WO2010061687A1 - 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機 - Google Patents

液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機 Download PDF

Info

Publication number
WO2010061687A1
WO2010061687A1 PCT/JP2009/067363 JP2009067363W WO2010061687A1 WO 2010061687 A1 WO2010061687 A1 WO 2010061687A1 JP 2009067363 W JP2009067363 W JP 2009067363W WO 2010061687 A1 WO2010061687 A1 WO 2010061687A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
dummy
signal line
period
horizontal
Prior art date
Application number
PCT/JP2009/067363
Other languages
English (en)
French (fr)
Inventor
雅江 川端
下敷領 文一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US12/998,731 priority Critical patent/US8743047B2/en
Publication of WO2010061687A1 publication Critical patent/WO2010061687A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3666Control of matrices with row and column drivers using an active matrix with the matrix divided into sections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0413Details of dummy pixels or dummy lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0224Details of interlacing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to driving (block inversion driving) that inverts the polarity of a signal potential supplied to a data signal line every plural horizontal scanning periods.
  • Liquid crystal display devices have excellent features such as high definition, thinness, light weight, and low power consumption, and their market scale is rapidly expanding in recent years.
  • dot inversion driving for inverting the polarity of a signal potential supplied to a data signal line every horizontal scanning period has been widely adopted.
  • the polarity inversion frequency of the data signal line is increased in the dot inversion driving, there is a problem that the pixel charging rate is reduced and the power consumption is increased.
  • Block inversion driving in which the polarity of the potential is inverted every plural horizontal scanning periods has been proposed. In this block inversion driving, it is possible to improve the pixel charging rate and suppress the power consumption and the amount of heat generation compared to the dot inversion driving.
  • Patent Document 1 discloses a configuration in which a dummy scanning period is inserted immediately after polarity inversion in block inversion driving.
  • data (n + 2) immediately after polarity inversion includes a precharge dummy scanning period (the third horizontal scanning period in the figure) and a main charging (writing) horizontal scanning period (in the figure, 4th horizontal scanning period) is assigned, and the charging rate of the pixel corresponding to the data (n + 2) can be increased.
  • Patent Documents 2 and 3 disclose a configuration for displaying halftones (multi-pixel method).
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-51252 (published on February 23, 2001)” Japanese Patent Publication “JP 2004-62146 A (publication date: February 26, 2004)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-39290 (Publication Date: February 9, 2006)”
  • the present inventors have found that the configuration of FIG. 46 has the following problems.
  • the load of the scanning signal line driving circuit when one scanning signal line is active is Ly
  • the load of the scanning signal line driving circuit when two scanning signal lines are active is Lz.
  • the load of the scanning signal line drive circuit is Lz in the horizontal scanning period H1
  • the load of the scanning signal line drive circuit is Ly in the horizontal scanning periods H2 and H3
  • the load of the scanning signal line drive circuit is loaded in the horizontal scanning periods H4 and H5. Lz.
  • the load of the scanning signal line driving circuit is Lz before scanning, the load of the scanning signal line driving circuit is Ly during scanning, and the horizontal Regarding scanning for writing data (n + 2) in the scanning period H4, the load of the scanning signal line driving circuit is Ly before scanning, the load of the scanning signal line driving circuit is Lz before scanning, and the horizontal scanning period H5 With respect to scanning for writing data (n + 3), the load on the scanning signal line drive circuit is Lz before scanning, and the load on the scanning signal line drive circuit is Lz even during scanning.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce unevenness in horizontal stripes and improve the display quality in a liquid crystal display device that performs block inversion driving by a multi-pixel method.
  • each pixel of the display unit is composed of a plurality of sub-pixels, and a plurality of scanning signal lines of the display unit are grouped together, and each group is sequentially selected, and scanning signals belonging to the selected group
  • a liquid crystal display device in which signal potentials of the same polarity are sequentially supplied to the data signal lines in response to the horizontal scanning of the lines sequentially, and the signal potentials of the front group and the rear group selected before and after are changed.
  • the polarity is inverted, and a dummy scanning period is inserted between the horizontal scanning period corresponding to the last horizontal scanning in the previous group and the horizontal scanning period corresponding to the first horizontal scanning in the subsequent group.
  • the scanning signal lines belonging to the group selected after the previous group are subjected to dummy scanning, and the scanning signal lines are deactivated after being activated for a predetermined period. And features.
  • horizontal scanning means that a certain scanning signal line is activated in a corresponding horizontal scanning period, and a certain scanning signal line is not associated with this for the purpose of precharging or the like. It is not called “horizontal scanning” to be active.
  • dummy scanning means that a certain scanning signal line is activated during the corresponding dummy scanning period.
  • the load state of the scanning signal line driving circuit before and during the scanning can be made uniform.
  • the difference in charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixels is reduced, which is a problem at the time of block inversion driving. It is possible to suppress uneven horizontal stripes.
  • a pixel electrode is provided for each sub-pixel, and a storage capacitor line is provided corresponding to each pixel electrode, and the luminance of each sub-pixel is controlled by a storage capacitor line signal given to each storage capacitor line. It can also be set as the structure made.
  • the storage capacitor line signal given to one storage capacitor line does not shift in level during the writing of the signal potential to the pixel electrode forming the storage capacitor line and the capacitor, and the writing is completed.
  • the level can be shifted in the plus direction or the minus direction with respect to the reference potential in synchronization with or after that.
  • the direction of level shift is reversed between one of the two pixel electrodes included in one pixel and the storage capacitor wiring that forms a capacitor, and the other and the storage capacitor wiring that forms a capacitor. It can also be configured.
  • the storage capacitor wiring signal may be configured such that the level is switched every predetermined period until one vertical scanning period elapses after the level shift.
  • the storage capacitor wiring signal can be maintained at the same level until one vertical scanning period elapses from the level shift.
  • a plurality of storage capacitor trunk lines to which different storage capacitor line signals are input may be provided, and each storage capacitor line may be connected to any one storage capacitor trunk line. it can.
  • one storage capacitor line is provided corresponding to the gap between two pixels adjacent to each other in the extending direction of the data signal line, and this one storage capacitor line is connected to one of the two pixels. It is also possible to adopt a configuration in which a capacitance is formed with one of the provided pixel electrodes and one of the pixel electrodes provided on the other.
  • a dummy potential may be supplied to the data signal line during the dummy scanning period.
  • the polarity of the dummy potential is desirably the same as the polarity of the signal potential in the subsequent group.
  • the video data corresponding to the horizontal scanning of each scanning signal line is arranged in the order of horizontal scanning, and the video data corresponding to the last horizontal scanning of the previous group and the first horizontal scanning of the rear group are supported.
  • N dummy data is inserted between the video data to be processed, the signal potential is a potential corresponding to the video data, and the dummy potential is a potential corresponding to the dummy data.
  • the dummy data may be the same as the video data corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line to be dummy scanned.
  • the dummy data may be the same as the video data corresponding to the horizontal scanning immediately before the dummy scanning of the scanning signal line to be dummy scanned.
  • the time difference between the start of the horizontal scan period and the start of the horizontal scan is equal to the time difference between the start of the dummy scan period and the start of the dummy scan, and the time difference between the end of the horizontal scan and the end of the horizontal scan period and the dummy scan. It is also possible to adopt a configuration in which the time difference between the end of and the end of the dummy scanning period is equal.
  • a plurality of dummy scanning periods are inserted between a horizontal scanning period corresponding to the last horizontal scanning of the previous group and a horizontal scanning period corresponding to the first horizontal scanning of the rear group.
  • a configuration may be adopted in which different scanning signal lines are subjected to dummy scanning for each scanning period. Further, the same scanning signal line may be dummy scanned during each dummy scanning period. Further, the scanning signal lines subjected to dummy scanning may belong to the rear group.
  • the scanning signal lines that are scanned in the dummy may include scanning signal lines that are first scanned horizontally in the subsequent group. Further, the scanning signal lines that are dummy scanned may include scanning signal lines that belong to a group selected after the subsequent group.
  • each scanning signal line may be activated in synchronization with the start of its own horizontal scanning and deactivated in synchronization with the end of its own horizontal scanning.
  • the scanning signal line to be dummy scanned may be activated in synchronization with the start of the dummy scanning of the own stage and deactivated in synchronization with the end of the dummy scanning of the own stage.
  • the width of the gate pulse for activating the scanning signal line may be equal to one horizontal scanning period.
  • each scanning signal line is activated in synchronization with the start of horizontal scanning or dummy scanning immediately before the horizontal scanning corresponding to its own stage, and inactivated in synchronization with the end of its own horizontal scanning. It can also be set as the structure made.
  • the scanning signal line subjected to the dummy scanning is activated in synchronization with the start of the horizontal scanning or the dummy scanning immediately before the dummy scanning corresponding to the own stage, and is synchronized with the end of the dummy scanning of the own stage. It may be configured to be deactivated. Further, the width of the gate pulse for activating the scanning signal line may be equal to twice the horizontal scanning period.
  • a timing adjustment scanning period is inserted between a predetermined horizontal scanning period and the next horizontal scanning period or dummy scanning period, and the scanning signal lines are adjusted in timing during the timing adjustment scanning period.
  • the scanning signal line may be deactivated after being activated for a predetermined period by scanning.
  • a timing adjustment scanning period is inserted between a predetermined horizontal scanning period and the next horizontal scanning period or dummy scanning period, and is formed in the non-display portion during the timing adjustment scanning period.
  • the dummy scanning signal line may be deactivated after the dummy scanning signal line is activated for a predetermined period by performing timing adjustment scanning.
  • the dummy scanning period is between a horizontal scanning period corresponding to the last horizontal scanning of the group immediately preceding the last group and a horizontal scanning period corresponding to the first horizontal scanning of the last group.
  • a configuration in which a scanning period for timing adjustment is inserted may be employed.
  • one of the front group and the rear group includes only odd-numbered scanning signal lines, The other may include only even-numbered scanning signal lines.
  • the group selected first is composed of odd-numbered scanning signal lines included in the most upstream block, or composed of even-numbered scanning signal lines included in the most upstream block
  • the last selected group is composed of odd-numbered scanning signal lines included in the most downstream block, or is composed of even-numbered scanning signal lines included in the most downstream block, and the other groups are adjacent two. It is composed of even-numbered scan signal lines included in one block, or odd-numbered scan signals included in two adjacent blocks. While being configured in a line, may be configured from a group of upstream are sequentially selected.
  • the odd-numbered scanning signal lines included in each block are set as the previous group, and the even-numbered scanning signal lines are set as the subsequent group from the group included in the most upstream block in order.
  • Either included groups are selected, or even-numbered scanning signal lines included in each block are set as the previous group and odd-numbered scanning signal lines are set as the subsequent group from the group included in the most upstream block in order to the most downstream block. It is also possible to adopt a configuration in which even included groups are selected.
  • a region after a predetermined scanning signal line in the display unit is blocked by a plurality of boundaries parallel to the scanning signal line, and the block corresponding to one end including the predetermined scanning signal line is the most upstream block, and the other
  • the scanning signal lines included in each block may be grouped and selected from the most upstream block group to the most downstream block group in order.
  • the liquid crystal display device of the present invention includes a plurality of pixels each composed of a plurality of sub-pixels, a plurality of data signal lines, and a plurality of scanning signal lines. While a signal potential of the first polarity is supplied to the data signal line, a signal of the second polarity is supplied to each data signal line in a second period consisting of a plurality of continuous horizontal scanning periods following the first period. A dummy scanning period is provided between the first period and the second period in which a potential is supplied and the number of scanning signal lines activated in each horizontal scanning period is activated for a predetermined period and then deactivated. It is characterized by being.
  • the scanning signal line activated during the dummy scanning period may be deactivated after being activated for a predetermined period in the horizontal scanning period within the second period or after the second period. Further, the scanning signal line activated during the dummy scanning period may be deactivated after being activated for a predetermined period during the horizontal scanning period other than the first in the second period. Alternatively, a dummy potential having the second polarity may be supplied to each data signal line during the dummy scanning period. Further, between the predetermined horizontal scanning period and the subsequent horizontal scanning period or the dummy scanning period, the same number of scanning signal lines as active in each horizontal scanning period are activated and then deactivated. Alternatively, a timing adjustment scanning period may be provided.
  • the liquid crystal display device is driven by a method in which a plurality of scanning signal lines in the display unit are grouped together, each group is selected in turn, and scanning signal lines belonging to the selected group are sequentially scanned horizontally.
  • a driving method of a liquid crystal display device for supplying a signal potential of polarity to a data signal line, wherein the polarity of the signal potential is inverted between the previous group and the rear group selected before and after, and the last horizontal of the previous group
  • a dummy scanning period is inserted between a horizontal scanning period corresponding to scanning and a horizontal scanning period corresponding to the first horizontal scanning in the subsequent group, and scanning belonging to a group selected after the previous group in the dummy scanning period
  • the scanning signal lines are activated after a predetermined period by performing dummy scanning on the signal lines, and then deactivated.
  • the television receiver includes the liquid crystal display device and a tuner unit that receives a television broadcast.
  • the load state of the scanning signal line driving circuit in the horizontal scanning period and the scanning in the dummy scanning period can be made uniform for the scanning of each scanning signal line by combining the load state of the signal line driving circuit.
  • the difference in charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixels is reduced, which is a problem at the time of block inversion driving. It is possible to suppress uneven horizontal stripes.
  • FIG. 4 is a timing chart illustrating an example of driving of the liquid crystal display device according to the first embodiment.
  • 2 is a timing chart showing the continuation of FIG. It is a schematic diagram which shows the structure of this liquid crystal display device.
  • 3 is a timing chart showing the driving example of FIGS. 1 and 2 in more detail.
  • 3 is a timing chart showing the driving example of FIGS. 1 and 2 in more detail.
  • It is a schematic diagram showing the connection relationship between the storage capacitor wiring and the storage capacitor trunk wiring.
  • It is a schematic diagram which shows polarity distribution of the write potential of this liquid crystal display device.
  • 3 is a timing chart showing load fluctuations of the scanning signal line driving circuit in the driving example of FIGS. It is a schematic diagram which shows the other structure of this liquid crystal display device.
  • FIG. 10 is a timing chart showing an example of driving the liquid crystal display device of FIG. 9.
  • 12 is a timing chart showing another driving example of the present liquid crystal display device.
  • 12 is a timing chart showing the driving example of FIG. 11 in more detail.
  • 12 is a timing chart showing a load variation of the scanning signal line driving circuit in the driving example of FIG. 14 is a timing chart showing still another example of driving of the present liquid crystal display device.
  • FIG. 15 is a timing chart showing the driving example of FIG. 14 in more detail.
  • FIG. 15 is a timing chart showing load fluctuations of the scanning signal line driving circuit in the driving example of FIG. 14.
  • 14 is a timing chart showing still another example of driving of the present liquid crystal display device. It is a timing chart which shows the example of a drive of FIG. 17 in detail.
  • FIG. 17 shows the example of a drive of FIG. 17 in detail.
  • FIG. 18 is a timing chart showing a load variation of the scanning signal line driving circuit in the driving example of FIG. 17.
  • 14 is a timing chart showing still another example of driving of the present liquid crystal display device.
  • FIG. 21 is a timing chart showing the driving example of FIG. 20 in more detail.
  • FIG. 21 is a timing chart showing load fluctuations of the scanning signal line driving circuit in the driving example of FIG. 20.
  • FIG. It is a timing chart which shows the modification of FIG. 10 is a timing chart illustrating an example of driving of the liquid crystal display device according to the second exemplary embodiment;
  • FIG. 25 is a timing chart showing the continuation of FIG. 24.
  • It is a timing chart which shows the example of a drive of FIG. It is a schematic diagram which shows polarity distribution of the write potential of this liquid crystal display device.
  • FIG. 26 is a timing chart showing load fluctuations of the scanning signal line driving circuit in the driving example of FIGS. 12 is a timing chart showing another driving example of the present liquid crystal display device. 14 is a timing chart showing still another example of driving of the present liquid crystal display device.
  • FIG. 32 is a timing chart showing the driving example of FIG. 31 in more detail.
  • FIG. 32 is a timing chart showing load fluctuations of the scanning signal line driving circuit in the driving example of FIG. 31.
  • FIG. 12 is a timing chart illustrating an example of driving of the liquid crystal display device according to the third exemplary embodiment
  • 10 is a timing chart illustrating another example of driving the liquid crystal display device according to the third exemplary embodiment
  • 12 is a timing chart illustrating still another example of driving the liquid crystal display device according to the third exemplary embodiment
  • It is a schematic diagram which shows the other example concerning grouping of a scanning signal line.
  • 38 is a timing chart showing an example of driving (upstream part) in the case of FIG. 38 is a timing chart showing an example of driving (downstream part) in the case of FIG.
  • FIG. 40 is a timing chart showing still another improvement example of FIG. 39.
  • FIG. 40 is a timing chart showing still another improvement example of FIG. 39.
  • FIG. It is a block diagram explaining the structure of the whole liquid crystal display device.
  • FIG. 26 is a block diagram illustrating functions of the present television receiver. It is a timing chart which shows the example of a drive of the conventional liquid crystal display device.
  • FIG. 3 is a schematic diagram showing a display unit of the present liquid crystal display device (for example, normally black mode).
  • the display unit of the present liquid crystal display device is provided with scanning signal lines (G1 to G1080) and storage capacitor lines (CS1 to CS1081) parallel to the scanning signal lines, and one pixel has Two subpixels arranged in the column direction (the extending direction of the data signal line) are provided, and one pixel electrode is provided in one subpixel.
  • one storage capacitor line is provided corresponding to the gap between two pixels adjacent in the column direction, and this one storage capacitor line is one of the pixel electrodes provided on one of the two pixels.
  • a capacitor is formed with each of the pixel electrodes provided on the other side.
  • CS1 and CS1081 are provided on both sides of the pixel column, and correspond to the gap between the pixel Pi (i is an integer from 1 to 1079) and the pixel P (i + 1).
  • one storage capacitor line CS (i + 1) is provided.
  • the pixel Pi (i is an integer from 1 to 1080) has two pixel electrodes connected to the scanning signal line Gi and the data signal line SL through transistors, and one pixel electrode is the storage capacitor line CSi. And the other pixel electrode forms the storage capacitor line CS (i + 1) and the storage capacitor.
  • the storage capacitor line CS1 is provided on one side (upstream side) of the pixel column, the storage capacitor line CS2 is provided corresponding to the gap between the pixel P1 and the pixel P2, and the gap between the pixel P2 and the pixel P3 is provided.
  • a storage capacitor line CS3 is provided.
  • the pixel P1 has two pixel electrodes that are connected to the scanning signal line G1 and the data signal line SL through a transistor. One pixel electrode forms a storage capacitor line CS1 and a storage capacitor, and the other pixel electrode. Forms a storage capacitor with the storage capacitor line CS2.
  • the pixel P2 has two pixel electrodes connected to the scanning signal line G2 and the data signal line SL through transistors, and one pixel electrode forms a storage capacitor line CS2 and a storage capacitor, The pixel electrode forms a storage capacitor with the storage capacitor line CS3.
  • the scanning signal lines are interlaced and scanned while the data signal lines are driven in block inversion.
  • the part after the scanning signal line G1 in the display unit is considered divided into 45 blocks (B1 to B45) defined by 44 boundaries parallel to the scanning signal line.
  • Each block includes 24 continuous scanning signal lines.
  • the block B1 which is the most upstream block includes scanning signal lines G1 to G24
  • the block B2 includes scanning signal lines G25 to G48.
  • the block B3 includes scanning signal lines G49 to G72
  • the block B45 which is the most downstream block includes scanning signal lines G1057 to G1080.
  • G71 are grouped as Gr3, and the grouping of 24 even-numbered scanning signal lines included in the block Bj (j is an odd number from 3 to 43) and the downstream block B (j + 1), And the grouping of the odd-numbered scanning signal lines 24 included in the B (j + 1) block and the downstream block B (j + 2) is repeated to form the groups Gr4 ⁇ 45, the even-numbered scanning signal lines 12 (G1058, G1060,... G1080) included in the block B45 which is the most downstream block are set as the final group Gr46, and Gr1 to Gr46 are selected in order from the Gr1 to the selected group. Corresponding to the horizontal scanning of the scanning signal lines to which it belongs, signal potentials having the same polarity are sequentially supplied to the data signal lines.
  • the data D1 to D1080 shown in FIGS. 1 and 2 are video data (digital data) corresponding to the pixels P1 to P1080 (see FIG. 3) connected to the scanning signal lines G1 to G1080, and the polarity inversion signal POL is This signal controls the polarity of the signal potential supplied to the data signal line SL1. Further, as shown in FIGS. 1 and 2, the polarity (plus / minus) of the signal potential supplied to the data signal line is inverted between the front group and the rear group selected before and after.
  • the video data (D1, D3,... D23) is corresponding to the horizontal scanning of the scanning signal lines (G1, G3,... G23) belonging to the group Gr1 by selecting the group Gr1.
  • the group Gr2 corresponds to sequentially supplying the corresponding positive polarity signal potential to the data signal line SL1, then selecting the group Gr2 and sequentially scanning the scanning signal lines (G2, G4... G48) belonging to the group Gr2.
  • Sequentially supply a negative polarity signal potential corresponding to the video data (D2, D4,..., D48) to the data signal line SL1 then select the group Gr3 and scan signal lines (G25, G27,.
  • a positive signal potential corresponding to video data (D25, D27,... D71) is sequentially applied to the data signal line SL. Supplied to.
  • a period during which a signal potential corresponding to one video data is supplied (output) to the data signal line is a horizontal scanning period (H).
  • first and second dummy data are inserted between the video data corresponding to the last horizontal scan of the previous group and the video data corresponding to the first horizontal scan of the rear group, and the last horizontal scan of the previous group
  • First and second dummy scanning periods are inserted between a horizontal scanning period corresponding to scanning and a horizontal scanning period corresponding to the first horizontal scanning in the subsequent group.
  • the scanning signal line that performs the first horizontal scanning in the subsequent group is subjected to dummy scanning, so that the scanning signal line is activated for a predetermined period and then deactivated.
  • a dummy potential corresponding to the first dummy data and having the same polarity as the signal potential in the subsequent group is output to the data signal line.
  • the first dummy data is the same as the video data corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line (the first scanning signal line in the rear group).
  • the scanning signal line that performs the second horizontal scanning in the subsequent group is subjected to dummy scanning, so that the scanning signal line is activated after being activated for a predetermined period.
  • a dummy potential corresponding to the second dummy data and having the same polarity as the signal potential in the subsequent group is supplied to the data signal line.
  • the second dummy data is the same as the video data corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line (the second scanning signal line in the rear group).
  • the timing of horizontal scanning in each horizontal scanning period is matched with the timing of dummy scanning in each dummy scanning period.
  • the horizontal scanning period starts (signal potential output start) and ends (signal potential output end), and the corresponding horizontal scanning starts (writes the signal potential) and ends (signal potential)
  • the dummy scanning period start (dummy potential output start) and end (dummy potential output end), and the corresponding dummy scan start (dummy potential write start) and The end (the end of writing of the dummy potential) is matched.
  • each of the gate pulses GP1 to GP1080 supplied to the scanning signal lines G1 to G1080 is a pulse having a width equal to one horizontal scanning period (1H), and each scanning signal line has a horizontal scanning corresponding to its own stage.
  • the scanning signal lines that are activated simultaneously with the start of scanning and the scanning signal lines to be dummy scanned are also activated simultaneously with the start of the dummy scanning corresponding to the own stage.
  • the video data D23 corresponding to the last horizontal scan (G23 horizontal scan) in the group Gr1 and the first horizontal scan (G2 horizontal scan) in the group Gr2 are supported.
  • the first dummy data Da and the second dummy data Db are inserted between the video data D2 and the horizontal scanning period H23 corresponding to the last horizontal scanning in the group Gr1 and the first horizontal scanning in the group Gr2.
  • a first dummy scanning period DS1 and a second dummy scanning period DS2 are inserted between the corresponding horizontal scanning period H2.
