WO2010073798A1 - 表示装置用基板及びその製造方法並びに表示装置 - Google Patents

表示装置用基板及びその製造方法並びに表示装置 Download PDF

Info

Publication number
WO2010073798A1
WO2010073798A1 PCT/JP2009/067642 JP2009067642W WO2010073798A1 WO 2010073798 A1 WO2010073798 A1 WO 2010073798A1 JP 2009067642 W JP2009067642 W JP 2009067642W WO 2010073798 A1 WO2010073798 A1 WO 2010073798A1
Authority
WO
WIPO (PCT)
Prior art keywords
bank
display device
region
substrate
liquid material
Prior art date
Application number
PCT/JP2009/067642
Other languages
English (en)
French (fr)
Inventor
奥本恵隆
岸本覚
滝井健司
乾奈緒子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/141,969 priority Critical patent/US8670197B2/en
Publication of WO2010073798A1 publication Critical patent/WO2010073798A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to a display device substrate, a manufacturing method thereof, and a display device. More specifically, the present invention relates to a display device substrate suitable as a color filter substrate used in a color liquid crystal display device, a substrate used in an organic electroluminescence display device, and the like, a manufacturing method thereof, and a display device.
  • FIG. 6 is a schematic cross-sectional view for explaining application of ink to a substrate using an inkjet printing apparatus.
  • a glass substrate 50 for forming CF has a partition wall (color mixing prevention wall) called a bank 51 formed in a lattice shape on its main surface, and a plurality of picture element regions are formed by the bank 51. Is partitioned.
  • a picture element region 60a in which a red (R) CF is provided a picture element region 60b in which a green (G) CF is provided, and a picture element region 60c in which a blue (B) CF is provided.
  • R red
  • G green
  • B blue
  • the bank 51 has water repellency and the opening portions of the pixel regions 60a to 60c have hydrophilicity in order to separately apply the ink material to be applied. Pre-processing is performed.
  • the ink jet printing apparatus 40 includes nozzles 41a to 41c for applying (discharging) ink of each color of red (R), green (G), and blue (B), and is opposed to the pixel regions 60a to 60c. Be placed.
  • the inks of red (R), green (G), and blue (B) are ejected from the nozzles 41a to 41c, the ink droplets 43a to 43c fall in the direction of the arrow A, and each pixel The region 60a-60c extends.
  • the ink layers 53a to 53c are formed on the glass substrate 50, and the ink layers 53a to 53c are cured by the baking process to become CF.
  • the formation of CF by such a method has an advantage that the cost is low because a photolithography technique is not used.
  • FIG. 7A is a schematic plan view of the pixel regions 60a to 60c
  • FIG. 7B is a schematic cross-sectional view taken along the line AB in FIG. 7A
  • FIG. FIG. 8 is a schematic cross-sectional view taken along line CD in FIG.
  • the ink layers 53a to 53c are made of a liquid material. For this reason, the film thickness is reduced in the vicinity of the bank 51 due to the effect of the surface tension of the ink itself and the effect of being repelled by the water-repellent bank 51, and the film thickness is increased in the vicinity of the center of the pixel regions 60a to 60c. Become thicker. As a result, as shown in FIGS. 7A and 7B, the ink layers 53a to 53c can secure a sufficient film thickness near the center of the picture element regions 60a to 60c, and the ink application is good. However, as shown in FIGS.
  • the present invention has been made in view of the above-described situation, and when forming a color layer using a liquid material by a coating method such as an ink jet method, it is possible to suppress the occurrence of a region not filled with the liquid material in a simple process, It is an object of the present invention to provide a display device substrate, a manufacturing method thereof, and a display device that can realize good display quality.
  • the inventors of the present invention have conducted various studies on a display device substrate and a method for manufacturing the same that can suppress generation of an unfilled region of a liquid material when forming a color film by a coating method such as an inkjet method.
  • a coating method such as an inkjet method.
  • the degree of cure of the bank at the time of applying the liquid material is controlled to a degree of cure that can contain the liquid material, and when the liquid material is soaked into the bank when the liquid material is applied on the substrate, the liquid in the picture element region
  • the material can be easily stored and the liquid material can be repelled on the surface of the bank to eliminate the unfilled region, and the liquid material can be flattened.
  • the inventors have found that display quality can be realized, and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • the present invention is a substrate for a display device comprising a bank made of a resin material and a color layer arranged in a plurality of picture element regions surrounded by the bank on the main surface of the substrate,
  • the color layer is formed from a liquid material
  • the bank is a display device substrate including an impregnation region containing a component in the liquid material.
  • the present invention also provides the manufacture of a substrate for a display device having a bank made of a resin material and a color layer made of a liquid material arranged in a plurality of picture element regions surrounded by the bank on the main surface of the substrate.
  • a method comprising: a bank forming step for forming the bank; and a color layer forming step for forming the color layer, wherein the bank forming step includes patterning the resin material on the main surface of the substrate.
  • the exposure process is performed so that a region having a lower degree of curing than the resin material of the other part is formed in the resin material in the part in contact with the color layer, and the color layer is formed.
  • the step includes applying the liquid material, soaking the liquid material into the resin material having a low curing degree formed in the exposure step, and baking the liquid material after the application step to form the color layer.
  • Display device including firing process It is also a method of manufacturing a substrate.
  • the present invention is also a display device including the display device substrate of the present invention or the display device substrate manufactured by the method of manufacturing the display device substrate of the present invention.
  • the substrate on which the bank is formed is not particularly limited, and a substrate generally used as a substrate for a display device such as a glass substrate or a resin substrate can be applied.
  • the bank formed on the main surface of the substrate is made of a resin material, but the resin material is not particularly limited, and can be widely applied to commonly used ones.
  • the bank is formed on the main surface of the substrate so as to partition a plurality of picture element regions.
  • a liquid material is applied to a plurality of picture element regions surrounded by the bank to form a color layer.
  • the bank according to the present invention needs to include an impregnation region containing the components in the liquid material.
  • the impregnation region is formed not by the liquid material being arranged only in the central portion of the picture element region but by reaching the bank and the component soaking into the bank.
  • the liquid material is repelled by a liquid-repellent bank, the liquid material rises in the center of the pixel area, and the film thickness decreases in the periphery of the pixel area. It sometimes occurred.
  • the liquid material since the liquid material penetrates into the bank and the impregnation region is formed, the liquid material flows from the center of the pixel region to the bank side.
  • the region where the liquid material is not applied in the region is less likely to occur, and light leakage can be improved.
  • the liquid material at the time of application (immediately after application) has a larger amount of liquid material soaking into the bank in the thicker part than in the thin part.
  • the film thickness of the liquid material can be made uniform without any particular control. Furthermore, by making the film thickness of the liquid material uniform, it becomes difficult for the liquid material to enter the adjacent pixel region beyond the bank. For example, if the liquid material is an ink material for forming a color filter, It is possible to suppress the occurrence of color mixture in which ink droplets are mixed between adjacent picture elements.
  • a preferable form of the bank is one in which the impregnation region is not formed at the center between the adjacent pixel regions.
  • the central part between adjacent picture element areas is a part that is not in contact with the picture element area on both sides.
  • the impregnation region is not formed at the center between the picture element regions in the narrower bank. If the shape of the picture element region is rectangular, it is preferable that the impregnation region is not formed at the center between the picture element regions on the long side. According to this embodiment, the liquid material soaked into the bank can be prevented from reaching the adjacent picture element region, and the occurrence of color mixing can be effectively suppressed.
  • one having the impregnation region in a region in contact with the corner of the pixel region can be cited.
  • the formation of the impregnation region at the corner of the picture element region means that the liquid material has sufficiently spread to the corner of the picture element region, thereby eliminating light leakage.
  • the impregnation region is not formed at the center between the adjacent pixel regions, and the impregnation region is provided in a region in contact with the corner of the pixel region. The thing which has. According to this embodiment, color mixing and light leakage can be suppressed.
  • the bank as a whole is formed of a light shielding material. Accordingly, the bank can be used as a light shielding member (black matrix) that separates the color layers constituting the different color picture elements.
  • the color layer is not limited to a colored layer as long as it contributes to color display in the display device, but a layer formed of a colored transparent resin is, for example, a CF in a CF substrate of a liquid crystal display device. It is suitably used as a layer. With the CF substrate having the configuration of the display device substrate of the present invention, light can be prevented from being leaked by sufficiently spreading the liquid material to the corners of each pixel region.
  • the color layer may be an EL layer. Examples of the EL layer include organic layers such as a light emitting layer and a hole transport layer in an organic EL display device.
  • the configuration of the display device substrate of the present invention is not particularly limited as long as it has the above-described characteristics. If the display device substrate of the present invention is a CF substrate, for example, each pixel on the substrate is provided with three color layers of red, green, and blue, and a bank that separates the color layers. A substrate structure in which a protective film, a counter electrode, an alignment film, and the like are laminated.
  • the display device substrate manufacturing method of the present invention includes a bank forming step of forming a bank made of a resin material on the main surface of the substrate, and a color made of a liquid material in a plurality of picture element regions surrounded by the bank.
  • a color layer forming step of forming a layer is a step of forming a bank made of a resin material on the main surface of the substrate, and a color made of a liquid material in a plurality of picture element regions surrounded by the bank.
  • the bank forming step includes an exposure step of exposing a resin material patterned on the main surface of the substrate.
  • the exposure treatment is performed so that a region having a lower degree of curing than the resin material in other portions is formed in the resin material in the portion in contact with the color layer.
  • Such exposure processing may be performed by using a mask having an opening at a desired location, for example, so that the present invention can be realized by a simple method.
  • the liquid material is applied, and the liquid material is soaked in the resin material having a low degree of curing formed in the exposure step, and the liquid material is baked after the application step and the color is formed.
  • a firing step of forming a layer As the coating step, a method in which a liquid material is dropped into the bank by a coating method such as an ink jet method is preferable.
  • the baking step includes a step of polymerizing the resin material together with baking of the liquid material. According to this process, since the polymerization of the resin material and the baking of the liquid material can be performed at a time, the manufacturing process can be simplified.
