WO2010073640A1 - Cleaving device and cleaving method for manufacturing electronic components - Google Patents

Cleaving device and cleaving method for manufacturing electronic components Download PDF

Info

Publication number
WO2010073640A1
WO2010073640A1 PCT/JP2009/007148 JP2009007148W WO2010073640A1 WO 2010073640 A1 WO2010073640 A1 WO 2010073640A1 JP 2009007148 W JP2009007148 W JP 2009007148W WO 2010073640 A1 WO2010073640 A1 WO 2010073640A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealed substrate
electronic component
manufacturing
cutting
substrate
Prior art date
Application number
PCT/JP2009/007148
Other languages
French (fr)
Japanese (ja)
Inventor
日比貴昭
北川康之
岡本純
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to SG2011045721A priority Critical patent/SG172318A1/en
Priority to CN200980151217XA priority patent/CN102256739A/en
Publication of WO2010073640A1 publication Critical patent/WO2010073640A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a cutting apparatus and a cutting method for manufacturing an electronic component used when a plurality of electronic components are manufactured by cutting a sealed substrate having a plurality of regions for each region.
  • the following method is one of the methods conventionally used for the purpose of efficiently producing a plurality of electronic components. That is, a plurality of chip capacitors, LED chips, semiconductor chips, etc. (hereinafter referred to as “chips”) mounted on a circuit board are collectively sealed with a resin to form a sealed substrate.
  • a plurality of electronic components are manufactured by cutting into individual pieces (see, for example, Patent Document 1).
  • a dicing saw can be used when cutting a sealed substrate, or it can be cut with a laser.
  • An individual electronic component obtained by dividing a sealed substrate is often called a package.
  • a glass epoxy substrate can be used as a circuit board, and an epoxy resin, a phenol resin, or a silicone resin can be used as a sealing resin used for resin sealing. From this, it can be said that the circuit board and the sealing resin are made of the same material, that is, a resin material. Therefore, no major problem has occurred when using either a dicing saw using a rotary blade or a laser.
  • Ceramic substrate in addition to a resin substrate typified by a glass epoxy substrate, a substrate made of ceramic (hereinafter referred to as “ceramic substrate”) and a substrate made of metal (hereinafter referred to as “metal substrate”). Began to be used. Ceramic substrates and metal substrates have excellent heat dissipation characteristics, and are used for optoelectronic components such as LEDs and semiconductor lasers, power semiconductor elements, and the like.
  • the base material of the ceramic substrate and the metal substrate has different properties from the sealing resin.
  • the sealing resin has different properties from the sealing resin.
  • the first problem is that the dross formed by melting the material constituting the circuit board is likely to adhere to the package, resulting in a decrease in yield in terms of appearance quality.
  • the second problem is a problem when a ceramic substrate is used as a circuit board. This is a problem that internal stress is generated by thermal shock applied to the ceramic substrate, and cracking or chipping of the ceramic substrate due to the internal stress occurs particularly at the end of cutting at one cutting line. is there.
  • the problem to be solved by the present invention is that dross adheres to a sealed substrate when a sealed substrate including a circuit board made of a ceramic substrate or a metal substrate is cut by a laser, and internal stress It is to prevent the ceramic substrate from cracking or chipping.
  • a cutting apparatus for manufacturing an electronic component according to the present invention includes resin-sealing chips (3) mounted in a plurality of regions (7) provided on a circuit board (2). Used to manufacture a plurality of electronic components by forming a sealed substrate (1) and cutting the sealed substrate (1) at the boundary line (6) of the plurality of regions (7).
  • the fixing means (8) for fixing the sealed substrate (1), the laser light generating means (11) for generating the laser light (12, 18), the sealed substrate (1) and / or the laser light ( 12, 18) a cutting device for manufacturing an electronic component comprising a moving means (9) for moving relative to each other, The first laser beam (12) for the laser beam generating means (11) to form the perforated holes (17, 19) at the boundary line (6) and the perforated holes (17, 19) The second laser beam (18) for cutting the sealed substrate (1) is generated at the formed boundary line (6).
  • the cutting device for manufacturing an electronic component according to the present invention is such that the first laser beam (12) is pulsed and the second laser beam (18) is continuous. It is characteristic.
  • the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the laser light generating means (11) includes a fiber laser oscillator or a YAG laser oscillator.
  • the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are through holes (17).
  • the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are blind holes (19).
  • the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the base material of the circuit board (2) is ceramic or metal.
  • the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the electronic component is an optoelectronic component or a power semiconductor component.
  • the cutting method for manufacturing an electronic component according to the present invention provides a sealed substrate by resin-sealing the chip (3) mounted on each of the plurality of regions (7) provided on the circuit board (2).
  • the step (1) is fixed, and the sealed substrate (1) and / or the laser beam (12, 18) are made relative to each other while irradiating the laser beam (12, 18) toward the sealed substrate (1).
  • a cutting method for manufacturing an electronic component comprising an irradiation step of automatically moving, In the irradiation step, a perforated hole (17, 19) is formed in the boundary line (6) by irradiating the first laser beam (12) toward the sealed substrate (1), and then the boundary The sealed substrate (1) is cut by irradiating the second laser beam (18) toward the line (6).
  • the cutting method for manufacturing an electronic component according to the present invention is such that the first laser beam (12) is pulsed and the second laser beam (18) is continuous. It is characteristic.
  • the cutting method for manufacturing an electronic component according to the present invention includes, in the above-described irradiation step, a first laser beam (12) and a second laser beam (18) by a fiber laser oscillator or a YAG laser oscillator. ).
  • the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are through holes (17).
  • the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are blind holes (19).
  • the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the base material of the circuit board (2) is ceramic or metal.
  • the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the electronic component is an optoelectronic component or a power semiconductor component.
  • the second laser light is formed. Is used to cut (full cut) the sealed substrate (1).
  • the sum of the volume of the part removed when forming the perforated holes (17, 19) and the volume of the part removed by the subsequent cutting (full cut) is one time as in the conventional case. It is equal to the volume of the part to be removed when the sealed substrate (1) is cut at a stroke (full cut) by laser light irradiation.
  • the volume of each part removed from the sealed substrate (1) by each of the two irradiations in the present invention is the same as that when the sealed substrate (1) is cut by the conventional one irradiation. All are small compared with the volume of the part removed from the sealed substrate (1).
  • the amount of dross generated by each irradiation is small.
  • the amount of dross generated when the second laser beam is irradiated is small. By being small, the amount of dross that finally adheres to the cut portion is small.
  • the dross can be easily removed by gas injection or the like during laser irradiation. Therefore, adhesion of dross to the sealed substrate 1 when cutting the sealed substrate (1) is suppressed, and a good cutting quality at the cut surface is obtained.
  • the sealed substrate (1) when the sealed substrate (1) includes a ceramic substrate, the sealed substrate in which the perforated holes (17, 19) are formed using the first laser beam. (1) is cut using the second laser beam.
  • the perforated holes (17, 19) are formed using the first laser beam.
  • (1) is cut using the second laser beam.
  • the perforated holes (17, 19) in advance at the location to be cut in this way, the cutting can be completed in a relatively short time during cutting.
  • the surface area near the cut portion is large due to the perforated holes (17, 19), and heat generated by laser irradiation is easily released.
  • heat hardly accumulates in the vicinity of the perforated holes (17, 19), and thermal stress generated by irradiation with the second laser light is relieved.
  • FIG. 1 is a cross-sectional view illustrating a state in which the cutting device for manufacturing an electronic component according to the first embodiment forms a perforated hole in a sealed substrate.
  • 2 (1) shows a state in which the cutting device for manufacturing electronic components according to the first embodiment forms through holes, which are perforated holes, in the sealed substrate, and
  • FIG. 2 (2) shows a perforated shape.
  • FIG. 2C is a cross-sectional view showing a state in which the sealed substrate is cut
  • FIG. FIG. 3 (1) shows a state in which the cutting device for manufacturing an electronic component according to the second embodiment forms a blind hole which is a perforated hole in the sealed substrate
  • FIG. 3 (2) shows a perforated shape.
  • FIG. 1 is a cross-sectional view illustrating a state in which the cutting device for manufacturing an electronic component according to the first embodiment forms a perforated hole in a sealed substrate.
  • 2 (1) shows a state in which the cutting device for manufacturing electronic components according to the first embodiment forms through holes, which are
  • FIG. 3C is a cross-sectional view showing a state where the sealed substrate is cut
  • FIG. 4 (1) shows a state in which the cutting apparatus for manufacturing an electronic component according to Example 3 forms a groove in the sealing resin
  • FIG. 4 (2) shows a perforated through hole formed in the circuit board
  • FIG. 4 (3) is a cross-sectional view showing a state where the cutting device is cutting the sealed substrate.
  • the sealed substrate (1) is formed by resin-sealing the chip (3) mounted on each of the plurality of regions (7) provided on the circuit board (2).
  • a cutting method used in manufacturing a plurality of electronic components by cutting the sealed substrate (1) along the boundary line (6) of the plurality of regions (7), The step of fixing the sealed substrate (1) to the table (9) and the first laser beam (12) or the second laser beam (18) from the irradiation head (10) toward the sealed substrate (1). ), And an irradiation step of moving the irradiation head (10) and / or the sealed substrate (1) relative to each other.
  • a perforated hole (17) is formed in the boundary line (6) by irradiating the first laser light (12), and then the second laser light ( 18), the sealed substrate (1) is cut.
  • FIG. 1 is a schematic cross-sectional view showing a state in which a cutting device for manufacturing an electronic component according to the present embodiment forms a perforated hole in a sealed substrate.
  • the cutting device shown in FIG. 1 is a cutting device that separates a sealed substrate 1 into a plurality of electronic components.
  • any figure included in this application document is schematically omitted or exaggerated as appropriate.
  • the “perforated hole” means a hole provided at a predetermined interval and includes both a through hole and a blind hole.
  • the sealed substrate 1 is formed so as to cover the circuit board 2, the plurality of chips 3 mounted on the circuit board 2, and the plurality of chips 3 together. And a sealing resin 4.
  • a ceramic substrate or a metal substrate is used as the circuit board 2
  • a translucent silicone resin is used as the sealing resin 4
  • an LED chip is used as the chip 3. Therefore, it can be said that the sealed substrate 1 is a composite material composed of a ceramic substrate or a metal substrate and plastic.
  • the metal substrate includes a metal core substrate, a metal base substrate, and a hollow substrate.
  • the sealing resin 4 has lens portions 5 corresponding to the chips 3 respectively.
  • the sealed substrate 1 is divided into a plurality of regions 7 by lattice-like boundary lines 6.
  • each boundary line 6 is composed of line segments. Therefore, the shape of each region 7 is a rectangle (including a square).
  • FIG. 1 shows an example in which one chip 3 is attached to each of a plurality of regions 7.
  • FIG. 1 shows an example in which the lens unit 5 constitutes a convex lens, and the lens unit 5 and the chip 3 correspond one-to-one. Not only this but the lens part 5 should just have the function to converge light, the function to make parallel light, or the function to diffuse.
  • the lens unit 5 may have a plurality of lenses, and may be a Fresnel lens or the like.
  • the sealed substrate 1 is fixed to the table 9 via an adhesive tape 8.
  • the table 9 is provided so as to be movable in the X direction, the Y direction, and the Z direction shown in the drawing and to be rotatable in the ⁇ direction.
  • An irradiation head 10 is disposed above the sealed substrate 1.
  • a laser oscillator 11 is optically connected to the irradiation head 10.
  • the irradiation head 10 irradiates the laser beam generated by the laser oscillator 11 toward the sealed substrate 1 as the first laser beam 12.
  • the irradiation head 10 can also irradiate the laser beam generated by the laser oscillator 11 toward the sealed substrate 1 as a second laser beam (described later).
  • the laser oscillator 11 can generate the first laser beam 12 and the second laser beam.
  • the first laser beam 12 is pulsed, and the second laser beam is continuous.
  • the irradiation head 10 is provided with a pipe 13, and the assist gas 14 is supplied into the irradiation head 10 through the pipe 13.
  • a nozzle 15 is provided below the irradiation head 10. The first laser beam 12 is irradiated from the opening of the nozzle 15 toward the irradiated portion 16 of the sealed substrate 1 and the assist gas 14 is injected.
  • FIG. 1 and FIG. 2 (1) shows a state in which the cutting device for manufacturing an electronic component according to the present embodiment forms a perforated through hole in the sealed substrate
  • FIG. 2 (2) shows a perforated through hole
  • FIG. 2C is a cross-sectional view showing a state where the sealed substrate is cut
  • the table 9 is applied to the irradiation head 10 while irradiating the pulsed first laser beam 12 toward the boundary line 6 of the sealed substrate 1. Is moved in the + X direction in the figure.
  • the first laser beam 12 is irradiated toward the boundary line 6 of the sealed substrate 1 and the assist gas 14 is injected. By injecting the assist gas 14, the generated dross can be blown off and removed.
  • the irradiation condition of the first laser beam 12 is set in advance so that a through hole can be formed in the sealed substrate 1 that is a composite material.
  • a perforated hole 17 consisting of a through hole can be formed in one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. it can.
  • perforated holes 17 made of through holes are formed in all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • perforated holes 17 including through holes are formed in all the boundary lines 6 along the X direction among the boundary lines 6.
  • a perforated hole 17 made of a through hole is opened at the boundary line 6 along the Y direction among the lattice-like boundary lines 6.
  • the table 9 is moved in the + Y (or -Y) direction of the drawing with respect to the irradiation head 10 while irradiating the first laser beam 12 toward one boundary line 6 along the Y direction.
  • perforated holes 17 including through holes are formed in all the remaining boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1.
  • the perforated holes 17 including the through holes are formed in all the boundary lines 6 of the sealed substrate 1.
  • the table 9 is placed on the irradiation head 10 while irradiating the continuous second laser beam 18 toward the boundary line 6 of the sealed substrate 1.
  • the second laser beam 18 is irradiated toward the boundary line 6 of the sealed substrate 1 and the assist gas 14 (see FIG. 1) is injected.
  • the irradiation condition of the second laser beam 18 is set in advance so that the sealed substrate 1 in which the perforated hole 17 including the through hole is formed can be completely cut. Thereby, the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6. Specifically, the table 9 is moved in the + Y (or -Y) direction of the figure with respect to the irradiation head 10 while irradiating the second laser beam 18 toward one boundary line 6 along the Y direction. . Subsequently, the sealed substrate 1 is cut at all the remaining boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1. Through the steps so far, the sealed substrate 1 can be cut at all the boundary lines 6. Therefore, the sealed substrate 1 is separated into a plurality of packages respectively corresponding to the plurality of regions 7.
  • the first effect is that the occurrence of dross is suppressed when the sealed substrate 1 is cut.
  • the volume of each part removed from the sealed substrate 1 by each of the two irradiations is removed from the sealed substrate when the sealed substrate is cut by one irradiation. Both are small compared with the volume of the part to be. Thereby, the melted portion of the sealed substrate 1 by each of the two irradiations is easily removed by the assist gas. Therefore, adhesion of dross to the sealed substrate 1 when cutting the sealed substrate 1 is suppressed.
  • the second effect is that a good cutting quality at the cut surface can be obtained.
  • the melted portion of the sealed substrate 1 by each of the two irradiations is easily removed by the assist gas. Therefore, a good cutting quality can be obtained at the cut surface of the manufactured electronic component.
  • the third effect is that when a ceramic substrate is used as the circuit board 2, the occurrence of cracking and chipping of the ceramic substrate due to internal stress is suppressed.
  • the sealed substrate 1 in which the perforated holes 17 are formed using a pulsed laser is cut using a continuous laser.
  • thermal stress generated by continuous laser irradiation in the vicinity of the perforated hole 17 is alleviated.
  • the stress received by the sealed substrate 1 in the vicinity of the perforated hole 17, particularly the stress received by the circuit board 2 made of a ceramic substrate is reduced. Therefore, the occurrence of cracking and chipping of the circuit board 2 due to internal stress is suppressed.
  • the diameter of the perforated holes 17 and the interval between the hole centers are determined by the irradiation condition of the first laser beam 12.
  • the irradiation conditions include, for example, the type of laser, energy, frequency, duty ratio, irradiation diameter, moving speed of the table 9, the type and pressure of the assist gas 14.
  • the diameter of the perforated holes 17 and the distance between the hole centers can completely cut the sealed substrate 1 on which the perforated holes 17 are formed by the irradiation of the second laser light 18. As such, it is set in advance. Further, in this embodiment, by appropriately setting the diameter of the perforated holes 17 and the distance between the hole centers according to the material, thickness and the like of the sealing resin 4 and the circuit board 2, various specifications can be obtained. Applicable to the circuit board 2.
  • a YAG laser for example, wavelength 1064 nm
  • a fiber laser for example, wavelength 1070 nm
  • the energy is 200 W for the pulsed laser light irradiation condition
  • the moving speed of the table 9 is 300 mm / sec
  • the energy is 300 W for the continuous laser light irradiation condition
  • the moving speed of the table 9 is 150 mm / sec.
  • table 9 moving speed moving speed (moving speed with continuous laser light) ⁇ (moving with pulsed laser light)
  • Embodiment 2 of a cutting apparatus for manufacturing electronic parts according to the present invention will be described with reference to FIG. 3 (1) shows a state in which the cutting apparatus for manufacturing electronic components according to this embodiment forms a perforated blind hole in the sealed substrate, and FIG. 3 (2) shows a perforated blind hole.
  • FIG. 3C is a cross-sectional view showing a state where the sealed substrate is cut, and FIG.
  • the irradiation head 10 is irradiated while irradiating the pulsed first laser light 12 toward the boundary line 6 of the sealed substrate 1.
  • the table 9 is moved in the + X direction in the figure.
  • the irradiation condition of the first laser beam 12 is set in advance so that a blind hole can be formed in the sealed substrate 1 that is a composite material.
  • a perforated hole 19 made of a blind hole is formed in one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. Can do.
  • perforated holes 19 made of blind holes are formed in all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1. As a result, perforated holes 19 formed of blind holes are formed in all of the boundary lines 6 along the X direction.
  • perforated holes 19 made of blind holes are formed in all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6.
  • the table 9 is moved to the irradiation head 10 while irradiating the continuous second laser beam 18 toward the boundary line 6 of the sealed substrate 1. Move in + X direction. Thereby, the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6. Through the steps so far, the sealed substrate 1 can be cut at all the boundary lines 6. Therefore, the sealed substrate 1 is separated into a plurality of packages respectively corresponding to the plurality of regions 7.
  • a feature of the present embodiment is that a perforated hole 19 formed of a blind hole is formed by irradiating the pulsed first laser light 12 toward the boundary line 6 of the sealed substrate 1. .
  • These perforated holes 19 have an opening on the sealing resin 4 side and an inner bottom surface in the circuit board 2.
  • the perforated hole 19 is formed from the sealing resin 4 side to the middle of the circuit board 2 in the thickness direction of the sealed substrate 1.
  • the diameter and depth of the perforated holes 19 and the distance between the hole centers are determined by the irradiation condition of the first laser beam 12. .
  • the diameter and depth of the perforated holes 19 and the distance between the hole centers are such that the sealed substrate 1 on which the perforated holes 19 are formed is completely cut by irradiation with the second laser light 18. It is set in advance so that it can be performed.
  • the same effect as in the first embodiment can be obtained.
  • the diameter and depth of the perforated holes 19 and the interval between the hole centers are appropriately set according to the material and thickness of the sealing resin 4 and the circuit board 2. It becomes applicable to the circuit board 2 of various specifications.
  • FIG. 4 (1) shows a state in which the cutting device for manufacturing electronic components according to this embodiment forms a groove in the sealing resin of the sealed substrate
  • FIG. 4 (2) shows a perforated through hole
  • FIG. 4 (3) is a cross-sectional view showing a state where the circuit board is formed
  • FIG. 4 (3) is a state where the cutting device is cutting the sealed substrate.
  • FIG. 4A a groove is formed in the sealing resin 4 of the sealed substrate using the rotary blade 20.
  • FIG. 4 (1) shows a state in which a groove (not shown) is formed on the left side of the rotary blade 20 by moving the table 9 in the ⁇ X direction (left direction).
  • the rotary blade 20 is shown small for easy understanding.
  • the first laser beam 12 is irradiated to the circuit board 2 at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • a perforated hole 21 made of a through hole is formed in the circuit board 2.
  • perforated holes 21 made of through holes are formed in the circuit board 2 at all the boundary lines 6 of the sealed substrate 1.
  • the irradiation head 10 (FIG. 1) is irradiated while irradiating the continuous second laser light 18 toward the circuit board 2 at the boundary line 6 of the sealed substrate 1.
  • the table 9 is moved in the + X direction in the figure.
  • the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
  • the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1.
  • a rotary blade suitable for this is used for cutting the sealing resin 4, and a type of laser and irradiation conditions suitable for this are used for cutting the circuit board 2. it can. Therefore, the efficiency of the process of cutting the sealed substrate 1 is improved.
  • both the rotary blade 20 and the laser oscillator 11 (see FIG. 1) for irradiating the first laser beam 12 and the second laser beam 18 are provided in one cutting device.
  • An example was explained. Not limited to this, after a groove is formed in the sealing resin 4 of the sealed substrate 1 using a cutting device having the rotary blade 20, the sealing device having the laser oscillator 11 (see FIG. 1) is sealed. The substrate 1 may be transported.
  • the groove may be formed in the sealing resin 4 of the sealed substrate 1 by using laser light instead of the rotary blade 20.
  • laser light that is easily absorbed by the sealing resin 4, for example, laser light from a CO 2 laser oscillator.
  • the groove provided in the sealing resin 4 in this embodiment may be formed in the resin sealing step.
  • grooves can be formed in the sealing resin 4 by providing thin plate-like protrusions in a lattice shape in the cavity of the mold for resin sealing.
  • the surface of the circuit board 2 may be exposed without the resin 4 being present at all. Further, the sealing resin 4 may be present at the bottom of the groove. In the present embodiment, it is sufficient that the thickness of the sealing resin 4 is reduced at the boundary line 6.
  • the perforated holes 17 and 19 are formed in all the boundary lines 6 along the X direction, and then the perforated holes 17 are formed in all the boundary lines 6 along the Y direction. , 19 was formed. Then, after sealing the sealed substrate 1 at all the boundary lines 6 along the X direction, the sealed substrate 1 was cut at all the boundary lines 6 along the Y direction.
  • each block may be cut into a plurality of regions 7 units. Specifically, first, perforated holes 17 are formed in all the boundary lines 6 of the sealed substrate 1. Next, the sealed substrate 1 is cut at the boundary line 6 near the center line in the X direction and the Y direction of the sealed substrate 1. Thereby, the sealed substrate 1 is equally divided into four blocks. Next, each of the four blocks is cut into a plurality of area 7 units. According to this method, when the deformation (warping, waviness, deflection, etc.) in the sealed substrate 1 is large, the perforated holes 17 are formed in all the boundary lines 6, thereby causing the deformation. Stress is reduced. Therefore, it is possible to suppress adverse effects caused by the deformation when the sealed substrate 1 is cut.
  • perforated holes 17 are formed in the boundary line 6 near the center line in the X direction and the Y direction of the sealed substrate 1.
  • the sealed substrate 1 is cut at the boundary line 6. Thereby, the sealed substrate 1 is equally divided into four blocks.
  • perforated holes 17 are formed in all the boundary lines 6 for each of the four blocks.
  • the sealed substrate 1 is cut along all the boundary lines 6 for each of the four blocks. Also by this method, when the sealed substrate 1 is cut, adverse effects caused by deformation such as warpage, undulation, and bending can be suppressed.
  • the sealed substrate 1 having the LED chip as the chip 3 and the translucent silicone resin as the sealing resin 4 has been described.
  • a laser diode chip can be used as the chip 3.
  • the present invention can be applied when manufacturing a power semiconductor component.
  • a plurality of chips 3 may be mounted in one area 7.
  • one area 7 to which a plurality of LED chips are attached can function as a surface light source by being separated into pieces.
  • the plurality of chips 3 attached to one region 7 may not have the same function.
  • the one area 7 can be functioned as an optical sensor by being separated into pieces.
  • the table 9 is applied to the irradiation head 10 while irradiating the first laser beam 12 or the second laser beam 18 toward the boundary 6 of the sealed substrate 1. It was decided to move in the X direction or the Y direction. Not limited to this, the irradiation head 10 may be moved in the X direction or the Y direction in the figure with respect to the table 9. Further, both the table 9 and the irradiation head 10 may be moved in the X direction or the Y direction in the figure. In short, the table 9 and the irradiation head 10 may be moved relative to each other in the X or Y direction in the figure.
  • the irradiation position may be moved, and thereby the laser beam and the sealed substrate 1 may be moved relative to each other.
  • the sealed substrate 1 and the irradiation head 10 need not be moved, but may be moved relative to each other in the same manner as described above.
  • the present invention is not limited to this, and the present invention is applied to a case where the boundary line 6 includes a curved line or a broken line in which a plurality of line segments are combined. Therefore, the present invention is also applied to the case where a package (for example, a certain type of memory card) in which a sealed substrate is cut to include a curved line or a broken line in a part of the outer shape is manufactured. In this case, the perforated holes 17 and 19 are formed side by side in a curved line or a polygonal line.
  • the sealed substrate 1 is fixed to the table 9 via the adhesive tape 8.
  • the sealed substrate 1 may be fixed to the table 9 by suction.

Abstract

The issue is to control the adhesion of dross and the occurrence of cracking and chipping of ceramic substrates when cleaving a sealed substrate containing a ceramic substrate or metal substrate with a laser. Disclosed is a cleaving method used when manufacturing multiple electronic components by forming a sealed substrate (1) by sealing chips (3) that have been variously mounted on multiple areas (7) disposed on a circuit board (2) in resin, and then cleaving the sealed substrate (1) along the boundary lines (6) of the multiple areas (7), which cleaving method comprises a step, in which the sealed substrate (1) is affixed to a table (9), and an irradiation step, in which first and second laser lights (12, 18) are irradiated from an irradiation head (10) toward the sealed substrate (1), while the irradiation head (10) and/or sealed substrate (1) are moved relative to one another. In the irradiation step, after perforation holes (17) are formed on the boundary lines (6) by irradiating the first laser light (12), the sealed substrate (1) is cleaved by irradiating the second laser light (18) onto the boundary lines (6).

Description

電子部品製造用の切断装置及び切断方法Cutting apparatus and method for manufacturing electronic parts
 本発明は、複数の領域を有する封止済基板を領域毎に切断することによって複数の電子部品を製造する際に使用される、電子部品製造用の切断装置及び切断方法に関するものである。 The present invention relates to a cutting apparatus and a cutting method for manufacturing an electronic component used when a plurality of electronic components are manufactured by cutting a sealed substrate having a plurality of regions for each region.
 複数の電子部品を効率よく製造する目的で従来から実施されている方式の1つに、次の方式がある。それは、回路基板に装着された複数のチップコンデンサ、LEDチップ、半導体チップ等(以下「チップ」という。)を一括して樹脂封止して封止済基板を形成し、その封止済基板を切断することによって個片化して複数の電子部品を製造する方式である(例えば、特許文献1参照)。特許文献1によれば、封止済基板を切断する際に、ダイシングソーを使用することができ、或いはレーザによりカットすることができる。なお、封止済基板が個片化された個々の電子部品は、しばしばパッケージと呼ばれる。 The following method is one of the methods conventionally used for the purpose of efficiently producing a plurality of electronic components. That is, a plurality of chip capacitors, LED chips, semiconductor chips, etc. (hereinafter referred to as “chips”) mounted on a circuit board are collectively sealed with a resin to form a sealed substrate. In this method, a plurality of electronic components are manufactured by cutting into individual pieces (see, for example, Patent Document 1). According to Patent Document 1, a dicing saw can be used when cutting a sealed substrate, or it can be cut with a laser. An individual electronic component obtained by dividing a sealed substrate is often called a package.
 ところで、特許文献1によれば、回路基板としてガラスエポキシ基板を、樹脂封止に使用される封止樹脂としてエポキシ樹脂、フェノール樹脂、或いはシリコーン樹脂をそれぞれ使用することができる。このことから、回路基板と封止樹脂とが同系統の材料、すなわち樹脂系材料によって構成されているといえる。したがって、回転刃を使用するダイシングソーとレーザとのいずれを使用した場合においても、大きな問題は発生していなかった。 By the way, according to Patent Document 1, a glass epoxy substrate can be used as a circuit board, and an epoxy resin, a phenol resin, or a silicone resin can be used as a sealing resin used for resin sealing. From this, it can be said that the circuit board and the sealing resin are made of the same material, that is, a resin material. Therefore, no major problem has occurred when using either a dicing saw using a rotary blade or a laser.
 さて、近年、回路基板として、ガラスエポキシ基板に代表される樹脂基板に加えて、基材がセラミックスからなる基板(以下「セラミック基板」という)及び基材が金属からなる基板(以下「メタル基板」という)が使用され始めた。セラミック基板及びメタル基板は優れた放熱特性を有するので、LED、半導体レーザ等の光電子部品、パワー半導体素子等に使用されている。 In recent years, as a circuit board, in addition to a resin substrate typified by a glass epoxy substrate, a substrate made of ceramic (hereinafter referred to as “ceramic substrate”) and a substrate made of metal (hereinafter referred to as “metal substrate”). Began to be used. Ceramic substrates and metal substrates have excellent heat dissipation characteristics, and are used for optoelectronic components such as LEDs and semiconductor lasers, power semiconductor elements, and the like.
 ところが、セラミック基板及びメタル基板の基材は、封止樹脂とは性質が異なる。その結果、レーザを使用してセラミック基板又はメタル基板を有する封止済基板を仮想的な切断線において切断する場合には、次の問題が発生している。 However, the base material of the ceramic substrate and the metal substrate has different properties from the sealing resin. As a result, when a sealed substrate having a ceramic substrate or a metal substrate is cut at a virtual cutting line using a laser, the following problem occurs.
 第1の問題は、回路基板を構成する材料が溶融して形成されたドロスがパッケージに付着しやすいので、外観品位の点で歩留まりが低下するという問題である。第2の問題は、回路基板としてセラミック基板を使用する場合の問題である。それは、セラミック基板に加えられた熱衝撃によって内部応力が発生し、特に1本の切断線において切断が終了する直前に内部応力に起因するセラミック基板の割れやチッピング(欠け)が発生するという問題である。 The first problem is that the dross formed by melting the material constituting the circuit board is likely to adhere to the package, resulting in a decrease in yield in terms of appearance quality. The second problem is a problem when a ceramic substrate is used as a circuit board. This is a problem that internal stress is generated by thermal shock applied to the ceramic substrate, and cracking or chipping of the ceramic substrate due to the internal stress occurs particularly at the end of cutting at one cutting line. is there.
特開平09-036151号公報(第3頁、図2)JP 09-036151 (page 3, FIG. 2)
 本発明が解決しようとする課題は、セラミック基板又はメタル基板からなる回路基板を含む封止済基板をレーザによって切断する際に、ドロスが封止済基板に付着すること、及び、内部応力に起因するセラミック基板の割れやチッピング(欠け)が発生することを防止することである。 The problem to be solved by the present invention is that dross adheres to a sealed substrate when a sealed substrate including a circuit board made of a ceramic substrate or a metal substrate is cut by a laser, and internal stress It is to prevent the ceramic substrate from cracking or chipping.
 以下の説明における()内の数字・記号は、図面における符号を示しており、説明における用語と図面に示された構成要素とを対比しやすくする目的で記載されたものである。また、これらの数字は、「説明における用語を、図面に示された構成要素に限定して解釈すること」を意味するものではない。 Numerals / symbols in parentheses in the following description indicate reference numerals in the drawings, and are described for the purpose of facilitating the comparison of the terms in the description and the components shown in the drawings. Further, these numbers do not mean “interpreting the terms in the description limited to the components shown in the drawings”.
 上述の課題を解決するために、本発明に係る電子部品製造用の切断装置は、回路基板(2)に設けられた複数の領域(7)に各々装着されたチップ(3)を樹脂封止することによって封止済基板(1)を形成し、複数の領域(7)の境界線(6)において封止済基板(1)を切断することによって複数の電子部品を製造する際に使用され、封止済基板(1)を固定する固定手段(8)と、レーザ光(12、18)を発生させるレーザ光発生手段(11)と、封止済基板(1)及び/又はレーザ光(12、18)を互いに相対的に移動させる移動手段(9)とを備える電子部品製造用の切断装置であって、
 レーザ光発生手段(11)が境界線(6)においてミシン目状の穴(17、19)を形成するための第1のレーザ光(12)と、ミシン目状の穴(17、19)が形成された境界線(6)において封止済基板(1)を切断するための第2のレーザ光(18)を発生させるものであることを特徴とする。
In order to solve the above-described problems, a cutting apparatus for manufacturing an electronic component according to the present invention includes resin-sealing chips (3) mounted in a plurality of regions (7) provided on a circuit board (2). Used to manufacture a plurality of electronic components by forming a sealed substrate (1) and cutting the sealed substrate (1) at the boundary line (6) of the plurality of regions (7). The fixing means (8) for fixing the sealed substrate (1), the laser light generating means (11) for generating the laser light (12, 18), the sealed substrate (1) and / or the laser light ( 12, 18) a cutting device for manufacturing an electronic component comprising a moving means (9) for moving relative to each other,
The first laser beam (12) for the laser beam generating means (11) to form the perforated holes (17, 19) at the boundary line (6) and the perforated holes (17, 19) The second laser beam (18) for cutting the sealed substrate (1) is generated at the formed boundary line (6).
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述の第1のレーザ光(12)がパルス状のものであり、かつ、第2のレーザ光(18)が連続的なものであることを特徴とする。 In one embodiment, the cutting device for manufacturing an electronic component according to the present invention is such that the first laser beam (12) is pulsed and the second laser beam (18) is continuous. It is characteristic.
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述のレーザ光発生手段(11)がファイバーレーザ発振器又はYAGレーザ発振器を有することを特徴とする。 Also, the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the laser light generating means (11) includes a fiber laser oscillator or a YAG laser oscillator.
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述のミシン目状の穴(17、19)が貫通穴(17)であることを特徴とする。 Moreover, the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are through holes (17).
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述のミシン目状の穴(17、19)が止り穴(19)であることを特徴とする。 Moreover, the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are blind holes (19).
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述の回路基板(2)の基材がセラミックス又は金属であることを特徴とする。 Also, the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the base material of the circuit board (2) is ceramic or metal.
 また、本発明に係る電子部品製造用の切断装置は、一つの態様において、上述の電子部品が光電子部品又はパワー半導体部品であることを特徴とする。 Moreover, the cutting device for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the electronic component is an optoelectronic component or a power semiconductor component.
 また、本発明に係る電子部品製造用の切断方法は、回路基板(2)に設けられた複数の領域(7)に各々装着されたチップ(3)を樹脂封止することによって封止済基板(1)を形成し、複数の領域(7)の境界線(6)に沿って封止済基板(1)を切断することによって複数の電子部品を製造する際に使用され、封止済基板(1)を固定する工程と、封止済基板(1)に向けてレーザ光(12、18)を照射しながら封止済基板(1)及び/又はレーザ光(12、18)を互いに相対的に移動させる照射工程とを備える電子部品製造用の切断方法であって、
 前記照射工程では、封止済基板(1)に向けて第1のレーザ光(12)を照射することによって境界線(6)においてミシン目状の穴(17、19)を形成した後に、境界線(6)に向けて第2のレーザ光(18)を照射することによって封止済基板(1)を切断することを特徴とする。
Moreover, the cutting method for manufacturing an electronic component according to the present invention provides a sealed substrate by resin-sealing the chip (3) mounted on each of the plurality of regions (7) provided on the circuit board (2). Formed (1) and used in manufacturing a plurality of electronic components by cutting the sealed substrate (1) along the boundary line (6) of the plurality of regions (7), and the sealed substrate The step (1) is fixed, and the sealed substrate (1) and / or the laser beam (12, 18) are made relative to each other while irradiating the laser beam (12, 18) toward the sealed substrate (1). A cutting method for manufacturing an electronic component comprising an irradiation step of automatically moving,
In the irradiation step, a perforated hole (17, 19) is formed in the boundary line (6) by irradiating the first laser beam (12) toward the sealed substrate (1), and then the boundary The sealed substrate (1) is cut by irradiating the second laser beam (18) toward the line (6).
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述の第1のレーザ光(12)がパルス状のものであり、かつ、第2のレーザ光(18)が連続的なものであることを特徴とする。 In one embodiment, the cutting method for manufacturing an electronic component according to the present invention is such that the first laser beam (12) is pulsed and the second laser beam (18) is continuous. It is characteristic.
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述の照射工程では、ファイバーレーザ発振器又はYAGレーザ発振器によって第1のレーザ光(12)及び第2のレーザ光(18)を発生させることを特徴とする。 In one embodiment, the cutting method for manufacturing an electronic component according to the present invention includes, in the above-described irradiation step, a first laser beam (12) and a second laser beam (18) by a fiber laser oscillator or a YAG laser oscillator. ).
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述のミシン目状の穴(17、19)が貫通穴(17)であることを特徴とする。 Also, the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are through holes (17).
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述のミシン目状の穴(17、19)が止り穴(19)であることを特徴とする。 Further, the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the perforated holes (17, 19) are blind holes (19).
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述の回路基板(2)の基材がセラミックス又は金属であることを特徴とする。 Moreover, the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the base material of the circuit board (2) is ceramic or metal.
 また、本発明に係る電子部品製造用の切断方法は、一つの態様において、上述の電子部品が光電子部品又はパワー半導体部品であることを特徴とする。 Moreover, the cutting method for manufacturing an electronic component according to the present invention is characterized in that, in one aspect, the electronic component is an optoelectronic component or a power semiconductor component.
 本発明によれば、封止済基板(1)の境界線(6)において、第1のレーザ光を使用してミシン目状の穴(17、19)を形成した後に、第2のレーザ光を使用して封止済基板(1)を切断(フルカット)する。このとき、ミシン目状の穴(17、19)を形成する際に除去される部分の体積とその後の切断(フルカット)によって除去される部分の体積の和が、従来のように1回のレーザ光の照射で封止済基板(1)を一気に切断(フルカット)する場合における除去される部分の体積に等しい。言い換えれば、本発明における2回の照射のそれぞれによって封止済基板(1)から除去される各部分の体積は、従来の1回の照射によって封止済基板(1)を切断する際にその封止済基板(1)から除去される部分の体積と比較して、いずれも小さい。このように本発明では、1回あたりのレーザ照射で除去される部分の体積が小さいため各照射で発生するドロスの量が少なく、特に第2のレーザ光を照射したときのドロスの発生量が少ないことによって、最終的に切断部に付着するドロスの量が少ない。また、各レーザ照射でのドロスの発生量が少なければ、レーザ照射中にガスの噴射等によりドロスを容易に除去することができる。したがって、封止済基板(1)を切断する際の封止済基板1へのドロスの付着が抑制されるとともに、切断面における良好な切断品位が得られる。 According to the present invention, after forming the perforated holes (17, 19) using the first laser light at the boundary line (6) of the sealed substrate (1), the second laser light is formed. Is used to cut (full cut) the sealed substrate (1). At this time, the sum of the volume of the part removed when forming the perforated holes (17, 19) and the volume of the part removed by the subsequent cutting (full cut) is one time as in the conventional case. It is equal to the volume of the part to be removed when the sealed substrate (1) is cut at a stroke (full cut) by laser light irradiation. In other words, the volume of each part removed from the sealed substrate (1) by each of the two irradiations in the present invention is the same as that when the sealed substrate (1) is cut by the conventional one irradiation. All are small compared with the volume of the part removed from the sealed substrate (1). As described above, in the present invention, since the volume of the portion removed by the laser irradiation per time is small, the amount of dross generated by each irradiation is small. In particular, the amount of dross generated when the second laser beam is irradiated is small. By being small, the amount of dross that finally adheres to the cut portion is small. If the amount of dross generated by each laser irradiation is small, the dross can be easily removed by gas injection or the like during laser irradiation. Therefore, adhesion of dross to the sealed substrate 1 when cutting the sealed substrate (1) is suppressed, and a good cutting quality at the cut surface is obtained.
 また、本発明によれば、封止済基板(1)がセラミック基板を含む場合において、第1のレーザ光を使用してミシン目状の穴(17、19)が形成された封止済基板(1)を、第2のレーザ光を使用して切断する。このように切断しようとする箇所に予めミシン目状の穴(17、19)を形成しておくことにより、切断時には比較的短時間で切断を終えることができる。また、ミシン目状の穴(17、19)により切断部付近の表面積が大きく、レーザ照射によって発生する熱が放出されやすい。これらにより、ミシン目状の穴(17、19)の近傍において熱が溜まりにくく、第2のレーザ光が照射されることによって発生する熱応力が緩和される。このことによって、ミシン目状の穴(17、19)の近傍において封止済基板(1)が受ける応力、特にセラミック基板が受ける応力が減少する。したがって、内部応力に起因するセラミック基板の割れやチッピングの発生が抑制される。 Further, according to the present invention, when the sealed substrate (1) includes a ceramic substrate, the sealed substrate in which the perforated holes (17, 19) are formed using the first laser beam. (1) is cut using the second laser beam. By forming perforated holes (17, 19) in advance at the location to be cut in this way, the cutting can be completed in a relatively short time during cutting. Further, the surface area near the cut portion is large due to the perforated holes (17, 19), and heat generated by laser irradiation is easily released. As a result, heat hardly accumulates in the vicinity of the perforated holes (17, 19), and thermal stress generated by irradiation with the second laser light is relieved. This reduces the stress that the sealed substrate (1) receives in the vicinity of the perforated holes (17, 19), particularly the stress that the ceramic substrate receives. Therefore, the generation of cracks and chipping of the ceramic substrate due to internal stress is suppressed.
図1は、実施例1に係る電子部品製造用の切断装置が封止済基板にミシン目状の穴を形成している状態を示す断面図である。FIG. 1 is a cross-sectional view illustrating a state in which the cutting device for manufacturing an electronic component according to the first embodiment forms a perforated hole in a sealed substrate. 図2(1)は実施例1に係る電子部品製造用の切断装置が封止済基板にミシン目状の穴である貫通穴を形成している状態を、図2(2)はミシン目状の貫通穴が形成された封止済基板を、図2(3)は封止済基板を切断している状態を、それぞれ示す断面図である。2 (1) shows a state in which the cutting device for manufacturing electronic components according to the first embodiment forms through holes, which are perforated holes, in the sealed substrate, and FIG. 2 (2) shows a perforated shape. FIG. 2C is a cross-sectional view showing a state in which the sealed substrate is cut, and FIG. 図3(1)は実施例2に係る電子部品製造用の切断装置が封止済基板にミシン目状の穴である止り穴を形成している状態を、図3(2)はミシン目状の止り穴が形成された封止済基板を、図3(3)は封止済基板を切断している状態を、それぞれ示す断面図である。FIG. 3 (1) shows a state in which the cutting device for manufacturing an electronic component according to the second embodiment forms a blind hole which is a perforated hole in the sealed substrate, and FIG. 3 (2) shows a perforated shape. FIG. 3C is a cross-sectional view showing a state where the sealed substrate is cut, and FIG. 図4(1)は実施例3に係る電子部品製造用の切断装置が封止樹脂に溝を形成している状態を、図4(2)はミシン目状の貫通穴を回路基板に形成している状態を、図4(3)はその切断装置が封止済基板を切断している状態を、それぞれ示す断面図である。4 (1) shows a state in which the cutting apparatus for manufacturing an electronic component according to Example 3 forms a groove in the sealing resin, and FIG. 4 (2) shows a perforated through hole formed in the circuit board. FIG. 4 (3) is a cross-sectional view showing a state where the cutting device is cutting the sealed substrate.
 本発明に係る電子部品製造用の切断方法は、回路基板(2)に設けられた複数の領域(7)に各々装着されたチップ(3)を樹脂封止することによって封止済基板(1)を形成し、複数の領域(7)の境界線(6)に沿って封止済基板(1)を切断することによって複数の電子部品を製造する際に使用される切断方法であって、テーブル(9)に封止済基板(1)を固定する工程と、照射ヘッド(10)から封止済基板(1)に向かって第1のレーザ光(12)又は第2のレーザ光(18)を照射しながら照射ヘッド(10)及び/又は封止済基板(1)を互いに相対的に移動させる照射工程とを備える。照射工程では、第1のレーザ光(12)を照射することにより境界線(6)においてミシン目状の穴(17)を形成した後に、境界線(6)に向かって第2のレーザ光(18)を照射することにより封止済基板(1)を切断する。 In the cutting method for manufacturing an electronic component according to the present invention, the sealed substrate (1) is formed by resin-sealing the chip (3) mounted on each of the plurality of regions (7) provided on the circuit board (2). A cutting method used in manufacturing a plurality of electronic components by cutting the sealed substrate (1) along the boundary line (6) of the plurality of regions (7), The step of fixing the sealed substrate (1) to the table (9) and the first laser beam (12) or the second laser beam (18) from the irradiation head (10) toward the sealed substrate (1). ), And an irradiation step of moving the irradiation head (10) and / or the sealed substrate (1) relative to each other. In the irradiation step, a perforated hole (17) is formed in the boundary line (6) by irradiating the first laser light (12), and then the second laser light ( 18), the sealed substrate (1) is cut.
 本発明に係る電子部品製造用の切断装置の実施例1を、図1を参照して説明する。図1は、本実施例に係る電子部品製造用の切断装置が封止済基板にミシン目状の穴を形成している状態を示す概略断面図である。図1に示された切断装置は、封止済基板1を複数の電子部品に個片化する切断装置である。なお、本出願書類に含まれるいずれの図についても、わかりやすくするために、適宜省略し又は誇張して模式的に描かれている。ここで、「ミシン目状の穴」とは、所定の間隔を空けて離隔的に設けられた穴をいい、貫通穴と止り穴とのいずれも含んでいる。 Embodiment 1 of a cutting apparatus for manufacturing an electronic component according to the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing a state in which a cutting device for manufacturing an electronic component according to the present embodiment forms a perforated hole in a sealed substrate. The cutting device shown in FIG. 1 is a cutting device that separates a sealed substrate 1 into a plurality of electronic components. In addition, in order to make it easy to understand, any figure included in this application document is schematically omitted or exaggerated as appropriate. Here, the “perforated hole” means a hole provided at a predetermined interval and includes both a through hole and a blind hole.
 図1に示されているように、封止済基板1は、回路基板2と、回路基板2に実装された複数のチップ3と、複数のチップ3を一括して覆うようにして形成された封止樹脂4とを有する。図1では、回路基板2としてセラミック基板又はメタル基板が、封止樹脂4として透光性を有するシリコーン樹脂が、チップ3としてLEDチップが、それぞれ使用されている。したがって、封止済基板1は、セラミックス基板又はメタル基板とプラスチックとからなる複合材料であるといえる。なお、メタル基板には、メタルコア基板、メタルベース基板、及びホーロー基板が含まれる。 As shown in FIG. 1, the sealed substrate 1 is formed so as to cover the circuit board 2, the plurality of chips 3 mounted on the circuit board 2, and the plurality of chips 3 together. And a sealing resin 4. In FIG. 1, a ceramic substrate or a metal substrate is used as the circuit board 2, a translucent silicone resin is used as the sealing resin 4, and an LED chip is used as the chip 3. Therefore, it can be said that the sealed substrate 1 is a composite material composed of a ceramic substrate or a metal substrate and plastic. The metal substrate includes a metal core substrate, a metal base substrate, and a hollow substrate.
 封止樹脂4は、チップ3にそれぞれ対応するレンズ部5を有する。封止済基板1は、格子状の境界線6によって複数の領域7に区切られている。このことによって、各境界線6は線分によって構成されていることになる。したがって、各領域7の形状は長方形(正方形を含む)である。また、図1には、複数の領域7のそれぞれに1個のチップ3が装着された例が示されている。 The sealing resin 4 has lens portions 5 corresponding to the chips 3 respectively. The sealed substrate 1 is divided into a plurality of regions 7 by lattice-like boundary lines 6. Thus, each boundary line 6 is composed of line segments. Therefore, the shape of each region 7 is a rectangle (including a square). FIG. 1 shows an example in which one chip 3 is attached to each of a plurality of regions 7.
 なお、図1は、レンズ部5が凸レンズを構成し、レンズ部5とチップ3とが1対1で対応する例を示す。これに限らず、レンズ部5は、光を収束する機能、平行光にする機能、又は、拡散する機能を有していればよい。また、レンズ部5は、複数のレンズを有していてもよく、フレネルレンズ等であってもよい。 FIG. 1 shows an example in which the lens unit 5 constitutes a convex lens, and the lens unit 5 and the chip 3 correspond one-to-one. Not only this but the lens part 5 should just have the function to converge light, the function to make parallel light, or the function to diffuse. The lens unit 5 may have a plurality of lenses, and may be a Fresnel lens or the like.
 封止済基板1は、粘着テープ8を介してテーブル9に固定される。テーブル9は、図に示されたX方向、Y方向、及び、Z方向に移動可能であるとともに、θ方向に回転可能であるようにして設けられている。封止済基板1の上方には照射ヘッド10が配置されている。その照射ヘッド10に光学的に接続されて、レーザ発振器11が設けられている。照射ヘッド10は、レーザ発振器11が発生させたレーザ光を、封止済基板1に向かって第1のレーザ光12として照射する。また、照射ヘッド10は、レーザ発振器11が発生させたレーザ光を、封止済基板1に向かって第2のレーザ光(後述)として照射することもできる。ここで、レーザ発振器11は第1のレーザ光12と第2のレーザ光とを発生させることができる。そして、第1のレーザ光12はパルス状のものであり、第2のレーザ光は連続的なものである。 The sealed substrate 1 is fixed to the table 9 via an adhesive tape 8. The table 9 is provided so as to be movable in the X direction, the Y direction, and the Z direction shown in the drawing and to be rotatable in the θ direction. An irradiation head 10 is disposed above the sealed substrate 1. A laser oscillator 11 is optically connected to the irradiation head 10. The irradiation head 10 irradiates the laser beam generated by the laser oscillator 11 toward the sealed substrate 1 as the first laser beam 12. The irradiation head 10 can also irradiate the laser beam generated by the laser oscillator 11 toward the sealed substrate 1 as a second laser beam (described later). Here, the laser oscillator 11 can generate the first laser beam 12 and the second laser beam. The first laser beam 12 is pulsed, and the second laser beam is continuous.
 照射ヘッド10には配管13が設けられ、その配管13を経由して照射ヘッド10の内部にアシストガス14が供給される。照射ヘッド10の下部にはノズル15が設けられている。そのノズル15の開口から封止済基板1の被照射部16に向かって、第1のレーザ光12が照射されるとともにアシストガス14が噴射される。 The irradiation head 10 is provided with a pipe 13, and the assist gas 14 is supplied into the irradiation head 10 through the pipe 13. A nozzle 15 is provided below the irradiation head 10. The first laser beam 12 is irradiated from the opening of the nozzle 15 toward the irradiated portion 16 of the sealed substrate 1 and the assist gas 14 is injected.
 以下、本実施例に係る電子部品製造用の切断装置の動作を、図1と図2とを参照して説明する。図2(1)は本実施例に係る電子部品製造用の切断装置が封止済基板にミシン目状の貫通穴を形成している状態を、図2(2)はミシン目状の貫通穴が形成された封止済基板を、図2(3)は封止済基板を切断している状態を、それぞれ示す断面図である。 Hereinafter, the operation of the cutting apparatus for manufacturing an electronic component according to the present embodiment will be described with reference to FIG. 1 and FIG. 2 (1) shows a state in which the cutting device for manufacturing an electronic component according to the present embodiment forms a perforated through hole in the sealed substrate, and FIG. 2 (2) shows a perforated through hole. FIG. 2C is a cross-sectional view showing a state where the sealed substrate is cut, and FIG.
 まず、図1と図2(1)とに示すように、パルス状の第1のレーザ光12を封止済基板1の境界線6に向かって照射させながら、照射ヘッド10に対してテーブル9を図の+X方向に移動させる。また、封止済基板1の境界線6に向かって、第1のレーザ光12を照射するとともにアシストガス14を噴射する。アシストガス14を噴射することによって、発生したドロスを吹き飛ばして除去することができる。第1のレーザ光12の照射条件は、複合材料である封止済基板1に貫通穴を開けることができるように、予め設定されている。これにより、図2(2)に示すように、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、貫通穴からなるミシン目状の穴17を開けることができる。 First, as shown in FIGS. 1 and 2 (1), the table 9 is applied to the irradiation head 10 while irradiating the pulsed first laser beam 12 toward the boundary line 6 of the sealed substrate 1. Is moved in the + X direction in the figure. In addition, the first laser beam 12 is irradiated toward the boundary line 6 of the sealed substrate 1 and the assist gas 14 is injected. By injecting the assist gas 14, the generated dross can be blown off and removed. The irradiation condition of the first laser beam 12 is set in advance so that a through hole can be formed in the sealed substrate 1 that is a composite material. Thereby, as shown in FIG. 2 (2), a perforated hole 17 consisting of a through hole can be formed in one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. it can.
 次に、封止済基板1の境界線6のうちX方向に沿う残りのすべての境界線6において、貫通穴からなるミシン目状の穴17を開ける。これにより、境界線6のうちX方向に沿うすべての境界線6において、貫通穴からなるミシン目状の穴17が形成される。 Next, perforated holes 17 made of through holes are formed in all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1. As a result, perforated holes 17 including through holes are formed in all the boundary lines 6 along the X direction among the boundary lines 6.
 次に、格子状の境界線6のうちY方向に沿う境界線6において、貫通穴からなるミシン目状の穴17を開ける。具体的には、Y方向に沿う1本の境界線6に向かって第1のレーザ光12を照射させながら、照射ヘッド10に対してテーブル9を図の+Y(又は-Y)方向に移動させる。引き続いて、封止済基板1の境界線6のうちY方向に沿う残りのすべての境界線6において、貫通穴からなるミシン目状の穴17を開ける。ここまでの工程によって、封止済基板1のすべての境界線6において貫通穴からなるミシン目状の穴17が形成される。 Next, a perforated hole 17 made of a through hole is opened at the boundary line 6 along the Y direction among the lattice-like boundary lines 6. Specifically, the table 9 is moved in the + Y (or -Y) direction of the drawing with respect to the irradiation head 10 while irradiating the first laser beam 12 toward one boundary line 6 along the Y direction. . Subsequently, perforated holes 17 including through holes are formed in all the remaining boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1. Through the steps so far, the perforated holes 17 including the through holes are formed in all the boundary lines 6 of the sealed substrate 1.
 次に、図2(3)に示すように、連続的な第2のレーザ光18を封止済基板1の境界線6に向かって照射させながら、照射ヘッド10に対してテーブル9を図の+X方向に移動させる。また、封止済基板1の境界線6に向かって、第2のレーザ光18を照射するとともにアシストガス14(図1参照)を噴射する。第2のレーザ光18の照射条件は、貫通穴からなるミシン目状の穴17が形成された封止済基板1を完全に切断することができるように、予め設定されている。これにより、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、封止済基板1を完全に切断する(フルカットする)ことができる。 Next, as shown in FIG. 2 (3), the table 9 is placed on the irradiation head 10 while irradiating the continuous second laser beam 18 toward the boundary line 6 of the sealed substrate 1. Move in + X direction. Further, the second laser beam 18 is irradiated toward the boundary line 6 of the sealed substrate 1 and the assist gas 14 (see FIG. 1) is injected. The irradiation condition of the second laser beam 18 is set in advance so that the sealed substrate 1 in which the perforated hole 17 including the through hole is formed can be completely cut. Thereby, the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
 次に、封止済基板1の境界線6のうちX方向に沿う残りのすべての境界線6において、封止済基板1を完全に切断する。 Next, the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
 次に、格子状の境界線6のうちY方向に沿うすべての境界線6において、封止済基板1を完全に切断する。具体的には、Y方向に沿う1本の境界線6に向かって第2のレーザ光18を照射させながら、照射ヘッド10に対してテーブル9を図の+Y(又は-Y)方向に移動させる。引き続いて、封止済基板1の境界線6のうちY方向に沿う残りのすべての境界線6において、封止済基板1を切断する。ここまでの工程によって、すべての境界線6において封止済基板1を切断することができる。したがって、封止済基板1は、複数の領域7にそれぞれ対応する複数のパッケージに個片化される。 Next, the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6. Specifically, the table 9 is moved in the + Y (or -Y) direction of the figure with respect to the irradiation head 10 while irradiating the second laser beam 18 toward one boundary line 6 along the Y direction. . Subsequently, the sealed substrate 1 is cut at all the remaining boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1. Through the steps so far, the sealed substrate 1 can be cut at all the boundary lines 6. Therefore, the sealed substrate 1 is separated into a plurality of packages respectively corresponding to the plurality of regions 7.
 本実施例によれば、次の効果が得られる。第1の効果は、封止済基板1を切断する際にドロスの発生が抑制されることである。本実施例においては、2回の照射のそれぞれによって封止済基板1から除去される各部分の体積が、1回の照射によって封止済基板を切断する際にその封止済基板から除去される部分の体積と比較して、いずれも小さい。これにより、2回の照射のそれぞれによって封止済基板1において溶融した部分がアシストガスによって除去されやすくなる。したがって、封止済基板1を切断する際の封止済基板1へのドロスの付着が抑制される。 According to this embodiment, the following effects can be obtained. The first effect is that the occurrence of dross is suppressed when the sealed substrate 1 is cut. In this embodiment, the volume of each part removed from the sealed substrate 1 by each of the two irradiations is removed from the sealed substrate when the sealed substrate is cut by one irradiation. Both are small compared with the volume of the part to be. Thereby, the melted portion of the sealed substrate 1 by each of the two irradiations is easily removed by the assist gas. Therefore, adhesion of dross to the sealed substrate 1 when cutting the sealed substrate 1 is suppressed.
 第2の効果は、切断面における良好な切断品位が得られることである。上述した通り、2回の照射のそれぞれによって封止済基板1において溶融した部分がアシストガスによって除去されやすくなる。したがって、製造された電子部品の切断面において良好な切断品位が得られる。 The second effect is that a good cutting quality at the cut surface can be obtained. As described above, the melted portion of the sealed substrate 1 by each of the two irradiations is easily removed by the assist gas. Therefore, a good cutting quality can be obtained at the cut surface of the manufactured electronic component.
 第3の効果は、回路基板2としてセラミック基板を使用した場合に、内部応力に起因するセラミック基板の割れやチッピングの発生が抑制されることである。本実施例においては、パルス状のレーザを使用してミシン目状の穴17が形成された封止済基板1を、連続的なレーザを使用して切断する。これにより、ミシン目状の穴17の近傍において、連続的なレーザが照射されることによって発生する熱応力が緩和される。このことによって、ミシン目状の穴17の近傍において封止済基板1が受ける応力、特にセラミック基板からなる回路基板2が受ける応力が減少する。したがって、内部応力に起因する回路基板2の割れやチッピングの発生が抑制される。 The third effect is that when a ceramic substrate is used as the circuit board 2, the occurrence of cracking and chipping of the ceramic substrate due to internal stress is suppressed. In this embodiment, the sealed substrate 1 in which the perforated holes 17 are formed using a pulsed laser is cut using a continuous laser. Thus, thermal stress generated by continuous laser irradiation in the vicinity of the perforated hole 17 is alleviated. As a result, the stress received by the sealed substrate 1 in the vicinity of the perforated hole 17, particularly the stress received by the circuit board 2 made of a ceramic substrate, is reduced. Therefore, the occurrence of cracking and chipping of the circuit board 2 due to internal stress is suppressed.
 なお、本実施例においては、ミシン目状の穴17の径及び穴中心間の間隔(中心間ピッチ)は、第1のレーザ光12の照射条件によって決定される。照射条件とは、例えば、レーザの種類、エネルギー、周波数、デューティ比、照射径、テーブル9の移動速度、アシストガス14の種類及び圧力等である。また、ミシン目状の穴17の径及び穴中心間の間隔は、第2のレーザ光18の照射によってミシン目状の穴17が形成された封止済基板1を完全に切断することができるように、予め設定されている。また、本実施例は、封止樹脂4及び回路基板2の材質、厚さ等に応じてミシン目状の穴17の径及び穴中心間の間隔を適切に設定することによって、様々な仕様の回路基板2に対して適用可能になる。 In this embodiment, the diameter of the perforated holes 17 and the interval between the hole centers (inter-center pitch) are determined by the irradiation condition of the first laser beam 12. The irradiation conditions include, for example, the type of laser, energy, frequency, duty ratio, irradiation diameter, moving speed of the table 9, the type and pressure of the assist gas 14. Further, the diameter of the perforated holes 17 and the distance between the hole centers can completely cut the sealed substrate 1 on which the perforated holes 17 are formed by the irradiation of the second laser light 18. As such, it is set in advance. Further, in this embodiment, by appropriately setting the diameter of the perforated holes 17 and the distance between the hole centers according to the material, thickness and the like of the sealing resin 4 and the circuit board 2, various specifications can be obtained. Applicable to the circuit board 2.
 本発明では、第1のレーザ光12を照射するために、YAGレーザ(例えば、波長1064nm)、ファイバーレーザ(例えば、波長1070nm)等を使用する。また、パルス状のレーザ光の照射条件についてエネルギーを200W、テーブル9の移動速度を300mm/secとし、連続的なレーザ光の照射条件についてエネルギーを300W、テーブル9の移動速度を150mm/secとする。エネルギーについて(連続的なレーザ光のエネルギー)>(パルス状のレーザ光のエネルギー)とし、テーブル9の移動速度について(連続的なレーザ光での移動速度)<(パルス状のレーザ光での移動速度)とすることによって、切断された部分において良好な断面品位を得ることができる。 In the present invention, a YAG laser (for example, wavelength 1064 nm), a fiber laser (for example, wavelength 1070 nm) or the like is used to irradiate the first laser beam 12. Also, the energy is 200 W for the pulsed laser light irradiation condition, the moving speed of the table 9 is 300 mm / sec, the energy is 300 W for the continuous laser light irradiation condition, and the moving speed of the table 9 is 150 mm / sec. . Energy (continuous laser light energy)> (pulsed laser light energy), and table 9 moving speed (moving speed with continuous laser light) <(moving with pulsed laser light) By setting the speed), a good cross-sectional quality can be obtained at the cut portion.
 本発明に係る電子部品製造用の切断装置の実施例2を、図3を参照して説明する。図3(1)は本実施例に係る電子部品製造用の切断装置が封止済基板にミシン目状の止り穴を形成している状態を、図3(2)はミシン目状の止り穴が形成された封止済基板を、図3(3)は封止済基板を切断している状態を、それぞれ示す断面図である。 Embodiment 2 of a cutting apparatus for manufacturing electronic parts according to the present invention will be described with reference to FIG. 3 (1) shows a state in which the cutting apparatus for manufacturing electronic components according to this embodiment forms a perforated blind hole in the sealed substrate, and FIG. 3 (2) shows a perforated blind hole. FIG. 3C is a cross-sectional view showing a state where the sealed substrate is cut, and FIG.
 本実施例では、まず、図3(1)に示すように、パルス状である第1のレーザ光12を封止済基板1の境界線6に向かって照射させながら、照射ヘッド10に対してテーブル9を図の+X方向に移動させる。第1のレーザ光12の照射条件は、複合材料である封止済基板1に止り穴を開けることができるように、予め設定されている。このことにより、図3(2)に示すように、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、止り穴からなるミシン目状の穴19を開けることができる。 In this embodiment, first, as shown in FIG. 3A, the irradiation head 10 is irradiated while irradiating the pulsed first laser light 12 toward the boundary line 6 of the sealed substrate 1. The table 9 is moved in the + X direction in the figure. The irradiation condition of the first laser beam 12 is set in advance so that a blind hole can be formed in the sealed substrate 1 that is a composite material. As a result, as shown in FIG. 3B, a perforated hole 19 made of a blind hole is formed in one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. Can do.
 次に、封止済基板1の境界線6のうちX方向に沿う残りのすべての境界線6において、止り穴からなるミシン目状の穴19を開ける。これにより、境界線6のうちX方向に沿うすべての境界線6において、止り穴からなるミシン目状の穴19が形成される。 Next, perforated holes 19 made of blind holes are formed in all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1. As a result, perforated holes 19 formed of blind holes are formed in all of the boundary lines 6 along the X direction.
 次に、格子状の境界線6のうちY方向に沿うすべての境界線6において、止り穴からなるミシン目状の穴19を開ける。 Next, perforated holes 19 made of blind holes are formed in all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6.
 次に、図3(3)に示すように、連続的な第2のレーザ光18を封止済基板1の境界線6に向かって照射させながら、照射ヘッド10に対してテーブル9を図の+X方向に移動させる。これにより、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、封止済基板1を完全に切断する(フルカットする)ことができる。 Next, as shown in FIG. 3 (3), the table 9 is moved to the irradiation head 10 while irradiating the continuous second laser beam 18 toward the boundary line 6 of the sealed substrate 1. Move in + X direction. Thereby, the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
 次に、封止済基板1の境界線6のうちX方向に沿う残りのすべての境界線6において、封止済基板1を完全に切断する。 Next, the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1.
 次に、格子状の境界線6のうちY方向に沿うすべての境界線6において、封止済基板1を完全に切断する。ここまでの工程によって、すべての境界線6において封止済基板1を切断することができる。したがって、封止済基板1は、複数の領域7にそれぞれ対応する複数のパッケージに個片化される。 Next, the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the lattice-shaped boundary lines 6. Through the steps so far, the sealed substrate 1 can be cut at all the boundary lines 6. Therefore, the sealed substrate 1 is separated into a plurality of packages respectively corresponding to the plurality of regions 7.
 本実施例の特徴は、パルス状である第1のレーザ光12を封止済基板1の境界線6に向かって照射することによって、止り穴からなるミシン目状の穴19を開けることである。これらのミシン目状の穴19は、封止樹脂4の側に開口を有するとともに、回路基板2において内底面を有する。言い換えると、ミシン目状の穴19は、封止済基板1の厚さ方向において封止樹脂4の側から回路基板2の途中まで形成されている。そして、実施例1の場合と同様に、ミシン目状の穴19の径・深さ、及び、穴中心間の間隔(中心間ピッチ)は、第1のレーザ光12の照射条件によって決定される。また、ミシン目状の穴19の径・深さ及び穴中心間の間隔は、第2のレーザ光18の照射によってミシン目状の穴19が形成された封止済基板1を完全に切断することができるように、予め設定されている。 A feature of the present embodiment is that a perforated hole 19 formed of a blind hole is formed by irradiating the pulsed first laser light 12 toward the boundary line 6 of the sealed substrate 1. . These perforated holes 19 have an opening on the sealing resin 4 side and an inner bottom surface in the circuit board 2. In other words, the perforated hole 19 is formed from the sealing resin 4 side to the middle of the circuit board 2 in the thickness direction of the sealed substrate 1. As in the first embodiment, the diameter and depth of the perforated holes 19 and the distance between the hole centers (inter-center pitch) are determined by the irradiation condition of the first laser beam 12. . The diameter and depth of the perforated holes 19 and the distance between the hole centers are such that the sealed substrate 1 on which the perforated holes 19 are formed is completely cut by irradiation with the second laser light 18. It is set in advance so that it can be performed.
 本実施例によれば、実施例1と同様の効果が得られる。また、本実施例は、封止樹脂4及び回路基板2の材質、厚さ等に応じてミシン目状の穴19の径・深さ及び穴中心間の間隔を適切に設定することによって、様々な仕様の回路基板2に対して適用可能になる。 According to the present embodiment, the same effect as in the first embodiment can be obtained. In addition, according to the present embodiment, the diameter and depth of the perforated holes 19 and the interval between the hole centers are appropriately set according to the material and thickness of the sealing resin 4 and the circuit board 2. It becomes applicable to the circuit board 2 of various specifications.
 本発明に係る電子部品製造用の切断装置の実施例3を、図4を参照して説明する。図4(1)は本実施例に係る電子部品製造用の切断装置が封止済基板の封止樹脂に溝を形成している状態を、図4(2)はミシン目状の貫通穴を回路基板に形成している状態を、図4(3)はその切断装置が封止済基板を切断している状態をそれぞれ示す断面図である。 Embodiment 3 of a cutting apparatus for manufacturing electronic parts according to the present invention will be described with reference to FIG. 4 (1) shows a state in which the cutting device for manufacturing electronic components according to this embodiment forms a groove in the sealing resin of the sealed substrate, and FIG. 4 (2) shows a perforated through hole. FIG. 4 (3) is a cross-sectional view showing a state where the circuit board is formed, and FIG. 4 (3) is a state where the cutting device is cutting the sealed substrate.
 本実施例では、まず、図4(1)に示すように、回転刃20を使用して、封止済基板の封止樹脂4に溝を形成する。図4(1)には、テーブル9が-X方向(左方向)に移動することによって、回転刃20の左側に溝(符号なし)を形成する様子が示されている。なお、図4では、わかりやすくするために回転刃20が小さく示されている。 In the present embodiment, first, as shown in FIG. 4A, a groove is formed in the sealing resin 4 of the sealed substrate using the rotary blade 20. FIG. 4 (1) shows a state in which a groove (not shown) is formed on the left side of the rotary blade 20 by moving the table 9 in the −X direction (left direction). In FIG. 4, the rotary blade 20 is shown small for easy understanding.
 次に、図4(2)に示すように、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、回路基板2に第1のレーザ光12を照射する。このことによって、貫通穴からなるミシン目状の穴21を回路基板2に形成する。引き続き、封止済基板1のすべての境界線6において、貫通穴からなるミシン目状の穴21を回路基板2に形成する。 Next, as shown in FIG. 4 (2), the first laser beam 12 is irradiated to the circuit board 2 at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. As a result, a perforated hole 21 made of a through hole is formed in the circuit board 2. Subsequently, perforated holes 21 made of through holes are formed in the circuit board 2 at all the boundary lines 6 of the sealed substrate 1.
 次に、図4(3)に示すように、封止済基板1の境界線6における回路基板2に向かって、連続的な第2のレーザ光18を照射させながら、照射ヘッド10(図1参照)に対してテーブル9を図の+X方向に移動させる。これにより、封止済基板1の境界線6のうちX方向に沿う1本の境界線6において、封止済基板1を完全に切断する(フルカットする)ことができる。その後に、封止済基板1の境界線6のうちX方向に沿う残りのすべての境界線6において、封止済基板1を完全に切断する。引き続き、封止済基板1の境界線6のうちY方向に沿うすべての境界線6において、封止済基板1を完全に切断する。 Next, as shown in FIG. 4 (3), the irradiation head 10 (FIG. 1) is irradiated while irradiating the continuous second laser light 18 toward the circuit board 2 at the boundary line 6 of the sealed substrate 1. The table 9 is moved in the + X direction in the figure. Thereby, the sealed substrate 1 can be completely cut (full cut) at one boundary line 6 along the X direction among the boundary lines 6 of the sealed substrate 1. Thereafter, the sealed substrate 1 is completely cut at all the remaining boundary lines 6 along the X direction among the boundary lines 6 of the sealed substrate 1. Subsequently, the sealed substrate 1 is completely cut at all the boundary lines 6 along the Y direction among the boundary lines 6 of the sealed substrate 1.
 本実施例によれば、実施例1及び実施例2と同様の効果が得られる。また、本実施例によれば、封止樹脂4の切断にはこれに適した回転刃を使用し、回路基板2の切断にはこれに適した種類のレーザと照射条件とを使用することができる。したがって、封止済基板1を切断する工程の効率が向上する。 According to the present embodiment, the same effects as those of the first and second embodiments can be obtained. Further, according to the present embodiment, a rotary blade suitable for this is used for cutting the sealing resin 4, and a type of laser and irradiation conditions suitable for this are used for cutting the circuit board 2. it can. Therefore, the efficiency of the process of cutting the sealed substrate 1 is improved.
 なお、本実施例では、回転刃20と、第1のレーザ光12及び第2のレーザ光18を照射するレーザ発振器11(図1参照)との双方が、1台の切断装置に設けられた例を説明した。これに限らず、回転刃20を有する切断装置を使用して封止済基板1の封止樹脂4に溝を形成した後に、レーザ発振器11(図1参照)を有する切断装置にその封止済基板1を搬送してもよい。 In this embodiment, both the rotary blade 20 and the laser oscillator 11 (see FIG. 1) for irradiating the first laser beam 12 and the second laser beam 18 are provided in one cutting device. An example was explained. Not limited to this, after a groove is formed in the sealing resin 4 of the sealed substrate 1 using a cutting device having the rotary blade 20, the sealing device having the laser oscillator 11 (see FIG. 1) is sealed. The substrate 1 may be transported.
 また、本実施例では、回転刃20に変えてレーザ光を使用して、封止済基板1の封止樹脂4に溝を形成してもよい。この場合には、封止樹脂4に吸収されやすいレーザ光、例えばCOレーザ発振器によるレーザ光を使用することが好ましい。 In this embodiment, the groove may be formed in the sealing resin 4 of the sealed substrate 1 by using laser light instead of the rotary blade 20. In this case, it is preferable to use laser light that is easily absorbed by the sealing resin 4, for example, laser light from a CO 2 laser oscillator.
 また、本実施例において封止樹脂4に設けられた溝は、樹脂封止工程において形成してもよい。この場合には、樹脂封止用の成形型が有するキャビティに薄板状の突出部を格子状に設けておくことによって、封止樹脂4に溝を形成することができる。 Further, the groove provided in the sealing resin 4 in this embodiment may be formed in the resin sealing step. In this case, grooves can be formed in the sealing resin 4 by providing thin plate-like protrusions in a lattice shape in the cavity of the mold for resin sealing.
 また、本実施例で封止樹脂4に設けられた溝においては、樹脂4がまったく存在せずに回路基板2の表面が露出していてもよい。更に、溝の底部に封止樹脂4が存在していてもよい。本実施例においては、境界線6において封止樹脂4の厚さが小さくなっていればよい。 Further, in the groove provided in the sealing resin 4 in this embodiment, the surface of the circuit board 2 may be exposed without the resin 4 being present at all. Further, the sealing resin 4 may be present at the bottom of the groove. In the present embodiment, it is sufficient that the thickness of the sealing resin 4 is reduced at the boundary line 6.
 なお、ここまで説明した各実施例では、X方向に沿うすべての境界線6においてミシン目状の穴17、19を形成した後に、Y方向に沿うすべての境界線6においてミシン目状の穴17、19を形成した。そして、引き続いて、X方向に沿うすべての境界線6において封止済基板1を切断した後に、Y方向に沿うすべての境界線6において封止済基板1を切断した。 In each of the embodiments described so far, the perforated holes 17 and 19 are formed in all the boundary lines 6 along the X direction, and then the perforated holes 17 are formed in all the boundary lines 6 along the Y direction. , 19 was formed. Then, after sealing the sealed substrate 1 at all the boundary lines 6 along the X direction, the sealed substrate 1 was cut at all the boundary lines 6 along the Y direction.
 本発明においては、封止済基板1を大きなブロックに切断した後に、各ブロックを複数の領域7単位に切断してもよい。具体的には、まず、封止済基板1のすべての境界線6においてミシン目状の穴17を形成する。次に、封止済基板1のX方向及びY方向の中心線付近の境界線6において、封止済基板1を切断する。これにより、封止済基板1を4つのブロックに等分する。次に、4つのブロックのそれぞれを複数の領域7単位に切断する。この方法によれば、封止済基板1における変形(反り、うねり、撓み等)が大きい場合において、すべての境界線6においてミシン目状の穴17を形成することによって、それらの変形に起因する応力が低減される。したがって、封止済基板1を切断する際にそれらの変形によって受ける悪影響を抑制することができる。 In the present invention, after the sealed substrate 1 is cut into large blocks, each block may be cut into a plurality of regions 7 units. Specifically, first, perforated holes 17 are formed in all the boundary lines 6 of the sealed substrate 1. Next, the sealed substrate 1 is cut at the boundary line 6 near the center line in the X direction and the Y direction of the sealed substrate 1. Thereby, the sealed substrate 1 is equally divided into four blocks. Next, each of the four blocks is cut into a plurality of area 7 units. According to this method, when the deformation (warping, waviness, deflection, etc.) in the sealed substrate 1 is large, the perforated holes 17 are formed in all the boundary lines 6, thereby causing the deformation. Stress is reduced. Therefore, it is possible to suppress adverse effects caused by the deformation when the sealed substrate 1 is cut.
 また、次のようにしてもよい。まず、封止済基板1のX方向及びY方向の中心線付近の境界線6においてミシン目状の穴17を形成する。次に、それらの境界線6において封止済基板1を切断する。これによって、封止済基板1を4つのブロックに等分する。次に、4つのブロックのそれぞれを対象として、すべての境界線6においてミシン目状の穴17を形成する。次に、4つのブロックのそれぞれを対象として、すべての境界線6において封止済基板1を切断する。この方法によっても、封止済基板1を切断する際に、反り、うねり、撓み等の変形によって受ける悪影響を抑制することができる。 Also, the following may be used. First, perforated holes 17 are formed in the boundary line 6 near the center line in the X direction and the Y direction of the sealed substrate 1. Next, the sealed substrate 1 is cut at the boundary line 6. Thereby, the sealed substrate 1 is equally divided into four blocks. Next, perforated holes 17 are formed in all the boundary lines 6 for each of the four blocks. Next, the sealed substrate 1 is cut along all the boundary lines 6 for each of the four blocks. Also by this method, when the sealed substrate 1 is cut, adverse effects caused by deformation such as warpage, undulation, and bending can be suppressed.
 また、ここまでの各実施例では、チップ3としてLEDチップを、封止樹脂4として透光性を有するシリコーン樹脂を、それぞれ有する封止済基板1について説明した。これに限らず、チップ3としてレーザダイオードチップを使用することもできる。更に、チップ3としてパワー半導体チップを、封止樹脂4としてエポキシ樹脂等を、それぞれ使用することによって、パワー半導体部品を製造する際に本発明を適用することもできる。 Further, in each of the examples so far, the sealed substrate 1 having the LED chip as the chip 3 and the translucent silicone resin as the sealing resin 4 has been described. Not limited to this, a laser diode chip can be used as the chip 3. Further, by using a power semiconductor chip as the chip 3 and an epoxy resin or the like as the sealing resin 4, the present invention can be applied when manufacturing a power semiconductor component.
 また、1つの領域7に複数のチップ3が装着されていてもよい。例えば、複数のLEDチップが装着された1つの領域7は、個片化されることによって面光源として機能することができる。また、1つの領域7に装着された複数のチップ3は同じ機能を有するものでなくてもよい。例えば、発光素子と受光素子とを1つの領域7に装着した場合には、その1つの領域7は個片化されることによって光センサとして機能することができる。 In addition, a plurality of chips 3 may be mounted in one area 7. For example, one area 7 to which a plurality of LED chips are attached can function as a surface light source by being separated into pieces. Further, the plurality of chips 3 attached to one region 7 may not have the same function. For example, when the light emitting element and the light receiving element are mounted on one area 7, the one area 7 can be functioned as an optical sensor by being separated into pieces.
 また、ここまでの各実施例では、第1のレーザ光12又は第2のレーザ光18を封止済基板1の境界6に向かって照射させながら、照射ヘッド10に対してテーブル9を図のX方向又はY方向に移動させることとした。これに限らず、テーブル9に対して照射ヘッド10を図のX方向又はY方向に移動させてもよい。更に、テーブル9と照射ヘッド10との双方を図のX方向又はY方向に移動させてもよい。要は、テーブル9と照射ヘッド10とを図のX方向又はY方向に互いに相対的に移動させればよい。 In each of the embodiments so far, the table 9 is applied to the irradiation head 10 while irradiating the first laser beam 12 or the second laser beam 18 toward the boundary 6 of the sealed substrate 1. It was decided to move in the X direction or the Y direction. Not limited to this, the irradiation head 10 may be moved in the X direction or the Y direction in the figure with respect to the table 9. Further, both the table 9 and the irradiation head 10 may be moved in the X direction or the Y direction in the figure. In short, the table 9 and the irradiation head 10 may be moved relative to each other in the X or Y direction in the figure.
 それ以外にも例えば、照射ヘッド10から封止済基板1に照射される第1のレーザ光12及び第2のレーザ光18の照射角度を変化させることにより封止済基板1上でレーザ光の照射位置を移動させ、これによりレーザ光と封止済基板1を互いに相対的に移動させてもよい。このとき、封止済基板1と照射ヘッド10は移動させなくてもよいが、上記と同様に互いに相対的に移動させてもよい。 In addition to this, for example, by changing the irradiation angle of the first laser beam 12 and the second laser beam 18 irradiated from the irradiation head 10 to the sealed substrate 1, The irradiation position may be moved, and thereby the laser beam and the sealed substrate 1 may be moved relative to each other. At this time, the sealed substrate 1 and the irradiation head 10 need not be moved, but may be moved relative to each other in the same manner as described above.
 また、ここまでの各実施例では、境界線6が線分によって構成されている場合について説明した。これに限らず、曲線、又は、複数の線分が組み合わされた折れ線が境界線6に含まれる場合にも本発明が適用される。したがって、封止済基板を切断して外形の一部に曲線又は折れ線が含まれるパッケージ(例えば、ある種のメモリカード)を製造する場合においても、本発明が適用される。この場合には、ミシン目状の穴17、19は、曲線状又は折れ線状に並んで形成される。 Further, in each of the embodiments so far, the case where the boundary line 6 is constituted by line segments has been described. The present invention is not limited to this, and the present invention is applied to a case where the boundary line 6 includes a curved line or a broken line in which a plurality of line segments are combined. Therefore, the present invention is also applied to the case where a package (for example, a certain type of memory card) in which a sealed substrate is cut to include a curved line or a broken line in a part of the outer shape is manufactured. In this case, the perforated holes 17 and 19 are formed side by side in a curved line or a polygonal line.
 また、ここまでの各実施例では、粘着テープ8を介して封止済基板1をテーブル9に固定した。これに限らず、吸着によって封止済基板1をテーブル9に固定してもよい。この場合には、テーブル9の表面における各境界線6に重なる部分に溝を設けることが好ましい。これにより、封止済基板1にミシン目状の穴17、19を形成する工程と封止済基板1を完全に切断する工程との双方(特に後者の工程)において発生したドロスが、それらの溝を通じて除去されやすくなる。 Further, in each of the examples so far, the sealed substrate 1 is fixed to the table 9 via the adhesive tape 8. Not limited to this, the sealed substrate 1 may be fixed to the table 9 by suction. In this case, it is preferable to provide a groove in a portion that overlaps each boundary line 6 on the surface of the table 9. As a result, dross generated in both the process of forming the perforated holes 17 and 19 in the sealed substrate 1 and the process of completely cutting the sealed substrate 1 (particularly the latter process) It becomes easy to be removed through the groove.
 また、本発明は、上述の各実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、必要に応じて、任意にかつ適宜に組み合わせ、変更し、又は選択して採用できるものである。 In addition, the present invention is not limited to the above-described embodiments, and may be arbitrarily combined, changed, or selected as necessary without departing from the spirit of the present invention. It can be done.
 1  封止済基板
 2  回路基板
 3  チップ
 4  封止樹脂
 5  レンズ部
 6  境界線
 7  領域
 8  粘着テープ(固定手段)
 9  テーブル(移動手段)
 10  照射ヘッド
 11  レーザ発振器(レーザ光発生手段)
 12  第1のレーザ光(レーザ光)
 13  配管
 14  アシストガス
 15  ノズル
 16  被照射部
 17、21  ミシン目状の穴(貫通穴)
 18  第2のレーザ光(レーザ光)
 19  ミシン目状の穴(止り穴)
 20  回転刃
DESCRIPTION OF SYMBOLS 1 Sealed board | substrate 2 Circuit board 3 Chip | tip 4 Sealing resin 5 Lens part 6 Boundary line 7 Area 8 Adhesive tape (fixing means)
9 Table (moving means)
10 Irradiation Head 11 Laser Oscillator (Laser Light Generation Means)
12 First laser beam (laser beam)
13 Piping 14 Assist gas 15 Nozzle 16 Irradiated part 17, 21 Perforated hole (through hole)
18 Second laser beam (laser beam)
19 Perforated hole (blind hole)
20 Rotating blade

Claims (14)

  1.  回路基板に設けられた複数の領域に各々装着されたチップを樹脂封止することによって封止済基板を形成し、前記複数の領域の境界線において前記封止済基板を切断することによって複数の電子部品を製造する際に使用され、前記封止済基板を固定する固定手段と、レーザ光を発生させるレーザ光発生手段と、前記封止済基板及び/又は前記レーザ光を互いに相対的に移動させる移動手段とを備える電子部品製造用の切断装置であって、
     前記レーザ光発生手段が前記境界線においてミシン目状の穴を形成するための第1のレーザ光と、前記ミシン目状の穴が形成された前記境界線において前記封止済基板を切断するための第2のレーザ光を発生させるものであることを特徴とする電子部品製造用の切断装置。
    A sealed substrate is formed by resin-sealing chips respectively mounted in a plurality of regions provided on the circuit board, and a plurality of substrates are cut by cutting the sealed substrate at boundary lines of the plurality of regions. Used when manufacturing electronic components, fixing means for fixing the sealed substrate, laser light generating means for generating laser light, and moving the sealed substrate and / or the laser light relative to each other A cutting device for manufacturing an electronic component comprising moving means for causing
    The laser light generating means cuts the sealed substrate at the boundary line where the perforated hole is formed, and the first laser light for forming the perforated hole at the boundary line. A cutting apparatus for manufacturing an electronic component, wherein the second laser beam is generated.
  2.  請求項1に記載された電子部品製造用の切断装置において、
     前記第1のレーザ光はパルス状のものであり、かつ、前記第2のレーザ光は連続的なものであることを特徴とする電子部品製造用の切断装置。
    In the cutting device for electronic component manufacture described in Claim 1,
    The cutting apparatus for manufacturing an electronic component, wherein the first laser beam is pulsed and the second laser beam is continuous.
  3.  請求項1又は2に記載された電子部品製造用の切断装置において、
     前記レーザ光発生手段はファイバーレーザ発振器又はYAGレーザ発振器を有することを特徴とする電子部品製造用の切断装置。
    In the cutting device for electronic component manufacture described in Claim 1 or 2,
    The laser beam generating means includes a fiber laser oscillator or a YAG laser oscillator.
  4.  請求項1~3のいずれかに記載された電子部品製造用の切断装置において、
     前記ミシン目状の穴は貫通穴であることを特徴とする電子部品製造用の切断装置。
    The cutting device for manufacturing an electronic component according to any one of claims 1 to 3,
    The cutting device for manufacturing an electronic component, wherein the perforated hole is a through hole.
  5.  請求項1~3のいずれかに記載された電子部品製造用の切断装置において、
     前記ミシン目状の穴は止り穴であることを特徴とする電子部品製造用の切断装置。
    The cutting device for manufacturing an electronic component according to any one of claims 1 to 3,
    The cutting device for manufacturing electronic parts, wherein the perforated hole is a blind hole.
  6.  請求項1~5のいずれかに記載された電子部品製造用の切断装置において、
     前記回路基板の基材はセラミックス又は金属であることを特徴とする電子部品製造用の切断装置。
    The cutting device for manufacturing an electronic component according to any one of claims 1 to 5,
    The substrate for the circuit board is made of ceramic or metal.
  7.  請求項1~6のいずれかに記載された電子部品製造用の切断装置において、
     前記電子部品は光電子部品又はパワー半導体部品であることを特徴とする電子部品製造用の切断装置。
    The cutting device for manufacturing an electronic component according to any one of claims 1 to 6,
    A cutting apparatus for manufacturing an electronic component, wherein the electronic component is an optoelectronic component or a power semiconductor component.
  8.  回路基板に設けられた複数の領域に各々装着されたチップを樹脂封止することによって封止済基板を形成し、前記複数の領域の境界線に沿って前記封止済基板を切断することによって複数の電子部品を製造する際に使用され、前記封止済基板を固定する工程と、前記封止済基板に向けてレーザ光を照射しながら前記封止済基板及び/又は前記レーザ光を互いに相対的に移動させる照射工程とを備える電子部品製造用の切断方法であって、
     前記照射工程では、前記封止済基板に向けて第1のレーザ光を照射することによって前記境界線においてミシン目状の穴を形成した後に、前記境界線に向けて第2のレーザ光を照射することによって前記封止済基板を切断することを特徴とする電子部品製造用の切断方法。
    Forming a sealed substrate by resin-sealing chips mounted in a plurality of regions provided on the circuit board, and cutting the sealed substrate along a boundary line of the plurality of regions; Used in manufacturing a plurality of electronic components, the step of fixing the sealed substrate, and the sealed substrate and / or the laser beam to each other while irradiating the sealed substrate with laser light A cutting method for manufacturing an electronic component comprising an irradiation step of relatively moving,
    In the irradiation step, a perforated hole is formed in the boundary line by irradiating the first laser beam toward the sealed substrate, and then a second laser beam is irradiated toward the boundary line. A cutting method for manufacturing an electronic component, wherein the sealed substrate is cut.
  9.  請求項8に記載された電子部品製造用の切断方法において、
     前記第1のレーザ光はパルス状のものであり、かつ、前記第2のレーザ光は連続的なものであることを特徴とする電子部品製造用の切断方法。
    In the cutting method for electronic component manufacture described in Claim 8,
    The cutting method for manufacturing an electronic component, wherein the first laser beam is pulsed and the second laser beam is continuous.
  10.  請求項8又は9に記載された電子部品製造用の切断方法において、
     前記照射工程では、ファイバーレーザ発振器又はYAGレーザ発振器によって前記第1のレーザ光及び前記第2のレーザ光を発生させることを特徴とする電子部品製造用の切断方法。
    In the cutting method for electronic component manufacture described in Claim 8 or 9,
    In the irradiation step, the first laser beam and the second laser beam are generated by a fiber laser oscillator or a YAG laser oscillator.
  11.  請求項8~10のいずれかに記載された電子部品製造用の切断方法において、
     前記ミシン目状の穴は貫通穴であることを特徴とする電子部品製造用の切断方法。
    A cutting method for manufacturing an electronic component according to any one of claims 8 to 10,
    The cutting method for manufacturing an electronic component, wherein the perforated hole is a through hole.
  12.  請求項8~10のいずれかに記載された電子部品製造用の切断方法において、
     前記ミシン目状の穴は止り穴であることを特徴とする電子部品製造用の切断方法。
    A cutting method for manufacturing an electronic component according to any one of claims 8 to 10,
    The cutting method for manufacturing an electronic component, wherein the perforated hole is a blind hole.
  13.  請求項8~12のいずれかに記載された電子部品製造用の切断方法において、
     前記回路基板の基材はセラミックス又は金属であることを特徴とする電子部品製造用の切断方法。
    A cutting method for manufacturing an electronic component according to any one of claims 8 to 12,
    The substrate for the circuit board is made of ceramics or metal.
  14.  請求項8~13のいずれかに記載された電子部品製造用の切断方法において、
     前記電子部品は光電子部品又はパワー半導体部品であることを特徴とする電子部品製造用の切断方法。
    A cutting method for manufacturing an electronic component according to any one of claims 8 to 13,
    A cutting method for manufacturing an electronic component, wherein the electronic component is an optoelectronic component or a power semiconductor component.
PCT/JP2009/007148 2008-12-26 2009-12-22 Cleaving device and cleaving method for manufacturing electronic components WO2010073640A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG2011045721A SG172318A1 (en) 2008-12-26 2009-12-22 Cutting device and cutting method for producing electronic parts
CN200980151217XA CN102256739A (en) 2008-12-26 2009-12-22 Cleaving device and cleaving method for manufacturing electronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-332054 2008-12-26
JP2008332054A JP5261168B2 (en) 2008-12-26 2008-12-26 Cutting apparatus and method for manufacturing electronic parts

Publications (1)

Publication Number Publication Date
WO2010073640A1 true WO2010073640A1 (en) 2010-07-01

Family

ID=42287287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007148 WO2010073640A1 (en) 2008-12-26 2009-12-22 Cleaving device and cleaving method for manufacturing electronic components

Country Status (6)

Country Link
JP (1) JP5261168B2 (en)
KR (1) KR20110110238A (en)
CN (1) CN102256739A (en)
SG (1) SG172318A1 (en)
TW (1) TW201024011A (en)
WO (1) WO2010073640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699536A (en) * 2012-05-11 2012-10-03 东莞光谷茂和激光技术有限公司 Laser cutting process for metal thick plate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368521B (en) * 2011-10-26 2013-11-20 深圳市瑞丰光电子股份有限公司 Cutting method for LED wafer
JP6017373B2 (en) * 2013-05-21 2016-11-02 Towa株式会社 Manufacturing method of semiconductor device
JP2016015447A (en) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 Wafer manufacturing method and apparatus
JP6460704B2 (en) * 2014-09-30 2019-01-30 株式会社ディスコ Method for dividing ceramic substrate
JP6377514B2 (en) * 2014-12-17 2018-08-22 株式会社ディスコ Processing method of package substrate
US11428251B2 (en) * 2015-09-15 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Weld structure of metal member and welding process
CN106249955A (en) * 2016-08-03 2016-12-21 业成科技(成都)有限公司 Cutting sealing pressure-sensing module method and the pressure-sensing device processed thereof
CN108666212B (en) * 2018-05-02 2023-01-10 南方科技大学 LED chip manufacturing method
US10562338B2 (en) * 2018-06-25 2020-02-18 American Crafts, L.C. Heat pen for use with electronic cutting and/or drawing systems
US11361998B2 (en) 2019-08-30 2022-06-14 Innolux Corporation Method for manufacturing an electronic device
CN112620965A (en) * 2019-10-08 2021-04-09 台湾丽驰科技股份有限公司 Dual laser processing machine and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234686A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JPS62234685A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JP2007144517A (en) * 2005-11-25 2007-06-14 L'air Liquide Method for cutting stainless steel with fiber laser
JP2008288403A (en) * 2007-05-18 2008-11-27 Ngk Spark Plug Co Ltd Method of manufacturing ceramic substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1550528A1 (en) * 2003-12-30 2005-07-06 Advanced Laser Separation International (ALSI) B.V. Method, device and diffraction grating for separating semiconductor elements formed on a substrate by altering said diffraction grating
KR20070097189A (en) * 2006-03-28 2007-10-04 삼성전자주식회사 Method for dividing substrate and substrate dividing apparatus for using it
JP2007279616A (en) * 2006-04-12 2007-10-25 Sony Corp Method for manufacturing driving substrate, and the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234686A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JPS62234685A (en) * 1986-04-02 1987-10-14 Mitsubishi Electric Corp Cutting method for working material
JP2007144517A (en) * 2005-11-25 2007-06-14 L'air Liquide Method for cutting stainless steel with fiber laser
JP2008288403A (en) * 2007-05-18 2008-11-27 Ngk Spark Plug Co Ltd Method of manufacturing ceramic substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699536A (en) * 2012-05-11 2012-10-03 东莞光谷茂和激光技术有限公司 Laser cutting process for metal thick plate

Also Published As

Publication number Publication date
KR20110110238A (en) 2011-10-06
JP2010149165A (en) 2010-07-08
SG172318A1 (en) 2011-07-28
TW201024011A (en) 2010-07-01
JP5261168B2 (en) 2013-08-14
CN102256739A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2010073640A1 (en) Cleaving device and cleaving method for manufacturing electronic components
JP5970209B2 (en) Method for cutting laminated substrate and method for manufacturing electronic component
JP4124102B2 (en) Light emitting device having multiple antireflection structure and method of manufacturing
KR100703216B1 (en) Method for manufacturing light emitting diode package
JP5597051B2 (en) Laser processing method
KR101887448B1 (en) cutting method of light emitting element package with ceramic substrate and cutting method of workpiece with multi-layer structure
JP5491761B2 (en) Laser processing equipment
TWI447964B (en) LED wafer manufacturing method
US20060113286A1 (en) Stack structure cutting method and stack structure
KR20120098869A (en) Laser machining and scribing systems and methods
KR101398288B1 (en) Splitting method of processed object and splitting method of substrate having optical element pattern
JP2006245062A (en) Method of manufacturing group iii nitride-based compound semiconductor element, and light emitting element
CN1938826A (en) Laser processing method and object to be processed
KR20140009890A (en) Cutting method of light emitting element package with silicon substrate
JP2017080796A (en) Manufacturing method of processing resin substrate, and laser processing device
US10957836B2 (en) Printed board and light emitting device
JP6050002B2 (en) Laser processing method
KR102069724B1 (en) Laser ablation process for manufacturing submounts for laser diode and laser diode units
JP2006248075A (en) Method and apparatus for working substrate using laser beam
JP2013232604A (en) Cutting method of lamination body and manufacturing method of resin sealing electronic component
JP7060810B2 (en) Light emitting device and manufacturing method of light emitting device
JP2006150642A (en) Cell and cell manufacturing method
Rauch et al. Advanced UV Lasers Enable Precision Processing: UV Lasers exhibit high spatial resolution and minimal thermal damage to surrounding material
JP2004238269A (en) Method of cutting substrate and method of producing substrate, and method of manufacturing substrate
JP2005086131A (en) Method for manufacturing ceramic electronic component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151217.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117017507

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09834447

Country of ref document: EP

Kind code of ref document: A1