  • the gate pulse GP23 supplied to the scanning signal line G23 is activated simultaneously with the start of the horizontal scanning period H23, and the gate pulse GP23 is deactivated simultaneously with the end of the horizontal scanning period H23.
  • a signal potential corresponding to the video data D23 (video data corresponding to a pixel connected to the scanning signal line G23) and having the same polarity (plus polarity) as the signal potential in the group Gr1 is a data signal. Supplied to the line SL1.
  • the gate pulse GP2 supplied to the scanning signal line G2 that is scanned first in the group Gr2 is activated, and simultaneously with the end of the first dummy scanning period DS1, the gate pulse is activated. GP2 is deactivated.
  • a dummy potential corresponding to the first dummy data Da and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the first dummy data Da is the same as the video data D2 (data of the next frame) corresponding to the most recent horizontal scanning after the dummy scanning of the scanning signal line G2. Therefore, as shown by the potential VSL1 (see FIG. 4) supplied to the data signal line SL1, the dummy potential supplied in the first dummy scanning period DS1 and the signal potential supplied in the horizontal scanning period H2 are equal. ing.
  • the gate pulse GP4 supplied to the scanning signal line G4 that is scanned second in the group Gr2 is activated, and simultaneously with the end of the second dummy scanning period DS2, the gate pulse is activated. GP4 is deactivated.
  • a dummy potential corresponding to the second dummy data Db and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the second dummy data Db is the same as the video data D4 (data of the next frame) corresponding to the horizontal scan immediately after the dummy scan of the scanning signal line G4. Therefore, as shown by the potential VSL1 (see FIG. 4) supplied to the data signal line SL1, the dummy potential supplied in the second dummy scanning period DS2 is equal to the signal potential supplied in the horizontal scanning period H4. ing.
  • the gate pulse GP2 supplied to the scanning signal line G2 is activated simultaneously with the start of the horizontal scanning period H2, and the gate pulse GP2 is deactivated simultaneously with the end of the horizontal scanning period H2.
  • the signal potential corresponding to the video data D2 (video data corresponding to the pixel connected to the scanning signal line G2) and having the same polarity (negative polarity) as the signal potential in the group Gr2 is a data signal. Supplied to the line SL1.
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi (i is an integer of 1 to 1080) will be described with reference to FIGS.
  • the storage capacitor wiring signals SCS1 to SCS1081 are represented by 14 phases (the first phase represented by the storage capacitor wiring signal SCS1, the second phase represented by SCS2, and the SCS3).
  • 3rd phase 4th phase represented by SCS4, 5th phase represented by SCS5, 6th phase represented by SCS6, 7th phase represented by SCS7, 8th phase represented by SCS8, SCS9 9th phase represented by SCS10, 10th phase represented by SCS10, 11th phase represented by SCS11, 12th phase represented by SCS12, 13th phase represented by SCS13, and 13th phase represented by SCS14 14 phase) waveform.
  • each phase has the same period (14H period consisting of a first section in which the High level continues for 7H and a second section in which the Low level continues for 7H), and the second phase represented by SCS2 is in the SCS1.
  • the half phase (7H) phase is delayed from the representative first phase, and in the case of any odd-numbered phase and the next odd-numbered phase, the latter is delayed by 1H phase from the former, and any even-numbered phase In the phase and the next even-numbered phase, the latter is delayed by 1H phase from the former.
  • the third phase represented by the storage capacitor wiring signal SCS3 is delayed in phase by 1H from the first phase represented by SCS1
  • the fourth phase represented by SCS4 is more than the second phase represented by SCS2.
  • the phase is delayed by 1H.
  • the storage capacitor wiring signals SCS (28j + 1) and SCS (28k + 16) are in the first phase, j is an integer from 0 to 38, and k is from 0 to 38.
  • the storage capacitor wiring signals SCS (28j + 2) and SCS (28k + 15) are in the second phase.
  • the storage capacitor wiring signals SCS (28j + 3) and SCS (28k + 18) are the third phase
  • the storage capacitor wiring signal SCS (28j + 4) and SCS (28k + 17) is the fourth phase
  • storage capacitor wiring signal SCS (28j + 5) and SCS (28k + 20) are the fifth phase
  • storage capacitor wiring signal SCS (28j + 6) and SCS (28k + 19) are the sixth phase
  • storage capacitor wiring signal SCS (28j + 7) and SCS (28k + 22) are in the seventh phase
  • the storage capacitor wiring signals SCS (28j + 8) and SCS (28k + 21) are in the eighth phase
  • the storage capacitor wiring signals SCS (28j + 9) and SCS (28k + 24) are in the ninth phase.
  • Capacitance wiring signals SCS (28j + 10) and SCS (28k + 23) are in the tenth phase, holding capacity
  • the wiring signals SCS (28j + 11) and SCS (28k + 26) are in the 11th phase
  • the storage capacitor wiring signals SCS (28j + 12) and SCS (28k + 25) are in the 12th phase
  • the storage capacitor wiring signals SCS (28j + 13) and SCS (28k + 28) are in the 13th phase.
  • the storage capacitor wiring signals SCS (28j + 14) and SCS (28k + 27) are in the fourteenth phase.
  • the first to fourteenth-phase storage capacitor wiring signals are input to the storage capacitor trunk wires M1 to M14, respectively, j is an integer from 0 to 38, and k is an integer from 0 to 38.
  • storage capacitor lines CS (28j + 1) and CS (28k + 16) storage capacitor trunk lines M1, j are integers from 0 to 38, k is an integer from 0 to 38, storage capacitor lines CS (28j + 2) and CS (28k + 15) Are connected to the storage capacitor trunk line M2.
  • the storage capacitor lines CS (28j + 3) and CS (28k + 18) are the storage capacitor trunk line M3
  • the storage capacitor line CS (28j + 4) and CS (28k + 17) is the storage capacitor trunk wiring M4
  • storage capacitor wiring CS (28j + 5) and CS (28k + 20) is the storage capacitor trunk wiring M5
  • storage capacitor wiring CS (28j + 6) and CS (28k + 19) is the storage capacitor trunk wiring M6
  • the capacitor lines CS (28j + 7) and CS (28k + 22) are the storage capacitor trunk line M7
  • the storage capacitor lines CS (28j + 8) and CS (28k + 21) are the storage capacitor trunk line M8
  • the storage capacitor lines CS (28j + 9) and CS (28k + 24) are Retention capacitance trunk wiring M9, retention capacitance wiring CS (28j + 10) and CS (
  • the storage capacitor line signal SCS1 (first phase) is a horizontal signal corresponding to the scanning signal line G1.
  • the level shifts from “L” to “H” after the horizontal scanning period H1 ends (for example, at the timing when 1H has elapsed from the end of H1 in FIG.
  • One of the two subpixels of the pixel P1 includes a pixel electrode that forms a storage capacitor line CS1 and a storage capacitor, and the other includes a pixel electrode that forms a storage capacitor line CS2 and a storage capacitor, and A positive signal potential is supplied to these two pixel electrodes during the horizontal scanning period H1, but the holding capacitor wiring CS1 and the holding capacitor wiring CS1 are held in accordance with the level shift of the holding capacitor wiring signal SCS1 from “L” to “H”. As the potential of the pixel electrode forming the capacitor rises and the storage capacitor wiring signal SCS2 shifts from “H” to “L”, the potential of the pixel electrode forming the storage capacitor wiring CS2 and the storage capacitor decreases. .
  • the effective potential Ve1 from the level shift to the elapse of one vertical scanning period is higher than the reference potential Vo (an intermediate potential between “L” and “H”, for example, the common electrode potential Vcom),
  • the effective potential Ve2 from the level shift to the elapse of one vertical scanning period is lower than the reference potential Vo.
  • the storage capacitor wiring signal SCS2 (second phase) is in the horizontal scanning period corresponding to the scanning signal line G2.
  • the level shifts from “H” to “L” at the timing when 1H has elapsed from the end of the horizontal scanning period H2 at the “H” level to H2, and the storage capacitor wiring signal SCS3 (third phase) corresponds to the scanning signal line G2.
  • the level is shifted from “L” to “H” at the timing of “L” level during the horizontal scanning period H2 and 2H from the end of the horizontal scanning period H2.
  • One of the two subpixels of the pixel P2 includes a pixel electrode that forms a storage capacitor line CS2 and a storage capacitor, and the other includes a pixel electrode that forms a storage capacitor line CS3 and a storage capacitor, and Although a negative signal potential is supplied to these two pixel electrodes during the horizontal scanning period H2, the holding capacitor wiring CS2 and the holding capacitor wiring CS2 are held in accordance with the level shift of the holding capacitor wiring signal SCS2 from “H” to “L”. As the potential of the pixel electrode forming the capacitor decreases and the storage capacitor line signal SCS3 shifts from “L” to “H”, the potential of the pixel electrode forming the storage capacitor line CS3 and the storage capacitor increases. .
  • the storage capacitor wiring signal SCS2 has an effective potential lower than the reference potential from the level shift until one vertical scanning period elapses
  • the storage capacitor wiring signal SCS3 has the effective potential from the level shift until one vertical scanning period elapses as a reference. It is higher than the potential. Accordingly, as shown in FIG. 7, the subpixel including the pixel electrode forming the storage capacitor wiring CS2 and the storage capacitor is defined as the “bright subpixel”, and the subpixel including the pixel electrode forming the storage capacitor wiring CS3 and the storage capacitor is displayed. “Dark sub-pixel” can be used, and halftone can be displayed by these bright / dark sub-pixels.
  • the storage capacitor wiring signal SCS3 (third phase) is in the horizontal scanning period corresponding to the scanning signal line G3.
  • One of the two subpixels of the pixel P3 includes a pixel electrode that forms a storage capacitor line CS3 and a storage capacitor, and the other includes a pixel electrode that forms a storage capacitor line CS4 and a storage capacitor, and A positive signal potential is supplied to these two pixel electrodes during the horizontal scanning period H3.
  • the storage capacitor wiring signal SCS3 shifts from “L” to “H”
  • the storage capacitor wiring CS3 and the storage electrode are held.
  • the potential of the pixel electrode forming the capacitor increases and the storage capacitor line signal SCS4 shifts from “H” to “L”, the potential of the pixel electrode forming the storage capacitor line CS4 and the storage capacitor decreases. .
  • the storage capacitor wiring signal SCS3 has an effective potential from the level shift until one vertical scanning period elapses higher than the reference potential
  • the storage capacitor wiring signal SCS4 has the effective potential from the level shift until one vertical scanning period elapses as a reference. It is lower than the potential.
  • the subpixel including the storage capacitor wiring CS3 and the pixel electrode forming the storage capacitor is defined as the “bright subpixel”
  • the subcapacitor including the storage capacitor wiring CS4 and the pixel electrode forming the storage capacitor is displayed. “Dark sub-pixel” can be used, and halftone can be displayed by these bright / dark sub-pixels.
  • the present liquid crystal display device since two subpixels in one pixel can be displayed as halftones as “bright subpixels” and “dark subpixels”, viewing angle characteristics are improved. Can be increased. Furthermore, since a bright sub-pixel and a dark sub-pixel can be alternately arranged (checkered) in one pixel column, a smooth display with less roughness can be achieved.
  • the polarity distribution in the column direction of the write potential to each pixel can be made dot-inverted, and flickering can be suppressed. Furthermore, compared with the case where the data signal line is driven by dot inversion (1H inversion), the power consumption and heat generation of the driver can be suppressed and the pixel charging rate can be increased. Further, immediately after the polarity of the signal potential supplied to the data signal line is inverted, a dummy potential equal to the inverted polarity is supplied to the data signal line over the first and second dummy scanning periods. The difference between the charging rate of the pixels connected to the first scanning signal line of the second and even-numbered blocks and the charging rate of other pixels can be reduced. Thereby, horizontal stripe-like unevenness in the vicinity of the block boundary that may be visually recognized when the block inversion drive is performed can be suppressed.
  • each scanning signal line is activated for a predetermined period and then deactivated, so that each scanning signal line is scanned before the scanning and the scanning is started.
  • the load state of the scanning signal line driving circuit can be made uniform at the time and during scanning.
  • the load of the scanning signal line driving circuit is Lp, and one scanning signal line is active.
  • the load of the scanning signal line driving circuit is set to Ly, the scanning signal lines G24, G25, and G26 located near the boundary between the blocks B1 and B2 are scanned before, at the start of scanning, and during scanning. The load state of the drive circuit will be described with reference to FIG.
  • one scanning signal line G22 Before the scanning of the scanning signal line G24, one scanning signal line G22 is active, so the load on the scanning signal line driving circuit is Ly, and when the scanning of the scanning signal line G24 is started, one scanning signal line G22 is activated. At the same time as the scanning signal line G24 is activated, another scanning signal line G22 is deactivated, so that the load of the scanning signal line driving circuit is Lp. During scanning of the scanning signal line G24, one scanning signal line G24 is activated. Since the scanning signal line G24 is active, the load on the scanning signal line driving circuit is Ly.
  • one scanning signal line G27 Before the scanning of the scanning signal line G25, one scanning signal line G27 is active, so the load of the scanning signal line driving circuit is Ly, and when the scanning of the scanning signal line G25 is started, one scanning signal line G27 is loaded. At the same time that the scanning signal line G25 is activated, another scanning signal line G27 is deactivated, so that the load of the scanning signal line driving circuit becomes Lp. During scanning of the scanning signal line G25, one line is present. Since the scanning signal line G25 is active, the load on the scanning signal line driving circuit is Ly.
  • one scanning signal line G24 is active, so the load on the scanning signal line driving circuit is Ly.
  • another scanning signal line G24 is deactivated, so that the load of the scanning signal line driving circuit becomes Lp.
  • one line is present. Since the scanning signal line G26 is active, the load on the scanning signal line driving circuit is Ly.
  • the load state of the scanning signal line driving circuit in the horizontal scanning period and the scanning signal line driving in the dummy scanning period By combining with the load state of the circuit, the scan signal line drive circuit load state before scanning, at the start of scanning, and during scanning can be made uniform for scanning of each scanning signal line. Thereby, the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • the load of the scanning signal line driving circuit is kept almost always Ly during the vertical scanning period, and the load variation of the scanning signal line driving circuit itself is hardly present. It has become. Further, by making the timing when the load becomes Lp as shown in FIG. 8, it is possible to more effectively suppress the horizontal streak unevenness.
  • the structure (period) when the load becomes Ly and the timing when the load becomes Lp may be aperiodic.
  • the polarities of signal potentials supplied to two data signal lines adjacent to each other in the same horizontal scanning period or the same dummy scanning period are different from each other. For example, as shown in FIG. 4, during the period in which a positive signal potential is supplied to the data signal line SL1, a negative signal potential is supplied to the data signal line SL2, and a negative signal potential is supplied to the data signal line SL1. Is supplied to the data signal line SL2 during a period in which is supplied. By doing so, the polarity distribution in the row direction of the writing potential to each pixel (the extending direction of the scanning signal line) can also be made dot-inverted as shown in FIG. 7, and flickering can be further suppressed.
  • the first dummy data Da is the same as the video data D2 (video data of the next frame) corresponding to the most recent horizontal scan after the dummy scan of the scanning signal line G2, and the second dummy data Db. Is the same as the video data D4 (video data of the next frame) corresponding to the latest horizontal scanning after the dummy scanning of the scanning signal line G4, but is not limited thereto.
  • the first dummy data Da is the same as the video data corresponding to the most recent horizontal scan before the dummy scan of the scanning signal line G2 (the video data of the current frame), and the second dummy data Db is the dummy of the scanning signal line G4.
  • the first dummy data Da corresponds to video data (current frame video data) corresponding to the horizontal scan immediately before the dummy scan of the scanning signal line G2 and horizontal scan closest to the scan signal line G2 after the dummy scan.
  • the second dummy data Db is determined on the basis of the video data D2 (video data of the next frame), video data corresponding to the horizontal scan immediately before the dummy scan of the scanning signal line G4 (video data of the current frame), It may be determined based on video data D4 (video data of the next frame) corresponding to the latest horizontal scan after the dummy scan of the scanning signal line G4. Further, the first and second dummy data Da and Db may be predetermined video data (same).
  • each dummy scanning period is equal to one horizontal scanning period, but is not limited thereto.
  • Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • each dummy scanning period is shorter than one horizontal scanning period.
  • the horizontal scanning timing in each horizontal scanning period coincides with the dummy scanning timing in each dummy scanning period.
  • the storage capacitor line CSi (i is an integer of 1 to 2160) is connected to that of FIG.
  • Such a storage capacitor wiring signal that is level-shifted only once in one vertical scanning period may be supplied.
  • the storage capacitor wiring signal SCS1 is “L” level in the horizontal scanning period H1 (the signal potential is positive polarity) corresponding to the scanning signal line G1, and “L” ⁇ 1H after the horizontal scanning period H1 ends. The level is shifted to “H”, and then the “H” level is maintained for one vertical scanning period.
  • the storage capacitor wiring signal SCS2 is at the “H” level during the horizontal scanning period H1 corresponding to the scanning signal line G1, and the level is shifted from “H” to “L” at the timing when 1H has elapsed since the end of the horizontal scanning period H1. Thereafter, the “L” level is maintained for one vertical scanning period.
  • the storage capacitor wiring signal SCS3 is “H” level in the horizontal scanning period H2 (signal potential is negative polarity) corresponding to the scanning signal line G2, and “H” at the timing when 1H has elapsed from the end of the horizontal scanning period H2. The level is shifted to “L”, and then the “L” level is maintained for one vertical scanning period.
  • the storage capacitor wiring signal SCS4 is at the “L” level in the horizontal scanning period H2 corresponding to the scanning signal line G2, and is shifted in level from “L” to “H” at the timing when 1H has elapsed from the end of the horizontal scanning period H2. Thereafter, the “H” level is maintained for one vertical scanning period.
  • the storage capacitor wiring signal SCS5 is “L” level in the horizontal scanning period H3 (the signal potential is positive polarity) corresponding to the scanning signal line G3, and “L” ⁇ 1H after the horizontal scanning period H3 ends. The level is shifted to “H”, and then the “H” level is maintained for one vertical scanning period.
  • the storage capacitor wiring signal SCS6 is at the “H” level in the horizontal scanning period H3 corresponding to the scanning signal line G3, and is shifted in level from “H” to “L” at the timing when 1H has elapsed from the end of the horizontal scanning period H3. Thereafter, the “L” level is maintained for one vertical scanning period.
  • halftone can be displayed with two subpixels in one pixel as “bright subpixels” and “dark subpixels”, so that viewing angle characteristics can be improved.
  • a bright sub-pixel and a dark sub-pixel can be alternately arranged (checkered) in one pixel column, a smooth display with less roughness can be achieved.
  • the scanning signal line that performs the first horizontal scanning in the rear group is dummy scanned
  • the second horizontal scanning is performed in the rear group.
  • the scanning signal lines are dummy scanned
  • the present invention is not limited to this.
  • the scanning signal line that performs the first horizontal scanning in the subsequent group is dummy scanned, so that the scanning signal line is activated for a predetermined period, and then deactivated.
  • the same scanning signal line may be dummy scanned again, so that the scanning signal line is activated for a predetermined period and then deactivated.
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi (i is an integer from 1 to 1080) is the same as that shown in FIGS.
  • the video data D23 corresponding to the last horizontal scan (G23 horizontal scan) in the group Gr1 and the first horizontal scan (G2 horizontal scan) in the group Gr2 are supported.
  • the first dummy data Da and the second dummy data Db are inserted between the video data D2 and the horizontal scanning period H23 corresponding to the last horizontal scanning in the group Gr1 and the first horizontal scanning in the group Gr2.
  • a first dummy scanning period DS1 and a second dummy scanning period DS2 are inserted between the horizontal scanning period H2 to be performed.
  • the gate pulse GP2 supplied to the scanning signal line G2 that is first horizontally scanned in the group Gr2 is activated and simultaneously with the end of the first dummy scanning period DS1. Pulse GP2 is deactivated.
  • a dummy potential corresponding to the first dummy data Da and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the first dummy data Da is the same as the video data D2 (data of the next frame) corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line G2. Therefore, as shown by the potential VSL1 (see FIG. 12) supplied to the data signal line SL1, the dummy potential supplied in the first dummy scanning period DS1 is equal to the signal potential supplied in the horizontal scanning period H2. ing.
  • the gate pulse GP2 supplied to the scanning signal line G2 that is first horizontally scanned in the group Gr2 is activated again, and simultaneously with the end of the second dummy scanning period DS2, the gate is supplied. Pulse GP2 is deactivated.
  • a dummy potential corresponding to the second dummy data Db and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the second dummy data Db is the same as the video data D2 (the data of the next frame) corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line G2. Therefore, as shown by the potential VSL1 (see FIG. 12) supplied to the data signal line SL1, the dummy potential supplied in the second dummy scanning period DS2 is equal to the signal potential supplied in the horizontal scanning period H2. ing.
  • the load of the scanning signal line driving circuit when one scanning signal line is activated and another scanning signal line is deactivated at the same time is reduced to Lp, Assuming that the load of the scanning signal line driving circuit when the scanning signal line is active is Ly, as shown in FIG. 13, the loading state of the scanning signal line driving circuit in the horizontal scanning period and the dummy scanning period
  • the load state of the scanning signal line driving circuit can be matched with the scanning state of the scanning signal line driving circuit before scanning, at the start of scanning, and during scanning.
  • the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this. Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the scanning signal line in the first dummy scanning period, the scanning signal line three lines below the last scanning signal line in the previous group (the 13th scanning signal line in the rear group) is dummy scanned.
  • the scanning signal line is activated after a predetermined period of time and then deactivated, and in the second dummy scanning period, scanning signal lines that are two lines below the scanning signal line that was dummy scanned in the first dummy scanning period (rear group 14
  • the scanning signal line may be deactivated after the scanning signal line is activated for a predetermined period by performing dummy scanning on the second scanning signal line).
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi i is an integer from 1 to 1080 is the same as that shown in FIGS.
  • the video data D23 corresponding to the last horizontal scan (G23 horizontal scan) in the group Gr1 and the first horizontal scan (G2 horizontal scan) in the group Gr2 are supported.
  • the first dummy data Da and the second dummy data Db are inserted between the video data D2 and the horizontal scanning period H23 corresponding to the last horizontal scanning in the group Gr1 and the first horizontal scanning in the group Gr2.
  • a first dummy scanning period DS1 and a second dummy scanning period DS2 are inserted between the horizontal scanning period H2 to be performed.
  • the gate pulse GP26 supplied to the scanning signal line (the 13th scanning signal line of the group Gr2) G26 three lines below the scanning signal line G23 is activated, and the first Simultaneously with the end of one dummy scanning period DS1, the gate pulse GP26 is deactivated.
  • a dummy potential corresponding to the first dummy data Da and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the first dummy data Da is the same as the video data D26 (data of the next frame) corresponding to the latest horizontal scan after the dummy scan of the scanning signal line G26. Therefore, as shown by the potential VSL1 (see FIG. 15) supplied to the data signal line SL1, the dummy potential supplied in the first dummy scanning period DS1 is equal to the signal potential supplied in the horizontal scanning period H26. ing.
  • the gate pulse GP28 supplied from the scanning signal line G26 to the scanning signal line G28 two lines below is activated, and simultaneously with the end of the second dummy scanning period DS2, the gate pulse GP28 is activated. Deactivates.
  • a dummy potential corresponding to the second dummy data Db and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the second dummy data Db is the same as the video data D28 (data of the next frame) corresponding to the latest horizontal scanning after the dummy scanning of the scanning signal line G28. Therefore, as shown by the potential VSL1 (see FIG. 15) supplied to the data signal line SL1, the dummy potential supplied in the second dummy scanning period DS2 is equal to the signal potential supplied in the horizontal scanning period H28. ing.
  • the load of the scanning signal line drive circuit when one scanning signal line is activated and another scanning signal line is deactivated at the same time is reduced to Lp, Assuming that the load of the scanning signal line drive circuit when the scanning signal line is active is Ly, as shown in FIG. 16, the load state of the scanning signal line drive circuit in the horizontal scanning period and the dummy scanning period
  • the load state of the scanning signal line driving circuit can be matched with the scanning state of the scanning signal line driving circuit before scanning, at the start of scanning, and during scanning.
  • the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this. Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the first dummy data Da is the same as the video data D26 (video data of the next frame) corresponding to the most recent horizontal scan after the dummy scan of the scanning signal line G26, and the second dummy data.
  • Db is the same as the video data D26 (video data of the next frame) corresponding to the most recent horizontal scan after the dummy scan of the scan signal line G28, but in this case, the first dummy scan period DS1 and the scan signal line G26
  • the interval with the horizontal scanning period H25 corresponding to the scanning signal line G25 in the previous stage to be 0.8 [ms] or less, there is less possibility that tearing (display deviation in moving images) is visually recognized.
  • the first dummy data Da is the same as the video data corresponding to the most recent horizontal scan before the dummy scan of the scan signal line G26 (the video data of the current frame), and the second dummy data Db is the dummy of the scan signal line G28. It can also be the same as the video data (current frame video data) corresponding to the most recent horizontal scan before scanning. In this way, there is an advantage that tearing is not likely to be visually recognized.
  • the scanning signal line two lines below the last scanning signal line in the previous group (first horizontal scanning in the group next to the rear group).
  • the scanning signal line is activated by scanning for a predetermined period and then deactivated, and in the second dummy scanning period, two lines below the scanning signal line that has been dummy scanned in the first dummy scanning period.
  • the scanning signal line (scanning signal line that performs the second horizontal scanning in the group next to the subsequent group) may be subjected to dummy scanning so that the scanning signal line is activated for a predetermined period and then deactivated.
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi (i is an integer from 1 to 1080) is the same as that shown in FIGS.
  • the video data D23 corresponding to the last horizontal scan (G23 horizontal scan) in the group Gr1 and the first horizontal scan (G2 horizontal scan) in the group Gr2 are supported.
  • the first dummy data Da and the second dummy data Db are inserted between the video data D2 and the horizontal scanning period H23 corresponding to the last horizontal scanning in the group Gr1 and the first horizontal scanning in the group Gr2.
  • a first dummy scanning period DS1 and a second dummy scanning period DS2 are inserted between the horizontal scanning period H2 to be performed.
  • the gate pulse GP25 supplied to the scanning signal line (first scanning signal line of the group Gr3 next to the group Gr2) G25 two lines below the scanning signal line G23 is generated.
  • the gate pulse GP25 is deactivated simultaneously with the end of the first dummy scanning period DS1.
  • a dummy potential corresponding to the first dummy data Da and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the first dummy data Da is the same as the video data (current frame data) corresponding to the most recent horizontal scanning before the dummy scanning of the scanning signal line G25.
  • the gate pulse GP27 supplied to the scanning signal line (second scanning signal line of the group Gr3) G27 two lines below the scanning signal line G25 is activated, and the second Simultaneously with the end of the dummy scanning period DS2, the gate pulse GP27 is deactivated.
  • a dummy potential corresponding to the second dummy data Db and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the second dummy data Db is the same as the video data (current frame data) corresponding to the horizontal scan immediately before the dummy scan of the scan signal line G27.
  • the load of the scanning signal line driving circuit when one scanning signal line is activated and another scanning signal line is deactivated at the same time is reduced to Lp, Assuming that the load of the scanning signal line driving circuit when the scanning signal line is active is Ly, as shown in FIG. 19, the load state of the scanning signal line driving circuit in the horizontal scanning period and the dummy scanning period
  • the load state of the scanning signal line driving circuit can be matched with the scanning state of the scanning signal line driving circuit before scanning, at the start of scanning, and during scanning.
  • the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this. Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the gate pulses GP0 to GP1081 are pulses whose width is equal to twice the horizontal scanning period (2H), and as shown in FIGS. Is activated in synchronization with the start of the horizontal scan or dummy scan immediately before the horizontal scan corresponding to the own stage, deactivated in synchronization with the end of the horizontal scan corresponding to the own stage, and each scan subjected to the dummy scan
  • the signal line is also activated in synchronization with the start of the horizontal scan or dummy horizontal scan immediately before the dummy horizontal scan corresponding to the own stage, and is deactivated in synchronization with the end of the dummy scan corresponding to the own stage. It can also be.
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi (i is an integer from 1 to 1080) is the same as that shown in FIGS.
  • the horizontal scanning timing in each horizontal scanning period is matched with the dummy scanning timing in each dummy scanning period.
  • the horizontal scanning period starts (signal potential output start) and ends (signal potential output end), and the corresponding horizontal scanning starts (writes the signal potential) and ends (signal potential)
  • the dummy scanning period start (dummy potential output start) and end (dummy potential output end), and the corresponding dummy scan start (dummy potential write start) and The end (the end of writing of the dummy potential) is matched.
  • the gate pulse GP23 supplied to the scanning signal line G23 is activated simultaneously with the start of the horizontal scanning immediately before the horizontal scanning corresponding to the scanning signal line G23, that is, simultaneously with the start of the horizontal scanning period H21. It becomes active for two horizontal scanning periods of the scanning period H23, and becomes inactive simultaneously with the end of the horizontal scanning period H23.
  • the signal potential corresponding to the video data D21 (video data corresponding to the pixel connected to the scanning signal line G21) and having the same polarity (plus polarity) as the signal potential in the group Gr1 is a data signal. Supplied to the line SL1.
  • a signal potential having the same polarity (plus polarity) as the signal potential in the group Gr1 corresponds to the video data D23 (video data corresponding to the pixel connected to the scanning signal line G23). It is supplied to the data signal line SL1. That is, precharging is performed in the horizontal scanning period H21, and main charging (writing of a positive polarity signal potential corresponding to the video data D23) is performed in the horizontal scanning in the horizontal scanning period H23.
  • the gate pulse GP2 supplied to the scanning signal line G2 is activated simultaneously with the start of the horizontal scan immediately before the dummy scan, that is, simultaneously with the start of the horizontal scan period H23, and the second of the horizontal scan period H23 and the first dummy scan period DS1. It becomes active for the horizontal scanning period and is deactivated simultaneously with the end of the first dummy scanning period DS1.
  • the gate pulse GP4 supplied to the scanning signal line G4 is activated simultaneously with the start of the dummy scan immediately before the dummy scan, that is, at the start of the first dummy scan period DS1, and the first dummy scan period DS1 and the second dummy scan are activated. It becomes active for two horizontal scanning periods in the period DS2, and becomes inactive at the end of the second dummy scanning period DS2.
  • the gate pulse GP2 supplied to the scanning signal line G2 is activated simultaneously with the start of the dummy scanning immediately before the horizontal scanning corresponding to the scanning signal line G2, that is, the second dummy scanning period DS2, and the second dummy scanning period. It becomes active for two horizontal scanning periods of DS2 and horizontal scanning period H2, and becomes inactive simultaneously with the end of horizontal scanning period H2.
  • a signal potential having the same polarity (negative polarity) as the signal potential in the group Gr2 corresponding to the second dummy data Db is supplied to the data signal line SL1.
  • a signal potential corresponding to the video data D2 (video data corresponding to a pixel connected to the scanning signal line G2) and having the same polarity (plus polarity) as the signal potential in the group Gr2 is a data signal. Supplied to the line SL1. That is, precharging is performed in the dummy scanning period DS2, and main charging (writing of a positive polarity signal potential corresponding to the video data D2) is performed in the horizontal scanning in the horizontal scanning period H2.
  • the load of the drive circuit is Lq
  • the load of the scan signal line drive circuit is Lz when one scan signal line and another scan signal line are active, and the boundary between the blocks B1 and B2
  • the load state of the scanning signal line drive circuit before and at the start of scanning of each of the scanning signal lines G24, G25, and G26 located in the vicinity and during the scanning will be described with reference to FIG.
  • one scanning signal line G22 and another scanning signal line G24 other than this are active, so the load on the scanning signal line driving circuit is Lz, and scanning is performed.
  • one scanning signal line G24 is in an active state, and another scanning signal line G26 is activated and at the same time, another scanning signal line G22 is inactive. Therefore, the load of the scanning signal line driving circuit is Lq.
  • one scanning signal line G24 and one other scanning signal line G26 are active, so the load of the scanning signal line driving circuit is Lz.
  • one scanning signal line G25 and another scanning signal line G27 other than this are active, so the load on the scanning signal line driving circuit is Lz, and scanning is performed.
  • one scanning signal line G25 is in an active state, and another scanning signal line G27 is deactivated and activated.
  • the load is approximately Lq.
  • one scanning signal line G25 and one other scanning signal line G27 are active, so the load on the scanning signal line driving circuit is Lz.
  • one scanning signal line G24 and one other scanning signal line G26 are active, so the load on the scanning signal line driving circuit is Lz, and scanning is performed.
  • one scanning signal line G26 is in an active state, and another scanning signal line G28 is activated, and at the same time, another scanning signal line G24 is inactive. Therefore, the load of the scanning signal line driving circuit is Lq.
  • one scanning signal line G26 and one other scanning signal line G28 are active, so the load of the scanning signal line driving circuit is Lz.
  • the scanning state of the scanning signal line driving circuit in the horizontal scanning period and the loading state of the scanning signal line driving circuit in the dummy scanning period are combined,
  • the load state of the scanning signal line driver circuit before and during the scanning can be made uniform.
  • the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • the load of the scanning signal line driving circuit is kept almost always Lz during the vertical scanning period, and there is almost no load fluctuation of the scanning signal line driving circuit. ing. Also, as shown in FIG. 22, by making the timing when the load becomes Lq periodic, it is possible to further effectively suppress the horizontal streak-like unevenness.
  • each pixel is precharged for one horizontal period, so the charge rate of each pixel can be increased.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this.
  • Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the scanning signal lines are sequentially scanned while the data signal lines are driven by block inversion.
  • the part after the scanning signal line G1 in the display unit is divided into 90 blocks (B1 to B90) defined by 89 boundaries parallel to the scanning signal line.
  • Each block includes 12 continuous scanning signal lines.
  • the block B1 which is the most upstream block includes scanning signal lines G1 to G12
  • the block B2 includes scanning signal lines G13 to G24.
  • the block B3 includes scanning signal lines G25 to G36
  • the block B90 which is the most downstream block includes scanning signal lines G1069 to G1080.
  • 12 scanning signal lines (G1, G2,... G12) included in the block B1, which is the most upstream block, are set as the first group Gr1
  • 12 scanning signal lines included in the block B2 on the downstream side of the block B1 G13, G14,..., G24
  • 12 scanning signal lines included in each block are set as groups Gr3 to Gr90 in order
  • scanning signal lines belonging to the selected group are selected from Gr1 to Gr90 in order.
  • the polarity inversion signal POL in FIGS. 24 and 25 the polarity (plus / minus) of the signal potential supplied to the data signal line is inverted between the front group and the rear group selected before and after.
  • the video data (D1, D2,... D12) is corresponding to the horizontal scanning of the scanning signal lines (G1, G2,... G12) belonging to the group Gr1 by selecting the group Gr1.
  • the group Gr2 corresponds to sequentially supplying the corresponding positive polarity signal potential to the data signal line SL1, and then selecting the group Gr2 and sequentially scanning the scanning signal lines (G13, G14... G24) belonging to the group Gr2.
  • a negative polarity signal potential corresponding to the video data (D13, D14... D24) is sequentially supplied to the data signal line SL1, and then the group Gr3 is selected and the scanning signal lines (G25, G26,...
  • a positive polarity signal potential corresponding to the video data (D25, D26... D48) is sequentially transmitted. It is supplied to the line SL1. Note that a period during which a signal potential corresponding to one video data is supplied (output) to the data signal line is a horizontal scanning period (H).
  • the scanning signal line that performs the first horizontal scanning in the subsequent group is subjected to dummy scanning, so that the scanning signal line is activated for a predetermined period and then deactivated.
  • a dummy potential corresponding to the first dummy data and having the same polarity as the signal potential in the subsequent group is output to the data signal line.
  • the first dummy data is the same as the video data corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line (the first scanning signal line in the rear group).
  • the scanning signal line that performs the second horizontal scanning in the subsequent group is subjected to dummy scanning, so that the scanning signal line is activated after being activated for a predetermined period.
  • a dummy potential corresponding to the second dummy data and having the same polarity as the signal potential in the subsequent group is supplied to the data signal line.
  • the second dummy data is the same as the video data corresponding to the horizontal scanning immediately after the dummy scanning of the scanning signal line (the second scanning signal line in the rear group).
  • the timing of horizontal scanning in each horizontal scanning period is matched with the timing of dummy scanning in each dummy scanning period.
  • the horizontal scanning period starts (signal potential output start) and ends (signal potential output end), and the corresponding horizontal scanning starts (writes the signal potential) and ends (signal potential)
  • the dummy scanning period start (dummy potential output start) and end (dummy potential output end), and the corresponding dummy scan start (dummy potential write start) and The end (the end of writing of the dummy potential) is matched.
  • each of the gate pulses GP1 to GP1080 supplied to the scanning signal lines G1 to G1080 is a pulse having a width equal to one horizontal scanning period (1H), and each scanning signal line has a horizontal scanning corresponding to its own stage.
  • the scanning signal lines that are activated simultaneously with the start of scanning and the scanning signal lines to be dummy scanned are also activated simultaneously with the start of the dummy scanning corresponding to the own stage.
  • the video data D12 corresponding to the last horizontal scan (G12 horizontal scan) in the group Gr1 and the first horizontal scan (G13 horizontal scan) in the group Gr2 are supported.
  • the first dummy data Da and the second dummy data Db are inserted between the video data D13 and the horizontal scanning period H12 corresponding to the last horizontal scanning in the group Gr1 and the first horizontal scanning in the group Gr2.
  • a first dummy scanning period DS1 and a second dummy scanning period DS2 are inserted between the horizontal scanning period H13.
  • the gate pulse GP12 supplied to the scanning signal line G12 is activated simultaneously with the start of the horizontal scanning period H12, and the gate pulse GP12 is deactivated simultaneously with the end of the horizontal scanning period H12.
  • the signal potential corresponding to the video data D12 (video data corresponding to the pixel connected to the scanning signal line G12) and having the same polarity (plus polarity) as the signal potential in the group Gr1 is a data signal. Supplied to the line SL1.
  • the gate pulse GP13 supplied to the scanning signal line G13 that is first scanned horizontally in the group Gr2 is activated, and simultaneously with the end of the first dummy scanning period DS1, the gate pulse is activated. GP13 is deactivated.
  • a dummy potential corresponding to the first dummy data Da and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the first dummy data Da is the same as the video data D13 (data of the next frame) corresponding to the horizontal scan immediately after the dummy scan of the scanning signal line G13. Therefore, as shown by the potential VSL1 (see FIG. 26) supplied to the data signal line SL1, the dummy potential supplied in the first dummy scanning period DS1 is equal to the signal potential supplied in the horizontal scanning period H13. ing.
  • the gate pulse GP14 supplied to the scanning signal line G14 that is secondly scanned horizontally in the group Gr2 is activated, and simultaneously with the end of the second dummy scanning period DS2, the gate pulse is activated. GP14 is deactivated.
  • a dummy potential corresponding to the second dummy data Db and having the same polarity (negative polarity) as the signal potential in the group Gr2 is supplied to the data signal line SL1.
  • the second dummy data Db is the same as the video data D14 (data of the next frame) corresponding to the horizontal scan immediately after the dummy scan of the scanning signal line G14. Therefore, as shown by the potential VSL1 (see FIG. 26) supplied to the data signal line SL1, the dummy potential supplied in the second dummy scanning period DS2 is equal to the signal potential supplied in the horizontal scanning period H14. ing.
  • the gate pulse GP13 supplied to the scanning signal line G13 is activated simultaneously with the start of the horizontal scanning period H13, and the gate pulse GP13 is deactivated simultaneously with the end of the horizontal scanning period H13.
  • the signal potential corresponding to the video data D13 (video data corresponding to the pixel connected to the scanning signal line G13) and having the same polarity (negative polarity) as the signal potential in the group Gr2 is a data signal. Supplied to the line SL1.
  • the polarity distribution of the write potential to each pixel is as shown in FIG.
  • the storage capacitor wiring signal SCSi supplied to the storage capacitor wiring CSi (i is an integer from 1 to 1080) will be described with reference to FIGS.
  • the storage capacitor wiring signals SCS1 to SCS1081 are represented by 11 phases (the first phase represented by the storage capacitor wiring signal SCS2, the second phase represented by SCS1 and 3 and the SCS4).
  • 3rd phase, 4th phase represented by SCS5 5th phase represented by SCS6, 6th phase represented by SCS7, 7th phase represented by SCS8, 8th phase represented by SCS9, SCS10
  • the waveform of the ninth phase represented by SCS11, the tenth phase represented by SCS12 the waveform of the ninth phase represented by SCS11, the tenth phase represented by SCS12).
  • each phase has the same period (28H period consisting of the first section in which the High level continues for 14H and the second section in which the Low level continues for 14H), and the second phase represented by SCS1 is in SCS2.
  • the 16H phase is delayed from the representative first phase, and the arbitrary odd-numbered phase and the next odd-numbered phase in the latter are 2H-phase later than the former, the arbitrary even-numbered phase and the next In the even-numbered phase, the latter is delayed by 2H phase than the former.
  • the third phase represented by SCS4 is delayed in phase by 2H from the first phase represented by SCS2, and the fourth phase represented by SCS5 is 2H more in phase than the second phase represented by SCS3. Running late.
  • the storage capacitor wiring signal SCS (12j + 2) is the first phase
  • the storage capacitor wiring signals SCS1 and SCS (12j + 3) are the second phase
  • the storage capacitor wiring signal SCS (12j + 4) is the third phase.
  • the storage capacitor wiring signal SCS (12j + 5) is the fourth phase
  • the storage capacitor wiring signal SCS (12j + 6) is the fifth phase
  • the storage capacitor wiring signal SCS (12j + 7) is the sixth phase
  • the storage capacitor wiring signal SCS (12j + 8) is The seventh phase
  • the storage capacitor wiring signal SCS (12j + 9) is in the eighth phase
  • the storage capacitor wiring signal SCS (12j + 10) is in the ninth phase.
  • the storage capacitor wiring signals SCS (12j + 11) and SCS (12k + 13) are in the tenth phase. Further, the storage capacitor wiring signal SCS (12j + 12) is in the eleventh phase, where j is an integer of 0 to 89.
  • the first to eleventh-phase storage capacitor wiring signals are respectively input to the storage capacitor trunk wires M1 to M11, and j is an integer from 0 to 89, and the storage capacitor wiring CS (12j + 2 ) Is stored in the storage capacitor trunk wiring M1, the storage capacitor wirings CS1 and CS (12j + 3) are stored in the storage capacitor trunk wiring M2, the storage capacitor wiring CS (12j + 4) is stored in the storage capacitor trunk wiring M3, and the storage capacitor wiring CS (12j + 5) is stored.
  • the storage capacity wiring CS (12j + 6) is in the storage capacity trunk wiring M5
  • the storage capacity wiring CS (12j + 7) is in the storage capacity trunk wiring M6
  • the storage capacity wiring CS (12j + 8) is in the storage capacity trunk wiring M7.
  • the storage capacitor line CS (12j + 9) is connected to the storage capacitor trunk line M8, and the storage capacitor line CS (12j + 10) is connected to the storage capacitor trunk line M9.
  • the storage capacitor lines CS (12j + 11) and CS (12k + 13) are connected to the storage capacitor trunk line M10, where j is an integer from 0 to 89 and k is an integer from 0 to 89.
  • the storage capacitor line CS (12j + 12) is connected to the storage capacitor trunk line M11, where j is an integer of 0 to 89.
  • the storage capacitor line signal SCS1 (second phase) is a horizontal signal corresponding to the scanning signal line G1.
  • the level shifts from “L” to “H” at the “L” level in the scanning period H1 and 4H from the end of the horizontal scanning period H1, and the storage capacitor wiring signal SCS2 (first phase) is shifted to the scanning signal line G1.
  • the level is set to be “H” level in the horizontal scanning period H1 corresponding to “H” and level shifted from “H” to “L” at the timing when 2H has elapsed since the end of the horizontal scanning period H1.
  • One of the two subpixels of the pixel P1 includes a pixel electrode that forms a storage capacitor line CS1 and a storage capacitor, and the other includes a pixel electrode that forms a storage capacitor line CS2 and a storage capacitor, and A positive signal potential is supplied to these two pixel electrodes during the horizontal scanning period H1, but the holding capacitor wiring CS1 and the holding capacitor wiring CS1 are held in accordance with the level shift of the holding capacitor wiring signal SCS1 from “L” to “H”. As the potential of the pixel electrode forming the capacitor rises and the storage capacitor wiring signal SCS2 shifts from “H” to “L”, the potential of the pixel electrode forming the storage capacitor wiring CS2 and the storage capacitor decreases. .
  • the storage capacitor wiring signal SCS1 has a higher effective potential than the reference potential from the level shift until one vertical scanning period elapses
  • the storage capacitor wiring signal SCS2 has the effective potential from the level shift until one vertical scanning period elapses as a reference. It is lower than the potential.
  • the subpixel including the pixel electrode forming the storage capacitor wiring CS1 and the storage capacitor is defined as the “bright subpixel”, and the subpixel including the pixel electrode forming the storage capacitor wiring CS2 and the storage capacitor is displayed. “Dark sub-pixel” can be used, and halftone can be displayed by these bright / dark sub-pixels.
  • the storage capacitor wiring signal SCS2 (first and second phases) is in the horizontal scanning period corresponding to the scanning signal line G2.
  • One of the two subpixels of the pixel P2 includes a pixel electrode that forms a storage capacitor line CS2 and a storage capacitor, and the other includes a pixel electrode that forms a storage capacitor line CS3 and a storage capacitor, and A positive signal potential is supplied to these two pixel electrodes during the horizontal scanning period H1, but the holding capacitor line CS2 and the holding capacitor line CS2 are held in accordance with the level shift of the holding capacitor line signal SCS2 from “H” to “L”. As the potential of the pixel electrode forming the capacitor decreases and the storage capacitor line signal SCS3 shifts from “L” to “H”, the potential of the pixel electrode forming the storage capacitor line CS3 and the storage capacitor increases. .
  • the storage capacitor wiring signal SCS2 has an effective potential lower than the reference potential from the level shift until one vertical scanning period elapses
  • the storage capacitor wiring signal SCS3 has the effective potential from the level shift until one vertical scanning period elapses as a reference. It is higher than the potential.
  • the sub-pixel including the storage capacitor line CS2 and the pixel electrode forming the storage capacitor is referred to as “dark sub-pixel”
  • the storage capacitor line CS3 and the sub-pixel including the pixel electrode forming the storage capacitor is replaced. “Bright subpixels” can be used, and halftones can be displayed by these bright and dark subpixels.
  • the storage capacitor wiring signal SCS13 (tenth phase) is in the horizontal scanning period corresponding to the scanning signal line G13.
  • One of the two sub-pixels of the pixel P13 includes a pixel electrode that forms a storage capacitor with the storage capacitor line CS13, and the other includes a pixel electrode that forms a storage capacitor with the storage capacitor line CS14, and These two pixel electrodes are supplied with a negative signal potential in the horizontal scanning period H13.
  • the storage capacitor wiring signal SCS13 is level-shifted from “H” to “L”
  • the storage capacitor wiring CS13 and the storage electrode are held.
  • the potential of the pixel electrode forming the capacitor decreases and the storage capacitor line signal SCS14 shifts from “L” to “H”, the potential of the pixel electrode forming the storage capacitor line CS14 and the storage capacitor increases. .
  • the storage capacitor line signal SCS13 has an effective potential lower than the reference potential from the level shift until one vertical scanning period elapses
  • the storage capacitor line signal SCS14 has the effective potential from the level shift until one vertical scanning period elapses as the reference potential. It is higher than the potential.
  • the subpixel including the storage capacitor line CS13 and the pixel electrode forming the storage capacitor is referred to as a “bright subpixel”
  • the subpixel including the storage capacitor line CS14 and the pixel electrode forming the storage capacitor is referred to as a “dark subpixel”.
  • halftones can be displayed by these bright / dark sub-pixels.
  • two sub-pixels in one pixel can be displayed as “bright sub-pixels” and “dark sub-pixels”, so that halftone can be displayed. Can be increased. Furthermore, as shown in FIGS. 24 and 25, the arrangement of bright subpixels, dark subpixels, dark subpixels, and bright subpixels is repeated in one pixel column, so that horizontal stripe unevenness can be reduced.
  • the power consumption and heat generation of the driver can be suppressed and the pixel charging rate can be increased as compared with the case where the data signal line is driven by dot inversion (1H inversion). Further, immediately after the polarity of the signal potential supplied to the data signal line is inverted, a dummy potential equal to the inverted polarity is supplied to the data signal line over the first and second dummy scanning periods. The difference between the charging rate of the pixel connected to the first scanning signal line and the charging rate of the other pixels can be reduced. Thereby, horizontal stripe-like unevenness in the vicinity of the block boundary that may be visually recognized when the block inversion drive is performed can be suppressed.
  • each scanning signal line is activated for a predetermined period and then deactivated, so that each scanning signal line is scanned before the scanning and the scanning is started.
  • the load state of the scanning signal line driving circuit can be made uniform at the time and during scanning.
  • the load of the scanning signal line driving circuit is Lp, and one scanning signal line is active.
  • the load of the scanning signal line driving circuit is set to Ly, the scanning signal lines G24, G25, and G26 located near the boundary between the blocks B1 and B2 are scanned before, at the start of scanning, and during scanning. The load state of the drive circuit will be described with reference to FIG.
  • one scanning signal line G23 Before scanning of the scanning signal line G24, one scanning signal line G23 is active, so the load on the scanning signal line driving circuit is Ly, and when scanning of the scanning signal line G24 is started, one scanning signal line G23 is activated. At the same time as the scanning signal line G24 is activated, another scanning signal line G23 is deactivated, so that the load of the scanning signal line driving circuit is Lp. During scanning of the scanning signal line G24, one scanning signal line G24 is activated. Since the scanning signal line G24 is active, the load on the scanning signal line driving circuit is Ly.
  • one scanning signal line G26 Before the scanning of the scanning signal line G25, one scanning signal line G26 is active, so the load of the scanning signal line driving circuit is Ly, and at the start of scanning of the scanning signal line G25, one scanning signal line G26 is activated. At the same time that the scanning signal line G25 is activated, another scanning signal line G26 is deactivated, so that the load of the scanning signal line driving circuit is Lp. During scanning of the scanning signal line G25, one line is present. Since the scanning signal line G25 is active, the load on the scanning signal line driving circuit is Ly.
  • one scanning signal line G25 Before the scanning of the scanning signal line G26, one scanning signal line G25 is active, so the load on the scanning signal line driving circuit is Ly. At the same time that the scanning signal line G26 is activated, another scanning signal line G25 is deactivated, so that the load of the scanning signal line driving circuit is Lp. During scanning of the scanning signal line G26, one scanning signal line G26 is activated. Since the scanning signal line G26 is active, the load on the scanning signal line driving circuit is Ly.
  • the load state of the scanning signal line driving circuit in the horizontal scanning period and the scanning signal line driving in the dummy scanning period By combining with the load state of the circuit, the scan signal line drive circuit load state before scanning, at the start of scanning, and during scanning can be made uniform for scanning of each scanning signal line. Thereby, the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • the load of the scanning signal line driving circuit is kept almost always Ly during the vertical scanning period, and the load variation of the scanning signal line driving circuit itself is hardly present. It has become. Also, as shown in FIG. 29, by making the timing when the load becomes Lp periodic, it is possible to further effectively suppress the horizontal streak-like unevenness.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this.
  • Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the scanning signal line that performs the first horizontal scanning in the rear group is subjected to dummy scanning, and in the second dummy scanning period, the scanning signal that performs the second horizontal scanning in the rear group.
  • the line is dummy scanned, the present invention is not limited to this.
  • the scanning signal line that performs the first horizontal scanning in the subsequent group is dummy scanned, so that the scanning signal line is activated for a predetermined period, and then deactivated.
  • the same scanning signal line may be dummy scanned again, so that the scanning signal line is activated for a predetermined period and then deactivated.
  • the gate pulses GP0 to GP1081 are pulses whose width is equal to twice (2H) of one horizontal scanning period, and each scanning signal line has a horizontal level immediately before the horizontal scanning corresponding to its own stage.
  • Each scanning signal line that is activated in synchronization with the start of scanning or dummy scanning, deactivated in synchronization with the end of horizontal scanning corresponding to the own stage, and is dummy scanned is also a dummy horizontal scanning corresponding to the own stage. It may be configured to be activated in synchronization with the start of the immediately preceding horizontal scan or dummy horizontal scan, and deactivated in synchronization with the end of the dummy scan corresponding to its own stage. Also in this configuration, the horizontal scanning timing in each horizontal scanning period is matched with the dummy scanning timing in each dummy scanning period.
  • the gate pulse GP12 supplied to the scanning signal line G12 starts the horizontal scanning immediately before the horizontal scanning corresponding to the scanning signal line G12, that is, simultaneously with the start of the horizontal scanning period H11. It is activated and becomes active for two horizontal scanning periods of the horizontal scanning period H11 and the horizontal scanning period H12, and deactivated simultaneously with the end of the horizontal scanning period H12.
  • the signal potential corresponding to the video data D11 (video data corresponding to the pixel connected to the scanning signal line G11) and having the same polarity (plus polarity) as the signal potential in the group Gr1 is a data signal. Supplied to the line SL1.
  • a signal potential having the same polarity (plus polarity) as the signal potential in the group Gr1 corresponds to the video data D12 (video data corresponding to the pixel connected to the scanning signal line G12). It is supplied to the data signal line SL1. That is, precharging is performed in the horizontal scanning period H11, and main charging (writing of a positive polarity signal potential corresponding to the video data D12) is performed in the horizontal scanning in the horizontal scanning period H12.
  • the gate pulse GP13 supplied to the scanning signal line G13 is activated simultaneously with the start of the horizontal scanning immediately before the dummy scanning, that is, simultaneously with the start of the horizontal scanning period H12, and the horizontal scanning period H12 and the first dummy scanning period DS1 It becomes active for the horizontal scanning period and is deactivated simultaneously with the end of the first dummy scanning period DS1.
  • the gate pulse GP14 supplied to the scanning signal line G14 is activated simultaneously with the start of the dummy scan immediately before the dummy scan, that is, the start of the first dummy scan period DS1, and the first dummy scan period DS1 and the second dummy scan are activated. It becomes active for two horizontal scanning periods in the period DS2, and becomes inactive at the end of the second dummy scanning period DS2.
  • the gate pulse GP13 supplied to the scanning signal line G13 is activated simultaneously with the start of the dummy scanning immediately before the horizontal scanning corresponding to the scanning signal line G13, that is, the second dummy scanning period DS2, and the second dummy scanning period. It becomes active for two horizontal scanning periods of DS2 and horizontal scanning period H13, and deactivated simultaneously with the end of horizontal scanning period H2.
  • a signal potential having the same polarity (negative polarity) as the signal potential in the group Gr2 corresponding to the second dummy data Db is supplied to the data signal line SL1.
  • the signal potential corresponding to the video data D13 (video data corresponding to the pixel connected to the scanning signal line G13) and having the same polarity (plus polarity) as the signal potential in the group Gr2 is a data signal. Supplied to the line SL1. That is, precharging is performed in the dummy scanning period DS2, and main charging (writing of a positive polarity signal potential corresponding to the video data D2) is performed in the horizontal scanning in the horizontal scanning period H13.
  • the difference in the charging rate between the pixel connected to the scanning signal line that is horizontally scanned before and after the potential polarity inversion and the other pixel can be further reduced, and the horizontal stripe-like unevenness near the block boundary can be further suppressed.
  • each dummy scanning period is equal to one horizontal scanning period, but the present invention is not limited to this. Each dummy scanning period may be shorter or longer than one horizontal scanning period.
  • the liquid crystal display device shown in FIG. 3 can also be driven as shown in FIG.
  • the storage capacitor wiring signals SCS1 to SCS1081 supplied to the storage capacitor wirings CS1 to CS1080 have any of 12-phase waveforms (first to twelfth phases represented by the storage capacitor wiring signals SCS1 to SCS12).
  • the first section where the low level continues for 6H the second section where the high level continues for 8H, the third section where the low level continues for 8H, and the fourth section where the high level continues for 6H.
  • the reference waveform is repeated.
  • the first section in which the High level continues for 6H the second section in which the Low level continues for 8H
  • the third section in which the High level continues for 8H the fourth section in which the Low level continues for 6H.
  • the reference waveform consisting of is repeated.
  • the second phase represented by SCS2 is an inversion of the first phase represented by SCS1, and the latter is greater than the former in any odd-numbered phase and the next odd-numbered phase.
  • the 1H phase is delayed, and in any even-numbered phase and the next even-numbered phase, the latter is delayed by 1H phase than the former.
  • the third phase represented by the storage capacitor wiring signal SCS3 is delayed in phase by 1H from the first phase represented by SCS1
  • the fourth phase represented by SCS4 is more than the second phase represented by SCS2.
  • the phase is delayed by 1H.
  • the storage capacitor wiring signals SCS (24j + 1) and SCS (24k + 14) are in the first phase, where j is an integer from 0 to 45 and k is an integer from 0 to 44. Also, assuming that j is an integer from 0 to 45 and k is an integer from 0 to 44, the storage capacitor wiring signals SCS (24j + 2) and SCS (24k + 13) are the second phase, and the storage capacitor wiring signals SCS (24j + 3) and SCS (24k + 16) Is the third phase, the storage capacitor wiring signals SCS (24j + 4) and SCS (24k + 15) are the fourth phase, the storage capacitor wiring signals SCS (24j + 5) and SCS (24k + 18) are the fifth phase, the storage capacitor wiring signal SCS (24j + 6) and SCS (24k + 17) is the sixth phase, storage capacitor wiring signal SCS (24j + 7) and SCS (24k + 20) are the seventh phase, storage capacitor wiring signal SCS (24j + 8) and SCS
  • a timing adjustment scanning period is inserted in addition to the dummy scanning period. That is, in addition to inserting two dummy scan periods between a horizontal scan period corresponding to the last horizontal scan of the previous group and a horizontal scan period corresponding to the first horizontal scan of the rear group, m Is an integer from 0 to 42, two timings between the horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G (25m + 11) and the horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G (25m + 13).
  • An adjustment scanning period (first and second timing adjustment scanning periods) is inserted, and the scanning signal line G (25m + 13) is subjected to timing adjustment scanning in the first timing adjustment scanning period, whereby the scanning signal line G (25m + 13). Is deactivated after being activated for a predetermined period, and the scanning signal line G (25m + 15) is subjected to timing adjustment scanning in the second timing adjustment scanning period.
  • the scanning signal line G (25m + 15) is deactivated after it is for a predetermined period activated by.
  • the storage capacitor wiring signal SCS1 (first phase) is at the “L” level of the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1, and is synchronized with the end of the horizontal scanning period H1. Then, level 2 is shifted from “L” to “H”, and the second section starts.
  • the storage capacitor wiring signal SCS2 (second phase) is set to the “H” level of the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1.
  • the second section is set so that the level is shifted from “H” to “L” in synchronization with the end of the horizontal scanning period H1.
  • the timing adjustment period is equal to the horizontal scanning period, and the horizontal scanning timing in the horizontal scanning period and the timing adjustment scanning timing in the timing adjustment inspection period are matched. Specifically, the time difference between the start of the horizontal scan period and the start of the horizontal scan and the time difference between the start of the timing adjustment period and the start of the timing adjustment scan are set to zero (simultaneous), and the end of the horizontal scan and the horizontal scan The time difference between the end of the period and the time difference between the end of the timing adjustment scanning and the end of the timing adjustment period are also set to zero (simultaneously).
  • first and second timing adjustment data are inserted between the video data corresponding to the horizontal scanning of the scanning signal line G (25m + 11) and the video data corresponding to the horizontal scanning of the scanning signal line G (25m + 13).
  • the first timing adjustment data is the same as the video data corresponding to the horizontal scanning of the scanning signal line G (25m + 13)
  • the second timing adjustment data corresponds to the horizontal scanning of the scanning signal line G (25m + 15), for example. Same as video data.
  • the drive of FIG. 34 obtains the same effect as the drive of FIGS. 1 and 2 while reducing the storage capacitor wiring signal to 12 phases (12 storage capacitor trunk wires) compared to the drive of FIGS. be able to.
  • the storage capacitor wiring signal SCS1 (first phase) is at the “L” level in the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1, and from the end of the horizontal scanning period H1.
  • Level 2 is shifted from “L” to “H” at the timing when 2H elapses, and the second section starts.
  • the storage capacitor wiring signal SCS2 (second phase) is changed to the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1.
  • the level is shifted from “H” to “L” at the timing when 2H elapses from the end of the horizontal scanning period H1, and the second section starts.
  • the driving of FIG. 34 is modified, and in the odd-numbered phase, the first section where the Low level continues for 6H, the second section where the High level continues for 1H, and the third section where the Low level continues for 1H.
  • Section 4 the 4th section where the High level continues for 6H, the 5th section where the Low level continues for 1H, the 6th section where the High level continues for 1H, the 7th section where the Low level continues for 6H, and the 8th section where the High level continues for 6H
  • the first section in which the High level continues for 6H, the second section in which the Low level continues for 1H, the third section in which the High level continues for 1H, and the Low level of 6H are repeated.
  • the reference waveform is composed of the following 4th section, the 5th section where the High level continues for 1H, the 6th section where the Low level continues for 1H, the 7th section where the High level continues for 6H, and the 8th section where the Low level continues for 6H. Repeated It is also possible to so that.
  • the storage capacitor wiring signal SCS1 (first phase) is at the “L” level of the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1, and is synchronized with the end of the horizontal scanning period H1. Then, the level shifts from “L” to “H” to start the second section, and the storage capacitor wiring signal SCS2 (second phase) is “H” in the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1. The level is set so that the second section starts with a level shift from “H” to “L” in synchronization with the end of the horizontal scanning period H1.
  • the first and second dummy scanning periods are inserted between the horizontal scanning period corresponding to the last horizontal scanning in the previous group and the horizontal scanning period corresponding to the first horizontal scanning in the subsequent group.
  • the scanning signal line that performs the first horizontal scanning in the subsequent group is subjected to dummy scanning so that the scanning signal line is activated after a predetermined period of time, and then deactivated in the second dummy scanning period.
  • the scanning signal line to be horizontally scanned next is subjected to dummy scanning so that the scanning signal line is made inactive after being activated for a predetermined period.
  • j is an integer of 0 to 10
  • two timing adjustment scans are performed between the horizontal scanning period corresponding to the scanning signal line G (96j + 23) and the horizontal scanning period corresponding to the scanning signal line G (96j + 25).
  • a period (first and second timing adjustment scanning period) is inserted, and the scanning signal line G (96j + 25) is subjected to timing adjustment scanning in the first timing adjustment scanning period, whereby the scanning signal line G (25j + 25) is a predetermined period. It is deactivated after being activated, and the scanning signal line G (96j + 27) is subjected to timing adjustment scanning in the second timing adjustment scanning period, so that the scanning signal line G (96j + 27) is activated for a predetermined period, and then deactivated. It becomes.
  • two timing adjustment scans are performed between the horizontal scanning period corresponding to the scanning signal line G (96k + 72) and the horizontal scanning period corresponding to the scanning signal line G (96k + 74).
  • a period (first and second timing adjustment scanning period) is inserted, and the scanning signal line G (96k + 74) is subjected to timing adjustment scanning in the first timing adjustment scanning period, so that the scanning signal line G (96k + 74) is a predetermined period.
  • the scanning signal line G (96k + 76) is subjected to timing adjustment scanning in the second timing adjustment scanning period, so that the scanning signal line G (96k + 76) is activated for a predetermined period, and then deactivated. It becomes.
  • the storage capacitor line signals SCS1 to SCS1081 supplied to the storage capacitor lines CS1 to CS1080 have 12 phases (first to twelfth phases represented by the storage capacitor line signals SCS1 to SCS12). Take one of the waveforms.
  • the first section where the Low level continues for 12H, the second section where the High level continues for 1H, the third section where the Low level continues for 1H, the fourth section where the High level continues for 12H, the Low section The reference waveform consisting of the 5th section where the level continues for 1H, the 6th section where the High level continues for 1H, the 7th section where the Low level continues for 12H, and the 8th section where the High level continues for 12H is repeated. Then, the first section where the High level continues for 12H, the second section where the Low level continues for 1H, the third section where the High level continues for 1H, the fourth section where the Low level continues for 12H, and the fifth section where the High level continues for 1H.
  • a reference waveform consisting of a sixth section where the Low level continues for 1H, a seventh section where the High level continues for 12H, and an eighth section where the Low level continues for 12H is repeated.
  • the second phase represented by SCS2 is an inversion of the first phase represented by SCS1, and the latter is greater than the former in any odd-numbered phase and the next odd-numbered phase.
  • the 1H phase is delayed, and in any even-numbered phase and the next even-numbered phase, the latter is delayed by 1H phase than the former.
  • the third phase represented by the storage capacitor wiring signal SCS3 is delayed in phase by 1H from the first phase represented by SCS1
  • the fourth phase represented by SCS4 is more than the second phase represented by SCS2.
  • the phase is delayed by 1H.
  • the storage capacitor wiring signals SCS (48j + 1), SCS (48j + 3), SCS (48k + 26), and SCS (48k + 28) are the first phase and storage capacitor, where j is an integer from 0 to 22 and k is an integer from 0 to 21.
  • the wiring signals SCS (48j + 2), SCS (48j + 4), SCS (48j + 25), and SCS (48k + 27) are the second phase, the storage capacitor wiring signal SCS (48j + 5), SCS (48j + 7), SCS (48k + 30), and SCS (48k + 32).
  • storage capacitor wiring signal SCS (48j + 6), SCS (48j + 8), SCS (48k + 29), and SCS (48k + 31) are the fourth phase
  • storage capacitor wiring signal SCS (48j + 9), SCS (48j + 11), SCS. (48k + 34), and SCS (48k + 36) is the fifth phase
  • the storage capacitor wiring signals SCS (48j + 10), SCS (48j + 12), SCS (48k + 33), and SCS (48k + 35) are the sixth phase
  • storage capacitor wiring signal SCS (48j + 14), SCS (48j + 16), SCS (48k + 37), and SCS (48k + 39) are the eighth phase
  • storage capacitor wiring signal SCS (48j + 17), SCS (48j + 19) , SCS (48k + 42), and SCS (48k + 44) are in the ninth phase
  • the storage capacitor wiring signal SCS (48j + 18), SCS (48j + 20), SCS (48k + 41), and SCS (48k + 43) are in the tenth phase
  • storage capacitor wiring signal SCS (48j + 1), SCS (48j + 23), SCS (48k + 46), and SCS (48k + 48) are in the 11th phase
  • the storage capacitor wiring signal SCS (48j + 22), SCS (48j + 24), SCS (48k + 45), and SCS (48k + 47) are the twelfth phase.
  • the storage capacitor wiring signal SCS1 (first phase) is “L” level in the first section of the horizontal scanning period H1 corresponding to the scanning signal line G1, and is 1H from the end of the horizontal scanning period H1.
  • the level shifts from “L” to “H” to start the second section, and the storage capacitor wiring signal SCS2 (second phase) is changed to “1” in the first section in the horizontal scanning period H1 corresponding to the scanning signal line G1.
  • the “H” level the level is shifted from “H” to “L” at the timing when 1H has elapsed from the end of the horizontal scanning period H1, and the second section starts.
  • the timing adjustment scanning period is set as shown in FIG. 37 and the storage capacitor wiring signals SCS1 to SCS1081 are set as described above, as shown in FIG. 39, until G1058, the bright subpixels and the dark subpixels alternate. Although they are lined up, in G1058 and later, there are a dark subpixel, a bright subpixel, a bright subpixel, and a dark subpixel. That is, the checkered display is lost in the portion after the pixel to which G1058 is connected.
  • timing adjustment scanning periods there are 14 timing adjustment scanning periods (first scanning period) between the horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G1079 and the dummy scanning period corresponding to the dummy scanning of the scanning signal line G1058. It is desirable to insert 1st to 14th TA period).
  • the scanning signal line G1058 is subjected to timing adjustment scanning
  • the scanning signal line G1060 is subjected to timing adjustment scanning
  • the scanning signal line G1058 is subjected to timing adjustment scanning
  • the fourth TA the scanning signal line G1060 is scanned. Timing adjustment scanning is performed.
  • even-numbered scanning signal lines G1062 to 1080 are sequentially subjected to timing adjustment scanning in the fifth to fourteenth TAs. In this way, a checkered display can be maintained also for the portion after the pixel to which G1058 is connected.
  • 14 timing adjustment scanning periods are provided between the horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G1079 and the dummy scanning period corresponding to the dummy scanning of the scanning signal line G1058. 1st to 14th TA periods), the timing adjustment scanning of the scanning signal line G1058 is performed in the first TA, the timing adjustment scanning of the scanning signal line G1060 is performed in the second TA, and the timing adjustment scanning of the scanning signal line G1058 is performed again in the third TA.
  • the scanning signal line G1060 may be subjected to timing adjustment scanning again, so that the scanning signal lines G1058 and G1060 may be alternately subjected to timing adjustment scanning. In this way, a checkered display can be maintained also for the portion after the pixel to which G1058 is connected.
  • 14 timing adjustment scanning periods are provided between a horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G1079 and a dummy scanning period corresponding to the dummy scanning of the scanning signal line G1058. 1st to 14th TA periods), the timing adjustment scanning is performed on the scanning signal line G1080 in the first TA, and the timing adjustment scanning is performed on the dummy scanning signal line G1081 provided outside the display area (for example, at the lower end of the panel) in the second TA. In the third TA, the scanning signal line G1080 is scanned again for timing adjustment, and in the fourth TA, the dummy scanning signal line G1081 is scanned again for timing adjustment. Thus, the scanning signal line G1080 and the dummy scanning signal line G1081 are alternately adjusted for timing. You may scan. In this way, a checkered display can also be maintained in the portion after the pixel to which the scanning signal line G1058 is connected.
  • the dummy scanning signal line G1081 is provided adjacent to the scanning signal line G1080, and is connected to a dummy pixel provided outside the display area (lower end of the panel).
  • the dummy pixel provided at the lower end of the panel forms a capacity with the storage capacitor line CS1081 and the dummy storage capacitor line CS1082, and the dummy storage capacitor line CS1082 is connected to, for example, the storage capacitor trunk line M1.
  • 14 timing adjustment scanning periods are provided between the horizontal scanning period corresponding to the horizontal scanning of the scanning signal line G1079 and the dummy scanning period corresponding to the dummy scanning of the scanning signal line G1058. 1st to 14th TA period) is inserted, the scanning signal line G0 provided outside the display area (upper panel end) is scanned in the first TA, and the second TA is provided outside the display area (bottom panel end).
  • the dummy scanning signal line G1081 is scanned for timing adjustment, the dummy scanning signal line G0 is scanned again for timing adjustment in the third TA, the dummy scanning signal line G1081 is scanned again for timing adjustment in the fourth TA, and so on.
  • G0 and G1081 may be alternately scanned for timing adjustment. In this way, a checkered display can also be maintained in the portion after the pixel to which the scanning signal line G1058 is connected.
  • the dummy scanning signal line G0 is provided adjacent to the scanning signal line G1, and is connected to a dummy pixel provided outside the display area (the upper end of the panel).
  • the dummy pixel provided at the upper end of the panel forms a capacity with the dummy storage capacitor line CS0 and the storage capacitor line CS1, and the dummy storage capacitor line CS0 is connected to the storage capacitor trunk line M11, for example.
  • the dummy scanning signal line G1081 is provided adjacent to the scanning signal line G1080, and is connected to a dummy pixel provided outside the display area (lower end of the panel).
  • the dummy pixel provided at the lower end of the panel forms a capacity with the storage capacitor line CS1081 and the dummy storage capacitor line CS1082, and the dummy storage capacitor line CS1082 is connected to the storage capacitor trunk line M1, for example.
  • FIG. 44 is a block diagram showing a configuration of the present liquid crystal display device.
  • this liquid crystal display device includes a display unit (liquid crystal panel), a source driver, a gate driver, a backlight, a backlight driving circuit, a display control circuit, and a CS driving circuit (holding). Capacity wiring drive circuit).
  • the source driver drives the data signal line
  • the gate driver drives the scanning signal line
  • the CS drive circuit drives the storage capacitor line (CS line) via the storage capacitor trunk line
  • the display control circuit is the source driver , Controls the gate driver, CS drive circuit and backlight drive circuit.
  • the display control circuit controls a display operation from a digital video signal Dv representing an image to be displayed, a horizontal synchronization signal HSY and a vertical synchronization signal VSY corresponding to the digital video signal Dv from an external signal source (for example, a tuner). For receiving the control signal Dc. Further, the display control circuit, based on the received signals Dv, HSY, VSY, and Dc, uses a data start pulse signal SSP and a data clock as signals for displaying an image represented by the digital video signal Dv on the display unit.
  • Signal SCK digital image signal DA (signal corresponding to video signal Dv) representing an image to be displayed, gate start pulse signal GSP, gate clock signal GCK, and gate driver output control signal (scanning signal output control signal)
  • GOE scanning signal output control signal
  • POL polarity inversion signal
  • the video signal Dv is output as a digital image signal DA from the display control circuit, and a pulse corresponding to each pixel of the image represented by the digital image signal DA.
  • a data clock signal SCK is generated as a signal consisting of the above, a data start pulse signal SSP is generated as a signal that becomes high level (H level) for a predetermined period every horizontal scanning period based on the horizontal synchronization signal HSY, and the vertical synchronization signal VSY
  • the gate start pulse signal GSP is generated as a signal that becomes H level only for a predetermined period every one frame period (one vertical scanning period), and the gate clock signal GCK is generated based on the horizontal synchronization signal HSY, and the horizontal synchronization signal HSY and
  • a gate driver output control signal GOE is generated based on the control signal Dc.
  • the digital image signal DA, the polarity inversion signal POL, the data start pulse signal SSP, and the data clock signal SCK are input to the source driver, and the gate start pulse signal GSP.
  • the gate clock signal GCK and the gate driver output control signal GOE are input to the gate driver.
  • the source driver is based on the digital image signal DA, the data clock signal SCK, the data start pulse signal SSP, and the polarity inversion signal POL as an analog potential corresponding to the pixel value in each scanning signal line of the image represented by the digital image signal DA.
  • Data signals are sequentially generated for each horizontal scanning period, and these data signals are output to the data signal lines (SL1 and SL2).
  • the gate driver generates a scanning signal based on the gate start pulse signal GSP, the gate clock signal GCK, and the gate driver output control signal GOE, and outputs them to the scanning signal line, thereby selectively selecting the scanning signal line. To drive.
  • the data signal line and the scanning signal line of the display unit are driven by the source driver and the gate driver, so that the data signal line is connected via the TFT connected to the selected scanning signal line.
  • a signal potential is written to the pixel electrode.
  • a voltage corresponding to the digital image signal DA is applied to the liquid crystal layer of each pixel, and the amount of light transmitted from the backlight is controlled by applying the voltage, and an image indicated by the digital video signal Dv is displayed on the pixel.
  • a tuner unit 90 is connected to the liquid crystal display device 800, thereby configuring the television receiver 601.
  • the tuner unit 90 extracts a signal of a channel to be received from a received wave (high frequency signal) received by an antenna (not shown), converts the signal to an intermediate frequency signal, and detects the intermediate frequency signal to thereby detect the television.
  • a composite color video signal Scv as a signal is taken out.
  • the composite color video signal Scv is input to the liquid crystal display device 800 as described above, and an image based on the composite color video signal Scv is displayed by the liquid crystal display device 800.
  • the polarity of the potential in the present application indicates whether the potential is higher or lower than the reference potential.
  • the positive polarity potential is the reference potential or higher, and the negative polarity is the reference. It means the potential below the potential.
  • the reference potential may be Vcom (common potential) that is the potential of the common electrode (counter electrode) or any other potential.
  • the liquid crystal display device of the present invention is suitable for a liquid crystal television, for example.
  • G1 to G1080 Scan signal lines Gr1 to Gr46 Group B1 to G45 Block P1 to P1080 Pixels D1 to D1080 Video data Da, Db, Dc, Dd Dummy data H1 to H1080 Horizontal scanning period DS1 First dummy scanning period DS2 Second dummy scanning period SL1 SL2 Data signal line 601 Television receiver 800 Liquid crystal display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 各画素が複数の副画素からなる液晶表示装置において、表示部の走査信号線(G1・G2・・・)が複数本ずつグループとされるとともに各グループが順に選択され、前後して選択される前グループと後グループとで信号電位の極性POLが反転するとともに、前グループの最後の水平走査(G23の走査)に対応する水平走査期間と後グループでの最初の水平走査(G2の走査)に対応する水平走査期間との間に複数(例えば、2個)のダミー走査期間が挿入され、1個のダミー走査期間につき前グループよりも後に選択されるグループに属するいずれか1本の走査信号線(例えば、G2)がダミー走査されることによってこの走査信号線(G2)が所定期間アクティブとされた後に非アクティブ化される。これにより、マルチ画素方式の液晶表示装置において、データ信号線をブロック反転駆動した場合の横縞状のムラを低減することができる。

Description

液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
 本発明は、データ信号線に供給する信号電位の極性を複数水平走査期間ごとに反転させる駆動(ブロック反転駆動)に関する。
 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有し、近年その市場規模が急速に拡大している。この液晶表示装置においては、データ信号線に供給する信号電位の極性を一水平走査期間ごとに反転させるドット反転駆動が広く採用されてきた。しかしながら、ドット反転駆動ではデータ信号線の極性反転周波数が高くなって画素充電率の低下や消費電力増大といった問題があることから、例えば特許文献1に記載のように、データ信号線に供給する信号電位の極性を複数水平走査期間ごとに反転させるブロック反転駆動が提案されている。このブロック反転駆動では、ドット反転駆動に比べて画素充電率の向上や消費電力および発熱量の抑制を図ることができる。
 ここで特許文献1には、図46に示すように、ブロック反転駆動における極性反転直後にダミー走査期間を挿入する構成が開示されている。この構成によれば、極性反転直後にあたるデータ(n+2)には、プリチャージ用のダミー走査期間(図中、3番目の水平走査期間)と本チャージ(書き込み)用の水平走査期間(図中、4番目の水平走査期間)とが割り当てられることになり、該データ(n+2)に対応する画素の充電率を高めることができる。
 なお、γ特性の視野角依存性を向上させる(例えば、画面の白浮き等を抑制する)ため、1画素に設けた複数の副画素を異なる輝度に制御し、これら副画素の面積階調によって中間調を表示する構成(マルチ画素方式)が、例えば特許文献2・3に開示されている。
日本国公開特許公報「特開2001-51252号公報(2001年2月23日公開)」 日本国公開特許公報「特開2004-62146号公報(公開日:2004年2月26日)」 日本国公開特許公報「特開2006-39290号公報(公開日:2006年2月9日)」
 しかしながら、本願発明者らは図46の構成には以下の問題があることを見出した。例えば、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLy、2本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLzとすれば、水平走査期間H1では走査信号線駆動回路の負荷がLz、水平走査期間H2およびH3では走査信号線駆動回路の負荷がLy、水平走査期間H4およびH5では走査信号線駆動回路の負荷がLzとなっている。
 したがって、水平走査期間H2におけるデータ(n+1)の書き込みのための走査に関して、走査前は走査信号線駆動回路の負荷がLzで、走査中は走査信号線駆動回路の負荷がLyとなり、また、水平走査期間H4におけるデータ(n+2)の書き込みのための走査に関して、走査前は走査信号線駆動回路の負荷がLyで、走査中は走査信号線駆動回路の負荷がLzとなり、また、水平走査期間H5におけるデータ(n+3)の書き込みのための走査に関して、走査前は走査信号線駆動回路の負荷がLzで、走査中も走査信号線駆動回路の負荷がLzとなる。
 このように、各走査について、その走査前や走査中の走査信号線駆動回路の負荷にばらつきがあると、データ(n+1)、データ(n+2)およびデータ(n+3)が同一であっても、画素に書き込まれた電位(ひいては表示状態)にばらつきが生じてしまい、横縞状のムラとして視認されるおそれがある。
 本発明は、上記課題に鑑みてなされたものであり、マルチ画素方式でブロック反転駆動を行う液晶表示装置において横縞状のムラを低減し、その表示品位を高めることを目的とする。
 本液晶表示装置は、表示部の各画素が複数の副画素からなり、該表示部の走査信号線が複数本ずつグループとされるとともに各グループが順に選択され、選択されたグループに属する走査信号線が順次水平走査されるのに対応して順次同極性の信号電位がデータ信号線に供給される液晶表示装置であって、前後して選択される前グループと後グループとで上記信号電位の極性が反転するとともに、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間にダミー走査期間が挿入され、該ダミー走査期間に、前グループよりも後に選択されるグループに属する走査信号線がダミー走査されることによって該走査信号線が所定期間アクティブとされた後に非アクティブ化されることを特徴とする。
 本願では、「水平走査」とは、ある走査信号線をこれに対応する水平走査期間にアクティブにすることを意味し、プリチャージ等の目的で、ある走査信号線をこれに対応しない水平走査期間にアクティブにすることは「水平走査」と呼ばないこととする。同様に、「ダミー走査」とは、ある走査信号線をこれに対応するダミー走査期間にアクティブにすることを意味する。
 上記構成によれば、データ信号線の電位極性反転直後にダミー走査期間を挿入する場合において、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査中の走査信号線駆動回路の負荷状態を揃えることができる。これにより、マルチ画素方式の液晶表示装置において、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差を低減し、ブロック反転駆動時に問題となっていた横縞状のムラを抑制することができる。
 本液晶表示装置では、副画素ごとに画素電極が設けられるとともに、各画素電極に対応して保持容量配線が設けられ、各保持容量配線に与えられる保持容量配線信号によって各副画素の輝度が制御される構成とすることもできる。
 本液晶表示装置では、1本の保持容量配線に与えられる保持容量配線信号は、この保持容量配線と容量を形成する画素電極への信号電位の書き込み中はレベルシフトせず、書き込みが終了するのと同期してあるいはそれ以後に、基準電位に対してプラス方向あるいはマイナス方向にレベルシフトする構成とすることもできる。
 本液晶表示装置では、1つの画素に含まれる2つの画素電極の一方と容量を形成する保持容量配線と、他方と容量を形成する保持容量配線とでは、レベルシフトの向きが逆になっている構成とすることもできる。
 本液晶表示装置では、上記保持容量配線信号は、上記レベルシフトから一垂直走査期間経過するまで所定期間ごとにレベルが入れ替わる構成とすることもできる。
 本液晶表示装置では、上記保持容量配線信号は、レベルシフトから一垂直走査期間経過するまでの間、同レベルを維持する構成とすることもできる。
 本液晶表示装置では、互いに異なる保持容量配線信号が入力される複数の保持容量幹配線が設けられ、各保持容量配線はいずれか1本の保持容量幹配線に接続されている構成とすることもできる。
 本液晶表示装置では、データ信号線の延伸方向に隣接する2つの画素の間隙に対応して1本の保持容量配線が設けられ、この1本の保持容量配線は、上記2つの画素の一方に設けられた画素電極の1つおよび他方に設けられた画素電極の1つそれぞれと容量を形成している構成とすることもできる。
 本液晶表示装置では、ダミー走査期間には、ダミー電位がデータ信号線に供給される構成とすることもできる。このダミー電位の極性は、後グループでの上記信号電位の極性と同一であることが望ましい。
 本液晶表示装置では、各走査信号線の水平走査に対応する映像データが水平走査の順に並べられるとともに、前グループの最後の水平走査に対応する映像データと後グループでの最初の水平走査に対応する映像データとの間にn個のダミーデータが挿入され、上記信号電位は映像データに対応する電位であり、ダミー電位はダミーデータに対応する電位である構成とすることもできる。上記ダミーデータは、ダミー走査される走査信号線のダミー走査後直近の水平走査に対応する映像データと同一であってもよい。また、上記ダミーデータは、ダミー走査される走査信号線のダミー走査前直近の水平走査に対応する映像データと同一であってもよい。
 本液晶表示装置では、水平走査期間の開始および水平走査の開始の時間差とダミー走査期間の開始およびダミー走査の開始の時間差とが等しく、水平走査の終了および水平走査期間の終了の時間差とダミー走査の終了およびダミー走査期間の終了の時間差とが等しくなっている構成とすることもできる。
 本液晶表示装置では、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に複数のダミー走査期間が挿入されており、ダミー走査期間ごとに、異なる走査信号線がダミー走査される構成でもよい。また、各ダミー走査期間に、同一の走査信号線がダミー走査される構成でもよい。また、ダミー走査される走査信号線は、後グループに属していてもよい。また、ダミー走査される走査信号線に、後グループで最初に水平走査される走査信号線が含まれていてもよい。また、ダミー走査される走査信号線に、後グループよりも後に選択されるグループに属する走査信号線が含まれていてもよい。
 本液晶表示装置では、各走査信号線は自段の水平走査の開始に同期してアクティブ化され、該自段の水平走査の終了に同期して非アクティブ化される構成とすることもできる。この場合、ダミー走査される走査信号線は、自段のダミー走査の開始に同期してアクティブ化され、該自段のダミー走査の終了に同期して非アクティブ化される構成とすることもできる。また、走査信号線をアクティブ化するためのゲートパルスの幅が一水平走査期間に等しい構成とすることもできる。
 本液晶表示装置では、各走査信号線は自段に対応する水平走査直前の、水平走査あるいはダミー走査の開始に同期してアクティブ化され、自段の水平走査の終了に同期して非アクティブ化される構成とすることもできる。この場合、ダミー走査される走査信号線は、自段に対応するダミー走査直前の、水平走査あるいはダミー走査の開始に同期してアクティブ化され、され、自段のダミー走査の終了に同期して非アクティブ化される構成とすることもできる。また、走査信号線をアクティブ化するためのゲートパルスの幅が一水平走査期間の2倍に等しい構成とすることもできる。
 本液晶表示装置では、所定の水平走査期間とその次の水平走査期間あるいはダミー走査期間との間に、タイミング調整用走査期間が挿入され、該タイミング調整用走査期間に、走査信号線がタイミング調整走査されることによってこの走査信号線が所定期間アクティブとされた後に非アクティブ化される構成とすることもできる。
 本液晶表示装置では、所定の水平走査期間とその次の水平走査期間あるいはダミー走査期間との間に、タイミング調整用走査期間が挿入され、該タイミング調整用走査期間に、非表示部に形成されたダミー走査信号線がタイミング調整走査されることによって該ダミー走査信号線が所定期間アクティブとされた後に非アクティブ化される構成とすることもできる。
 本液晶表示装置では、最終グループの1つ前となるグループの最後の水平走査に対応する水平走査期間と、最終グループの最初の水平走査に対応する水平走査期間との間に、上記ダミー走査期間およびタイミング調整用走査期間が挿入されている構成とすることもできる。
 本液晶表示装置では、表示部内の所定の走査信号線を数えはじめの1番目の走査信号線とした場合に、上記前グループおよび後グループの一方には奇数番目の走査信号線のみが含まれ、他方には偶数番目の走査信号線のみが含まれる構成とすることもできる。
 この場合、表示部における上記所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックと考え、最初に選択されるグループは最上流ブロックに含まれる奇数番目の走査信号線で構成されるか、あるいは最上流ブロックに含まれる偶数番目の走査信号線で構成され、最後に選択されるグループは最下流ブロックに含まれる奇数番目の走査信号線で構成されるか、あるいは最下流ブロックに含まれる偶数番目の走査信号線で構成され、その他のグループは、隣り合う2つのブロックに含まれる偶数番目の走査信号線で構成されるか、あるいは隣り合う2つのブロックに含まれる奇数番目の走査信号線で構成されるとともに、上流側のグループから順に選択される構成とすることもできる。
 また、表示部における上記所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックと考えた場合に、各ブロックに含まれる奇数番目の走査信号線を前グループとするとともに偶数番目の走査信号線を後グループとして最上流ブロックに含まれるグループから順に最下流ブロックに含まれるグループまで選択されるか、あるいは各ブロックに含まれる偶数番目の走査信号線を前グループとするとともに奇数番目の走査信号線を後グループとして最上流ブロックに含まれるグループから順に最下流ブロックに含まれるグループまで選択される構成とすることもできる。
 本液晶表示装置では、表示部における所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックとした場合に、各ブロックに含まれる走査信号線がグループ化され、最上流ブロックのグループから順に最下流ブロックのグループまで選択される構成とすることもできる。
 本発明の液晶表示装置は、それぞれが複数の副画素からなる複数の画素と、複数のデータ信号線と、複数の走査信号線とを備え、複数の水平走査期間からなる第1期に、各データ信号線に対して第1極性の信号電位を供給する一方、該第1期に続く、連続する複数の水平走査期間からなる第2期に、各データ信号線に対して第2極性の信号電位を供給し、第1期と第2期との間に、各水平走査期間にアクティブとする走査信号線と同数の走査信号線を所定期間アクティブとした後に非アクティブ化するダミー走査期間が設けられていることを特徴とする。この場合、ダミー走査期間にアクティブとした走査信号線を、第2期内または第2期後の水平走査期間に、所定期間アクティブとした後に非アクティブ化する構成とすることもできる。また、ダミー走査期間にアクティブとした走査信号線を、第2期内の、1番目以外の水平走査期間に、所定期間アクティブとした後に非アクティブ化する構成とすることもできる。また、ダミー走査期間に、各データ信号線に対して第2極性のダミー電位を供給する構成とすることもできる。また、所定の水平走査期間とこれに続く水平走査期間またはダミー走査期間との間に、各水平走査期間にアクティブとする走査信号線と同数の走査信号線を所定期間アクティブとした後に非アクティブ化するタイミング調整用走査期間が設けられている構成とすることもできる。
 本液晶表示装置の駆動方法は、表示部の走査信号線を複数本ずつグループとするとともに各グループを順に選択し、選択したグループに属する走査信号線を順次水平走査するのに対応して順次同極性の信号電位をデータ信号線に供給する液晶表示装置の駆動方法であって、前後して選択される前グループと後グループとで上記信号電位の極性を反転させるとともに、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間にダミー走査期間を挿入し、該ダミー走査期間に、前グループよりも後に選択するグループに属する走査信号線をダミー走査することよってこの走査信号線を所定期間アクティブとした後に非アクティブ化させることを特徴とする。
 本テレビジョン受像機は、上記液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とする。
 以上のように、本液晶表示装置によれば、データ信号線の電位極性反転直後にダミー走査期間を挿入する場合において、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査中の走査信号線駆動回路の負荷状態を揃えることができる。これにより、マルチ画素方式の液晶表示装置において、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差を低減し、ブロック反転駆動時に問題となっていた横縞状のムラを抑制することができる。
実施の形態1に係る液晶表示装置の一駆動例を示すタイミングチャートである。 図1の続きを示すタイミングチャートである。 本液晶表示装置の構成を示す模式図である。 図1・2の駆動例をより詳細に示すタイミングチャートである。 図1・2の駆動例をより詳細に示すタイミングチャートである。 保持容量配線と保持容量幹配線の接続関係を示す模式図である。 本液晶表示装置の書き込み電位の極性分布を示す模式図である。 図1・2の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 本液晶表示装置の他の構成を示す模式図である。 図9の液晶表示装置の駆動例を示すタイミングチャートである。 本液晶表示装置の他の駆動例を示すタイミングチャートである。 図11の駆動例をより詳細に示すタイミングチャートである。 図11の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 本液晶表示装置のさらに他の駆動例を示すタイミングチャートである。 図14の駆動例をより詳細に示すタイミングチャートである。 図14の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 本液晶表示装置のさらに他の駆動例を示すタイミングチャートである。 図17の駆動例をより詳細に示すタイミングチャートである。 図17の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 本液晶表示装置のさらに他の駆動例を示すタイミングチャートである。 図20の駆動例をより詳細に示すタイミングチャートである。 図20の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 図8の変形例を示すタイミングチャートである。 実施の形態2にかかる液晶表示装置の一駆動例を示すタイミングチャートである。 図24の続きを示すタイミングチャートである。 図24・25の駆動例をより詳細に示すタイミングチャートである。 本液晶表示装置の書き込み電位の極性分布を示す模式図である。 保持容量配線と保持容量幹配線の接続関係を示す模式図である。 図24・25の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 本液晶表示装置の他の駆動例を示すタイミングチャートである。 本液晶表示装置のさらに他の駆動例を示すタイミングチャートである。 図31の駆動例をより詳細に示すタイミングチャートである。 図31の駆動例における走査信号線駆動回路の負荷変動を示すタイミングチャートである。 実施の形態3にかかる液晶表示装置の一駆動例を示すタイミングチャートである。 実施の形態3にかかる液晶表示装置の他の駆動例を示すタイミングチャートである。 実施の形態3にかかる液晶表示装置のさらに他の駆動例を示すタイミングチャートである。 走査信号線のグループ分けにかかる他の例を示す模式図である。 図37の場合の一駆動例(上流部分)を示すタイミングチャートである。 図37の場合の一駆動例(下流部分)を示すタイミングチャートである。 図39の改善例を示すタイミングチャートである。 図39の他の改善例を示すタイミングチャートである。 図39のさらに他の改善例を示すタイミングチャートである。 図39のさらに他の改善例を示すタイミングチャートである。 本液晶表示装置全体の構成を説明するブロック図である。 本テレビジョン受像機の機能を説明するブロック図である。 従来の液晶表示装置の駆動例を示すタイミングチャートである。
 本発明にかかる実施の形態の例を、図1~45を用いて説明すれば、以下のとおりである。図3は本液晶表示装置(例えば、ノーマリブラックモード)の表示部を示す模式図である。同図に示すように、本液晶表示装置の表示部には、走査信号線(G1~G1080)と、走査信号線と平行な保持容量配線(CS1~CS1081)とが設けられ、1画素に、列方向(データ信号線の延伸方向)に並ぶ2つの副画素が設けられ、1つの副画素に1つの画素電極が設けられている。また、列方向に隣接する2つの画素の間隙に対応して1本の保持容量配線が設けられ、この1本の保持容量配線は、上記2つの画素の一方に設けられた画素電極の1つおよび他方に設けられた画素電極の1つそれぞれと容量を形成している。
 すなわち、画素列内のi番目の画素を画素Piとすれば、画素列の両側にCS1およびCS1081が設けられ、画素Pi(iは1~1079の整数)と画素P(i+1)の間隙に対応して1本の保持容量配線CS(i+1)が設けられる。また、画素Pi(iは1~1080の整数)は、トランジスタを介して走査信号線Giとデータ信号線SLとに接続される画素電極を2個有し、一方の画素電極が保持容量配線CSiと保持容量を形成し、他方の画素電極が保持容量配線CS(i+1)と保持容量を形成している。
 例えば、画素列の一方側(上流側)に保持容量配線CS1が設けられ、画素P1と画素P2の間隙に対応して保持容量配線CS2が設けられ、画素P2と画素P3の間隙に対応して保持容量配線CS3が設けられる。画素P1は、トランジスタを介して走査信号線G1とデータ信号線SLとに接続される画素電極を2個有し、一方の画素電極が保持容量配線CS1と保持容量を形成し、他方の画素電極が保持容量配線CS2と保持容量を形成している。また、画素P2は、トランジスタを介して走査信号線G2とデータ信号線SLとに接続される画素電極を2個有し、一方の画素電極が保持容量配線CS2と保持容量を形成し、他方の画素電極が保持容量配線CS3と保持容量を形成している。
 〔実施の形態1〕
 本実施の形態では、図1・2に示されるように、データ信号線をブロック反転駆動しながら走査信号線を飛び越し(インターレス)走査する。まず、表示部における走査信号線G1以降の部分を、走査信号線に平行な44本の境界で画される45個のブロック(B1~B45)に分けて考える。各ブロックには連続する24本の走査信号線が含まれ、例えば、最上流ブロックであるブロックB1には走査信号線G1~G24が含まれ、ブロックB2には走査信号線G25~G48が含まれ、ブロックB3には走査信号線G49~G72が含まれ、最下流ブロックであるブロックB45には走査信号線G1057~G1080が含まれる。
 そして、最上流ブロックであるブロックB1に含まれる奇数番目の走査信号線12本(G1・G3・・・G23)を先頭のグループGr1とし、ブロックB1とその下流側のブロックB2とに含まれる偶数番目の走査信号線24本(G2・G4・・・G48)をグループGr2とするとともに、2番目のブロックB2とその下流側のブロックB3とに含まれる奇数番目の走査信号線24本(G25・G27・・・G71)をグループGr3とし、以降、ブロックBj(jは3~43の奇数)とその下流側のブロックB(j+1)とに含まれる偶数番目の走査信号線24本のグループ化、およびB(j+1)ブロックとその下流側のブロックB(j+2)とに含まれる奇数番目の走査信号線24本のグループ化を繰り返してグループGr4~G45とし、最下流ブロックであるブロックB45に含まれる偶数番目の走査信号線12本(G1058・G1060・・・G1080)を最終のグループGr46とし、Gr1から順にGr46まで選択しつつ、選択したグループに属する走査信号線を順次水平走査するのに対応して順次同極性の信号電位をデータ信号線に供給する。なお、図1・2に示すデータD1~D1080は、走査信号線G1~G1080に接続する画素P1~P1080(図3参照)に対応する映像データ(デジタルデータ)であり、極性反転信号POLは、データ信号線SL1に供給される信号電位の極性を制御する信号である。さらに、図1・2に示すように、前後して選択される前グループと後グループとでデータ信号線に供給する信号電位の極性(プラス・マイナス)を反転させる。
 具体的には、グループGr1を選択してグループGr1に属する走査信号線(G1・G3・・・G23)を順次水平走査するのに対応して、映像データ(D1・D3・・・D23)に対応するプラス極性の信号電位を順次データ信号線SL1に供給し、ついでグループGr2を選択してグループGr2に属する走査信号線(G2・G4・・・G48)を順次水平走査するのに対応して、映像データ(D2・D4・・・D48)に対応するマイナス極性の信号電位を順次データ信号線SL1に供給し、ついでグループGr3を選択してグループGr3に属する走査信号線(G25・G27・・・G71)を順次水平走査するのに対応して、映像データ(D25・D27・・・D71)に対応するプラス極性の信号電位を順次データ信号線SL1に供給する。なお、データ信号線に1つの映像データに対応する信号電位を供給(出力)する期間を水平走査期間(H)とする。
 そして、前グループの最後の水平走査に対応する映像データと後グループでの最初の水平走査に対応する映像データとの間に第1および第2ダミーデータを挿入するとともに、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に第1および第2ダミー走査期間を挿入する。
 そして、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化する。第1ダミー走査期間には、第1ダミーデータに対応し、後グループでの信号電位の極性と同極性のダミー電位をデータ信号線に出力する。該第1ダミーデータは、上記走査信号線(後グループ1番目の走査信号線)のダミー走査後直近の水平走査に対応する映像データと同一としている。さらに、第2ダミー走査期間に、後グループで2番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化する。第2ダミー走査期間には、第2ダミーデータに対応し、後グループでの信号電位の極性と同極性のダミー電位をデータ信号線に供給する。該第2ダミーデータは、上記走査信号線(後グループ2番目の走査信号線)のダミー走査後直近の水平走査に対応する映像データと同一としている。
 ここでは、各水平走査期間における水平走査のタイミングと、各ダミー走査期間におけるダミー走査のタイミングとを一致させている。具体的には、水平走査期間の開始(信号電位の出力開始)および終了(信号電位の出力終了)と、これに対応する水平走査の開始(該信号電位の書き込み開始)および終了(該信号電位の書き込み終了)とを一致させるとともに、ダミー走査期間の開始(ダミー電位の出力開始)および終了(ダミー電位の出力終了)と、これに対応するダミー走査の開始(該ダミー電位の書き込み開始)および終了(該ダミー電位の書き込み終了)とを一致させている。
 さらに、走査信号線G1~G1080に供給されるゲートパルスGP1~GP1080はそれぞれ、その幅が一水平走査期間(1H)に等しいパルスであり、各走査信号線は、自段に対応する水平走査の開始と同時にアクティブ化し、ダミー走査される走査信号線(後グループ1・2番目の走査信号線)も自段に対応するダミー走査の開始と同時にアクティブ化する。
 例えば、図1・4に示すように、グループGr1での最後の水平走査(G23の水平走査)に対応する映像データD23と、グループGr2での最初の水平走査(G2の水平走査)に対応する映像データD2との間に、第1ダミーデータDaおよび第2ダミーデータDbが挿入されるとともに、グループGr1での最後の水平走査に対応する水平走査期間H23とグループGr2での最初の水平走査に対応する水平走査期間H2との間に、第1ダミー走査期間DS1および第2ダミー走査期間DS2が挿入される。
 ここでは、水平走査期間H23の開始と同時に走査信号線G23に供給されるゲートパルスGP23がアクティブ化し、水平走査期間H23の終了と同時にゲートパルスGP23が非アクティブ化する。水平走査期間H23には、映像データD23(走査信号線G23に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。
 ついで、第1ダミー走査期間DS1の開始と同時に、グループGr2で1番目に水平走査される走査信号線G2に供給されるゲートパルスGP2がアクティブ化し、第1ダミー走査期間DS1の終了と同時にゲートパルスGP2が非アクティブ化する。第1ダミー走査期間DS1には、第1ダミーデータDaに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第1ダミーデータDaは、走査信号線G2のダミー走査後直近の水平走査に対応する映像データD2(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図4参照)に示されるように、第1ダミー走査期間DS1に供給されるダミー電位と水平走査期間H2に供給される信号電位とが等しくなっている。
 ついで、第2ダミー走査期間DS2の開始と同時に、グループGr2で2番目に水平走査される走査信号線G4に供給されるゲートパルスGP4がアクティブ化し、第2ダミー走査期間DS2の終了と同時にゲートパルスGP4が非アクティブ化する。第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第2ダミーデータDbは、走査信号線G4のダミー走査後直近の水平走査に対応する映像データD4(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図4参照)に示されるように、第2ダミー走査期間DS2に供給されるダミー電位と水平走査期間H4に供給される信号電位とが等しくなっている。
 ついで、水平走査期間H2の開始と同時に走査信号線G2に供給されるゲートパルスGP2がアクティブ化し、水平走査期間H2の終了と同時にゲートパルスGP2が非アクティブ化する。水平走査期間H2には、映像データD2(走査信号線G2に接続する画素に対応する映像データ)に対応し、グループGr2での信号電位の極性と同極性(マイナス極性)の信号電位がデータ信号線SL1に供給される。
 以下に、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiについて、図1・2・図5~図7を用いて説明する。図1・2・5に示すように、保持容量配線信号SCS1~SCS1081は、14相(保持容量配線信号SCS1に代表される第1相、SCS2に代表される第2相、SCS3に代表される第3相、SCS4に代表される第4相、SCS5に代表される第5相、SCS6に代表される第6相、SCS7に代表される第7相、SCS8に代表される第8相、SCS9に代表される第9相、SCS10に代表される第10相、SCS11に代表される第11相、SCS12に代表される第12相、SCS13に代表される第13相、SCS14に代表される第14相)の波形のいずれかをとる。
 ここで、各相は同一周期(Highレベルが7H続く第1区と、Lowレベルが7H続く第2区とからなる14H周期)となっており、SCS2に代表される第2相は、SCS1に代表される第1相よりも半周期分(7H)位相が遅れ、任意の奇数番目の相とその次の奇数番目の相とでは、後者が前者よりも1H位相が遅れ、任意の偶数番目の相とその次の偶数番目の相とでは、後者が前者よりも1H位相が遅れている。例えば、保持容量配線信号SCS3に代表される第3相はSCS1に代表される第1相よりも1Hだけ位相が遅れ、SCS4に代表される第4相はSCS2に代表される第2相よりも1Hだけ位相が遅れている。
 そして、jを0~38の整数、kを0~38の整数として、保持容量配線信号SCS(28j+1)およびSCS(28k+16)は第1相、jを0~38の整数、kを0~38の整数として、保持容量配線信号SCS(28j+2)およびSCS(28k+15)は第2相となっている。また、jを0~38の整数、kを0~37の整数(以下同様)として、保持容量配線信号SCS(28j+3)およびSCS(28k+18)は第3相、保持容量配線信号SCS(28j+4)およびSCS(28k+17)は第4相、保持容量配線信号SCS(28j+5)およびSCS(28k+20)は第5相、保持容量配線信号SCS(28j+6)およびSCS(28k+19)は第6相、保持容量配線信号SCS(28j+7)およびSCS(28k+22)は第7相、保持容量配線信号SCS(28j+8)およびSCS(28k+21)は第8相、保持容量配線信号SCS(28j+9)およびSCS(28k+24)は第9相、保持容量配線信号SCS(28j+10)およびSCS(28k+23)は第10相、保持容量配線信号SCS(28j+11)およびSCS(28k+26)は第11相、保持容量配線信号SCS(28j+12)およびSCS(28k+25)は第12相、保持容量配線信号SCS(28j+13)およびSCS(28k+28)は第13相、保持容量配線信号SCS(28j+14)およびSCS(28k+27)は第14相となっている。
 なお、図6に示すように、第1相~第14相の保持容量配線信号がそれぞれ、保持容量幹配線M1~M14に入力され、jを0~38の整数、kを0~38の整数として、保持容量配線CS(28j+1)およびCS(28k+16)は保持容量幹配線M1、jを0~38の整数、kを0~38の整数として、保持容量配線CS(28j+2)およびCS(28k+15)は保持容量幹配線M2に接続されている。また、jを0~38の整数、kを0~37の整数(以下同様)として、保持容量配線CS(28j+3)およびCS(28k+18)は保持容量幹配線M3、保持容量配線CS(28j+4)およびCS(28k+17)は保持容量幹配線M4、保持容量配線CS(28j+5)およびCS(28k+20)は保持容量幹配線M5、保持容量配線CS(28j+6)およびCS(28k+19)は保持容量幹配線M6、保持容量配線CS(28j+7)およびCS(28k+22)は保持容量幹配線M7、保持容量配線CS(28j+8)およびCS(28k+21)は保持容量幹配線M8、保持容量配線CS(28j+9)およびCS(28k+24)は保持容量幹配線M9、保持容量配線CS(28j+10)およびCS(28k+23)は保持容量幹配線M10、保持容量配線CS(28j+11)およびCS(28k+26)は保持容量幹配線M11、保持容量配線CS(28j+12)およびCS(28k+25)は保持容量幹配線M12、保持容量配線CS(28j+13)およびCS(28k+28)は保持容量幹配線M13、保持容量配線CS(28j+14)およびCS(28k+27)は保持容量幹配線M14に接続されている。
 保持容量配線信号SCS1~SCS1081の波形は以上のとおりであり、さらに本液晶表示装置では、図5に示すように、保持容量配線信号SCS1(第1相)は、走査信号線G1に対応する水平走査期間H1に「L」レベルで、水平走査期間H1終了後に(例えば、図5ではH1終了から1H経過したタイミングで)「L」→「H」にレベルシフトし、保持容量配線信号SCS2(第2相)は、走査信号線G1に対応する水平走査期間H1に「H」レベルで、水平走査期間H1終了後に(例えば、図5ではH1終了から1H経過したタイミングで)「H」→「L」にレベルシフトするように設定されている。
 そして、画素P1の2つの副画素の一方には保持容量配線CS1と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS2と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H1にプラスの信号電位が供給されているが、保持容量配線信号SCS1が「L」→「H」にレベルシフトするのに伴って保持容量配線CS1と保持容量を形成する画素電極の電位が上昇し、保持容量配線信号SCS2が「H」→「L」にレベルシフトするのに伴って保持容量配線CS2と保持容量を形成する画素電極の電位が下降する。ここで、保持容量配線信号SCS1は上記レベルシフトから一垂直走査期間経過までの実効電位Ve1が基準電位Vo(「L」と「H」の中間の電位、例えば共通電極電位Vcom)よりも高く、保持容量配線信号SCS2は上記レベルシフトから一垂直走査期間経過までの実効電位Ve2が基準電位Voよりも低くなっている。これにより、図7に示すように、保持容量配線CS1と保持容量を形成する画素電極を含む副画素を「明副画素」、保持容量配線CS2と保持容量を形成する画素電極を含む副画素を「暗副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。なお、実効電位Ve1-基準電位Vo=基準電位Vo-実効電位Ve2となっていることが望ましい。
 また、保持容量配線信号SCS1・SCS2(第1および第2相)が上記のように設定されているため、保持容量配線信号SCS2(第2相)は、走査信号線G2に対応する水平走査期間H2に「H」レベルで、水平走査期間H2終了時から1H経過したタイミングで「H」→「L」にレベルシフトし、保持容量配線信号SCS3(第3相)は、走査信号線G2に対応する水平走査期間H2に「L」レベルで、水平走査期間H2終了時から2H経過したタイミングで「L」→「H」にレベルシフトする。
 そして、画素P2の2つの副画素の一方には保持容量配線CS2と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS3と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H2にマイナスの信号電位が供給されているが、保持容量配線信号SCS2が「H」→「L」にレベルシフトするのに伴って保持容量配線CS2と保持容量を形成する画素電極の電位が下降し、保持容量配線信号SCS3が「L」→「H」にレベルシフトするのに伴って保持容量配線CS3と保持容量を形成する画素電極の電位が上昇する。ここで、保持容量配線信号SCS2は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも低く、保持容量配線信号SCS3は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも高くなっている。これにより、図7に示すように、保持容量配線CS2と保持容量を形成する画素電極を含む副画素を「明副画素」、保持容量配線CS3と保持容量を形成する画素電極を含む副画素を「暗副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。
 また、保持容量配線信号SCS1・SCS2(第1および第2相)が上記のように設定されているため、保持容量配線信号SCS3(第3相)は、走査信号線G3に対応する水平走査期間H3に「L」レベルで、水平走査期間H3終了時から1H経過したタイミングで「L」→「H」にレベルシフトし、保持容量配線信号SCS4(第4相)は、走査信号線G3に対応する水平走査期間H3に「H」レベルで、水平走査期間H3終了時から1H経過したタイミングで「H」→「L」にレベルシフトする。
 そして、画素P3の2つの副画素の一方には保持容量配線CS3と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS4と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H3にプラスの信号電位が供給されているが、保持容量配線信号SCS3が「L」→「H」にレベルシフトするのに伴って保持容量配線CS3と保持容量を形成する画素電極の電位が上昇し、保持容量配線信号SCS4が「H」→「L」にレベルシフトするのに伴って保持容量配線CS4と保持容量を形成する画素電極の電位が下降する。ここで、保持容量配線信号SCS3は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも高く、保持容量配線信号SCS4は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも低くなっている。これにより、図7に示すように、保持容量配線CS3と保持容量を形成する画素電極を含む副画素を「明副画素」、保持容量配線CS4と保持容量を形成する画素電極を含む副画素を「暗副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。
 本液晶表示装置によれば、図7に示すように、1画素内の2つの副画素を「明副画素」および「暗副画素」として中間調を表示することができるため、視野角特性を高めることができる。さらに、1つの画素列において、明副画素と暗副画素とが交互に並ぶ状態(市松状)とすることができるため、ざらつき感の少ないなめらかな表示が可能となる。
 また、図7に示すように、各画素への書き込み電位の列方向(データ信号線の延伸方向)の極性分布をドット反転状にすることができ、チラツキを抑制することができる。さらに、データ信号線をドット反転(1H反転)駆動させる場合と比較して、ドライバの消費電力や発熱を抑制し、かつ画素充電率も高めることができる。また、データ信号線に供給される信号電位の極性が反転した直後に、第1および第2ダミー走査期間に亘って反転後の極性に等しいダミー電位をデータ信号線に供給するため、奇数番目ブロックの2番目や偶数番目ブロックの1番目の走査信号線に接続する画素の充電率と、他の画素の充電率との差を小さくすることができる。これにより、ブロック反転駆動した場合に視認されるおそれのあるブロック境界近傍の横筋状のムラを抑制することができる。
 そして注目すべきは、第1および第2ダミー走査期間それぞれにおいて1本の走査信号線を所定期間アクティブとした後に非アクティブ化することで、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる点である。
 ここで、1本の走査信号線がアクティブ化すると同時にこれとは別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLp、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLyとし、ブロックB1・B2境界近傍に位置する走査信号線G24・G25・G26それぞれの走査開始前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を、図8を用いて説明する。
 走査信号線G24の走査開始前においては、1本の走査信号線G22がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G24の走査開始時においては、1本の走査信号線G24がアクティブ化すると同時にこれとは別の1本の走査信号線G22が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G24の走査中においては、1本の走査信号線G24がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 走査信号線G25の走査開始前においては、1本の走査信号線G27がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G25の走査開始時においては、1本の走査信号線G25がアクティブ化すると同時にこれとは別の1本の走査信号線G27が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G25の走査中においては、1本の走査信号線G25がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 走査信号線G26の走査開始前においては、1本の走査信号線G24がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G26の走査開始時においては、1本の走査信号線G26がアクティブ化すると同時にこれとは別の1本の走査信号線G24が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G26の走査中においては、1本の走査信号線G26がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 このように、本液晶表示装置では、データ信号線の電位極性反転直後にダミー走査期間を挿入する場合において、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本液晶表示装置では走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がより効果的となっている。また、図8に示すように負荷がLpとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。なお、図23に示すように、負荷がLyとなるタイミング(期間)および負荷がLpとなるタイミングが非周期となるような構成も可能である。
 本液晶表示装置では、同一水平走査期間あるいは同一ダミー走査期間に隣接する2つのデータ信号線それぞれに供給される信号電位の極性を互いに異ならせることが好ましい。例えば図4に示すように、データ信号線SL1にプラス極性の信号電位が供給されている期間にはデータ信号線SL2にマイナス極性の信号電位を供給し、データ信号線SL1にマイナス極性の信号電位が供給されている期間にはデータ信号線SL2にプラス極性の信号電位を供給する。こうすれば、各画素への書き込み電位の行方向(走査信号線の延伸方向)の極性分布も図7に示すようにドット反転状にすることができ、チラツキを一層抑制することができる。
 また、図1・4の形態では第1ダミーデータDaは、走査信号線G2のダミー走査後直近の水平走査に対応する映像データD2(次フレームの映像データ)と同一とし、第2ダミーデータDbは、走査信号線G4のダミー走査後直近の水平走査に対応する映像データD4(次フレームの映像データ)と同一としているが、これに限定されない。例えば、第1ダミーデータDaは、走査信号線G2のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と同一とし、第2ダミーデータDbは、走査信号線G4のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と同一としてよい。また、第1ダミーデータDaを、走査信号線G2のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と、走査信号線G2のダミー走査後直近の水平走査に対応する映像データD2(次フレームの映像データ)とに基づいて決定し、第2ダミーデータDbを、走査信号線G4のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と、走査信号線G4のダミー走査後直近の水平走査に対応する映像データD4(次フレームの映像データ)とに基づいて決定してもよい。また、第1および第2ダミーデータDa・Dbを所定の映像データ(同一)とすることもできる。
 なお、図1・2・4の形態では、各ダミー走査期間は一水平走査期間に等しくなっているこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。例えば図23では各ダミー走査期間を一水平走査期間よりも短くしている。なお図23でも、各水平走査期間における水平走査のタイミングと、各ダミー走査期間におけるダミー走査のタイミングとが一致している。
 また、本実施の形態では、図9に示すように、1画素に対応して2本の保持容量配線を設けておき、保持容量配線CSi(iは1~2160の整数)に、図10のような、一垂直走査期間に1度だけレベルシフトするような保持容量配線信号を供給してもよい。例えば、保持容量配線信号SCS1は、走査信号線G1に対応する水平走査期間H1(信号電位はプラス極性)に「L」レベルで、水平走査期間H1終了時から1H経過したタイミングで「L」→「H」にレベルシフトし、その後「H」レベルを一垂直走査期間維持する。一方、保持容量配線信号SCS2は、走査信号線G1に対応する水平走査期間H1に「H」レベルで、水平走査期間H1終了時から1H経過したタイミングで「H」→「L」にレベルシフトし、その後「L」レベルを一垂直走査期間維持する。
 また、保持容量配線信号SCS3は、走査信号線G2に対応する水平走査期間H2(信号電位はマイナス極性)に「H」レベルで、水平走査期間H2終了時から1H経過したタイミングで「H」→「L」にレベルシフトし、その後「L」レベルを一垂直走査期間維持する。一方、保持容量配線信号SCS4は、走査信号線G2に対応する水平走査期間H2に「L」レベルで、水平走査期間H2終了時から1H経過したタイミングで「L」→「H」にレベルシフトし、その後「H」レベルを一垂直走査期間維持する。
 また、保持容量配線信号SCS5は、走査信号線G3に対応する水平走査期間H3(信号電位はプラス極性)に「L」レベルで、水平走査期間H3終了時から1H経過したタイミングで「L」→「H」にレベルシフトし、その後「H」レベルを一垂直走査期間維持する。一方、保持容量配線信号SCS6は、走査信号線G3に対応する水平走査期間H3に「H」レベルで、水平走査期間H3終了時から1H経過したタイミングで「H」→「L」にレベルシフトし、その後「L」レベルを一垂直走査期間維持する。
 本構成によっても、図10のように、1画素内の2つの副画素を「明副画素」および「暗副画素」として中間調を表示することができるため、視野角特性を高めることができる。さらに、1つの画素列において、明副画素と暗副画素とが交互に並ぶ状態(市松状)とすることができるため、ざらつき感の少ないなめらかな表示が可能となる。
 図1・2・4の形態では、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査し、第2ダミー走査期間に、後グループで2番目に水平走査する走査信号線をダミー走査しているが、これに限定されない。例えば、図11に示すように、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化し、第2ダミー走査期間に、同一の走査信号線を再度ダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化してもよい。ただし、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiは図1・2・5に示すものと同一である。
 例えば、図11・12に示すように、グループGr1での最後の水平走査(G23の水平走査)に対応する映像データD23と、グループGr2での最初の水平走査(G2の水平走査)に対応する映像データD2との間に、第1ダミーデータDaおよび第2ダミーデータDbを挿入するとともに、グループGr1での最後の水平走査に対応する水平走査期間H23とグループGr2での最初の水平走査に対応する水平走査期間H2との間に、第1ダミー走査期間DS1および第2ダミー走査期間DS2を挿入する。
 ここで、第1ダミー走査期間DS1の開始と同時に、グループGr2で1番目に水平走査される走査信号線G2に供給されるゲートパルスGP2がアクティブ化し、第1ダミー走査期間DS1の終了と同時にゲートパルスGP2が非アクティブ化する。第1ダミー走査期間DS1には、第1ダミーデータDaに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第1ダミーデータDaは、走査信号線G2の、ダミー走査後直近の水平走査に対応する映像データD2(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図12参照)に示されるように、第1ダミー走査期間DS1に供給されるダミー電位と水平走査期間H2に供給される信号電位とが等しくなっている。
 ついで、第2ダミー走査期間DS2の開始と同時に、グループGr2で1番目に水平走査される走査信号線G2に供給されるゲートパルスGP2が再度アクティブ化し、第2ダミー走査期間DS2の終了と同時にゲートパルスGP2が非アクティブ化する。第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第2ダミーデータDbは、走査信号線G2の、ダミー走査後直近の水平走査に対応する映像データD2(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図12参照)に示されるように、第2ダミー走査期間DS2に供給されるダミー電位と水平走査期間H2に供給される信号電位とが等しくなっている。
 図11・12に示す形態でも、1本の走査信号線がアクティブ化すると同時にこれとは別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLp、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLyとすれば、図13に示すように、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本形態でも走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がより効果的となっている。また、図13に示すように負荷がLpとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。なお、図11・12の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 また、本実施の形態では、図14に示すように、第1ダミー走査期間に、前グループ最後の走査信号線から3ライン下の走査信号線(後グループ13番目の走査信号線)をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化し、第2ダミー走査期間に、第1ダミー走査期間でダミー走査した走査信号線から2ライン下の走査信号線(後グループ14番目の走査信号線)をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化してもよい。ただし、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiは図1・2・5に示すものと同一である。
 例えば、図14・15に示すように、グループGr1での最後の水平走査(G23の水平走査)に対応する映像データD23と、グループGr2での最初の水平走査(G2の水平走査)に対応する映像データD2との間に、第1ダミーデータDaおよび第2ダミーデータDbを挿入するとともに、グループGr1での最後の水平走査に対応する水平走査期間H23とグループGr2での最初の水平走査に対応する水平走査期間H2との間に、第1ダミー走査期間DS1および第2ダミー走査期間DS2を挿入する。
 ここで、第1ダミー走査期間DS1の開始と同時に、走査信号線G23から3ライン下の走査信号線(グループGr2の13番目の走査信号線)G26に供給されるゲートパルスGP26がアクティブ化し、第1ダミー走査期間DS1の終了と同時にゲートパルスGP26が非アクティブ化する。第1ダミー走査期間DS1には、第1ダミーデータDaに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第1ダミーデータDaは、走査信号線G26のダミー走査後直近の水平走査に対応する映像データD26(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図15参照)に示されるように、第1ダミー走査期間DS1に供給されるダミー電位と水平走査期間H26に供給される信号電位とが等しくなっている。
 ついで、第2ダミー走査期間DS2の開始と同時に、走査信号線G26から2ライン下の走査信号線G28に供給されるゲートパルスGP28がアクティブ化し、第2ダミー走査期間DS2の終了と同時にゲートパルスGP28が非アクティブ化する。第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第2ダミーデータDbは、走査信号線G28のダミー走査後直近の水平走査に対応する映像データD28(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図15参照)に示されるように、第2ダミー走査期間DS2に供給されるダミー電位と水平走査期間H28に供給される信号電位とが等しくなっている。
 図14・15に示す形態でも、1本の走査信号線がアクティブ化すると同時にこれとは別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLp、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLyとすれば、図16に示すように、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本形態でも走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がさらにより効果的となっている。また、図16に示すように負荷がLpとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。なお、図14・15の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 なお、図14・15の形態では、第1ダミーデータDaは、走査信号線G26のダミー走査後直近の水平走査に対応する映像データD26(次フレームの映像データ)と同一とし、第2ダミーデータDbは、走査信号線G28のダミー走査後直近の水平走査に対応する映像データD26(次フレームの映像データ)と同一としているが、この場合、第1ダミー走査期間DS1と、走査信号線G26の前段の走査信号線G25に対応する水平走査期間H25との間隔を0.8〔ms〕以下とすることで、テアリング(動画での表示ズレ)が視認されるおそれが少なくなる。なお、第1ダミーデータDaは、走査信号線G26のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と同一とし、第2ダミーデータDbは、走査信号線G28のダミー走査前直近の水平走査に対応する映像データ(現フレームの映像データ)と同一とすることもできる。こうすれば、テアリングが視認されるおそれがなくなるというメリットがある。
 また、本実施の形態では、例えば図17に示すように、第1ダミー走査期間に、前グループ最後の走査信号線から2ライン下の走査信号線(後グループに次ぐグループで1番目に水平走査する走査信号線)をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化し、第2ダミー走査期間に、第1ダミー走査期間でダミー走査した走査信号線から2ライン下の走査信号線(後グループに次ぐグループで2番目に水平走査する走査信号線)をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化してもよい。ただし、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiは図1・2・5に示すものと同一である。
 例えば、図17・18に示すように、グループGr1での最後の水平走査(G23の水平走査)に対応する映像データD23と、グループGr2での最初の水平走査(G2の水平走査)に対応する映像データD2との間に、第1ダミーデータDaおよび第2ダミーデータDbを挿入するとともに、グループGr1での最後の水平走査に対応する水平走査期間H23とグループGr2での最初の水平走査に対応する水平走査期間H2との間に、第1ダミー走査期間DS1および第2ダミー走査期間DS2を挿入する。
 ここで、第1ダミー走査期間DS1の開始と同時に、走査信号線G23から2ライン下の走査信号線(グループGr2に次ぐグループGr3の1番目の走査信号線)G25に供給されるゲートパルスGP25がアクティブ化し、第1ダミー走査期間DS1の終了と同時にゲートパルスGP25が非アクティブ化する。第1ダミー走査期間DS1には、第1ダミーデータDaに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第1ダミーデータDaは、走査信号線G25のダミー走査前直近の水平走査に対応する映像データ(現フレームのデータ)と同一としている。
 ついで、第2ダミー走査期間DS2の開始と同時に、走査信号線G25から2ライン下の走査信号線(グループGr3の2番目の走査信号線)G27に供給されるゲートパルスGP27がアクティブ化し、第2ダミー走査期間DS2の終了と同時にゲートパルスGP27が非アクティブ化する。第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第2ダミーデータDbは、走査信号線G27のダミー走査前直近の水平走査に対応する映像データ(現フレームのデータ)と同一としている。
 図17・18に示す形態でも、1本の走査信号線がアクティブ化すると同時にこれとは別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLp、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLyとすれば、図19に示すように、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本形態でも走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がより効果的となっている。また、図19に示すように負荷がLpとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。なお、図17・18の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 また、図1・2・4の形態において、ゲートパルスGP0~GP1081を、その幅が一水平走査期間の2倍(2H)に等しいパルスとし、図20・21に示すように、各走査信号線は自段に対応する水平走査直前の、水平走査あるいはダミー走査の開始に同期してアクティブ化され、自段に対応する水平走査の終了に同期して非アクティブ化され、ダミー走査される各走査信号線も、自段に対応するダミー水平走査直前の、水平走査あるいはダミー水平走査の開始に同期してアクティブ化され、自段に対応するダミー走査の終了に同期して非アクティブ化される構成とすることもできる。ただし、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiは図1・2・5に示すものと同一である。
 この図20・21に示す構成のおいても、各水平走査期間における水平走査のタイミングと、各ダミー走査期間におけるダミー走査のタイミングとを一致させている。具体的には、水平走査期間の開始(信号電位の出力開始)および終了(信号電位の出力終了)と、これに対応する水平走査の開始(該信号電位の書き込み開始)および終了(該信号電位の書き込み終了)とを一致させるとともに、ダミー走査期間の開始(ダミー電位の出力開始)および終了(ダミー電位の出力終了)と、これに対応するダミー走査の開始(該ダミー電位の書き込み開始)および終了(該ダミー電位の書き込み終了)とを一致させている。
 ここでは、走査信号線G23に供給されるゲートパルスGP23が、走査信号線G23に対応する水平走査直前の水平走査の開始、すなわち水平走査期間H21の開始と同時にアクティブ化し、水平走査期間H21および水平走査期間H23の2水平走査期間分アクティブとなって水平走査期間H23の終了と同時に非アクティブ化する。水平走査期間H21には、映像データD21(走査信号線G21に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。また、水平走査期間H23には、映像データD23(走査信号線G23に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。すなわち、水平走査期間H21でプリチャージが行われ、水平走査期間H23の水平走査で本チャージ(映像データD23に対応するプラス極性の信号電位の書き込み)が行われる。
 また、走査信号線G2に供給されるゲートパルスGP2が、そのダミー走査直前の水平走査の開始、すなわち水平走査期間H23の開始と同時にアクティブ化し、水平走査期間H23および第1ダミー走査期間DS1の2水平走査期間分アクティブとなって第1ダミー走査期間DS1の終了と同時に非アクティブ化する。
 また、走査信号線G4に供給されるゲートパルスGP4が、そのダミー走査直前のダミー走査の開始、すなわち第1ダミー走査期間DS1の開始と同時にアクティブ化し、第1ダミー走査期間DS1および第2ダミー走査期間DS2の2水平走査期間分アクティブとなって第2ダミー走査期間DS2の終了と同時に非アクティブ化する。
 また、走査信号線G2に供給されるゲートパルスGP2が、走査信号線G2に対応する水平走査直前のダミー走査の開始、すなわち第2ダミー走査期間DS2の開始と同時にアクティブ化し、第2ダミー走査期間DS2および水平走査期間H2の2水平走査期間分アクティブとなって水平走査期間H2の終了と同時に非アクティブ化する。
 第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)の信号電位がデータ信号線SL1に供給される。水平走査期間H2には、映像データD2(走査信号線G2に接続する画素に対応する映像データ)に対応し、グループGr2での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。すなわち、ダミー走査期間DS2でプリチャージが行われ、水平走査期間H2の水平走査で本チャージ(映像データD2に対応するプラス極性の信号電位の書き込み)が行われる。
 ここで、1本の走査信号線がアクティブの状態で、これとは別の1本の走査信号線がアクティブ化すると同時にさらに別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLq、1本の走査信号線とこれとは別の1本の走査信号線とがアクティブになっているときの走査信号線駆動回路の負荷をLzとし、ブロックB1・B2境界近傍に位置する走査信号線G24・G25・G26それぞれの走査開始前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を、図22を用いて説明する。
 走査信号線G24の走査開始前においては、1本の走査信号線G22とこれとは別の1本の走査信号線G24がアクティブとなっているため走査信号線駆動回路の負荷はLzとなり、走査信号線G24の走査開始時においては、1本の走査信号線G24がアクティブの状態で、これとは別の1本の走査信号線G26がアクティブ化すると同時にさらに別の走査信号線G22が非アクティブ化するため走査信号線駆動回路の負荷はLqとなる。走査信号線G24の走査中においては、1本の走査信号線G24とこれとは別の1本の走査信号線G26がアクティブとなっているため走査信号線駆動回路の負荷はLzとなる。
 走査信号線G25の走査開始前においては、1本の走査信号線G25とこれとは別の1本の走査信号線G27がアクティブとなっているため走査信号線駆動回路の負荷はLzとなり、走査信号線G25の走査開始時においては、1本の走査信号線G25がアクティブの状態で、これとは別の1本の走査信号線G27が非アクティブ化およびアクティブ化するため走査信号線駆動回路の負荷は略Lqとなる。走査信号線G25の走査中においては、1本の走査信号線G25とこれとは別の1本の走査信号線G27がアクティブとなっているため走査信号線駆動回路の負荷はLzとなる。
 走査信号線G26の走査開始前においては、1本の走査信号線G24とこれとは別の1本の走査信号線G26がアクティブとなっているため走査信号線駆動回路の負荷はLzとなり、走査信号線G26の走査開始時においては、1本の走査信号線G26がアクティブの状態で、これとは別の1本の走査信号線G28がアクティブ化すると同時にさらに別の走査信号線G24が非アクティブ化するため走査信号線駆動回路の負荷はLqとなる。走査信号線G26の走査中においては、1本の走査信号線G26とこれとは別の1本の走査信号線G28がアクティブとなっているため走査信号線駆動回路の負荷はLzとなる。
 このように、図20・21の構成でも、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本構成では走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lzに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がさらに効果的となっている。また、図22に示すように負荷がLqとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。
 さらに、本構成では、各画素に一水平期間期間分のプリチャージが行われるため、各画素の充電率を高めることができる。なお、図20・21の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 〔実施の形態2〕
 本実施の形態では、図24・25に示されるように、データ信号線をブロック反転駆動しながら走査信号線を順次走査する。まず、表示部における走査信号線G1以降の部分を、走査信号線に平行な89本の境界で画される90個のブロック(B1~B90)に分けて考える。各ブロックには連続する12本の走査信号線が含まれ、例えば、最上流ブロックであるブロックB1には走査信号線G1~G12が含まれ、ブロックB2には走査信号線G13~G24が含まれ、ブロックB3には走査信号線G25~G36が含まれ、最下流ブロックであるブロックB90には走査信号線G1069~G1080が含まれる。
 そして、最上流ブロックであるブロックB1に含まれる走査信号線12本(G1・G2・・・G12)を先頭のグループGr1とし、ブロックB1の下流側のブロックB2に含まれる走査信号線12本(G13・G14・・・G24)をグループGr2とし、以降、各ブロックに含まれる走査信号線12本を順にグループGr3~Gr90とし、Gr1から順にGr90まで選択しつつ、選択したグループに属する走査信号線を順次水平走査するのに対応して順次同極性の信号電位をデータ信号線に供給する。さらに、図24・25の極性反転信号POLに示されるように、前後して選択される前グループと後グループとでデータ信号線に供給する信号電位の極性(プラス・マイナス)を反転させる。
 具体的には、グループGr1を選択してグループGr1に属する走査信号線(G1・G2・・・G12)を順次水平走査するのに対応して、映像データ(D1・D2・・・D12)に対応するプラス極性の信号電位を順次データ信号線SL1に供給し、ついでグループGr2を選択してグループGr2に属する走査信号線(G13・G14・・・G24)を順次水平走査するのに対応して、映像データ(D13・D14・・・D24)に対応するマイナス極性の信号電位を順次データ信号線SL1に供給し、ついでグループGr3を選択してグループGr3に属する走査信号線(G25・G26・・・G48)を順次水平走査するのに対応して、映像データ(D25・D26・・・D48)に対応するプラス極性の信号電位を順次データ信号線SL1に供給する。なお、データ信号線に1つの映像データに対応する信号電位を供給(出力)する期間を水平走査期間(H)とする。
 そして、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化する。第1ダミー走査期間には、第1ダミーデータに対応し、後グループでの信号電位の極性と同極性のダミー電位をデータ信号線に出力する。該第1ダミーデータは、上記走査信号線(後グループ1番目の走査信号線)のダミー走査後直近の水平走査に対応する映像データと同一としている。さらに、第2ダミー走査期間に、後グループで2番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化する。第2ダミー走査期間には、第2ダミーデータに対応し、後グループでの信号電位の極性と同極性のダミー電位をデータ信号線に供給する。該第2ダミーデータは、上記走査信号線(後グループ2番目の走査信号線)のダミー走査後直近の水平走査に対応する映像データと同一としている。
 ここでは、各水平走査期間における水平走査のタイミングと、各ダミー走査期間におけるダミー走査のタイミングとを一致させている。具体的には、水平走査期間の開始(信号電位の出力開始)および終了(信号電位の出力終了)と、これに対応する水平走査の開始(該信号電位の書き込み開始)および終了(該信号電位の書き込み終了)とを一致させるとともに、ダミー走査期間の開始(ダミー電位の出力開始)および終了(ダミー電位の出力終了)と、これに対応するダミー走査の開始(該ダミー電位の書き込み開始)および終了(該ダミー電位の書き込み終了)とを一致させている。
 さらに、走査信号線G1~G1080に供給されるゲートパルスGP1~GP1080はそれぞれ、その幅が一水平走査期間(1H)に等しいパルスであり、各走査信号線は、自段に対応する水平走査の開始と同時にアクティブ化し、ダミー走査される走査信号線(後グループ1・2番目の走査信号線)も自段に対応するダミー走査の開始と同時にアクティブ化する。
 例えば、図24・26に示すように、グループGr1での最後の水平走査(G12の水平走査)に対応する映像データD12と、グループGr2での最初の水平走査(G13の水平走査)に対応する映像データD13との間に、第1ダミーデータDaおよび第2ダミーデータDbを挿入するとともに、グループGr1での最後の水平走査に対応する水平走査期間H12とグループGr2での最初の水平走査に対応する水平走査期間H13との間に、第1ダミー走査期間DS1および第2ダミー走査期間DS2を挿入する。
 ここでは、水平走査期間H12の開始と同時に走査信号線G12に供給されるゲートパルスGP12がアクティブ化し、水平走査期間H12の終了と同時にゲートパルスGP12が非アクティブ化する。水平走査期間H12には、映像データD12(走査信号線G12に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。
 ついで、第1ダミー走査期間DS1の開始と同時に、グループGr2で1番目に水平走査される走査信号線G13に供給されるゲートパルスGP13がアクティブ化し、第1ダミー走査期間DS1の終了と同時にゲートパルスGP13が非アクティブ化する。第1ダミー走査期間DS1には、第1ダミーデータDaに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第1ダミーデータDaは、走査信号線G13のダミー走査後直近の水平走査に対応する映像データD13(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図26参照)に示されるように、第1ダミー走査期間DS1に供給されるダミー電位と水平走査期間H13に供給される信号電位とが等しくなっている。
 ついで、第2ダミー走査期間DS2の開始と同時に、グループGr2で2番目に水平走査される走査信号線G14に供給されるゲートパルスGP14がアクティブ化し、第2ダミー走査期間DS2の終了と同時にゲートパルスGP14が非アクティブ化する。第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)のダミー電位がデータ信号線SL1に供給される。第2ダミーデータDbは、走査信号線G14のダミー走査後直近の水平走査に対応する映像データD14(次フレームのデータ)と同一としている。したがって、データ信号線SL1に供給される電位VSL1(図26参照)に示されるように、第2ダミー走査期間DS2に供給されるダミー電位と水平走査期間H14に供給される信号電位とが等しくなっている。
 ついで、水平走査期間H13の開始と同時に走査信号線G13に供給されるゲートパルスGP13がアクティブ化し、水平走査期間H13の終了と同時にゲートパルスGP13が非アクティブ化する。水平走査期間H13には、映像データD13(走査信号線G13に接続する画素に対応する映像データ)に対応し、グループGr2での信号電位の極性と同極性(マイナス極性)の信号電位がデータ信号線SL1に供給される。
 データ信号線をブロック反転駆動しながら走査信号線を順次走査する本形態では、各画素への書き込み電位の極性分布が図27のようになる。
 以下に、保持容量配線CSi(iは1~1080の整数)に供給する保持容量配線信号SCSiについて、図24・25・28を用いて説明する。図24・25に示すように、保持容量配線信号SCS1~SCS1081は、11相(保持容量配線信号SCS2に代表される第1相、SCS1・3に代表される第2相、SCS4に代表される第3相、SCS5に代表される第4相、SCS6に代表される第5相、SCS7に代表される第6相、SCS8に代表される第7相、SCS9に代表される第8相、SCS10に代表される第9相、SCS11に代表される第10相、SCS12に代表される第11相)の波形のいずれかをとる。
 ここで、各相は、同一周期(Highレベルが14H続く第1区と、Lowレベルが14H続く第2区とからなる28H周期)となっており、SCS1に代表される第2相はSCS2に代表される第1相よりも16H位相が遅れ、任意の奇数番目の相とその次の奇数番目の相とでは、後者が前者よりも2H位相が遅れ、任意の偶数番目の相とその次の偶数番目の相とでは、後者が前者よりも2H位相が遅れている。例えば、SCS4に代表される第3相はSCS2に代表される第1相よりも2Hだけ位相が遅れ、SCS5に代表される第4相はSCS3に代表される第2相よりも2Hだけ位相が遅れている。
 そして、jを0~89の整数として、保持容量配線信号SCS(12j+2)は第1相、保持容量配線信号SCS1およびSCS(12j+3)は第2相、保持容量配線信号SCS(12j+4)は第3相、保持容量配線信号SCS(12j+5)は第4相、保持容量配線信号SCS(12j+6)は第5相、保持容量配線信号SCS(12j+7)は第6相、保持容量配線信号SCS(12j+8)は第7相、保持容量配線信号SCS(12j+9)は第8相、保持容量配線信号SCS(12j+10)は第9相となっている。また、jを0~89の整数、kを0~89の整数として、保持容量配線信号SCS(12j+11)およびSCS(12k+13)は第10相となっている。また、jを0~89の整数の整数として、保持容量配線信号SCS(12j+12)は第11相となっている。
