or salts thereof. The content of other structural units in the total structural units constituting the copolymer of the present invention is 0 to 30 mol% from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. Preferably, 0 to 20 mol% is more preferable, 0 to 10 mol% is further preferable, 0 to 5 mol% is still more preferable, and substantially 0 mol% is more preferable.
 [共重合体の製造方法]
 本発明の共重合体の製造方法は、単量体の共重合法、ポリマーにスルホン化剤を用いて得られる方法等が挙げられるが、これらの方法に限定されるものではない。好ましくは、単量体の共重合法である。単量体の共重合法は、公知の塊状重合、溶液重合等の重合法を用いることができる。本発明の共重合体を得るための重合溶媒は、水に対する溶解度(20℃)が10重量%以上であれば何れでもよい。水、アルコール系、ケトン系、エーテル系等が挙げられる。アルコール系溶剤は、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、第2級ブタノール、第3級ブタノール、イソブタノール、ジアセトンアルコール等が挙げられる。ケトン系溶剤は、例えばアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、シクロへキサノン等が挙げられる。エーテル系溶剤は、テトラヒドロフラン、ジオキサン、グライム、セロソルブ類等が挙げられる。これらを1種類以上混合して用いることが出来る。重合開始剤としては、公知のラジカル開始剤が用いられる。例えば、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウムに代表される過硫酸化類、t-ブチルヒドロペルオキシドに代表されるヒドロ過酸化物類、過酸化ジt-ブチルに代表される過酸化ジアルキル類、過酸化アセチル、過酸化ベンゾイルに代表される過酸化ジアシル類、メチルエチルケトンペルオキシドに代表されるケトンペルオキシド類、及びアゾ系重合開始剤が挙げられる。これらの重合開始剤は1種類以上を使用することが出来る。開始剤濃度は、単量体に対して、1~100mol%が好ましく、3~50mol%がより好ましく、5~30mol%がさらに好ましい。また、必要に応じて連鎖移動剤を使用できる。重合時の単量体濃度は、0.5~90重量%が好ましく、1.0~50重量%がより好ましく、3.0~30重量%がさらに好ましい。重合温度は、40~300℃が好ましく、50~250℃がより好ましく、60~200℃がさらに好ましい。2種類以上の単量体を共重合する場合、経時の単量体の転化率を等しくするため、滴下重合が好ましい。また、滴下速度、滴下時間は適宜、調整を行う。ここで、単量体の転化率とは、単量体が重合体に変化した割合であり、以下の式で表すことができる。
単量体の転化率(%)=((仕込み単量体量)-(未反応の単量体量))/(仕込み単量体量)×100 
[Method for producing copolymer]
Examples of the method for producing the copolymer of the present invention include a monomer copolymerization method, a method obtained by using a sulfonating agent for the polymer, and the like, but are not limited to these methods. Preferred is a monomer copolymerization method. As the monomer copolymerization method, a known polymerization method such as bulk polymerization or solution polymerization can be used. The polymerization solvent for obtaining the copolymer of the present invention may be any as long as the solubility in water (20 ° C.) is 10% by weight or more. Examples include water, alcohols, ketones, and ethers. Examples of the alcohol solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, secondary butanol, tertiary butanol, isobutanol, diacetone alcohol and the like. Examples of the ketone solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, methyl isobutyl ketone, methyl isopropyl ketone, and cyclohexanone. Examples of ether solvents include tetrahydrofuran, dioxane, glyme, cellosolves and the like. One or more of these can be mixed and used. As the polymerization initiator, a known radical initiator is used. For example, persulfates represented by ammonium persulfate, potassium persulfate, sodium persulfate, hydroperoxides represented by t-butyl hydroperoxide, dialkyl peroxides represented by di-t-butyl peroxide Acetyl peroxide, diacyl peroxides represented by benzoyl peroxide, ketone peroxides represented by methyl ethyl ketone peroxide, and azo polymerization initiators. One or more kinds of these polymerization initiators can be used. The initiator concentration is preferably from 1 to 100 mol%, more preferably from 3 to 50 mol%, still more preferably from 5 to 30 mol%, based on the monomer. Moreover, a chain transfer agent can be used as needed. The monomer concentration during the polymerization is preferably 0.5 to 90% by weight, more preferably 1.0 to 50% by weight, and still more preferably 3.0 to 30% by weight. The polymerization temperature is preferably 40 to 300 ° C, more preferably 50 to 250 ° C, and further preferably 60 to 200 ° C. When two or more types of monomers are copolymerized, drop polymerization is preferred in order to equalize the monomer conversion rate over time. The dropping speed and dropping time are adjusted as appropriate. Here, the conversion ratio of the monomer is a ratio of the monomer changed to a polymer, and can be represented by the following formula.
Conversion of monomer (%) = ((amount of charged monomer) − (amount of unreacted monomer)) / (amount of charged monomer) × 100
 単量体の転化率を等しくすると、重合体の組成比率に偏りが少なくなるため、基板品質がより向上する利点がある。2種類以上の単量体の転化率比は、0.7~1.3が好ましく、0.8~1.2がより好ましく、0.9~1.1がさらに好ましい。 When the monomer conversion ratios are made equal, there is an advantage that the quality of the substrate is further improved because the composition ratio of the polymer is less biased. The conversion ratio of the two or more monomers is preferably 0.7 to 1.3, more preferably 0.8 to 1.2, and still more preferably 0.9 to 1.1.
 [共重合体の重量平均分子量]
 本発明の共重合体の重量平均分子量は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、500以上12万以下が好ましく、1000以上10万以下がより好ましく、1000以上3万以下がさらに好ましく、1000以上1万以下がさらにより好ましく、1500以上8000以下がさらにより好ましい。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて実施例に記載の条件で測定した値とする。
[Weight average molecular weight of copolymer]
The weight average molecular weight of the copolymer of the present invention is preferably 500 or more and 120,000 or less, more preferably 1000 or more and 100,000 or less, and more preferably 1000 or more, from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness. 30,000 or less is more preferable, 1000 or more and 10,000 or less are more preferable, and 1500 or more and 8000 or less are even more preferable. The weight average molecular weight is a value measured under the conditions described in Examples using gel permeation chromatography (GPC).
 本発明の共重合体が塩を少なくとも部分的に形成している場合、その対イオンとしては、特に限定はなく、上述のスルホン酸塩基の場合と同様に、金属、アンモニウム、アルキルアンモニウム等のイオンが挙げられる。 When the copolymer of the present invention forms a salt at least partially, the counter ion is not particularly limited, and as in the case of the sulfonate group described above, ions of metal, ammonium, alkylammonium, etc. Is mentioned.
 研磨液組成物における本発明の共重合体の含有量は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、0.001~1重量%が好ましく、より好ましくは0.005~0.5重量%、さらに好ましくは0.01~0.2重量%、さらにより好ましくは0.01~0.1重量%、特に好ましくは0.01~0.075重量%である。 The content of the copolymer of the present invention in the polishing composition is preferably from 0.001 to 1% by weight, more preferably from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. 005 to 0.5% by weight, more preferably 0.01 to 0.2% by weight, even more preferably 0.01 to 0.1% by weight, and particularly preferably 0.01 to 0.075% by weight.
 [複素環芳香族化合物]
 本発明の研磨液組成物は、研磨速度を維持しつつ研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減する観点から、複素環内に窒素原子を2個以上含む複素環芳香族化合物を含有することが好ましい。複素環芳香族化合物は、複素環内に窒素原子を3個以上有することが好ましく、3~9個がより好ましく、3~5個がさらに好ましく、3又は4個がさらにより好ましい。
[Heterocyclic aromatic compounds]
The polishing composition of the present invention is a heterocyclic aromatic compound containing two or more nitrogen atoms in the heterocyclic ring from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness while maintaining the polishing rate. It is preferable to contain. The heterocyclic aromatic compound preferably has 3 or more nitrogen atoms in the heterocyclic ring, more preferably 3 to 9, more preferably 3 to 5, and still more preferably 3 or 4.
 複素環芳香族化合物は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、ピリミジン、ピラジン、ピリダジン、1,2,3-トリアジン、1,2,4-トリアジン、1,2,5-トリアジン、1,3,5-トリアジン、1,2,4-オキサジアゾール、1,2,5-オキサジアゾール、1,3,4-オキサジアゾール、1,2,5-チアジアゾール、1,3,4-チアジアゾール、3-アミノピラゾール、4-アミノピラゾール、3,5-ジメチルピラゾール、ピラゾール、2-アミノイミダゾール、4-アミノイミダゾール、5-アミノイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、イミダゾール、ベンゾイミダゾール、1,2,3-トリアゾール、4-アミノー1,2,3-トリアゾール、5-アミノー1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノー1,2,4-トリアゾール、5-アミノー1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、1H-テトラゾール、5-アミノテトラゾール、1H-ベンゾトリアゾール、1H-トリルトリアゾール、2-アミノベンゾトリアゾール、3-アミノベンゾトリアゾール、又はこられのアルキル置換体若しくはアミン置換体が好ましく、1H-ベンゾトリアゾール、1H-トリルトリアゾールがより好ましく、1H-ベンゾトリアゾールがさらに好ましい。前記アルキル置換体のアルキル基としては例えば、炭素数1~4の低級アルキル基が挙げられ、より具体的にはメチル基、エチル基が挙げられる。また、前記アミン置換体としては1-[N,N-ビス(ヒドロキシエチレン)アミノメチル]ベンゾトリアゾール、1-[N,N-ビス(ヒドロキシエチレン)アミノメチル]トリルトリアゾールが挙げられる。 Heteroaromatic compounds are pyrimidine, pyrazine, pyridazine, 1,2,3-triazine, 1,2,4-triazine, 1, from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. 2,5-triazine, 1,3,5-triazine, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,5- Thiadiazole, 1,3,4-thiadiazole, 3-aminopyrazole, 4-aminopyrazole, 3,5-dimethylpyrazole, pyrazole, 2-aminoimidazole, 4-aminoimidazole, 5-aminoimidazole, 2-methylimidazole, 2 -Ethylimidazole, imidazole, benzimidazole, 1,2,3-triazole, 4-amino-1,2,3-triazo , 5-amino-1,2,3-triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, 5-amino-1,2,4-triazole, 3-mercapto-1,2 , 4-triazole, 1H-tetrazole, 5-aminotetrazole, 1H-benzotriazole, 1H-tolyltriazole, 2-aminobenzotriazole, 3-aminobenzotriazole, or alkyl or amine substituents thereof are preferred. 1H-benzotriazole, 1H-tolyltriazole is more preferable, and 1H-benzotriazole is more preferable. Examples of the alkyl group of the alkyl-substituted product include a lower alkyl group having 1 to 4 carbon atoms, and more specifically, a methyl group and an ethyl group. Examples of the amine-substituted product include 1- [N, N-bis (hydroxyethylene) aminomethyl] benzotriazole and 1- [N, N-bis (hydroxyethylene) aminomethyl] tolyltriazole.
 研磨液組成物中における複素環芳香族化合物の含有量は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、研磨液組成物全体の重量に対して0.01~10重量%であることが好ましく、0.05~5重量%がより好ましく、0.1~1重量%がさらに好ましい。なお、研磨液組成物中の複素環芳香族化合物は1種類であってもよく、2種類以上であってもよい。 The content of the heterocyclic aromatic compound in the polishing composition is 0.01 to 10 with respect to the total weight of the polishing composition from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness. % By weight is preferred, 0.05 to 5% by weight is more preferred, and 0.1 to 1% by weight is even more preferred. In addition, the heterocyclic aromatic compound in the polishing composition may be one kind or two or more kinds.
 また、研磨液組成物中における、研磨材と複素環芳香族化合物との濃度比[研磨材の濃度(重量%)/複素環芳香族化合物の濃度(重量%)]は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、2~100が好ましく、5~50がより好ましく、10~25がさらに好ましい。 In the polishing composition, the concentration ratio between the abrasive and the heterocyclic aromatic compound [the concentration of the abrasive (% by weight) / the concentration of the heterocyclic aromatic compound (% by weight)] is a scratch after polishing, From the viewpoint of reducing nanoprotrusion defects and substrate surface waviness, 2 to 100 is preferable, 5 to 50 is more preferable, and 10 to 25 is even more preferable.
 さらに、研磨液組成物中における、複素環芳香族化合物と前記共重合体との濃度比[複素環芳香族化合物の濃度(重量%)/共重合体の濃度(重量%)]は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、1~100が好ましく、2~50がより好ましく、2.5~25がさらに好ましい。 Further, the concentration ratio [heterocyclic aromatic compound concentration (wt%) / copolymer concentration (wt%)] of the heterocyclic aromatic compound and the copolymer in the polishing liquid composition is determined after polishing. From the viewpoint of reducing scratches, nanoprotrusion defects, and substrate surface waviness, 1 to 100 is preferable, 2 to 50 is more preferable, and 2.5 to 25 is even more preferable.
 [研磨材]
 本発明に使用される研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等があげられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体的な例としては、酸化アルミニウム(アルミナ)、炭化珪素、ダイヤモンド、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム、シリカ等が挙げられ、これらの1種以上を使用することは研磨速度を向上させる観点から好ましい。中でもアルミナ、コロイダルシリカが、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から好ましく、コロイダルシリカがさらに好ましい。
[Abrasive]
As the abrasive used in the present invention, abrasives generally used for polishing can be used, including metal, metal or metalloid carbide, nitride, oxide, boride, diamond. Etc. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include aluminum oxide (alumina), silicon carbide, diamond, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, silica, and the like, and one or more of these are used. This is preferable from the viewpoint of improving the polishing rate. Among these, alumina and colloidal silica are preferable from the viewpoint of reduction of scratches after polishing, nanoprotrusion defects, and substrate surface waviness, and colloidal silica is more preferable.
 コロイダルシリカは、ケイ酸水溶液から生成させる公知の製造方法等により得られたものでもよい。シリカ粒子の使用形態としては、操作性の観点からスラリー状であることが好ましい。本発明は、好ましくは、後述する所定のシリカ粒子を上述の共重合体と組み合わせることによりさらにいっそう研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減できるという知見に基づく。 The colloidal silica may be obtained by a known production method or the like produced from a silicic acid aqueous solution. The usage form of the silica particles is preferably a slurry from the viewpoint of operability. The present invention is preferably based on the knowledge that by combining predetermined silica particles described later with the above-mentioned copolymer, scratches after polishing, nanoprotrusion defects, and substrate surface waviness can be further reduced.
 具体的には、本発明は、好ましい態様において、従来から制御対象となっていた平均粒径に加え、異なる2つの検出角におけるCV値の差(ΔCV値)に着目し、これらの2つのパラメータを用いて制御された研磨材を上述の共重合体と組み合わせることで、研磨後のスクラッチに加え、ナノ突起欠陥及び基板表面うねりをいっそう低減できるという知見に基づく。 Specifically, in a preferred embodiment, the present invention focuses on the difference between the CV values (ΔCV values) at two different detection angles in addition to the average particle diameter that has been conventionally controlled, and these two parameters. In combination with the above-mentioned copolymer, an abrasive controlled by using the above-described copolymer is based on the knowledge that, in addition to scratches after polishing, nanoprotrusion defects and substrate surface waviness can be further reduced.
 [研磨材の平均粒径]
〔動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径〕
 本明細書において研磨材の平均粒径には、2種類の平均粒径、すなわち、透過型電子顕微鏡観察により測定される平均粒径(S2)、及び、動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径が用いられ、具体的には実施例に記載の方法により測定される。動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径は、研磨後の基板表面のうねりとナノ突起欠陥を低減する観点から、1~40nmが好ましく、5~37nmがより好ましく、10~35nmがさらに好ましい。また、透過型電子顕微鏡観察により測定される平均粒径(S2)は、同様の観点から、好ましくは1~40nmであり、より好ましくは5~37nm、さらに好ましくは10~35nmである。
[Average particle size of abrasive]
[Average particle diameter based on scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method]
In the present specification, the average particle size of the abrasive includes two types of average particle size, that is, the average particle size (S2) measured by transmission electron microscope observation, and the detection angle of 90 degrees in the dynamic light scattering method. The average particle diameter based on the scattering intensity distribution measured in (1) is used, and specifically measured by the method described in the examples. The average particle size based on the scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method is preferably 1 to 40 nm from the viewpoint of reducing waviness and nanoprotrusion defects on the polished substrate surface, and 5 to 37 nm. Is more preferably 10 to 35 nm. Further, from the same viewpoint, the average particle diameter (S2) measured by transmission electron microscope observation is preferably 1 to 40 nm, more preferably 5 to 37 nm, and further preferably 10 to 35 nm.
 [研磨材のΔCV値]
 本明細書において研磨材のΔCV値は、動的光散乱法により検出角30度(前方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱法により検出角30度の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数(CV)の値(CV30)と、動的光散乱法により検出角90度(側方散乱)の散乱強度分布に基づき測定される粒径の標準偏差を、動的光散乱法により検出角90度の散乱強度分布に基づき測定される平均粒径で除して100を掛けた変動係数の値(CV90)との差(ΔCV=CV30-CV90)をいい、具体的には実施例に記載の方法により測定することができる。本発明の研磨液組成物に使用される研磨材のΔCV値は、生産性を損なうことなく研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減する観点から、0~14%が好ましく、0~10%がより好ましく、0.01~10%がさらに好ましく、0.01~7%がさらにより好ましく、0.01~5%がさらにより好ましい。
[ΔCV value of abrasive]
In this specification, the ΔCV value of the abrasive is the standard deviation of the particle diameter measured based on the scattering intensity distribution at a detection angle of 30 degrees (forward scattering) by the dynamic light scattering method, and the detection angle of 30 by the dynamic light scattering method. Scattering with a coefficient of variation (CV30) multiplied by 100 divided by the average particle size measured based on the scattering intensity distribution in degrees (CV30) and a detection angle of 90 degrees (side scattering) by the dynamic light scattering method A coefficient of variation (CV90) obtained by dividing the standard deviation of the particle diameter measured based on the intensity distribution by the average particle diameter measured based on the scattering intensity distribution at a detection angle of 90 degrees by the dynamic light scattering method and multiplying by 100. ) (ΔCV = CV30−CV90). Specifically, it can be measured by the method described in the examples. The ΔCV value of the abrasive used in the polishing composition of the present invention is preferably 0 to 14% from the viewpoint of reducing scratches after polishing, nanoprojection defects, and substrate surface waviness without impairing productivity. 0 to 10% is more preferable, 0.01 to 10% is more preferable, 0.01 to 7% is still more preferable, and 0.01 to 5% is still more preferable.
 [研磨材のCV値]
 本明細書においてコロイダルシリカ研磨材のCV値は、動的光散乱法における散乱強度分布に基づく標準偏差を平均粒径で除して100を掛けた変動係数の値であって、上述のとおり、特に、検出角90度(側方散乱)で測定されるCV値をCV90、検出角30度(前方散乱)で測定されるCV値をCV30といい、具体的には実施例に記載の方法により得ることができる。本発明の研磨液組成物に使用されるコロイダルシリカ研磨材のCV90は、生産性を損なうことなく研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減する観点から、1~35%が好ましく、5~34%がより好ましく、10~33%がさらに好ましい。
[CV value of abrasive]
In the present specification, the CV value of the colloidal silica abrasive is a value of a coefficient of variation obtained by dividing the standard deviation based on the scattering intensity distribution in the dynamic light scattering method by the average particle diameter and multiplying by 100. In particular, the CV value measured at a detection angle of 90 degrees (side scatter) is referred to as CV90, and the CV value measured at a detection angle of 30 degrees (forward scatter) as CV30, specifically by the method described in the examples. Obtainable. The CV90 of the colloidal silica abrasive used in the polishing composition of the present invention is preferably 1 to 35% from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness without impairing productivity. 5 to 34% is more preferable, and 10 to 33% is more preferable.
 本発明者らは、研磨材のΔCV値と研磨材凝集体(非球状粒子)の含有量との間に相関関係があること、及びΔCV値が所定範囲の研磨材を用いることにより、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを低減できることを見出した。係る効果が奏される理由は明らかではないが、ΔCV値を制御することで研磨材の一次粒子が凝集して生じた50~200nmの研磨材凝集体(非球状粒子)が低減され、かかる凝集体が少ない研磨材を本発明の共重合体と組み合わせることで、研磨中に生じる前記凝集体の生成をより抑制し、かつ研磨時の摩擦振動を低減して研磨パッドの開孔部からの研磨材凝集体の脱落をより防止し、研磨後の基板のスクラッチに加え、研磨後のナノ突起欠陥及び基板表面うねりをより低減していると推定される。但し、本発明はこれらの推定メカニズムに限定されない。 The inventors have found that there is a correlation between the ΔCV value of the abrasive and the content of the abrasive agglomerates (non-spherical particles), and by using an abrasive having a ΔCV value within a predetermined range, It was found that scratches, nanoprotrusion defects, and substrate surface waviness can be reduced. The reason why such an effect is achieved is not clear, but by controlling the ΔCV value, 50 to 200 nm of abrasive aggregates (non-spherical particles) generated by agglomeration of primary particles of the abrasive are reduced, and such aggregates are reduced. By combining a polishing material with less aggregate with the copolymer of the present invention, the formation of the agglomerates that occur during polishing is further suppressed, and friction vibration during polishing is reduced to polish from the opening of the polishing pad. It is presumed that the material aggregates are further prevented from falling off, and in addition to scratching of the substrate after polishing, nano-projection defects and substrate surface waviness after polishing are further reduced. However, the present invention is not limited to these estimation mechanisms.
 すなわち、ΔCV値に着目することで、従来では検出することが困難であった粒子分散液試料中の非球状粒子の存在を容易に検出できるから、そのような非球状粒子を含む研磨液組成物を使用することを回避でき、その結果、スクラッチの低減を達成できると考えられる。 That is, by paying attention to the ΔCV value, it is possible to easily detect the presence of non-spherical particles in a particle dispersion sample that has been difficult to detect in the past. Therefore, a polishing liquid composition containing such non-spherical particles Can be avoided, and as a result, a reduction in scratches can be achieved.
 ここで、粒子分散液試料中の粒子が球状か非球状かは、一般に、動的散乱法により測定される拡散係数(D=Γ/q2)の角度依存性を指標とする方法(例えば、特開平10-195152号公報参照)により判断されている。具体的には散乱ベクトルq2に対するΓ/q2をプロットしたグラフにおいて示される角度依存性が小さいほどその分散液中の粒子の平均的な形状は真球状であると判断し、角度依存性が大きいほどその分散液中の粒子の平均的な形状は非球状であると判断される。すなわち、この、動的散乱法により測定される拡散係数の角度依存性を指標とする従来の方法は、系全体で均一の粒子が分散していると仮定して粒子の形状や粒径等を検出・測定する方法である。それゆえ、球状粒子が大勢を占める分散液試料中の一部に存在する非球状粒子は検出が困難となる。 Here, whether the particles in the particle dispersion sample are spherical or non-spherical is generally determined by a method using the angle dependency of the diffusion coefficient (D = Γ / q 2 ) measured by the dynamic scattering method as an index (for example, Jpn. Pat. Appln. KOKAI Publication No. 10-195152). Specifically, the smaller the angle dependency shown in the graph plotting Γ / q 2 with respect to the scattering vector q 2, the more the average shape of the particles in the dispersion is judged to be spherical, and the angle dependency is The larger the particle size, the more the average shape of the particles in the dispersion is judged to be non-spherical. In other words, the conventional method using the angular dependence of the diffusion coefficient measured by the dynamic scattering method as an index assumes that the uniform shape of particles is dispersed throughout the system, and the particle shape, particle size, etc. It is a method of detecting and measuring. Therefore, it is difficult to detect non-spherical particles present in a part of the dispersion sample in which spherical particles are predominant.
 一方、動的光散乱法では、原理的に200nm以下の真球状粒子分散溶液を測定した場合、散乱強度分布は検出角に関係なくほぼ一定の結果が得られるため測定結果は検出角に依存しない。しかし、非球状粒子を含む真球状粒子分散溶液の動的光散乱の散乱強度分布は非球状粒子の存在により検出角によって大きく変化し、低角の検出角ほど散乱強度分布は分布がブロードになる。そのため、動的光散乱の散乱強度分布の測定結果は検出角に依存することとなり、「動的光散乱法により測定される散乱強度分布の角度依存性」の指標の1つであるΔCV値を測定することで、球状粒子分散溶液中に存在するわずかな非球状粒子を測定できると考えられる。なお、本発明はこれらのメカニズムに限定されない。 On the other hand, in the dynamic light scattering method, when measuring a spherical particle dispersion solution of 200 nm or less in principle, the measurement result does not depend on the detection angle because the scattering intensity distribution is almost constant regardless of the detection angle. . However, the scattering intensity distribution of dynamic light scattering of a spherical dispersion containing non-spherical particles varies greatly depending on the detection angle due to the presence of non-spherical particles, and the distribution of the scattering intensity distribution becomes broader at lower detection angles. . Therefore, the measurement result of the scattering intensity distribution of dynamic light scattering depends on the detection angle, and the ΔCV value, which is one of the indicators of “angle dependency of the scattering intensity distribution measured by the dynamic light scattering method”, is It is considered that a few non-spherical particles existing in the spherical particle dispersion solution can be measured by measuring. Note that the present invention is not limited to these mechanisms.
 [散乱強度分布]
 本明細書において「散乱強度分布」とは、動的光散乱法(DLS:Dynamic Light Scattering)又は準弾性光散乱(QLS:Quasielastic Light Scattering)により求められるサブミクロン以下の粒子の3つの粒径分布(散乱強度、体積換算、個数換算)のうち散乱強度の粒径分布のことをいう。通常、サブミクロン以下の粒子は溶媒中でブラウン運動をしており、レーザー光を照射すると散乱光強度が時間的に変化する(ゆらぐ)。この散乱光強度のゆらぎを、例えば、光子相関法(JIS Z 8826)を用いて自己相関関数を求め、キュムラント(Cumulant)法解析により、ブラウン運動速度を示す拡散係数(D)を算出して、さらにアインシュタイン・ストークスの式を用い、平均粒径(d:流体力学的径)を求めることができる。また、粒径分布解析は、キュムラント法による多分散性指数(Polydispersity Index, PI)のほかに、ヒストグラム法(Marquardt法)、ラプラス逆変換法(CONTIN法)、非負最小2乗法(NNLS法)等がある。
[Scattering intensity distribution]
In this specification, “scattering intensity distribution” means three particle size distributions of sub-micron or less particles obtained by dynamic light scattering (DLS) or quasielastic light scattering (QLS). It means the particle size distribution of scattering intensity among (scattering intensity, volume conversion, number conversion). Usually, the sub-micron particles have Brownian motion in a solvent, and the intensity of scattered light changes (fluctuates) with time when irradiated with laser light. For this fluctuation of scattered light intensity, for example, an autocorrelation function is obtained using a photon correlation method (JIS Z 8826), and a diffusion coefficient (D) indicating a Brownian motion velocity is calculated by cumulant method analysis. Furthermore, the average particle diameter (d: hydrodynamic diameter) can be obtained using the Einstein-Stokes equation. In addition to polydispersity index (PI) by cumulant method, particle size distribution analysis includes histogram method (Marquardt method), Laplace inverse transformation method (CONTIN method), non-negative least square method (NNLS method), etc. There is.
 動的光散乱法の粒径分布解析では、通常、キュムラント法による多分散性指数(Polydispersity Index, PI)が広く用いられている。しかしながら、粒子分散液中にわずかに存在する非球状粒子の検出を可能とする検出方法においては、ヒストグラム法(Marquardt法)やラプラス逆変換法(CONTIN法)による粒径分布解析から平均粒径(d50)と標準偏差を求め、CV値(Coefficient of variation:標準偏差を平均粒径で割って100をかけた数値)を算出し、その角度依存性(ΔCV値)を用いることが好ましい。
(参考資料)
第12回散乱研究会(2000年11月22日開催)テキスト、1.散乱基礎講座「動的光散乱法」(東京大学 柴山充弘)
第20回散乱研究会(2008年12月4日開催)テキスト、5.動的光散乱によるナノ粒子の粒径分布測定(同志社大学 森康維)
In the particle size distribution analysis of the dynamic light scattering method, the polydispersity index (PI) by the cumulant method is generally widely used. However, in the detection method that enables detection of non-spherical particles that are slightly present in the particle dispersion, the average particle size (from the particle size distribution analysis by the histogram method (Marquardt method) or the Laplace inverse transform method (CONTIN method)) It is preferable to obtain d50) and the standard deviation, calculate a CV value (Coefficient of variation: a value obtained by dividing the standard deviation by the average particle size and multiply by 100), and use the angular dependence (ΔCV value).
(Reference document)
Text of the 12th Scattering Study Group (held on November 22, 2000) Scattering Basic Course "Dynamic Light Scattering Method" (Mitsuhiro Shibayama, University of Tokyo)
Text of the 20th Scattering Study Group (held on December 4, 2008) Measurement of size distribution of nanoparticles by dynamic light scattering (Doshisha University Yasumori Mori)
 [散乱強度分布の角度依存性]
 本明細書において「粒子分散液の散乱強度分布の角度依存性」とは、動的光散乱法により異なる検出角で前記粒子分散液の散乱強度分布を測定した場合の、散乱角度に応じた散乱強度分布の変動の大きさをいう。例えば、検出角30度と検出角90度とでの散乱強度分布の差が大きければ、その粒子分散液の散乱強度分布の角度依存性は大きいといえる。よって、本明細書において、散乱強度分布の角度依存性の測定は、異なる2つの検出角で測定した散乱強度分布に基づく測定値の差(ΔCV値)を求めることを含む。
[Angle dependence of scattering intensity distribution]
In this specification, “angle dependency of the scattering intensity distribution of the particle dispersion” means scattering according to the scattering angle when the scattering intensity distribution of the particle dispersion is measured at different detection angles by the dynamic light scattering method. The magnitude of fluctuation in intensity distribution. For example, if the difference in the scattering intensity distribution between the detection angle of 30 degrees and the detection angle of 90 degrees is large, it can be said that the angle dependence of the scattering intensity distribution of the particle dispersion is large. Therefore, in this specification, the measurement of the angle dependence of the scattered intensity distribution includes obtaining a difference (ΔCV value) between measured values based on the scattered intensity distribution measured at two different detection angles.
 散乱強度分布の角度依存性の測定で用いる2つの検出角の組合せとしては、非球状粒子の検出の確度向上の点からは、前方散乱と側方若しくは後方散乱との組合せが好ましい。前記前方散乱の検出角としては、同様の観点から、0~80度が好ましく、0~60度がより好ましく、10~50度がさらに好ましく、20~40度がさらにより好ましい。前記側方若しくは後方散乱の検出角としては、同様の観点から、80~180度が好ましく、85~175度がより好ましい。本発明においては、ΔCV値を求める2つの検出角として30度と90度を使用している。 As the combination of the two detection angles used in the measurement of the angle dependence of the scattering intensity distribution, a combination of forward scattering and side or back scattering is preferable from the viewpoint of improving the accuracy of detection of non-spherical particles. From the same viewpoint, the forward scattering detection angle is preferably 0 to 80 degrees, more preferably 0 to 60 degrees, further preferably 10 to 50 degrees, and still more preferably 20 to 40 degrees. From the same viewpoint, the detection angle of the side or back scattering is preferably 80 to 180 degrees, and more preferably 85 to 175 degrees. In the present invention, 30 degrees and 90 degrees are used as two detection angles for obtaining the ΔCV value.
 研磨材のΔCV値の調整方法としては、研磨液組成物の調製において50~200nmの研磨材凝集物(非球状粒子)を生成しないようにする下記の方法が挙げられる。
A)研磨液組成物のろ過による方法
B)研磨材製造時の工程管理による方法
Examples of the method for adjusting the ΔCV value of the abrasive include the following methods for preventing formation of abrasive aggregates (non-spherical particles) of 50 to 200 nm in the preparation of the polishing composition.
A) Method by filtration of polishing liquid composition B) Method by process control during production of abrasive
 上記A)では、例えば、遠心分離や精密フィルターろ過(特開2006-102829及び特開2006-136996)により、50~200nmのシリカ凝集体を除去することでΔCV値を低減できる。具体的には、シリカ濃度20重量%以下になるように適度に希釈したコロイダルシリカ水溶液を、stokesの式より算出した50nm粒子が除去できる条件(例えば、10,000G以上、遠沈管高さ約10cm、2時間以上)で遠心分離する方法や、孔径が0.05μmまたは0.1μmのメンブランフィルター(例えば、アドバンテック、住友3M、Millipore)を用いて加圧ろ過する方法等によりΔCV値を低減できる。 In the above A), the ΔCV value can be reduced by removing silica aggregates of 50 to 200 nm by, for example, centrifugation or fine filter filtration (Japanese Patent Laid-Open No. 2006-102829 and Japanese Patent Laid-Open No. 2006-136996). Specifically, a colloidal silica aqueous solution appropriately diluted so as to have a silica concentration of 20% by weight or less can be removed under conditions where 50 nm particles calculated from the Stokes equation can be removed (for example, 10,000 G or more, centrifuge tube height of about 10 cm). The ΔCV value can be reduced by a method of centrifuging for 2 hours or more, a method of pressure filtration using a membrane filter (for example, Advantech, Sumitomo 3M, Millipore) having a pore size of 0.05 μm or 0.1 μm.
 また、コロイダルシリカは、通常、1)10重量%未満の3号ケイ酸ソーダと種粒子(小粒径シリカ)の混合液(シード液)を反応層に入れ、60℃以上に加熱し、2)そこに3号ケイ酸ソーダを陽イオン交換樹脂に通した酸性の活性ケイ酸水溶液とアルカリ(アルカリ金属又は第4級アンモニウム)とを滴下してpHを一定にして球状の粒子を成長させ、3)熟成後に蒸発法や限外ろ過法で濃縮することで得られる(特開昭47-1964、特公平1-23412、特公平4-55125、特公平4-55127)。しかし、同じ製造プロセスで少し工程を変えると非球状粒子の製造も可能であることが多く報告されている。例えば、活性ケイ酸は非常に不安定なため意図的にCaやMgなどの多価金属イオンを添加すると細長い形状のシリカゾルを製造できる。さらに、反応層の温度(水の沸点を越えると蒸発し気液界面でシリカが乾燥)、反応層のpH(9以下ではシリカ粒子の連結が起きやすい)、反応層のSiO/MO(Mはアルカリ金属又は第4級アンモニウム)、及びモル比(30~60で非球状シリカを選択的に生成)などを変えることで非球状シリカが製造できる(特公平8-5657、特許2803134、特開2006-80406、特開2007-153671)。したがって、上記B)では、公知の球状コロイダルシリカ製造プロセスにおいて、局部的に非球状シリカが生成する条件にならないように工程管理を行うことでΔCV値を小さく調整することができる。 Colloidal silica is usually 1) a mixed solution (seed solution) of less than 10% by weight of No. 3 sodium silicate and seed particles (small particle silica) is put in a reaction layer and heated to 60 ° C. or higher. ) Dropping an acidic active silicic acid aqueous solution obtained by passing No. 3 sodium silicate through a cation exchange resin and an alkali (alkali metal or quaternary ammonium) dropwise to grow a spherical particle with a constant pH, 3) It can be obtained by concentrating by an evaporation method or ultrafiltration method after aging (Japanese Patent Laid-Open No. 47-1964, Japanese Patent Publication No. 1-223412, Japanese Patent Publication No. 4-55125, Japanese Patent Publication No. 4-55127). However, it is often reported that non-spherical particles can be produced by slightly changing the process in the same production process. For example, activated silicic acid is very unstable, and when a polyvalent metal ion such as Ca or Mg is intentionally added, an elongated silica sol can be produced. Furthermore, the temperature of the reaction layer (evaporates when the boiling point of water is exceeded and the silica is dried at the gas-liquid interface), the pH of the reaction layer (silica particles are liable to be linked below 9), and the SiO 2 / M 2 O of the reaction layer. (M is an alkali metal or quaternary ammonium), and non-spherical silica can be produced by changing the molar ratio (selectively producing non-spherical silica at 30 to 60) (Japanese Patent Publication No. 8-5657, Patent 2803134, JP 2006-80406, JP 2007-153671). Therefore, in the above-mentioned B), in the known spherical colloidal silica production process, the ΔCV value can be adjusted to be small by performing process control so as not to be a condition for generating non-spherical silica locally.
 [研磨材の真球率]
 本明細書において研磨材の透過型電子顕微鏡観察により測定される真球率は、透過型電子顕微鏡により得られる研磨材粒子一個の投影面積(A1)と該粒子の周長を円周とする円の面積(A2)との比、すなわち、「A1/A2」の値であって、例えば、本発明の研磨液組成物における任意の50~100個の研磨材についての「A1/A2」の値の平均値として求めることができる。研磨材の真球率は、具体的には、実施例に記載の方法により測定されうる。生産性を損なうことなくスクラッチ及び表面粗さを低減する観点から、本発明の研磨液組成物に使用される研磨材の真球率は、0.75~1が好ましく、0.75~0.95がより好ましく、0.75~0.85がさらに好ましい。
[Sphericality of abrasive]
In this specification, the true sphere ratio measured by observation of the abrasive with a transmission electron microscope is a circle with the projected area (A1) of one abrasive particle obtained by the transmission electron microscope and the circumference of the particle as the circumference. The ratio to the area (A2), that is, the value of “A1 / A2”, for example, the value of “A1 / A2” for any 50 to 100 abrasives in the polishing composition of the present invention It can be calculated as an average value. Specifically, the true sphericity of the abrasive can be measured by the method described in Examples. From the viewpoint of reducing scratches and surface roughness without impairing productivity, the sphericity of the abrasive used in the polishing composition of the present invention is preferably 0.75 to 1, preferably 0.75 to 0.00. 95 is more preferable, and 0.75 to 0.85 is still more preferable.
 [研磨材の表面粗度]
 本明細書において研磨材の表面粗度は、ナトリウム滴定法により測定される比表面積(SA1)と透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)との比である「SA1/SA2」の値をいい、具体的には、実施例に記載の方法により測定される。ナトリウム滴定法を適用する場合、研磨材はシリカであることが好ましい。ここで、ナトリウム滴定法により測定される比表面積(SA1)とは、研磨材に対して水酸化ナトリウム溶液を滴定したときの水酸化ナトリウム溶液の消費量から求められるものであり、実際の表面積を反映したものと言える。具体的には、研磨材表面に起伏又は疣状突起などに富むものである程、比表面積(SA1)は大きくなる。一方、透過型電子顕微鏡により測定される平均粒径(S2)から算出される比表面積(SA2)は研磨材を理想的な球状粒子と仮定し、算出される。具体的には平均粒径(S2)が大きいほど、比表面積(SA2)は小さくなる。比表面積は単位質量あたりの表面積を示すものであって、表面粗度(SA1/SA2)の値については、研磨材が球状であって、研磨材表面に多くの疣状突起を有する程、大きい値を示し、研磨材表面の疣状突起が少なく、平滑である程、小さい値を示し、その値は1に近づく。
[Surface roughness of abrasive]
In this specification, the surface roughness of the abrasive is the specific surface area (SA2) calculated from the specific surface area (SA1) measured by the sodium titration method and the average particle diameter (S2) measured by transmission electron microscope observation. The value of “SA1 / SA2”, which is the ratio of the above, is specifically measured by the method described in the examples. When applying the sodium titration method, the abrasive is preferably silica. Here, the specific surface area (SA1) measured by the sodium titration method is obtained from the consumption amount of the sodium hydroxide solution when the sodium hydroxide solution is titrated against the abrasive, and the actual surface area is calculated as follows. It can be said that it was reflected. Specifically, the specific surface area (SA1) increases as the surface of the abrasive material is richer in undulations or ridges. On the other hand, the specific surface area (SA2) calculated from the average particle diameter (S2) measured by a transmission electron microscope is calculated assuming that the abrasive is an ideal spherical particle. Specifically, the specific surface area (SA2) decreases as the average particle size (S2) increases. The specific surface area indicates the surface area per unit mass, and the value of the surface roughness (SA1 / SA2) is so large that the abrasive is spherical and has many hook-like protrusions on the abrasive surface. The value is smaller, the smaller the number of wrinkle-like protrusions on the surface of the abrasive and the smoother the surface, the smaller the value.
 生産性を損なうことなくスクラッチ及び表面粗さを低減する観点から、本発明の研磨液組成物に使用される研磨材の表面粗度(SA1/SA2)は、1.3以上が好ましく、1.3~2.5がより好ましく、1.3~2.0がさらに好ましい。 From the viewpoint of reducing scratches and surface roughness without impairing productivity, the surface roughness (SA1 / SA2) of the abrasive used in the polishing composition of the present invention is preferably 1.3 or more. 3 to 2.5 is more preferable, and 1.3 to 2.0 is even more preferable.
 研磨材の真球率、表面粗度(SA1/SA2)及び平均粒径は、従来公知の研磨材の製造方法を用いて調整することができる。例えば、特開2008-137822号公報、特開2008-169102号公報に記載の製造方法を例示することができるが、本発明はこれに限定されない。 The true sphericity, surface roughness (SA1 / SA2) and average particle size of the abrasive can be adjusted using a conventionally known method for producing an abrasive. For example, the production methods described in JP-A-2008-137822 and JP-A-2008-169102 can be exemplified, but the present invention is not limited thereto.
 なお、研磨材の粒径分布を調整する方法としては、特に限定されないが、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法や、異なる粒径分布を有する2種以上の研磨材粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。 The method of adjusting the particle size distribution of the abrasive is not particularly limited, and a method of giving a desired particle size distribution by adding particles as a new nucleus in the process of particle growth in the production stage, Examples include a method of mixing two or more kinds of abrasive particles having different particle size distributions so as to have a desired particle size distribution.
 研磨液組成物中における研磨材の含有量は、研磨速度を向上させる観点から、0.5重量%以上が好ましく、1重量%以上がより好ましく、3重量%以上がさらに好ましく、4重量%以上がさらにより好ましい。また、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点からは、20重量%以下が好ましく、15重量%以下がより好ましく、13重量%以下がさらに好ましく、10重量%以下がさらにより好ましい。すなわち、研磨材の含有量は、0.5~20重量%が好ましく、1~15重量%がより好ましく、3~13重量%がさらに好ましく、4~10重量%がさらにより好ましい。 The content of the abrasive in the polishing liquid composition is preferably 0.5% by weight or more, more preferably 1% by weight or more, further preferably 3% by weight or more, from the viewpoint of improving the polishing rate, and 4% by weight or more. Is even more preferred. Further, from the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, it is preferably 20% by weight or less, more preferably 15% by weight or less, further preferably 13% by weight or less, and more preferably 10% by weight or less. Even more preferred. That is, the content of the abrasive is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, further preferably 3 to 13% by weight, and still more preferably 4 to 10% by weight.
 また、研磨液組成物中における、研磨材と共重合体との濃度比[研磨材の濃度(重量%)/共重合体の濃度(重量%)]は、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、5~5000が好ましく、10~1000がより好ましく、25~500がさらに好ましい。 In the polishing composition, the concentration ratio between the abrasive and the copolymer [the concentration of the abrasive (wt%) / the concentration of the copolymer (wt%)] is determined by scratches after polishing, nanoprojection defects, In view of reducing the surface waviness of the substrate, 5 to 5000 is preferable, 10 to 1000 is more preferable, and 25 to 500 is more preferable.
 [水]
 本発明の研磨液組成物は、媒体として水を含むことができ、前記水として蒸留水、イオン交換水、超純水等を使用できる。被研磨基板の表面清浄性の観点からイオン交換水及び超純水が好ましく、超純水がより好ましい。研磨液組成物中の水の含有量は、60~99.4重量%が好ましく、70~98.9重量%がより好ましい。また、本発明の効果を阻害しない範囲内でアルコール等の有機溶剤を配合してもよい。
[water]
The polishing composition of the present invention can contain water as a medium, and distilled water, ion exchange water, ultrapure water, or the like can be used as the water. From the viewpoint of the surface cleanliness of the substrate to be polished, ion exchange water and ultrapure water are preferable, and ultrapure water is more preferable. The water content in the polishing composition is preferably 60 to 99.4% by weight, more preferably 70 to 98.9% by weight. Moreover, you may mix | blend organic solvents, such as alcohol, in the range which does not inhibit the effect of this invention.
 [酸]
 本発明の研磨液組成物は、酸及び/又はその塩を含むことが好ましい。本発明の研磨液組成物に使用される酸としては、研磨速度の向上の観点から、その酸のpK1が2以下の化合物が好ましく、スクラッチを低減する観点から、好ましくはpK1が1.5以下、より好ましくは1以下、さらに好ましくはpK1で表せない程の強い酸性を示す化合物である。好ましい酸としては、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、トリポリリン酸、アミド硫酸等の無機酸、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1,-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸等の有機ホスホン酸、グルタミン酸、ピコリン酸、アスパラギン酸等のアミノカルボン酸、クエン酸、酒石酸、シュウ酸、ニトロ酢酸、マレイン酸、オキサロ酢酸等のカルボン酸等が挙げられる。中でも、スクラッチ低減の観点から、無機酸、カルボン酸、有機ホスホン酸が好ましい。また、無機酸の中では、リン酸、硝酸、硫酸、塩酸、過塩素酸がより好ましく、リン酸、硫酸がさらに好ましい。カルボン酸の中では、クエン酸、酒石酸、マレイン酸がより好ましく、クエン酸がさらに好ましい。有機ホスホン酸の中では、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)がより好ましく、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)がさらに好ましい。これらの酸及びその塩は単独で又は2種以上を混合して用いてもよいが、研磨速度の向上、ナノ突起低減及び基板の洗浄性向上の観点から、2種以上を混合して用いることが好ましく、リン酸、硫酸、クエン酸及び1-ヒドロキシエチリデン-1,1-ジホスホン酸からなる群から選択される2種以上の酸を混合して用いることがさらに好ましい。ここで、pK1とは有機化合物又は無機化合物の第一酸解離定数(25℃)の逆数の対数値である。各化合物のpK1は例えば改訂4版化学便覧(基礎編)II、pp316-325(日本化学会編)等に記載されている。
[acid]
The polishing liquid composition of the present invention preferably contains an acid and / or a salt thereof. The acid used in the polishing composition of the present invention is preferably a compound having a pK1 of 2 or less from the viewpoint of improving the polishing rate, and preferably has a pK1 of 1.5 or less from the viewpoint of reducing scratches. More preferably, it is a compound exhibiting strong acidity that cannot be expressed by pK1, more preferably 1 or less. Preferred acids include nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, tripolyphosphoric acid, amidosulfuric acid, 2-aminoethylphosphonic acid, 1 -Hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), ethane-1,1, -diphosphonic acid, ethane-1,1,1 2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, methane Hydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2, Organic phosphonic acids such as 1,4-tricarboxylic acid and α-methylphosphonosuccinic acid, aminocarboxylic acids such as glutamic acid, picolinic acid and aspartic acid, citric acid, tartaric acid, oxalic acid, nitroacetic acid, maleic acid, oxaloacetic acid, etc. A carboxylic acid etc. are mentioned. Of these, inorganic acids, carboxylic acids, and organic phosphonic acids are preferred from the viewpoint of reducing scratches. Among inorganic acids, phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, and perchloric acid are more preferable, and phosphoric acid and sulfuric acid are more preferable. Among the carboxylic acids, citric acid, tartaric acid, and maleic acid are more preferable, and citric acid is more preferable. Among the organic phosphonic acids, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are more preferable, and 1-hydroxyethylidene- More preferred are 1,1-diphosphonic acid and aminotri (methylenephosphonic acid). These acids and salts thereof may be used alone or in combination of two or more, but from the viewpoint of improving the polishing rate, reducing nanoprotrusions and improving the cleaning property of the substrate, use two or more in combination. It is preferable to use a mixture of two or more acids selected from the group consisting of phosphoric acid, sulfuric acid, citric acid and 1-hydroxyethylidene-1,1-diphosphonic acid. Here, pK1 is a logarithmic value of the reciprocal of the first acid dissociation constant (25 ° C.) of the organic compound or inorganic compound. The pK1 of each compound is described in, for example, the revised 4th edition Chemical Handbook (Basic) II, pp316-325 (Edited by Chemical Society of Japan).
 これらの酸の塩を用いる場合の対イオンとしては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム等との塩が挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、スクラッチ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。 The counter ion in the case of using these acid salts is not particularly limited, and specific examples thereof include salts with metals, ammonium, alkylammonium and the like. Specific examples of the metal include metals belonging to the periodic table (long-period type) 1A, 1B, 2A, 2B, 3A, 3B, 4A, 6A, 7A, or Group 8. Among these, a salt with a metal belonging to Group 1A or ammonium is preferable from the viewpoint of reducing scratches.
 研磨液組成物中における前記酸及びその塩の含有量は、研磨速度向上、並びに研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、0.001~5重量%が好ましく、より好ましくは0.01~4重量%であり、さらに好ましくは0.05~3重量%、さらにより好ましくは0.1~2.0重量%である。 The content of the acid and the salt thereof in the polishing liquid composition is preferably 0.001 to 5% by weight from the viewpoint of improving the polishing rate and reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, More preferably, the content is 0.01 to 4% by weight, still more preferably 0.05 to 3% by weight, and still more preferably 0.1 to 2.0% by weight.
 [酸化剤]
 本発明の研磨液組成物は、酸化剤を含むことが好ましい。本発明の研磨液組成物に使用できる酸化剤としては、研磨速度を向上させる観点から、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、金属塩類、硝酸類、硫酸類等が挙げられる。
[Oxidant]
The polishing composition of the present invention preferably contains an oxidant. As an oxidizing agent that can be used in the polishing liquid composition of the present invention, from the viewpoint of improving the polishing rate, peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or an acid thereof Examples thereof include salts, metal salts, nitric acids, sulfuric acids and the like.
 前記過酸化物としては、過酸化水素、過酸化ナトリウム、過酸化バリウム等が挙げられ、過マンガン酸又はその塩としては、過マンガン酸カリウム等が挙げられ、クロム酸又はその塩としては、クロム酸金属塩、重クロム酸金属塩等が挙げられ、ペルオキソ酸又はその塩としては、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸金属塩、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸ナトリウム、過ギ酸、過酢酸、過安息香酸、過フタル酸等が挙げられ、酸素酸又はその塩としては、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、臭素酸、ヨウ素酸、次亜塩素酸ナトリウム、次亜塩素酸カルシウム等が挙げられ、金属塩類としては、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)、クエン酸鉄(III)、硫酸アンモニウム鉄(III)等が挙げられる。 Examples of the peroxide include hydrogen peroxide, sodium peroxide, barium peroxide, etc., examples of the permanganic acid or salt thereof include potassium permanganate, and examples of the chromic acid or salt thereof include chromium. Acid metal salts, metal dichromates, and the like. Peroxo acids or salts thereof include peroxodisulfuric acid, ammonium peroxodisulfate, peroxodisulfate metal salts, peroxophosphoric acid, peroxosulfuric acid, sodium peroxoborate, and performic acid. Peroxyacetic acid, perbenzoic acid, perphthalic acid, etc., and oxygen acids or salts thereof include hypochlorous acid, hypobromite, hypoiodous acid, chloric acid, bromic acid, iodic acid, hypochlorous acid. Examples thereof include sodium chlorate and calcium hypochlorite. Metal salts include iron chloride (III), iron sulfate (III), iron nitrate (III), citric acid (III), ammonium iron (III), and the like.
 好ましい酸化剤としては、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)等が挙げられる。より好ましい酸化剤としては、表面に金属イオンが付着せず汎用に使用され安価であるという観点から過酸化水素が挙げられる。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。 Preferred examples of the oxidizing agent include hydrogen peroxide, iron (III) nitrate, peracetic acid, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) ammonium sulfate. As a more preferable oxidizing agent, hydrogen peroxide is mentioned from the viewpoint that metal ions do not adhere to the surface and are generally used and inexpensive. These oxidizing agents may be used alone or in admixture of two or more.
 研磨液組成物中における前記酸化剤の含有量は、研磨速度向上の観点から、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上であり、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減の観点から、好ましくは4重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。従って、表面品質を保ちつつ研磨速度を向上させるためには、上記含有量は、好ましくは0.01~4重量%、より好ましくは0.05~2重量%、さらに好ましくは0.1~1重量%である。 The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more from the viewpoint of improving the polishing rate. From the viewpoint of reducing scratches after polishing, nanoprotrusion defects, and substrate surface waviness, it is preferably 4% by weight or less, more preferably 2% by weight or less, and even more preferably 1% by weight or less. Therefore, in order to improve the polishing rate while maintaining the surface quality, the content is preferably 0.01 to 4% by weight, more preferably 0.05 to 2% by weight, and still more preferably 0.1 to 1%. % By weight.
 [その他の成分]
 本発明の研磨液組成物には、必要に応じて他の成分を配合することができる。他の成分としては、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤等が挙げられる。研磨液組成物中のこれら他の任意成分の含有量は、0~10重量%が好ましく、0~5重量%がより好ましい。但し、本発明の研磨液組成物は、他の成分、とりわけ界面活性剤を含むことなく、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりの低減効果を発揮し得る。さらに、本発明の研磨液組成物は、アルミナ砥粒を含ませることができ、最終研磨工程より前の粗研磨工程に使用することもできる。
[Other ingredients]
In the polishing composition of the present invention, other components can be blended as necessary. Examples of other components include a thickener, a dispersant, a rust inhibitor, a basic substance, and a surfactant. The content of these other optional components in the polishing composition is preferably 0 to 10% by weight, more preferably 0 to 5% by weight. However, the polishing composition of the present invention can exhibit the effect of reducing scratches, nanoprotrusion defects, and substrate surface waviness after polishing without containing other components, particularly surfactants. Furthermore, the polishing composition of the present invention can contain alumina abrasive grains and can be used in a rough polishing step prior to the final polishing step.
 [研磨液組成物のpH]
 本発明の研磨液組成物のpHは、研磨速度向上の観点から4以下が好ましく、より好ましくは3.5以下、さらに好ましくは3以下、さらにより好ましくは2.5以下である。また、表面粗さ低減の観点から、0.5以上が好ましく、より好ましくは0.8以上、さらに好ましくは1.0以上、さらにより好ましくは1.2以上である。また、研磨液組成物の廃液pHは、研磨速度向上の観点から4以下が好ましく、より好ましくは3.5以下、さらに好ましくは3.0以下である。また、表面粗さ低減の観点から、研磨液組成物の廃液pHは、0.8以上が好ましく、より好ましくは1.0以上、さらに好ましくは1.2以上、さらにより好ましくは1.5以上である。なお、廃液pHとは、研磨液組成物を用いた研磨工程における研磨廃液、即ち、研磨機より排出された直後の研磨液組成物のpHをいう。
[PH of polishing composition]
The pH of the polishing composition of the present invention is preferably 4 or less, more preferably 3.5 or less, still more preferably 3 or less, and even more preferably 2.5 or less, from the viewpoint of improving the polishing rate. Moreover, 0.5 or more is preferable from a viewpoint of surface roughness reduction, More preferably, it is 0.8 or more, More preferably, it is 1.0 or more, More preferably, it is 1.2 or more. Further, the waste liquid pH of the polishing composition is preferably 4 or less, more preferably 3.5 or less, and still more preferably 3.0 or less from the viewpoint of improving the polishing rate. Further, from the viewpoint of reducing the surface roughness, the waste liquid pH of the polishing composition is preferably 0.8 or more, more preferably 1.0 or more, still more preferably 1.2 or more, and even more preferably 1.5 or more. It is. The waste liquid pH refers to the polishing waste liquid in the polishing step using the polishing liquid composition, that is, the pH of the polishing liquid composition immediately after being discharged from the polishing machine.
 [研磨液組成物の調製方法]
 本発明の研磨液組成物は、例えば、水と、研磨材と、共重合体と、さらに所望により、酸及び/又はその塩と、酸化剤と、他の成分とを公知の方法で混合することにより調製できる。この際、研磨材は、濃縮されたスラリーの状態で混合されてもよいし、水等で希釈してから混合されてもよい。本発明の研磨液組成物中における各成分の含有量や濃度は、上述した範囲であるが、その他の態様として、本発明の研磨液組成物を濃縮物として調製してもよい。
[Method for preparing polishing liquid composition]
In the polishing composition of the present invention, for example, water, an abrasive, a copolymer, and, if desired, an acid and / or a salt thereof, an oxidizing agent, and other components are mixed by a known method. Can be prepared. At this time, the abrasive may be mixed in a concentrated slurry state or may be mixed after being diluted with water or the like. Although content and density | concentration of each component in the polishing liquid composition of this invention are the ranges mentioned above, you may prepare the polishing liquid composition of this invention as a concentrate as another aspect.
 [磁気ディスク基板の製造方法]
 本発明は、その他の態様として、磁気ディスク基板の製造方法(以下、本発明の製造方法ともいう。)に関する。本発明の製造方法は、上述した本発明の研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」ともいう。)を含む磁気ディスク基板の製造方法である。これにより、研磨後の基板表面のスクラッチに加えて、研磨後のナノ突起欠陥及び基板表面うねりが低減された磁気ディスク基板を提供できる。本発明の製造方法は、とりわけ、垂直磁気記録方式用磁気ディスク基板の製造方法に適している。よって、本発明の製造方法は、その他の態様として、本発明の研磨液組成物を用いた研磨工程を含む垂直磁気記録方式用磁気ディスク基板の製造方法である。
[Method of manufacturing magnetic disk substrate]
As another aspect, the present invention relates to a method of manufacturing a magnetic disk substrate (hereinafter also referred to as a manufacturing method of the present invention). The manufacturing method of the present invention includes a step of polishing a substrate to be polished using the above-described polishing liquid composition of the present invention (hereinafter, also referred to as “polishing process using the polishing liquid composition of the present invention”). It is a manufacturing method of a disk substrate. Thereby, in addition to scratches on the surface of the substrate after polishing, a magnetic disk substrate with reduced nanoprojection defects and substrate surface waviness after polishing can be provided. The manufacturing method of the present invention is particularly suitable for a method for manufacturing a magnetic disk substrate for perpendicular magnetic recording. Therefore, as another aspect, the manufacturing method of the present invention is a method of manufacturing a magnetic disk substrate for a perpendicular magnetic recording system including a polishing step using the polishing composition of the present invention.
 本発明の研磨液組成物を用いて被研磨基板を研磨する方法の具体例としては、不織布状の有機高分子系研磨布等の研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本発明の研磨液組成物を研磨機に供給しながら、定盤や被研磨基板を動かして被研磨基板を研磨する方法が挙げられる。 As a specific example of a method for polishing a substrate to be polished using the polishing liquid composition of the present invention, the substrate to be polished is sandwiched between a surface plate to which a polishing pad such as a non-woven organic polymer polishing cloth is attached. A method of polishing the substrate to be polished by moving the surface plate or the substrate to be polished while supplying the polishing composition of the invention to the polishing machine can be mentioned.
 被研磨基板の研磨工程が多段階で行われる場合は、本発明の研磨液組成物を用いた研磨工程は2段階目以降に行われるのが好ましく、最終研磨工程で行われるのがより好ましい。その際、前工程の研磨材や研磨液組成物の混入を避けるために、それぞれ別の研磨機を使用してもよく、またそれぞれ別の研磨機を使用した場合では、研磨工程毎に被研磨基板を洗浄することが好ましい。また使用した研磨液を再利用する循環研磨においても、本発明の研磨液組成物は使用できる。なお、研磨機としては、特に限定されず、磁気ディスク基板研磨用の公知の研磨機が使用できる。 When the polishing process of the substrate to be polished is performed in multiple stages, the polishing process using the polishing composition of the present invention is preferably performed in the second stage or more, and more preferably performed in the final polishing process. At that time, in order to avoid mixing of the polishing material and polishing liquid composition in the previous process, different polishing machines may be used, and when different polishing machines are used, polishing is performed for each polishing process. It is preferable to clean the substrate. Further, the polishing composition of the present invention can also be used in cyclic polishing in which the used polishing liquid is reused. The polishing machine is not particularly limited, and a known polishing machine for polishing a magnetic disk substrate can be used.
 [研磨パッド]
 本発明で使用される研磨パッドとしては、特に制限はなく、スエードタイプ、不織布タイプ、ポリウレタン独立発泡タイプ、又はこれらを積層した二層タイプ等の研磨パッドを使用することができるが、研磨速度の観点から、スエードタイプの研磨パッドが好ましい。
[Polishing pad]
The polishing pad used in the present invention is not particularly limited, and a polishing pad of a suede type, a nonwoven fabric type, a polyurethane closed-cell foam type, or a two-layer type in which these are laminated can be used. From the viewpoint, a suede type polishing pad is preferable.
 研磨パッドの表面部材の平均気孔径は、スクラッチ低減及びパッド寿命の観点から、50μm以下が好ましく、より好ましくは45μm以下、さらに好ましくは40μm以下、さらにより好ましくは35μm以下である。パッドの研磨液保持性の観点から、気孔で研磨液を保持し液切れを起こさないようにするために、平均気孔径は0.01μm以上が好ましく、より好ましくは0.1μm以上、さらに好ましくは1μm以上、さらにより好ましくは10μm以上である。また、研磨パッドの気孔径の最大値は、研磨速度維持の観点から、100μm以下が好ましく、より好ましくは70μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。 The average pore diameter of the surface member of the polishing pad is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, and even more preferably 35 μm or less, from the viewpoint of scratch reduction and pad life. From the viewpoint of holding the polishing liquid of the pad, the average pore diameter is preferably 0.01 μm or more, more preferably 0.1 μm or more, and still more preferably, in order to keep the polishing liquid in the pores and prevent the liquid from running out. It is 1 μm or more, more preferably 10 μm or more. Further, the maximum value of the pore size of the polishing pad is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 60 μm or less, and particularly preferably 50 μm or less from the viewpoint of maintaining the polishing rate.
 [研磨荷重]
 本発明の研磨液組成物を用いた研磨工程における研磨荷重は、好ましくは5.9kPa以上、より好ましくは6.9kPa以上、さらに好ましくは7.5kPa以上である。これにより、研磨速度の低下を抑制できるため、生産性の向上が可能となる。なお、本発明の製造方法において研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力をいう。また、本発明の研磨液組成物を用いた研磨工程は、研磨荷重は20kPa以下が好ましく、より好ましくは18kPa以下、さらに好ましくは16kPa以下である。これにより、スクラッチの発生を抑制することができる。したがって、本発明の研磨液組成物を用いた研磨工程において研磨荷重は5.9~20kPaが好ましく、6.9~18kPaがより好ましく、7.5~16kPaがさらに好ましい。研磨荷重の調整は、定盤及び被研磨基板のうち少なくとも一方に空気圧や重りを負荷することにより行うことができる。
[Polishing load]
The polishing load in the polishing step using the polishing liquid composition of the present invention is preferably 5.9 kPa or more, more preferably 6.9 kPa or more, and further preferably 7.5 kPa or more. Thereby, since the fall of a grinding | polishing speed | rate can be suppressed, productivity can be improved. In the production method of the present invention, the polishing load refers to the pressure of the surface plate applied to the polishing surface of the substrate to be polished during polishing. In the polishing step using the polishing composition of the present invention, the polishing load is preferably 20 kPa or less, more preferably 18 kPa or less, and further preferably 16 kPa or less. Thereby, generation | occurrence | production of a scratch can be suppressed. Accordingly, in the polishing step using the polishing composition of the present invention, the polishing load is preferably 5.9 to 20 kPa, more preferably 6.9 to 18 kPa, and even more preferably 7.5 to 16 kPa. The polishing load can be adjusted by applying air pressure or weight to at least one of the surface plate and the substrate to be polished.
 [研磨液組成物の供給]
 本発明の研磨液組成物を用いた研磨工程における本発明の研磨液組成物の供給速度は、スクラッチ低減の観点から、被研磨基板1cm当たり、好ましくは0.05~15mL/分であり、より好ましくは0.06~10mL/分であり、さらに好ましくは0.07~1mL/分、さらにより好ましくは0.08~0.5mL/分、さらにより好ましくは0.12~0.5mL/分である。
[Supply of polishing liquid composition]
From the viewpoint of reducing scratches, the supply rate of the polishing liquid composition of the present invention in the polishing step using the polishing liquid composition of the present invention is preferably 0.05 to 15 mL / min per 1 cm 2 of the substrate to be polished. More preferably 0.06 to 10 mL / min, still more preferably 0.07 to 1 mL / min, even more preferably 0.08 to 0.5 mL / min, even more preferably 0.12 to 0.5 mL / min. Minutes.
 本発明の研磨液組成物を研磨機へ供給する方法としては、例えばポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本発明の研磨液組成物となる。 As a method of supplying the polishing composition of the present invention to a polishing machine, for example, a method of continuously supplying using a pump or the like can be mentioned. When supplying the polishing composition to the polishing machine, in addition to the method of supplying one component containing all the components, considering the stability of the polishing composition, etc., it is divided into a plurality of compounding component liquids, Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition of the present invention.
 [被研磨基板]
 本発明において好適に使用される被研磨基板の材質としては、例えばシリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン等の金属若しくは半金属、又はこれらの合金や、ガラス、ガラス状カーボン、アモルファスカーボン等のガラス状物質や、アルミナ、二酸化珪素、窒化珪素、窒化タンタル、炭化チタン等のセラミック材料や、ポリイミド樹脂等の樹脂等が挙げられる。中でも、アルミニウム、ニッケル、タングステン、銅等の金属や、これらの金属を主成分とする合金を含有する被研磨基板が好適である。特にNi-Pメッキされたアルミニウム合金基板や、アルミノシリケートガラスが適している。アルミノシリケートガラスは、結晶構造を有しているもの、化学強化処理を施したものが含まれる。化学強化処理は研磨後に行ってもよい。
[Polished substrate]
Examples of the material of the substrate to be polished preferably used in the present invention include metals, metalloids such as silicon, aluminum, nickel, tungsten, copper, tantalum, and titanium, or alloys thereof, glass, glassy carbon, and amorphous. Examples thereof include glassy substances such as carbon, ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, and titanium carbide, and resins such as polyimide resin. Among these, a substrate to be polished containing a metal such as aluminum, nickel, tungsten, copper, or an alloy containing these metals as a main component is preferable. In particular, Ni—P plated aluminum alloy substrates and aluminosilicate glass are suitable. Aluminosilicate glass includes those having a crystal structure and those subjected to chemical strengthening treatment. You may perform a chemical strengthening process after grinding | polishing.
 また、本発明によれば、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のうねりやナノ突起欠陥が低減された磁気ディスク基板を提供できるため、高度の表面平滑性が要求される垂直磁気記録方式の磁気ディスク基板の研磨に好適に用いることができる。 Further, according to the present invention, in addition to scratching of the substrate surface after polishing, a magnetic disk substrate with reduced waviness and nanoprotrusion defects on the substrate surface after polishing can be provided, so that high surface smoothness is required. It can be suitably used for polishing a perpendicular magnetic recording type magnetic disk substrate.
 上記被研磨基板の形状には特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状であればよい。中でも、ディスク状の被研磨基板が適している。ディスク状の被研磨基板の場合、その外径は例えば2~95mm程度であり、その厚みは例えば0.5~2mm程度である。 The shape of the substrate to be polished is not particularly limited, and may be, for example, a shape having a flat portion such as a disc shape, a plate shape, a slab shape, or a prism shape, or a shape having a curved surface portion such as a lens. Of these, a disk-shaped substrate to be polished is suitable. In the case of a disk-shaped substrate to be polished, its outer diameter is, for example, about 2 to 95 mm, and its thickness is, for example, about 0.5 to 2 mm.
 [研磨方法]
 本発明は、その他の態様として、上述した研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨することを含む被研磨基板の研磨方法に関する。本発明の研磨方法を使用することにより、研磨後の基板表面のスクラッチに加えて、研磨後の基板表面のうねりやナノ突起欠陥が低減された磁気ディスク基板、特に垂直磁気記録方式の磁気ディスク基板が好ましくは提供される。本発明の研磨方法における前記被研磨基板としては、上述のとおり、磁気ディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられ、なかでも、垂直磁気記録方式用磁気ディスク基板の製造に用いる基板が好ましい。なお、具体的な研磨の方法及び条件は、上述のとおりとすることができる。
[Polishing method]
As another aspect, the present invention relates to a method for polishing a substrate to be polished, which comprises polishing the substrate to be polished while bringing the above-mentioned polishing composition into contact with a polishing pad. By using the polishing method of the present invention, in addition to scratching of the substrate surface after polishing, waviness and nanoprotrusion defects on the substrate surface after polishing are reduced, particularly a perpendicular magnetic recording type magnetic disk substrate. Is preferably provided. Examples of the substrate to be polished in the polishing method of the present invention include those used in the manufacture of a magnetic disk substrate and a magnetic recording medium substrate as described above. A substrate used for production is preferred. The specific polishing method and conditions can be as described above.
 <実施例I-1~I-16、比較例I-1~I-3>
 共重合体であるスチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS)、ポリスチレンスルホン酸ナトリウム塩(NaSS)、アクリル酸/スチレンスルホン酸共重合体ナトリウム塩(AA/NaSS)、又は、アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS)(下記表2参照)と、研磨材として下記表1に示すコロイダルシリカとを使用して研磨液組成物を調製し、被研磨基板の研磨を行い、研磨後のスクラッチ、ナノ突起欠陥、及び基板表面うねりを評価した。なお、下記表1における平均粒径は、動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径である。評価結果を下記表2に示す。共重合体の製造方法、研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。
<Examples I-1 to I-16, Comparative Examples I-1 to I-3>
Copolymer styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS), polystyrene sulfonic acid sodium salt (NaSS), acrylic acid / styrene sulfonic acid copolymer sodium salt (AA / NaSS), or acrylic A polishing composition comprising acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS) (see Table 2 below) and colloidal silica shown in Table 1 below as an abrasive. The prepared substrate was polished, and scratches after polishing, nanoprojection defects, and substrate surface waviness were evaluated. In addition, the average particle diameter in the following Table 1 is an average particle diameter based on a scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method. The evaluation results are shown in Table 2 below. The method for producing the copolymer, the method for preparing the polishing liquid composition, the method for measuring each parameter, the polishing conditions (polishing method), and the evaluation method are as follows.
 [共重合体の製造方法]
 下記表2の(共)重合体は、それぞれ、公知の溶液重合で製造された(共)重合体を使用した。なお、実施例I-1で使用した共重合体の製造方法を代表例として示す。
[Method for producing copolymer]
As the (co) polymers in the following Table 2, (co) polymers produced by known solution polymerization were used. The production method of the copolymer used in Example I-1 is shown as a representative example.
 〔実施例I-1記載の共重合体の製造法〕
 1Lの四つ口フラスコに、イソプロピルアルコール180g(キシダ化学製)、イオン交換水370g、スチレン5g(キシダ化学製)、スチレンスルホン酸ナトリウム45g(和光純薬工業製)を仕込み、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩7.2g(V-50、和光純薬工業製)を反応開始剤として、この内、101.4g(全反応液の20重量%)を200mL滴下ロートに移し、83±2℃で2時間かけて滴下し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、白色粉のスチレン/スチレンスルホン酸ナトリウム共重合体(10/90モル%)を得た。この共重合体の重量平均分子量は7100であった。
[Method for producing copolymer described in Example I-1]
A 1 L four-necked flask is charged with 180 g of isopropyl alcohol (manufactured by Kishida Chemical), 370 g of ion-exchanged water, 5 g of styrene (manufactured by Kishida Chemical), and 45 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries, Ltd.). The reaction initiator was 7.2 g of azobis (2-methylpropionamidine) dihydrochloride (V-50, manufactured by Wako Pure Chemical Industries, Ltd.). The mixture was then added dropwise at 83 ± 2 ° C. over 2 hours, and further aged for 2 hours, and then the solvent was removed under reduced pressure to obtain a white powdery styrene / sodium styrenesulfonate copolymer (10/90 Mol%). The copolymer had a weight average molecular weight of 7,100.
 実施例I-2~I-16及び比較例I-2の各共重合体は、上記記載の方法に従い、モノマー比率を変更して重合を行った。また、比較例I-1にはポリスチレンスルホン酸ナトリウム塩(NaSS、東ソー社製)、比較例I-3にはアクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、東亞合成社製)を用いた。各(共)重合体の重合比及び重量平均分子量は下記表2のとおりである。なお、重量平均分子量は、下記測定条件のゲルパーミエーションクロマトグラフィー(GPC)法により測定した。 The copolymers of Examples I-2 to I-16 and Comparative Example I-2 were polymerized by changing the monomer ratio according to the method described above. In Comparative Example I-1, polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used. In Comparative Example I-3, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used. The polymerization ratio and weight average molecular weight of each (co) polymer are as shown in Table 2 below. The weight average molecular weight was measured by gel permeation chromatography (GPC) method under the following measurement conditions.
 〔St/NaSS、St/イソプレンスルホン酸のGPC条件〕
カラム  :TSKgel α-M+TSKgel α-M(東ソー製)
ガードカラム:TSKguardcolumn α(東ソー製)
溶離液  :60mmol/L リン酸,50mmol/L LiBr/DMF
温度   :40℃
流速   :1.0mL/min
試料サイズ:3mg/mL
検出器  :RI
換算標準 :ポリスチレン
[GPC conditions of St / NaSS, St / isoprenesulfonic acid]
Column: TSKgel α-M + TSKgel α-M (Tosoh)
Guard column: TSK guard column α (Tosoh)
Eluent: 60 mmol / L phosphoric acid, 50 mmol / L LiBr / DMF
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 3 mg / mL
Detector: RI
Conversion standard: Polystyrene
 〔NaSSのGPC条件〕
カラム  :TSKgel GMPWXL+TSKgel GMPWXL(東ソー製)
溶離液  :0.2Mリン酸バッファー/CHCN=7/3(体積比)
温度   :40℃
流速   :1.0mL/min
試料サイズ:2mg/mL
検出器  :RI
換算標準 :ポリエチレングリコール
[GPC conditions for NaSS]
Column: TSKgel GMPWXL + TSKgel GMPWXL (manufactured by Tosoh Corporation)
Eluent: 0.2 M phosphate buffer / CH 3 CN = 7/3 (volume ratio)
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 2 mg / mL
Detector: RI
Conversion standard: Polyethylene glycol
 〔AA/NaSS、及び、AA/AMPSのGPC条件〕
カラム  :TSKgel G4000PWXL+TSKgel G2500PWXL(東ソー製)
溶離液  :0.2Mリン酸バッファー/CHCN=9/1(体積比)
温度   :40℃
流速   :1.0mL/min
試料サイズ:5mg/mL
検出器  :RI
換算標準 :ポリアクリル酸Na
[AA / NaSS and AA / AMPS GPC conditions]
Column: TSKgel G4000PWXL + TSKgel G2500PWXL (manufactured by Tosoh Corporation)
Eluent: 0.2 M phosphate buffer / CH 3 CN = 9/1 (volume ratio)
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 5 mg / mL
Detector: RI
Conversion standard: Polyacrylic acid Na
 [研磨液組成物の調製方法]
 下記表1に示すコロイダルシリカと、下記表2に示す(共)重合体と、硫酸(和光純薬工業社製 特級)と、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸、ソルーシア・ジャパン製 ディクエスト2010)と、過酸化水素水(旭電化製 濃度:35重量%)とをイオン交換水に添加し、これらを混合することにより、下記表2に示すコロイダルシリカ及び共重合体を含む実施例I-1~I-16及び比較例I-1~I-3の研磨液組成物を調製した。研磨液組成物中におけるコロイダルシリカ、硫酸、HEDP、過酸化水素の含有量は、それぞれ、4.5重量%、0.4重量%、0.1重量%、0.4重量%とし、共重合体の含有量は、下記表2に示すとおりとした。
[Method for preparing polishing liquid composition]
Colloidal silica shown in Table 1 below, (co) polymer shown in Table 2 below, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, Sorcia Japan Diquest 2010) and hydrogen peroxide water (concentration: 35% by weight manufactured by Asahi Denka Co., Ltd.) are added to ion-exchanged water and mixed to contain colloidal silica and copolymers shown in Table 2 below. The polishing liquid compositions of Examples I-1 to I-16 and Comparative Examples I-1 to I-3 were prepared. The contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition are 4.5% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively. The coal content was as shown in Table 2 below.
 [研磨材(コロイダルシリカ)の動的光散乱法で測定される平均粒径、CV値、及びΔCV値の測定方法]
〔平均粒径及びCV値(CV90)〕
下記表1に示すコロイダルシリカと、硫酸と、HEDPと、過酸化水素水とをイオン交換水に添加し、これらを混合することにより、標準試料を作製した。標準試料中におけるコロイダルシリカ、硫酸、HEDP、過酸化水素の含有量は、それぞれ5重量%、0.4重量%、0.1重量%、0.4重量%であった。この標準試料を大塚電子社製動的光散乱装置DLS-6500により、同メーカーが添付した説明書に従って、200回積算した際の検出角90度におけるCumulant法によって得られる散乱強度分布の面積が全体の50%となる粒径を求め、コロイダルシリカの平均粒径とした。また、CV値は上記測定法に従って測定した散乱強度分布における標準偏差を前記平均粒径で除して100をかけた値をCV値(CV90)とした。
〔ΔCV値〕
検出角30度におけるコロイダルシリカ粒子のCV値(CV30)を上記測定法に倣って測定し、CV30からCV90を引いた値を求め、ΔCV値とした。CV90及びCV30の測定条件は以下のとおりである。
(DLS-6500の測定条件)
検出角:90°
Sampling time: 4(μm)
Correlation Channel: 256(ch)
Correlation Method: TI
Sampling temperature: 26.0(℃)
検出角:30°
Sampling time: 10(μm)
Correlation Channel: 1024(ch)
Correlation Method: TI
Sampling temperature: 26.0(℃)
[Measuring Method of Average Particle Size, CV Value, and ΔCV Value Measured by Dynamic Light Scattering Method of Abrasive Material (Colloidal Silica)]
[Average particle diameter and CV value (CV90)]
Colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide solution shown in Table 1 below were added to ion-exchanged water, and these were mixed to prepare a standard sample. The contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the standard sample were 5% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively. The total area of the scattering intensity distribution obtained by the Cumulant method at a detection angle of 90 degrees when this standard sample is accumulated 200 times with the dynamic light scattering device DLS-6500 manufactured by Otsuka Electronics Co., Ltd. according to the instructions attached by the manufacturer. The average particle size of colloidal silica was determined. The CV value was obtained by dividing the standard deviation in the scattering intensity distribution measured according to the above measurement method by the average particle diameter and multiplying by 100 to obtain the CV value (CV90).
[ΔCV value]
The CV value (CV30) of the colloidal silica particles at a detection angle of 30 degrees was measured according to the above-described measurement method, and a value obtained by subtracting CV90 from CV30 was obtained to obtain a ΔCV value. The measurement conditions for CV90 and CV30 are as follows.
(Measurement conditions for DLS-6500)
Detection angle: 90 °
Sampling time: 4 (μm)
Correlation Channel: 256 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)
Detection angle: 30 °
Sampling time: 10 (μm)
Correlation Channel: 1024 (ch)
Correlation Method: TI
Sampling temperature: 26.0 (° C.)
 [研磨材(コロイダルシリカ)の真球率の測定方法]
 コロイダルシリカを含む試料を、透過型電子顕微鏡(TEM)商品名「JEM-2000FX」(80kV、1~5万倍、日本電子社製)により当該製造業者が添付した説明書に従って試料を観察し、TEM像を写真撮影した。この写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF ver.3.6」(販売元:三谷商事)を用いて粒子一個の投影面積(A1)と該粒子の周長を円周とする円の面積(A2)を計測し、前記粒子の投影面積(A1)と前記粒子の周長から求めた面積(A2)との比(A1/A2)を真球率として算出した。なお、下記表1の数値は、100個のシリカ粒子の真球率を求めた後これらの平均値を算出したものである。
[Measurement method of sphericity of abrasive (colloidal silica)]
A sample containing colloidal silica was observed by a transmission electron microscope (TEM) trade name “JEM-2000FX” (80 kV, 1 to 50,000 times, manufactured by JEOL Ltd.) according to the instructions attached by the manufacturer, A TEM image was taken. This photograph is taken into a personal computer as image data by a scanner, and the projected area (A1) of one particle and the circumference of the particle are defined as the circumference using analysis software “WinROOF ver. 3.6” (distributor: Mitani Corporation). The area (A2) of the circle to be measured was measured, and the ratio (A1 / A2) between the projected area (A1) of the particles and the area (A2) obtained from the circumference of the particles was calculated as the true sphere ratio. In addition, the numerical value of following Table 1 calculates these average values, after calculating | requiring the sphericity rate of 100 silica particles.
 [研磨材(コロイダルシリカ)の表面粗度の測定方法]
 下記に示すとおり、ナトリウム滴定法により測定される比表面積(SA1)及び透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)を得て、それらの比(SA1/SA2)を算出して表面粗度とした。
[Measurement method of surface roughness of abrasive (colloidal silica)]
As shown below, specific surface area (SA2) converted from specific surface area (SA1) measured by sodium titration method and average particle diameter (S2) measured by transmission electron microscope observation was obtained, and the ratio ( SA1 / SA2) was calculated as the surface roughness.
 〔ナトリウム滴定法によりコロイダルシリカの比表面積(SA1)を得る方法〕
1)SiOとして1.5gに相当するコロイダルシリカを含む試料をビーカーに採取して恒温反応槽(25℃)に移し、純水を加えて液量を90mlにする。以下の操作は、25℃に保持した恒温反応槽中にて行う。
2)pH3.6~3.7になるように0.1モル/L塩酸溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7~9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)下記式(1)からSiO1.5g当たりのpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、次の〔a〕~〔b〕に従って比表面積SA1[m/g]を求める。
〔a〕下記式(2)にて、SA1の値を求め、その値が80~350m/gの範囲にある場合は、その値をSA1とする。
〔b〕下記式(2)によるSA1の値が350m/gを超える場合は、改めて下記式(3)にて、SA1を求め、その値をSA1とする。
V=(A×f×100×1.5)/(W×C) ・・・(1)
SA1=29.0V-28          ・・・(2)
SA1=31.8V-28          ・・・(3)
 但し、上記式(1)における記号の意味は次の通りである。
A:SiO1.5g当たりpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)
f:0.1モル/L水酸化ナトリウム溶液の力価
C:試料のSiO濃度(%)
W:試料採取量(g)
[Method for obtaining specific surface area (SA1) of colloidal silica by sodium titration method]
1) A sample containing colloidal silica corresponding to 1.5 g as SiO 2 is collected in a beaker and transferred to a constant temperature reaction tank (25 ° C.), and pure water is added to make the liquid volume 90 ml. The following operation is performed in a constant temperature reaction tank maintained at 25 ° C.
2) A 0.1 mol / L hydrochloric acid solution is added so that the pH is 3.6 to 3.7.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5) Titrate the sample adjusted to pH 4.0 with 0.1 mol / L sodium hydroxide solution, record titration amount in the range of pH 8.7 to 9.3 and 4 or more pH values. A calibration curve is prepared, where X is the titer of 1 mol / L sodium hydroxide solution and Y is the pH value at that time.
6) The consumption V (ml) of the 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 was determined from the following formula (1), and the following [a] The specific surface area SA1 [m 2 / g] is determined according to [b].
[A] The value of SA1 is obtained by the following formula (2), and when the value is in the range of 80 to 350 m 2 / g, the value is SA1.
[B] When the value of SA1 according to the following formula (2) exceeds 350 m 2 / g, SA1 is obtained again by the following formula (3), and the value is defined as SA1.
V = (A × f × 100 × 1.5) / (W × C) (1)
SA1 = 29.0V-28 (2)
SA1 = 31.8V-28 (3)
However, the meanings of the symbols in the above formula (1) are as follows.
A: Titration amount of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 1.5 g of SiO 2 (ml)
f: 0.1 mol / L sodium hydroxide solution titer C: sample SiO 2 concentration (%)
W: Amount of sample collected (g)
 〔透過型電子顕微鏡観察により平均粒径(S2)及び比表面積(SA2)を求める方法〕
 コロイダルシリカを含む試料を、透過型電子顕微鏡(TEM)商品名「JEM-2000FX」(80kV、1~5万倍、日本電子社製)により当該製造業者が添付した説明書に従って試料を観察し、TEM像を写真撮影する。この写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF ver.3.6」(販売元:三谷商事)を用いて個々のシリカ粒子の円相当径を求め、それを粒子径とする。このようにして、1000個以上のシリカ粒子の粒子径を求めた後、その平均値を算出し、透過型電子顕微鏡観察により測定される平均粒径(S2)とする。次に、上記にて求められた平均粒径(S2)の値を下記式(4)に代入し、比表面積(SA2)を得る。
SA2=6000/(S2×ρ) ・・・(4) (ρ:試料の密度)
ρ:2.2(コロイダルシリカの場合)
[Method for obtaining average particle diameter (S2) and specific surface area (SA2) by observation with a transmission electron microscope]
A sample containing colloidal silica was observed by a transmission electron microscope (TEM) trade name “JEM-2000FX” (80 kV, 1 to 50,000 times, manufactured by JEOL Ltd.) according to the instructions attached by the manufacturer, Take a TEM image. This photograph is taken into a personal computer as image data by a scanner, and an equivalent circle diameter of each silica particle is obtained using analysis software “WinROOF ver. 3.6” (distributor: Mitani Corp.), which is used as the particle diameter. Thus, after calculating | requiring the particle diameter of 1000 or more silica particles, the average value is computed and it is set as the average particle diameter (S2) measured by transmission electron microscope observation. Next, the value of the average particle diameter (S2) obtained above is substituted into the following formula (4) to obtain the specific surface area (SA2).
SA2 = 6000 / (S2 × ρ) (4) (ρ: density of sample)
ρ: 2.2 (in the case of colloidal silica)
 [研磨]
 上記のように調製した実施例I-1~I-16及び比較例I-1~I-3の研磨液組成物を用いて、以下に示す研磨条件にて下記被研磨基板を研磨した。次いで、研磨された基板のうねり、ナノ突起欠陥、及びスクラッチを以下に示す条件に基づいて測定し、評価を行った。結果を下記表2に示す。下記表2に示すデータは、各実施例及び各比較例につき4枚の被研磨基板を研磨した後、各被研磨基板の両面について測定し、4枚(表裏合わせて計8面)のデータの平均とした。
[Polishing]
Using the polishing liquid compositions of Examples I-1 to I-16 and Comparative Examples I-1 to I-3 prepared as described above, the following substrates to be polished were polished under the following polishing conditions. Next, the swell of the polished substrate, nanoprotrusion defects, and scratches were measured and evaluated based on the following conditions. The results are shown in Table 2 below. The data shown in the following Table 2 is obtained by polishing four substrates for each example and each comparative example, and measuring both surfaces of each substrate to be polished. Averaged.
 [被研磨基板]
 被研磨基板としては、Ni-Pメッキされたアルミニウム合金基板を予めアルミナ研磨材を含有する研磨液組成物で粗研磨した基板を用いた。なお、この被研磨基板は、厚さが1.27mm、外径が95mm、内径が25mmであり、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが1nm、長波長うねり(波長0.4~2mm)の振幅は2nm、短波長うねり(波長5~50μm)の振幅は2nmであった。
[Polished substrate]
As the substrate to be polished, a substrate obtained by rough polishing an aluminum alloy substrate plated with Ni—P in advance with a polishing composition containing an alumina abrasive was used. The substrate to be polished has a thickness of 1.27 mm, an outer diameter of 95 mm, an inner diameter of 25 mm, a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM), 1 nm, and a long wavelength. The amplitude of the undulation (wavelength 0.4 to 2 mm) was 2 nm, and the amplitude of the short wavelength undulation (wavelength 5 to 50 μm) was 2 nm.
 [研磨条件]
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:フジボウ社製スエードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cmあたりの供給速度:0.072mL/分)
下定盤回転数:32.5rpm
研磨荷重:7.9kPa
研磨時間:4分間
[Polishing conditions]
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: Fujibo's suede type (thickness 0.9mm, average hole diameter 30μm)
Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of polishing substrate: 0.072 mL / min)
Lower platen rotation speed: 32.5 rpm
Polishing load: 7.9 kPa
Polishing time: 4 minutes
 [ナノ突起欠陥及びスクラッチの評価方法]
測定機器:Candela Instruments社製、OSA6100
評価:研磨試験機に投入した基板の中、無作為に4枚を選択し、各々の基板を10000rpmにてレーザーを照射してナノ突起欠陥及びスクラッチを測定した。その4枚の基板の各々両面にあるスクラッチ数(本)の合計を8で除して、基板面当たりのナノ突起欠陥及びスクラッチの数を算出した。その結果を、下記表2に、比較例I-1を100とした相対値として示す。
[Evaluation method of nanoprotrusion defects and scratches]
Measuring instrument: OSA6100, manufactured by Candela Instruments
Evaluation: Four substrates were randomly selected from the substrates put in the polishing tester, and each substrate was irradiated with a laser at 10,000 rpm to measure nanoprotrusion defects and scratches. The total number of scratches (lines) on each of the four substrates was divided by 8 to calculate the number of nanoprotrusion defects and scratches per substrate surface. The results are shown in Table 2 as relative values with Comparative Example I-1 as 100.
 [うねりの評価方法]
 研磨後の8枚の基板から任意に3枚を選択し、下記の条件で測定した。その3枚の測定値の平均値を基板の短波長うねりとして算出した。その結果を、下記表2に、比較例I-1を100とした相対値として示す。
測定機:ThoT model M4224(ThoTテクノロジー社製)
振動計:レーザードップラー振動計(ヨウ素安定化He-Neレーザー:633nm)
測定波長:5~50μm(短波長うねり)
測定位置:基板中心より半径20mmから46mmの全面基板回転速度:6000rpm
ゲイン:16
フィルター:10kHz
レーザーレンジ:5mm/s/V
トラックピッチ:0.01mm
[Evaluation method of swell]
Three substrates were arbitrarily selected from the eight substrates after polishing and measured under the following conditions. The average value of the three measured values was calculated as the short wavelength waviness of the substrate. The results are shown in Table 2 as relative values with Comparative Example I-1 as 100.
Measuring machine: Thor model M4224 (manufactured by Thor Technology)
Vibrometer: Laser Doppler vibrometer (iodine stabilized He-Ne laser: 633 nm)
Measurement wavelength: 5-50μm (short wavelength swell)
Measurement position: Full board rotation speed of radius 20mm to 46mm from the substrate center: 6000rpm
Gain: 16
Filter: 10kHz
Laser range: 5mm / s / V
Track pitch: 0.01mm
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表2に示すように、実施例I-1~I-16の研磨液組成物を用いると、比較例I-1~I-3に比べ、研磨後の基板のスクラッチに加えて、基板表面のうねり及びナノ突起を低減できた。また、実施例I-6と実施例I-13の対比から、ΔCV値10以下の研磨材を用いると、研磨後の基板のスクラッチ、うねり及びナノ突起をさらに低減できることが示された。 As shown in Table 2 above, when the polishing liquid compositions of Examples I-1 to I-16 were used, in addition to the scratches on the substrate after polishing, the substrate surface was compared with Comparative Examples I-1 to I-3. Swells and nanoprotrusions could be reduced. Further, the comparison between Example I-6 and Example I-13 shows that the use of an abrasive having a ΔCV value of 10 or less can further reduce scratches, undulations, and nanoprotrusions on the substrate after polishing.
 <実施例I-17~I-24、比較例I-4~I-6:ガラス基板の研磨>
 下記のように調製した実施例I-17~I-24及び比較例I-4~I-6の研磨液組成物を用いて、下記の研磨条件でガラス基板を研磨した。ナノ突起欠陥及びうねりの評価は下記の方法により行った。結果を下記表3に示す。下記表3に示すデータは、各実施例及び各比較例につき10枚の被研磨基板を研磨した後、無作為に4枚を選択し、各々の基板の両面について測定し、表裏合わせて計8面のデータの平均とした。
<Examples I-17 to I-24, Comparative Examples I-4 to I-6: Polishing of Glass Substrate>
Glass substrates were polished under the following polishing conditions using the polishing composition of Examples I-17 to I-24 and Comparative Examples I-4 to I-6 prepared as described below. Evaluation of nanoprotrusion defects and waviness was performed by the following method. The results are shown in Table 3 below. The data shown in the following Table 3 shows that after polishing 10 substrates to be polished for each example and each comparative example, 4 samples were selected at random, measured on both sides of each substrate, and a total of 8 substrates were measured. The average of surface data was used.
 [研磨液組成物の調製方法]
 前記コロイダルシリカa(表1)と、下記表3に示す(共)重合体と、硫酸(和光純薬工業社製 特級)と、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸、サーモフォス・ジャパン社製 ディクエスト2010)とをイオン交換水に添加し、これらを混合することにより、実施例I-17~I-24及び比較例I-4~I-6の研磨液組成物を調製した。研磨液組成物中におけるコロイダルシリカ、硫酸、HEDPの含有量は、それぞれ、8.0重量%、0.4重量%、0.13重量%であり、共重合体の含有量は、下記表3に示すとおりとした。
[Method for preparing polishing liquid composition]
Colloidal silica a (Table 1), (co) polymer shown in Table 3 below, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, thermophos Diquest 2010) manufactured by Japan Co., Ltd. was added to ion-exchanged water, and these were mixed to prepare the polishing liquid compositions of Examples I-17 to I-24 and Comparative Examples I-4 to I-6. . The contents of colloidal silica, sulfuric acid, and HEDP in the polishing liquid composition are 8.0% by weight, 0.4% by weight, and 0.13% by weight, respectively, and the copolymer content is shown in Table 3 below. It was as shown in.
 実施例I-17の共重合体は、実施例I-1の共重合体と同様に製造されたものであり、実施例I-18~I-24の各共重合体は、前述の方法に従い、モノマー比率を変更して重合を行った。また、比較例I-4にはポリスチレンスルホン酸ナトリウム塩(NaSS、東ソー社製)、比較例I-5にはアクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、東亞合成社製)を用いた。各(共)重合体の重合比及び重量平均分子量は下記表3のとおりである。なお、重量平均分子量は、前述の測定条件のゲルパーミエーションクロマトグラフィー(GPC)法により測定した。比較例I-6には、共重合体に換えてラウリル硫酸Na(エマール0、花王社製)を用いた。 The copolymer of Example I-17 was produced in the same manner as the copolymer of Example I-1, and each of the copolymers of Examples I-18 to I-24 was prepared according to the method described above. The polymerization was carried out by changing the monomer ratio. In Comparative Example I-4, polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used. In Comparative Example I-5, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used. The polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 3 below. In addition, the weight average molecular weight was measured by the gel permeation chromatography (GPC) method of the above-mentioned measurement conditions. In Comparative Example I-6, lauryl sulfate Na (Emal 0, manufactured by Kao Corporation) was used instead of the copolymer.
 [ガラス基板]
 ガラス基板は、セリア砥粒を含有する研磨液であらかじめ粗研磨したアルミノシリケートガラス基板を用いた。なお、このガラス基板は、厚さが0.635mm、外径が65mm、内径が20mmであり、AFM(Digital Instrument NanoScope IIIa Multi Mode AFM)により測定した中心線平均粗さRaが3nmであった。
[Glass substrate]
As the glass substrate, an aluminosilicate glass substrate coarsely polished in advance with a polishing liquid containing ceria abrasive grains was used. The glass substrate had a thickness of 0.635 mm, an outer diameter of 65 mm, an inner diameter of 20 mm, and a center line average roughness Ra measured by AFM (Digital Instrument Nanoscope IIIa Multi Mode AFM) of 3 nm.
 [研磨条件]
研磨試験機:スピードファム社製「両面9B研磨機」
研磨パッド:スエードタイプ(厚さ0.9mm、平均開孔径30μm)
研磨液組成物供給量:100mL/分(被研磨基板1cm2あたりの供給速度:約0.3mL/分)
下定盤回転数:32.5rpm
研磨荷重:8.4kPa
[Polishing conditions]
Polishing tester: "Fast double-sided 9B polishing machine" manufactured by Speedfam
Polishing pad: Suede type (thickness 0.9mm, average hole diameter 30μm)
Polishing liquid composition supply amount: 100 mL / min (supply rate per 1 cm 2 of substrate to be polished: about 0.3 mL / min)
Lower platen rotation speed: 32.5 rpm
Polishing load: 8.4 kPa
 [ナノ突起欠陥の評価方法]
 ナノ突起欠陥は前述の方法と同様に行った。なお、表3中の値は、比較例I-4を100としたときの相対値である。
[Evaluation method of nano protrusion defects]
The nanoprotrusion defect was performed in the same manner as described above. The values in Table 3 are relative values when Comparative Example I-4 is 100.
 [うねりの評価方法]
 研磨して減少する重量を17mg以上、もしくは17mg以下になるように研磨時間をそれぞれ設定し、研磨した基板のうねりを下記条件にて測定し、研磨量あたりのうねりの値を得た。それらの値から内挿して17mg減少した際のうねりの値を算出した。うねりは各研磨時間につき3枚測定し、平均値を基板のうねりとして算出した。その結果を、下記表3に、比較例I-4を100とした相対値として示す。
測定機:New View 5032(Zygo社製)
レンズ:2.5倍
ズーム:0.5倍
測定波長:159~500μm(中波長うねり)
測定位置:基板中心より半径27mm
解析ソフト:Zygo Metro Pro(Zygo社製)
[Evaluation method of swell]
The polishing time was set so that the weight decreased by polishing was 17 mg or more and 17 mg or less, and the waviness of the polished substrate was measured under the following conditions to obtain the value of waviness per polishing amount. The value of the swell when 17 mg was reduced by interpolating from these values was calculated. Three wavinesses were measured for each polishing time, and the average value was calculated as the waviness of the substrate. The results are shown in Table 3 below as relative values with Comparative Example I-4 taken as 100.
Measuring machine: New View 5032 (manufactured by Zygo)
Lens: 2.5 times zoom: 0.5 times Measurement wavelength: 159 to 500 μm (Medium wave swell)
Measurement position: Radius 27mm from the center of the board
Analysis software: Zygo Metro Pro (manufactured by Zygo)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表3に示すように、実施例I-17~I-24の研磨液組成物を用いると、比較例I-4~I-6に比べ、研磨後の基板の基板表面のうねり及びナノ突起を低減できた。 As shown in Table 3 above, when the polishing liquid compositions of Examples I-17 to I-24 were used, the substrate surface waviness and nanoprotrusions after polishing were compared with Comparative Examples I-4 to I-6. Was able to be reduced.
 <実施例II-1~II-7、比較例II-1~II-3>
 共重合体であるメタクリル酸メチル/スチレンスルホン酸共重合体ナトリウム塩(MMA/NaSS)、ポリスチレンスルホン酸ナトリウム塩(NaSS)、アクリル酸/スチレンスルホン酸共重合体ナトリウム塩(AA/NaSS)、又はアクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS)と、研磨材として下記表4に示すコロイダルシリカa’~c’とを使用して研磨液組成物を調製し、被研磨基板の研磨を行い、研磨後の基板のうねり、スクラッチ及びナノ突起欠陥を評価した。なお、下記表4に示すコロイダルシリカの平均粒径は、動的光散乱法において検出角90度で測定される散乱強度分布に基づく平均粒径である。評価結果を下記表5に示す。被研磨基板であるNi-Pメッキされたアルミニウム合金基板、共重合体の製造方法、研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は前述及び以下のとおりである。
<Examples II-1 to II-7, Comparative Examples II-1 to II-3>
Copolymer methyl methacrylate / styrene sulfonic acid copolymer sodium salt (MMA / NaSS), polystyrene sulfonic acid sodium salt (NaSS), acrylic acid / styrene sulfonic acid copolymer sodium salt (AA / NaSS), or A polishing liquid composition was prepared using acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS) and colloidal silica a ′ to c ′ shown in Table 4 below as an abrasive. The substrate to be polished was prepared and the substrate was polished, and the waviness, scratches and nanoprojection defects of the substrate after polishing were evaluated. In addition, the average particle diameter of colloidal silica shown in the following Table 4 is an average particle diameter based on a scattering intensity distribution measured at a detection angle of 90 degrees in the dynamic light scattering method. The evaluation results are shown in Table 5 below. The substrate to be polished is a Ni—P plated aluminum alloy substrate, a method for producing a copolymer, a method for preparing a polishing composition, a method for measuring each parameter, a polishing condition (polishing method), and an evaluation method as described above and below. It is as follows.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [共重合体の製造方法]
 下記表5の(共)重合体は、それぞれ、公知の溶液重合で製造された(共)重合体を使用した。なお、実施例II-1で使用した共重合体の製造方法を代表例として示す。
[Method for producing copolymer]
As the (co) polymers in the following Table 5, (co) polymers produced by known solution polymerization were used. The production method of the copolymer used in Example II-1 is shown as a representative example.
 〔実施例II-1記載の共重合体の製造法〕
 1Lの四つ口フラスコに、イソプロピルアルコール225g(キシダ化学製)、イオン交換水225g、メタクリル酸メチル15g(和光純薬工業製)、スチレンスルホン酸ナトリウム35g(和光純薬工業製)を仕込み、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩8.3g(V-50、和光純薬工業製)を反応開始剤として、この内、101.6g(全反応液の20重量%)を200mL滴下ロートに移し、83±2℃で2時間かけて滴下し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、白色粉のメタクリル酸メチル/スチレンスルホン酸ナトリウム共重合体(50/50モル%)を得た。この共重合体の重量平均分子量は15000であった。
[Method for producing copolymer described in Example II-1]
A 1 L four-necked flask is charged with 225 g of isopropyl alcohol (manufactured by Kishida Chemical), 225 g of ion-exchanged water, 15 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries), and 35 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries). , 2′-azobis (2-methylpropionamidine) dihydrochloride 8.3 g (V-50, manufactured by Wako Pure Chemical Industries, Ltd.) as a reaction initiator, 101.6 g (20% by weight of the total reaction solution) Was transferred to a 200 mL dropping funnel, added dropwise at 83 ± 2 ° C. over 2 hours, further aged for 2 hours, and then the solvent was removed under reduced pressure to obtain a white powder of methyl methacrylate / sodium styrenesulfonate. A polymer (50/50 mol%) was obtained. The weight average molecular weight of this copolymer was 15000.
 実施例II-2~II-7、比較例II-2の各共重合体は、上記記載の方法に従い、モノマー比率を変更して重合を行った。比較例II-1にはポリスチレンスルホン酸ナトリウム塩(NaSS、東ソー社製)、比較例II-3にはアクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、東亞合成社製)を用いた。各(共)重合体の重合比及び重量平均分子量は下記表5のとおりである。なお、重量平均分子量は、前述及び下記測定条件におけるゲルパーミエーションクロマトグラフィー(GPC)法により測定した。 The copolymers of Examples II-2 to II-7 and Comparative Example II-2 were polymerized by changing the monomer ratio according to the method described above. In Comparative Example II-1, polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used. In Comparative Example II-3, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, Toagosei Co., Ltd.) was used. The polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 5 below. The weight average molecular weight was measured by the gel permeation chromatography (GPC) method described above and under the following measurement conditions.
 〔MMA/NaSSのGPC条件〕
 カラム  :TSKgel α-M+TSKgel α-M(東ソー製)
ガードカラム:TSKguardcolumn α(東ソー製)
 溶離液  :60mmol/L リン酸,50mmol/L LiBr/DMF
 温度   :40℃
 流速   :1.0mL/min
 試料サイズ:3mg/mL
 検出器  :RI
 換算標準 :ポリスチレン
[GPC conditions for MMA / NaSS]
Column: TSKgel α-M + TSKgel α-M (Tosoh)
Guard column: TSK guard column α (Tosoh)
Eluent: 60 mmol / L phosphoric acid, 50 mmol / L LiBr / DMF
Temperature: 40 ° C
Flow rate: 1.0 mL / min
Sample size: 3 mg / mL
Detector: RI
Conversion standard: Polystyrene
 [研磨液組成物の調製方法]
 上記表4に示すコロイダルシリカa’~c’と、上記共重合体と、硫酸(和光純薬工業社製 特級)と、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸、サーモフォス・ジャパン製 ディクエスト2010)と、過酸化水素水(旭電化製 濃度:35重量%)とをイオン交換水に添加し、これらを混合することにより、上記表4に示すコロイダルシリカ及び共重合体を含む実施例II-1~II-7及び比較例II-1~II-3の研磨液組成物を調製した。研磨液組成物中におけるコロイダルシリカ、硫酸、HEDP、過酸化水素の含有量は、それぞれ、4.5重量%、0.4重量%、0.1重量%、0.4重量%とし、共重合体の含有量は、下記表5に示すとおりとした。
[Method for preparing polishing liquid composition]
Colloidal silica a ′ to c ′ shown in Table 4 above, the above copolymer, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, manufactured by Thermophos Japan) Implementation including colloidal silica and copolymer shown in Table 4 above by adding dequest 2010) and hydrogen peroxide water (concentration: 35% by weight manufactured by Asahi Denka) to ion-exchanged water and mixing them Polishing liquid compositions of Examples II-1 to II-7 and Comparative Examples II-1 to II-3 were prepared. The contents of colloidal silica, sulfuric acid, HEDP, and hydrogen peroxide in the polishing composition are 4.5% by weight, 0.4% by weight, 0.1% by weight, and 0.4% by weight, respectively. The content of the coalesced was as shown in Table 5 below.
 [研磨]
 上記のように調製した実施例II-1~II-7及び比較例II-1~II-3の研磨液組成物を用いて、前述と同じ研磨条件にて被研磨基板であるNi-Pメッキされたアルミニウム合金基板を研磨した。次いで、研磨された基板のうねり、ナノ突起欠陥、及びスクラッチを前述と同じ条件に基づいて測定し、評価を行った。結果を下記表5に示す。下記表5に示すデータは、各実施例及び各比較例につき4枚の被研磨基板を研磨した後、各被研磨基板の両面について測定し、4枚(表裏合わせて計8面)のデータの平均とした。また、下記表5のナノ突起欠陥及びスクラッチの数並びに短波長うねりは、比較例II-1を100とした相対値として示す。
[Polishing]
Using the polishing liquid compositions of Examples II-1 to II-7 and Comparative Examples II-1 to II-3 prepared as described above, Ni—P plating as a substrate to be polished under the same polishing conditions as described above The prepared aluminum alloy substrate was polished. Next, the waviness, nanoprotrusion defect, and scratch of the polished substrate were measured and evaluated based on the same conditions as described above. The results are shown in Table 5 below. The data shown in the following Table 5 is obtained by polishing four substrates for each example and each comparative example, and measuring both surfaces of each substrate to be polished. Averaged. The number of nanoprotrusion defects and scratches and short wavelength waviness in Table 5 below are shown as relative values with Comparative Example II-1 taken as 100.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表5に示すように、実施例II-1~II-7の研磨液組成物を用いると、比較例II-1~II-3に比べ、研磨後の基板のスクラッチに加えて、基板表面のうねり及びナノ突起を低減できた。 As shown in Table 5 above, when the polishing liquid compositions of Examples II-1 to II-7 were used, in addition to the scratches on the substrate after polishing, the substrate surface was compared with Comparative Examples II-1 to II-3. Swells and nanoprotrusions could be reduced.
 <実施例II-8、比較例II-4~II-5:ガラス基板の研磨>
 下記のように調製した実施例II-8及び比較例II-4~II-5の研磨液組成物を用いて、被研磨基板として前述のガラス基板を用い、前述のガラス基板研磨条件で研磨した。ナノ突起欠陥及びうねりの評価は実施例I-17等と同様の方法で行った。結果を下記表6に示す。下記表6に示すデータは、各実施例及び各比較例につき10枚の被研磨基板を研磨した後、無作為に4枚を選択し、各々の基板の両面について測定し、表裏合わせて計8面のデータの平均とした。
<Example II-8, Comparative Examples II-4 to II-5: Polishing of Glass Substrate>
Using the polishing liquid compositions of Example II-8 and Comparative Examples II-4 to II-5 prepared as described below, the above glass substrate was used as the substrate to be polished, and polishing was performed under the above glass substrate polishing conditions. . Nanoprojection defects and waviness were evaluated in the same manner as in Example I-17. The results are shown in Table 6 below. In the data shown in Table 6 below, after polishing 10 substrates for each example and each comparative example, 4 substrates were selected at random, measured on both sides of each substrate, and a total of 8 substrates were measured. The average of surface data was used.
 [研磨液組成物の調製方法]
 前記コロイダルシリカa’(上記表5)と、下記表6に示す(共)重合体と、硫酸(和光純薬工業社製 特級)と、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸、サーモフォス・ジャパン社製 ディクエスト2010)とをイオン交換水に添加し、これらを混合することにより、実施例II-8及び比較例II-4~II-5の研磨液組成物を調製した。研磨液組成物中におけるコロイダルシリカ、硫酸、HEDPの含有量は、それぞれ、8.0重量%、0.4重量%、0.13重量%であり、共重合体の含有量は、下記表6に示すとおりとした。
[Method for preparing polishing liquid composition]
Colloidal silica a ′ (Table 5 above), (co) polymer shown in Table 6 below, sulfuric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.), HEDP (1-hydroxyethylidene-1,1-diphosphonic acid, The polishing compositions of Example II-8 and Comparative Examples II-4 to II-5 were prepared by adding Dequest 2010) manufactured by Thermophos Japan Co., Ltd. to ion-exchanged water and mixing them. The contents of colloidal silica, sulfuric acid, and HEDP in the polishing liquid composition are 8.0% by weight, 0.4% by weight, and 0.13% by weight, respectively. It was as shown in.
 実施例II-8の共重合体は、実施例II-1の共重合体と同様に製造されたものである。また、比較例II-4にはポリスチレンスルホン酸ナトリウム塩(NaSS、 東ソー社製)、比較例II-5にはアクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸共重合体ナトリウム塩(AA/AMPS、東亞合成社製)を用いた。各(共)重合体の重合比及び重量平均分子量は下記表6のとおりである。なお、重量平均分子量は、前述の測定条件のゲルパーミエーションクロマトグラフィー(GPC)法により測定した。 The copolymer of Example II-8 was produced in the same manner as the copolymer of Example II-1. In Comparative Example II-4, polystyrenesulfonic acid sodium salt (NaSS, manufactured by Tosoh Corporation) was used. In Comparative Example II-5, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer sodium salt (AA / AMPS, manufactured by Toagosei Co., Ltd.) was used. The polymerization ratio and weight average molecular weight of each (co) polymer are shown in Table 6 below. In addition, the weight average molecular weight was measured by the gel permeation chromatography (GPC) method of the above-mentioned measurement conditions.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表6に示すように、実施例II-8の研磨液組成物を用いると、比較例II-4~II-5に比べ、研磨後の基板の基板表面のうねり及びナノ突起を低減できた。 As shown in Table 6 above, when the polishing composition of Example II-8 was used, the substrate surface waviness and nanoprotrusions after polishing could be reduced as compared with Comparative Examples II-4 to II-5. .
 <実施例III-1~III-5、比較例III-1>
 下記のように実施例III-1~III-5及び比較例III-1の研磨液組成物を調製して被研磨基板の研磨を行い、研磨後の基板のスクラッチ及びナノ突起欠陥を評価した。評価結果を下記表8に示す。使用した重合体、研磨液組成物の調製方法、各パラメータの測定方法、研磨条件(研磨方法)及び評価方法は以下のとおりである。
<Examples III-1 to III-5, Comparative Example III-1>
The polishing liquid compositions of Examples III-1 to III-5 and Comparative Example III-1 were prepared as described below to polish the substrate to be polished, and scratches and nanoprotrusion defects of the substrate after polishing were evaluated. The evaluation results are shown in Table 8 below. The polymer used, the method for preparing the polishing composition, the method for measuring each parameter, the polishing conditions (polishing method) and the evaluation method are as follows.
 [共重合体]
 研磨液組成物に使用した共重合体は下記のとおりである。共重合体とその重量平均分子量を下記表7に示す。なお、これらの共重合体の重量平均分子量は前述の測定条件におけるゲルパーミエーションクロマトグラフィー(GPC)法により測定した。
スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比60/40、分子量4000、下記方法により合成);
スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比50/50、分子量5600、下記方法により合成);
スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比50/50、分子量28000、下記方法により合成);
スチレン/スチレンスルホン酸共重合体ナトリウム塩(St/NaSS、モル比30/70、分子量7000、下記方法により合成)
[Copolymer]
The copolymer used for the polishing composition is as follows. The copolymer and its weight average molecular weight are shown in Table 7 below. In addition, the weight average molecular weight of these copolymers was measured by the gel permeation chromatography (GPC) method in the above-mentioned measurement conditions.
Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 60/40, molecular weight 4000, synthesized by the following method);
Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, molecular weight 5600, synthesized by the following method);
Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 50/50, molecular weight 28000, synthesized by the following method);
Styrene / styrene sulfonic acid copolymer sodium salt (St / NaSS, molar ratio 30/70, molecular weight 7000, synthesized by the following method)
 〔スチレン/スチレンスルホン酸共重合体ナトリウム塩の製造方法〕
 1Lの四つ口フラスコに、イソプロピルアルコール180g(キシダ化学製)、イオン交換水270g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩7.2g(V-50、和光純薬工業製)を反応開始剤として、この内、101.4g(全反応液の20重量%)を200mL滴下ロートに移し、83±2℃で2時間かけて滴下し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、白色粉の重合体(St/NaSS共重合体、モル比30/70、分子量7000)を得た。その他のSt/NaSS共重合体は、単量体種及び単量体比率を変更して前記記載の方法にて重合を行った。
[Method for producing sodium salt of styrene / styrene sulfonic acid copolymer]
A 1 L four-necked flask was charged with 180 g of isopropyl alcohol (manufactured by Kishida Chemical), 270 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries). Azobis (2-methylpropionamidine) dihydrochloride (7.2 g, V-50, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a reaction initiator, and 101.4 g (20% by weight of the total reaction solution) of which was 200 mL dropping funnel. The mixture was then added dropwise at 83 ± 2 ° C. over 2 hours, and further aged for 2 hours. Thereafter, the solvent was removed under reduced pressure to obtain a white powder polymer (St / NaSS copolymer, molar ratio 30). / 70, molecular weight 7000). Other St / NaSS copolymers were polymerized by the above-described method while changing the monomer species and the monomer ratio.
 [研磨液組成物の調製方法]
 下記に示す組成で、複素環芳香族化合物(1H-ベンゾトリアゾール)、重合体(表8)、コロイダルシリカ(シリカa’’~c’’、いずれも日揮触媒化成社製、表7)、硫酸、HEDP(1-ヒドロキシエチリデン-1,1-ジホスホン酸 サーモフォス・ジャパン社製 ディクエスト2010)、過酸化水素水(酸化剤)等をイオン交換水に添加し、これらを混合することにより、実施例III-1~III-5及び比較例III-1の研磨液組成物を調製した。具体的には、研磨液組成物中の各成分の濃度は、以下のように調製した。
[Method for preparing polishing liquid composition]
Heterocyclic aromatic compound (1H-benzotriazole), polymer (Table 8), colloidal silica (silica a ″ to c ″, all manufactured by JGC Catalysts and Chemicals, Table 7), sulfuric acid having the composition shown below HEDP (1-Hydroxyethylidene-1,1-diphosphonic acid Thermophos Japan Co., Ltd., Dequest 2010), hydrogen peroxide (oxidant), etc. were added to ion-exchanged water, and these were mixed to give an example. Polishing liquid compositions of III-1 to III-5 and Comparative Example III-1 were prepared. Specifically, the concentration of each component in the polishing composition was prepared as follows.
 実施例III-1~III-5:複素環芳香族化合物(1H-ベンゾトリアゾール、表8記載の濃度)、重合体0.05重量%、シリカ粒子5重量%、硫酸0.5重量%、HEDP0.1重量%、過酸化水素0.5重量%(pH1.4~1.5);
 比較例III-1:複素環芳香族化合物(1H-ベンゾトリアゾール、表8記載の濃度)、シリカ粒子5重量%、オルトリン酸2重量%、KHPO4 0.8重量%、過酸化水素0.62重量%(pH2)
Examples III-1 to III-5: Heterocyclic aromatic compound (1H-benzotriazole, concentration shown in Table 8), polymer 0.05% by weight, silica particles 5% by weight, sulfuric acid 0.5% by weight, HEDP0 1 wt%, hydrogen peroxide 0.5 wt% (pH 1.4-1.5);
Comparative Example III-1: Heterocyclic aromatic compound (1H-benzotriazole, concentration shown in Table 8), silica particles 5% by weight, orthophosphoric acid 2% by weight, K 2 HPO 4 0.8% by weight, hydrogen peroxide 0 .62% by weight (pH 2)
 なお、使用したシリカa’’の物性値(動的光散乱法(DLS)で測定される平均粒径、CV90、ΔCV値、比表面積SA1及びSA2、平均粒径S2、表面粗度、並びに、真球率)は前述の方法で測定し、その結果は下記表7に示す。 The physical properties of the silica a ″ used (average particle diameter measured by dynamic light scattering method (DLS), CV90, ΔCV value, specific surface areas SA1 and SA2, average particle diameter S2, surface roughness, and The true sphere ratio) was measured by the method described above, and the results are shown in Table 7 below.
 [研磨]
 上記のように調製した実施例III-1~III-5及び比較例III-1の研磨液組成物を用いて、被研磨基板であるNi-Pメッキされたアルミニウム合金基板(前述と同じ)を前述と同じ研磨条件にて研磨した。次いで、研磨された基板のナノ突起欠陥、及びスクラッチを前述と同じ条件に基づいて測定し、評価を行った。結果を下記表8に示す。なお、研磨速度は下記方法で測定した。下記表8に示すデータは、各実施例及び各比較例につき4枚の被研磨基板を研磨した後、各被研磨基板の両面について測定し、4枚(表裏合わせて計8面)のデータの平均とした。
[Polishing]
Using the polishing composition of Examples III-1 to III-5 and Comparative Example III-1 prepared as described above, a Ni—P plated aluminum alloy substrate (same as described above) as a substrate to be polished was prepared. Polishing was performed under the same polishing conditions as described above. Subsequently, the nanoprojection defect and scratch of the polished substrate were measured and evaluated based on the same conditions as described above. The results are shown in Table 8 below. The polishing rate was measured by the following method. The data shown in the following Table 8 is obtained by polishing four substrates for each example and each comparative example, and then measuring both surfaces of each substrate to be polished. Averaged.
 [研磨速度の測定方法]
 研磨前後の各基板の重さを重量計(Sartorius社製「BP-210S」)を用いて測定し、各基板の重量変化を求め、10枚の平均値を重量減少量とし、それを研磨時間で割った値を重量減少速度とした。この重量減少速度を下記の式に導入し、研磨速度(μm/min)に変換した。
研磨速度(μm/min)=重量減少速度(g/min)/基板片面面積(mm)/Ni-Pメッキ密度(g/cm)×10
(基板片面面積:6597mm、Ni-Pメッキ密度:7.99g/cmとして算出)
[Measurement method of polishing rate]
The weight of each substrate before and after polishing was measured using a weigh scale (“BP-210S” manufactured by Sartorius), the change in the weight of each substrate was obtained, and the average value of 10 substrates was taken as the weight reduction amount, which was used as the polishing time The value obtained by dividing by was used as the weight reduction rate. This weight reduction rate was introduced into the following formula and converted into a polishing rate (μm / min).
Polishing rate (μm / min) = weight reduction rate (g / min) / substrate single-sided area (mm 2 ) / Ni—P plating density (g / cm 3 ) × 10 6
(Calculated on the surface of one side of the substrate: 6597 mm 2 and Ni—P plating density: 7.9 g / cm 3 )
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表8に示すように、実施例III-1~III-4の研磨液組成物を用いると、実施例III-5及び比較例III-1に比べ、研磨後の基板のスクラッチに加えて、基板表面のナノ突起を低減できた。 As shown in Table 8 above, when the polishing liquid compositions of Examples III-1 to III-4 were used, in addition to scratches on the substrate after polishing, compared to Example III-5 and Comparative Example III-1, Nanoprojections on the substrate surface could be reduced.
 <実施例IV-1~IV-2、比較例IV-1:保存試験の評価方法]
 300CCのポリ容器に、硫酸3g、過酸化水素3g、共重合体0.5g、イオン交換水93.5gを混合して研磨液組成物を調製し、80℃で1週間保存した。保存前後での重量平均分子量を測定し、及び、被研磨基板の研磨を行った。
<Examples IV-1 to IV-2, Comparative Example IV-1: Evaluation Method of Storage Test]
A polishing composition was prepared by mixing 3 g of sulfuric acid, 3 g of hydrogen peroxide, 0.5 g of copolymer, and 93.5 g of ion-exchanged water in a 300 CC plastic container, and stored at 80 ° C. for 1 week. The weight average molecular weight before and after storage was measured, and the substrate to be polished was polished.
 実施例IV-1として上記実施例I-3の共重合体を使用し、実施例IV-2として上記実施例II-5の共重合体を使用し、比較例IV-1として主鎖中に二重結合を有するCS1106(スチレン/イソプレンスルホン酸Na共重合体 JSR社製)を使用した。被研磨基板及び研磨条件も上記実施例I-3と同様に分子量の測定方法、並びにスクラッチおよびナノ突起数の測定方法は前述と同様に行い、分子量測定結果、及び、研磨後のスクラッチ及びナノ突起数を下記表9に、保存前を100とした相対値で示す。 The copolymer of Example I-3 above was used as Example IV-1, the copolymer of Example II-5 above was used as Example IV-2, and in the main chain as Comparative Example IV-1. CS1106 (styrene / isoprenesulfonic acid Na copolymer, manufactured by JSR) having a double bond was used. The substrate to be polished and the polishing conditions were the same as in Example I-3 above, and the molecular weight measurement method and the number of scratches and nanoprotrusions were the same as described above. The numbers are shown in Table 9 below as relative values with the value before storage as 100.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記表9に示すとおり、実施例IV-1及びIV-2では、保存前後で共重合体の分子量低下はほとんどみられず、研磨結果も良好であった。一方、主鎖中に二重結合を有する共重合体を用いた比較例IV-1では、保存後に共重合体の分子量低下を生じ、保存後の研磨実験では、スクラッチ数、ナノ突起欠陥数がともに増加した。 As shown in Table 9 above, in Examples IV-1 and IV-2, there was almost no decrease in the molecular weight of the copolymer before and after storage, and the polishing results were good. On the other hand, in Comparative Example IV-1 using a copolymer having a double bond in the main chain, the molecular weight of the copolymer decreased after storage. In the polishing experiment after storage, the number of scratches and the number of nanoprotrusion defects were Both increased.
 <製造例1及び2:単量体の転化率の評価>
 各反応時間における、未反応のスチレンもしくは、スチレンスルホン酸Na量を下記条件にて測定した。経時でのスチレンスルホン酸Naの転化率をCss、スチレンの転化率をCstとし、スチレンの転化率(Cst)に対するスチレンスルホン酸Naの転化率の割合(Css/Cst)が1.0であれば、転化率は同じであることを示し、1.0より大きい場合は、スチレンスルホン酸Naの転化率が、スチレンよりも高いことを示す。また、1.0よりも小さい場合は、スチレンの転化率が、スチレンスルホン酸Naよりも転化率が高いことを示す。以下の製造例1、2で製造した共重合体のCss/Cstと、研磨評価結果を表10に示す。
<Production Examples 1 and 2: Evaluation of monomer conversion>
The amount of unreacted styrene or sodium styrenesulfonate in each reaction time was measured under the following conditions. If the conversion rate of Na styrenesulfonate over time is Css, the conversion rate of styrene is Cst, and the ratio of the conversion rate of Na styrenesulfonate to the conversion rate of styrene (Cst) (Css / Cst) is 1.0 The conversion ratio is the same. When the conversion ratio is larger than 1.0, the conversion ratio of Na styrenesulfonate is higher than that of styrene. Moreover, when it is smaller than 1.0, it indicates that the conversion rate of styrene is higher than that of Na styrenesulfonate. Table 10 shows Css / Cst of the copolymers produced in Production Examples 1 and 2 below and the results of the polishing evaluation.
 [未反応スチレンの定量法]
 10mlメスフラスコにポリマーを400mgとり、酢酸メチルでメスアップ後、0.45μmPTFEフィルターで濾過後、以下のGC条件にて、未反応のスチレンを算出した。
[GC条件]
カラム:HP-FFAP サイズ30m×0.530mm 1.00μm (Agilent Technologies社製)
カラム流量:1.0mL/min 
検出器:FID
注入口温度:220℃
試料サイズ:40mg/mL
オーブン温度:35℃(10min)→10℃/min→220℃
[Quantitative determination of unreacted styrene]
400 mg of the polymer was taken in a 10 ml volumetric flask, diluted with methyl acetate, filtered through a 0.45 μm PTFE filter, and unreacted styrene was calculated under the following GC conditions.
[GC condition]
Column: HP-FFAP size 30 m × 0.530 mm 1.00 μm (manufactured by Agilent Technologies)
Column flow rate: 1.0 mL / min
Detector: FID
Inlet temperature: 220 ° C
Sample size: 40 mg / mL
Oven temperature: 35 ° C. (10 min) → 10 ° C./min→220° C.
 [未反応スチレンスルホン酸Naの定量法]
 10mlメスフラスコにポリマー40mgとり、0.2Mリン酸バッファーでメスアップ後、以下のHPLC条件にて、未反応のスチレンスルホン酸Naを算出した。
[HPLC条件]
カラム:Lichro CART 250-4.0 RP-18(5μm) メルク社製
カラム流量:1.0mL/min
検出:UV210nm 
試料サイズ:4.0mg/mL
溶離液:0.2Mリン酸バッファー/メタノール=60/40vol%
[Quantification method of unreacted sodium styrenesulfonate]
After taking 40 mg of polymer in a 10 ml volumetric flask and measuring up with 0.2 M phosphate buffer, unreacted sodium styrenesulfonate was calculated under the following HPLC conditions.
[HPLC conditions]
Column: Lichloro CART 250-4.0 RP-18 (5 μm) Merck column flow rate: 1.0 mL / min
Detection: UV210nm
Sample size: 4.0 mg / mL
Eluent: 0.2 M phosphate buffer / methanol = 60/40 vol%
 製造例1
 1Lの四つ口フラスコに、イソプロピルアルコール91g(キシダ化学製)、イオン交換水137g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、83±2℃まで昇温し、過硫酸アンモニウム6.6g(和光純薬工業製)を反応開始剤として投入後に、2時間重合し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、スチレン/スチレンスルホン酸ナトリウム共重合体(33/67モル%)を得た。この共重合体の重量平均分子量は16000であった。
Production Example 1
A 1 L four-necked flask is charged with 91 g of isopropyl alcohol (manufactured by Kishida Chemical), 137 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), up to 83 ± 2 ° C. The temperature was raised and 6.6 g of ammonium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a reaction initiator, followed by polymerization for 2 hours, further aging for 2 hours, and then removal of the solvent under reduced pressure to remove styrene / A sodium styrenesulfonate copolymer (33/67 mol%) was obtained. The weight average molecular weight of this copolymer was 16000.
 製造例2
 1Lの四つ口フラスコに、イソプロピルアルコール230g(キシダ化学製)、イオン交換水345g、スチレン10g(キシダ化学製)、スチレンスルホン酸ナトリウム40g(和光純薬工業製)を仕込み、過硫酸アンモニウム6.6g(和光純薬工業製)を反応開始剤として、この内、189.4g(全反応液の30重量%)を200mL滴下ロートに移し、65±5℃で6時間かけて滴下し、更に2時間熟成を行い、その後、減圧下で溶剤を除去することで、スチレン/スチレンスルホン酸ナトリウム共重合体(33/67モル%)を得た。この共重合体の重量平均分子量は11000であった。
Production Example 2
A 1 L four-necked flask is charged with 230 g of isopropyl alcohol (manufactured by Kishida Chemical), 345 g of ion-exchanged water, 10 g of styrene (manufactured by Kishida Chemical), and 40 g of sodium styrenesulfonate (manufactured by Wako Pure Chemical Industries), and 6.6 g of ammonium persulfate. (Wako Pure Chemical Industries, Ltd.) was used as a reaction initiator, and 189.4 g (30% by weight of the total reaction solution) was transferred to a 200 mL dropping funnel and added dropwise at 65 ± 5 ° C. over 6 hours, and further for 2 hours. After aging, the solvent was removed under reduced pressure to obtain a styrene / sodium styrenesulfonate copolymer (33/67 mol%). The copolymer had a weight average molecular weight of 11,000.
 製造例1及び2の共重合体を用いて研磨実験を行った。結果を表10に示す。研磨液組成は上記実施例I-3と同様とし、研磨材には前述のシリカaを用いた。被研磨基板及び研磨条件も上記実施例I-3と同様とし、分子量の測定方法、スクラッチおよびナノ突起数の測定方法は前述の方法を用いた。なお、転化率比を示す開始時間について、製造例1は83±2℃まで昇温後に、過硫酸アンモニウム投入後の時間を0分とした。また、製造例2は65±5℃まで昇温後に、滴下開始時間を0分とした。 Polishing experiments were conducted using the copolymers of Production Examples 1 and 2. The results are shown in Table 10. The polishing composition was the same as in Example I-3, and the above-mentioned silica a was used as the polishing material. The substrate to be polished and the polishing conditions were also the same as in Example I-3, and the method described above was used as the method for measuring the molecular weight and the method for measuring the number of scratches and nanoprotrusions. In addition, regarding the start time indicating the conversion ratio, in Production Example 1, after the temperature was raised to 83 ± 2 ° C., the time after adding ammonium persulfate was set to 0 minutes. In Production Example 2, after the temperature was raised to 65 ± 5 ° C., the dropping start time was 0 minute.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表10に示すとおり、製造例2のように経時の転化率比を1.0にすることで、製造例1に比べてクラッチ及び、ナノ突起数が更に低減できることが示された。 As shown in Table 10 above, it was shown that the number of clutches and nanoprotrusions could be further reduced by making the conversion ratio over time as 1.0 as in Production Example 2 compared to Production Example 1.
 本発明によれば、例えば、高記録密度化に適した磁気ディスク基板を提供できる。 According to the present invention, for example, a magnetic disk substrate suitable for high recording density can be provided.

Claims (11)

  1. 20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位及びスルホン酸基を有する構成単位を有しかつ主鎖が飽和炭化水素鎖である共重合体又はその塩と、研磨材と、水とを含有する、磁気ディスク基板用研磨液組成物。 A copolymer having a structural unit derived from a monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. and a structural unit having a sulfonic acid group and the main chain of which is a saturated hydrocarbon chain, or a salt thereof, and an abrasive And a polishing composition for a magnetic disk substrate, comprising water.
  2. 20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位が、下記一般式(1)又は(2)で表わされる構成単位である、請求項1記載の磁気ディスク基板用研磨液組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)及び(2)中、R及びRは水素原子又は炭素数1~4のアルキル基であり、Rは水素原子、ヒドロキシ基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基又はアリール基であり、Rは炭素数1~22の炭化水素鎖である。]
    The polishing liquid for a magnetic disk substrate according to claim 1, wherein the structural unit derived from a monomer having a solubility in 100 g of water at 20 ° C of 2 g or less is a structural unit represented by the following general formula (1) or (2). Composition.
    Figure JPOXMLDOC01-appb-C000001

    [In the formulas (1) and (2), R 1 and R 3 are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 is a hydrogen atom, a hydroxy group, an alkyl group having 1 to 4 carbon atoms, carbon R 1 is an alkoxy group having 1 to 4 carbon atoms or an aryl group, and R 4 is a hydrocarbon chain having 1 to 22 carbon atoms. ]
  3. スルホン酸基を有する構成単位が下記一般式(3)で表される、請求項1又は2に記載の磁気ディスク基板用研磨液組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式(3)中、Rは水素原子又は炭素数1~4のアルキル基であり、Rは1又は複数のスルホン酸基を有するアリール基である。]
    The polishing composition for a magnetic disk substrate according to claim 1, wherein the structural unit having a sulfonic acid group is represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000002

    [In Formula (3), R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 6 is an aryl group having one or more sulfonic acid groups. ]
  4. 共重合体を構成する全構成単位中における20℃の水100gに対する溶解度が2g以下の単量体に由来する構成単位とスルホン酸基を有する構成単位とのモル比が5/95~95/5である、請求項1から3のいずれかに記載の磁気ディスク基板用研磨液組成物。 The molar ratio of the structural unit derived from the monomer having a solubility of 2 g or less in 100 g of water at 20 ° C. to the structural unit having a sulfonic acid group in all the structural units constituting the copolymer is 5/95 to 95/5. The polishing composition for a magnetic disk substrate according to any one of claims 1 to 3, wherein
  5. 共重合体の重量平均分子量が1000~100000である、請求項1から4いずれかに記載の磁気ディスク基板用研磨液組成物。 The polishing composition for a magnetic disk substrate according to any one of claims 1 to 4, wherein the copolymer has a weight average molecular weight of 1,000 to 100,000.
  6. 研磨材が下記(a)及び(b)の条件を満たす、請求項1から5のいずれかに記載の磁気ディスク基板用研磨液組成物。
    (a)動的光散乱法により検出角90度で測定される平均粒径が1~40nm、
    (b)動的光散乱法により検出角30度で測定される粒径の標準偏差を動的光散乱法により検出角30度で測定される平均粒径で除して100を掛けたCV(変動係数)の値(CV30)と、動的光散乱法により検出角90度で測定される粒径の標準偏差を動的光散乱法により検出角90度で測定される平均粒径で除して100を掛けたCV値(CV90)との差ΔCV(ΔCV=CV30-CV90)が0~10%。
    The polishing composition for a magnetic disk substrate according to any one of claims 1 to 5, wherein the abrasive satisfies the following conditions (a) and (b).
    (A) The average particle diameter measured by a dynamic light scattering method at a detection angle of 90 degrees is 1 to 40 nm,
    (B) CV (100) obtained by dividing the standard deviation of the particle diameter measured at a detection angle of 30 degrees by the dynamic light scattering method by the average particle diameter measured at the detection angle of 30 degrees by the dynamic light scattering method. The coefficient of variation) (CV30) and the standard deviation of the particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method are divided by the average particle diameter measured at a detection angle of 90 degrees by the dynamic light scattering method. The difference ΔCV (ΔCV = CV30−CV90) from the CV value (CV90) multiplied by 100 is 0 to 10%.
  7. 研磨材が下記(c)及び(d)の条件を満たす、請求項1から6のいずれかに記載の磁気ディスク基板用研磨液組成物。
    (c)透過型電子顕微鏡観察により測定される真球率が0.75~1、
    (d)ナトリウム滴定法により測定される比表面積(SA1)を、透過型電子顕微鏡観察により測定される平均粒径(S2)から換算される比表面積(SA2)で除した表面粗度(SA1/SA2)の値が、1.3以上。
    The polishing composition for a magnetic disk substrate according to any one of claims 1 to 6, wherein the abrasive satisfies the following conditions (c) and (d).
    (C) the sphericity measured by observation with a transmission electron microscope is 0.75 to 1,
    (D) Surface roughness (SA1 /) obtained by dividing the specific surface area (SA1) measured by the sodium titration method by the specific surface area (SA2) converted from the average particle diameter (S2) measured by observation with a transmission electron microscope. The value of SA2) is 1.3 or more.
  8. 複素環芳香族化合物をさらに含有し、前記複素環芳香族化合物は複素環内に窒素原子を2個以上含む、請求項1から7のいずれかに記載の磁気ディスク基板用研磨液組成物。 The polishing composition for a magnetic disk substrate according to claim 1, further comprising a heterocyclic aromatic compound, wherein the heterocyclic aromatic compound contains two or more nitrogen atoms in the heterocyclic ring.
  9. 磁気ディスク基板がNi-Pメッキされたアルミニウム合金基板である請求項1から8のいずれかに記載の磁気ディスク基板用研磨液組成物。 9. The polishing composition for a magnetic disk substrate according to claim 1, wherein the magnetic disk substrate is a Ni—P plated aluminum alloy substrate.
  10. 磁気ディスク基板がガラス基板である請求項1から8のいずれかに記載の磁気ディスク基板用研磨液組成物。 The polishing composition for a magnetic disk substrate according to claim 1, wherein the magnetic disk substrate is a glass substrate.
  11. 請求項1から10のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法。 A method for manufacturing a magnetic disk substrate, comprising a step of polishing a substrate to be polished using the polishing liquid composition according to claim 1.
PCT/JP2009/071160 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate WO2010074002A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980151924.9A CN102265339B (en) 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate
US13/133,736 US9070399B2 (en) 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate
GB1110652.3A GB2478250B (en) 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate
SG2011045572A SG172309A1 (en) 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008326363 2008-12-22
JP2008-326362 2008-12-22
JP2008326362 2008-12-22
JP2008-326363 2008-12-22
JP2009173203A JP5571915B2 (en) 2008-12-22 2009-07-24 Polishing liquid composition for magnetic disk substrate
JP2009-173203 2009-07-24
JP2009207201A JP5571926B2 (en) 2008-12-22 2009-09-08 Polishing liquid composition for magnetic disk substrate
JP2009-207201 2009-09-08

Publications (1)

Publication Number Publication Date
WO2010074002A1 true WO2010074002A1 (en) 2010-07-01

Family

ID=42287612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071160 WO2010074002A1 (en) 2008-12-22 2009-12-18 Polishing liquid composition for magnetic-disk substrate

Country Status (1)

Country Link
WO (1) WO2010074002A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737654A (en) * 2011-03-31 2012-10-17 Hoya株式会社 Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP2013080530A (en) * 2011-09-30 2013-05-02 Hoya Corp Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
CN103087637A (en) * 2011-11-07 2013-05-08 盟智科技股份有限公司 Slurry composition and use thereof
US20130309946A1 (en) * 2011-01-31 2013-11-21 Kao Corporation Method for manufacturing magnetic disc substrate
US20140001155A1 (en) * 2011-03-09 2014-01-02 Kao Corporation Manufacturing method of magnetic disk substrate
JP2014120189A (en) * 2012-12-18 2014-06-30 Kao Corp Polishing liquid composition for magnetic disk substrate
US11643573B2 (en) 2017-03-14 2023-05-09 Fujimi Incorporated Polishing composition, production method therefor, and polishing method and production method for substrate, using polishing composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027224A (en) * 2002-06-06 2004-01-29 Cabot Microelectronics Corp Chemical mechanical abrasive composition containing capturing agent for iodine and iodine vapor
JP2004143429A (en) * 2002-10-04 2004-05-20 Kao Corp Polishing liquid composition
JP2006102829A (en) * 2004-10-01 2006-04-20 Kao Corp Manufacturing method of substrate
JP2006136996A (en) * 2004-10-12 2006-06-01 Kao Corp Polishing composition manufacturing method
WO2007108925A2 (en) * 2006-03-20 2007-09-27 Cabot Microelectronics Corporation Oxidation-stabilized cmp compositions and methods
JP2008013655A (en) * 2006-07-05 2008-01-24 Kao Corp Grinding liquid composition for glass substrate
JP2008137822A (en) * 2006-11-30 2008-06-19 Catalysts & Chem Ind Co Ltd Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2008227098A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Metal polishing solution
JP2008296318A (en) * 2007-05-30 2008-12-11 Kao Corp Composition of polishing fluid for hard disk substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027224A (en) * 2002-06-06 2004-01-29 Cabot Microelectronics Corp Chemical mechanical abrasive composition containing capturing agent for iodine and iodine vapor
JP2004143429A (en) * 2002-10-04 2004-05-20 Kao Corp Polishing liquid composition
JP2006102829A (en) * 2004-10-01 2006-04-20 Kao Corp Manufacturing method of substrate
JP2006136996A (en) * 2004-10-12 2006-06-01 Kao Corp Polishing composition manufacturing method
WO2007108925A2 (en) * 2006-03-20 2007-09-27 Cabot Microelectronics Corporation Oxidation-stabilized cmp compositions and methods
JP2008013655A (en) * 2006-07-05 2008-01-24 Kao Corp Grinding liquid composition for glass substrate
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2008137822A (en) * 2006-11-30 2008-06-19 Catalysts & Chem Ind Co Ltd Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol
JP2008227098A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Metal polishing solution
JP2008296318A (en) * 2007-05-30 2008-12-11 Kao Corp Composition of polishing fluid for hard disk substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130309946A1 (en) * 2011-01-31 2013-11-21 Kao Corporation Method for manufacturing magnetic disc substrate
US20140001155A1 (en) * 2011-03-09 2014-01-02 Kao Corporation Manufacturing method of magnetic disk substrate
CN102737654A (en) * 2011-03-31 2012-10-17 Hoya株式会社 Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
US9186771B2 (en) * 2011-03-31 2015-11-17 Hoya Corporation Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP2013080530A (en) * 2011-09-30 2013-05-02 Hoya Corp Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
CN103087637A (en) * 2011-11-07 2013-05-08 盟智科技股份有限公司 Slurry composition and use thereof
JP2014120189A (en) * 2012-12-18 2014-06-30 Kao Corp Polishing liquid composition for magnetic disk substrate
US11643573B2 (en) 2017-03-14 2023-05-09 Fujimi Incorporated Polishing composition, production method therefor, and polishing method and production method for substrate, using polishing composition

Similar Documents

Publication Publication Date Title
TWI475102B (en) Polishing composition for magnetic disk substrate
JP5769284B2 (en) Polishing liquid composition for magnetic disk substrate
JP5657247B2 (en) Polishing liquid composition
JP5630992B2 (en) Polishing liquid composition for magnetic disk substrate
JP5940270B2 (en) Polishing liquid composition
WO2010053096A1 (en) Polishing liquid composition for magnetic disk substrate
WO2010074002A1 (en) Polishing liquid composition for magnetic-disk substrate
JP5473544B2 (en) Polishing liquid composition for magnetic disk substrate
JP5394861B2 (en) Polishing liquid composition for magnetic disk substrate
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
JP6251033B2 (en) Polishing liquid composition for magnetic disk substrate
JP5419335B2 (en) Polishing liquid composition
JP5613422B2 (en) Polishing liquid composition for magnetic disk substrate
JP5571915B2 (en) Polishing liquid composition for magnetic disk substrate
JP5473587B2 (en) Polishing liquid composition for magnetic disk substrate
JP5376934B2 (en) Rinse agent composition for magnetic disk substrate
JP5571926B2 (en) Polishing liquid composition for magnetic disk substrate
JP6243713B2 (en) Polishing liquid composition
JP7138477B2 (en) Polishing liquid composition
JP5155650B2 (en) Polishing liquid composition
JP2009155466A (en) Polishing liquid composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151924.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12011501071

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13133736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1110652

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20091218

WWE Wipo information: entry into national phase

Ref document number: 1110652.3

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 09834803

Country of ref document: EP

Kind code of ref document: A1