  • the resin in the exposure step, may be used so that the degree of cure at the center between the pixel areas is higher than the degree of cure at the periphery between adjacent pixel areas.
  • the material include those subjected to an exposure process. Such an exposure process can be easily realized by using, for example, a mask in which only the central portion between the pixel region areas is an opening between adjacent pixel element regions.
  • the exposure step may be one in which the exposure process is performed so that the degree of cure of the area in contact with the corner of the pixel area is lower than the degree of cure of the other areas.
  • Such exposure processing can be easily realized by using a mask that covers a region in contact with the corner of the pixel region.
  • the degree of cure of the central portion between the pixel regions is higher than the degree of cure of the peripheral portion, and the region in contact with the corner of the pixel region is You may perform an exposure process so that a cure degree may become lower than the cure degree of another area
  • the aspect of the method for producing a substrate for a display device of the present invention is not particularly limited by the presence or absence of other steps as long as such an element is essential.
  • the display device is not particularly limited as long as it includes the display device substrate of the present invention described above or the display device substrate manufactured by the above manufacturing method.
  • a liquid crystal display device Or an organic EL display device.
  • the display device is a liquid crystal display device, a high-quality liquid crystal display device in which light leakage in the peripheral region of the picture element is prevented can be realized by using a coating method such as an ink jet method for forming the color layer.
  • a coating method such as an ink jet method for forming an organic layer
  • An EL display device can be realized.
  • the bank includes an impregnation region containing a component in the liquid material, so that a simple color layer can be formed by a coating method such as an inkjet method.
  • a coating method such as an inkjet method.
  • color mixing can be prevented, and light generation can be prevented by suppressing the generation of a region where the liquid material is not filled in the pixel region, so that a display device with good display quality can be realized.
  • FIG. 1 It is a flowchart figure which shows the manufacturing process of CF board
  • FIG. 1 is a cross-sectional schematic diagram which shows the manufacturing process of CF substrate which concerns on Embodiment 1 of this invention.
  • (A) is a plane schematic diagram which shows the structure of the mask used at the 2nd exposure process in Embodiment 1 of this invention,
  • (b) is a plane schematic diagram which shows the other example of a mask.
  • (A) is a plane schematic diagram which shows the structure of a mask pattern, (b), (c) is an enlarged plane schematic diagram of the area
  • FIG. (A) is a schematic plan view showing the configuration of picture elements on the CF substrate of Embodiment 1
  • (b) is a schematic cross-sectional view taken along the line AB of the CF substrate shown in (a).
  • c) is a schematic cross-sectional view taken along line CD of the CF substrate shown in FIG.
  • (A)-(f) is a cross-sectional schematic diagram which shows the manufacturing process of the organic electroluminescent board
  • FIG. 1 is a schematic plan view showing an example of the configuration of a picture element of a conventional CF substrate
  • (b) is a schematic cross-sectional view taken along line AB of the CF substrate in (a)
  • (c) ) Is a schematic sectional view taken along line CD of the CF substrate in FIG.
  • (A) is a schematic cross-sectional view showing a picture element in which color mixing has not occurred in the CF substrate
  • (b) is a schematic cross-sectional view showing a picture element in which color mixing has occurred.
  • Embodiment 1 when the display device substrate is a CF substrate, a film-type photosensitive / light-shielding resin is used as a resin material for forming a bank, and an ink material that is a liquid material is formed by an inkjet method.
  • a description will be given with reference to FIGS. 1 to 4 by taking an example of forming a CF as a color layer by using the example.
  • FIG. 1 is a flowchart showing the manufacturing process of the CF substrate according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view showing the manufacturing process of the CF substrate according to the present embodiment.
  • a bank forming process (step S10) for forming a bank includes a film attaching process (step S11) to a lyophobic / lyophilic process (step S16), and a color layer for forming a color layer.
  • the formation process (step S20) includes a liquid material application process (step S21) and a liquid material baking process (step S22).
  • a film sticking step (S11) is performed.
  • the resin film used as the material of a bank is stuck on the main surface of a glass substrate.
  • a silane coupling agent for improving the adhesion of the film is applied on the main surface of the glass substrate, and a baking process is performed.
  • the baking treatment is preferably performed at a temperature of about 140 to 160 ° C.
  • the resin film made of photosensitive / light-shielding resin is laminated while being heated.
  • a resin film having ultraviolet (UV) curability, thermosetting, and light shielding properties can be suitably used.
  • the film thickness of the resin film is such that color mixing with adjacent picture elements does not occur in the color layer forming step (S20) described later, and is not so thick as compared with the finished film thickness of the color layer. Set to thickness. For example, when the finished film thickness of the color layer is about 2 ⁇ m, the resin film has a thickness of about 1.5 to 2.5 ⁇ m.
  • the laminating treatment is preferably performed at about 80 to 160 ° C. By the laminating process, a resin layer 21 is formed on the main surface of the glass substrate 20 as shown in FIG.
  • a first exposure step (S12) is performed.
  • a first mask 22 having an opening 22a corresponding to a desired bank pattern is disposed on the resin layer 21, and this first mask 22 is arranged.
  • the UV light 23 is irradiated through The UV irradiation in this step is performed to such an extent that the resin layer 21 is not completely cured. This is because, in the color layer forming step (S20), which will be described later, an ink material is soaked into a resin in a desired region to form an impregnated region.
  • the degree of cure of the resin material in the first exposure step (S12) is appropriately set depending on the material / combination of the resin material or ink material, the shape of the picture element region, etc., but to the extent that the shape as a bank can be maintained.
  • the degree of cure of Examples of UV irradiation include irradiation of the resin layer 21 with UV light 23 including light having a wavelength of 365 nm at an intensity of 50 to 200 mJ / cm 2 (detection wavelength: 365 nm).
  • a development (pattern formation) step (S13) is performed.
  • a bank 13 a having a desired pattern is formed on the main surface of the glass substrate 20.
  • a second exposure step (S14) is performed.
  • this step in order to form an impregnated region of the ink material in the bank 13a, as shown in FIG. 2 (d), an opening having a desired pattern shape is formed on the main surface of the glass substrate 20 on which the bank 13a is formed.
  • a second mask 27 on which 27a is formed is arranged, and UV light is irradiated (post exposure) from both sides of the upper side of the second mask 27 and the back side of the glass substrate 20.
  • the bank 13a becomes the bank 13b in which the region 24a having a high degree of curing and the region 24b having a low degree of curing are formed.
  • the degree of cure in the region 24a having a high degree of cure refers to a degree of cure that does not substantially impregnate the ink material applied in the color layer forming step (S20) described later, and in the region 24b having a low degree of cure.
  • the degree of cure refers to a degree of cure that can be impregnated with an ink material.
  • the second mask 27 is a second mask having a mask pattern in which an opening 27a is formed at a central portion between adjacent pixel regions. 27 is used.
  • a mask having a desired mask pattern may be arranged on the back side of the glass substrate 20 as necessary.
  • a resin material baking step (S15) is performed.
  • the temperature is adjusted so that the taper angle of the bank 13b becomes a desired value.
  • the degree of cure of the resin material described above is determined mainly by the UV irradiation in the second exposure step (S14), but is also determined by the firing temperature in the resin material firing step (S15). In consideration of familiarity with the UV irradiation conditions, the UV irradiation conditions, the baking temperature, and the like are determined.
  • the resin material can not only stably maintain the pattern shape, but also can prevent elution of the resin material after the display panel is formed by the progress of polymerization. Moreover, in the second exposure step (S14) and the resin material baking step (S15), by performing the UV irradiation / baking treatment, an effect that the bank 13b is hardly peeled off from the glass substrate 20 is also obtained.
  • a lyophobic / lyophilic treatment step (S16) is performed.
  • the opening area of the picture element that is, the main surface of the glass substrate 20
  • the bank 13a exhibits liquid repellency.
  • pretreatment include ashing treatment such as oxygen plasma treatment for imparting lyophilicity, fluorine plasma treatment such as CF 4 plasma treatment for imparting liquid repellency, and the like.
  • the bank 13a it is preferable to impart liquid repellency to the bank 13a in order to prevent color mixing. This is to prevent the applied ink material from getting over the upper portion of the bank 13a and mixing with the ink material in the adjacent picture element region to cause color mixing.
  • the bank 13a needs to be impregnated with an ink material to form an impregnation region. Therefore, the fluorine plasma treatment exhibits liquid repellency particularly in the upper part of the bank 13a, and the side surface of the bank 13a may be treated according to the location where the impregnation region is formed.
  • examples of the bank structure that easily exhibits liquid repellency only on the upper side of the bank include those having a taper surface (side surface) whose cross-sectional shape in the width direction is a reverse taper shape.
  • the fluorine plasma treatment can be performed using an evacuated dry etching apparatus, an atmospheric pressure plasma apparatus, or the like.
  • a fluorine-based gas such as SF 6 , CHF 3 , and C 2 F 6 may be used.
  • the fluorine-based gas O 2 gas, He or N
  • An inert gas such as 2 may be mixed.
  • the color layer forming step (S20) is subsequently performed.
  • an application step (S21) for applying an ink material is performed.
  • the ink material is a liquid material in which pigments, dyes and the like for expressing a desired color are dissolved and dispersed in a solvent.
  • the composition of the ink material is not particularly limited, but here, red (R), green (G), and blue (B) inks obtained by dissolving a polymer material in a solvent to form an ink will be described as an example. I will explain.
  • the ink jet printing apparatus 28 includes nozzles 28a to 28c that discharge ink of each color, and the nozzles 28a to 28c are arranged so as to face desired pixel regions 32a to 32c.
  • the ink material droplets 30a to 30c fall in the direction of arrow A. Since the glass substrate 20 has been subjected to the surface treatment in the liquid repellent / lyophilic treatment step (S16), the ink material droplets 30a to 30c are placed in the pixel regions 32a to 32c by the self-patterning phenomenon. The ink layers 31a to 31c are stored.
  • the ink material spread over the pixel regions 32a to 32c. A part penetrates into the region 24b having a low degree of curing.
  • the pixel region 32a is affected by the surface tension of itself when dropped.