 なお、図28に示すように、第1相~第11相の保持容量配線信号がそれぞれ、保持容量幹配線M1~M11に入力され、jを0~89の整数として、保持容量配線CS(12j+2)は保持容量幹配線M1に、保持容量配線CS1およびCS(12j+3)は保持容量幹配線M2に、保持容量配線CS(12j+4)は保持容量幹配線M3に、保持容量配線CS(12j+5)は保持容量幹配線M4に、保持容量配線CS(12j+6)は保持容量幹配線M5に、保持容量配線CS(12j+7)は保持容量幹配線M6に、保持容量配線CS(12j+8)は保持容量幹配線M7に、保持容量配線CS(12j+9)は保持容量幹配線M8に、保持容量配線CS(12j+10)は保持容量幹配線M9に接続されている。また、jを0~89の整数、kを0~89の整数として、保持容量配線CS(12j+11)およびCS(12k+13)は保持容量幹配線M10に接続されている。また、jを0~89の整数の整数として、保持容量配線CS(12j+12)は保持容量幹配線M11に接続されている。
 保持容量配線信号SCS1~SCS1081の波形は以上のとおりであり、さらに本液晶表示装置では、図24に示すように、保持容量配線信号SCS1(第2相)は、走査信号線G1に対応する水平走査期間H1に「L」レベルで、水平走査期間H1終了時から4H経過したタイミングで「L」→「H」にレベルシフトし、保持容量配線信号SCS2(第1相)は、走査信号線G1に対応する水平走査期間H1に「H」レベルで、水平走査期間H1終了時から2H経過したタイミングで「H」→「L」にレベルシフトするように設定されている。
 そして、画素P1の2つの副画素の一方には保持容量配線CS1と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS2と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H1にプラスの信号電位が供給されているが、保持容量配線信号SCS1が「L」→「H」にレベルシフトするのに伴って保持容量配線CS1と保持容量を形成する画素電極の電位が上昇し、保持容量配線信号SCS2が「H」→「L」にレベルシフトするのに伴って保持容量配線CS2と保持容量を形成する画素電極の電位が下降する。ここで、保持容量配線信号SCS1は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも高く、保持容量配線信号SCS2は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも低くなっている。これにより、図27に示すように、保持容量配線CS1と保持容量を形成する画素電極を含む副画素を「明副画素」、保持容量配線CS2と保持容量を形成する画素電極を含む副画素を「暗副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。
 また、保持容量配線信号SCS1・SCS2(第1および第2相)が上記のように設定されているため、保持容量配線信号SCS2(第1相)は、走査信号線G2に対応する水平走査期間H2に「H」レベルで、水平走査期間H2終了時から1H経過したタイミングで「H」→「L」にレベルシフトし、保持容量配線信号SCS3(第2相)は、走査信号線G2に対応する水平走査期間H2に「L」レベルで、水平走査期間H2終了時から3H経過したタイミングで「L」→「H」にレベルシフトする。
 そして、画素P2の2つの副画素の一方には保持容量配線CS2と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS3と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H1にプラスの信号電位が供給されているが、保持容量配線信号SCS2が「H」→「L」にレベルシフトするのに伴って保持容量配線CS2と保持容量を形成する画素電極の電位が下降し、保持容量配線信号SCS3が「L」→「H」にレベルシフトするのに伴って保持容量配線CS3と保持容量を形成する画素電極の電位が上昇する。ここで、保持容量配線信号SCS2は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも低く、保持容量配線信号SCS3は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも高くなっている。これにより、図27に示すように、保持容量配線CS2と保持容量を形成する画素電極を含む副画素を「暗副画素」、保持容量配線CS3と保持容量を形成する画素電極を含む副画素を「明副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。
 また、保持容量配線信号SCS1・SCS2(第1および第2相)が上記のように設定されているため、保持容量配線信号SCS13(第10相)は、走査信号線G13に対応する水平走査期間H13に「H」レベルで、水平走査期間H13終了時から12H経過したタイミングで「H」→「L」にレベルシフトし、保持容量配線信号SCS14(第1相)は、走査信号線G13に対応する水平走査期間H13に「L」レベルで、水平走査期間H13終了時から2H経過したタイミングで「L」→「H」にレベルシフトする。
 そして、画素P13の2つの副画素の一方には保持容量配線CS13と保持容量を形成する画素電極が含まれるとともに、他方には保持容量配線CS14と保持容量を形成する画素電極が含まれ、かつこれら2つの画素電極には水平走査期間H13にマイナスの信号電位が供給されているが、保持容量配線信号SCS13が「H」→「L」にレベルシフトするのに伴って保持容量配線CS13と保持容量を形成する画素電極の電位が下降し、保持容量配線信号SCS14が「L」→「H」にレベルシフトするのに伴って保持容量配線CS14と保持容量を形成する画素電極の電位が上昇する。ここで、保持容量配線信号SCS13は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも低く、保持容量配線信号SCS14は上記レベルシフトから一垂直走査期間経過までの実効電位が基準電位よりも高くなっている。これにより、保持容量配線CS13と保持容量を形成する画素電極を含む副画素を「明副画素」、保持容量配線CS14と保持容量を形成する画素電極を含む副画素を「暗副画素」とすることができ、これら明・暗副画素によって中間調を表示することができる。
 本液晶表示装置によれば、図27に示すように、1画素内の2つの副画素を「明副画素」および「暗副画素」として中間調を表示することができるため、視野角特性を高めることができる。さらに、図24・25に示すように、1つの画素列において、明副画素、暗副画素、暗副画素、明副画素の並びが繰り返されるため、横縞ムラを低減することができる。
 本液晶表示装置によれば、データ信号線をドット反転(1H反転)駆動させる場合と比較して、ドライバの消費電力や発熱を抑制し、かつ画素充電率も高めることができる。また、データ信号線に供給される信号電位の極性が反転した直後に、第1および第2ダミー走査期間に亘って反転後の極性に等しいダミー電位をデータ信号線に供給するため、各ブロックの1番目の走査信号線に接続する画素の充電率と、他の画素の充電率との差を小さくすることができる。これにより、ブロック反転駆動した場合に視認されるおそれのあるブロック境界近傍の横筋状のムラを抑制することができる。
 そして注目すべきは、第1および第2ダミー走査期間それぞれにおいて1本の走査信号線を所定期間アクティブとした後に非アクティブ化することで、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる点である。
 ここで、1本の走査信号線がアクティブ化すると同時にこれとは別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLp、1本の走査信号線がアクティブとなっているときの走査信号線駆動回路の負荷をLyとし、ブロックB1・B2境界近傍に位置する走査信号線G24・G25・G26それぞれの走査開始前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を、図29を用いて説明する。
 走査信号線G24の走査開始前においては、1本の走査信号線G23がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G24の走査開始時においては、1本の走査信号線G24がアクティブ化すると同時にこれとは別の1本の走査信号線G23が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G24の走査中においては、1本の走査信号線G24がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 走査信号線G25の走査開始前においては、1本の走査信号線G26がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G25の走査開始時においては、1本の走査信号線G25がアクティブ化すると同時にこれとは別の1本の走査信号線G26が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G25の走査中においては、1本の走査信号線G25がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 走査信号線G26の走査開始前においては、1本の走査信号線G25がアクティブとなっているため走査信号線駆動回路の負荷はLyとなり、走査信号線G26の走査開始時においては、1本の走査信号線G26がアクティブ化すると同時にこれとは別の1本の走査信号線G25が非アクティブ化するため走査信号線駆動回路の負荷はLpとなり、走査信号線G26の走査中においては、1本の走査信号線G26がアクティブとなっているため走査信号線駆動回路の負荷はLyとなる。
 このように、本液晶表示装置では、データ信号線の電位極性反転直後にダミー走査期間を挿入する場合において、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査開始時並びに走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本液晶表示装置では走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がより効果的となっている。また、図29に示すように負荷がLpとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。
 なお、図24~26の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 図24~26の形態では、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査し、第2ダミー走査期間に、後グループで2番目に水平走査する走査信号線をダミー走査しているが、これに限定されない。例えば、図30に示すように、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化し、第2ダミー走査期間に、同一の走査信号線を再度ダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化してもよい。
 また、図24~26の形態において、ゲートパルスGP0~GP1081を、その幅が一水平走査期間の2倍(2H)に等しいパルスとし、各走査信号線は自段に対応する水平走査直前の水平走査あるいはダミー走査の開始に同期してアクティブ化され、自段に対応する水平走査の終了に同期して非アクティブ化され、ダミー走査される各走査信号線も、自段に対応するダミー水平走査直前の水平走査あるいはダミー水平走査の開始に同期してアクティブ化され、自段に対応するダミー走査の終了に同期して非アクティブ化される構成とすることもできる。この構成のおいても、各水平走査期間における水平走査のタイミングと、各ダミー走査期間におけるダミー走査のタイミングとを一致させている。
 この場合、図31・32に示すように、走査信号線G12に供給されるゲートパルスGP12が、走査信号線G12に対応する水平走査直前の水平走査の開始、すなわち水平走査期間H11の開始と同時にアクティブ化し、水平走査期間H11および水平走査期間H12の2水平走査期間分アクティブとなって水平走査期間H12の終了と同時に非アクティブ化する。水平走査期間H11には、映像データD11(走査信号線G11に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。また、水平走査期間H12には、映像データD12(走査信号線G12に接続する画素に対応する映像データ)に対応し、グループGr1での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。すなわち、水平走査期間H11でプリチャージが行われ、水平走査期間H12の水平走査で本チャージ(映像データD12に対応するプラス極性の信号電位の書き込み)が行われる。
 また、走査信号線G13に供給されるゲートパルスGP13が、そのダミー走査直前の水平走査の開始、すなわち水平走査期間H12の開始と同時にアクティブ化し、水平走査期間H12および第1ダミー走査期間DS1の2水平走査期間分アクティブとなって第1ダミー走査期間DS1の終了と同時に非アクティブ化する。
 また、走査信号線G14に供給されるゲートパルスGP14が、そのダミー走査直前のダミー走査の開始、すなわち第1ダミー走査期間DS1の開始と同時にアクティブ化し、第1ダミー走査期間DS1および第2ダミー走査期間DS2の2水平走査期間分アクティブとなって第2ダミー走査期間DS2の終了と同時に非アクティブ化する。
 また、走査信号線G13に供給されるゲートパルスGP13が、走査信号線G13に対応する水平走査直前のダミー走査の開始、すなわち第2ダミー走査期間DS2の開始と同時にアクティブ化し、第2ダミー走査期間DS2および水平走査期間H13の2水平走査期間分アクティブとなって水平走査期間H2の終了と同時に非アクティブ化する。
 第2ダミー走査期間DS2には、第2ダミーデータDbに対応し、グループGr2での信号電位の極性と同極性(マイナス極性)の信号電位がデータ信号線SL1に供給される。水平走査期間H13には、映像データD13(走査信号線G13に接続する画素に対応する映像データ)に対応し、グループGr2での信号電位の極性と同極性(プラス極性)の信号電位がデータ信号線SL1に供給される。すなわち、ダミー走査期間DS2でプリチャージが行われ、水平走査期間H13の水平走査で本チャージ(映像データD2に対応するプラス極性の信号電位の書き込み)が行われる。
 図31・32に示す形態でも、1本の走査信号線がアクティブの状態で、これとは別の1本の走査信号線がアクティブ化すると同時にさらに別の1本の走査信号線が非アクティブ化するときの走査信号線駆動回路の負荷をLq、1本の走査信号線とこれとは別の1本の走査信号線とがアクティブになっているときの走査信号線駆動回路の負荷をLzとすれば、図33に示すように、水平走査期間における走査信号線駆動回路の負荷状態と、ダミー走査期間における走査信号線駆動回路の負荷状態とを合わせ、各走査信号線の走査について、その走査前および走査中における走査信号線駆動回路の負荷状態を揃えることができる。これにより、電位極性反転前後に水平走査される走査信号線に接続する画素と他の画素との充電率の差をさらに低減し、ブロック境界近傍の横筋状のムラをさらに抑制することができる。
 また、本形態でも走査信号線駆動回路の負荷が垂直走査期間中ほぼ常時Lyに保たれ、走査信号線駆動回路の負荷変動自体がほとんどないため、横筋状のムラの抑制がより効果的となっている。また、図33に示すように負荷がLqとなるタイミングを周期的にすることで、横筋状のムラの抑制を一層効果的なものとすることができる。さらに、本構成では、各画素に一水平期間期間分のプリチャージが行われるため、各画素の充電率を高めることができる。なお、図31・32の形態では、各ダミー走査期間は一水平走査期間に等しくしているがこれに限定されない。各ダミー走査期間を一水平走査期間よりも短くしたり、長くしたりしてもよい。
 〔実施の形態3〕
 図3に示す液晶表示装置を図34のように駆動することもできる。すなわち、保持容量配線CS1~CS1080に供給される保持容量配線信号SCS1~SCS1081は、12相(保持容量配線信号SCS1~SCS12に代表される第1~第12相)の波形のいずれかをとる。
 ここで、奇数番目の相では、Lowレベルが6H続く第1区と、Highレベルが8H続く第2区と、Lowレベルが8H続く第3区と、Highレベルが6H続く第4区とからなる基準波形が繰り返され、偶数番目の相では、Highレベルが6H続く第1区と、Lowレベルが8H続く第2区と、Highレベルが8H続く第3区と、Lowレベルが6H続く第4区とからなる基準波形が繰り返される。なお、SCS2に代表される第2相は、SCS1に代表される第1相を反転させたものであり、任意の奇数番目の相とその次の奇数番目の相とでは、後者が前者よりも1H位相が遅れ、任意の偶数番目の相とその次の偶数番目の相とでは、後者が前者よりも1H位相が遅れている。例えば、保持容量配線信号SCS3に代表される第3相はSCS1に代表される第1相よりも1Hだけ位相が遅れ、SCS4に代表される第4相はSCS2に代表される第2相よりも1Hだけ位相が遅れている。
 そして、jを0~45の整数、kを0~44の整数として、保持容量配線信号SCS(24j+1)およびSCS(24k+14)は第1相となっている。また、jを0~45の整数、kを0~44の整数として、保持容量配線信号SCS(24j+2)およびSCS(24k+13)は第2相、保持容量配線信号SCS(24j+3)およびSCS(24k+16)は第3相、保持容量配線信号SCS(24j+4)およびSCS(24k+15)は第4相、保持容量配線信号SCS(24j+5)およびSCS(24k+18)は第5相、保持容量配線信号SCS(24j+6)およびSCS(24k+17)は第6相、保持容量配線信号SCS(24j+7)およびSCS(24k+20)は第7相、保持容量配線信号SCS(24j+8)およびSCS(24k+19)は第8相、保持容量配線信号SCS(24j+9)およびSCS(24k+22)は第9相、保持容量配線信号SCS(24j+10)およびSCS(24k+21)は第10相、保持容量配線信号SCS(24j+11)およびSCS(24k+24)は第11相、保持容量配線信号SCS(24j+12)およびSCS(24k+23)は第12相となっている。なお、図34に示すように、第1相~第12相の保持容量配線信号はそれぞれ、保持容量幹配線M1~M12に入力されている。
 さらに本形態では、ダミー走査期間に加えてタイミング調整走査期間が挿入されている。すなわち、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に2個のダミー走査期間を挿入されるのに加えて、mを0~42の整数として、走査信号線G(25m+11)の水平走査に対応する水平走査期間と走査信号線G(25m+13)の水平走査に対応する水平走査期間との間に、2個のタイミング調整用走査期間(第1および第2タイミング調整用走査期間)が挿入され、第1タイミング調整用走査期間に走査信号線G(25m+13)がタイミング調整走査されることによって走査信号線G(25m+13)が所定期間アクティブとされた後に非アクティブ化され、第2タイミング調整用走査期間に走査信号線G(25m+15)がタイミング調整走査されることによって走査信号線G(25m+15)が所定期間アクティブとされた後に非アクティブ化される。
 そして、図34に示すように、保持容量配線信号SCS1(第1相)は、走査信号線G1に対応する水平走査期間H1に1区の「L」レベルで、水平走査期間H1終了に同期して「L」→「H」にレベルシフトして2区が開始し、保持容量配線信号SCS2(第2相)は、走査信号線G1に対応する水平走査期間H1に1区の「H」レベルで、水平走査期間H1終了に同期して「H」→「L」にレベルシフトして2区が開始するように設定されている。
 なお、タイミング調整用期間は水平走査期間に等しく、水平走査期間における水平走査のタイミングと、タイミング調整用査期間におけるタイミング調整走査のタイミングとを一致させている。具体的には、水平走査期間の開始および水平走査の開始の時間差とタイミング調整用期間の開始およびタイミング調整走査の開始の時間差とについて、それぞれをゼロ(同時)とし、水平走査の終了および水平走査期間の終了の時間差とタイミング調整走査の終了およびタイミング調整用期間の終了の時間差とについても、それぞれをゼロ(同時)としている。
 また、走査信号線G(25m+11)の水平走査に対応する映像データと走査信号線G(25m+13)の水平走査に対応する映像データとの間に第1および第2タイミング調整データを挿入する。第1タイミング調整データは、例えば、走査信号線G(25m+13)の水平走査に対応する映像データと同一とし、第2タイミング調整データは、例えば、走査信号線G(25m+15)の水平走査に対応する映像データと同一とする。
 図34の駆動によれば、図1・2の駆動と比較して、保持容量配線信号を12相(保持容量幹配線12本)と減らしつつ、図1・2の駆動と同等の効果を得ることができる。
 なお、図34の駆動の変形し、図35に示すように、奇数番目の相では、Lowレベルが8H続く第1区と、Highレベルが8H続く第2区と、Lowレベルが6H続く第3区と、Highレベルが6H続く第4区とからなる基準波形が繰り返され、偶数番目の相では、Highレベルが8H続く第1区と、Lowレベルが8H続く第2区と、Highレベルが6H続く第3区と、Lowレベルが6H続く第4区とからなる基準波形が繰り返されるようにすることもできる。
 この場合、図35に示すように、保持容量配線信号SCS1(第1相)は、走査信号線G1に対応する水平走査期間H1に1区の「L」レベルで、水平走査期間H1終了時から2H経過したタイミングで「L」→「H」にレベルシフトして2区が開始し、保持容量配線信号SCS2(第2相)は、走査信号線G1に対応する水平走査期間H1に1区の「H」レベルで、水平走査期間H1終了時から2H経過したタイミングで「H」→「L」にレベルシフトして2区が開始するように設定されている。
 また、図34の駆動の変形し、図36に示すように、奇数番目の相では、Lowレベルが6H続く第1区と、Highレベルが1H続く第2区と、Lowレベルが1H続く第3区と、Highレベルが6H続く第4区と、Lowレベルが1H続く第5区と、Highレベルが1H続く第6区と、Lowレベルが6H続く第7区と、Highレベルが6H続く第8区とからなる基準波形が繰り返され、偶数番目の相では、Highレベルが6H続く第1区と、Lowレベルが1H続く第2区と、Highレベルが1H続く第3区と、Lowレベルが6H続く第4区と、Highレベルが1H続く第5区と、Lowレベルが1H続く第6区と、Highレベルが6H続く第7区と、Lowレベルが6H続く第8区とからなる基準波形が繰り返されるようにすることもできる。
 この場合、図36に示すように、保持容量配線信号SCS1(第1相)は、走査信号線G1に対応する水平走査期間H1に1区の「L」レベルで、水平走査期間H1終了に同期して「L」→「H」にレベルシフトして2区が開始し、保持容量配線信号SCS2(第2相)は、走査信号線G1に対応する水平走査期間H1に1区の「H」レベルで、水平走査期間H1終了に同期して「H」→「L」にレベルシフトして2区が開始するように設定されている。
 本液晶表示装置では、図37のように、G1から順に連続する奇数番目の走査信号線24本を1番目のグループG1とし、次いでG2から順に連続する偶数番目の走査信号線48本を2番目のグループG2とし、次いでG49から順に連続する奇数番目の走査信号線48本を3番目のグループG3とし、以後これをG1056まで繰り返してG4~G22とし、G1009から順に連続する奇数番目の走査信号線36本を最後から2番目のグループG23とし、次いでG1058から順に連続する偶数番目の走査信号線12本を最後のグループG24としてもよい。
 図37では、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に第1および第2ダミー走査期間を挿入し、第1ダミー走査期間に、後グループで1番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化し、第2ダミー走査期間に、後グループで2番目に水平走査する走査信号線をダミー走査することにより、該走査信号線を所定期間アクティブとした後に非アクティブ化する。
 さらに、jを0~10の整数として、走査信号線G(96j+23)に対応する水平走査期間と走査信号線G(96j+25)に対応する水平走査期間との間に、2個のタイミング調整用走査期間(第1および第2タイミング調整用走査期間)が挿入され、第1タイミング調整用走査期間に走査信号線G(96j+25)がタイミング調整走査されることによって走査信号線G(25j+25)が所定期間アクティブとされた後に非アクティブ化され、第2タイミング調整用走査期間に走査信号線G(96j+27)がタイミング調整走査されることによって走査信号線G(96j+27)が所定期間アクティブとされた後に非アクティブ化される。さらに、kを0~10の整数として、走査信号線G(96k+72)に対応する水平走査期間と走査信号線G(96k+74)に対応する水平走査期間との間に、2個のタイミング調整用走査期間(第1および第2タイミング調整用走査期間)が挿入され、第1タイミング調整用走査期間に走査信号線G(96k+74)がタイミング調整走査されることによって走査信号線G(96k+74)が所定期間アクティブとされた後に非アクティブ化され、第2タイミング調整用走査期間に走査信号線G(96k+76)がタイミング調整走査されることによって走査信号線G(96k+76)が所定期間アクティブとされた後に非アクティブ化される。
 この場合、図38に示すように、保持容量配線CS1~CS1080に供給される保持容量配線信号SCS1~SCS1081は、12相(保持容量配線信号SCS1~SCS12に代表される第1~第12相)の波形のいずれかをとる。
 ここで、奇数番目の相では、Lowレベルが12H続く第1区と、Highレベルが1H続く第2区と、Lowレベルが1H続く第3区と、Highレベルが12H続く第4区と、Lowレベルが1H続く第5区と、Highレベルが1H続く第6区と、Lowレベルが12H続く第7区と、Highレベルが12H続く第8区とからなる基準波形が繰り返され、偶数番目の相では、Highレベルが12H続く第1区と、Lowレベルが1H続く第2区と、Highレベルが1H続く第3区と、Lowレベルが12H続く第4区と、Highレベルが1H続く第5区と、Lowレベルが1H続く第6区と、Highレベルが12H続く第7区と、Lowレベルが12H続く第8区とからなる基準波形が繰り返される。なお、SCS2に代表される第2相は、SCS1に代表される第1相を反転させたものであり、任意の奇数番目の相とその次の奇数番目の相とでは、後者が前者よりも1H位相が遅れ、任意の偶数番目の相とその次の偶数番目の相とでは、後者が前者よりも1H位相が遅れている。例えば、保持容量配線信号SCS3に代表される第3相はSCS1に代表される第1相よりも1Hだけ位相が遅れ、SCS4に代表される第4相はSCS2に代表される第2相よりも1Hだけ位相が遅れている。
 そして、jを0~22の整数、kを0~21の整数として、保持容量配線信号SCS(48j+1)、SCS(48j+3)、SCS(48k+26)、およびSCS(48k+28)は第1相、保持容量配線信号SCS(48j+2)、SCS(48j+4)、SCS(48j+25)、およびSCS(48k+27)は第2相、保持容量配線信号SCS(48j+5)、SCS(48j+7)、SCS(48k+30)、およびSCS(48k+32)は第3相、保持容量配線信号SCS(48j+6)、SCS(48j+8)、SCS(48k+29)、およびSCS(48k+31)は第4相、保持容量配線信号SCS(48j+9)、SCS(48j+11)、SCS(48k+34)、およびSCS(48k+36)は第5相、保持容量配線信号SCS(48j+10)、SCS(48j+12)、SCS(48k+33)、およびSCS(48k+35)は第6相、保持容量配線信号SCS(48j+13)、SCS(48j+15)、SCS(48k+38)、およびSCS(48k+40)は第7相、保持容量配線信号SCS(48j+14)、SCS(48j+16)、SCS(48k+37)、およびSCS(48k+39)は第8相、保持容量配線信号SCS(48j+17)、SCS(48j+19)、SCS(48k+42)、およびSCS(48k+44)は第9相、保持容量配線信号SCS(48j+18)、SCS(48j+20)、SCS(48k+41)、およびSCS(48k+43)は第10相、保持容量配線信号SCS(48j+21)、SCS(48j+23)、SCS(48k+46)、およびSCS(48k+48)は第11相、保持容量配線信号SCS(48j+22)、SCS(48j+24)、SCS(48k+45)、およびSCS(48k+47)は第12相となっており、図38に示すように、第1相~第12相の保持容量配線信号はそれぞれ、保持容量幹配線M1~M12に入力されている。
 そして、図38に示すように、保持容量配線信号SCS1(第1相)は、走査信号線G1に対応する水平走査期間H1に1区の「L」レベルで、水平走査期間H1終了時から1H経過したタイミングで「L」→「H」にレベルシフトして2区が開始し、保持容量配線信号SCS2(第2相)は、走査信号線G1に対応する水平走査期間H1に1区の「H」レベルで、水平走査期間H1終了時から1H経過したタイミングで「H」→「L」にレベルシフトして2区が開始するように設定されている。
 タイミング調整用走査期間を図37のように設定し、保持容量配線信号SCS1~SCS1081を上記のとおり設定した場合、図39に示すように、G1058までは、明副画素および暗副画素が交互に並んでいるが、G1058以降では、暗副画素、明副画素、明副画素、暗副画素の並びになる。すなわち、G1058が接続される画素以降の部分で市松状の表示が崩れてしまう。
 そこで、図40のように、走査信号線G1079の水平走査に対応する水平走査期間と走査信号線G1058のダミー走査に対応するダミー走査期間との間に、14個のタイミング調整用走査期間(第1~第14TA期間)を挿入することが望ましい。ここで、第1TAでは走査信号線G1058がタイミング調整走査され、第2TAでは走査信号線G1060がタイミング調整走査され、第3TAでは走査信号線G1058がタイミング調整走査され、第4TAでは走査信号線G1060がタイミング調整走査され、以下、第5~第14TAで、走査信号線G1062~1080のうち偶数番目のものが順次タイミング調整走査される。こうすれば、G1058が接続される画素以降の部分も市松状の表示を維持することができる。
 また、図41のように、走査信号線G1079の水平走査に対応する水平走査期間と走査信号線G1058のダミー走査に対応するダミー走査期間との間に、14個のタイミング調整用走査期間(第1~第14TA期間)を挿入し、第1TAでは走査信号線G1058をタイミング調整走査し、第2TAでは走査信号線G1060をタイミング調整走査し、第3TAでは走査信号線G1058を再度タイミング調整走査し、第4TAでは走査信号線G1060を再度タイミング調整走査し、というように、走査信号線G1058・G1060を交互にタイミング調整走査してもよい。こうすれば、G1058が接続される画素以降の部分も市松状の表示を維持することができる。
 また、図42のように、走査信号線G1079の水平走査に対応する水平走査期間と走査信号線G1058のダミー走査に対応するダミー走査期間との間に、14個のタイミング調整用走査期間(第1~第14TA期間)を挿入し、第1TAでは走査信号線G1080をタイミング調整走査し、第2TAでは、表示領域外(例えば、パネル下端部)に設けられたダミー走査信号線G1081をタイミング調整走査し、第3TAでは走査信号線G1080を再度タイミング調整走査し、第4TAではダミー走査信号線G1081を再度タイミング調整走査し、というように、走査信号線G1080およびダミー走査信号線G1081を交互にタイミング調整走査してもよい。こうすれば、走査信号線G1058が接続される画素以降の部分も市松状の表示を維持することができる。
 なお、ダミー走査信号線G1081は走査信号線G1080に隣接して設けられ、表示領域外(パネル下端部)に設けられたダミー画素に接続されている。このパネル下端部に設けられたダミー画素は、保持容量配線CS1081およびダミー保持容量配線CS1082と容量を形成しており、ダミー保持容量配線CS1082は、例えば保持容量幹配線M1に接続されている。
 また、図43のように、走査信号線G1079の水平走査に対応する水平走査期間と走査信号線G1058のダミー走査に対応するダミー走査期間との間に、14個のタイミング調整用走査期間(第1~第14TA期間)を挿入し、第1TAでは表示領域外(パネル上端部)に設けられた走査信号線G0をタイミング調整走査し、第2TAでは、表示領域外(パネル下端部)に設けられたダミー走査信号線G1081をタイミング調整走査し、第3TAではダミー走査信号線G0を再度タイミング調整走査し、第4TAではダミー走査信号線G1081を再度タイミング調整走査し、というように、ダミー走査信号線G0・G1081を交互にタイミング調整走査してもよい。こうすれば、走査信号線G1058が接続される画素以降の部分も市松状の表示を維持することができる。
 なお、ダミー走査信号線G0は走査信号線G1に隣接して設けられ、表示領域外(パネル上端部)に設けられたダミー画素に接続されている。このパネル上端部に設けられたダミー画素は、ダミー保持容量配線CS0および保持容量配線CS1と容量を形成しており、ダミー保持容量配線CS0は、例えば保持容量幹配線M11に接続されている。また、ダミー走査信号線G1081は走査信号線G1080に隣接して設けられ、表示領域外(パネル下端部)に設けられたダミー画素に接続されている。このパネル下端部に設けられたダミー画素は、保持容量配線CS1081およびダミー保持容量配線CS1082と容量を形成しており、ダミー保持容量配線CS1082は、例えば保持容量幹配線M1に接続されている。
 図44は、本液晶表示装置の構成を示すブロック図である。同図に示されるように、本液晶表示装置は、表示部(液晶パネル)と、ソースドライバと、ゲートドライバと、バックライトと、バックライト駆動回路と、表示制御回路と、CS駆動回路(保持容量配線駆動回路)とを備えている。ソースドライバはデータ信号線を駆動し、ゲートドライバは走査信号線を駆動し、CS駆動回路は、保持容量幹配線を介して保持容量配線(CS配線)を駆動し、表示制御回路は、ソースドライバ、ゲートドライバ、CS駆動回路およびバックライト駆動回路を制御する。
 表示制御回路は、外部の信号源(例えばチューナ)から、表示すべき画像を表すデジタルビデオ信号Dvと、当該デジタルビデオ信号Dvに対応する水平同期信号HSYおよび垂直同期信号VSYと、表示動作を制御するための制御信号Dcとを受け取る。また、表示制御回路は、受け取ったこれらの信号Dv,HSY,VSY,Dcに基づき、そのデジタルビデオ信号Dvの表す画像を表示部に表示させるための信号として、データスタートパルス信号SSPと、データクロック信号SCKと、表示すべき画像を表すデジタル画像信号DA(ビデオ信号Dvに対応する信号)と、ゲートスタートパルス信号GSPと、ゲートクロック信号GCKと、ゲートドライバ出力制御信号(走査信号出力制御信号)GOEと、データ信号線に供給する信号電位の極性を制御する極性反転信号POLとを生成し、これらを出力する。
 より詳しくは、ビデオ信号Dvを内部メモリで必要に応じてタイミング調整等を行った後に、デジタル画像信号DAとして表示制御回路から出力し、そのデジタル画像信号DAの表す画像の各画素に対応するパルスからなる信号としてデータクロック信号SCKを生成し、水平同期信号HSYに基づき1水平走査期間毎に所定期間だけハイレベル(Hレベル)となる信号としてデータスタートパルス信号SSPを生成し、垂直同期信号VSYに基づき1フレーム期間(1垂直走査期間)毎に所定期間だけHレベルとなる信号としてゲートスタートパルス信号GSPを生成し、水平同期信号HSYに基づきゲートクロック信号GCKを生成し、水平同期信号HSYおよび制御信号Dcに基づきゲートドライバ出力制御信号GOEを生成する。
 上記のようにして表示制御回路において生成された信号のうち、デジタル画像信号DA、極性反転信号POL、データスタートパルス信号SSP、およびデータクロック信号SCKは、ソースドライバに入力され、ゲートスタートパルス信号GSPとゲートクロック信号GCKとゲートドライバ出力制御信号GOEとは、ゲートドライバに入力される。
 ソースドライバは、デジタル画像信号DA、データクロック信号SCK、データスタートパルス信号SSP、および極性反転信号POLに基づき、デジタル画像信号DAの表す画像の各走査信号線における画素値に相当するアナログ電位としてのデータ信号を1水平走査期間毎に順次生成し、これらのデータ信号をデータ信号線(SL1・SL2)に出力する。
 ゲートドライバは、ゲートスタートパルス信号GSPおよびゲートクロック信号GCKと、ゲートドライバ出力制御信号GOEとに基づき、走査信号を生成し、これらを走査信号線に出力し、これによって走査信号線を選択的に駆動する。
 上記のようにソースドライバおよびゲートドライバにより表示部(液晶パネル)のデータ信号線および走査信号線が駆動されることで、選択された走査信号線に接続されたTFTを介して、データ信号線から画素電極に信号電位が書き込まれる。これにより各画素の液晶層にデジタル画像信号DAに応じた電圧が印加され、その電圧印加によってバックライトからの光の透過量が制御され、デジタルビデオ信号Dvの示す画像が画素に表示される。
 液晶表示装置800でテレビジョン放送に基づく画像を表示する場合には、図45に示すように、液晶表示装置800にチューナ部90が接続され、これによって本テレビジョン受像機601が構成される。このチューナ部90は、アンテナ(不図示)で受信した受信波(高周波信号)の中から受信すべきチャンネルの信号を抜き出して中間周波信号に変換し、この中間周波数信号を検波することによってテレビジョン信号としての複合カラー映像信号Scvを取り出す。この複合カラー映像信号Scvは、既述のように液晶表示装置800に入力され、この複合カラー映像信号Scvに基づく画像が該液晶表示装置800によって表示される。
 本願でいう電位の極性とは、その電位が基準となる電位以上なのか以下なのかを示すものであり、プラス極性の電位とは基準となる電位以上の電位を、マイナス極性とは基準となる電位以下の電位を意味する。ここで、基準となる電位は、共通電極(対向電極)の電位であるVcom(コモン電位)であってもその他任意の電位であってよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の液晶表示装置は、例えば液晶テレビに好適である。
 G1~G1080 走査信号線
 Gr1~Gr46 グループ
 B1~G45 ブロック
 P1~P1080 画素
 D1~D1080 映像データ
 Da・Db・Dc・Dd ダミーデータ
 H1~H1080 水平走査期間
 DS1 第1ダミー走査期間
 DS2 第2ダミー走査期間
 SL1 SL2 データ信号線
 601 テレビジョン受像機
 800 液晶表示装置

