WO2010067614A1 - 電動機およびそれを備えた電気機器 - Google Patents

電動機およびそれを備えた電気機器 Download PDF

Info

Publication number
WO2010067614A1
WO2010067614A1 PCT/JP2009/006779 JP2009006779W WO2010067614A1 WO 2010067614 A1 WO2010067614 A1 WO 2010067614A1 JP 2009006779 W JP2009006779 W JP 2009006779W WO 2010067614 A1 WO2010067614 A1 WO 2010067614A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
bearing
drive circuit
circuit board
shaft
Prior art date
Application number
PCT/JP2009/006779
Other languages
English (en)
French (fr)
Inventor
角治彦
渡辺彰彦
水上裕文
長谷川武彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to BRPI0922963A priority Critical patent/BRPI0922963A2/pt
Priority to US13/132,247 priority patent/US8587167B2/en
Priority to CN200980149932.XA priority patent/CN102246397B/zh
Priority to JP2010542030A priority patent/JP5110171B2/ja
Priority to EP09831720.9A priority patent/EP2355310B1/en
Publication of WO2010067614A1 publication Critical patent/WO2010067614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements

Definitions

  • the present invention relates to an electric motor, and more particularly to an electric motor improved so as to suppress the occurrence of electrolytic corrosion of a bearing.
  • PWM pulse width modulation
  • the neutral point potential of the winding does not become zero, and therefore a potential difference (hereinafter referred to as shaft voltage) is generated between the outer ring and the inner ring of the bearing.
  • the shaft voltage includes a high-frequency signal due to switching, and when the shaft voltage reaches the dielectric breakdown voltage of the oil film inside the bearing, a minute current flows inside the bearing and electric corrosion occurs inside the bearing.
  • electrolytic corrosion progresses, a wavy wear phenomenon may occur in the bearing inner ring, the bearing outer ring or the bearing ball, resulting in abnormal noise, which is one of the main causes of problems in the motor.
  • the bearing lubricant As a specific method of the above (1), it is possible to make the bearing lubricant conductive.
  • the conductive lubricant has problems such as deterioration of conductivity with time and lack of sliding reliability.
  • electrical_connection state is also considered, this method also has subjects, such as a brush abrasion powder and space being required.
  • Z is an impedance
  • j is an imaginary number
  • is an angular frequency
  • C is a capacitance
  • R is a resistance.
  • an electric motor that is used around water such as a washing machine or a dishwasher and has a risk of an electric shock has added independent insulation in addition to insulation of the charging part (basic insulation) (hereinafter referred to as additional insulation).
  • additional insulation insulation in addition to insulation of the charging part (basic insulation)
  • motors used for other air conditioner indoor units, air conditioner outdoor units, hot water heaters, air purifiers, and the like do not need an additional insulation because there is no risk of electric shock. Therefore, since the motor used for the air conditioner indoor unit, the air conditioner outdoor unit, the water heater, the air purifier, etc. does not have an insulating structure, the rotor side (bearing inner ring side) has a low impedance. .
  • stator side bearing outer ring side
  • the impedance is high.
  • the potential on the bearing inner ring side is high while the potential on the bearing outer ring side is low, an unbalanced state occurs and a high shaft voltage is generated.
  • high shaft voltage may cause electric corrosion in the bearing.
  • Patent Document 1 eliminates the capacitance component between the stator core and the bracket by short-circuiting, and the impedance on the stator side (bearing outer ring side) as described above. A method of lowering and approximating the impedance on the rotor side (bearing inner ring side) is adopted.
  • this conventional method is a method for changing the impedance on the stator side to maintain a potential balance between the bearing inner ring and the bearing outer ring and to suppress electrolytic corrosion.
  • this conventional method if the balance of impedance is lost due to the usage environment of the motor or the variation in assembly accuracy of the stator and rotor, the shaft voltage becomes high and electric corrosion tends to occur. The case was also considered as a possibility.
  • An electric motor of the present invention includes a stator in which a fixing member including a stator core around which a winding is wound is molded integrally with an insulating resin, a rotor disposed so as to face the stator around a shaft, and a shaft A bearing that rotatably supports the bearing, a bracket that fixes the bearing, and a drive circuit board on which a drive circuit that drives the winding is mounted, and the stator core is connected to a ground that is a zero potential reference on the drive circuit board. In this configuration, they are electrically connected via a conducting member.
  • the stator core is connected to the ground on the drive circuit board via the conductive member, whereas the stator core is considered to be a voltage source that induces a high-frequency voltage in the bearing inner ring and the bearing outer ring.
  • the potential of the stator core becomes zero potential, and the shaft voltage can be reduced.
  • FIG. 1 is a structural diagram showing a cross section of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially developed perspective view of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram illustrating a method for measuring an axial voltage according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of a drive circuit board built in the electric motor according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of an air conditioner indoor unit 210 as an example of an electric device according to Embodiment 3 of the present invention.
  • FIG. 1 is a structural diagram showing a cross section of the electric motor according to Embodiment 1 of the present invention.
  • an example of an electric motor that is mounted on an air conditioner as an electric device and is a brushless motor for driving a blower fan of an indoor unit will be described.
  • an example of an inner rotor type motor in which a rotor is rotatably arranged on the inner peripheral side of a stator will be described.
  • a stator winding 11 is wound around a stator core 11 with an insulator 22 as a resin insulating the stator core 11 interposed therebetween.
  • the stator core 11 is molded with an insulating resin 13 as a molding material together with other fixing members.
  • the stator 10 whose outer shape is substantially cylindrical is formed by integrally molding these members in this way.
  • a rotor 14 is inserted inside the stator 10 via a gap (not shown).
  • the rotor 14 includes a disk-shaped rotating body 30 including the rotor core 31 and a shaft 16 to which the rotating body 30 is fastened so as to penetrate the center of the rotating body 30.
  • the rotor core 31 holds a plurality of permanent magnets in the circumferential direction facing the inner peripheral side of the stator 10.
  • FIG. 1 shows a configuration example in which a rotor core 31 and a ferrite resin magnet 32 that is a permanent magnet are integrally formed. In this manner, the inner peripheral side of the stator 10 and the outer peripheral side of the rotating body 30 are arranged to face each other.
  • the bearing 15 is a cylindrical bearing having a plurality of iron balls, and the inner ring side of the bearing 15 is fixed to the shaft 16.
  • the bearing 15 a supports the shaft 16 on the output shaft side on which the shaft 16 protrudes from the brushless motor main body, and the bearing 15 b supports the shaft 16 on the opposite side (hereinafter referred to as the non-output shaft side).
  • the outer shaft side of the output shaft side bearing 15a is fixed by a conductive metal bracket 17.
  • the outer ring side of the bearing 15b on the side opposite to the output shaft is fixed by an insulating resin 13 that is molded integrally with the mold.
  • the brushless motor has a built-in drive circuit board 18 on which a drive circuit including a control circuit is mounted. After the drive circuit board 18 is built in, the brushless motor is formed by press-fitting the bracket 17 into the stator 10.
  • the drive circuit board 18 is connected to a connection line 40 including a lead wire, a ground wire 41 and the like for applying a power supply voltage Vdc of the winding, a power supply voltage Vcc of the control circuit, and a control voltage Vsp for controlling the rotation speed. ing.
  • the ground line 41 included in the connection line 40 is connected to the ground on the drive circuit board 18.
  • the ground is a zero potential reference for setting a reference potential of zero volts in the drive circuit board 18, and a wiring pattern as a ground wiring is arranged on the drive circuit board 18. That is, the ground line 41 included in the connection line 40 is connected to the ground wiring on the drive circuit board 18.
  • the ground on the drive circuit board 18 on which the drive circuit is mounted is insulated from the earth ground and the primary side (power supply) circuit, and the ground earth and the potential of the primary power supply circuit are in a floating state. It is.
  • the power supply circuit, the ground line 41, and the like include a primary side (power supply) circuit for the power supply circuit that supplies the power supply voltage of the winding, a primary side (power supply) circuit for the power supply circuit that supplies the power supply voltage of the control circuit, Both the earth ground connected to the primary side (power supply) circuit and the ground earth independently grounded are electrically insulated. That is, since the drive circuit mounted on the drive circuit board 18 is electrically insulated with respect to the primary side (power supply) circuit potential and the ground potential, the potential is floated. ing. This is a state where the potential is floating. For this reason, the configuration of the power supply circuit that supplies the power supply voltage of the winding connected to the drive circuit board 18 and the power supply circuit that supplies the power supply voltage of the control circuit is also called a floating power supply.
  • the brushless motor according to the present embodiment is characterized in that the stator core 11 is electrically connected to a ground wiring that is a zero potential reference on the drive circuit board 18 through a conductive member 50 that is a conductive member. Yes.
  • a drive current flows through the stator winding 12 by the drive circuit of the drive circuit board 18.
  • a magnetic field is generated from the stator core 11.
  • the magnetic field from the stator core 11 and the magnetic field from the ferrite resin magnet 32 cause an attractive force and a repulsive force according to the polarities of the magnetic fields, and the rotor 14 rotates around the shaft 16 by these forces. .
  • the shaft 16 is supported by the two bearings 15, one bearing 15 a is fixed by the metal bracket 17, and the other bearing 15 b is fixed by the insulating resin 13. ing.
  • the non-output shaft side bearing 15b is fixed by a hollow cylindrical portion of an insulating resin 13 that is substantially equal to the outer diameter of the bearing 15b. That is, as shown in FIG. 1, the shape of the insulating resin 13 on the side opposite to the output shaft is a shape having a main body protruding portion 13a that protrudes from the brushless motor main body in the direction opposite to the output shaft.
  • the inner side of the main body protrusion 13a has a hollow cylindrical shape.
  • the diameter of the hollow cylindrical hollow cylindrical portion is substantially equal to the outer diameter of the bearing 15b, and the bearing 15b is fixed to the insulating resin 13 by inserting the bearing 15b into the hollow cylindrical portion. In this way, the bearing 15b is arranged on the inner side of the main body protrusion 13a.
  • the bracket 17 has an outer diameter substantially equal to the outer diameter of the stator 10.
  • the bracket 17 has a substantially disc shape, and has a protrusion having a diameter substantially equal to the outer diameter of the bearing 15a at the center of the disk, and the inside of the protrusion is hollow.
  • the inside of the protruding portion of the bracket 17 is inserted into the bearing 15a.
  • the brushless motor is formed by press-fitting the bracket 17 into the stator 10 so that the connection end provided on the outer periphery of the bracket 17 and the connection end of the stator 10 are fitted. With this configuration, the assembly work is facilitated and the outer ring side of the bearing 15a is fixed to the metal bracket 17, so that the bearing 15a can be firmly fixed.
  • the impedance on the rotor side (bearing inner ring side) is low and the stator side (bearing outer ring side) is high as described above. That is, when considering the impedance on the rotor side from the stator core 11 to the inner ring of the bearing 15, the stator core 11 and the rotor 30 face each other through a slight gap, and the rotor 30. Since the shaft 16 is a conductor, the impedance between them can be said to be low.
  • the impedance during this period is low, the high-frequency signal generated from the stator core 11 reaches the inner ring of the bearing 15 without being attenuated, and as a result, a high-potential high-frequency voltage is generated in the inner ring of the bearing 15. It is done.
  • the bracket 17 connected to the outer ring of the bearing 15a has a certain distance from the stator core 11. Since it is arranged, it can be said that the impedance during this period is high. Further, since the impedance during this period is high, the high-frequency signal generated from the stator core 11 is attenuated and reaches the outer ring of the bearing 15, and as a result, a low-frequency high-frequency voltage is generated in the outer ring of the bearing 15. .
  • a potential difference that is, a shaft voltage is generated between the inner ring and the outer ring of the bearing, and it is considered that electric corrosion occurs in the bearing.
  • a stator core around which a winding driven by PWM high-frequency switching is wound is considered to be a main source. That is, since the stator core is wound with a winding driven by a high-frequency current, the stator core also generates a high-frequency signal due to the drive high-frequency together with the magnetic flux generated by the drive current. It is considered that is induced to the bearing inner ring and the bearing outer ring through the space.
  • the stator core 11 is electrically connected to the ground wiring on the drive circuit board 18 via the conductive member 50 in order to suppress the electric corrosion that occurs in this way. .
  • the stator core 11 that is the main source of the high-frequency signal that generates the shaft voltage is connected to the ground wiring of the drive circuit board 18, thereby setting the potential of the stator core 11 to zero potential.
  • the shaft voltage is lowered.
  • the occurrence of electrolytic corrosion in the bearing is suppressed.
  • FIG. 2 is a partially exploded perspective view of a brushless motor that is an electric motor according to Embodiment 1 of the present invention.
  • the winding assembly 20 formed by winding the stator winding 12 around the stator core 11, the drive circuit board 18, and the core connection terminal 51 as the conductive member 50 that connects each of them is given. .
  • the stator core 11 around which the stator winding 12 is wound has an annular shape, and the stator core 11 is interposed between the stator core 11 and the stator winding 12.
  • An insulator 22 is interposed to insulate.
  • the drive circuit board 18 also has an annular shape in which a hole for allowing the shaft 16 to pass therethrough is provided at the center.
  • FIG. The iron core connection terminal 51 has a bifurcated shape at one end in the longitudinal direction and a pin shape at the other end.
  • the iron core connection terminal 51 is preferably made of a springy material (for example, phosphor bronze), brass plated by welding or soldering, or the like. Further, as shown in FIG. 2, a hole 51 a is provided on the insulator 22 side of the bifurcated portion of the iron core connection terminal 51, and a convex portion (not shown) is provided at a position corresponding to the hole 51 a of the insulator 22. Thus, the core connection terminal 51 can be reliably fixed to the stator core 11 while being easily positioned.
  • the other end of the pin shape not connected to the stator core 11 of the core connection terminal 51 is connected and fixed to the land 52 of the drive circuit board 18 by solder.
  • Various electronic components (not shown) are mounted on the drive circuit board 18, and each electronic component is electrically connected by a wiring pattern formed by patterning copper foil on the drive circuit board 18.
  • FIG. 2 only the ground pattern 53 for ground wiring is shown as a representative of such a wiring pattern.
  • a ground line 41 included in the connection line 40 is connected to one end of the ground pattern 53.
  • the ground pattern 53 extends on the drive circuit board 18 from the connection portion with the ground line 41, and a land 52 having a hole is formed at the other end of the ground pattern 53.
  • the core connection terminal 51 and the ground wire 41 are connected. Are electrically connected. That is, the stator core 11 is electrically connected to the ground wire 41 via the core connection terminal 51 and the ground pattern 53.
  • the brushless motor is manufactured according to the following process.
  • the stator winding 12 is wound around the stator core 11 provided with the insulator 22, and the winding assembly 20 as shown in FIG. 2 is formed.
  • the core connection terminal 51 is inserted into the winding assembly 20 formed as described above, and the core connection terminal 51 is welded at the outer peripheral portion of the stator core 11.
  • the winding assembly 20 is molded with the insulating resin 13 to form the stator 10.
  • the stator 10 is formed so that the tip portion of the iron core connection terminal 51 having a pin shape is exposed from the insulating resin 13 and protrudes.
  • the rotor 14 to which the bearing 15 is attached is inserted into the stator 10 thus formed.
  • the bearing 15 b is inserted into the hollow cylindrical portion inside the stator 10, and the bearing 15 b is fixed to the stator 10.
  • the drive circuit board 18 is inserted from the output shaft side.
  • substrate 18 is arrange
  • the inside of the protruding portion of the bracket 17 is inserted into the bearing 15a, and the bracket 17 is attached to the stator 10 so that the connection end provided on the outer periphery of the bracket 17 and the connection end of the stator 10 are fitted. Press fit. In this way, the brushless motor is formed.
  • the stator core 11 that is the main generation source of the high-frequency signal that generates the shaft voltage is electrically connected to the ground line 41 via the core connection terminal 51 and the ground pattern 53 as described above. Connected to.
  • the potential of the stator core 11 becomes zero potential with a simple configuration, and a high-frequency signal generated in the stator core 11 can be attenuated. Therefore, since the potential of the high-frequency signal induced from the stator core 11 to the bearing inner ring and the bearing outer ring can be suppressed, the shaft voltage can also be suppressed, thereby suppressing the occurrence of electrolytic corrosion in the bearing.
  • Example 1 the shaft voltage when the stator core 11 of the brushless motor shown in FIG. 1 is connected to the ground wiring of the drive circuit board 18 via the conductive member 50 was measured.
  • the bearing used was 608 manufactured by Minebea Co., Ltd. (grease having a consistency of 239).
  • FIG. 3 is a diagram showing a measuring method of the shaft voltage of this example.
  • a DC stabilized power supply was used, the power supply voltage Vdc of the winding was 391 V, the power supply voltage Vcc of the drive circuit was 15 V, and the measurement was performed under the same operating conditions at a rotational speed of 1000 r / min.
  • the rotational speed was adjusted by the control voltage Vsp, and the brushless motor posture during operation was horizontal on the shaft.
  • the measurement of the axial voltage was performed by observing the voltage waveform with the digital oscilloscope 130 (DPO7104 manufactured by Tektronix) and the high-voltage differential probe 120 (P5205 manufactured by Tektronix), and the measured voltage between the peaks was used as the axial voltage.
  • DPO7104 digital oscilloscope 130
  • P5205 high-voltage differential probe 120
  • the horizontal axis time at the time of measurement is the same condition of 50 ⁇ s / div in any of the following measurement conditions.
  • the digital oscilloscope 130 is insulated by an insulation transformer 140.
  • the positive side 120a of the high-voltage differential probe 120 is in contact with the outer periphery of the shaft 16 through the inner periphery of the shaft 16 through a lead wire 110 having a length of about 30 cm and a conductor of the lead wire having a loop shape of about 15 mm in diameter. By doing so, it is electrically connected to the shaft 16.
  • the negative side 120b of the high-voltage differential probe 120 is electrically connected to the bracket 17 by bringing the tip of the lead wire 111 into conductive contact with the bracket 17 via the conductive tape 112 via the lead wire 111 having a length of about 30 cm. Connected. With such a configuration, measurement of an axial voltage which is a voltage between the bracket 17 and the shaft 16 was performed.
  • Table 1 shows the measurement results of Example 1 and Comparative Example 1.
  • the shaft voltage can be lowered by connecting the stator core 11 and the ground wiring of the drive circuit board 18.
  • the electric motor of the present invention has a very excellent effect in suppressing the occurrence of electric corrosion of bearings in the electric motor because the shaft voltage is reduced as compared with the conventional electric motor.
  • FIG. 4 is a diagram showing a configuration of a drive circuit board built in the electric motor according to Embodiment 2 of the present invention. Also on the drive circuit board 18 shown in FIG. 4, various electronic components (not shown) are mounted in the same manner as the drive circuit board 18 of Embodiment 1, and each electronic component is mounted on the drive circuit board 18. They are electrically connected by a wiring pattern patterned with copper foil.
  • the electric motor in the present embodiment has the same configuration as the brushless motor having the structure shown in FIG.
  • the stator core 11 is connected to the ground line 41 that is a zero potential reference via the iron core connection terminal 51 that is a conduction member and further via the capacitor 60. It is characterized by electrical connection. That is, as in the first embodiment, when the stator core 11 is electrically connected directly to the ground wire 41, the ground of the electric device in which the brushless motor is incorporated is connected via the ground wire 41. Connected directly. In this case, the high frequency signal generated from the stator core 11 may be propagated as noise to the electric device. For this reason, in the present embodiment, by providing the capacitor 60, the signal level of the high-frequency signal propagated from the stator core 11 to the electric device via the ground wire 41 is suppressed.
  • the ground line 41 included in the connection line 40 is connected to the ground connection end portion 54 of the first ground pattern 55.
  • the first ground pattern 55 extends on the drive circuit board 18 from the ground connection end portion 54 and is connected to one end of the capacitor 60.
  • lands 52 for connecting the iron core connection terminals 51 are formed on the drive circuit board 18.
  • the second ground pattern 56 extends from the land 52 on the drive circuit board 18 and is connected to the other end of the capacitor 60.
  • the stator core 11 is electrically connected to the ground line 41 via the core connection terminal 51, the second ground pattern 56, the capacitor 60, and the first ground pattern 55.
  • the stator core 11 is electrically connected to the ground line 41 via the core connection terminal 51 and the capacitor 60.
  • condenser 60 functions as a noise filter, and can suppress that the high frequency signal which generate
  • FIG. 5 is a schematic diagram showing a configuration of an air conditioner indoor unit 210 as an example of an electric device according to Embodiment 3 of the present invention.
  • a brushless motor 201 is mounted in the casing 211 of the air conditioner indoor unit 210.
  • a cross flow fan 212 is attached to the rotating shaft of the brushless motor 201.
  • the brushless motor 201 is driven by a motor driving device 213.
  • the brushless motor 201 is rotated by energization from the motor driving device 213, and the cross flow fan 212 is rotated accordingly.
  • air conditioned by an indoor unit heat exchanger (not shown) is blown into the room.
  • the electric motor shown in the above embodiment can be applied to the brushless motor 201.
  • the electric device of the present invention includes a brushless motor and a casing on which the brushless motor is mounted, and employs the electric motor of the present invention configured as described above as a brushless motor.
  • the brushless motor mounted on the air conditioner indoor unit is taken up as an embodiment of the electric device according to the present invention.
  • the brushless motor mounted on the air conditioner outdoor unit and the electric motor mounted on the other electric device can also be applied to brushless motors used in various household appliances, brushless motors mounted in various information devices, and brushless motors used in industrial devices.
  • the electric motor of the present invention is disposed so as to face the stator around the shaft, with the stator integrally formed with an insulating resin and the stator including the stator core wound with the winding.
  • a potential reference ground is electrically connected via a conductive member.
  • the potential of the stator core becomes zero and the shaft voltage can be reduced. Furthermore, since the high frequency noise voltage generated from the stator core is not transmitted to the power source of the electric device in which the present motor is incorporated, the malfunction of the electric device can be suppressed.
  • the electric motor of the present invention it is possible to provide an electric motor that suppresses the occurrence of electrolytic corrosion in the bearing. Further, by incorporating the electric motor of the present invention into an electric device, it is possible to provide an electric device including the electric motor that suppresses the occurrence of electrolytic corrosion in the bearing.
  • an example of an inner rotor type electric motor in which the rotor is rotatably disposed on the inner peripheral side of the stator has been described, but the outer rotor in which the rotor is disposed on the outer peripheral side of the stator.
  • a similar effect can be obtained by connecting the stator core and the ground of the drive circuit board as described above in the twin rotor type electric motor in which the rotors are arranged on both the inner and outer peripheral sides as described above. .
  • the electric motor of the present invention can reduce the shaft voltage and is optimal for suppressing the occurrence of electrolytic corrosion of the bearing. For this reason, it is effective mainly for electric devices that are required to reduce the price and increase the life of electric motors, for example, electric motors mounted in air conditioner indoor units, air conditioner outdoor units, water heaters, air purifiers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

巻線を巻装した固定子鉄心を含む固定部材を絶縁樹脂にてモールド一体成形した固定子と、シャフトを中心として固定子に対向して配置された回転子と、シャフトを回転自在に支持する軸受と、軸受を固定するブラケットと、巻線を駆動する駆動回路を実装した駆動回路基板とを備え、固定子鉄心を、駆動回路基板上のゼロ電位基準であるグランドに、導通部材を介して電気的に接続する。

Description

電動機およびそれを備えた電気機器
 本発明は、電動機に関するもので、特に軸受の電食の発生を抑制するように改良された電動機に関するものである。
 近年、電動機はパルス幅変調(Pulse Width Modulation)方式(以下、PWM方式という)のインバータにより駆動する方式を採用するケースが多くなってきている。こうしたPWM方式のインバータ駆動の場合、巻線の中性点電位が零とならないため、軸受の外輪と内輪間に電位差(以下、軸電圧という)を発生させる。軸電圧は、スイッチングによる高周波信号を含んでおり、軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に微小電流が流れ軸受内部に電食が発生する。電食が進行した場合、軸受内輪、軸受外輪または軸受ボールに波状摩耗現象が発生して異常音に至ることがあり、電動機における不具合の主要因の1つとなっている。
 従来、電食を抑制するためには、以下のような対策が考えられている。
 (1)軸受内輪と軸受外輪を導通状態にする。
 (2)軸受内輪と軸受外輪を絶縁状態にする。
 (3)軸電圧を低減する。
 上記(1)の具体的方法としては、軸受の潤滑剤を導電性にすることが挙げられる。但し、導電性潤滑剤は、時間経過とともに導電性が悪化することや摺動信頼性に欠けるなどの課題がある。また、回転軸にブラシを設置し、導通状態にする方法も考えられるが、この方法もブラシ摩耗粉やスペースが必要となるなどの課題がある。
 上記(2)の具体的方法としては、軸受内部の鉄ボールを非導電性のセラミックボールに変更することが挙げられる。この方法は、電食抑制の効果は非常に高いが、コストが高い課題があり、汎用的な電動機には採用できない。
 上記(3)の具体的方法としては、固定子鉄心と導電性を有した金属製のブラケットとを電気的に短絡させることで、静電容量を変化させて軸電圧を低減する方法が、従来、公知である(例えば、特許文献1参照)。
 ところで、静電容量と抵抗とを並列接続したときのインピーダンスは、Z=1/jωC+Rの関係式で表される。ここで、Zはインピーダンス、jは虚数、ωは角周波数、Cは静電容量、Rは抵抗を示す。この式からわかるように、静電容量が大きくまたは抵抗が小さくなるとインピーダンスは低くなる。また、逆に静電容量が小さくまたは抵抗が大きくなるとインピーダンスは高くなる。
 特許文献1では、固定子鉄心とブラケットとを短絡させることにより、固定子側のインピーダンスを低くし、これによって軸受の電食を抑制している。
 すなわち、一般的に、洗濯機や食器洗い乾燥機などの水まわりで使用され、感電のおそれのある電動機は、充電部の絶縁(基礎絶縁)以外に、独立した絶縁を追加(以下、付加絶縁という)する必要がある。一方、これ以外のエアコン室内機、エアコン室外機、給湯機、空気清浄機などに使用される電動機は、感電のおそれがないため、付加絶縁は必要としない。したがって、エアコン室内機、エアコン室外機、給湯機、空気清浄機などに使用される電動機は、回転子を絶縁構造としていないために、回転子側(軸受内輪側)のインピーダンスは、低い状態にある。それに対して、固定子側(軸受外輪側)は、絶縁構造となっているため、インピーダンスは高い状態にある。この場合、軸受内輪側の電位は高いのに対して軸受外輪側の電位は低いためアンバランス状態となり、高い軸電圧が発生してしまうこととなる。そして、このような高い軸電圧により軸受に電食が発生する可能性があった。
 このような状態を避けるために、特許文献1は、固定子鉄心とブラケットとを短絡させることで、その間の静電容量成分をなくし、上述したように固定子側(軸受外輪側)のインピーダンスを低くし、回転子側(軸受内輪側)のインピーダンスに近似させる方法を採用している。
 しかしながら、特許文献1のような従来の方法は、次のような課題があった。すなわち、この従来の方法は固定子側のインピーダンスを変更して軸受内輪と軸受外輪との間の電位バランスを保ち、電食を抑制しようとする方法である。このような方法の場合、電動機の使用環境や固定子と回転子の組立精度バラツキなどによって、インピーダンスのバランスが崩れてしまうと、逆に軸電圧が高くなり電食が発生しやすくなってしまうというケースも可能性として考察された。
特開2007-159302号公報
 本発明は、軸受における電食の発生を抑制した電動機およびそれを備えた電気機器を提供する。本発明の電動機は、巻線を巻装した固定子鉄心を含む固定部材を絶縁樹脂にてモールド一体成形した固定子と、シャフトを中心として固定子に対向して配置された回転子と、シャフトを回転自在に支持する軸受と、軸受を固定するブラケットと、巻線を駆動する駆動回路を実装した駆動回路基板とを備え、固定子鉄心を、駆動回路基板上のゼロ電位基準であるグランドに、導通部材を介して電気的に接続した構成である。
 このような構成により、軸受内輪および軸受外輪に高周波電圧を誘導するその電圧発生源と考えられる固定子鉄心に対し、固定子鉄心は導通部材を介して駆動回路基板上のグランドと接続されるため、固定子鉄心の電位がゼロ電位となり、軸電圧を低減させることができる。
図1は、本発明の実施の形態1における電動機の断面を示した構造図である。 図2は、本発明の実施の形態1における電動機の部分展開斜視図である。 図3は、実施例1の軸電圧の測定方法を示す図である。 図4は、本発明の実施の形態2における電動機に内蔵される駆動回路基板の構成を示す図である。 図5は、本発明の実施の形態3における電気機器の例としてのエアコン室内機210の構成を示した模式図である。
 以下、本発明の電動機およびそれを備えた電気機器について、図面を用いて説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における電動機の断面を示した構造図である。本実施の形態では、電気機器としてのエアコン用に搭載され、室内機の送風ファンを駆動するためのブラシレスモータである電動機の一例を挙げて説明する。また、本実施の形態では、回転子が固定子の内周側に回転自在に配置されたインナロータ型の電動機の例を挙げて説明する。
 図1において、固定子鉄心11には、固定子鉄心11を絶縁する樹脂であるインシュレータ22が介在して、巻線としての固定子巻線12が巻装されている。固定子鉄心11は、他の固定部材とともにモールド材としての絶縁樹脂13にてモールド成形されている。本実施の形態では、これらの部材をこのようにモールド一体成形することにより、外形が概略円筒形状をなす固定子10が構成されている。
 固定子10の内側には、空隙(図示せず)を介して回転子14が挿入されている。回転子14は、回転子鉄心31を含む円板状の回転体30と、回転体30の中央を貫通するようにして回転体30を締結したシャフト16とを有している。回転子鉄心31は、固定子10の内周側に対向して周方向に複数の永久磁石を保持している。図1では、回転子鉄心31と永久磁石であるフェライト樹脂磁石32とが一体成形された構成例を示している。このように、固定子10の内周側と回転体30の外周側とが対向するように配置されている。
 回転子14のシャフト16には、シャフト16を支持する2つの軸受15が取り付けられている。軸受15は、複数の鉄ボールを有した円筒形状のベアリングであり、軸受15の内輪側がシャフト16に固定されている。図1では、シャフト16がブラシレスモータ本体から突出した側となる出力軸側において、軸受15aがシャフト16を支持し、その反対側(以下、反出力軸側と呼ぶ)において、軸受15bがシャフト16を支持している。そして、出力軸側の軸受15aは、導電性を有した金属製のブラケット17により、その外輪側が固定されている。また、反出力軸側の軸受15bは、モールド一体成形する絶縁樹脂13により、その外輪側が固定されている。以上のような構成により、シャフト16が2つの軸受15に支承され、回転子14が回転自在に回転する。
 さらに、このブラシレスモータには制御回路を含めた駆動回路を実装する駆動回路基板18が内蔵されている。この駆動回路基板18を内蔵したのち、ブラケット17を固定子10に圧入することにより、ブラシレスモータが形成される。また、駆動回路基板18には、巻線の電源電圧Vdc、制御回路の電源電圧Vcc、および回転数を制御する制御電圧Vspを印加するリード線やグランド線41などを含む接続線40が接続されている。接続線40に含まれるグランド線41は、駆動回路基板18上のグランドに接続される。グランドは、駆動回路基板18において、ゼロボルトとする基準電位を設定しておくためのゼロ電位基準であり、駆動回路基板18上にグランド配線としての配線パターンが配置されている。すなわち、接続線40に含まれるグランド線41は、駆動回路基板18上のグランド配線に接続される。
 なお、駆動回路を実装した駆動回路基板18上のグランドは、大地のアースおよび1次側(電源)回路とは絶縁され、大地のアースおよび1次側電源回路の電位とは、フローティングされた状態である。駆動回路が実装された駆動回路基板18に接続される巻線の電源電圧供給する電源回路、制御回路の電源電圧を供給する電源回路、制御電圧を印加するリード線およびグランド線41などは、大地のアースと絶縁されている。すなわち、これら電源回路やグランド線41などは、巻線の電源電圧を供給する電源回路に対する1次側(電源)回路、制御回路の電源電圧を供給する電源回路に対する1次側(電源)回路、これら1次側(電源)回路と接続された大地のアースおよび独立して接地された大地のアースのいずれとも電気的に絶縁されている。つまり、1次側(電源)回路電位および大地のアースの電位に対して、駆動回路基板18に実装された駆動回路は電気的に絶縁された状態であることから、電位が浮いた状態となっている。これは電位がフローティングされた状態である。また、このようなことから、駆動回路基板18に接続される巻線の電源電圧を供給する電源回路および制御回路の電源電圧を供給する電源回路の構成は、フローティング電源とも呼称される。
 そして、本実施の形態のブラシレスモータは、固定子鉄心11を導通部材である導通部材50を介して、駆動回路基板18上のゼロ電位基準であるグランド配線に電気的に接続したことを特徴としている。
 以上のように構成された本ブラシレスモータに対して、接続線40を介して各電源電圧および制御信号を供給することにより、駆動回路基板18の駆動回路によって固定子巻線12に駆動電流が流れ、固定子鉄心11から磁界が発生する。そして、固定子鉄心11からの磁界とフェライト樹脂磁石32からの磁界とにより、それら磁界の極性に応じて吸引力および反発力が生じ、これらの力によってシャフト16を中心に回転子14が回転する。
 次に、本ブラシレスモータのより詳細な構成について説明する。まず、本ブラシレスモータは、上述したように、シャフト16が2つの軸受15で支持されるとともに、一方の軸受15aは金属製のブラケット17により固定され、他方の軸受15bは絶縁樹脂13により固定されている。
 具体的には、まず、反出力軸側の軸受15bに対して、軸受15bの外周径とほぼ等しい絶縁樹脂13の中空円筒部により固定している。すなわち、図1に示すように、反出力軸側における絶縁樹脂13の形状は、本ブラシレスモータ本体から反出力軸方向へと突出する本体突出部13aを有した形状である。本体突出部13aの内側は中空円筒状となる形状を有している。この中空円筒状の中空円筒部の径は軸受15bの外周径とほぼ等しく、この中空円筒部に軸受15bを挿入することにより、軸受15bは絶縁樹脂13に固定される。このようにして、この本体突出部13aの本体内部側に、軸受15bを配置している。
 次に、出力軸側の軸受15aに対しては、固定子10の外周径とほぼ等しい外周径のブラケット17により固定している。ブラケット17は概略円板形状であり、円板の中央部に軸受15aの外周径とほぼ等しい径の突出部を有しており、この突出部の内側は中空となっている。
 駆動回路基板18を内蔵したのち、このようなブラケット17の突出部の内側を軸受15aに挿入する。これとともに、ブラケット17の外周に設けた接続端部と固定子10の接続端部とが嵌合するように、ブラケット17を固定子10に圧入することにより、本ブラシレスモータが形成される。このように構成することで、組立作業の容易化を図るとともに、軸受15aの外輪側は金属製のブラケット17に固定されるため、軸受15aを強固に固定できる。
 ところで、以上のように構成されたブラシレスモータを電気的にみると、上述したように、回転子側(軸受内輪側)のインピーダンスは低く、固定子側(軸受外輪側)は高い状態にある。すなわち、回転子側のインピーダンスとして、固定子鉄心11から軸受15の内輪までの間を考えると、固定子鉄心11と回転体30とはわずかな空隙を介して対面しているとともに、回転体30およびシャフト16は導電体であるため、この間のインピーダンスは低い状態といえる。さらに、この間のインピーダンスは低いため、固定子鉄心11から発生した高周波信号は減衰せずに軸受15の内輪に達し、その結果、軸受15の内輪には高電位の高周波の電圧が生じるものと考えられる。
 これに対し、固定子側のインピーダンスとして、固定子鉄心11から軸受15の外輪までの間を考えると、例えば軸受15aの外輪に接続されたブラケット17は固定子鉄心11からある程度の間隔を持って配置されるため、この間のインピーダンスは高い状態といえる。さらに、この間のインピーダンスは高いため、固定子鉄心11から発生した高周波信号は減衰して軸受15の外輪に達し、その結果、軸受15の外輪には低電位の高周波の電圧が生じるものと考えられる。
 このように、回転子側と固定子側とのインピーダンスがアンバランス状態であるため、軸受の内輪と外輪との間に電位差、すなわち軸電圧が生じ、軸受に電食が発生すると考えられる。また、特に、このような軸電圧を発生させる信号の発生源としては、PWM方式の高周波のスイッチングで駆動される巻線を巻装した固定子鉄心が主な発生源と考えられる。すなわち、固定子鉄心は、高周波の電流で駆動される巻線を巻装しているため、固定子鉄心には、駆動電流によって発生する磁束とともに駆動高周波による高周波信号も発生し、発生した高周波信号が空間を介して軸受内輪および軸受外輪にも誘導されると考えられる。
 本実施の形態のブラシレスモータは、このようにして発生する電食を抑制するため、導通部材50を介して、固定子鉄心11を駆動回路基板18上のグランド配線に電気的に接続している。
 すなわち、本実施の形態では、軸電圧を発生させる高周波信号の発生主源である固定子鉄心11を、駆動回路基板18のグランド配線と接続することにより、固定子鉄心11の電位をゼロ電位とし、軸電圧を低くしている。これによって、軸受における電食の発生を抑制している。
 図2は、本発明の実施の形態1における電動機であるブラシレスモータの部分展開斜視図である。図2では、固定子鉄心11に固定子巻線12を巻装して形成した巻線組立20、駆動回路基板18およびそれぞれを接続する導通部材50としての鉄心接続端子51の一例を挙げている。
 図2に示すように、固定子巻線12が巻装された固定子鉄心11は、環状を成しており、固定子鉄心11と固定子巻線12との間には、固定子鉄心11を絶縁するインシュレータ22が介在している。また、駆動回路基板18も、中心にシャフト16を貫通させるための孔を設けた環形状である。
 そして、本実施の形態では、鉄心接続端子51がインシュレータ22に挿入固定された後、固定子鉄心11の外周部と接触または溶接される。鉄心接続端子51は、長手方向の一端側が二股状となっており、また他端側はピン形状となっている。鉄心接続端子51の二股状部により、インシュレータ22と固定子鉄心11の外周部とを挟むように、鉄心接続端子51の二股状部のインシュレータ22側をインシュレータ22に挿入することにより、固定子鉄心11に鉄心接続端子51が固定される。鉄心接続端子51は、このような形状であるため、容易に固定子鉄心11に固定できる。そして、固定子鉄心11の外周部に接触する二股状部の一方を、この外周部に溶接することで鉄心接続端子51が固定子鉄心11に強固に固定されるとともに、電気的な接続が確保される。なお、鉄心接続端子51は、バネ性のある素材(例えば、りん青銅)や、溶接、はんだ可能なめっきを施した黄銅などが好ましい。また、図2に示すように鉄心接続端子51の二股状部のインシュレータ22側に孔部51aを設けるとともに、インシュレータ22の孔部51aに対応した位置に凸部(図示せず)を設けておくことで、容易に位置決めしながら確実に鉄心接続端子51を固定子鉄心11に固定できる。
 一方、鉄心接続端子51の固定子鉄心11に接続されていないピン形状の他端は、駆動回路基板18のランド52とはんだにて接続固定される。駆動回路基板18上には各種の電子部品(図示せず)が実装されており、各電子部品は駆動回路基板18上に銅箔でパターン形成された配線パターンによって電気的に接続される。図2では、このような配線パターンを代表してグランド配線のためのグランドパターン53のみを示している。グランドパターン53の一端には、接続線40に含まれるグランド線41が接続される。グランドパターン53は、グランド線41との接続部から駆動回路基板18上を延伸し、グランドパターン53の他端には孔を有したランド52が形成されている。このランド52の孔に鉄心接続端子51のピン形状の端部を挿入し、このランド52と鉄心接続端子51の端部とをはんだにて接続固定することで、鉄心接続端子51とグランド線41とが電気的に接続される。すなわち、固定子鉄心11は、鉄心接続端子51およびグランドパターン53を介してグランド線41に電気的に接続される。
 また、本ブラシレスモータは、次のような工程に従って製造される。まず、インシュレータ22を備えた固定子鉄心11に固定子巻線12が巻装され、図2に示すような巻線組立20が形成される。このように形成された巻線組立20に鉄心接続端子51を挿入し、固定子鉄心11の外周部において鉄心接続端子51を溶接する。この後、巻線組立20は絶縁樹脂13にてモールド成形され、固定子10が形成される。このとき、鉄心接続端子51のピン形状となる先端部が絶縁樹脂13から露出して突出するように、固定子10を形成する。次に、このように形成した固定子10に、軸受15を取り付けた回転子14を挿入する。すなわち、固定子10内側の中空円筒部に軸受15bを挿入して、固定子10に軸受15bを固定する。次に、出力軸側から駆動回路基板18を挿入する。そして、固定子10から突出した鉄心接続端子51に駆動回路基板18上のランド52の孔を配置し、はんだにて接続固定する。その後、ブラケット17の突出部の内側を軸受15aに挿入するとともに、ブラケット17の外周に設けた接続端部と固定子10の接続端部とが嵌合するように、ブラケット17を固定子10に圧入する。このようにして、本ブラシレスモータが形成される。
 以上、本実施の形態では、軸電圧を発生させる高周波信号の主な発生源である固定子鉄心11を、上述のように、鉄心接続端子51およびグランドパターン53を介してグランド線41に電気的に接続している。このような構成とすることにより、簡単な構成にて固定子鉄心11の電位がゼロ電位となり、固定子鉄心11に発生した高周波信号を減衰させることができる。したがって、固定子鉄心11から軸受内輪および軸受外輪に誘導される高周波信号の電位を抑制できるため、軸電圧も抑制でき、これによって、軸受における電食の発生を抑制することが可能となる。
 以下、本発明を実施例を用いてより具体的に説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の要旨を変更しない限りにおいて、これらの実施例によって限定されるものではない。
 (実施例1)
 本実施例では図1に示したブラシレスモータの固定子鉄心11に導通部材50を介して駆動回路基板18のグランド配線に接続した場合の軸電圧を測定した。軸受には、ミネベア株式会社製608(グリースはちょう度239のものを使用)を使用した。
 図3は、本実施例の軸電圧の測定方法を示す図である。軸電圧測定時には直流安定化電源を使用し、巻線の電源電圧Vdcを391V、駆動回路の電源電圧Vccを15Vとし、回転数1000r/minの同一運転条件下で測定を行った。なお、回転数は制御電圧Vspにて調整し、運転時のブラシレスモータ姿勢はシャフト水平とした。
 軸電圧の測定は、デジタルオシロスコープ130(テクトロニクス社製DPO7104)と高電圧差動プローブ120(テクトロニクス社製P5205)により、電圧波形を観測して、ピーク-ピーク間の測定電圧を軸電圧とした。
 測定時の横軸時間は、以下いずれの測定条件においても50μs/divの同一条件としている。なお、デジタルオシロスコープ130は、絶縁トランス140にて絶縁している。
 また、高電圧差動プローブ120の+側120aは、長さ約30cmのリード線110を介し、リード線の導体を直径約15mmのループ状にして、その内周をシャフト16の外周に導電接触させることで、シャフト16に電気的に接続している。高電圧差動プローブ120の-側120bは、長さ約30cmのリード線111を介し、ブラケット17にリード線111の先端を導電性テープ112にて導電接触させることで、ブラケット17に電気的に接続している。このような構成で、ブラケット17とシャフト16との間の電圧である軸電圧の測定を実施した。
 (比較例1)
 図1に示すブラシレスモータにおいて、固定子鉄心11と駆動回路基板18のグランド配線が接続されていない状態で、実施例1と同様な方法で軸電圧を測定した。
 表1に、実施例1と比較例1との測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、固定子鉄心11と駆動回路基板18のグランド配線を接続することにより軸電圧を低くすることができる。
 これらの結果からもわかるように、本発明の電動機は、従来の電動機に比べて、軸電圧が低減し、電動機の軸受電食の発生抑制に極めて優れた効果がある。
 (実施の形態2)
 図4は、本発明の実施の形態2における電動機に内蔵される駆動回路基板の構成を示す図である。なお、図4に示す駆動回路基板18上においても、実施の形態1の駆動回路基板18と同様に、各種の電子部品(図示せず)が実装されており、各電子部品は駆動回路基板18上に銅箔でパターン形成された配線パターンによって電気的に接続される。また、本実施の形態における電動機は、図1に示した構造のブラシレスモータと同様の構成であり詳細な説明は省略する。
 実施の形態1との比較において、本実施の形態のブラシレスモータは、固定子鉄心11を導通部材である鉄心接続端子51を介し、さらにコンデンサ60を介して、ゼロ電位基準であるグランド線41に電気的に接続したことを特徴としている。すなわち、実施の形態1のように、固定子鉄心11が電気的に直接グランド線41に接続されるような構成の場合、グランド線41を介して、本ブラシレスモータが組み込まれる電気機器のグランドとも直接に接続される。この場合、固定子鉄心11から発生した高周波信号がノイズとして電気機器に伝搬されるおそれがある。このため、本実施の形態では、コンデンサ60を設けることにより、固定子鉄心11からグランド線41を介して電気機器に伝搬される高周波信号の信号レベルを抑えている。
 図4において、接続線40に含まれるグランド線41は、第1のグランドパターン55のグランド接続端部54に接続される。第1のグランドパターン55はグランド接続端部54から駆動回路基板18上を延伸し、コンデンサ60の一端に接続される。一方、実施の形態1と同様に、鉄心接続端子51を接続するためのランド52が駆動回路基板18上に形成されている。第2のグランドパターン56はランド52から駆動回路基板18上を延伸し、コンデンサ60の他端に接続される。このように、固定子鉄心11は、鉄心接続端子51、第2のグランドパターン56、コンデンサ60および第1のグランドパターン55を介してグランド線41に電気的に接続される。
 このように、本実施の形態のブラシレスモータは、固定子鉄心11を、鉄心接続端子51およびコンデンサ60を介して、グランド線41に電気的に接続している。このため、コンデンサ60はノイズフィルタとして機能し、鉄心接続端子51から発生した高周波信号が電気機器に伝搬されるのを抑制できる。また、このコンデンサ60は駆動回路基板18上に実装することができるため、製造が容易となる。
 (実施の形態3)
 本実施の形態では、本発明における電気機器の例としてエアコン室内機の構成について説明する。
 図5は、本発明の実施の形態3における電気機器の例としてのエアコン室内機210の構成を示した模式図である。
 図5において、エアコン室内機210の筐体211内にはブラシレスモータ201が搭載されている。そのブラシレスモータ201の回転軸にはクロスフローファン212が取り付けられている。ブラシレスモータ201はモータ駆動装置213によって駆動される。モータ駆動装置213からの通電により、ブラシレスモータ201が回転し、それに伴いクロスフローファン212が回転する。そのクロスフローファン212の回転により、室内機用熱交換器(図示せず)によって空気調和された空気を室内に送風する。ここで、ブラシレスモータ201は、例えば、上記実施の形態で示す電動機が適用できる。
 本発明の電気機器は、ブラシレスモータと、そのブラシレスモータが搭載された筐体とを備え、ブラシレスモータとして上記構成の本発明の電動機を採用したものである。
 以上の説明では、本発明にかかる電気機器の実施例として、エアコン室内機に搭載されるブラシレスモータを取り上げたが、エアコン室外機に搭載されるブラシレスモータや、その他の電気機器に搭載される電動機、例えば、各種家電用機器に使用されるブラシレスモータや、各種情報機器に搭載されるブラシレスモータ、産業機器に使用されるブラシレスモータにも適用できる。
 以上説明したように、本発明の電動機は、巻線を巻装した固定子鉄心を含む固定部材を絶縁樹脂にてモールド一体成形した固定子と、シャフトを中心に固定子に対向して配置された回転子と、シャフトを回転自在に支持する軸受と、軸受を固定するブラケットと、巻線を駆動する駆動回路を実装した駆動回路基板とを備え、固定子鉄心を、駆動回路基板上のゼロ電位基準であるグランドに、導通部材を介して電気的に接続した構成である。
 このため、固定子鉄心の電位がゼロ電位になり、軸電圧を低減させることができる。さらに、固定子鉄心より発生する高周波ノイズ電圧を、コンデンサを介すことにより、本電動機が組み込まれる電気機器の電源に伝達させないため、電気機器の誤動作を抑制することができる。
 したがって、本発明の電動機によれば、軸受における電食の発生を抑制した電動機を提供することができる。また、本発明の電動機を電気機器に組み込むことにより、軸受における電食の発生を抑制した電動機を備えた電気機器を提供することができる。
 なお、本実施の形態では、回転子が固定子の内周側に回転自在に配置されたインナロータ型の電動機の例を挙げて説明したが、回転子が固定子の外周側に配置されたアウタロータ型、さらには内外周両側に回転子を配置したツインロータ型の電動機において上述したように固定子鉄心と駆動回路基板のグランドを接続する構成とすることによっても、同様の効果を得ることができる。
 本発明の電動機は、軸電圧を減少させることが可能であり、軸受の電食発生を抑制するのに最適である。このため、主に電動機の低価格化および高寿命化が要望される電気機器で、例えばエアコン室内機、エアコン室外機、給湯機、空気清浄機などに搭載される電動機に有効である。
 10  固定子
 11  固定子鉄心
 12  固定子巻線
 13  絶縁樹脂
 14  回転子
 15,15a,15b  軸受
 16  シャフト
 17  ブラケット
 18  駆動回路基板
 20  巻線組立
 22  インシュレータ
 30  回転体
 31  回転子鉄心
 32  フェライト樹脂磁石
 40  接続線
 41  グランド線
 50  導通部材
 51  鉄心接続端子
 51a  孔部
 52  ランド
 53,55,56  グランドパターン
 54  グランド接続端部
 60  コンデンサ
 110,111  リード線
 112  導電性テープ
 120  差動プローブ
 130  デジタルオシロスコープ
 140  絶縁トランス
 201  ブラシレスモータ
 210  エアコン室内機
 212  クロスフローファン
 213  モータ駆動装置

Claims (5)

  1. 巻線を巻装した固定子鉄心を含む固定部材を絶縁樹脂にてモールド一体成形した固定子と、
    シャフトを中心として前記固定子に対向して配置された回転子と、
    前記シャフトを回転自在に支持する軸受と、
    前記軸受を固定するブラケットと、
    前記巻線を駆動する駆動回路を実装した駆動回路基板とを備え、
    前記固定子鉄心を、前記駆動回路基板上のゼロ電位基準であるグランドに、導通部材を介して電気的に接続したことを特徴とする電動機。
  2. 前記固定子鉄心には前記導通部材としての鉄心接続端子が接続され、前記駆動回路基板に前記鉄心接続端子を挿入することで、前記固定子鉄心と前記グランドとを電気的に接続したことを特徴とする請求項1に記載の電動機。
  3. 前記固定子鉄心と前記グランドとを、前記導通部材に加えて、さらにコンデンサを介して電気的に接続したことを特徴とする請求項1に記載の電動機。
  4. 前記コンデンサは前記駆動回路基板上に配置されていることを特徴とする請求項3に記載の電動機。
  5. 請求項1から4のいずれか1項に記載の電動機を搭載したことを特徴とする電気機器。
PCT/JP2009/006779 2008-12-11 2009-12-11 電動機およびそれを備えた電気機器 WO2010067614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0922963A BRPI0922963A2 (pt) 2008-12-11 2009-12-11 motor e dispositivo elétrico que usa o mesmo
US13/132,247 US8587167B2 (en) 2008-12-11 2009-12-11 Brushless motor and electric device using same
CN200980149932.XA CN102246397B (zh) 2008-12-11 2009-12-11 电动机和具备该电动机的电设备
JP2010542030A JP5110171B2 (ja) 2008-12-11 2009-12-11 電動機およびそれを備えた電気機器
EP09831720.9A EP2355310B1 (en) 2008-12-11 2009-12-11 Motor and electric device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-315365 2008-12-11
JP2008315365 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010067614A1 true WO2010067614A1 (ja) 2010-06-17

Family

ID=42242606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006779 WO2010067614A1 (ja) 2008-12-11 2009-12-11 電動機およびそれを備えた電気機器

Country Status (6)

Country Link
US (1) US8587167B2 (ja)
EP (1) EP2355310B1 (ja)
JP (1) JP5110171B2 (ja)
CN (1) CN102246397B (ja)
BR (1) BRPI0922963A2 (ja)
WO (1) WO2010067614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185022A1 (ja) * 2013-05-13 2014-11-20 パナソニックIpマネジメント株式会社 ブラシレスモータとこのブラシレスモータを備えた送風機
WO2019124444A1 (ja) * 2017-12-19 2019-06-27 株式会社マキタ 電動作業機および電動作業機に電気系統を構築する方法
KR20190111113A (ko) 2017-03-31 2019-10-01 니혼 덴산 테크노 모터 가부시키가이샤 모터

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378009B2 (ja) * 2009-03-04 2013-12-25 山洋電気株式会社 電動送風機
US8987955B2 (en) * 2010-05-12 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Electric motor and electric device including the same
JP2013104398A (ja) * 2011-11-16 2013-05-30 Aisan Industry Co Ltd 燃料ポンプ
KR101316144B1 (ko) * 2012-06-11 2013-10-08 뉴모텍(주) 모터
JP6248280B2 (ja) * 2012-11-22 2017-12-20 パナソニックIpマネジメント株式会社 電動機およびこの電動機を備えた電気機器
JP6016602B2 (ja) * 2012-12-10 2016-10-26 株式会社マキタ 電動工具
DE112014000672T5 (de) * 2013-02-04 2015-10-29 Halla Visteon Climate Control Corporation Bürstenloser Gleichstrommotor mit reduzierten Störsendungen
JP6424425B2 (ja) * 2013-02-12 2018-11-21 株式会社デンソー 回転電機
DE102013105965B4 (de) * 2013-06-07 2023-08-03 Minebea Mitsumi Inc. Stator mit Erdungskontakt
JP5845427B2 (ja) * 2013-10-21 2016-01-20 パナソニックIpマネジメント株式会社 電動機およびこの電動機を備える電気機器
DE102014201491B4 (de) * 2014-01-28 2020-06-18 Bühler Motor GmbH Kreiselpumpenmotor
JP6227445B2 (ja) * 2014-03-04 2017-11-08 日立オートモティブシステムズ株式会社 電動オイルポンプ
JP6315250B2 (ja) * 2014-03-31 2018-04-25 日立工機株式会社 電動工具
EP3187309B1 (en) * 2014-08-29 2022-02-16 Koki Holdings Co., Ltd. Electric working machine
US10523081B2 (en) 2014-11-25 2019-12-31 Black & Decker Inc. Brushless motor for a power tool
US10328567B2 (en) 2015-10-14 2019-06-25 Black & Decker Inc. Brushless motor system for power tools
KR102146023B1 (ko) * 2016-01-07 2020-08-19 엘지이노텍 주식회사 모터 및 이를 포함하는 전동식 조향장치
JP6648619B2 (ja) * 2016-04-19 2020-02-14 株式会社デンソー ブラシレスモータ
DE102016223844B4 (de) 2016-11-30 2022-01-27 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektromotor und Kühlerlüftermodul mit einem solchen Elektromotor
FR3064426B1 (fr) * 2017-03-22 2022-07-15 Selni Perfectionnement a une machine synchrone a aimants permanents
KR101868614B1 (ko) * 2017-04-11 2018-06-18 인지컨트롤스 주식회사 차량의 시트 블로워용 모터
KR102030783B1 (ko) * 2017-12-06 2019-10-10 주식회사 아모텍 냉각 팬
CN111903036B (zh) * 2018-04-09 2022-12-27 三菱电机株式会社 旋转电机
DE102018214441A1 (de) * 2018-08-27 2020-02-27 Continental Automotive Gmbh Verfahren zur Herstellung einer Statorbaugruppe und Statorbaugruppe
DE102018219359A1 (de) * 2018-11-13 2020-05-14 Zf Friedrichshafen Ag Elektrische Antriebseinheit sowie Getriebe für ein Kraftfahrzeug
KR102611103B1 (ko) 2018-12-07 2023-12-08 주식회사 모아텍 스텝 모터 및 이를 갖는 전자 기기
DE102019100020A1 (de) * 2019-01-02 2020-07-02 Nidec Corporation Elektromotor mit Sammelschieneneinheit
JP6937423B1 (ja) * 2020-12-09 2021-09-22 Wolongモーター制御技術株式会社 電動機及びそれを備えた電気機器
TWI798903B (zh) * 2021-10-29 2023-04-11 元山科技工業股份有限公司 馬達定子接地結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178494A (ja) * 1992-12-02 1994-06-24 Hitachi Ltd 自動車用交流発電機
JPH0870557A (ja) * 1994-08-31 1996-03-12 Tec Corp 直流電動機
JP2003037956A (ja) * 2001-07-25 2003-02-07 Tamagawa Seiki Co Ltd モータステータ構造
JP2005354795A (ja) * 2004-06-10 2005-12-22 Jidosha Denki Kogyo Co Ltd モータのアース構造
WO2007139129A1 (ja) * 2006-06-01 2007-12-06 Panasonic Corporation 洗濯機用ブラシレスモータおよびそれを搭載した洗濯機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261512A (ja) * 1993-03-08 1994-09-16 Matsushita Electric Ind Co Ltd ブラシレスモータ
JPH0787696A (ja) * 1993-09-17 1995-03-31 Shibaura Eng Works Co Ltd モ−ルド電動機
JPH08317604A (ja) 1995-05-19 1996-11-29 Shibaura Eng Works Co Ltd 電動機
JPH09149602A (ja) * 1995-11-24 1997-06-06 Sankyo Seiki Mfg Co Ltd 回転電機
JP3739259B2 (ja) * 1999-08-19 2006-01-25 日本電産サンキョー株式会社 ブラシレスモータ
KR100496463B1 (ko) * 1999-08-19 2005-06-20 가부시기가이샤 산교세이기 세이사꾸쇼 브러시레스 모터
KR100653671B1 (ko) * 2003-03-31 2006-12-05 마쯔시다덴기산교 가부시키가이샤 신뢰성이 높은 어스 구조를 갖는 모터 및 그 모터를 탑재한전기 기기
JP4274473B2 (ja) 2004-06-14 2009-06-10 ミネベア株式会社 アクチュエータ
EP1705778A1 (en) * 2005-03-24 2006-09-27 Nidec Shibaura Corporation Molded motor with stator grounding screw
JP5076311B2 (ja) 2005-12-07 2012-11-21 パナソニック株式会社 ブラシレスモータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178494A (ja) * 1992-12-02 1994-06-24 Hitachi Ltd 自動車用交流発電機
JPH0870557A (ja) * 1994-08-31 1996-03-12 Tec Corp 直流電動機
JP2003037956A (ja) * 2001-07-25 2003-02-07 Tamagawa Seiki Co Ltd モータステータ構造
JP2005354795A (ja) * 2004-06-10 2005-12-22 Jidosha Denki Kogyo Co Ltd モータのアース構造
WO2007139129A1 (ja) * 2006-06-01 2007-12-06 Panasonic Corporation 洗濯機用ブラシレスモータおよびそれを搭載した洗濯機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185022A1 (ja) * 2013-05-13 2014-11-20 パナソニックIpマネジメント株式会社 ブラシレスモータとこのブラシレスモータを備えた送風機
KR20190111113A (ko) 2017-03-31 2019-10-01 니혼 덴산 테크노 모터 가부시키가이샤 모터
WO2019124444A1 (ja) * 2017-12-19 2019-06-27 株式会社マキタ 電動作業機および電動作業機に電気系統を構築する方法
JPWO2019124444A1 (ja) * 2017-12-19 2020-11-26 株式会社マキタ 電動作業機および電動作業機に電気系統を構築する方法
JP7060618B2 (ja) 2017-12-19 2022-04-26 株式会社マキタ 電動作業機および電動作業機に電気系統を構築する方法

Also Published As

Publication number Publication date
JPWO2010067614A1 (ja) 2012-05-17
US20110234025A1 (en) 2011-09-29
CN102246397A (zh) 2011-11-16
US8587167B2 (en) 2013-11-19
EP2355310A1 (en) 2011-08-10
BRPI0922963A2 (pt) 2016-01-26
JP5110171B2 (ja) 2012-12-26
CN102246397B (zh) 2014-05-07
EP2355310B1 (en) 2018-08-29
EP2355310A4 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5110171B2 (ja) 電動機およびそれを備えた電気機器
JP4935934B2 (ja) 電動機およびそれを備えた電気機器
JP5594284B2 (ja) 電動機およびそれを備えた電気機器
JP5338641B2 (ja) 電動機およびそれを備えた電気機器
JP4957874B2 (ja) 電動機およびそれを備えた電気機器
JP5316629B2 (ja) 電動機およびそれを備えた電気機器
JP5502822B2 (ja) 電動機およびそれを備えた電気機器
JP2007159302A (ja) ブラシレスモータ
JP2014124082A (ja) 電動機およびこの電動機を備えた電気機器
WO2012105193A1 (ja) モールドモータ
US8975796B2 (en) Electric motor and electric equipment with same
JP5370431B2 (ja) 電動機およびそれを備えた電気機器
WO2011043075A1 (ja) 空気調和機
JP2011205724A (ja) 空気調和機
JP6383949B2 (ja) 電動機およびそれを備えた電気機器
JP2013066252A (ja) 電動機およびそれを備えた電気機器
JP2010035407A (ja) 電動機、ブラシレスモータ、電動機の出力軸支承部、ブラシレスモータの出力軸支承部
JP2015056970A (ja) 電気機器
JP2014117110A (ja) 電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149932.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542030

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009831720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13132247

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0922963

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110613