  • the spherical ink material that swells in the central portion of 32c soaks into the bank 13b from the portion in contact with the bank 13b, and the ink material flows from the central portion toward the bank 13b. As a result, the ink material spreads uniformly in the picture element regions 32a to 32c.
  • the bank 13b is formed with a region 24a having a high degree of curing that is not impregnated with the ink material, the ink material impregnated in the bank 13b can be prevented from being mixed with the adjacent ink material. Further, in the liquid repellency / lyophilic treatment step (S16), since the upper surface of the bank 13b is given strong liquid repellency, it is possible to prevent the ink material from crossing the bank 13b and mixing with the adjacent ink. .
  • a liquid material baking step (S22) for baking the ink material is performed.
  • the ink layers 31a to 31c are cured to form the CF layers 131a to 131c and the ink material soaked into the bank 13b by the baking process. Also hardens.
  • the bank 25 after curing has a containing area 25a in which the ink material is infiltrated and an area 25b in which the ink material is not infiltrated.
  • the containing region 25a includes a polymer material (pigment) in the ink material, and the solvent in the ink material is not included because it volatilizes by firing.
  • each bank 25 contains only a single color component of red, green, or blue. This can be confirmed by, for example, elemental analysis using a time-of-flight secondary ion mass spectrometer (Time-Of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS).
  • TOF-SIMS Time-Of-Flight Secondary Ion Mass Spectrometry
  • FIG. 4A is a schematic plan view of the pixel regions 32a to 32c
  • FIG. 4B is a schematic cross-sectional view taken along line AB in FIG. 4A
  • FIG. FIG. 5 is a schematic cross-sectional view taken along line CD in FIG.
  • the ink material is spread to every corner in each of the pixel regions 32a to 32c, and the unfilled region of the ink material is eliminated.
  • a high-display-quality CF substrate in which light leakage from the four corners of the pixel regions 32a to 32c is suppressed can be obtained.
  • the film thickness of the CF layers 131a to 131c in the vicinity of the containing region 25a is increased and the shape is flattened as a whole. Further, even if the ink material spreads uniformly in the pixel regions 32a to 32c, the film thickness of the CF layers 131a to 131c can be made uniform. As shown in FIG. 4B and FIG. The cross-sectional shapes of the layers 131a to 131c can be flattened. Furthermore, when the width of the bank 25 is smaller than the distance through which the ink material permeates, there is a concern that the ink material oozes out into the opening area of the adjacent picture element and mixes colors. As shown in FIG. 4B and FIG. 4C, the bank 25 is formed with the region 25b not soaked with the ink material, thereby preventing color mixing between adjacent picture elements due to the soaking of the ink material. .
  • the ink material penetrates, the amount of the light shielding material contained in the bank 25 does not change, so that the light shielding performance does not deteriorate.
  • the resin material forming the bank 25 remains unpolymerized, there is a concern that the resin material may elute after the panel is formed, but the resin material can also be polymerized in the liquid material firing step (S22). Elution of the resin material can be prevented.
  • a bank 25 including a containing region 25a soaked with ink material and a region 25b not soaked with ink material. can be formed.
  • the ink material can be uniformly applied in the picture element region, and a high color purity CF substrate in which light leakage is suppressed can be manufactured.
  • a resin material that can be cured by light or heat is used as the material for forming the bank 25 .
  • the present invention is not limited to this, and UV curing is performed. It is preferable to have both properties of heat resistance and thermosetting, but it may have either property.
  • a resin film is used as the bank material.
  • the present invention is not limited to this, and can be applied to a liquid resin material.
  • a liquid resin material is used, it is applied to the glass substrate 20 by a technique such as spin coating, die coating, or nozzle coating.
  • a liquid resin material can be applied to the substrate by an ink jet method or the like to form a pattern. In this case, the exposure / development steps in steps S12 and S13 can be omitted.
  • the resin material can be fired in the liquid material firing step (S22) without performing the resin material firing step (S15). Thereby, the process can be reduced.
  • the second mask 27 having the mask pattern shown in FIG. 3A is used in the second exposure step (S14), but the present invention is not limited to this.
  • a mask 127 having a mask pattern in which an impregnated region is formed in a region in contact with the corner of the pixel region may be used.
  • the ink material can be applied even at the corners of the pixel region where light leakage is likely to occur.
  • the mask degree is set so that the degree of cure in the central part between the pixel regions is higher than the degree of cure in the peripheral part, and the degree of cure in the area in contact with the corner of the pixel area is lower than the degree of cure in the other areas. You may expose using the mask which has a pattern.
  • the CF in the color filter substrate of the liquid crystal display device has been described as an example of the color layer.
  • the present invention is not limited to this, for example, the light emitting layer or the positive layer in the organic EL display device. Examples thereof include an organic layer such as a hole transport layer.
  • the ink material has been described as an example of the liquid material, but the present invention is not limited to this, and any liquid material that can be dried and solidified to form a color layer may be used.
  • liquid repellent / lyophilic treatment step (S16) is performed on the bank 13a in order to separate the ink material.
  • the present invention is not limited to this.
  • the liquid repellent / lyophilic treatment may be performed as necessary.
  • the plasma treatment or the like as described above need not be performed.
  • Embodiment 2 when the display device substrate is an organic EL substrate, a photosensitive / light-shielding resin is used as the resin material for forming the bank, and the hole transport layer is formed by an inkjet method. This will be described with reference to FIG.
  • the organic EL substrate here has a configuration in which an organic EL element is provided on an active matrix substrate using a top gate type TFT.
  • FIG. 5 is a schematic cross-sectional view showing the manufacturing process of the organic EL substrate according to this embodiment.
  • FIG. 5A shows a state in which a resin film 62 for forming a bank is formed on the main surface of a glass substrate 60 on which a TFT 70, an interlayer insulating film 61, a picture element electrode (not shown), and the like are formed. Indicates.
  • a resin film 62 for forming a bank is formed on the main surface of a glass substrate 60 on which a TFT 70, an interlayer insulating film 61, a picture element electrode (not shown), and the like are formed.
  • a plurality of TFTs 70 are formed on the main surface of the glass substrate 60 by a conventionally known method.
  • an interlayer insulating film 61 having a function as a planarizing layer is formed on the TFT 70.
  • An example of the interlayer insulating film 61 is a film composed of a silicon nitride film and
  • a pixel electrode made of nickel (Ni) or the like is formed on the substrate on which the interlayer insulating film 61 is formed, and a resin film 62 is formed so as to cover the pixel electrode.
  • the pixel electrode is provided so as to be connected to the drain region of the TFT 70 through a contact hole provided in the interlayer insulating film 61.
  • the first exposure step (S12) is performed in the same manner as in the first embodiment, and then the development (pattern formation) step (S13) in the same manner as in the first embodiment. ) Is performed.
  • a bank 63a having a desired pattern is formed on the interlayer insulating film 61 as shown in FIG.
  • the bank 63a has a shape surrounding the picture element electrode for each picture element so as to cover the edge portion of the picture element electrode.
  • the second exposure step (S14) is performed as shown in FIG. 5D, and the resin material baking step (S15) is subsequently performed.
  • region 64b with a low hardening degree is formed.
  • the second exposure step (S14) is not double-sided exposure but single-sided exposure from the upper surface side of the substrate.
  • the liquid repellent / lyophilic processing step (S16) is performed as in the first embodiment.
  • the conditions for the fluorine plasma treatment may be set as appropriate. For example, the treatment conditions similar to those in the first embodiment may be mentioned.
  • an application step (S21) of applying a liquid material using the inkjet printing apparatus 28 is performed in the same manner as in the first embodiment.
  • an aqueous dispersion of polyethylene dioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) is applied to the pixel region as the material for the hole transport layer using the inkjet printer 28.
  • the liquid layer 65 is formed.
  • the liquid material forming the liquid layer 65 soaks into the low-curing region 64b of the bank 63b to form an impregnation region.
  • the bank 63b is formed with a region 64a having a high degree of curing that does not soak in the liquid material, the water dispersion soaked into the bank 63b can be prevented from being mixed with the adjacent water dispersion. Further, in the liquid repellency / lyophilic treatment step (S16), since the upper surface of the bank 63b is given strong liquid repellency, the aqueous dispersion gets over the bank 63b and mixes with the adjacent aqueous dispersion. Can be prevented.
  • a liquid material baking step (S22) is performed.
  • water as the dispersion medium is removed by drying to form a hole transport layer 66 as shown in FIG. 5F, and the bank 63b is also cured.
  • the bank 80 after curing has a containing region 75a containing the component of the hole transport solution and a region 75b not containing the component of the hole transport solution.
  • the containing region 75a contains PEDOT / PSS in the hole transport solution and does not contain water because it evaporates by firing. This can be confirmed, for example, by elemental analysis using a time-of-flight secondary ion mass spectrometer (Time-Of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS).
  • the light emitting layer can also be formed by applying a solution of a polyfluorene derivative by an ink jet method and drying. Then, as a light-transmitting cathode, aluminum (Al) containing calcium (Ca) is resistance-heat-deposited, and indium zinc oxide (IZO) is formed by a sputtering method, so that an organic EL element is formed on the active matrix substrate. A top emission type organic EL substrate having the above is completed.
  • the organic EL in which the hole transport layer and the light emitting layer are not mixed in the adjacent pixel region, and the hole transport layer and the light emitting layer are formed in the entire pixel region. A substrate is obtained. Therefore, an organic EL device using the same has excellent display characteristics in which luminance unevenness in the pixel region is prevented.
  • the region having a low degree of curing is formed in the bank in the second exposure step (S14).
  • the present invention is not limited to this. Is not to be done.
  • a region having a low degree of curing can be formed in the bank by using a mask having a mask pattern that can adjust the exposure amount.
  • FIG. FIG. 3-2 (a) is a schematic plan view showing the configuration of the mask pattern
  • FIGS. 3 (b) and (c) are enlarged schematic plan views of the region indicated by the wavy line A in FIG. 3 (a).
  • the mask 122 has a light shielding portion 122a and an opening portion 122b, and the space between the light shielding portion 122a and the opening portion 122b is as shown in FIG. 3-2 (b).