Claims (41)

  1.  表示部の各画素が複数の副画素からなり、該表示部の走査信号線が複数本ずつグループとされるとともに各グループが順に選択され、選択されたグループに属する走査信号線が順次水平走査されるのに対応して順次同極性の信号電位がデータ信号線に供給される液晶表示装置であって、
     前後して選択される前グループと後グループとで上記信号電位の極性が反転するとともに、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間にダミー走査期間が挿入され、
     該ダミー走査期間に、前グループよりも後に選択されるグループに属する走査信号線がダミー走査されることによって該走査信号線が所定期間アクティブとされた後に非アクティブ化されることを特徴とする液晶表示装置。
  2.  副画素ごとに画素電極が設けられるとともに、各画素電極に対応して保持容量配線が設けられ、各保持容量配線に与えられる保持容量配線信号によって各副画素の輝度が制御されることを特徴とする請求項1記載の液晶表示装置。
  3.  1本の保持容量配線に与えられる保持容量配線信号は、この保持容量配線と容量を形成する画素電極への信号電位の書き込み中はレベルシフトせず、書き込みが終了するのと同期してあるいはそれ以後に、基準電位に対してプラス方向あるいはマイナス方向にレベルシフトすることを特徴とする請求項2記載の液晶表示装置。
  4.  1つの画素に含まれる2つの画素電極の一方と容量を形成する保持容量配線と、他方と容量を形成する保持容量配線とでは、レベルシフトの向きが逆になっていることを特徴とする請求項3記載の液晶表示装置。
  5.  上記保持容量配線信号は、上記レベルシフトから一垂直走査期間経過するまで所定期間ごとにレベルが入れ替わることを特徴とする請求項3記載の液晶表示装置。
  6.  上記保持容量配線信号は、レベルシフトから一垂直走査期間経過するまでの間、同レベルを維持することを特徴とする請求項3記載の液晶表示装置。
  7.  互いに異なる保持容量配線信号が入力される複数の保持容量幹配線が設けられ、各保持容量配線はいずれか1本の保持容量幹配線に接続されていることを特徴とする請求項2に記載の液晶表示装置。
  8.  データ信号線の延伸方向に隣接する2つの画素の間隙に対応して1本の保持容量配線が設けられ、この1本の保持容量配線は、上記2つの画素の一方に設けられた画素電極の1つおよび他方に設けられた画素電極の1つそれぞれと容量を形成していることを特徴とする請求項2記載の液晶表示装置。
  9.  ダミー走査期間には、ダミー電位がデータ信号線に供給されることを特徴とする請求項1記載の液晶表示装置。
  10.  ダミー電位の極性は、後グループでの上記信号電位の極性と同一であることを特徴とする請求項9記載の液晶表示装置。
  11.  各走査信号線の水平走査に対応する映像データが水平走査の順に並べられるとともに、前グループの最後の水平走査に対応する映像データと後グループでの最初の水平走査に対応する映像データとの間にn個のダミーデータが挿入され、
     上記信号電位は映像データに対応する電位であり、上記ダミー電位はダミーデータに対応する電位であることを特徴とする請求項9に記載の液晶表示装置。
  12.  上記ダミーデータは、ダミー走査される走査信号線のダミー走査後直近の水平走査に対応する映像データと同一であることを特徴とする請求項11記載の液晶表示装置。
  13.  上記ダミーデータは、ダミー走査される走査信号線のダミー走査前直近の水平走査に対応する映像データと同一であることを特徴とする請求項11記載の液晶表示装置。
  14.  水平走査期間の開始および水平走査の開始の時間差とダミー走査期間の開始およびダミー走査の開始の時間差とが等しく、水平走査の終了および水平走査期間の終了の時間差とダミー走査の終了およびダミー走査期間の終了の時間差とが等しくなっていることを特徴とする請求項1~13のいずれか1項に記載の液晶表示装置。
  15.  前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に複数のダミー走査期間が挿入されており、
     ダミー走査期間ごとに、異なる走査信号線がダミー走査されることを特徴とする請求項1~14のいずれか1項に記載の液晶表示装置。
  16.   前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間に複数のダミー走査期間が挿入されており、
     各ダミー走査期間に、同一の走査信号線がダミー走査されることを特徴とする請求項1~14のいずれか1項に記載の液晶表示装置。
  17.  ダミー走査される走査信号線は、後グループに属していることを特徴とする請求項1~16のいずれか1項に記載の液晶表示装置。
  18.  ダミー走査される走査信号線に、後グループで最初に水平走査される走査信号線が含まれていることを特徴とする請求項1~16のいずれか1項に記載の液晶表示装置。
  19.  ダミー走査される走査信号線に、後グループよりも後に選択されるグループに属する走査信号線が含まれていることを特徴とする請求項1~16のいずれか1項に記載の液晶表示装置。
  20.  各走査信号線は自段の水平走査の開始に同期してアクティブ化され、該自段の水平走査の終了に同期して非アクティブ化されることを特徴とする請求項1~19のいずれか1項に記載の液晶表示装置。
  21.  各走査信号線は自段に対応する水平走査直前の、水平走査あるいはダミー走査の開始に同期してアクティブ化され、自段に対応する水平走査の終了に同期して非アクティブ化されることを特徴とする請求項1~19のいずれか1項に記載の液晶表示装置。
  22.  ダミー走査される走査信号線は、自段のダミー走査の開始に同期してアクティブ化され、該自段のダミー走査の終了に同期して非アクティブ化されることを特徴とする請求項20記載の液晶表示装置。
  23.  ダミー走査される走査信号線は、自段に対応するダミー走査直前の、水平走査あるいはダミー走査の開始に同期してアクティブ化され、自段に対応するダミー走査の終了に同期して非アクティブ化されることを特徴とする請求項21記載の液晶表示装置。
  24.  走査信号線をアクティブ化するためのゲートパルスの幅が一水平走査期間に等しいことを特徴とする請求項20または22記載の液晶表示装置。
  25.  走査信号線をアクティブ化するためのゲートパルスの幅が一水平走査期間の2倍に等しいことを特徴とする請求項21または23記載の液晶表示装置。
  26.  上記水平走査期間とダミー走査期間とが等しいことを特徴とする請求項1~25のいずれか1項に記載の液晶表示装置。
  27.  所定の水平走査期間とその次の水平走査期間あるいはダミー走査期間との間に、タイミング調整用走査期間が挿入され、該タイミング調整用走査期間に、走査信号線がタイミング調整走査されることによってこの走査信号線が所定期間アクティブとされた後に非アクティブ化されることを特徴とする請求項2記載の液晶表示装置。
  28.  所定の水平走査期間とその次の水平走査期間あるいはダミー走査期間との間に、タイミング調整用走査期間が挿入され、該タイミング調整用走査期間に、非表示部に形成されたダミー走査信号線がタイミング調整走査されることによってこのダミー走査信号線が所定期間アクティブとされた後に非アクティブ化されることを特徴とする請求項2記載の液晶表示装置。
  29.  最終グループの1つ前となるグループの最後の水平走査に対応する水平走査期間と、最終グループの最初の水平走査に対応する水平走査期間との間に、上記ダミー走査期間およびタイミング調整用走査期間が挿入されていることを特徴とする請求項27または28記載の液晶表示装置。
  30.  表示部内の所定の走査信号線を数えはじめの1番目の走査信号線とした場合に、上記前グループおよび後グループの一方には奇数番目の走査信号線のみが含まれ、他方には偶数番目の走査信号線のみが含まれることを特徴とする請求項1~29のいずれか1項に記載の液晶表示装置。
  31.  表示部における上記所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックとした場合に、
     最初に選択されるグループは最上流ブロックに含まれる奇数番目の走査信号線で構成されるか、あるいは最上流ブロックに含まれる偶数番目の走査信号線で構成され、
     最後に選択されるグループは最下流ブロックに含まれる奇数番目の走査信号線で構成されるか、あるいは最下流ブロックに含まれる偶数番目の走査信号線で構成され、
     その他のグループは、隣り合う2つのブロックに含まれる偶数番目の走査信号線で構成されるか、あるいは隣り合う2つのブロックに含まれる奇数番目の走査信号線で構成されるとともに、上流側のグループから順に選択されることを特徴とする請求項30に記載の液晶表示装置。
  32.  表示部における上記所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックとした場合に、
     各ブロックに含まれる奇数番目の走査信号線を前グループとするとともに偶数番目の走査信号線を後グループとして最上流ブロックに含まれるグループから順に最下流ブロックに含まれるグループまで選択されるか、あるいは各ブロックに含まれる偶数番目の走査信号線を前グループとするとともに奇数番目の走査信号線を後グループとして最上流ブロックに含まれるグループから順に最下流ブロックに含まれるグループまで選択されることを特徴とする請求項30に記載の液晶表示装置。
  33.  表示部における所定の走査信号線以降の領域を走査信号線に平行な複数の境界によってブロック化し、上記所定の走査信号線を含む、一方端にあたるブロックを最上流ブロック、他方端にあたるブロックを最下流ブロックとした場合に、
     各ブロックに含まれる走査信号線がグループ化され、最上流ブロックのグループから順に最下流ブロックのグループまで選択されることを特徴とする1~29のいずれか1項に記載の液晶表示装置。
  34.  それぞれが複数の副画素からなる複数の画素と、複数のデータ信号線と、複数の走査信号線とを備え、複数の水平走査期間からなる第1期に、各データ信号線に対して第1極性の信号電位を供給する一方、該第1期に続く、連続する複数の水平走査期間からなる第2期に、各データ信号線に対して第2極性の信号電位を供給し、第1期と第2期との間に、各水平走査期間にアクティブとする走査信号線と同数の走査信号線を所定期間アクティブとした後に非アクティブ化するダミー走査期間が設けられていることを特徴とする液晶表示装置。
  35.  ダミー走査期間にアクティブとした走査信号線を、第2期内または第2期後の水平走査期間に、所定期間アクティブとした後に非アクティブ化することを特徴とする請求項34記載の液晶表示装置。
  36.  ダミー走査期間にアクティブとした走査信号線を、第2期内の、1番目以外の水平走査期間に、所定期間アクティブとした後に非アクティブ化することを特徴とする請求項35記載の液晶表示装置。
  37.  ダミー走査期間に、各データ信号線に対して第2極性のダミー電位を供給することを特徴とする請求項34記載の液晶表示装置。
  38.  所定の水平走査期間とこれに続く水平走査期間またはダミー走査期間との間に、各水平走査期間にアクティブとする走査信号線と同数の走査信号線を所定期間アクティブとした後に非アクティブ化するタイミング調整用走査期間が設けられていることを特徴とする請求項34記載の液晶表示装置。
  39.  上記走査信号線駆動回路は飛び越し走査を行う請求項34記載の液晶表示装置。
  40.  表示部の走査信号線を複数本ずつグループとするとともに各グループを順に選択し、選択したグループに属する走査信号線を順次水平走査するのに対応して順次同極性の信号電位をデータ信号線に供給する液晶表示装置の駆動方法であって、
     前後して選択される前グループと後グループとで上記信号電位の極性を反転させるとともに、前グループの最後の水平走査に対応する水平走査期間と後グループでの最初の水平走査に対応する水平走査期間との間にダミー走査期間を挿入し、
     該ダミー走査期間に、前グループよりも後に選択するグループに属する走査信号線をダミー走査することよってこの走査信号線を所定期間アクティブとした後に非アクティブ化させることを特徴とする液晶表示装置の駆動方法。
  41.  請求項1~39のいずれか1項に記載の液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とするテレビジョン受像機。
PCT/JP2009/067363 2008-11-26 2009-10-05 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機 WO2010061687A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/998,731 US8743047B2 (en) 2008-11-26 2009-10-05 Liquid crystal display device, method for driving liquid crystal display device, and television receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008301290 2008-11-26
JP2008-301290 2008-11-26

Publications (1)

Publication Number Publication Date
WO2010061687A1 true WO2010061687A1 (ja) 2010-06-03

Family

ID=42225567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067363 WO2010061687A1 (ja) 2008-11-26 2009-10-05 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機

Country Status (2)

Country Link
US (1) US8743047B2 (ja)
WO (1) WO2010061687A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061686A1 (ja) * 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
RU2483361C2 (ru) * 2008-11-26 2013-05-27 Шарп Кабусики Кайся Жидкокристаллический дисплей, способ возбуждения жидкокристаллического дисплея и телевизионный приемник
US8698850B2 (en) * 2008-12-25 2014-04-15 Sharp Kabushiki Kaisha Display device and method for driving same
KR101113394B1 (ko) * 2009-12-17 2012-02-29 삼성모바일디스플레이주식회사 액정표시장치의 어레이 기판
JP5986442B2 (ja) * 2012-07-06 2016-09-06 シャープ株式会社 表示装置および表示方法
US9785032B2 (en) 2013-11-12 2017-10-10 E Ink Holdings Inc. Active device array substrate and display panel
TWI505010B (zh) * 2013-11-12 2015-10-21 E Ink Holdings Inc 主動元件陣列基板
KR102174911B1 (ko) 2013-12-16 2020-11-06 삼성디스플레이 주식회사 표시 패널 구동 방법, 이 표시 패널 구동 방법을 수행하는 표시 패널 구동 장치 및 이 표시 패널 구동 장치를 포함하는 표시 장치
KR20150108994A (ko) * 2014-03-18 2015-10-01 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352938A (ja) * 1998-06-09 1999-12-24 Sharp Corp 液晶表示装置及びその駆動方法並びに走査線駆動回路
JP2004046236A (ja) * 2003-09-05 2004-02-12 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方法
JP2006039542A (ja) * 2004-07-27 2006-02-09 Samsung Electronics Co Ltd アレイ基板とこれを有する表示装置、その駆動装置、及び駆動方法
WO2008139693A1 (ja) * 2007-04-26 2008-11-20 Sharp Kabushiki Kaisha 液晶表示装置
WO2008139695A1 (ja) * 2007-04-27 2008-11-20 Sharp Kabushiki Kaisha 液晶表示装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147975A (ja) * 1987-12-04 1989-06-09 Stanley Electric Co Ltd 液晶テレビジョン
JPH06222330A (ja) 1993-01-25 1994-08-12 Hitachi Ltd 液晶表示装置
JPH07175454A (ja) * 1993-10-25 1995-07-14 Toshiba Corp 表示制御装置および表示制御方法
JPH07134572A (ja) 1993-11-11 1995-05-23 Nec Corp アクティブマトリクス型液晶表示装置の駆動回路
KR100303206B1 (ko) * 1998-07-04 2001-11-30 구본준, 론 위라하디락사 도트 인버젼 방식 액정 패널 구동 장치
JP2000098343A (ja) 1998-09-28 2000-04-07 Toshiba Corp 色ムラ補正装置
JP2001051252A (ja) 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方法
US6791566B1 (en) * 1999-09-17 2004-09-14 Matsushita Electric Industrial Co., Ltd. Image display device
JP2002055675A (ja) 1999-09-17 2002-02-20 Matsushita Electric Ind Co Ltd 画像表示装置
US7129918B2 (en) * 2000-03-10 2006-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device and method of driving electronic device
US20020030647A1 (en) * 2000-06-06 2002-03-14 Michael Hack Uniform active matrix oled displays
JP2002123209A (ja) 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd 表示装置および映像信号補正装置
JP2002140029A (ja) 2000-11-06 2002-05-17 Semiconductor Energy Lab Co Ltd 表示装置の駆動回路およびその駆動方法
US6989812B2 (en) * 2001-02-05 2006-01-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit and driving method therefor
JP2002251170A (ja) 2001-02-23 2002-09-06 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4218249B2 (ja) * 2002-03-07 2009-02-04 株式会社日立製作所 表示装置
KR100477986B1 (ko) * 2002-04-12 2005-03-23 삼성에스디아이 주식회사 유기 전계발광 표시장치 및 이의 구동방법
JP4342200B2 (ja) * 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP3954979B2 (ja) * 2003-03-25 2007-08-08 三洋電機株式会社 投写型映像表示装置、投写型映像表示装置における光偏向装置および直視型映像表示装置
JP3871656B2 (ja) 2003-05-23 2007-01-24 シャープ株式会社 能動行列型液晶表示器及びその駆動方法
JP2006003877A (ja) 2004-05-19 2006-01-05 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
KR100688498B1 (ko) 2004-07-01 2007-03-02 삼성전자주식회사 게이트 드라이버가 내장된 액정 패널 및 이의 구동 방법
JP2006030834A (ja) 2004-07-21 2006-02-02 International Display Technology Kk オーバードライブ制御法による駆動方法及びその方法を用いた液晶ディスプレイ
JP4361844B2 (ja) * 2004-07-28 2009-11-11 富士通株式会社 液晶表示装置
JP2008107369A (ja) * 2005-02-01 2008-05-08 Sharp Corp 液晶表示装置および液晶表示駆動回路
JP5017810B2 (ja) 2005-07-15 2012-09-05 カシオ計算機株式会社 表示駆動装置及び表示装置
TWI301603B (en) * 2005-09-02 2008-10-01 Au Optronics Corp Driving system and method for liquid crystal display
FR2894369B1 (fr) * 2005-12-07 2008-07-18 Thales Sa Procede d'adressage ameliore pour un afficheur matriciel a cristaux liquides
JP2007286135A (ja) 2006-04-12 2007-11-01 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
TW200739507A (en) * 2006-03-23 2007-10-16 Toshiba Matsushita Display Tec Liquid crystal display device
US8284123B2 (en) * 2006-11-29 2012-10-09 Sharp Kabushiki Kaisha Liquid crystal display apparatus, liquid crystal display apparatus driving circuit, liquid crystal display apparatus source driver, and liquid crystal display apparatus controller
JP4369953B2 (ja) * 2006-12-06 2009-11-25 株式会社 日立ディスプレイズ 画像補正方法及び画像表示装置
KR101351386B1 (ko) 2007-03-23 2014-01-14 엘지디스플레이 주식회사 액정표시장치 및 이의 구동방법
CN101320179B (zh) 2007-06-06 2011-07-27 奇美电子股份有限公司 液晶显示装置
TWI370437B (en) * 2007-09-28 2012-08-11 Au Optronics Corp A liquid crystal display and the driving method thereof
CN101131808B (zh) 2007-10-15 2010-06-09 友达光电股份有限公司 液晶显示器及其驱动方法
WO2009064364A1 (en) * 2007-11-13 2009-05-22 Colseq, Inc. Method and apparatus for reducing erroneous color effects in a field sequential liquid crystal display
CN102160108B (zh) 2008-10-03 2013-10-30 夏普株式会社 液晶显示装置、液晶显示装置的驱动方法和电视接收机
RU2483361C2 (ru) * 2008-11-26 2013-05-27 Шарп Кабусики Кайся Жидкокристаллический дисплей, способ возбуждения жидкокристаллического дисплея и телевизионный приемник
WO2010061686A1 (ja) * 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352938A (ja) * 1998-06-09 1999-12-24 Sharp Corp 液晶表示装置及びその駆動方法並びに走査線駆動回路
JP2004046236A (ja) * 2003-09-05 2004-02-12 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方法
JP2006039542A (ja) * 2004-07-27 2006-02-09 Samsung Electronics Co Ltd アレイ基板とこれを有する表示装置、その駆動装置、及び駆動方法
WO2008139693A1 (ja) * 2007-04-26 2008-11-20 Sharp Kabushiki Kaisha 液晶表示装置
WO2008139695A1 (ja) * 2007-04-27 2008-11-20 Sharp Kabushiki Kaisha 液晶表示装置

Also Published As

Publication number Publication date
US8743047B2 (en) 2014-06-03
US20110221972A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2010061686A1 (ja) 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
WO2010061687A1 (ja) 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
JP5064567B2 (ja) 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
JP4886034B2 (ja) 液晶表示装置
KR101351373B1 (ko) 액정표시장치 및 그 구동방법
JP5426167B2 (ja) 表示装置
JP5986442B2 (ja) 表示装置および表示方法
KR20070027050A (ko) 표시 장치 및 그 구동 방법
TW201324491A (zh) 液晶顯示裝置及其驅動方法
JP5718390B2 (ja) 液晶表示装置
JP5154651B2 (ja) データ処理装置、液晶表示装置、テレビジョン受像機、およびデータ処理方法
KR20100056228A (ko) 액정 표시 장치 및 그 구동 방법
KR20060065955A (ko) 표시 장치 및 표시 장치용 구동 장치
KR100878235B1 (ko) 액정 표시 장치 및 그 구동 방법
KR20120050113A (ko) 액정 표시 장치 및 그 구동 방법
KR100931488B1 (ko) 액정표시패널
KR101217511B1 (ko) 액정표시장치 및 이의 화상구현방법
KR101097643B1 (ko) 액정표시장치 및 그 구동방법
KR20150078567A (ko) 액정표시장치
KR101084941B1 (ko) 액정표시장치 및 그 구동방법
KR20040043214A (ko) 액정표시장치의 구동장치 및 방법
KR101507162B1 (ko) 수평 전계형 액정표시장치
KR20070010524A (ko) 액정 표시 장치 및 그 구동 방법
KR101633122B1 (ko) 액정표시장치 및 그 구동방법
KR20020091354A (ko) 액정표시장치의 감마전압 보정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP