WO2010073332A1 - リチウム空気電池 - Google Patents

リチウム空気電池 Download PDF

Info

Publication number
WO2010073332A1
WO2010073332A1 PCT/JP2008/073569 JP2008073569W WO2010073332A1 WO 2010073332 A1 WO2010073332 A1 WO 2010073332A1 JP 2008073569 W JP2008073569 W JP 2008073569W WO 2010073332 A1 WO2010073332 A1 WO 2010073332A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode layer
lithium
air battery
battery
Prior art date
Application number
PCT/JP2008/073569
Other languages
English (en)
French (fr)
Inventor
史教 水野
中西 真二
善春 高佐屋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US12/999,460 priority Critical patent/US8741492B2/en
Priority to JP2010509051A priority patent/JP5158193B2/ja
Priority to PCT/JP2008/073569 priority patent/WO2010073332A1/ja
Priority to CN200880127635.0A priority patent/CN101960664B/zh
Publication of WO2010073332A1 publication Critical patent/WO2010073332A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention has been made in view of the above-described circumstances, and its main object is to provide a lithium-air battery capable of selectively using batteries of different characteristics according to the current density at the time of discharge.
  • the first positive electrode layer and the second positive electrode layer are stacked and arranged in the order of the second positive electrode layer and the first positive electrode layer from the side of the negative electrode layer. It is because it becomes easy to take in oxygen.
  • the present invention by using the above-described positive electrode active material, it is possible to separate the operating voltage range as a lithium-air battery and the operating voltage range as a lithium ion battery. As a result, it is possible to obtain a lithium-air battery capable of selectively using batteries of different characteristics according to the current density at the time of discharge. Specifically, it can function as a high capacity lithium air battery at the time of small current discharge, and can function as a high output lithium ion battery at the time of large current discharge. That is, it is possible to obtain a dual battery in which the function of a high capacity battery (lithium air battery) and the function of a high power battery (lithium ion battery) are incorporated into one battery. Further, since the lithium-air battery of the present invention has two battery functions having different characteristics, it is not necessary to install the two batteries separately, and downsizing and weight reduction can be achieved.
  • FIG. 1 is a schematic cross-sectional view showing an example of the lithium-air battery of the present invention.
  • the lithium-air battery 10 shown in FIG. 1 includes a negative electrode case 1a, a negative electrode current collector 2 formed on the inner bottom surface of the negative electrode case 1a, a negative electrode lead 2a connected to the negative electrode current collector 2, and a negative electrode current collector
  • a positive electrode layer 4 formed on the body 2 and containing a negative electrode active material, and a positive electrode layer 4 comprising at least a first positive electrode layer 4a having oxygen reducing ability and a second positive electrode layer 4b having at least Li ion absorbing ability;
  • a positive electrode current collector 5 for collecting the layer 4 a positive electrode lead 5a connected to the positive electrode current collector 5, a separator 6 disposed between the negative electrode layer 3 and the positive electrode layer 4, a negative electrode layer 3 and a positive electrode
  • FIG. 2 is an explanatory view for explaining the difference between the conventional lithium air battery and the lithium air battery of the present invention.
  • the conventional lithium air battery (lithium air battery described in Patent Document 1) has an operating voltage range as a lithium air battery and an operating voltage as a lithium ion battery at the time of discharge.
  • the lithium air battery of the present invention as shown in FIG. 2 (b), the operating voltage range as the lithium air battery and the operating voltage range as the lithium ion battery are separated at the time of discharge. Therefore, it becomes possible to use different batteries of different characteristics depending on the current density at the time of discharge.
  • the operating voltage range of the lithium-air battery at the time of discharge is a voltage range in which a Li oxide is formed from Li ions and oxygen, and is usually in the range of 2.0 V to 2.9 V (vs. Li). Therefore, in the present invention, by using a positive electrode active material having an average voltage smaller than 2.0 V (vs. Li) or an average voltage larger than 2.9 V (vs. Li), I tried to separate.
  • the value of the average voltage of the positive electrode active material can be determined as follows.
  • the positive electrode layer in the present invention has a first positive electrode layer having at least an oxygen reducing ability, and a second positive electrode layer having at least an Li ion storing ability.
  • the first positive electrode layer in the present invention is a layer having at least oxygen reducing ability, and is usually a layer that functions as a positive electrode layer of a lithium-air battery.
  • the first positive electrode layer usually has a resolution of Li oxide that decomposes the Li oxide (LiO 2 , Li 2 O 2 ) generated by the discharge reaction. .
  • the first positive electrode layer in the present invention may contain a catalyst that promotes the reaction. It is because an electrode reaction is performed more smoothly.
  • the conductive material preferably carries a catalyst.
  • the catalyst include manganese dioxide and cobalt phthalocyanine.
  • the content of the catalyst in the first positive electrode layer is preferably, for example, in the range of 1% by weight to 90% by weight. If the content of the catalyst is too small, sufficient catalytic function may not be exhibited. If the content of the catalyst is too large, the content of the conductive material relatively decreases, the reaction site decreases, and the battery capacity The reason is that there may be a decrease in
  • the thickness of the first positive electrode layer varies depending on the use of the lithium air battery and the like, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, and more preferably in the range of 5 ⁇ m to 300 ⁇ m.
  • the average voltage of the positive electrode active material is in a range smaller than 2.0 V (vs. Li) as described above. Above all, the average voltage of the positive electrode active material is preferably 1.8 V (vs. Li) or less, and more preferably in the range of 0.5 V (vs. Li) to 1.6 V (vs. Li) preferable. By clearly separating the operating voltage range, generation of unnecessary Li oxide can be further suppressed.
  • a positive electrode active material for example, graphite, a layered spinel material such as Li 4 Ti 5 O 12 , and a conversion material such as CoO, SnS, Fe 3 P, and the like can be mentioned.
  • the average voltage of the positive electrode active material is in a range larger than 2.9 V (vs. Li).
  • the average voltage of the positive electrode active material is preferably 3.1 V (vs. Li) or more, and more preferably in the range of 3.3 V (vs. Li) to 4.4 V (vs. Li). preferable.
  • a positive electrode active material for example, 4V class positive electrode material such as LiCoO 2 , LiFePO 4 , FePO 4 , LiMn 2 O 4 and 5V class positive electrode such as LiNi 0.5 Mn 1.5 O 4 or LiCoPO 4 Materials etc. can be mentioned.
  • the second positive electrode layer in the present invention may contain a binder for immobilizing the positive electrode active material. About the kind and content of a binder, it is the same as that of the content described in said "(1) 1st positive electrode layer".
  • the second positive electrode layer in the present invention may contain a conductive material. This is because the conductivity of the second positive electrode layer can be improved. Examples of the conductive material include carbon materials such as carbon black, ketjen black, acetylene black and furnace black.
  • the content of the conductive material in the second positive electrode layer is preferably set appropriately in accordance with the type of the positive electrode active material and the like.
  • the thickness of the second positive electrode layer varies depending on the use of the lithium air battery and the like, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, and more preferably in the range of 5 ⁇ m to 300 ⁇ m.
  • the positive electrode layer in the present invention has the first positive electrode layer and the second positive electrode layer described above.
  • the positional relationship between the first positive electrode layer and the second positive electrode layer is not particularly limited, and can be designed arbitrarily.
  • the first positive electrode layer and the second positive electrode layer may be stacked or arranged in parallel on the same plane.
  • the first positive electrode layer and the second positive electrode layer can be formed in an arbitrary pattern.
  • the lithium-air battery of the present invention preferably has a positive electrode current collector for collecting current in the positive electrode layer.
  • the material of the positive electrode current collector include metal materials and carbon materials. Among them, carbon materials are preferable. It is because it is excellent in corrosion resistance. As such a carbon material, for example, carbon fiber (carbon fiber) is preferable. Electrons can be conducted through the fiber and the electron conductivity is high.
  • the positive electrode current collector using carbon fiber include carbon cloth and carbon paper.
  • examples of the metal material include stainless steel, nickel, aluminum, iron and titanium. A metal mesh etc. can be mentioned as a positive electrode collector using a metal material.
  • the structure of the positive electrode current collector in the present invention is not particularly limited as long as desired electron conductivity can be secured, and may be a porous structure having gas diffusivity, and a dense structure having no gas diffusivity. It may be. Among them, in the present invention, the positive electrode current collector preferably has a porous structure having gas diffusibility. This is because oxygen can be diffused quickly.
  • the porosity of the porous structure is not particularly limited, but is preferably in the range of, for example, 20% to 99%.
  • the thickness of the positive electrode current collector is, for example, preferably in the range of 10 ⁇ m to 1000 ⁇ m, and more preferably in the range of 20 ⁇ m to 400 ⁇ m.
  • a member composed of the positive electrode layer and the positive electrode current collector is referred to as a "positive electrode".
  • the method of forming the positive electrode in the present invention is not particularly limited as long as the above-described positive electrode layer can be obtained.
  • a method of forming a positive electrode a method of preparing a composition for forming a first positive electrode layer and a composition for forming a second positive electrode layer, respectively, applying these compositions sequentially to a positive electrode current collector and drying be able to.
  • the composition for forming the first positive electrode layer contains, for example, a solvent in addition to the above-mentioned conductive material, binder and catalyst.
  • the composition for forming a second positive electrode layer contains, for example, a solvent in addition to the positive electrode active material, the binder, and the conductive material described above.
  • the solvent used for these compositions preferably has a boiling point of 200 ° C. or less. It is because drying becomes easy.
  • the solvent include acetone, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), N, N-dimethylformamide (DMF), methyl ethyl ketone (MEK) and tetrahydrofuran (THF). It can be mentioned.
  • the method for forming the positive electrode a method using differences in the size of the opening of the conductive material, the positive electrode active material, and the positive electrode current collector can be mentioned.
  • This method makes the size of one of the conductive material and the positive electrode active material larger than the size of the opening of the positive electrode current collector, and the other size smaller than the size of the opening of the positive electrode current collector.
  • the first positive electrode layer and the second positive electrode layer are formed by one application.
  • a composition for forming a positive electrode layer containing both a conductive material and a positive electrode active material can be used.
  • the catalyst and the conductive material can be contained in the target layer by similarly adjusting the size.
  • the negative electrode layer in the present invention usually contains a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can release Li ions, but among them, materials capable of absorbing and releasing Li ions are preferable. It is because it can be used for a lithium air secondary battery.
  • the negative electrode active material examples include lithium metal, lithium alloy, lithium oxide, lithium nitride and the like.
  • a lithium alloy a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, a lithium silicon alloy etc.
  • a lithium oxide a lithium titanium oxide etc.
  • lithium nitride lithium cobalt nitride, lithium iron nitride, lithium manganese nitride etc. can be mentioned, for example.
  • the negative electrode layer in the present invention may contain only the negative electrode active material, and may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • the negative electrode layer can contain only the negative electrode active material.
  • the negative electrode active material when it is in the form of powder, it can be a negative electrode layer having a conductive material and a binder.
  • the conductive material and the binder are the same as the contents described in “1. Positive electrode layer” described above, and thus the description thereof is omitted here.
  • the thickness of the negative electrode layer is preferably selected appropriately in accordance with the configuration of the target lithium-air battery.
  • the lithium-air battery of the present invention preferably has a negative electrode current collector for collecting current in the negative electrode layer.
  • the material of the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, nickel and the like.
  • As a shape of the said negative electrode collector foil shape, plate shape, mesh (grid) shape etc. can be mentioned, for example.
  • a battery case described later may have the function of a negative electrode current collector.
  • the thickness of the negative electrode current collector is preferably selected appropriately in accordance with the configuration of the target lithium-air battery.
  • a member composed of the negative electrode layer and the negative electrode current collector is referred to as a "negative electrode".
  • the method of forming the negative electrode in the present invention is not particularly limited as long as it can form the above-described negative electrode.
  • positioning the negative electrode active material of foil shape on a negative electrode collector, and pressurizing can be mentioned.
  • a composition for forming a negative electrode layer containing a negative electrode active material and a binder is prepared, and then this composition is applied on a negative electrode current collector. And drying methods.
  • the electrolyte layer in the present invention is a layer which is formed between the positive electrode layer and the negative electrode layer to conduct Li ions.
  • the form of the electrolyte layer is not particularly limited as long as it has Li ion conductivity, and examples thereof include non-aqueous electrolytic solutions, non-aqueous gel electrolytes, polymer electrolytes, and inorganic solid electrolytes.
  • the non-aqueous electrolyte usually contains a lithium salt and an organic solvent (non-aqueous solvent).
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Organic lithium salts such as LiC (CF 3 SO 2 ) 3 and the like can be mentioned.
  • the organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, ⁇ -butyrolactone, sulfolane, acetonitrile, And 2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and mixtures thereof.
  • the said organic solvent is a solvent with high oxygen solubility. It is because dissolved oxygen can be efficiently used for reaction.
  • the concentration of the lithium salt in the non-aqueous electrolytic solution is, for example, in the range of 0.5 mol / L to 3 mol / L.
  • a low volatility liquid such as an ionic liquid may be used as the non-aqueous electrolytic solution.
  • the non-aqueous gel electrolyte is usually gelled by adding a polymer to the non-aqueous electrolytic solution.
  • the non-aqueous gel electrolyte can be obtained by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN) or polymethyl methacrylate (PMMA) to the above-mentioned non-aqueous electrolyte and gelling it.
  • a non-aqueous gel electrolyte of LiTFSI (LiN (CF 3 SO 2 ) 2 ) -PEO type is preferable.
  • the inorganic solid electrolyte for example, a Li-La-Ti-O-based inorganic solid electrolyte can be mentioned.
  • the inorganic solid electrolyte can be formed into a solid electrolyte membrane and disposed between the positive electrode layer and the negative electrode layer.
  • the lithium-air battery of the present invention preferably has a separator between the positive electrode layer and the negative electrode layer. It is because a highly safe battery can be obtained.
  • the separator include porous films such as polyethylene and polypropylene; and nonwoven fabrics such as resin nonwoven fabric and glass fiber nonwoven fabric.
  • the shape of the battery case in the present invention is not particularly limited as long as the above-described positive electrode layer, negative electrode, and electrolyte can be stored. Specifically, coin shape, flat shape, cylindrical shape, laminate type, etc. It can be mentioned. Further, the battery case may be an open-air battery case or a closed battery case. As shown in FIG. 1 described above, the open-air battery case is a battery case that can be in contact with the air. On the other hand, when the battery case is a sealed battery case, it is preferable to provide a gas (air) supply pipe and a discharge pipe in the sealed battery case. In this case, the gas to be supplied / discharged preferably has a high oxygen concentration, and more preferably pure oxygen. Further, it is preferable to increase the oxygen concentration at the time of discharge and lower the oxygen concentration at the time of charge.
  • the lithium-air battery of the present invention may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. It is because it can be used for a wide range of applications. Examples of applications of the lithium-air battery of the present invention include vehicle-mounted applications, stationary power applications, household power applications, and the like.
  • the method for producing the lithium-air battery of the present invention is not particularly limited, and is the same as a general method for producing a metal-air battery. Further, in the present invention, there is provided a method of using the lithium air battery described above, wherein the lithium air battery and the lithium ion battery are selectively used by adjusting the current load. can do.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.
  • Example 1 Carbon black (size of primary particle 100 nm or less, size of secondary particle aggregate about several ⁇ m), graphite (central particle size 11.5 ⁇ m), and PVDF-HFP by weight ratio 25: 42 It weighed and mixed so that it might become: 33. Next, the mixture and acetone were mixed and stirred (2000 rpm, 30 minutes) to obtain a composition for forming a positive electrode layer. In addition, the average voltage of the graphite calculated by the method mentioned above was about 0.2 V (vs. Li).
  • a carbon paper (TGP-H-090 manufactured by Toray Industries, Inc .; thickness 0.28 mm) having an opening diameter of 8 ⁇ m was prepared as a positive electrode current collector.
  • the above composition for forming a positive electrode layer was applied to the carbon paper with a doctor blade.
  • drying was performed under an Ar atmosphere at 80 ° C. for 1 hour, and then vacuum drying was performed at 60 ° C. overnight.
  • a positive electrode was obtained in which the positive electrode current collector, the first positive electrode layer (layer containing carbon black) and the second positive electrode layer (layer containing graphite) were arranged in this order.
  • a lithium air battery element was manufactured using the above-mentioned positive electrode.
  • the element was assembled in an argon box.
  • an F-type electrochemical cell manufactured by Hokuto Denko was used for the battery case of the element.
  • metal Li manufactured by Honjo Metal Co., Ltd., ⁇ 18 mm, thickness 0.25 mm
  • a polyethylene separator ⁇ 18 mm, thickness 25 ⁇ m
  • the above positive electrode positive electrode layer was disposed so as to face the separator and sealed, to obtain a lithium air battery element.
  • the obtained element was placed in a desiccator filled with oxygen (oxygen concentration 99.99% by volume, internal pressure 1 atm, desiccator volume 1 L) to obtain a cell for evaluation.
  • the average voltage of MnO 2 calculated by the above-described method was about 2.7 V (vs. Li).
  • Discharge Test A discharge test was performed using the evaluation cell obtained in Example 1. Discharge, large current discharge (current density 0.2 mA / cm 2, less than 0.01 V (Vs.Li) is cut) and small current discharge (current density 0.02mA / cm 2, 2.0V (vs.Li ) Less than a cut was performed under the conditions. The results are shown in FIG. As shown in FIG. 4, it was confirmed that the evaluation cell of Example 1 functions as a lithium ion battery at the time of large current discharge and functions as a lithium air battery at the small current discharge. Thereby, it was confirmed that batteries of different characteristics can be used properly depending on the current density at the time of discharge.
  • Example 1 (2) Impedance Evaluation
  • the evaluation cells obtained in Example 1 and Comparative Example 1 were used to evaluate changes in impedance of the positive electrode layer due to charge and discharge.
  • the charge and discharge are large current charge and discharge (current density 0.2 mA / cm 2 , 0.01 V to 1.5 V (vs. Li)) and small current discharge (current density 0.02 mA / cm 2 , 2.0 V to 4 It carried out on the conditions of .3V (vs. Li).
  • the results are shown in FIG.
  • FIG. 5 in the large current charge and discharge (0.2 mA / cm 2 ), the cell for evaluation of Example 1 is inhibited from increasing in impedance as compared with the cell for evaluation of Comparative Example 1. That was confirmed.
  • Example 1 functions as a lithium ion battery at the time of high current discharge, thereby suppressing the generation of Li oxide generated by the discharge reaction of the lithium air battery.
  • small current charge / discharge (0.02 mA / cm 2 )
  • no significant difference was observed in the increase in impedance between the evaluation cell of Example 1 and the evaluation cell of Comparative Example 1. This is considered to be due to the fact that both function as a lithium air battery in small current charge and discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池を提供することを主目的とする。 本発明においては、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム空気電池であって、上記正極層は、少なくとも酸素還元能を有する第一正極層と、少なくともLiイオン吸蔵能を有する第二正極層とを有し、上記第二正極層が、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を含有することを特徴とするリチウム空気電池を提供することにより、上記課題を解決する。

Description

リチウム空気電池
 本発明は、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池に関し、より具体的には、小電流放電時には高容量なリチウム空気電池として機能し、大電流放電時には高出力なリチウムイオン電池として機能するリチウム空気電池に関する。
 リチウム空気電池は、空気(酸素)を正極活物質として用いた電池であり、エネルギー密度が高い、小型化および軽量化が容易である等の利点を有する。そのため、現在、広く使用されているリチウムイオン電池を超える高容量二次電池として、注目を集めている。
 従来、リチウム空気電池の高機能化に向けて、リチウム空気電池に、リチウムイオン電池の機能を組み込むという試みがある。例えば特許文献1においては、少なくとも酸素還元能を有する層と、少なくともリチウムイオン吸蔵能を有する層とを有し、リチウムイオン吸蔵能を有する層が、リチウムイオンを2.0V以上2.9V以下(vs.Li)で吸蔵する能力を有する活物質を含有する非水電解質空気電池が開示されている。
 この技術は、リチウム空気電池の正極層として機能する層(少なくとも酸素還元能を有する層)の他に、リチウムイオン電池の正極層として機能する層(少なくともリチウムイオン吸蔵能を有する層)を設けることにより、水分の侵入を抑制するために、リチウム空気電池に供給される空気量を少なくした場合であっても、補完的に、リチウムイオン電池を機能させることで、大電流放電特性の向上を図ったものである。
特開2006-286414号公報
 一方、リチウム空気電池の高機能化の観点から、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池が望まれている。具体的には、小電流放電時には高容量なリチウム空気電池として機能し、大電流放電時には高出力なリチウムイオン電池として機能するリチウム空気電池が望まれている。しかしながら、このようなリチウム空気電池については、従来全く知見が無いのが実情である。
 なお、特許文献1には、上述したように、リチウム空気電池の正極層として機能する層の他に、リチウムイオン電池の正極層として機能する層を設けたリチウム空気電池が開示されている。しかしながら、この電池は、リチウム空気電池およびリチウムイオン電池の作動電圧範囲が、2.0V~2.9V(vs.Li)で重複するものである。そのため、放電時の電流密度に応じて、異なる特性の電池を使い分けるものではない。
 本発明は、上記実情に鑑みてなされたものであり、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池を提供することを主目的とする。
 上記課題を解決するために、本発明においては、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム空気電池であって、上記正極層は、少なくとも酸素還元能を有する第一正極層と、少なくともLiイオン吸蔵能を有する第二正極層とを有し、上記第二正極層が、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を含有することを特徴とするリチウム空気電池を提供する。
 本発明によれば、上記の正極活物質を用いることで、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とを分離することができる。これにより、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池を得ることができる。
 上記発明においては、上記正極活物質が、グラファイトまたはLiTi12であることが好ましい。これらの正極活物質は、2.0V(vs.Li)よりも小さい平均電圧を有し、作動電圧範囲を明確に分離することができるからである。
 上記発明においては、上記正極活物質が、LiCoOまたはLiFePOであることが好ましい。これらの正極活物質は、2.9V(vs.Li)よりも大きい平均電圧を有し、作動電圧範囲を明確に分離することができるからである。
 上記発明においては、上記第一正極層および上記第二正極層は、上記負極層側から、上記第二正極層および上記第一正極層の順で積層配置されていることが好ましい。酸素の取り込みが容易になるからである。
 本発明においては、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池を得ることができるという効果を奏する。具体的には、小電流放電時には高容量なリチウム空気電池として機能させ、大電流放電時には高出力なリチウムイオン電池として機能させることができる。
本発明のリチウム空気電池の一例を示す概略断面図である。 従来のリチウム空気電池と、本発明のリチウム空気電池との違いを説明する説明図である。 正極活物質の平均電圧を説明する説明図である。 放電試験の結果を示すグラフである。 インピーダンス評価の結果を示すグラフである。
符号の説明
 1a … 負極ケース
 1b … 正極ケース
 2 … 負極集電体
 2a … 負極リード
 3 … 負極層
 4 … 正極層
 4a … 第一正極層
 4b … 第二正極層
 5 … 正極集電体
 5a … 正極リード
 6 … セパレータ
 7 … 非水電解液
 8 … 微多孔膜
 9 … パッキン
 以下、本発明のリチウム空気電池について詳細に説明する。
 本発明にリチウム空気電池は、正極層と、負極層と、上記正極層および上記負極層の間に形成された電解質層とを有するリチウム空気電池であって、上記正極層は、少なくとも酸素還元能を有する第一正極層と、少なくともLiイオン吸蔵能を有する第二正極層とを有し、上記第二正極層が、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を含有することを特徴とするものである。
 本発明によれば、上記の正極活物質を用いることで、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とを分離することができる。これにより、放電時の電流密度に応じて、異なる特性の電池を使い分けることができるリチウム空気電池を得ることができる。具体的には、小電流放電時には高容量なリチウム空気電池として機能させ、大電流放電時には高出力なリチウムイオン電池として機能させることができる。すなわち、高容量型電池(リチウム空気電池)の機能と、高出力型電池(リチウムイオン電池)の機能とを、一つの電池に組み込んだデュアル型電池を得ることができる。また、本発明のリチウム空気電池は、特性の異なる2つの電池機能を有するため、2つの電池を別々に設置する必要がなく、小型化や重量低減を図ることができる。
 図1は、本発明のリチウム空気電池の一例を示す概略断面図である。図1に示されるリチウム空気電池10は、負極ケース1aと、負極ケース1aの内側底面に形成された負極集電体2と、負極集電体2に接続された負極リード2aと、負極集電体2上に形成され、負極活物質を含有する負極層3と、少なくとも酸素還元能を有する第一正極層4aおよび少なくともLiイオン吸蔵能を有する第二正極層4bからなる正極層4と、正極層4の集電を行う正極集電体5と、正極集電体5に接続された正極リード5aと、負極層3および正極層4の間に配置されたセパレータ6と、負極層3および正極層4を浸す非水電解液7と、酸素を供給する微多孔膜8を有する正極ケース1bと、負極ケース1aおよび正極ケース1bの間に形成されたパッキン9と、を有するものである。
 本発明においては、正極層4が、第一正極層4aおよび第二正極層4bを有し、さらに、第二正極層4bが、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を含有することを大きな特徴とする。このような正極活物質を用いることにより、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とを分離することができる。
 ここで、図2は、従来のリチウム空気電池と、本発明のリチウム空気電池との違いを説明する説明図である。従来のリチウム空気電池(特許文献1に記載されたリチウム空気電池)は、図2(a)に示すように、放電時における、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とを積極的に重複させている。これに対して、本発明のリチウム空気電池は、図2(b)に示すように、放電時における、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とを分離することで、放電時の電流密度に応じて、異なる特性の電池を使い分けることが可能になる。
 また、作動電圧範囲を分離することの利点としては、以下の点を挙げることができる。すなわち、従来のリチウム空気電池では、リチウム空気電池としての作動電圧範囲と、リチウムイオン電池としての作動電圧範囲とが重複しているため、電流密度の大小に関わらず、リチウム空気電池における放電生成物であるLi酸化物(LiO、Li等)が正極層に生成される。このLi酸化物は、リチウムイオン電池におけるSEI(Solid Electrolyte Interface)膜とは異なり、絶縁性の生成物であるため、正極の反応抵抗が大幅に増大し、入出力特性やサイクル特性が低下するという問題がある。これに対して、本発明においては、小電流放電時にはリチウム空気電池として機能させ、大電流放電時にはリチウムイオン電池として機能させることができるため、不要なLi酸化物の生成を抑制できる。その結果、上記の問題を解決することができる。
 また、リチウム空気電池の放電時の作動電圧範囲は、Liイオンおよび酸素からLi酸化物が生成する電圧範囲であり、通常、2.0V~2.9V(vs.Li)の範囲内にある。そこで、本発明においては、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を用いることで、作動電圧範囲の分離を図った。ここで、正極活物質の平均電圧の値は、以下のようにして決定することができる。すなわち、正極活物質を含む正極層と、Li金属からなる負極層と、非水電解液(濃度1M、LiClO/PC)とを有する測定用セルを用意し、0.2mA/cm~2.0mA/cm程度の一定電流密度で放電を行う。その後、図3に示すように、任意に設定された終止電圧(例えば0V)になるまでの時間をAとし、その半分の時間A1/2となる電圧を、平均電圧Vaveとすることができる。なお、図3では、2.0V(vs.Li)よりも小さい平均電圧を有する正極活物質の平均電圧を算出しているが、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質についても、同様にして、平均電圧を算出することができる。
 以下、本発明のリチウム空気電池について、構成ごとに説明する。
1.正極層
 まず、本発明における正極層について説明する。本発明における正極層は、少なくとも酸素還元能を有する第一正極層と、少なくともLiイオン吸蔵能を有する第二正極層とを有する。
(1)第一正極層
 本発明における第一正極層は、少なくとも酸素還元能を有する層であり、通常、リチウム空気電池の正極層として機能する層である。また、本発明のリチウム空気電池が二次電池である場合、第一正極層は、通常、放電反応で生じたLi酸化物(LiO、Li)を分解するLi酸化物分解能を有する。
 本発明における第一正極層は、少なくとも導電性材料を含有し、さらに結着材および触媒の少なくとも一方を含有していても良い。導電性材料としては、例えばカーボン材料を挙げることができる。さらに、カーボン材料としては、具体的にはカーボンブラック、ケッチェンブラック、アセチレンブラック、ファーネスブラック、活性炭、カーボンナノチューブ、カーボンファイバーおよびメソポーラスカーボン等を挙げることができる。さらに、導電性材料は、比表面積が大きいことが好ましく、例えば600m/g以上の比表面積を有することが好ましい。また、第一正極層における導電性材料の含有量としては、例えば10重量%~99重量%の範囲内であることが好ましい。導電性材料の含有量が少なすぎると、反応場が減少し、電池容量の低下が生じる可能性があり、導電性材料の含有量が多すぎると、相対的に触媒や結着材の含有量が減り、所望の第一正極層が得られない可能性があるからである。
 また、本発明における第一正極層は、反応を促進させる触媒を含有していても良い。電極反応がよりスムーズに行われるからである。中でも、導電性材料は、触媒を担持していることが好ましい。上記触媒としては、例えば二酸化マンガンおよびコバルトフタロシアニン等を挙げることができる。第一正極層における触媒の含有量としては、例えば1重量%~90重量%の範囲内であることが好ましい。触媒の含有量が少なすぎると、充分な触媒機能を発揮できない可能性があり、触媒の含有量が多すぎると、相対的に導電性材料の含有量が減り、反応場が減少し、電池容量の低下が生じる可能性があるからである。
 また、本発明における第一正極層は、導電性材料を固定化する結着材を含有していても良い。結着材としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)等のフッ素含有結着材等を挙げることができる。第一正極層における結着材の含有量としては、例えば40重量%以下、中でも1重量%~10重量%の範囲内であることが好ましい。
 第一正極層の厚さは、リチウム空気電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、中でも5μm~300μmの範囲内であることが好ましい。
(2)第二正極層
 次に、本発明における第二正極層について説明する。本発明における第二正極層は、少なくともLiイオン吸蔵能を有する層であり、通常、リチウムイオン電池の正極層として機能する層である。また、本発明のリチウム空気電池が二次電池である場合、通常、第二正極層は、Liイオン放出能を有する。
 本発明における第二正極層は、少なくとも正極活物質を含有し、さらに結着材および導電化材の少なくとも一方を含有していても良い。
 正極活物質の平均電圧は、上述したように、2.0V(vs.Li)よりも小さい範囲にある。中でも、正極活物質の平均電圧は、1.8V(vs.Li)以下であることが好ましく、0.5V(vs.Li)~1.6V(vs.Li)の範囲内であることがより好ましい。作動電圧範囲を明確に分離することで、不要なLi酸化物の生成をさらに抑制できるからである。このような正極活物質としては、例えば、グラファイト、LiTi12等の層状・スピネル材料、およびCoO、SnS、FeP等のコンバージョン材料等を挙げることができる。
 一方、正極活物質の平均電圧は、上述したように、2.9V(vs.Li)よりも大きい範囲にある。中でも、正極活物質の平均電圧は、3.1V(vs.Li)以上であることが好ましく、3.3V(vs.Li)~4.4V(vs.Li)の範囲内であることがより好ましい。作動電圧範囲を明確に分離することで、不要なLi酸化物の生成をさらに抑制できるからである。このような正極活物質としては、例えば、LiCoO、LiFePO、FePO、LiMn等の4V級正極材料、およびLiNi0.5Mn1.5、LiCoPO等の5V級正極材料等を挙げることができる。
 また、本発明における第二正極層は、正極活物質を固定化する結着材を含有していても良い。結着材の種類および含有量については、上記「(1)第一正極層」に記載した内容と同様である。また、本発明における第二正極層は、導電化材を含有していても良い。第二正極層の導電性を向上させることができるからである。導電化材としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、ファーネスブラック等のカーボン材料を挙げることができる。第二正極層における導電化材の含有量は、正極活物質の種類等に応じて、適宜設定することが好ましい。
 第二正極層の厚さは、リチウム空気電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、中でも5μm~300μmの範囲内であることが好ましい。
(3)正極層
 本発明における正極層は、上述した第一正極層および第二正極層を有するものである。本発明において、第一正極層および第二正極層の位置関係は、特に限定されるものではなく、任意に設計することができる。本発明においては、第一正極層および第二正極層が、積層配置されていても良く、同一平面上に並列配置されていても良い。積層配置の場合、第一正極層および第二正極層は、負極層側から、第二正極層および第一正極層の順で積層配置されていることが好ましい(図1参照)。酸素の取り込みが容易になるからである。一方、並列配置の場合、任意のパターンで、第一正極層および第二正極層を形成することができる。
 また、本発明のリチウム空気電池は、正極層の集電を行う正極集電体を有することが好ましい。正極集電体の材料としては、例えば金属材料およびカーボン材料を挙げることができ、中でもカーボン材料が好ましい。耐腐食性に優れているからである。このようなカーボン材料としては、例えばカーボンファイバー(炭素繊維)であることが好ましい。電子が繊維を通じて伝導することができ、電子伝導性が高いからである。カーボンファイバーを用いた正極集電体としては、例えば、カーボンクロスおよびカーボンペーパー等を挙げることができる。一方、金属材料としては、例えばステンレス、ニッケル、アルミニウム、鉄およびチタン等を挙げることができる。金属材料を用いた正極集電体としては、金属メッシュ等を挙げることができる。
 本発明における正極集電体の構造は、所望の電子伝導性を確保できれば特に限定されるものではなく、ガス拡散性を有する多孔質構造であっても良く、ガス拡散性を有しない緻密構造であっても良い。中でも、本発明においては、正極集電体が、ガス拡散性を有する多孔質構造を有していることが好ましい。酸素の拡散を速やかに行うことができるからである。多孔質構造の気孔率としては、特に限定されるものではないが、例えば20%~99%の範囲内であることが好ましい。また、正極集電体の厚さは、例えば10μm~1000μmの範囲内、中でも20μm~400μmの範囲内であることが好ましい。
 また、本発明においては、正極層および正極集電体からなる部材を「正極」と称する。本発明における正極の形成方法は、上述した正極層を得ることができる方法であれば特に限定されるものではない。正極の形成方法の一例としては、第一正極層形成用組成物および第二正極層形成用組成物をそれぞれ作製し、これらの組成物を順次正極集電体に塗布し、乾燥する方法を挙げることができる。第一正極層形成用組成物は、例えば、上述した導電性材料、結着材および触媒に加えて、溶媒を含有するものである。一方、第二正極層形成用組成物は、例えば、上述した正極活物質、結着材および導電化材に加えて、溶媒を含有するものである。これらの組成物に用いられる溶媒は、沸点が200℃以下であることが好ましい。乾燥が容易になるからである。上記溶媒としては、例えばアセトン、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMA)、N,N-ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)およびテトラヒドロフラン(THF)等を挙げることができる。
 また、正極の形成方法の他の例としては、導電性材料、正極活物質、および正極集電体の開口部の大きさの違いを利用した方法を挙げることができる。この方法は、導電性材料および正極活物質の一方の大きさを、正極集電体の開口部の大きさよりも大きくし、他方の大きさを、正極集電体の開口部の大きさよりも小さくすることで、一度の塗布で、第一正極層および第二正極層を形成する方法である。この場合、導電性材料および正極活物質の両方を含有する正極層形成用組成物を使用することができる。なお、触媒や導電化材についても、同様に大きさを調整することで、目的とする層に含有させることができる。
2.負極層
 次に、本発明における負極層について説明する。本発明における負極層は、通常、負極活物質を含有するものである。上記負極活物質としては、Liイオンを放出できるものであれば特に限定されるものではないが、中でもLiイオンを吸蔵・放出できるものであることが好ましい。リチウム空気二次電池に用いることができるからである。
 上記負極活物質としては、例えばリチウム金属、リチウム合金、リチウム酸化物、リチウム窒化物等を挙げることができる。さらに、リチウム合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。
 また、本発明における負極層は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電化材および結着材の少なくとも一方を含有するものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉末状である場合は、導電化材および結着材を有する負極層とすることができる。なお、導電化材および結着材については、上述した「1.正極層」に記載した内容と同様であるので、ここでの説明は省略する。また、負極層の厚さは、目的とするリチウム空気電池の構成に応じて適宜選択することが好ましい。
 また、本発明のリチウム空気電池は、負極層の集電を行う負極集電体を有することが好ましい。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば銅、ステンレス、ニッケル等を挙げることができる。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。また、本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていても良い。また、負極集電体の厚さは、目的とするリチウム空気電池の構成に応じて適宜選択することが好ましい。
 また、本発明においては、負極層および負極集電体からなる部材を「負極」と称する。本発明における負極の形成方法は、上述した負極を形成することができる方法であれば特に限定されるものではない。負極の形成方法の一例としては、箔状の負極活物質を、負極集電体上に配置して、加圧する方法を挙げることができる。また、負極の形成方法の他の例としては、負極活物質および結着材を含有する負極層形成用の組成物を作製し、次に、この組成物を、負極集電体上に塗布して、乾燥する方法等を挙げることができる。
3.電解質層
 次に、本発明における電解質層について説明する。本発明における電解質層は、上記正極層および上記負極層の間に形成され、Liイオンの伝導を行う層である。電解質層の形態は、Liイオン伝導性を有するものであれば特に限定されるものではないが、例えば、非水電解液、非水ゲル電解質、ポリマー電解質および無機固体電解質等を挙げることができる。
 上記非水電解液は、通常、リチウム塩および有機溶媒(非水溶媒)を含有する。上記リチウム塩としては、例えばLiPF、LiBF、LiClOおよびLiAsF等の無機リチウム塩;およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランおよびこれらの混合物等を挙げることができる。また、上記有機溶媒は、酸素溶解性が高い溶媒であることが好ましい。溶存した酸素を効率良く反応に用いることができるからである。非水電解液におけるリチウム塩の濃度は、例えば0.5mol/L~3mol/Lの範囲内である。なお、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いても良い。
 また、上記非水ゲル電解質は、通常、非水電解液にポリマーを添加してゲル化したものである。非水ゲル電解質は、上述した非水電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加し、ゲル化することにより、得ることができる。本発明においては、LiTFSI(LiN(CFSO)-PEO系の非水ゲル電解質が好ましい。また、上記無機固体電解質としては、例えばLi-La-Ti-O系の無機固体電解質等を挙げることができる。本発明においては、無機固体電解質を固体電解質膜に成形し、正極層および負極層の間に配置することができる。
 また、本発明のリチウム空気電池は、正極層および負極層の間に、セパレータを有することが好ましい。安全性の高い電池を得ることができるからである。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
4.電池ケース
 次に、本発明における電池ケースについて説明する。本発明における電池ケースの形状としては、上述した正極層、負極、電解質を収納することができれば特に限定されるものではないが、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。また、電池ケースは、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、上述した図1に示すように、大気と接触可能な電池ケースである。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の供給管および排出管を設けることが好ましい。この場合、供給・排出する気体は、酸素濃度が高いことが好ましく、純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
5.リチウム空気電池
 本発明のリチウム空気電池は、一次電池であっても良く、二次電池であっても良いが、中でも二次電池であることが好ましい。幅広い用途に用いることができるからである。本発明のリチウム空気電池の用途としては、例えば車両搭載用途、定置型電源用途、家庭用電源用途等を挙げることができる。また、本発明のリチウム空気電池を製造する方法は、特に限定されるものではなく、一般的な金属空気電池の製造方法と同様である。また、本発明においては、上述したリチウム空気電池の使用方法であって、電流負荷を調節することで、リチウム空気電池とリチウムイオン電池とを使い分けることを特徴とするリチウム空気電池の使用方法を提供することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
(正極の作製)
 カーボンブラック(一次粒子の大きさが100nm以下、二次粒子凝集体の大きさが数μm程度)と、グラファイト(中心粒径11.5μm)と、PVDF-HFPと、を重量比で25:42:33となるように秤量し、混合した。次に、これらの混合物およびアセトンを混合撹拌(2000rpm、30分)し、正極層形成用組成物を得た。なお、上述した方法により算出したグラファイトの平均電圧は、約0.2V(vs.Li)であった。
 次に、正極集電体として、開口径が8μmであるカーボンペーパー(東レ社製、TGP-H-090、厚さ0.28mm)を用意した。このカーボンペーパーに対して、上記の正極層形成用組成物をドクターブレードにて塗布した。次に、Ar雰囲気、80℃、1時間の条件で乾燥を行い、その後、60℃で一昼夜真空乾燥を行った。これにより、正極集電体、第一正極層(カーボンブラックを含む層)および第二正極層(グラファイトを含む層)がこの順に配置された正極を得た。
(評価用セルの作製)
 まず、上記の正極を用いて、リチウム空気電池素子を作製した。なお、素子の組立はアルゴンボックス内で行った。また、素子の電池ケースには、北斗電工製のF型電気化学セルを用いた。
 電池ケースに、金属Li(本城金属社製、φ18mm、厚さ0.25mm)を配置した。次に、金属Liの上にポリエチレン製のセパレータ(φ18mm、厚さ25μm)を配置した。次に、セパレータの上から、プロピレンカーボネート(PC、キシダ化学製)中にLiClO(キシダ化学製)を濃度1Mで溶解させた非水電解液を4.8mL注液した。次に、上記の正極の正極層を、セパレータと対向させるように配置して封止し、リチウム空気電池素子を得た。次に、得られた素子を、酸素で満たしたデシケータ(酸素濃度99.99体積%、内部圧力1atm、デシケータ容積1L)に配置し、評価用セルを得た。
[比較例1]
 グラファイトの代わりに、MnO(d50=15μm)を用いたこと以外は、実施例1と同様にして評価用セルを得た。なお、上述した方法により算出したMnOの平均電圧は、約2.7V(vs.Li)であった。
[評価]
(1)放電試験
 実施例1で得られた評価用セルを用いて、放電試験を行った。放電は、大電流放電(電流密度0.2mA/cm、0.01V(vs.Li)未満はカット)および小電流放電(電流密度0.02mA/cm、2.0V(vs.Li)未満はカット)の条件で行った。その結果を図4に示す。図4に示されるように、実施例1の評価用セルは、大電流放電の際にはリチウムイオン電池として機能し、小電流放電の際にはリチウム空気電池として機能することが確認された。これにより、放電時の電流密度に応じて、異なる特性の電池を使い分けることができることが確認された。
(2)インピーダンス評価
 実施例1および比較例1で得られた評価用セルを用いて、充放電に伴う正極層のインピーダンスの変化について評価した。充放電は、大電流充放電(電流密度0.2mA/cm、0.01V~1.5V(vs.Li))および小電流放電(電流密度0.02mA/cm、2.0V~4.3V(vs.Li))の条件で行った。その結果を図5に示す。図5に示されるように、大電流充放電(0.2mA/cm)において、実施例1の評価用セルは、比較例1の評価用セルに比べて、インピーダンスの増加が抑制されていることが確認できた。これは、実施例1の評価用セルが、大電流放電時にリチウムイオン電池として機能することで、リチウム空気電池の放電反応で生じるLi酸化物の生成が抑制されたためであると考えられる。一方、小電流充放電(0.02mA/cm)においては、実施例1の評価用セルと、比較例1の評価用セルとは、インピーダンスの増加に大きな差は見られなかった。これは、小電流充放電では、共にリチウム空気電池として機能しているためであると考えられる。

Claims (4)

  1.  正極層と、負極層と、前記正極層および前記負極層の間に形成された電解質層とを有するリチウム空気電池であって、
     前記正極層は、少なくとも酸素還元能を有する第一正極層と、少なくともLiイオン吸蔵能を有する第二正極層とを有し、
     前記第二正極層が、2.0V(vs.Li)よりも小さい平均電圧、または、2.9V(vs.Li)よりも大きい平均電圧を有する正極活物質を含有することを特徴とするリチウム空気電池。
  2.  前記正極活物質が、グラファイトまたはLiTi12であることを特徴とする請求の範囲第1項に記載のリチウム空気電池。
  3.  前記正極活物質が、LiCoOまたはLiFePOであることを特徴とする請求の範囲第1項に記載のリチウム空気電池。
  4.  前記第一正極層および前記第二正極層は、前記負極層側から、前記第二正極層および前記第一正極層の順で積層配置されていることを特徴とする請求の範囲第1項から第3項までのいずれかに記載のリチウム空気電池。
PCT/JP2008/073569 2008-12-25 2008-12-25 リチウム空気電池 WO2010073332A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/999,460 US8741492B2 (en) 2008-12-25 2008-12-25 Lithium air battery
JP2010509051A JP5158193B2 (ja) 2008-12-25 2008-12-25 リチウム空気電池
PCT/JP2008/073569 WO2010073332A1 (ja) 2008-12-25 2008-12-25 リチウム空気電池
CN200880127635.0A CN101960664B (zh) 2008-12-25 2008-12-25 锂空气电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073569 WO2010073332A1 (ja) 2008-12-25 2008-12-25 リチウム空気電池

Publications (1)

Publication Number Publication Date
WO2010073332A1 true WO2010073332A1 (ja) 2010-07-01

Family

ID=42287001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073569 WO2010073332A1 (ja) 2008-12-25 2008-12-25 リチウム空気電池

Country Status (4)

Country Link
US (1) US8741492B2 (ja)
JP (1) JP5158193B2 (ja)
CN (1) CN101960664B (ja)
WO (1) WO2010073332A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178002A1 (en) * 2010-06-22 2012-07-12 Basf Se Electrodes and production and use thereof
US20120270115A1 (en) * 2004-02-20 2012-10-25 Excellatron Solid State, Llc Lithium Oxygen Batteries Having a Carbon Cloth Current Collector and Method of Producing Same
JP2013062181A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 金属酸素電池
WO2013084355A1 (ja) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 金属空気電池
JP2014505321A (ja) * 2010-12-03 2014-02-27 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2015018679A (ja) * 2013-07-10 2015-01-29 日本電信電話株式会社 リチウム空気二次電池
JP2015518249A (ja) * 2012-04-25 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ リチウム/空気タイプのリチウム電気化学電池

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527567A (ja) * 2010-04-23 2013-06-27 リオクス パワー インコーポレイテッド 充電式金属空気電池のための可溶性酸素発生触媒
US20110311888A1 (en) * 2010-06-22 2011-12-22 Basf Se Electrodes and production and use thereof
ES2702487T3 (es) 2011-06-17 2019-03-01 Nantenergy Inc Líquido iónico que contiene iones sulfonato
CN103748738B (zh) 2011-06-17 2016-11-23 流体公司 具有离子交换材料的金属-空气电池
CN102263311A (zh) * 2011-06-27 2011-11-30 清华大学 一种双极结构锂空气电池
US9431689B2 (en) * 2011-10-14 2016-08-30 Nissan Chemical Industries, Ltd. Metal-air cell provided with gel-form solid electrolyte
JP6024907B2 (ja) * 2012-02-07 2016-11-16 日産自動車株式会社 空気電池とこれを用いた組電池
KR102032245B1 (ko) 2012-04-03 2019-10-16 삼성전자주식회사 리튬 공기 전지 모듈
CN102709624A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种互不相溶“水/聚合物”双相电解质及电池
CN102738442B (zh) * 2012-06-14 2016-04-20 复旦大学 一种高能量密度充放电锂电池
US20150104718A1 (en) * 2012-08-14 2015-04-16 Empire Technology Development Llc Flexible transparent air-metal batteries
KR102005448B1 (ko) * 2012-09-13 2019-07-31 삼성전자주식회사 리튬전지
JP5630487B2 (ja) * 2012-09-14 2014-11-26 トヨタ自動車株式会社 金属空気電池用電解質
JP2014093227A (ja) * 2012-11-05 2014-05-19 Toyota Motor Corp 空気電池用空気極、及び当該空気極を備える空気電池
CN103996891B (zh) * 2013-02-19 2017-03-08 中国科学院宁波材料技术与工程研究所 锂‑空气电池电解液体系
KR101561188B1 (ko) 2013-02-20 2015-10-16 에스케이이노베이션 주식회사 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 에어 배터리
US20140356737A1 (en) * 2013-05-31 2014-12-04 Huawei Technologies Co., Ltd. Lithium-Air Battery and Preparation Method Thereof
KR101674736B1 (ko) * 2014-10-02 2016-11-10 한양대학교 산학협력단 리튬 공기 이차 전지, 및 그 제조 방법
CN106992283B (zh) * 2016-01-21 2019-10-18 河南师范大学 一种废旧磷酸铁锂正极材料资源化用于铁空气电池的方法
US10559826B2 (en) 2017-03-20 2020-02-11 Global Graphene Group, Inc. Multivalent metal ion battery having a cathode of recompressed graphite worms and manufacturing method
US10411291B2 (en) * 2017-03-22 2019-09-10 Nanotek Instruments, Inc. Multivalent metal ion battery having a cathode layer of protected graphitic carbon and manufacturing method
US11476522B2 (en) * 2017-11-15 2022-10-18 Samsung Electronics Co., Ltd. Metal-air battery
CN108963388A (zh) * 2018-05-25 2018-12-07 四川大学 一种提高锂空气电池能量密度和输出功率的方法及基于该方法的锂空气电池
US11424484B2 (en) 2019-01-24 2022-08-23 Octet Scientific, Inc. Zinc battery electrolyte additive
JPWO2020250468A1 (ja) * 2019-06-10 2021-11-04 パナソニックIpマネジメント株式会社 一次電池
KR20210107407A (ko) * 2020-02-24 2021-09-01 삼성전자주식회사 양극, 이를 포함하는 리튬-공기 전지 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260685A (ja) * 1993-03-02 1994-09-16 Shigeyuki Yasuda 発電素子及び二次電池
JPH1114769A (ja) * 1997-06-23 1999-01-22 Sanyo Electric Co Ltd 太陽電池付き時計
JP2008103473A (ja) * 2006-10-18 2008-05-01 Toyota Central R&D Labs Inc 蓄電デバイス
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147967B1 (en) * 2003-07-29 2006-12-12 The United States Of America As Represented By The Secretary Of The Army Cathode for metal-oxygen battery
JP4575212B2 (ja) 2005-03-31 2010-11-04 株式会社東芝 非水電解質空気電池
US8129052B2 (en) * 2005-09-02 2012-03-06 Polyplus Battery Company Polymer adhesive seals for protected anode architectures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260685A (ja) * 1993-03-02 1994-09-16 Shigeyuki Yasuda 発電素子及び二次電池
JPH1114769A (ja) * 1997-06-23 1999-01-22 Sanyo Electric Co Ltd 太陽電池付き時計
JP2008103473A (ja) * 2006-10-18 2008-05-01 Toyota Central R&D Labs Inc 蓄電デバイス
JP2008112661A (ja) * 2006-10-31 2008-05-15 Ohara Inc リチウムイオン伝導性固体電解質およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270115A1 (en) * 2004-02-20 2012-10-25 Excellatron Solid State, Llc Lithium Oxygen Batteries Having a Carbon Cloth Current Collector and Method of Producing Same
US20120178002A1 (en) * 2010-06-22 2012-07-12 Basf Se Electrodes and production and use thereof
JP2014505321A (ja) * 2010-12-03 2014-02-27 イムラ アメリカ インコーポレイテッド 充電式電気化学エネルギー貯蔵デバイス
JP2013062181A (ja) * 2011-09-14 2013-04-04 Honda Motor Co Ltd 金属酸素電池
WO2013084355A1 (ja) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 金属空気電池
CN104040786A (zh) * 2011-12-09 2014-09-10 丰田自动车株式会社 金属空气电池
JPWO2013084355A1 (ja) * 2011-12-09 2015-04-27 トヨタ自動車株式会社 金属空気電池
US9608279B2 (en) 2011-12-09 2017-03-28 Toyota Jidosha Kabushiki Kaisha Metal-air battery
JP2015518249A (ja) * 2012-04-25 2015-06-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ リチウム/空気タイプのリチウム電気化学電池
JP2015018679A (ja) * 2013-07-10 2015-01-29 日本電信電話株式会社 リチウム空気二次電池

Also Published As

Publication number Publication date
CN101960664A (zh) 2011-01-26
US8741492B2 (en) 2014-06-03
JP5158193B2 (ja) 2013-03-06
CN101960664B (zh) 2014-06-04
US20110091777A1 (en) 2011-04-21
JPWO2010073332A1 (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2010073332A1 (ja) リチウム空気電池
JP5373966B2 (ja) 空気極および金属空気電池
US9660253B2 (en) Positive electrode active material for sodium battery, and method of producing the same
JP6156939B2 (ja) リチウムイオン二次電池
JP6746506B2 (ja) 非水電解液二次電池
JP5099168B2 (ja) リチウムイオン二次電池
JPWO2015111710A1 (ja) 非水二次電池
JP6581981B2 (ja) 非水電解質二次電池およびこれを複数個接続してなる組電池
JP2007287630A (ja) 非水電解質二次電池
JP2013037999A (ja) 金属空気電池
CN109417167A (zh) 用于锂离子电池的包覆钛酸锂
JP7177277B2 (ja) リチウム二次電池用電極
JP2010177124A (ja) 非水電解質二次電池
JP2007234458A (ja) 非水電解液二次電池
US20200403224A1 (en) Lithium molybdate anode material
WO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
JP2017188424A (ja) リチウムイオン二次電池用正極活物質、及びそれを用いたリチウムイオン二次電池用正極並びにリチウムイオン二次電池
JP7003775B2 (ja) リチウムイオン二次電池
KR20240017067A (ko) 전지 양극재, 그의 제조 방법 및 그의 적용
JP2012138290A (ja) リチウム二次電池システム、及び当該リチウム二次電池システムの制御方法
JP2015187929A (ja) 非水電解質二次電池
JP2010135115A (ja) 非水電解質二次電池
JP5333658B2 (ja) 電池用活物質および電池
JP2011003450A (ja) 全固体型ポリマー電池
KR102207523B1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127635.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010509051

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879128

Country of ref document: EP

Kind code of ref document: A1