  • a slit region 123 in which a plurality of slits are formed is formed.
  • the number and width of the slits are not particularly limited, but by reducing the width of the slits from the light shielding part 122a toward the opening part 122b, the inner peripheral surface of the bank surrounding the picture element region can be reduced. The degree of cure can be easily reduced.
  • a semi-transmissive portion 124 is formed in place of the slit region 123.
  • the semi-transmissive portion 124 is a portion in which the density of the light shielding material forming the light shielding portion 122a is reduced, and the exposure amount is lower than that of the light shielding portion 122a.
  • the exposure amount in the first exposure step (S12) can be easily adjusted, and the manufacturing process can be compared with the conventional bank manufacturing method.
  • the ink material impregnation region can be formed without increasing.
  • the present invention is not limited to this.
  • a top emission type organic EL element light is emitted from the side opposite to the substrate. Since the substrate is not required to transmit light, it is possible to use a semiconductor substrate such as a silicon wafer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、インクジェット法等の塗布法による液状材料を用いた色層の形成に際し、簡易な工程で、液状材料中の成分が充填されない領域の発生を抑制でき、良好な表示品位が実現できる表示装置用基板及びその製造方法並びに表示装置を提供することを目的とする。本発明の表示装置用基板は、基板の主面上に、樹脂材料からなるバンクと、上記バンクによって囲まれた複数の絵素領域に配置された色層とを備えた表示装置用基板であって、上記色層は、液状材料から形成され、上記バンクは、上記液状材料中の成分を含有する含浸領域を備える表示装置用基板である。

Description

表示装置用基板及びその製造方法並びに表示装置
本発明は、表示装置用基板及びその製造方法並びに表示装置に関する。より詳しくは、カラー液晶表示装置に用いられるカラーフィルタ基板や有機エレクトロルミネセンス表示装置等に用いられる基板として好適な表示装置用基板及びその製造方法並びに表示装置に関するものである。
近年、液晶TVの市場の拡大に伴い、液晶ディスプレイ、とりわけカラー液晶ディスプレイの需要が増加している。このカラー液晶ディスプレイについて、今後のより一層の普及を図るために、製造コストを低減することが求められており、特に安価なカラーフィルタ(CF)基板が求められている。これに対して、CF基板におけるCF(色層)の形成方法として、材料の使用量を低減できることから、インクジェット法の適用が検討されている。
インクジェット法によるCF基板の形成方法の一例について、以下に、図6を用いて説明する。図6は、インクジェット印刷装置を用いた基板へのインクの塗布を説明するための断面模式図である。図6において、CFを形成するためのガラス基板50には、その主面上に、バンク51と呼ばれる仕切壁(混色防止壁)が格子状に形成されており、バンク51によって複数の絵素領域が区画される。ここでは、赤色(R)のCFが設けられる絵素領域60a、緑色(G)のCFが設けられる絵素領域60b、及び、青色(B)のCFが設けられる絵素領域60cを例に挙げて説明する。
上記のように構成されたガラス基板50には、塗布されるインク材料の塗り分けのために、バンク51は撥水性を有し、絵素領域60a~60cの開口部分は親水性を有するように、前処理が施される。
インクジェット印刷装置40は、赤(R)、緑(G)、青(B)の各色のインクを塗布(吐出)するためのノズル41a~41cを備え、絵素領域60a~60cと対向するように配置される。そして、ノズル41a~41cから赤(R)、緑(G)、青(B)の各色のインクが吐出されると、インクの液滴43a~43cは、矢印A方向に落下して各絵素領域60a~60cに広がる。これにより、ガラス基板50にはインク層53a~53cが形成され、焼成処理によりインク層53a~53cが硬化してCFとなる。このような方法によるCFの形成は、フォトリソグラフィ技術を用いないことから、コストが低いというメリットがある。
しかしながら、上記の方法によって形成されたCFは、その膜厚が均一にならないために、光抜けを生じることがある。特に、長方形の絵素領域では、この傾向が顕著である。この理由について、図7を用いて説明する。図7(a)は、絵素領域60a~60cの平面模式図であり、図7(b)は、図7(a)におけるA-B線に沿う断面模式図、図7(c)は、図7(a)におけるC-D線に沿う断面模式図である。
インク層53a~53cは、液状材料からなる。そのため、インク自身が有する表面張力による影響と、撥水性を有するバンク51に弾かれる影響とによって、バンク51の付近では膜厚が薄くなり、絵素領域60a~60cの中心部付近では膜厚が厚くなる。これにより、図7(a)、(b)に示すように、絵素領域60a~60cの中央部付近では、インク層53a~53cは、充分な膜厚を確保できておりインクの塗布が良好に行われているが、図7(a)、(c)に示すように、絵素領域60a~60cの周辺部では充分な膜厚を確保できず、場合によってはインクが塗布されていない領域55が生じることもある。これにより、絵素領域60a~60c内で色濃度のムラを生じ、表示画像の表示品位が低下することがあった。なお、図7(c)において、白抜きの矢印は、光抜けが起こる様子を示している。
このような光抜けを抑制するためには、図8(a)に示すように、インクの液滴量を増やしてバンク51上に乗り上げるようにすることが考えられるが、インクの液滴量を増やすと、図8(b)に示すように、隣接する絵素間でインクの液滴同士が混ざり合う混合領域54が生じて、混色が発生する可能性がある。
そこで、矩形の絵素領域内において膜厚が薄くなる領域を塞ぐように、絵素領域内の隅の部分のバンクの形状を面取りすることで、矩形絵素の四隅などからの極端な光抜けを防ぐ方法が提案されている(例えば、特許文献1参照。)。しかしながらこの方法では、光抜けを低減することはできるものの、絵素領域が小さくなるため、開口率を向上させるうえで更なる工夫の余地があった。
また、有機エレクトロルミネセンス(EL)表示装置において、インクを逃がすための溝や孔をバンクに形成することで、インクの断面形状を平坦化するような力を生じさせる方法が提案されている(例えば、特許文献2参照。)。しかしながらこの方法では、溝や孔等を形成するための加工処理が必要となるため、工程が煩雑となる。また、バンクは遮光部としても働くため、溝や孔等を形成することで遮光すべき光が透過することもあり、この方法を液晶表示パネルに適用した場合には、TFT(薄膜トランジスタ)の遮光不良による動作不良、液晶駆動領域外の部分からの光漏れ、TFT基板に形成された金属配線からの外光反射等を生じて、表示品位の低下を招くことになる。
また、塗布されたインクの表面に平坦化処理を施して膜厚の均一なCFを得る方法が提案されている(例えば、特許文献3参照。)。しかしながらこの方法では、加圧ロール等を用いた加圧、ブレード等による表面の掻き取り、カッター等による表面の切り取り等によってCF表面の平坦化処理を行っているため工程が煩雑であり、またCF基板の表面が劣化する恐れもある。
更に、バンクとインク材料との接触角を規定することにより、絵素領域に塗布されたインク材料がバンクを乗り越えて混色することを防ぐ方法が提案されている(例えば、特許文献4参照。)。この方法では、プラズマ処理等によりバンクに撥水性及び/又は親水性を付与することによって、バンクとインク材料との接触角を規定することができ、これにより混色を防止できるが、より簡易に混色を防止できるようにする点で工夫の余地があった。
特開2006-162881号公報 特開2007-95614号公報 特開2002-107528号公報 特開2006-162882号公報
本発明は、上記現状に鑑みてなされたものであり、インクジェット法等の塗布法による液状材料を用いた色層の形成に際し、簡易な工程で、液状材料が充填されない領域の発生を抑制でき、良好な表示品位が実現できる表示装置用基板及びその製造方法並びに表示装置を提供することを目的とするものである。
本発明者らは、インクジェット法等の塗布法による色膜の形成に際し、液状材料の未充填領域の発生を抑制できる表示装置用基板及びその製造方法について種々検討したところ、樹脂材料からなるバンクの構成にまず着目した。そして、液状材料塗布時のバンクの硬化度を液状材料を含有できる程度の硬化度に制御し、基板上に液状材料を塗布した際に液状材料をバンクに染み込ませれば、絵素領域内に液状材料が納まりやすくなるとともに、液状材料がバンクの表面で弾かれて未充填領域が発生することも解消でき、液状材料を平坦化させることができるので、表示装置に適用した際には、良好な表示品位を実現できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、基板の主面上に、樹脂材料からなるバンクと、上記バンクによって囲まれた複数の絵素領域に配置された色層とを備えた表示装置用基板であって、上記色層は、液状材料から形成され、上記バンクは、上記液状材料中の成分を含有する含浸領域を備える表示装置用基板である。
本発明はまた、基板の主面上に、樹脂材料からなるバンクと、上記バンクによって囲まれた複数の絵素領域に配置された液状材料からなる色層とを備えた表示装置用基板の製造方法であって、上記バンクを形成するバンク形成工程と、上記色層を形成する色層形成工程とを有し、上記バンク形成工程は、上記基板の主面上にパターン形成された上記樹脂材料を露光する露光工程を含み、上記露光工程は、上記色層と接する部分の樹脂材料に他の部分の樹脂材料よりも硬化度の低い領域が形成されるように露光処理し、上記色層形成工程は、上記液状材料を塗布し、上記露光工程で形成された硬化度の低い樹脂材料に液状材料を染み込ませる塗布工程と、上記塗布工程後に上記液状材料を焼成して上記色層を形成する焼成工程とを含む表示装置用基板の製造方法でもある。
本発明は更に、上記本発明の表示装置用基板、又は、上記本発明の表示装置用基板の製造方法により製造された表示装置用基板を備える表示装置でもある。
以下に本発明を詳述する。
本発明において、バンクが形成されるための基板は、特に限定されるものではなく、ガラス基板、樹脂基板等の表示装置用基板として一般的に使用されているものが適用できる。基板の主面上に形成されるバンクは、樹脂材料からなるが、この樹脂材料は特に限定されるものではなく、一般的に使用されているものについて広く適用できる。バンクは、複数の絵素領域を仕切るように基板の主面に形成される。
バンクによって囲まれた複数の絵素領域には、液状材料が塗布されて色層が形成される。ここで、本発明に係るバンクは、上記液状材料中の成分を含有する含浸領域を備える必要がある。含浸領域は、液状材料が絵素領域の中央部だけに配置されているのではなく、バンクまで到達し、その成分がバンクに染み込むことで形成される。従来は、液状材料は、撥液性を有するバンクに弾かれるため絵素領域の中央部で盛り上がり、絵素領域の周辺部で膜厚が薄くなって、バンク近傍では液状材料の未充填領域が生じることがあった。
これに対し、本発明においては、液状材料がバンクに染み込んで含浸領域が形成されることから、液状材料は絵素領域の中央部からバンクの側へ流動するようになり、これにより、絵素領域において液状材料が塗布されていない領域が生じにくくなって光抜けを改善できる。また、塗布時(塗布直後)の液状材料は、膜厚の薄い部分よりも膜厚の厚い部分の方がバンクへの液状材料の染み込み量が多くなるため、バンクへの液状材料の染み込み量の制御を特に行わなくても、液状材料の膜厚の均一化を図ることができる。更に、液状材料の膜厚の均一化が図れることで、液状材料がバンクを超えて隣の絵素領域へ入りにくくなり、例えば、液状材料がカラーフィルタを形成するためのインク材料であれば、隣接する絵素間でインクの液滴同士が混ざり合う混色の発生を抑制できる。
上記バンクの好ましい形態としては、隣接する上記絵素領域間の中央部には、上記含浸領域が形成されていないものが挙げられる。隣接する絵素領域間の中央部とは、両側で絵素領域と接していない部分である。また、幅の狭いバンクと幅の広いバンクが基板上に混在している場合には、幅の狭い方のバンクにおける絵素領域間の中央部に上記含浸領域が形成されていないことが好ましい。また、絵素領域の形状が長方形であれば、長辺側における絵素領域間の中央部に上記含浸領域が形成されていないことが好ましい。この形態によると、バンクに染み込んだ液状材料が隣の絵素領域まで到達することを防止でき、混色の発生を効果的に抑制できる。
また、バンクの好ましい他の形態としては、上記絵素領域の隅部と接する領域に上記含浸領域を有するものが挙げられる。絵素領域の隅部に含浸領域が形成されるということは、絵素領域の隅部にまで充分に液状材料が行き渡っているということであり、これにより、光抜けを解消できる。
更に、バンクの好ましい他の形態としては、隣接する上記絵素領域間の中央部には、上記含浸領域が形成されておらず、上記絵素領域の隅部と接する領域には上記含浸領域を有するものが挙げられる。この形態によると、混色と光抜けとを抑制できる。
上記バンクは、全体が遮光性材料により形成されているものであることが好ましい。これにより、互いに異なる色の絵素を構成する色層同士を隔てる遮光部材(ブラックマトリクス)としてバンクを利用できる。
上記色層は、表示装置における色の表示に寄与するものであればよく、着色された層に限定されないが、着色透明樹脂により形成されているものは、例えば、液晶表示装置のCF基板におけるCF層として好適に用いられる。本発明の表示装置用基板の構成を有するCF基板であれば、液状材料が各絵素領域の隅部にまで充分に行き渡ることで、光抜けを防止できる。また、上記色層は、EL層であってもよい。EL層としては、例えば、有機EL表示装置における発光層や正孔輸送層等の有機層が挙げられる。
本発明の表示装置用基板の構成としては、上述した特徴を備えるものであればよく、その他の構成において特に限定されるものではない。本発明の表示装置用基板がCF基板であれば、例えば、基板上の絵素毎にそれぞれ赤色、緑色及び青色の3色の色層と、各色層同士を隔てるバンクとが設けられ、その上層に保護膜、対向電極、配向膜等が積層配置された基板構成を有する。
また、本発明の表示装置用基板の製造方法は、基板の主面上に、樹脂材料からなるバンクを形成するバンク形成工程と、バンクによって囲まれた複数の絵素領域に液状材料からなる色層を形成する色層形成工程とを有するものである。
上記バンク形成工程は、基板の主面上にパターン形成された樹脂材料を露光する露光工程を含む。この露光工程は、上記色層と接する部分の樹脂材料に他の部分の樹脂材料よりも硬化度の低い領域が形成されるように露光処理する。このような露光処理は、例えば、所望の場所に開口部を設けたマスクを使用して露光処理すればよいため、簡易な方法で本発明を実現できる。
上記色層形成工程は、上記液状材料を塗布し、上記露光工程で形成された硬化度の低い樹脂材料に液状材料を染み込ませる塗布工程と、上記塗布工程後に上記液状材料を焼成して上記色層を形成する焼成工程とを含む。上記塗布工程としては、インクジェット法等の塗布法により液状材料をバンク内に滴下するものが好ましい。
本発明に係る好ましい態様としては、上記焼成工程は、上記液状材料の焼成と共に上記樹脂材料の重合を行うものが挙げられる。この工程によると、樹脂材料の重合と液状材料の焼成とを一度に行えるため、製造工程の簡略化が図れる。
また、本発明に係る好ましい態様としては、上記露光工程は、隣接する上記絵素領域間において、上記絵素領域間の中央部の硬化度が周辺部の硬化度よりも高くなるように上記樹脂材料に露光処理を行うものが挙げられる。このような露光処理は、例えば、隣接する絵素領域間において、絵素領域領域間の中央部のみが開口となったマスクを用いることにより、容易に実現できる。
また、本発明に係る好ましい態様として、上記露光工程は、上記絵素領域の隅部と接する領域の硬化度が他の領域の硬化度よりも低くなるように露光処理を行うものも挙げられる。このような露光処理は、絵素領域の隅部と接する領域を覆うようなマスクを用いることにより、容易に実現できる。更に、上記のように隣接する上記絵素領域間において、上記絵素領域間の中央部の硬化度が周辺部の硬化度よりも高くなり、かつ、上記絵素領域の隅部と接する領域の硬化度が他の領域の硬化度よりも低くなるように露光処理してもよい。
本発明の表示装置用基板の製造方法の態様としては、このような要素を必須とするものである限り、その他の工程の有無により特に限定されるものではない。
本発明において表示装置は、上記した本発明の表示装置用基板、又は、上記した製造方法により製造された表示装置用基板を備えるものであれば特に限定されるものではなく、例えば、液晶表示装置や有機EL表示装置であることが好ましい。表示装置が液晶表示装置であれば、色層の形成にインクジェット法等の塗布法を用いて、絵素の周辺領域での光抜けが防止された高表示品位の液晶表示装置を実現できる。また、表示装置が有機EL表示装置であれば、発光層等の有機層の形成にインクジェット法等の塗布法を用いて、絵素の周辺領域での輝度ムラが防止された高表示品位の有機EL表示装置を実現できる。
本発明の表示装置用基板及びその製造方法並びに表示装置においては、バンクが、液状材料中の成分を含有する含浸領域を備えることで、インクジェット法等の塗布法による色層の形成に際し、簡易な工程で、混色を防止でき、しかも絵素領域に液状材料が充填されない領域が発生することを抑制して光抜けを防止できるため、良好な表示品位の表示装置を実現できる。
本発明の実施形態1に係るCF基板の製造工程を示すフローチャート図である。 (a)~(f)は、本発明の実施形態1に係るCF基板の製造工程を示す断面模式図である。 (a)は、本発明の実施形態1における第2の露光工程で用いたマスクの構成を示す平面模式図であり、(b)は、マスクの他の例を示す平面模式図である。 (a)は、マスクパターンの構成を示す平面模式図であり、(b)、(c)は、(a)において波線Aで示す領域の拡大平面模式図である。 (a)は、実施形態1のCF基板における絵素の構成を示す平面模式図であり、(b)は、(a)に示すCF基板のA-B線に沿う断面模式図であり、(c)は、(a)に示すCF基板のC-D線に沿う断面模式図である。 (a)~(f)は、本発明の実施形態2に係る有機EL基板の製造工程を示す断面模式図である。 インクジェット法による従来のCF基板の製造方法を説明する断面模式図である。 (a)は、従来のCF基板の絵素の構成の一例を示す平面模式図であり、(b)は、(a)におけるCF基板のA-B線に沿う断面模式図であり、(c)は、(a)におけるCF基板のC-D線に沿う断面模式図である。 (a)は、CF基板における混色が発生していない絵素を示す断面模式図であり、(b)は、混色が発生した絵素を示す断面模式図である。
以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
本実施形態では、表示装置用基板がCF基板である場合において、バンクを形成するための樹脂材料としてはフィルムタイプの感光性・遮光性樹脂を用い、インクジェット法により、液状材料であるインク材料を用いて色層としてのCFを形成する例を挙げて、図1~図4を用いて説明する。
図1は、本実施形態に係るCF基板の製造工程を示すフローチャート図であり、図2は、本実施形態に係るCF基板の製造工程を示す断面模式図である。図1において、バンクを形成するためのバンク形成工程(ステップS10)は、フィルム貼付け工程(ステップS11)~撥液・親液処理工程(ステップS16)からなり、色層を形成するための色層形成工程(ステップS20)は、液状材料塗布工程(ステップS21)及び液状材料焼成工程(ステップS22)からなる。
バンク形成工程(S10)では、まず、フィルム貼付け工程(S11)を行う。フィルム貼付け工程(S11)では、ガラス基板の主面上に、バンクの材料となる樹脂フィルムの貼り付けを行う。このフィルムの貼り合わせに先立って、ガラス基板の主面上に、フィルムの密着性を高めるためのシランカップリング剤を塗布して、ベーク処理を行う。ベーク処理は、約140~160℃の温度で行うことが好ましい。
次いで、感光性・遮光性樹脂からなる樹脂フィルムを加熱しながらラミネート処理する。樹脂フィルムとしては、紫外線(UV)硬化性、熱硬化性、及び遮光性を有する樹脂フィルムが好適に使用できる。樹脂フィルムの膜厚は、後述する色層形成工程(S20)において、隣接する絵素との混色が起きない程度の厚みであって、色層の仕上がり膜厚と比べて著しく厚くならない程度の膜厚に設定される。例えば、色層の仕上がり膜厚が約2μmである場合には、樹脂フィルムは、1.5~2.5μm程度の膜厚とする。また、ラミネート処理は、約80~160℃で行うことが好ましい。ラミネート処理により、図2(a)に示すように、ガラス基板20の主面上には樹脂層21が形成される。
次いで、第1の露光工程(S12)を行う。この工程では、図2(b)に示すように、樹脂層21の上部に、所望のバンクパターンに対応する開口部22aが形成された第1のマスク22を配置し、この第1のマスク22を介してUV光23を照射する。この工程でのUV照射は、樹脂層21が完全には硬化しない程度に行う。これは、後述する色層形成工程(S20)において、所望の領域における樹脂にインク材料を染み込ませて含浸領域を形成するためである。第1の露光工程(S12)における樹脂材料の硬化度は、樹脂材料やインク材料の材質・組み合わせ、絵素領域の形状等によって適宜設定されるものであるが、バンクとしての形状を維持できる程度の硬化度とする。UV照射としては、例えば、波長365nmの光を含むUV光23を、50~200mJ/cm(検出波長:365nm)の強さで樹脂層21に照射するものが挙げられる。
次いで、現像(パターン形成)工程(S13)が行われる。現像処理により、図2(c)に示すように、ガラス基板20の主面上には、所望のパターンを有するバンク13aが形成される。
次いで、第2の露光工程(S14)が行われる。この工程では、バンク13aにインク材料の含浸領域を形成するために、図2(d)に示すように、バンク13aが形成されたガラス基板20の主面上に、所望のパターン形状に開口部27aが形成された第2のマスク27を配置し、第2のマスク27の上部側及びガラス基板20の裏面側の両側からUV光を照射(ポスト露光)する。これにより、バンク13aは、硬化度の高い領域24aと硬化度の低い領域24bとが形成されたバンク13bとなる。ここで、硬化度の高い領域24aにおける硬化度とは、後述する色層形成工程(S20)において塗布されたインク材料が実質的に染み込まない程度の硬化度をいい、硬化度の低い領域24bにおける硬化度とは、インク材料を含浸できる程度の硬化度をいう。
第2のマスク27は、図3-1(a)に示すように、隣接する絵素領域間において、絵素領域間の中央部に開口部27aが形成されたマスクパターンを有する第2のマスク27を用いる。なお第2の露光工程(S14)では、必要に応じて、ガラス基板20の裏面側にも所望のマスクパターンを有するマスクを配置してもよい。
次いで、樹脂材料焼成工程(S15)が行われる。焼成処理では、焼成中に熱収縮によりバンク13bの変形が生じることを考慮して、バンク13bのテーパ角が所望の値となるように温度調整する。なお、上記した樹脂材料の硬化度は、主に第2の露光工程(S14)のUV照射によって定まるが、樹脂材料焼成工程(S15)の焼成温度によっても決まるものであり、樹脂材料とインク材料とのなじみ等を考慮して、UV照射条件・焼成温度等が定められる。
上記のような焼成処理を行うことで、樹脂材料は、パターン形状を安定して維持できるだけでなく、重合が進むことによって、表示パネルの形成後における樹脂材料の溶出を防ぐことができる。また、第2の露光工程(S14)及び樹脂材料焼成工程(S15)において、UV照射・焼成処理を行うことにより、バンク13bがガラス基板20から剥がれにくくなるという効果も得られる。
次いで、撥液・親液処理工程(S16)が行われる。この工程では、絵素領域に塗布するインク材料の塗り分けのために、絵素の開口領域、すなわちガラス基板20の主面は親液性となり、バンク13aは撥液性を示すように、前処理を行う。このような前処理としては、例えば、親液性を付与するための酸素プラズマ処理等によるアッシング処理や、撥液性を付与するためのCFプラズマ処理等のフッ素プラズマ処理等が挙げられる。
ここで、本発明においては、バンク13aには混色を防止するために撥液性を付与することが好ましい。これは、塗布されたインク材料がバンク13aの上部を乗り越えて隣の絵素領域のインク材料と混ざり合い混色が発生するのを防止するためである。一方で、バンク13aには、インク材料を染み込ませて含浸領域を形成する必要がある。したがって、フッ素プラズマ処理は、バンク13aの上部において特に撥液性を発現し、バンク13aの側面は、含浸領域の形成箇所等に応じて処理すれば良い。なお、フッ素プラズマ処理において、容易にバンクの上部側のみに撥液性を発現させるバンクの構造としては、幅方向の断面形状が逆テーパ形状のテーパ面(側面)を有するものが挙げられる。
フッ素プラズマ処理は、真空排気系のドライエッチング装置や大気圧プラズマ装置等を用いて行うことができる。真空排気系のドライエッチング装置を用いたプラズマ処理であれば、CF/O=(240sccm~300sccm)/(0sccm~60sccm)、処理時間20sec~100sec、25℃(室温で処理)の処理条件が好適である。大気圧プラズマ装置を用いたプラズマ処理であれば、ダイレクトタイプのプラズマ装置が好ましく、CF/N=(15slm~20slm)/(65~75slm)、3.0KVA~3.6KVA、搬送速度0.5~3m/min、温度25℃~35℃の処理条件が好適である。フッ素プラズマ処理に使用するガスとしては、CF以外にも、SF、CHF、C等のフッ素系ガスを用いてもよく、フッ素系ガスには、Oガス、HeやN等の不活性ガスが混合されていてもよい。
上記のようにバンク形成工程(S10)が行われると、引き続き、色層形成工程(S20)が行われる。色層形成工程(S20)では、まず、インク材料を塗布する塗布工程(S21)が行われる。塗布工程(S21)では、図2(e)に示すように、インクジェット印刷装置28を用いてインク材料を塗布する。インク材料とは、所望の色を発現するための顔料・染料等を溶媒に溶解・分散させた液状材料である。インク材料の組成は特に限定されるものではないが、ここでは、高分子材料を溶媒に溶かしてインク化した赤(R)、緑(G)、青(B)の各色のインクを例に挙げて説明する。インクジェット印刷装置28は、各色のインクを吐出するノズル28a~28cを備え、ノズル28a~28cは、所望の絵素領域32a~32cと対向するように配置される。
ノズル28a~28cから赤(R)、緑(G)、青(B)の各色のインク材料が吐出されると、インク材料の液滴30a~30cは、矢印A方向に落下する。ガラス基板20には、上記した撥液・親液処理工程(S16)において表面処理が施されているため、インク材料の液滴30a~30cは、自己パターニング現象により絵素領域32a~32c内に収納され、インク層31a~31cとなる。
ここで、本実施形態においては、上記第2の露光工程(S14)においてバンク13bには、硬化度の低い領域24bが形成されていることから、絵素領域32a~32cに広がったインク材料の一部は、硬化度の低い領域24bに染み込む。本実施形態においては、絵素領域32a~32cを囲むバンク13bの内周面全てが硬化度の低い領域24bとなっていることから、滴下時には、自身が有する表面張力の影響によって絵素領域32a~32cの中央部で盛り上がった球形のインク材料は、バンク13bと接触した部分からバンク13bに染み込んで、インク材料は中央部からバンク13bの側へ向かって流れるようになる。これにより、インク材料は絵素領域32a~32c内に均一に広がる。
また、バンク13bには、インク材料が含浸されない硬化度の高い領域24aが形成されているため、バンク13bに含浸されたインク材料が、隣のインク材料と混色することを防止できる。更に、撥液・親液処理工程(S16)において、バンク13bの上面には強い撥液性を付与していることから、インク材料がバンク13bを乗り越えて隣のインクと混色することを防止できる。
次いで、インク材料を焼成するための液状材料焼成工程(S22)が行われる。液状材料焼成工程(S22)では、焼成処理によって、図2(f)に示すように、インク層31a~31cが硬化してCF層131a~131cが形成されるとともに、バンク13bに染み込んだインク材料も硬化する。硬化後のバンク25は、インク材料が染み込んだ含有領域25aとインク材料が染み込んでいない領域25bとを有する。含有領域25aには、インク材料中の高分子材料(顔料)が含まれており、インク材料中の溶媒は、焼成により揮発するため含まれていない。また、各バンク25の含有領域25aには、赤、緑、青のいずれか単色の成分しか含まれていない。このことは、例えば、飛行時間型二次イオン質量分析装置(Time-Of-Flight Secondary Ion Mass Spectrometry、TOF-SIMS)を用いた元素分析等により確認可能である。
色層形成工程(S20)の後、共通電極(ITO)等が形成されて、CF基板が完成する。得られたCF基板の構成を図4に示す。図4(a)は、絵素領域32a~32cの平面模式図であり、図4(b)は、図4(a)におけるA-B線に沿う断面模式図、図4(c)は、図4(a)におけるC-D線に沿う断面模式図である。図4(a)に示すように、各絵素領域32a~32cには、隅々までインク材料が行き渡り、インク材料の未充填領域が解消されている。これにより、絵素領域32a~32cの四隅からの光抜けが抑制された高表示品位のCF基板を得ることができる。
また、バンク25にインク材料が染み込むことで、含有領域25a近傍のCF層131a~131cの膜厚が厚くなり全体として形状が平坦化される。また、絵素領域32a~32c内にインク材料が均一に広がることによっても、CF層131a~131cの膜厚を均一にでき、図4(b)及び図4(c)に示すように、CF層131a~131cの断面形状を平坦化できる。更に、バンク25の幅がインク材料の浸透する距離よりも小さい場合には、インク材料が隣の絵素の開口領域に染み出して混色することが懸念されるが、本実施形態においては、図4(b)、図4(c)に示すように、バンク25には、インク材料が染み込んでいない領域25bが形成されていることで、インク材料の染み込みによる隣接絵素間の混色が防止できる。
なお、インク材料が染み込んでもバンク25に含まれる遮光材料の量は変わらないので、遮光性は落ちることはない。また、バンク25を形成する樹脂材料が未重合のままでは、パネルを形成した後に樹脂材料が溶出することが懸念されるが、液状材料焼成工程(S22)の工程において樹脂材料も重合できるため、樹脂材料の溶出を防ぐことができる。
上記のように、露光条件、焼成条件等を制御しつつ光重合と熱重合とを併用することで、インク材料が染み込んだ含有領域25aとインク材料が染み込んでいない領域25bとを備えたバンク25を形成できる。これにより、絵素領域内にインク材料を均一に塗布でき、光抜けが抑制された高色純度のCF基板を作製できる。
なお、上記説明では、バンク25の形成材料として、光及び熱のいずれによっても硬化可能な樹脂材料を用いた例を挙げて説明したが、本発明はこれに限定されるものではなく、UV硬化性及び熱硬化性の両特性を有することが好ましいが、いずれかの特性を有するものであってもよい。また、上記説明では、バンクの材料として樹脂フィルムを用いた例を挙げたが、本発明はこれに限定されるものではなく、液体の樹脂材料についても適用可能である。液体の樹脂材料を用いる場合には、スピンコート、ダイコート又はノズルコート等の手法により、ガラス基板20に塗布する。あるいは、液体の樹脂材料を用いて、インクジェット法等により基板に塗布してパターン形成することも可能である。この場合には、ステップS12、S13の露光・現像工程を省くことができる。
また、樹脂材料焼成工程(S15)を行わずに、液状材料焼成工程(S22)にて樹脂材料の焼成を行うことも可能である。これにより、工程の削減が図れる。
また、上記説明では、第2の露光工程(S14)において図3-1(a)に示すマスクパターンを有する第2のマスク27を用いたが、本発明はこれに限定されるものではなく、図3-1(b)に示すように、絵素領域の隅部と接する領域に含浸領域が形成されるようなマスクパターンを有するマスク127を用いてもよい。これにより、光抜けの生じやすい絵素領域の隅部においても、インク材料を塗布できる。更に、絵素領域間の中央部の硬化度が周辺部の硬化度よりも高くなり、かつ、絵素領域の隅部と接する領域の硬化度が他の領域の硬化度よりも低くなるようマスクパターンを有するマスクを用いて露光処理してもよい。
また、上記説明では、色層として液晶表示装置のカラーフィルタ基板におけるCFを例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、有機EL表示装置における発光層や正孔輸送層等の有機層等が挙げられる。また、液状材料としてインク材料を例に挙げて説明したが、本発明はこれに限定されるものではなく、乾燥固化させて色層を形成できる液状材料であればよい。
更に、上記説明では、インク材料の塗り分けのために、バンク13aに撥液・親液処理工程(S16)を行う例を挙げて説明したが、本発明はこれに限定されるものではなく、撥液・親液処理は、必要に応じて行えばよい。例えば、混色の恐れの無い撥水性を持ったバンクを使用する場合には、上記のようなプラズマ処理等を行わなくてもよい。
実施形態2
本実施形態では、表示装置用基板が有機EL基板である場合において、バンクを形成するための樹脂材料としては感光性・遮光性樹脂を用い、インクジェット法により、正孔輸送層を形成する例を挙げて、図5を用いて説明する。ここでの有機EL基板は、トップゲート型のTFTを用いたアクティブマトリクス基板上に有機EL素子を備えた構成を有する。
図5は、本実施形態に係る有機EL基板の製造工程を示す断面模式図である。図5(a)は、TFT70、層間絶縁膜61、絵素電極(図示せず)等が形成されたガラス基板60の主面上に、バンクを形成するための樹脂膜62が形成された状態を示す。このような状態の基板を得るためには、まず、ガラス基板60の主面上に、従来公知の手法により、複数のTFT70を形成する。次に、TFT70上に、平坦化層としての機能を有する層間絶縁膜61を形成する。層間絶縁膜61としては、窒化シリコン膜とアクリル系樹脂層との積層で構成したものが挙げられる。
層間絶縁膜61を形成した基板上に、ニッケル(Ni)等からなる絵素電極を形成し、この絵素電極を覆うように樹脂膜62を形成する。なお、ここでは図示されていないが、絵素電極は、層間絶縁膜61に設けたコンタクトホールを介してTFT70のドレイン領域と接続するように設けられる。
次いで、図5(b)に示すように、上記した実施形態1と同様に第1の露光工程(S12)が行われ、引き続き、上記した実施形態1と同様に現像(パターン形成)工程(S13)が行われる。これにより、図5(c)に示すように、層間絶縁膜61上に所望のパターンを有するバンク63aが形成される。バンク63aは、絵素電極のエッジ部を覆うように、各絵素毎に絵素電極を取り囲む形状となる。
次いで、上記した実施形態1と同様に、図5(d)に示すように第2の露光工程(S14)が行われ、引き続き樹脂材料焼成工程(S15)が行われる。これにより、硬化度の高い領域64aと硬化度の低い領域64bとを備えたバンク63bが形成される。ただし、第2の露光工程(S14)は、両面露光ではなく、基板上面側からの片面露光である。
次いで、上記した実施形態1と同様に、撥液・親液処理工程(S16)が行われる。フッ素プラズマ処理の条件は、適宜設定すればよいが、例えば、上記実施形態1と同様の処理条件が挙げられる。
次いで、図5(e)に示すように、上記した実施形態1と同様にインクジェット印刷装置28を用いて液状材料を塗布する塗布工程(S21)が行われる。この工程では、正孔輸送層の材料としてポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルフォン酸(PSS)の水分散液をインクジェット印刷装置28を用いて絵素領域に塗布する。これにより液層65が形成される。液層65を形成する液状材料は、バンク63bの硬化度の低い領域64bに染み込んで含浸領域を形成する。また、バンク63bには、液状材料が染み込まない硬化度の高い領域64aが形成されているため、バンク63bに染み込んだ水分散液が、隣の水分散液と混ざり合うことを防止できる。更に、撥液・親液処理工程(S16)において、バンク63bの上面には強い撥液性を付与していることから、水分散液がバンク63bを乗り越えて隣の水分散液と混ざり合うことを防止できる。
次いで、上記した第1の実施形態と同様に、液状材料焼成工程(S22)を行う。これにより、分散媒である水が乾燥除去され、図5(f)に示すような正孔輸送層66が形成されるとともに、バンク63bも硬化する。硬化後のバンク80は、正孔輸送溶液の成分を含有する含有領域75aと正孔輸送溶液の成分を含有しない領域75bとを有する。含有領域75aには、正孔輸送溶液中のPEDOT/PSSが含まれており、水は焼成により蒸発するため含まれていない。このことは、例えば飛行時間型二次イオン質量分析装置(Time-Of-Flight Secondary Ion Mass Spectrometry、TOF-SIMS)を用いた元素分析等により確認可能である。
発光層についても、正孔輸送層66と同様に、ポリフルオレン誘導体の溶液を用いてインクジェット法で塗布し乾燥することにより形成できる。そして、透光性を有する陰極として、カルシウム(Ca)を含むアルミニウム(Al)を抵抗加熱蒸着し、酸化インジウム亜鉛(IZO)をスパッタ法で形成すること等により、アクティブマトリクス基板上に有機EL素子を備えたトップエミッション型の有機EL基板が完成する。
本実施形態においては、隣接する絵素領域において、正孔輸送層同士及び発光層同士が混ざり合うことがなく、かつ、絵素領域の全体に正孔輸送層及び発光層が形成された有機EL基板が得られる。したがって、これを用いた有機EL装置は、絵素領域内の輝度ムラが防止された表示特性の良いものとなる。
なお、上記各実施形態では、バンクにインク材料の含浸領域を形成するために、第2の露光工程(S14)においてバンクに硬化度の低い領域を形成しているが、本発明はこれに限定されるものではない。例えば、第1の露光工程(S12)において、露光量を調整できるマスクパターンを備えたマスクを用いることによっても、バンクに硬化度の低い領域を形成できる。図3-2を用いて、第1の露光工程(S12)で使用するマスクの一例を説明する。図3-2(a)は、マスクパターンの構成を示す平面模式図であり、(b)、(c)は、(a)において波線Aで示す領域の拡大平面模式図である。
図3-2(a)において、マスク122には、遮光部122a及び開口部122bが形成されており、遮光部122aと開口部122bとの間には、図3-2(b)に示すように、複数のスリットが形成されたスリット領域123が形成されている。スリットの数や幅は特に限定されるものではないが、遮光部122aから開口部122bの側に向かってスリットの幅が狭くなるようにすることで、絵素領域を囲むバンクの内周面の硬化度を容易に低くできる。
図3-2(c)においては、スリット領域123に変えて半透過部124が形成されている。半透過部124とは、遮光部122aを形成する遮光材料の密度を小さくしたものであり、遮光部122aよりも露光量が低い。
上記のようにスリット領域123や半透過部124を有するマスク122を用いることで、第1の露光工程(S12)における露光量を容易に調整でき、従来のバンクの製造方法と比べて製造工程を増やすことなく、インク材料の含浸領域を形成できる。
また、上記説明では、ガラス基板を用いた例を挙げて説明したが、本発明はこれに限定されるものではなく、例えば、トップエミッション型の有機EL素子の構造では、基板と反対側から光が取り出されるため基板には透光性が必要とされないことから、シリコンウェハ等の半導体基板を用いることも可能である。
また、上記説明では、アクティブマトリクス基板上の有機EL素子を作製する場合を例に挙げたが、パッシブマトリクス基板上の有機EL素子を作製する場合にも、本発明を同様に実施することができる。
本願は、2008年12月26日に出願された日本国特許出願2008-332777号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
13a、13b、63a、63b、25、51 バンク
20、50、60 ガラス基板
21 樹脂層
22a 開口部
22 第1のマスク
23 UV光
24a、64a 硬化度の高い領域
24b、64b、 硬化度の低い領域
25b インク材料を含浸しない領域
27 第2のマスク
27a 開口部
28、40 インクジェット印刷装置
28a~28c、41a~41c ノズル
30a~30c 液滴
31a~31c、53a~53c インク層
32a~32c、60a~60c 絵素領域
43a~43c 液滴
54 混合領域
55 インクが塗布されていない領域
61 層間絶縁膜
62 樹脂膜
65 液層
66 正孔輸送層
70 TFT
75a 含有領域
75b 液状材料を含浸しない領域
122、127 マスク
122a 遮光部
122b 開口部
123 スリット領域
124 半透過部
131a~131c CF層

Claims (12)

  1. 基板の主面上に、樹脂材料からなるバンクと、該バンクによって囲まれた複数の絵素領域に配置された色層とを備えた表示装置用基板であって、
    該色層は、液状材料から形成され、
    該バンクは、該液状材料中の成分を含有する含浸領域を備えることを特徴とする表示装置用基板。
  2. 前記バンクは、隣接する前記絵素領域間の中央部には、前記含浸領域が形成されていないことを特徴とする請求項1記載の表示装置用基板。
  3. 前記バンクは、前記絵素領域の隅部と接する領域に前記含浸領域を有することを特徴とする請求項1記載の表示装置用基板。
  4. 前記バンクは、隣接する前記絵素領域間の中央部には、前記含浸領域が形成されておらず、該絵素領域の隅部と接する領域には該含浸領域を有することを特徴とする請求項1記載の表示装置用基板。
  5. 前記バンクは、全体が遮光性材料により形成されていることを特徴とする請求項1~4のいずれかに記載の表示装置用基板。
  6. 前記色層は、着色透明樹脂により形成されていることを特徴とする請求項1~5のいずれかに記載の表示装置用基板。
  7. 前記色層は、エレクトロルミネッセンス層であることを特徴とする請求項1~5のいずれかに記載の表示装置用基板。
  8. 基板の主面上に、樹脂材料からなるバンクと、該バンクによって囲まれた複数の絵素領域に配置された液状材料からなる色層とを備えた表示装置用基板の製造方法であって、
    該バンクを形成するバンク形成工程と、
    該色層を形成する色層形成工程とを有し、
    該バンク形成工程は、
    該基板の主面上にパターン形成された該樹脂材料を露光する露光工程を含み、
    該露光工程は、該色層と接する部分の樹脂材料に他の部分の樹脂材料よりも硬化度の低い領域が形成されるように露光処理し、
    該色層形成工程は、
    該液状材料を塗布し、該露光工程で形成された硬化度の低い樹脂材料に液状材料を染み込ませる塗布工程と、
    該塗布工程後に該液状材料を焼成して該色層を形成する焼成工程とを含む
    ことを特徴とする表示装置用基板の製造方法。
  9. 前記焼成工程は、該液状材料の焼成と共に該樹脂材料の重合を行うことを特徴とする請求項8記載の表示装置用基板の製造方法。
  10. 前記露光工程は、
    隣接する前記絵素領域間の中央部の硬化度が周辺部の硬化度よりも高くなるように前記樹脂材料に露光処理を行うことを特徴とする請求項8又は9記載の表示装置用基板の製造方法。
  11. 前記露光工程は、前記絵素領域の隅部と接する領域の硬化度が他の領域の硬化度よりも低くなるように前記樹脂材料に露光処理を行うことを特徴とする請求項8~10のいずれかに記載の表示装置用基板の製造方法。
  12. 請求項1~7のいずれかに記載の表示装置用基板、又は、請求項8~11のいずれかに記載の表示装置用基板の製造方法により製造された表示装置用基板を備えることを特徴とする表示装置。
PCT/JP2009/067642 2008-12-26 2009-10-09 表示装置用基板及びその製造方法並びに表示装置 WO2010073798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/141,969 US8670197B2 (en) 2008-12-26 2009-10-09 Substrate for display device, method for manufacturing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008332777A JP2012047764A (ja) 2008-12-26 2008-12-26 表示装置用基板及びその製造方法並びに表示装置
JP2008-332777 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073798A1 true WO2010073798A1 (ja) 2010-07-01

Family

ID=42287425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067642 WO2010073798A1 (ja) 2008-12-26 2009-10-09 表示装置用基板及びその製造方法並びに表示装置

Country Status (3)

Country Link
US (1) US8670197B2 (ja)
JP (1) JP2012047764A (ja)
WO (1) WO2010073798A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956317B1 (ko) * 2002-07-18 2010-05-10 세디버 소시에떼 유로피네 드이소라뚜와 엥베르 에뜨 캄포지떼 복합 인슐레이터의 생산 방법과 그 방법에 의해 생산된복합 인슐레이터
CN104282712A (zh) * 2013-07-01 2015-01-14 三星显示有限公司 有机发光显示装置及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186698B2 (ja) 2012-10-29 2017-08-30 セイコーエプソン株式会社 有機el装置、電子機器
JP6441595B2 (ja) * 2014-06-04 2018-12-19 パイオニア株式会社 発光装置
JP6422754B2 (ja) * 2014-12-03 2018-11-14 東京応化工業株式会社 エッチングマスクを形成するためのガラス基板の前処理方法
CN104698662A (zh) * 2015-03-26 2015-06-10 京东方科技集团股份有限公司 显示装置及其制作方法
CN106960922B (zh) * 2017-04-10 2019-03-12 京东方科技集团股份有限公司 喷墨打印成膜方法
JP6443510B2 (ja) * 2017-07-28 2018-12-26 セイコーエプソン株式会社 有機el装置、有機el装置の製造方法、電子機器
KR20220007788A (ko) * 2020-07-10 2022-01-19 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389488A (ja) * 1989-09-01 1991-04-15 Seiko Epson Corp 有機発光素子及びその製造方法
JP2004055159A (ja) * 2002-07-16 2004-02-19 Dainippon Screen Mfg Co Ltd 有機el素子の製造方法および有機el表示装置
JP2004126600A (ja) * 2002-10-04 2004-04-22 Samsung Electronics Co Ltd 溶解特性を調節する感光性樹脂組成物及びこれを用いた二層構造パターンの形成方法
JP2006162882A (ja) * 2004-12-06 2006-06-22 Sharp Corp 表示装置用基板
JP2008268512A (ja) * 2007-04-19 2008-11-06 Dainippon Printing Co Ltd 横電界駆動式液晶表示装置用カラーフィルタおよび横電界駆動式液晶表示装置用カラーフィルタの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107528A (ja) 2000-09-29 2002-04-10 Dainippon Printing Co Ltd カラーフィルタの製造方法
JP4014901B2 (ja) * 2002-03-14 2007-11-28 セイコーエプソン株式会社 液滴吐出による材料の配置方法および表示装置の製造方法
JP4906259B2 (ja) 2004-12-06 2012-03-28 シャープ株式会社 表示装置用基板の製造方法
JP4483757B2 (ja) 2005-09-30 2010-06-16 セイコーエプソン株式会社 有機el装置及び光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389488A (ja) * 1989-09-01 1991-04-15 Seiko Epson Corp 有機発光素子及びその製造方法
JP2004055159A (ja) * 2002-07-16 2004-02-19 Dainippon Screen Mfg Co Ltd 有機el素子の製造方法および有機el表示装置
JP2004126600A (ja) * 2002-10-04 2004-04-22 Samsung Electronics Co Ltd 溶解特性を調節する感光性樹脂組成物及びこれを用いた二層構造パターンの形成方法
JP2006162882A (ja) * 2004-12-06 2006-06-22 Sharp Corp 表示装置用基板
JP2008268512A (ja) * 2007-04-19 2008-11-06 Dainippon Printing Co Ltd 横電界駆動式液晶表示装置用カラーフィルタおよび横電界駆動式液晶表示装置用カラーフィルタの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956317B1 (ko) * 2002-07-18 2010-05-10 세디버 소시에떼 유로피네 드이소라뚜와 엥베르 에뜨 캄포지떼 복합 인슐레이터의 생산 방법과 그 방법에 의해 생산된복합 인슐레이터
CN104282712A (zh) * 2013-07-01 2015-01-14 三星显示有限公司 有机发光显示装置及其制造方法

Also Published As

Publication number Publication date
US8670197B2 (en) 2014-03-11
US20110261477A1 (en) 2011-10-27
JP2012047764A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
WO2010073798A1 (ja) 表示装置用基板及びその製造方法並びに表示装置
US11991902B2 (en) Display device and method of manufacturing the same
KR101970539B1 (ko) 유기전계발광 표시장치 및 이의 제조 방법
JP2008243773A (ja) 電気発光装置、その製造方法、電子機器、薄膜構造体、薄膜形成方法
CN107819017B (zh) 像素界定结构、显示基板及其制作方法和显示装置
US9559154B2 (en) Display device keeping a distance between a light emitting layer and a counter substrate uniformly
KR100459393B1 (ko) 액정 표시장치의 칼라필터 및 그 제조방법
CN109920825B (zh) 像素界定结构及其制作方法、显示面板及显示装置
US9553110B2 (en) Array substrate, display device and method of manufacturing the array substrate
WO2015010424A1 (zh) 有机发光显示面板、像素界定层及其制作方法
JP2006093124A (ja) フルカラー有機エレクトロルミネッセンス表示素子及びその製造方法
KR20120111912A (ko) 플랫 패널 디스플레이, 그 제조 중간체 및 제조 방법
TW202101785A (zh) 色轉換裝置、微發光二極體顯示面板、色轉換裝置之製造方法及微發光二極體顯示面板之製造方法
TW202123452A (zh) 發光裝置及具有其之顯示面板及其製造方法
CN109792818B (zh) 有机el显示装置和有机el显示装置的制造方法
US11114513B2 (en) Display substrate, manufacturing method thereof, display panel
JP2007227289A (ja) 電気光学装置、電気光学装置の製造方法および電子機器
JP2008046306A (ja) 表示素子用基板とその製造方法、及び液晶表示素子
TW201109744A (en) Color conversion filter substrate
JP2005331619A (ja) パターン部材およびその製造方法
KR20180003335A (ko) 유기 발광 표시 장치 및 그 제조 방법
KR102478821B1 (ko) 유기전계발광표시장치 및 이의 제조방법
JP4385584B2 (ja) 微細構造物の製造方法
JP4731159B2 (ja) 表示装置用基板
JP2004177793A (ja) 微細構造物の製造方法およびこの微細構造物の製造方法を用いて製造された自発光素子、光学素子、デバイス並びにこのデバイスを備えた電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13141969

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09834604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP