WO2010058743A1 - 筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置 - Google Patents

筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置 Download PDF

Info

Publication number
WO2010058743A1
WO2010058743A1 PCT/JP2009/069373 JP2009069373W WO2010058743A1 WO 2010058743 A1 WO2010058743 A1 WO 2010058743A1 JP 2009069373 W JP2009069373 W JP 2009069373W WO 2010058743 A1 WO2010058743 A1 WO 2010058743A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder pressure
pressure sensor
output
abnormality
drift
Prior art date
Application number
PCT/JP2009/069373
Other languages
English (en)
French (fr)
Inventor
宏通 安田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/126,959 priority Critical patent/US8260531B2/en
Priority to JP2010539220A priority patent/JP4957849B2/ja
Priority to DE112009003611.2T priority patent/DE112009003611B4/de
Priority to CN200980139006.4A priority patent/CN102171434B/zh
Publication of WO2010058743A1 publication Critical patent/WO2010058743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality detection device for an in-cylinder pressure sensor, an abnormality detection method for an in-cylinder pressure sensor, and a control device for an internal combustion engine.
  • In-cylinder pressure sensors include a piezoelectric type using a piezoelectric element as a pressure detection element and a strain gauge type using a strain gauge as a pressure detection element.
  • these types of in-cylinder pressure sensors are designed, manufactured, or mounted so as to be mounted on an internal combustion engine with a preload applied to the pressure detection element for the purpose of measuring the in-cylinder pressure with high sensitivity. Is called.
  • a piezoelectric element to which a preload is applied is mounted on a cylinder head of an internal combustion engine.
  • Japanese Unexamined Patent Publication No. 2005-291091 Japanese Unexamined Patent Publication No. 7-301145 Japanese Unexamined Patent Publication No. 2007-327502 Japanese Unexamined Patent Publication No. 2005-330904 Japanese Utility Model Publication No. 7-29436 Japanese Unexamined Patent Publication No. 2006-64675
  • the inventor of the present application has obtained the following knowledge as a result of earnest research. That is, during the operation of the internal combustion engine, an impact force may be generated along with rapid combustion due to abnormal combustion such as knocking. In some cases, the in-cylinder pressure may be much higher than normal. Thereby, sudden impact force or excessive pressure is applied to the in-cylinder pressure sensor. There is a possibility that the influence of such impact force or excessive pressure becomes so great that the in-cylinder pressure sensor is plastically deformed. Depending on the direction and magnitude of this plastic deformation, the structure of the in-cylinder pressure sensor may change in the direction of loosening the preload of the pressure detection element.
  • the present invention has been made to solve the above-described problems, and is capable of detecting an abnormality in the preload loss of the in-cylinder pressure sensor, or an abnormality detection device for the in-cylinder pressure sensor, or an abnormality detection of the in-cylinder pressure sensor. It aims to provide a method.
  • Another object of the present invention is to provide a control device for an internal combustion engine that can suppress an adverse effect on the operating state of the internal combustion engine due to an abnormal preload loss of the in-cylinder pressure sensor.
  • a first invention is an in-cylinder pressure sensor abnormality detection device comprising: An acquisition means for connecting to an in-cylinder pressure sensor including a pressure detecting element to which a preload is applied, An output abnormality detecting means for detecting whether or not a dead zone has occurred in the output characteristics of the in-cylinder pressure sensor; Drift reset means for reducing or eliminating output drift of the in-cylinder pressure sensor; After reducing or eliminating the output drift by the drift reset means, a preload loss is detected based on whether there is a dead band in the output characteristics of the in-cylinder pressure sensor or not.
  • Anomaly detection means It is characterized by providing.
  • the second invention is the first invention, wherein
  • the drift reset means includes an abnormal drift reset means for reducing or eliminating output drift of the in-cylinder pressure sensor when the output abnormality detection means detects the occurrence of the dead zone
  • the preload loss abnormality detecting means detects the preload of the in-cylinder pressure sensor based on whether or not a dead band exists in the output characteristics of the in-cylinder pressure sensor after the output drift is reduced or eliminated by the abnormal time drift reset means. It is characterized by detecting the presence or absence of a load loss abnormality.
  • the third invention is the second invention, wherein
  • the output abnormality detecting means detects whether or not a dead zone that hinders measurement of at least one of an intake pressure and an exhaust pressure of a measurement target cylinder is generated in the output characteristic of the in-cylinder pressure sensor.
  • the drift reset means reduces or eliminates the output drift to such an extent that at least a low pressure among the intake pressure and the exhaust pressure of the measurement target cylinder can be measured
  • the preload loss abnormality detecting means is based on whether or not there is a dead zone that prevents measurement of at least one of the intake pressure and the exhaust pressure of the measurement target cylinder after the output drift is reduced or eliminated by the drift reset means. The presence or absence of a preload loss abnormality of the in-cylinder pressure sensor is detected.
  • 5th invention is set in any one of 1st thru
  • An intake stroke in-cylinder pressure acquisition means for acquiring an intake stroke in-cylinder pressure that is an in-cylinder pressure during an intake stroke in a measurement target cylinder based on an output of the in-cylinder pressure sensor;
  • An exhaust stroke in-cylinder pressure obtaining means for obtaining an exhaust stroke in-cylinder pressure that is a cylinder in-pressure during an exhaust stroke in the cylinder to be measured based on an output of the in-cylinder pressure sensor;
  • the output abnormality detecting means includes pressure ratio abnormality detecting means for detecting the dead zone based on a ratio between the intake stroke in-cylinder pressure and the exhaust stroke in-cylinder pressure.
  • the sixth invention is the fifth invention, wherein Condition determining means for determining whether or not the difference between the in-cylinder pressure during the intake stroke and the in-cylinder pressure during the exhaust stroke is larger than that during normal operation of the internal combustion engine,
  • the pressure ratio abnormality detection means detects whether or not the dead zone has occurred when the condition determination means determines that the difference between the in-cylinder pressure during the intake stroke and the in-cylinder pressure during the exhaust stroke is large. It is characterized by that.
  • the seventh invention is the fifth invention, wherein Fuel cut detection means for detecting whether or not fuel cut of the internal combustion engine is being performed; Closing means for closing the intake passage of the internal combustion engine during fuel cut of the internal combustion engine, The pressure ratio abnormality detection means detects whether or not the dead zone has occurred when the intake passage is closed.
  • the output abnormality detection means detects the occurrence of the dead zone based on the detection result by the pressure ratio abnormality detection means and the magnitude or fluctuation of the output of the in-cylinder pressure sensor during the intake stroke.
  • the preload loss abnormality detecting means is an output value of the in-cylinder pressure sensor after an output drift is reduced or eliminated by the drift reset means and an upper limit value or a lower limit value of an output signal range of the in-cylinder pressure sensor.
  • the presence or absence of a preload loss abnormality of the in-cylinder pressure sensor is detected based on a comparison with an output limit value.
  • any one of the first to eighth aspects of the invention Based on the output change rate of the in-cylinder pressure sensor during the intake stroke of the cylinder to be measured, after the preload loss abnormality detecting unit has reduced or eliminated the output drift by the drift reset unit, It is characterized by detecting the presence or absence of a load loss abnormality.
  • An eleventh aspect of the invention is an internal combustion engine control apparatus for achieving the above object,
  • An in-cylinder pressure sensor including a pressure detecting element to which a preload is applied; Control means for controlling the internal combustion engine using the output of the in-cylinder pressure sensor;
  • the in-cylinder pressure sensor abnormality detection device according to any one of claims 1 to 10, wherein the in-cylinder pressure sensor is a detection target of a preload loss abnormality.
  • the preload loss abnormality of the in-cylinder pressure sensor is detected, the output of the in-cylinder pressure sensor by the control means is used so that the output of the dead band due to the preload loss abnormality is not used among the outputs of the in-cylinder pressure sensor.
  • Limiting means to limit the use of It is characterized by providing.
  • the twelfth invention is the eleventh invention, in which
  • the control means includes parameter calculation means for calculating a parameter related to control of the internal combustion engine using a part of the output generated by the in-cylinder pressure sensor.
  • the limiting means is An influence determining means for determining whether or not an influence of a preload loss abnormality has occurred in the partial output used by the parameter calculating means; When the partial output used by the parameter calculation means is affected by a preload loss abnormality, the calculation of the parameter calculation means based on the output of the in-cylinder pressure sensor is prohibited, or the parameter calculation means Sensor output use restriction means for prohibiting control of the internal combustion engine based on the calculated parameters; It is characterized by including.
  • a thirteenth aspect of the invention is a method for detecting an abnormality of an in-cylinder pressure sensor in order to achieve the above object,
  • the in-cylinder pressure sensor is based on whether or not there is a dead zone in the output characteristic of the in-cylinder pressure sensor that includes the pressure detection element to which the preload is applied, even if the in-cylinder pressure sensor is subjected to output drift elimination measures.
  • the presence or absence of a preload loss abnormality is detected.
  • the preload loss causes a dead zone in the output characteristics of the in-cylinder pressure sensor due to the subsequent removal of the preload of the in-cylinder pressure sensor.
  • the output of the in-cylinder pressure sensor can increase or decrease as a whole to the extent that a dead zone is generated (so-called output drift).
  • Such output drift can be eliminated by applying a drift eliminating measure to the in-cylinder pressure sensor.
  • the preload loss abnormality is a hardware abnormality of the in-cylinder pressure sensor, it cannot be recovered by the drift elimination measure.
  • the first invention paying attention to this point, there is provided means for detecting the presence or absence of a preload loss abnormality based on the output abnormality of the in-cylinder pressure sensor after the output drift elimination measure is taken. Thereby, it can be detected that the output abnormality of the in-cylinder pressure sensor is due to the preload loss abnormality.
  • the output drift of the in-cylinder pressure sensor is reduced or eliminated in accordance with the detection of the dead zone by the output abnormality detection means, and thereafter, the preload loss abnormality detection means detects the preload loss abnormality. Done. As a result, it is possible to quickly and surely detect that the generated dead zone cannot be eliminated even if the output drift elimination measure is taken.
  • the preload loss abnormality of the in-cylinder pressure sensor can be detected promptly. That is, the intake pressure and the exhaust pressure are relatively low in the in-cylinder pressure during the combustion cycle. Due to the nature of the preload loss abnormality, there is a high possibility that it will first appear as an obstacle to the measurement of intake pressure and exhaust pressure. According to the third invention, it is possible to quickly detect that there is a possibility that a preload loss abnormality has occurred by detecting the presence or absence of a dead zone with respect to the intake pressure or the exhaust pressure. As a result, according to the third aspect of the present invention, it is possible to quickly detect a preload loss abnormality of the in-cylinder pressure sensor.
  • the fourth aspect of the present invention it is possible to reliably detect the preload loss abnormality of the in-cylinder pressure sensor. That is, according to the fourth invention, the output drift is sufficiently recovered to such an extent that the lower pressure of the intake pressure and the exhaust pressure can be measured. That is, sufficient measures against output drift are surely performed. Thereafter, the presence / absence of a preload loss abnormality can be detected based on whether or not there is a dead zone in the output characteristics in which the output drift is sufficiently recovered. As a result, it is possible to reliably detect the preload loss abnormality of the in-cylinder pressure sensor.
  • the fifth invention it is possible to detect an output abnormality of the in-cylinder pressure sensor based on the ratio of the intake pressure and the exhaust pressure obtained from the output of the in-cylinder pressure sensor.
  • the exhaust pressure and the intake pressure are sufficiently different from each other. Therefore, it is possible to detect whether or not a dead zone is generated on both the intake pressure side and the exhaust pressure side of the output of the in-cylinder pressure sensor based on the magnitude of the value of these ratios.
  • output abnormality detection based on the ratio of the intake pressure and the exhaust pressure can be performed in a state where the difference between the intake pressure and the exhaust pressure becomes larger than that during normal operation. Thereby, the accuracy of output abnormality detection based on the ratio of the intake pressure and the exhaust pressure can be improved.
  • output abnormality detection based on the ratio of the intake pressure and the exhaust pressure can be performed in the intake passage blockage state in which the difference between the intake pressure and the exhaust pressure is further increased. Thereby, the accuracy of output abnormality detection based on the ratio of the intake pressure and the exhaust pressure can be improved.
  • the eighth invention it is possible to reliably detect the case where the influence of the preload loss hinders only the measurement of the intake pressure as the determination target of the preload loss abnormality. That is, if the degree of preload loss is significantly large, the sensitivity of the pressure detection element is reduced to the extent that measurement of both intake pressure and exhaust pressure is hindered. However, there is a possibility that the preload loss may occur to the extent that the measurement of the intake pressure is inhibited but the measurement of the exhaust pressure is not inhibited. According to the eighth invention, even in such a case, it is possible to detect as an output abnormality without omission.
  • the ninth aspect of the present invention it is possible to detect the presence or absence of a dead band that is the basis for detecting a preload loss abnormality based on the magnitude of the output value of the in-cylinder pressure sensor.
  • the following effects can be obtained. That is, when a dead zone is generated in the in-cylinder pressure sensor, the output from the in-cylinder pressure sensor should not change substantially except for noise. If the dead zone occurs first due to the preload loss, the pressure value is low (basically negative pressure) during the intake stroke. Therefore, based on the output change rate of the in-cylinder pressure sensor during the intake stroke, it is possible to detect the presence of a dead zone in the in-cylinder pressure sensor. Further, based on the output change rate of the in-cylinder pressure sensor, the dead zone of the in-cylinder pressure sensor can be detected in common under a plurality of situations where the output values of the insensitive band are different. That is, according to the tenth aspect, it is possible to flexibly cope with a plurality of situations where the output values of the dead band are different.
  • the use of a part or all of the output of the in-cylinder pressure sensor is used. Can be limited. Therefore, it is possible to suppress the in-cylinder pressure sensor output including the influence of the preload loss abnormality from adversely affecting the control of the internal combustion engine. As a result, it is possible to suppress adverse effects on the operating state of the internal combustion engine caused by the preload loss abnormality.
  • the twelfth aspect it is possible to suppress a situation where the in-cylinder pressure sensor output including the influence of the preload loss abnormality is used for the parameter calculation means. According to the twelfth aspect of the present invention, such an abnormality can be allowed when the influence of the preload loss abnormality occurs in an area where the parameter calculation means is not used. As a result, it is possible to continue using available cylinder pressure sensor outputs while suppressing adverse effects on the operating state of the internal combustion engine.
  • the thirteenth aspect it is possible to detect the presence or absence of a preload loss abnormality. That is, the output drift can be compensated by applying a drift elimination measure to the in-cylinder pressure sensor.
  • the preload loss abnormality is a hardware abnormality of the in-cylinder pressure sensor, it cannot be recovered by the drift elimination measure.
  • FIG. 1 is a diagram showing a configuration of an internal combustion engine that is a premise in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a main part of an in-cylinder pressure sensor 5.
  • FIG. It is a figure which shows typically the output characteristic 60 of the normal state in the in-cylinder pressure sensor 5, and the output characteristic 62 at the time of abnormal preload loss.
  • It is a schematic diagram for explaining the difference between the preload loss abnormality and a simple output offset caused by temperature drift or the like. It is a figure for demonstrating the difference between preload loss abnormality and temperature drift.
  • FIG. 10 is a diagram for explaining first sign determination according to the first embodiment;
  • FIG. 6 is a diagram for explaining a second sign determination according to the first embodiment.
  • FIG. 3 is a flowchart of a routine that is executed by the ECU 50 in the first embodiment. It is a figure for demonstrating the preload loss abnormality detection method concerning Embodiment 2.
  • FIG. It is a figure which shows the change rate of the value of the cylinder pressure based on the output of the cylinder pressure sensor 5 according to a crank angle.
  • 6 is a flowchart of a routine that is executed by the ECU 50 in the second embodiment.
  • 10 is a flowchart of a routine that is executed by the ECU 50 in the third embodiment. It is a figure which shows the period when the output of the cylinder pressure sensor 5 is used in the air quantity detection program of Embodiment 4.
  • FIG. 14 is a flowchart of a routine that is executed by the ECU 50 in the fourth embodiment.
  • FIG. 1 shows the configuration of an internal combustion engine that is a prerequisite for Embodiment 1 of the present invention.
  • the abnormality detection device for an in-cylinder pressure sensor according to the present invention is mounted on the internal combustion engine of FIG.
  • FIG. 1 shows only one cylinder for convenience, the present invention can be applied to a multi-cylinder internal combustion engine.
  • the internal combustion engine shown in FIG. 1 is provided with an air cleaner 1, a throttle valve 2, an air flow meter 3, and a surge tank 4 in an intake passage.
  • the downstream of the surge tank 4 communicates with the combustion chamber via an intake port and an intake valve.
  • the internal combustion engine of FIG. 1 includes an in-cylinder pressure sensor 5, a spark plug 6, and a direct fuel injection injector 7 on the internal combustion engine, that is, on the cylinder head side.
  • the internal combustion engine of FIG. 1 includes a crank angle sensor 8 and a knock sensor 9. Further, the internal combustion engine of FIG. 1 includes a catalyst 10 and a catalyst 11 in the exhaust passage.
  • An exhaust gas sensor such as an air-fuel ratio sensor is also provided but is not shown.
  • the internal combustion engine of FIG. 1 includes an ECU (Electronic Control Unit) 50.
  • the ECU 50 includes an opening TA of the throttle valve 2, an intake air amount KL AFM based on the output of the air flow meter 3, a crank angle CA based on the output of the crank angle sensor 8, a cylinder pressure P C based on the output of the cylinder pressure sensor 5, And the output KNK of knock sensor 9 is inputted, respectively.
  • the ECU 50 controls the spark plug 6 and the direct fuel injector 7 based on various control parameters such as the ignition timing SA and the fuel injection rate tau.
  • FIG. 2 is a schematic cross-sectional view of a main part of the in-cylinder pressure sensor 5.
  • the in-cylinder pressure sensor 5 includes a strain gauge element 20 whose voltage value changes according to pressure.
  • the strain gauge element 20 is attached to the housing 22.
  • the housing 22 is welded to the housing 24, and the housing 24 is further integrated with the pressure receiving diaphragm 28.
  • a transmission rod 26 is accommodated in an internal space formed by the housing 22 and the housing 24.
  • the strain gauge element 20 is a silicon chip type element in the first embodiment.
  • a load is applied to the strain gauge element 20 during the manufacturing process.
  • the strain gauge element 20 receives a load applied in advance (hereinafter referred to as “preload”).
  • the preload is mainly applied for the purpose of adjusting the zero point offset. That is, a preload is applied to the strain gauge element 20 in order to adjust the output characteristics of the in-cylinder pressure sensor 5 in accordance with the output value when the in-cylinder pressure is 0 [MPa].
  • the strain gauge element 20 can generate a voltage corresponding to the pressure with sufficient sensitivity over the pressure range in the combustion cycle in the cylinder to be measured for in-cylinder pressure.
  • the cylinder for measuring the in-cylinder pressure is also simply referred to as “measurement target cylinder” for convenience.
  • the in-cylinder pressure sensor 5 is arranged so that the lower side in FIG. 2 faces the combustion chamber side.
  • the pressure receiving diaphragm 28 receives the pressure in the cylinder, and the pressure is finally transmitted to the strain gauge element 20 side through the transmission rod 26.
  • the strain gauge element 20 is distorted, and the voltage value generated by the in-cylinder pressure sensor 5 changes. Based on this voltage value, the in-cylinder pressure can be measured.
  • FIG. 2 shows the circuit unit 30 and the drift reset unit 30a as a block diagram.
  • the output of the strain gauge element 20 is input to the circuit unit 30.
  • the circuit unit 30 has a role of outputting a change in the electrical signal of the strain gauge element 20 to the outside as an output of the in-cylinder pressure sensor 5.
  • a drift reset unit 30a for eliminating the influence of temperature drift is mounted.
  • the circuit unit 30 and the drift reset unit 30a are connected to the ECU 50.
  • the circuit unit 30 includes a drift reset unit 30 a in order to cope with the temperature drift of the in-cylinder pressure sensor 5.
  • a function for detecting temperature drift is incorporated in the ECU 50 in advance.
  • the ECU 50 controls the drift reset unit 30a as necessary to compensate for the drift elimination measure.
  • the inventor of the present application has analyzed the preload loss through earnest research and obtained the following knowledge. That is, as the in-cylinder pressure sensor, a piezoelectric type using a piezoelectric element as a pressure detecting element and a strain gauge type using a strain gauge as a pressure detecting element are widely used. These in-cylinder pressure sensors are generally mounted on an internal combustion engine with a preload applied to a pressure detection element in order to measure the in-cylinder pressure with high sensitivity. As described above, the in-cylinder pressure sensor 5 of the first embodiment is also given a preload.
  • a sudden impact force or excessive pressure may be generated during operation of the internal combustion engine. That is, an impact force is generated with the sudden combustion of knocking, or the in-cylinder pressure becomes very large as compared with the normal time.
  • the in-cylinder pressure sensor 5 may be plastically deformed under the influence of the impact force or excessive pressure. Specifically, for example, an excessive force is applied to the contact portion between the housing 22 and the transmission rod 26, and the tip of the transmission rod 26 is crushed. Further, the welded portion between the housing 22 and the housing 24 is plastically deformed. This plastic deformation may loosen the preload of the strain gauge element 20. As a result, the output sensitivity, which has been improved by the preload, is lowered, which may hinder measurement of the in-cylinder pressure.
  • FIGS. 3 to 5 are diagrams for explaining the contents of the inventor of the present invention that have performed a more detailed analysis on preload loss.
  • the abnormality of the in-cylinder pressure sensor caused by the preload loss will be described in detail with reference to FIGS.
  • FIG. 3 schematically shows an output characteristic 60 in a normal state and an output characteristic 62 in a preload loss abnormality in the in-cylinder pressure sensor 5.
  • 3 indicates the output voltage of the in-cylinder pressure sensor 5
  • the horizontal axis in FIG. 3 indicates the pressure P measured by the in-cylinder pressure sensor 5 (that is, the in-cylinder pressure of the internal combustion engine and is applied to the diaphragm 28). Pressure).
  • the voltage V0 in FIG. 3 is the zero point output of the in-cylinder pressure sensor 5 in the normal state after the zero point offset.
  • the voltage Vmin in FIG. 3 means a hardware output voltage lower limit value of the in-cylinder pressure sensor 5, that is, a lower limit of the output voltage that can be generated by the internal circuit of the in-cylinder pressure sensor 5.
  • the hardware minimum voltage value of the in-cylinder pressure sensor is also referred to as a “circuit limit value”.
  • the state where the lower limit of the output of the in-cylinder pressure sensor is lowered until it reaches the circuit limit value is also referred to as “lower output saturation”. Also called.
  • the in-cylinder pressure sensor 5 is normally subjected to a zero point offset by a preload. Accordingly, in a normal state, the output voltage of the in-cylinder pressure sensor 5 rises from the voltage V0 as the pressure P increases. However, if the preload loss occurs in the strain gauge element 20, the average value of the output voltage of the in-cylinder pressure sensor 5 is shifted to the low voltage side as a whole. When the shift amount to the low voltage side is large, the output voltage of the in-cylinder pressure sensor 5 is shifted to the extent that the output voltage of the in-cylinder pressure sensor 5 on the low pressure region side falls below the circuit limit value Vmin. As a result, a dead zone occurs like the output characteristic 62 in FIG. 3, and the pressure measurement on the low pressure side is hindered.
  • FIG. 4 is a schematic diagram for explaining the difference between a preload loss abnormality and a simple output offset caused by temperature drift or the like.
  • the output level of the in-cylinder pressure sensor is largely shifted according to the temperature (see, for example, Japanese Patent Laid-Open No. 7-301145).
  • the output of the in-cylinder pressure sensor 5 is remarkably shifted to a low voltage due to temperature drift, it is assumed that a dead zone occurs as shown by the output characteristic 70 in FIG.
  • the output characteristic 70 is generated due to the temperature drift, the output characteristic is recovered like the output characteristic 72 or 74 by performing the compensation for the temperature drift. That is, the dead zone is eliminated.
  • the output characteristic 70 is generated for the same reason as the output characteristic 60 of FIG.
  • the output characteristic does not recover even if the temperature drift compensation measure is applied. That is, even if the temperature drift compensation measure is applied, the dead zone is not eliminated as in the output characteristics 76 and 78 schematically shown in FIG.
  • FIG. 5A schematically shows the state of temperature drift.
  • the output of the in-cylinder pressure sensor corresponding to the crank angle is schematically shown.
  • the in-cylinder pressure sensor illustrated in the description of FIG. 5 has a characteristic that the output voltage drifts to the low voltage side as the ambient temperature is higher (that is, as the engine water temperature (hereinafter referred to as Thw) is higher).
  • the output characteristic 82 indicates when the engine water temperature (hereinafter referred to as Thw) is relatively low
  • the output characteristic 84 indicates when the engine water temperature Thw is relatively high.
  • FIG. 5A schematically shows the state of preload loss abnormality.
  • the degree of the lower output saturation does not depend on the temperature environment.
  • a dead zone occurs in the output of the in-cylinder pressure sensor 5.
  • the occurrence of this dead zone is a symptom similar to a temperature offset.
  • it can be compensated by a drift elimination measure by the drift reset unit 30a.
  • the preload loss abnormality is a hardware abnormality of the in-cylinder pressure sensor 5, it cannot be recovered by the drift elimination measure of the drift reset unit 30a.
  • this determination is also simply referred to as “prediction determination”. That is, in the first embodiment, it is detected whether or not there is a dead zone in the output characteristic of the in-cylinder pressure sensor 5 that can be determined as a sign of missing preload.
  • the drift reset unit 30a then performs a drift elimination measure assuming a temperature drift.
  • the drift elimination measure is performed to such an extent that the temperature drift is sufficiently eliminated.
  • the first sign determination method focuses on the relationship between the intake pressure and the exhaust pressure of the internal combustion engine.
  • the second sign determination method focuses on an output value that should be originally indicated by the in-cylinder pressure sensor 5 during the intake stroke.
  • FIG. 6 is a diagram for explaining first sign determination according to the first embodiment.
  • FIG. 6A shows the output of the in-cylinder pressure sensor 5 according to the crank angle.
  • the output level of the in-cylinder pressure sensor 5 is shifted to the low voltage side as a result of the decrease in output sensitivity.
  • the output characteristic of the in-cylinder pressure sensor 5 changes from the normal characteristic on the upper side in the figure to the lower characteristic in the figure.
  • FIG. 6B is a partially enlarged view of the area indicated by the broken line A in FIG.
  • the first sign determination method focuses on the difference between the intake pressure and the exhaust pressure. Specifically, the value of the in-cylinder pressure obtained based on the output voltage of the in-cylinder pressure sensor 5 when the crank angle is minus 180 degrees in the intake stroke is set as the intake stroke pressure Pim. Then, the value of the in-cylinder pressure obtained based on the output voltage of the in-cylinder pressure sensor 5 when the crank angle is 270 degrees in the exhaust stroke is defined as the exhaust stroke pressure Pex. Then, the ratio Pim / Pex is used for predictive judgment.
  • the ratio Pim / Pex is equal to 1. Therefore, by determining whether or not the ratio Pim / Pex is 1, it is possible to determine whether or not there is a sign that a preload loss abnormality has occurred.
  • the second sign determination is performed as follows. First, an output voltage value of the in-cylinder pressure sensor 5 representing the intake stroke pressure Pim is acquired. This voltage value is hereinafter expressed as V (Pim). When the ratio Pim / Pex indicates a value other than 1 in the first sign determination, it is determined whether or not the voltage value V (Pim) is larger than the circuit limit value Vim. When the voltage value V (Pim) does not exceed the circuit limit value Vim, that is, when the voltage value V (Pim) is low enough to match the circuit limit value Vim, a preload loss abnormality as shown in FIG. 7 occurs. There is a possibility. Therefore, also in this case, it is determined that there is a sign of abnormality in the preload loss. Thereby, the case where the dead zone of the preload loss abnormality occurs only on the intake pressure side can be included in the object of the sign determination.
  • FIG. 8 is a flowchart of a routine that the ECU 50 executes in the internal combustion engine of the first embodiment.
  • the first sign determination method described above is realized by step S100
  • the second sign determination method described above is realized by step S102.
  • step S100 a process of determining whether Pim / Pex is 1 is executed (step S100).
  • Pim / Pex which is the ratio of Pim and Pex obtained here is compared with 1. Thereby, the determination process of whether both are in agreement is made.
  • the first sign determination method described above is realized.
  • step S102 If the condition in step S100 is negative, it is subsequently determined whether or not a relationship of V (Pim)> Vmin is established (step S102).
  • the output voltage V (Pim) of the in-cylinder pressure sensor 5 which is the basis of Pim in step S100 is compared with the circuit limit value Vmin.
  • the circuit limit value Vmin is a value determined according to the specification of the in-cylinder pressure sensor 5, and is preliminarily stored in the ECU 50. If the condition in step S102 is negative, it can be determined that the current in-cylinder pressure sensor 5 does not correspond to either the first predictor determination criterion or the second predictor determination criterion. Thus, the current routine ends.
  • step S104 a drift reset is performed (step S104).
  • the drift reset unit 30 a takes measures to eliminate the temperature drift of the in-cylinder pressure sensor 5. If the sign of the in-cylinder pressure sensor 5 discovered in step S100 or S102 is due to temperature drift, the sign should be eliminated by the processing in step S104.
  • step S106 it is subsequently determined whether V (Pim) matches Vmin (step S106).
  • V (Pim) and Vmin are compared as in step S102 described above. If the condition in step S106 is negative, that is, if V (Pim) and Vmin do not match, it is determined that the preload loss abnormality found in step S100 or S102 is due to temperature drift. it can. Then, it can be determined that the abnormality of the in-cylinder pressure sensor 5 has been removed by the measure for eliminating the temperature drift in step S104. Therefore, the process proceeds to step S110, and after determining that there is no abnormality and determining that the sign is a temperature drift, the current routine ends.
  • step S108 it is determined that a preload loss abnormality has occurred. This is because V (Pim) matches Vmin even after the drift reset in step S104. Therefore, for example, it is determined that a preload loss abnormality has occurred in the in-cylinder pressure sensor 5 by, for example, turning on the abnormality flag. Thereafter, the current routine ends.
  • the ECU 50 acquires the output of the in-cylinder pressure sensor 5 so that the “acquisition means” in the first aspect of the invention is the first step according to steps S100 and S102 of the routine of FIG.
  • the “output abnormality detection means” is changed according to step S104 of the routine of FIG. 8
  • the “drift reset means” of the first invention is changed to “preliminary result” in step S106 of the routine of FIG. "Load loss abnormality detecting means” is realized respectively.
  • the in-cylinder pressure sensor 5 corresponds to the “in-cylinder pressure sensor” in the first invention
  • the strain gauge element 20 corresponds to the “pressure detection element” in the first invention. Yes.
  • the “abnormality drift resetting means” according to the second aspect of the present invention is implemented by step S104 of the routine of FIG.
  • the presence or absence of a preload loss abnormality is detected for the in-cylinder pressure sensor 5 including the strain gauge element 20.
  • the configuration of the in-cylinder pressure sensor that is an object of abnormality detection of the present invention is not limited to this in-cylinder pressure sensor 5.
  • In-cylinder pressure sensors of a type to which a preload is applied can cause a problem of preload loss regardless of strain gauge type or piezoelectric type. Therefore, the present invention can be applied to any in-cylinder pressure sensor to which a preload is applied.
  • the specific structures of the strain gauge element and the piezoelectric element are not limited in the present invention.
  • in-cylinder pressure sensors there are various structures and mounting methods for in-cylinder pressure sensors.
  • various types of in-cylinder pressure sensors such as a spark plug integration system, a fuel injector integration system, and a system in which a part of the configuration of the in-cylinder pressure sensor enters the cylinder as disclosed in JP-A-2005-291091. It is.
  • Even in these various in-cylinder pressure sensors as long as it is a type of in-cylinder pressure sensor to which a preload is applied, a problem of abnormal preload loss may occur. Therefore, as long as a preload is applied, the present invention can be widely applied to various in-cylinder pressure sensors including these exemplified methods and structures.
  • JP-A-7-301145 discloses a temperature drift.
  • Many techniques for compensating for the output drift are already known as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-327502. Therefore, various methods for compensating for the output drift of the in-cylinder pressure sensor (resolving the influence of drift) may be used as appropriate in place of the method illustrated in the first embodiment. Further, either an output compensation function that resets the influence of drift at once or an output compensation function that reduces the drift amount may be used.
  • a preload loss abnormality is detected in the internal combustion engine that controls the intake air amount by the throttle valve 2.
  • the present invention is not limited to this.
  • the preload loss abnormality can be determined using the output value of the in-cylinder pressure sensor as in the first embodiment. it can.
  • Embodiment 2 FIG.
  • the second embodiment of the present invention will be described below.
  • the second embodiment has a hardware configuration similar to that of the first embodiment. In the following, differences from the first embodiment will be mainly described, and description of overlapping items will be omitted.
  • FIG. 9 is a diagram for explaining the preload loss abnormality detecting method according to the second embodiment.
  • the output characteristic 90 in FIG. 9 is affected by the preload loss abnormality.
  • the lower output saturation point of the in-cylinder pressure sensor 5 does not necessarily become the circuit limit value Vmin.
  • the lower output saturation point may be located between the voltage V0 due to the zero point offset and the circuit limit value Vmin. Assuming that there are variations in the lower output saturation point in this way, the determination made in step S106 in FIG. 8 in the first embodiment may not function effectively.
  • FIG. 10 shows the rate of change of the in-cylinder pressure value based on the output of the in-cylinder pressure sensor 5 according to the crank angle. That is, dP / d ⁇ where P is the in-cylinder pressure and ⁇ is the crank angle.
  • FIG. 11 is a flowchart of a routine executed by the ECU 50 in the second embodiment.
  • the flowchart in FIG. 11 is the same as the flowchart in FIG. 8 according to the first embodiment except for step S206 and step S202. Hereinafter, the difference will be mainly described.
  • step S100 is first performed as in the first embodiment. If the condition in step S100 is negative, the process proceeds to step S202.
  • step S202 it is determined whether dP / d ⁇ from BTDC 180 ° to IVC is zero.
  • dP / d ⁇ is not described in detail here because a known calculation method may be used as appropriate.
  • BTDC 180 ° is the intake bottom dead center
  • IVC is the crank angle at which the intake valve is closed.
  • the output of the in-cylinder pressure sensor 5 changes during the period from BTDC 180 ° to IVC. Therefore, it can be determined that the dead zone abnormality of the in-cylinder pressure sensor 5 does not occur during the period from BTDC 180 ° to IVC. Therefore, the current routine ends.
  • step S104 a drift reset is performed as in the first embodiment.
  • the present invention is not limited only to the determination of whether or not dP / d ⁇ completely matches zero.
  • the same processing as in the second embodiment may be performed by determining whether dP / d ⁇ matches a minute value that can be regarded as substantially zero (or whether it is within a minute range).
  • Embodiment 3 has the same hardware configuration as that of the second embodiment. Hereinafter, differences from the second embodiment will be described, and description of overlapping items will be omitted.
  • the sign determination of the preload loss abnormality of the in-cylinder pressure sensor 5 is commonly performed based on the ratio of Pim and Pex. This utilizes a relationship in which the exhaust pressure is sufficiently higher than the intake pressure. However, this relationship may not be available. For example, in an internal combustion engine equipped with a supercharger, the intake pressure is high, and Pim ⁇ Pex may be satisfied. In this case, the sign determination based on the ratio of Pim and Pex may not be performed with sufficiently high accuracy.
  • FIG. 12 is a flowchart of a routine executed by the ECU 50 in the third embodiment. Except for the addition of steps S300 and S302, this is the same as the flowchart of FIG. 11 of the second embodiment.
  • step S300 it is detected whether or not the internal combustion engine is performing fuel cut. If the fuel cut is in progress, the throttle valve 2 is controlled to be completely closed (fully closed) (S302). In this state, the sign determination based on the ratio of Pim and Pex (step S100) is executed.
  • step S100 is executed after the throttle is closed by executing steps S300 and S302 of the routine of FIG. 12, thereby realizing the “condition determining means” in the sixth aspect of the invention. Yes.
  • the “fuel cut detecting means” in the seventh aspect of the routine of FIG. 12 in the routine of FIG. 12 is replaced by the “blocking means” in the seventh aspect of the invention by the process of step S302.
  • the throttle valve 2 is closed during the fuel cut.
  • the present invention is not limited to this.
  • an internal combustion engine having a variable valve system that can put an intake valve in a driving stop state is known.
  • a throttle valve such as a diesel engine or a gasoline engine that controls the intake air amount by opening characteristics of the intake valve
  • Embodiment 4 the usage status of various applications that use the output of the in-cylinder pressure sensor 5 is switched according to the degree of the preload loss abnormality.
  • preload loss occurs in the strain gauge element 20 due to plastic deformation caused by various forces resulting from knocking or the like.
  • the cause of the preload loss for example, the magnitude of the force applied to the in-cylinder pressure sensor 5 and the degree of deformation of the in-cylinder pressure sensor 5 can vary depending on the situation. Therefore, the preload loss in the strain gauge element 20 is not always uniform. In response to this, a plurality of cases may occur with respect to the degree of preload loss abnormality.
  • the usage status of various applications that use the output of the in-cylinder pressure sensor 5 is switched according to the degree of the preload loss abnormality.
  • the fourth embodiment has the same hardware configuration as that of the first embodiment. Also in the fourth embodiment, it is assumed that the preload loss abnormality determination process can be performed as in the first embodiment (or the second or third embodiment). Hereinafter, the description will focus on the differences from the first to third embodiments, and the description of overlapping items will be omitted.
  • the following application is mounted on the ECU 50.
  • A Program for detecting the intake air amount for each cylinder based on the in-cylinder pressure measurement value by the in-cylinder pressure sensor 5 (hereinafter referred to as “air amount detection program”)
  • B Combustion ratio (MFB) calculation program based on in-cylinder pressure measurement value by in-cylinder pressure sensor 5 and control program using PV k
  • c Knock detection program based on in-cylinder pressure measurement value by in-cylinder pressure sensor 5
  • a part of the output indicated by the in-cylinder pressure sensor 5 is used as a basis for calculation of the various programs. That is, the output of the in-cylinder pressure sensor 5 when the crank angle is in a specific section is used as a basis for calculation of each program. Note that the output use range, that is, the output use start crank angle and the output use end crank angle, do not necessarily match between the programs.
  • FIG. 13 is a diagram illustrating a section in which the output of the in-cylinder pressure sensor 5 is used in the air amount detection program of the fourth embodiment (hereinafter also referred to as “air amount detection section”). As shown in the figure, in the fourth embodiment, the output of the in-cylinder pressure sensor 5 in the section where the crank angle is from minus 60 degrees to plus 60 degrees is used for the air amount detection program.
  • FIG. 14 is a diagram showing a section in which the output of the in-cylinder pressure sensor 5 is used in the MFB calculation program of the fourth embodiment (hereinafter also referred to as “MFB calculation section”).
  • MFB calculation section the output of the in-cylinder pressure sensor 5 in the section where the crank angle is from minus 60 degrees to plus 60 degrees is used for the MFB calculation program.
  • the crank angle at the start point of the MFB calculation section is also referred to as ⁇ 1.
  • FIG. 15 is a diagram showing a section in which the output of the in-cylinder pressure sensor 5 is used in the knock detection program of the fourth embodiment (hereinafter also referred to as “knock gate section”).
  • knock gate section the output of the in-cylinder pressure sensor 5 in the section where the crank angle is from the angle immediately before 0 degrees to plus 60 degrees is used for the knock detection program.
  • the crank angle at the start point of the knock gate section is also referred to as ⁇ 2.
  • the in-cylinder pressure sensor 5 it is detected whether or not the in-cylinder pressure sensor 5 has a preload loss abnormality in the air amount detection section, the MFB calculation section, and the knock gate section in FIGS.
  • the execution / stop of each program is switched according to the degree of preload loss abnormality.
  • FIG. 16 is a flowchart of a routine executed by the ECU 50 in the fourth embodiment.
  • step S100 is the same as that in the first embodiment
  • steps S300 and S302 are the same as those in the third embodiment.
  • steps S300 and S302 are executed. As a result, as in the third embodiment, it is determined whether or not the conditions for performing a highly accurate predictor determination are satisfied. If the conditions for predictor determination are satisfied through steps S300 and S302, the process proceeds to step S100, where the predictor determination using the ratio of Pim and Pex is performed. If the condition in step S100 is negative, it is determined that there is no sign of a preload loss abnormality, and the current routine ends.
  • step S100 If the condition in step S100 is affirmed, it is determined that there is a sign of a preload loss abnormality. In this case, the process proceeds to step S400 and subsequent steps.
  • step S400 first, it is determined whether or not the voltage value V (Pim) matches the circuit limit value Vmin. When this condition is satisfied, there is a possibility that a preload loss abnormality that prevents measurement of the in-cylinder pressure in the intake stroke has occurred. Accordingly, a preload loss abnormality determination routine is subsequently executed (step S406). In step S406, the routine of FIG. 8 described in the first embodiment is executed. As a result, if it is determined that the preload loss is abnormal, the air amount detection program is turned off (step S408). Thereafter, the current routine ends.
  • step S402 it is determined whether or not the voltage value V (P ⁇ 1 ) matches the circuit limit value Vmin.
  • the voltage value V (P ⁇ 1 ) means an output voltage of the in-cylinder pressure sensor 5 that is a basis for calculating the in-cylinder pressure P ⁇ 1 at the crank angle ⁇ 1.
  • a preload loss abnormality determination routine is subsequently executed (step S406).
  • the control program using PV k is turned off (step S410). Thereafter, the current routine ends.
  • step S404 it is determined whether or not the voltage value V ( P ⁇ 2 ) matches the circuit limit value Vmin.
  • the voltage value V (P ⁇ 2 ) means an output voltage of the in-cylinder pressure sensor 5 that is a basis for calculating the in-cylinder pressure P ⁇ 1 at the crank angle ⁇ 2. If this condition is satisfied, there is a possibility that a preload loss abnormality that prevents measurement of the in-cylinder pressure that should be the basis of the knock detection program has occurred. Accordingly, a preload loss abnormality determination routine is subsequently executed (step S406). As a result, when it is determined that the preload loss is abnormal, the knock detection program is turned off (step S412). Thereafter, the current routine ends.
  • use of the output of the in-cylinder pressure sensor 5 can be limited as necessary when a preload loss abnormality is detected.
  • the fourth embodiment it is possible to suppress a situation where the in-cylinder pressure sensor output including the influence of the preload loss abnormality is used in the various programs. Accordingly, it is possible to suppress the output of the in-cylinder pressure sensor 5 including the influence of the preload loss abnormality from adversely affecting the control of the internal combustion engine. As a result, it is possible to suppress adverse effects on the operating state of the internal combustion engine caused by the preload loss abnormality.
  • such an abnormality can be allowed when the preload loss abnormality is affected in an area where the various programs are not used. As a result, it is possible to continue using the usable output of the in-cylinder pressure sensor 5 while suppressing adverse effects on the operating state of the internal combustion engine.
  • the ECU 50 corresponds to the “control means” in the eleventh aspect of the invention, and the processing of steps S100 to S412 in the routine of FIG.
  • the “restricting means” in the eleventh invention is realized.
  • each of the programs (a) to (c) is added to the “parameter calculating means” in the twelfth aspect of the present invention by performing steps S400, S402, and S404 in the routine of FIG.
  • steps S400, S402, and S404 corresponds to the “effect determining means” in the twelfth aspect of the invention.
  • the “sensor output use restricting means” according to the twelfth aspect of the present invention is implemented by executing the processing of steps S408, S410, and S412 in the routine of FIG.
  • routine of FIG. 16 shown in the fourth embodiment is an example, and various other modifications are possible.
  • the processing after S400, the processing after S402, and the processing after S404 may be executed in parallel. Further, the processing of S300 and S302 may be removed.
  • the in-cylinder pressure sensor 5 when the degree of the preload loss abnormality is slight, that is, when the influence of the preload loss abnormality occurs outside the use section of the various programs, the in-cylinder pressure sensor 5 Continue to use the output.
  • the present invention is not limited to this. For example, if necessary, it is possible to take measures such as prohibiting the use of the output of the in-cylinder pressure sensor 5 over the entire crank angle depending on the determination condition of the preload loss abnormality.
  • the output drift is always reduced or eliminated (or at a predetermined interval, specifically, for example, every predetermined time or at a predetermined crank angle, regardless of whether or not the in-cylinder pressure sensor has a dead zone.
  • the invention of the present application can be used even when it is performed at every predetermined cycle).
  • the present invention can be applied to a case where a routine for reducing or eliminating output drift is executed when a predetermined condition other than the occurrence of the dead zone is satisfied.
  • a process for detecting the presence or absence of a preload loss abnormality (specifically, the processing of S106, S108, and S110 in FIG. 8 may be executed.
  • timing timing, condition
  • those various known techniques may be used.
  • a drift reset routine for executing the drift reset processing in step S104 of the routine of FIG. 8 at regular intervals is created.
  • a routine for executing the processes of S106, S108, and S110 of FIG. 8 is created after the output drift is reduced or eliminated by the routine.
  • S106, S108, and S110 may be included in the drift reset routine so that the processes of S106, S108, and S110 in FIG. 8 are performed in the next step of the drift reset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 筒内圧センサの予荷重抜け異常を検出することができる、筒内圧センサの異常検出装置、または筒内圧センサの異常検出方法を提供する。筒内圧センサ(5)は、予荷重が付与された歪ゲージ素子(20)を備える。内燃機関の運転中に、吸気圧力Pimと排気圧力Pexの比Pim/Pexが1か否かを判定する。Pim/Pexが1のときには、温度ドリフトをリセットする。温度ドリフトのリセット後に、Pimの算出の基礎となるV(Pim)が回路限界値Vminに一致しているならば、予荷重抜け異常であると判定する。

Description

筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置
 この発明は、筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置に関する。
 従来、例えば、日本特開2005-291091号公報に開示されているように、内燃機関の筒内圧を測定するための筒内圧センサが知られている。筒内圧センサには、圧電素子を圧力検出素子として用いる圧電方式のものや、歪ゲージを圧力検出素子として用いる歪ゲージ式のものがある。これらの方式の筒内圧センサは、一般的に、筒内圧を感度良く測定する目的で、圧力検出素子に予荷重が与えられた状態で内燃機関に装着されるように設計、製造あるいは取り付けが行われる。特許文献1も同様に、予荷重が与えられた圧電素子を、内燃機関のシリンダヘッドに装着している。
日本特開2005-291091号公報 日本特開平7-301145号公報 日本特開2007-327502号公報 日本特開2005-330904号公報 日本実開平7-29436号公報 日本特開2006-64675号公報
 本願発明者は、鋭意研究の結果、次のような知見を得た。すなわち、内燃機関の運転中に、ノッキング等の異常燃焼による急激な燃焼に伴って、衝撃力が発生する場合がある。また、筒内圧が通常時に比べて非常に大きくなる場合もある。これにより、筒内圧センサに対して、急激な衝撃力や、過大な圧力が加わる。それらの衝撃力や過大な圧力の影響が、筒内圧センサが塑性変形してしまう程に大きくなるおそれがある。この塑性変形の方向や大きさによっては、圧力検出素子の予荷重を緩める方向へと、筒内圧センサの構造が変化するおそれがある。予荷重が緩むと、予荷重によって向上せしめていた出力感度が低下し、結果的に筒内圧の測定に支障をきたしてしまう。このような予荷重抜けに起因した筒内圧センサの異常の検出について、従来の技術では効果的な手法が見出されていなかった。
 この発明は、上記のような課題を解決するためになされたもので、筒内圧センサの予荷重抜け異常を検出することができる、筒内圧センサの異常検出装置、または、筒内圧センサの異常検出方法を提供することを目的とする。
 また、この発明の他の目的は、筒内圧センサの予荷重抜け異常に起因する内燃機関の運転状態への悪影響を、抑制することができる内燃機関の制御装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、筒内圧センサの異常検出装置であって、
 予荷重が加えられた圧力検出素子を備えた筒内圧センサに接続して、該筒内圧センサの出力を取得する取得手段と、
 前記筒内圧センサの出力特性に不感帯が発生しているか否かを検出する出力異常検出手段と、
 前記筒内圧センサの出力ドリフトの低減または解消を行うドリフトリセット手段と、
 前記ドリフトリセット手段による出力ドリフトの低減後または解消後に、前記筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出する予荷重抜け異常検出手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記ドリフトリセット手段は、前記出力異常検出手段が前記不感帯の発生を検出した場合に前記筒内圧センサの出力ドリフトの低減または解消を行う異常時ドリフトリセット手段を含み、
 前記予荷重抜け異常検出手段は、前記異常時ドリフトリセット手段による出力ドリフトの低減後または解消後に、前記筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする。
 また、第3の発明は、第2の発明において、
 前記出力異常検出手段が、前記筒内圧センサの出力特性に、計測対象気筒の吸気圧と排気圧の少なくとも一方の測定を妨げる不感帯が発生しているか否かを、検出することを特徴とする。
 また、第4の発明は、第1乃至3の発明のいずれか1つにおいて、
 前記ドリフトリセット手段が、少なくとも計測対象気筒の吸気圧と排気圧のうち低い圧力が測定できる程度まで出力ドリフトの低減または解消を行い、
 前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後に、計測対象気筒の吸気圧と排気圧の少なくとも一方の測定を妨げる不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする。
 また、第5の発明は、第1乃至4の発明のいずれか1つにおいて、
 前記筒内圧センサの出力に基づいて、計測対象気筒における吸気行程中の筒内圧である吸気行程筒内圧を取得する吸気行程筒内圧取得手段と、
 前記筒内圧センサの出力に基づいて、計測対象気筒における排気行程中の筒内圧である排気行程筒内圧を取得する排気行程筒内圧取得手段と、を備え、
 前記出力異常検出手段が、前記吸気行程筒内圧と前記排気行程筒内圧との比に基づいて、前記不感帯を検出する圧力比異常検出手段を含むことを特徴とする。
 また、第6の発明は、第5の発明において、
 内燃機関が通常運転中に比して吸気行程中の筒内圧と排気行程中の筒内圧との差が大きい状態にあるか否かを判定する条件判定手段をさらに備え、
 前記圧力比異常検出手段が、前記条件判定手段により吸気行程中の筒内圧と排気行程中の筒内圧との差が大きいと判定された場合に、前記不感帯が発生しているか否かを検出することを特徴とする。
 また、第7の発明は、第5の発明において、
 内燃機関のフューエルカットが行われているか否かを検出するフューエルカット検出手段と、
 前記内燃機関のフューエルカット中に該内燃機関の吸気通路を閉塞する閉塞手段と、を備え、
 前記圧力比異常検出手段が、前記吸気通路が閉塞されているときに、前記不感帯が発生しているか否かを検出することを特徴とする。
 また、第8の発明は、第5乃至7の発明のいずれか1つにおいて、
 前記出力異常検出手段が、前記圧力比異常検出手段による検出の結果と、吸気行程中における前記筒内圧センサの出力の大きさまたは変動と、に基づいて、前記不感帯の発生を検出することを特徴とする。
 また、第9の発明は、第1乃至8の発明のいずれか1つにおいて、
 前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後における前記筒内圧センサの出力の値と、前記筒内圧センサの出力信号の範囲の上限値または下限値である出力限界値と、の比較に基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする。
 また、第10の発明は、第1乃至8の発明のいずれか1つにおいて、
 前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後における、計測対象気筒の吸気行程中の前記筒内圧センサの出力変化率に基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする。
 第11の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
 予荷重が加えられた圧力検出素子を備えた筒内圧センサと、
 前記筒内圧センサの出力を利用して、内燃機関を制御する制御手段と、
 前記筒内圧センサを予荷重抜け異常の検出対象とする請求項1乃至10のいずれか1項に記載の筒内圧センサの異常検出装置と、
 前記筒内圧センサの予荷重抜け異常が検出された場合に、該筒内圧センサの出力のうち予荷重抜け異常による不感帯域の出力が用いられないように、前記制御手段による前記筒内圧センサの出力の使用を制限する制限手段と、
 を備えることを特徴とする。
 また、第12の発明は、第11の発明において、
 前記制御手段が、前記筒内圧センサが発する出力のうち一部の出力を用いて内燃機関の制御に関連するパラメータを算出するパラメータ算出手段を含むものであり、
 前記制限手段が、
 前記パラメータ算出手段が用いる前記一部の出力に、予荷重抜け異常の影響が生じているか否かを判定する影響判定手段と、
 前記パラメータ算出手段が用いる前記一部の出力に予荷重抜け異常の影響が生じている場合に、前記筒内圧センサの出力を基礎とした前記パラメータ算出手段の算出を禁止、または、前記パラメータ算出手段の算出したパラメータに基づく内燃機関の制御を禁止するセンサ出力使用制限手段と、
 を含むものであることを特徴とする。
 第13の発明は、上記の目的を達成するため、筒内圧センサの異常検出方法であって、
 予荷重が加えられた圧力検出素子を備える筒内圧センサの出力特性に、その筒内圧センサに出力ドリフト解消措置を施してもなお解消されない不感帯が生じているか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする。
 第1の発明によれば、筒内圧センサの予荷重抜け異常を検出することができる。すなわち、予荷重抜けは、筒内圧センサの予荷重が事後的に抜けることに起因して、筒内圧センサの出力特性に不感帯を発生させる。一方、例えば筒内圧センサ周辺の温度変化等に起因して、筒内圧センサの出力は、不感帯を生じさせる程度まで全体的に上昇あるいは低下しうる(所謂、出力ドリフト)。このような出力ドリフトは、筒内圧センサにドリフト解消措置を施すことによって解消することが可能である。しかしながら、予荷重抜け異常は、筒内圧センサのハードウェア的な異常であるため、ドリフト解消措置によって回復できるものではない。第1の発明によれば、この点に着目して、出力ドリフト解消措置を施した後の筒内圧センサの出力異常に基づいて、予荷重抜け異常の有無を検出する手段が備えられている。これにより、筒内圧センサの出力異常が予荷重抜け異常によるものであることを、検出することができる。
 第2の発明によれば、出力異常検出手段での不感帯検出に応じて筒内圧センサの出力ドリフトの低減または解消が行われ、その後、予荷重抜け異常検出手段により予荷重抜けの異常の検出が行われる。これにより、発生した不感帯が出力ドリフト解消措置を施しても解消できないものであることを、迅速且つ確実に検知することができる。
 第3の発明によれば、筒内圧センサの予荷重抜け異常を、速やかに検出することができる。すなわち、吸気圧や排気圧は、燃焼サイクル中の筒内圧のうち相対的に低圧である。予荷重抜け異常の影響は、その特質上、先ず吸気圧や排気圧の測定の阻害として現れる可能性が高い。第3の発明によれば、吸気圧や排気圧に対する不感帯の有無を検出することにより、予荷重抜け異常が発生している可能性があることをいち早く検出できる。その結果、第3の発明によれば、筒内圧センサの予荷重抜け異常を速やかに検出することができる。
 第4の発明によれば、筒内圧センサの予荷重抜け異常を、確実に検出することができる。すなわち、第4の発明によれば、出力ドリフトが、吸気圧と排気圧のうち低いほうの圧力を測定できる程度まで十分に回復される。つまり、出力ドリフトに対する十分な措置が、確実に行われる。その後、出力ドリフトが十分に回復された出力特性に不感帯があるか否かを基礎として、予荷重抜け異常の有無の検出を行うことができる。その結果、筒内圧センサの予荷重抜け異常を、確実に検出することができる。
 第5の発明によれば、筒内圧センサの出力から得た、吸気圧と排気圧の比に基づいて、筒内圧センサの出力異常を検出することができる。一般に、吸入空気量制御を行う内燃機関では、排気圧と吸気圧の大きさが十分に大きく相違する。従って、これらの比の値の大きさの大小を基礎として、筒内圧センサの出力の吸気圧側と排気圧側の両方に不感帯が発生しているか否かを検出することができる。
 第6の発明によれば、通常運転中に比して吸気圧と排気圧の差が大きくなる状態において、吸気圧と排気圧の比に基づく出力異常検出を行うことができる。これにより、吸気圧と排気圧の比に基づいた出力異常検出の精度を、向上させることができる。
 第7の発明によれば、吸気圧と排気圧の差が一層大きくなる吸気通路閉塞状態において、吸気圧と排気圧の比に基づく出力異常検出を行うことができる。これにより、吸気圧と排気圧の比に基づいた出力異常検出の精度を、向上させることができる。
 第8の発明によれば、予荷重抜けの影響が吸気圧の測定のみを妨げているような場合を、予荷重抜け異常の判定対象として確実に検出することができる。すなわち、予荷重抜けの程度が著しく大きければ、吸気圧と排気圧の両方の測定が妨げられる程度まで、圧力検出素子の感度が低下する。しかしながら、吸気圧の測定は阻害するものの排気圧の測定までは阻害しない程度に、予荷重抜けが発生する場合もありうる。第8の発明によれば、このような場合も、もれなく、出力異常として検出することができる。
 第9の発明によれば、筒内圧センサの出力の値の大きさに基づいて、予荷重抜け異常検出の基礎となる不感帯の有無の検出を行うことができる。
 第10の発明によれば、次の効果が得られる。すなわち、筒内圧センサに不感帯が生じている場合、筒内圧センサからの出力は、ノイズ等を別にすれば実質的に変化しないはずである。予荷重抜けにより不感帯が最初に発生するとすれば、圧力値が低い(基本的に負圧の)吸気行程中である。よって、吸気行程中における筒内圧センサの出力変化率を基礎とすれば、筒内圧センサに不感帯が存在することを検出できる。更に、筒内圧センサの出力変化率を基礎とすれば、不感帯域の出力値が相違する複数の状況下で、筒内圧センサの不感帯を共通に検出できる。つまり、第10の発明によれば、不感帯域の出力値が相違する複数の状況に、柔軟に対処できる。
 第11の発明によれば、第1乃至第10の発明にかかる筒内圧センサの異常検出装置によって予荷重抜け異常が検出された場合に、筒内圧センサの出力の一部あるいは全部について、その使用を制限することができる。従って、予荷重抜け異常の影響を含む筒内圧センサ出力が、内燃機関の制御に悪影響を及ぼすことを抑制することができる。その結果、予荷重抜け異常に起因する内燃機関の運転状態への悪影響を、抑制することができる。
 第12の発明によれば、予荷重抜け異常の影響を含む筒内圧センサ出力がパラメータ算出手段に使用されてしまう事態を、抑制することができる。そして、第12の発明によれば、パラメータ算出手段が使用しない領域で予荷重抜け異常の影響が出ている場合には、このような異常は許容することができる。その結果、内燃機関の運転状態への悪影響を抑制しつつ、筒内圧センサ出力のうち使用可能なものについて使用を継続することができる。
 第13の発明によれば、予荷重抜け異常の有無を検出することができる。すなわち、出力ドリフトは、筒内圧センサに対しドリフト解消措置を施すことによって補償することが可能である。しかしながら、予荷重抜け異常は、筒内圧センサのハードウェア的な異常であるため、ドリフト解消措置によって回復できるものではない。第13の発明によれば、出力ドリフト解消措置を施した後にもなお筒内圧センサの不感帯が存在しているか否かに基づいて、筒内圧センサの予荷重抜け異常を検出することができる。
本発明の実施の形態1において前提となる内燃機関の構成を示す図である。 筒内圧センサ5の要部の模式的な断面図である。 筒内圧センサ5における、正常状態の出力特性60と予荷重抜け異常時の出力特性62とを、模式的に示す図である。 予荷重抜け異常と、温度ドリフト等に起因する単純な出力オフセットとの違いを説明するための模式的な図である。 予荷重抜け異常と、温度ドリフトとの違いを説明するための図である。 実施の形態1にかかる、第1の予兆判定を説明するための図である。 実施の形態1にかかる、第2の予兆判定を説明するための図である。 実施の形態1においてECU50が実行するルーチンのフローチャートである。 実施の形態2にかかる予荷重抜け異常検出手法を説明するための図である。 クランク角に応じた、筒内圧センサ5の出力に基づく筒内圧の値の変化率を示す図である。 実施の形態2においてECU50が実行するルーチンのフローチャートである。 実施の形態3においてECU50が実行するルーチンのフローチャートである。 実施の形態4の空気量検出プログラムにおいて筒内圧センサ5の出力が使用される期間を示す図である。 実施の形態4のMFB算出プログラムにおいて筒内圧センサ5の出力が使用される期間を示す図である。 実施の形態4のノック検出用プログラムにおいて筒内圧センサ5の出力が使用される期間を示す図である。 実施の形態4においてECU50が実行するルーチンのフローチャートである。
実施の形態1. 
[実施の形態1の構成]
(内燃機関のシステム構成)
 図1は、本発明の実施の形態1において前提となる内燃機関の構成を示す。実施の形態1では、図1の内燃機関に、本発明にかかる筒内圧センサの異常検出装置が搭載される。図1では便宜的に1つの気筒のみを示すが、多気筒内燃機関に対して本発明を適用することができる。
 図1に示す内燃機関は、吸気通路に、エアクリーナ1、スロットルバルブ2、エアフローメータ3およびサージタンク4を備えている。サージタンク4の下流は、吸気ポートおよび吸気バルブを介在させて、燃焼室に連通する。また、図1の内燃機関は、内燃機関上部すなわちシリンダヘッド側に、筒内圧センサ5、スパークプラグ6および燃料直噴インジェクタ7を備えている。図1の内燃機関は、クランク角センサ8、ノックセンサ9を備えている。また、図1の内燃機関は、排気通路に、触媒10および触媒11を其々備えている。なお、空燃比センサなどの排気ガスセンサも備えるが、図示は省略する。
 図1の内燃機関は、ECU(Electronic Control Unit)50を備えている。ECU50には、スロットルバルブ2の開度TA、エアフローメータ3の出力に基づく吸入空気量KLAFM、クランク角センサ8の出力に基づくクランク角CA、筒内圧センサ5の出力に基づく筒内圧P、および、ノックセンサ9の出力KNKが、それぞれ、入力される。また、ECU50は、スパークプラグ6、燃料直噴インジェクタ7を、点火時期SAや燃料噴射率tauといった各種の制御パラメータに基づいて制御する。
(筒内圧センサ5の構成)
 図2は、筒内圧センサ5の要部の模式的な断面図である。筒内圧センサ5は、圧力に応じて電圧値が変化する歪ゲージ素子20を備えている。歪ゲージ素子20は、ハウジング22に取り付けられている。図2に示すように、ハウジング22はハウジング24と溶接接合し、ハウジング24は更に受圧ダイアフラム28と一体となる。ハウジング22とハウジング24とにより形成された内部空間には、伝達ロッド26が収納されている。
 歪ゲージ素子20は、実施の形態1では、シリコンチップ型の素子である。歪ゲージ素子20には、製造工程の途中で荷重が与えられる。実際に筒内圧センサ5に搭載されて内燃機関に装着される際に、歪ゲージ素子20は予め付与された荷重(以下、「予荷重」と称す)を受けている。予荷重は、主に、ゼロ点オフセット調整の目的で付与される。すなわち、筒内圧が0[MPa]での出力値に合わせて筒内圧センサ5の出力特性を調整するために、歪ゲージ素子20に予荷重が付与される。予荷重が付与されることにより、歪ゲージ素子20は、筒内圧を測定する対象の気筒における燃焼サイクル中の圧力範囲に渡って、十分な感度で、圧力に応じた電圧を発することができる。なお、以下、筒内圧を測定する対象の気筒のことを、便宜的に、単に「測定対象気筒」とも称す。
 筒内圧センサ5は、図2紙面下方側が燃焼室側を向くように配置される。受圧ダイアフラム28が気筒内の圧力を受けて、その圧力が伝達ロッド26を介して最終的に歪ゲージ素子20側へと伝達される。その結果、歪ゲージ素子20が歪み、筒内圧センサ5の発する電圧値が変化する。この電圧値に基づいて、筒内圧を測定することができる。
 図2には、回路部30およびドリフトリセット部30aが、ブロック図として示されている。歪ゲージ素子20の出力は、回路部30に入力される。この回路部30は、歪ゲージ素子20の電気信号の変化を、筒内圧センサ5の出力として外部に出力する役割を有する。また、実施の形態1では、温度ドリフトの影響を解消するためのドリフトリセット部30aが搭載されている。回路部30およびドリフトリセット部30aは、ECU50と接続している。
 一般的に、例えば筒内圧センサ周辺の温度変化等に起因して、筒内圧センサの出力が全体的に上昇あるいは低下することが公知である(所謂、出力ドリフト)。温度変化に応じたドリフトは温度ドリフトと称される。筒内圧センサの出力レベルが温度ドリフトによって大きくシフトすることが、問題視されることが多い。実施の形態1では、筒内圧センサ5の温度ドリフトに対処すべく、回路部30がドリフトリセット部30aを備えている。そして、ECU50に、予め、温度ドリフトを検出する機能が組み込まれている。実施の形態1では、ECU50が必要に応じてドリフトリセット部30aの制御を行うことにより、ドリフト解消措置によって補償することが可能である。
 なお、筒内圧センサの出力ドリフトを解消するための構成には、限定はない。すなわち、ハードウェア的なもの、ソフトウェア的なものを問わず、筒内圧センサの構成に応じた様々な周辺回路や出力ドリフト解消手法が、従来知られている。それらの公知技術を適宜に使用または応用することにより、温度ドリフトを解消するための機能を内燃機関に搭載すればよい。
[実施の形態1にかかる異常判定]
(予荷重抜け異常の分析結果)
 本願発明者は、鋭意研究により予荷重抜けの分析を行い、下記の知見を得た。すなわち、筒内圧センサには、圧電素子を圧力検出素子として用いる圧電方式のものや、歪ゲージを圧力検出素子として用いる歪ゲージ式のものが広く用いられている。これらの方式の筒内圧センサは、一般的に、筒内圧を感度良く測定するために、圧力検出素子に予荷重が与えられた状態で内燃機関に装着される。前述したように、実施の形態1の筒内圧センサ5も、予荷重を付与されたものである。
 内燃機関の運転中に、急激な衝撃力や、過大な圧力が発生する可能性がある。すなわち、ノッキングの急激な燃焼に伴って衝撃力が発生したり、筒内圧が通常時に比べて非常に大きくなってしまったりする。実施の形態1でも、それらの衝撃力や過大な圧力の影響を受けて、筒内圧センサ5が塑性変形してしまうおそれがある。具体的には、例えば、ハウジング22と伝達ロッド26の接触部分に過大な力が加わり、伝達ロッド26の先端が潰れてしまう。また、ハウジング22とハウジング24との溶接部が塑性変形してしまう。この塑性変形が、歪ゲージ素子20の予荷重を緩めるおそれがある。その結果、予荷重によって向上せしめていた出力感度が低下し、筒内圧の測定に支障をきたすおそれがある。
 図3乃至図5は、本願発明者が予荷重抜けについて更に詳細な分析を行った内容を説明するための図である。以下、図3乃至図5を用いて、予荷重抜けによりもたらされる筒内圧センサの異常を、詳細に説明する。
 図3は、筒内圧センサ5における、正常状態の出力特性60と予荷重抜け異常時の出力特性62とを、模式的に示す。図3の縦軸は、筒内圧センサ5の出力電圧を示し、図3の横軸は、筒内圧センサ5が計測している圧力P(すなわち、内燃機関の筒内圧であり、ダイアフラム28へ加わる圧力)を示す。図3における電圧V0は、ゼロ点オフセット後の正常状態における筒内圧センサ5のゼロ点出力である。一方、図3の電圧Vminは、筒内圧センサ5のハードウェア的な出力電圧下限値、すなわち、筒内圧センサ5の内部回路が発することができる出力電圧の下限を意味する。以下、便宜のため、筒内圧センサのハードウェア的な最低電圧値を、「回路限界値」とも称す。また、筒内圧センサの出力の下限が回路限界値となるまで低下している状態を下方出力飽和」とも称し、下方出力飽和が起きている部分の筒内圧センサの出力を「下方出力飽和点」とも称す。
 前述したように、筒内圧センサ5は、通常、予荷重によりゼロ点オフセットが施されている。従って、正常な状態では、筒内圧センサ5の出力電圧は、圧力Pの増大に応じて、電圧V0から上昇する。しかしながら、歪ゲージ素子20に予荷重抜けが生じてしまうと、筒内圧センサ5の出力電圧の平均的な値が、低電圧側に全体的にシフトしてしまう。このような低電圧側へのシフト量が大きいと、低圧力領域側における筒内圧センサ5の出力電圧が回路限界値Vminを下回る程度まで、筒内圧センサ5の出力電圧がシフトしてしまう。その結果、図3の出力特性62のように不感帯が発生してしまい、低圧力側の圧力測定が妨げられてしまう。
 図4は、予荷重抜け異常と、温度ドリフト等に起因する単純な出力オフセットとの違いを説明するための模式的な図である。温度ドリフトでは、筒内圧センサの出力レベルが温度に応じて大きくシフトする(例えば、特開平7-301145号公報参照)。温度ドリフトにより筒内圧センサ5の出力が低電圧に著しくシフトした場合、図4の出力特性70のように不感帯が生じることが想定される。ここで、温度ドリフトに起因して出力特性70が生じたのならば、温度ドリフトの補償措置を行うことにより、出力特性72あるいは74のように出力特性は回復する。すなわち、不感帯が解消される。しかしながら、出力特性70が、図3の出力特性60と同じ理由で、すなわち予荷重抜け異常によって生じたのならば、温度ドリフト補償措置を施しても出力特性は回復しない。すなわち、温度ドリフト補償措置を施しても、図4に模式的に示した出力特性76や78のように、不感帯が解消されない。
 図5を用いて、予荷重抜け異常と、温度ドリフトとの違いを、更に詳しく説明する。図5(a)は、温度ドリフトの様子を模式的に示す。例として、クランク角に応じた筒内圧センサの出力を模式的に示す。図5の説明で例示する筒内圧センサは、周辺温度が高いほど(つまりエンジン水温(以下Thwで表す)が高いほど)、出力電圧が低電圧側にドリフトする特性を持つものとする。出力特性82はエンジン水温(以下Thwで表す)が相対的に低いとき、出力特性84はエンジン水温Thwが相対的に高いときを示す。ここでは、筒内圧センサの出力が、温度ドリフトによって、正常な出力特性80から出力特性82または84へと変化した場合を考える。なお、温度変化とドリフトの方向の関係がここで述べるケースと反対となる筒内圧センサも考えられる。しかし、温度変化に応じて特定の方向に出力がドリフトする点で両者は同じである。よって、重複説明を避けるため、ここでは周辺温度が高いほど出力電圧が低電圧側にドリフトする場合のみを説明する。
 温度ドリフトの場合には、ドリフトの程度が筒内圧センサの周辺温度に応じて変化する。よって、図5(a)に示すように、エンジン水温Thwが低温のときには不感帯の終点が点83になるが、エンジン水温Thwが高温のときには不感帯の終点が点85になる。つまり、温度環境の変化に追随して、下方出力飽和の程度が変化する。一方、図5(b)は、予荷重抜け異常の様子を模式的に示す。予荷重抜け異常による出力特性86の場合には、図5(a)温度ドリフトの場合とは異なり、温度環境には下方出力飽和の程度が依存しない。このように、予荷重抜け異常と、温度ドリフトとの間には、明確な相違がある。
(実施の形態1にかかる予荷重抜け異常検出の基本的動作)
 本願発明者は、上記のような知見に基づいて、予荷重抜け異常を検出する効果的な手法を見出した。以下、実施の形態1にかかる異常検出の基本的動作を説明する。
 上述したように、筒内圧センサ5に予荷重抜け異常が生じた場合、筒内圧センサ5の出力に不感帯が発生する。記述したように、この不感帯の発生は、温度オフセットに類似した症状である。しかしながら、温度ドリフトであれば、ドリフトリセット部30aによるドリフト解消措置によって補償することが可能である。これに対し、予荷重抜け異常は、筒内圧センサ5のハードウェア的な異常であるため、ドリフトリセット部30aのドリフト解消措置によって回復できるものではない。
 そこで、実施の形態1では、先ず、予荷重抜け異常が生じている予兆があるかどうかを判定する(以下、この判定を、単に「予兆判定」とも称す)。すなわち、実施の形態1では、筒内圧センサ5の出力特性に、予荷重抜けの予兆と判断できるような不感帯が発生しているか否かを検出する。
 上記の不感帯が検出された場合には、続いて、ドリフトリセット部30aが、温度ドリフトを想定したドリフト解消措置を行う。ここでは、不感帯が温度ドリフトに起因するものであるとした場合に温度ドリフトが十分に解消される程度に、ドリフト解消措置が行われる。
 その後、再度、筒内圧センサ5の出力特性に、不感帯が存在しているか否かが調査される。ドリフト解消措置を経てもなお不感帯が存在している場合には、この不感帯は出力オフセットによるものではなく予荷重抜け異常によるものであると判断することができる。
[実施の形態1にかかる予荷重抜け異常の予兆判定]
 ここで、実施の形態1にかかる予兆判定の具体的手法を説明する。実施の形態1では、2つの予兆判定手法を組み合わせる。第1の予兆判定手法は、内燃機関の吸気圧と排気圧との関係に着目したものである。第2の予兆判定手法は、吸気行程中において筒内圧センサ5が本来示すべき出力値に着目したものである。
(1)実施の形態1にかかる第1の予兆判定手法
 図6は、実施の形態1にかかる、第1の予兆判定を説明するための図である。図6(a)は、クランク角に応じた筒内圧センサ5の出力を示す。これまで述べたように、予荷重抜け異常が生ずると、出力感度が落ちることにより筒内圧センサ5の出力レベルが全体的に低電圧側にシフトする。これに伴い、図6(a)に示すように、図中の上側の正常な特性から、図中の下側の特性へと、筒内圧センサ5の出力特性が変化する。図6(b)は、図6(a)の破線Aの領域を、部分的に拡大した図である。
 一般的に、スロットルバルブ等で吸入空気量制御を行う自然吸気型の内燃機関では、吸気圧に比して排気圧が十分に大きくなると考えることができる。第1の予兆判定手法は、この吸気圧と排気圧の差に着目したものである。具体的には、吸気行程においてクランク角=マイナス180度であるときの筒内圧センサ5の出力電圧に基づいて得た筒内圧の値を、吸気行程圧力Pimとする。そして、排気行程においてクランク角が270度であるときの筒内圧センサ5の出力電圧に基づいて得た筒内圧の値を、排気行程圧力Pexとする。そして、それらの比Pim/Pexを、予兆判定に用いる。
 既述したように、吸気圧に比して排気圧が十分に大きい内燃機関であれば、Pim<<Pexの関係が成り立っているはずである。従って、筒内圧センサ5が正常であるならば、比Pim/Pexは1よりも十分に小さくなるはずである。一方、予荷重抜け異常時の出力特性では、吸気行程と排気行程の両方において、不感帯の影響により、出力電圧が回路限界値Vminを示す(図6(a)(b)の図中下側の出力特性を参照)。従って、この場合には、比Pim/Pexが1に一致する。そこで、比Pim/Pexが1であるか否かを判定することにより、予荷重抜け異常が生じている予兆があるかどうかを判定することができる。
(2)実施の形態1にかかる第2の予兆判定手法
 次に、図7を用いて、第2の予兆判定手法を説明する。吸気圧に比して排気圧が十分に大きい内燃機関である場合、予荷重抜けが生じた場合の筒内圧センサ5の出力レベルの変化が図7のようになる場合がある。すなわち、吸気圧は正常に測定できないものの、排気圧は測定できる程度に、筒内圧センサ5の感度が残る場合がある。その結果、吸気圧の測定が妨げられる程度まで予荷重抜けが発生しているにもかかわらず、比Pim/Pexが1以外の値を示す。従って、第1の予兆判定手法の判定基準のみに依拠すると、図7のような予荷重抜け異常を逃がすおそれがある。
 そこで、実施の形態1では、第2の予兆判定を、次のように行う。先ず、吸気行程圧力Pimを表す筒内圧センサ5の出力電圧値を取得する。この電圧値を、以下V(Pim)と表す。そして、上記の第1の予兆判定において比Pim/Pexが1以外の値を示している場合に、この電圧値V(Pim)が回路限界値Vimよりも大きいか否かを判定する。電圧値V(Pim)が回路限界値Vimを超えていない、つまり電圧値V(Pim)が回路限界値Vimと一致する程度に低い場合には、図7のような予荷重抜け異常が生じている可能性がある。よって、この場合にも、予荷重抜け異常の予兆があると判断する。これにより、吸気圧側にのみ予荷重抜け異常の不感帯が生ずるケースを、予兆判定の対象に含ませることができる。
[実施の形態1の具体的処理]
 以下、実施の形態1にかかる具体的処理を説明する。図8は、実施の形態1の内燃機関においてECU50が実行するルーチンのフローチャートである。図8のフローチャートにおいて、ステップS100により、上述した第1の予兆判定手法が、ステップS102により、上述した第2の予兆判定手法が、それぞれ実現されている。
 図8のルーチンでは、先ず、Pim/Pexが1であるか否かを判定する処理が実行される(ステップS100)。このステップでは、先ず、クランク角センサ8がクランク角=マイナス180度を示したときの筒内圧センサ5の出力に基づいて、ECU50が吸気行程圧力Pimを算出する。続いて、クランク角センサ8がクランク角=270度を示したときの筒内圧センサ5の出力に基づいて、ECU50が排気行程圧力Pexを算出する。なお、前回の燃焼サイクルの排気行程圧力と、今回の燃焼サイクルの吸気行程圧力とを用いることもできる。その後、ここで得られたPimとPexの比であるPim/Pexが1と比較される。これにより、両者が一致しているか否かの判定処理がなされる。このステップS100により、上述した第1の予兆判定手法が実現される。
 ステップS100の条件が否定された場合には、続いて、V(Pim)>Vminの関係が成立しているか否かが判定される(ステップS102)。このステップでは、ステップS100におけるPimの基礎となった、筒内圧センサ5の出力電圧V(Pim)と、回路限界値Vminとが、比較される。回路限界値Vminは、筒内圧センサ5の仕様に応じて定まる値でり、予めECU50が記憶しているものとする。ステップS102の条件が否定された場合には、現時点の筒内圧センサ5は、第1の予兆判定基準と第2の予兆判定基準のいずれにも該当しないと判断できる。よって、今回のルーチンが終了する。
 ステップS100とステップS102のうち少なくとも一方の条件が肯定された場合には、ドリフトリセットが行われる(ステップS104)。このステップでは、ドリフトリセット部30aが、筒内圧センサ5の温度ドリフトを解消する措置を取る。ステップS100またはS102にて発見された筒内圧センサ5の予兆が温度ドリフトによるものであれば、このステップS104の処理によってその予兆は解消される筈である。
 ステップS104の後、続いて、V(Pim)がVminと一致しているか否かの判定が行われる(ステップS106)。このステップでは、前述したステップS102と同様に、V(Pim)とVminの比較が行われる。ステップS106の条件が否定された場合、すなわち、V(Pim)とVminが不一致である場合には、ステップS100またはS102にて見出された予荷重抜け異常が、温度ドリフトによるものであったと判断できる。そして、ステップS104による温度ドリフトの解消措置によって、筒内圧センサ5の異常は取り払われたと判断できる。従って、ステップS110へと移行し、異常なしとの判定、および、予兆は温度ドリフトであったとの判定がなされた後、今回のルーチンが終了する。
 一方、ステップS106の条件が肯定された場合には、ステップS108へと移行する。ステップS108では、予荷重抜け異常が発生しているとの判定が下される。ステップS104のドリフトリセット後であるにもかかわらず、V(Pim)がVminに一致しているからである。従って、例えば、異常フラグがONとされるなどして、筒内圧センサ5に予荷重抜け異常が発生したことが確定される。その後、今回のルーチンが終了する。
 以上の処理によれば、筒内圧センサ5の予荷重抜け異常を検出することができる。また、実施の形態1によれば、第1、2の予兆判定手法の両方を用いることによって、予荷重抜け異常の予兆を確実に検出することができる。
 尚、上述した実施の形態1では、ECU50が筒内圧センサ5の出力を取得することにより、前記第1の発明における「取得手段」が、図8のルーチンのステップS100およびS102により、前記第1の発明における「出力異常検出手段」が、図8のルーチンのステップS104により、前記第1の発明における「ドリフトリセット手段」が、図8のルーチンのステップS106により、前記第1の発明における「予荷重抜け異常検出手段」が、それぞれ実現されている。また、実施の形態1では、筒内圧センサ5が、前記第1の発明における「筒内圧センサ」に、歪ゲージ素子20が、前記第1の発明における「圧力検出素子」に、それぞれ相当している。
 また、上述した実施の形態1では、図8のルーチンのステップS104により、前記第2の発明における「異常時ドリフトリセット手段」が実現されている。
[実施の形態1の変形例]
(第1変形例)
 実施の形態1では、歪ゲージ素子20を備える筒内圧センサ5を対象に、予荷重抜けの異常の有無を検出した。しかしながら、本発明の異常検出の対象とされる筒内圧センサの構成は、この筒内圧センサ5に限定されるものではない。予荷重が付与されるタイプの筒内圧センサであれば、歪ゲージ式、圧電式を問わず、予荷重抜けの問題は生じうる。したがって、予荷重が付与されるタイプの筒内圧センサであれば、本発明を適用することができる。このように、歪ゲージ素子や圧電素子の具体的構造は、本発明では限定されない。
 また、筒内圧センサの構造や取り付け方式には、様々なものがある。例えば、点火プラグ一体化方式、燃料インジェクタ一体化方式、特開2005-291091号公報のように気筒内に筒内圧センサの構成の一部が進入する方式など、様々なタイプの筒内圧センサが公知である。これらの各種の筒内圧センサにおいても、予荷重が付与されるタイプの筒内圧センサである限り、予荷重抜け異常の問題が発生しうる。従って、予荷重が付与されているのであれば、例示したこれらの方式、構造を含む様々な筒内圧センサに、広く、本発明を適用することができる。
 また、筒内圧センサの出力ドリフトの発生に関して、圧電式、歪ゲージ式を問わず、既に多くの文献が公知である。例えば温度ドリフトに関して、特開平7-301145号公報が公知である。また、出力ドリフトを補償する技術も、例えば、特開2007-327502号公報に開示されているように、既に多くの技術が公知となっている。従って、筒内圧センサの出力ドリフトの補償(ドリフトの影響の解消)を行うための各種手法を、実施の形態1で例示した手法に代えて、適宜用いても良い。また、ドリフトの影響を一括にリセットするタイプの出力補償機能、ドリフト量を低減するタイプの出力補償機能のいずれでもよい。
 なお、図3乃至5では図示しなかったが、筒内圧センサ5に断線故障やショートが発生すると、出力特性はクランク角の全域にわたって基本的に平坦になる。これに対し、図3乃至5で示したように、予荷重抜けでは感度を示す領域(具体的には、筒内圧が高い圧縮行程から膨張行程にかけての領域)が残存しうる。つまり、予荷重抜け異常の場合には、筒内圧センサ5が筒内圧に応じた出力を発しているかのように誤認される可能性がある。この点で、断線故障やショートといった故障モードと、予荷重抜け異常との間には、相違がある。
 なお、実施の形態1では、スロットルバルブ2による吸入空気量制御を行う内燃機関において、予荷重抜け異常を検出した。しかしながら、本発明はこれに限られるものではない。例えば、スロットルバルブではなく吸気バルブの開弁特性を精密に制御することにより吸入空気量制御を行うタイプの内燃機関もある。このようなものでも、吸気圧と排気圧との差が大きい運転環境下にあれば、実施の形態1と同様に、筒内圧センサの出力値を利用して予荷重抜け異常を判定することができる。
実施の形態2.
 以下、本発明の実施の形態2を説明する。実施の形態2は、実施の形態1と同様のハードウェア構成を備える。以下、主に実施の形態1との相違点を説明し、重複する事項については説明を省略する。
 図9は、実施の形態2にかかる予荷重抜け異常検出手法を説明するための図である。図9における出力特性90は、予荷重抜け異常の影響を受けている。予荷重抜け異常が発生した場合、筒内圧センサ5の下方出力飽和点が必ずしも回路限界値Vminになるとは限らない。図9の出力特性90のように、ゼロ点オフセットによる電圧V0と、回路限界値Vminとの間に、下方出力飽和点が位置する場合がありうる。このように下方出力飽和点にばらつきがあることを想定すると、実施の形態1において図8のステップS106にて行った判定が、有効に機能しなくなるおそれがある。
 本願発明者は、吸気行程中の筒内圧センサ5の出力の挙動に着目した。図10は、クランク角に応じた、筒内圧センサ5の出力に基づく筒内圧の値の変化率を示す。すなわち、筒内圧をP、クランク角をθとした場合の、dP/dθを示す。図9に示すように、予荷重抜け異常の出力特性は、吸気行程中にdP/dθ=0を保持している。これは、正常な出力特性とは明確に相違する。dP/dθがゼロになるか否かは、図9で述べたような下方出力飽和点のばらつきとは関係がない。つまり、dP/dθ=0の条件は、下方出力飽和点が異なる複数の筒内圧センサに対し、共通に適用できる判断基準である。そこで、実施の形態2では、実施の形態1において図8のステップS106にて行った判定に代えて、このdP/dθを用いた判定を行うこととした。
 図11は、実施の形態2においてECU50が実行するルーチンのフローチャートである。図11のフローチャートは、ステップS206とステップS202を除き、実施の形態1にかかる図8のフローチャートと同じである。以下、相違点を中心に説明する。
 図11のルーチンでは、先ず、実施の形態1と同様にステップS100が行われる。ステップS100の条件が否定された場合、ステップS202に移る。ステップS202では、BTDC180°からIVCにかけてのdP/dθが、零であるか否かが判定される。dP/dθの具体的数値の算出の仕方については公知の演算手法を適宜利用すればよいので、ここでは詳細な説明は行わない。ここで、BTDC180°とは、すなわち吸気下死点であり、IVCとは、すなわち吸気弁が閉弁するクランク角を示す。このステップの条件が否定されている場合は、BTDC180°からIVCにかけての期間に筒内圧センサ5の出力が変化している。従って、BTDC180°からIVCにかけての期間に、筒内圧センサ5の不感帯異常は生じていないと判断することができる。従って、今回のルーチンが終了する。
 ステップS202の条件が肯定された場合には、ステップS104に移る。ステップS104では、実施の形態1と同様に、ドリフトリセットが行われる。その後、実施の形態2では、ステップS206に処理が移行する。ステップS206では、ステップ202で行ったのと同じ処理が再度実行される。即ち、BTDC180°からIVCにかけてのdP/dθが、零であるか否かが判定される。ステップS206で再度dP/dθ=0の成立が認められた場合には、ステップS108に移行して実施の形態1と同様に予荷重抜け異常ありとの判定が下される。また、ステップS206の条件が否定された場合には、ステップS110に移行して実施の形態1と同様に予荷重抜け異常なしとの判定が下される。その後、今回のルーチンが終了する。
 以上の処理によれば、吸気行程中における筒内圧センサの出力変化を基礎として、筒内圧センサの予荷重抜け異常を検出することができる。dP/dθを基礎とすれば、筒内圧センサが不感帯域で示す出力値の大きさが相違する複数の状況下で、筒内圧センサの不感帯を共通に検出できる。以上のように、実施の形態2によれば、予荷重抜け異常の予兆判定や、予荷重抜け異常検出を、筒内圧センサ5の出力変化率を用いて効果的に行うことができる。なお、本発明は、dP/dθが完全に零に一致するか否かという判定のみに限らない。例えば、dP/dθが、実質的に零とみなせる微小値に一致するか否か(若しくは微小範囲内であるか否か)という判定によって、実施の形態2と同様の処理を行っても良い。
実施の形態3.
 実施の形態3は、実施の形態2と同様のハードウェア構成を備える。以下、実施の形態2との相違点を述べ、重複する事項については説明を省略する。
 実施の形態1、2において、共通に、筒内圧センサ5の予荷重抜け異常の予兆判定が、PimとPexの比に基づいて行われている。これは、排気圧が吸気圧に比して十分に高い関係を利用したものである。しかしながら、この関係が利用できない場合がある。例えば、過給器を備える内燃機関では吸気圧が高く、Pim≧Pexとなることもありうる。この場合、PimとPexの比に基づく予兆判定を、十分に高い精度で行えなくなるおそれがある。
 そこで、実施の形態3では、上記の点に鑑み、次のような手法を採用した。図12は、実施の形態3においてECU50が実行するルーチンのフローチャートである。ステップS300およびS302が追加されている点を除き、実施の形態2の図11のフローチャートと同じである。
 すなわち、実施の形態3では、先ず、内燃機関がフューエルカットを行っているか否かが検出される(ステップS300)。フューエルカット中である場合には、スロットルバルブ2が完全に閉じた状態(全閉状態)に制御される(S302)。この状態において、PimとPexの比に基づく予兆判定(ステップS100)が実行される。
 これにより、吸気圧と排気圧の差が著しく大きくされたスロットル全閉状態において、PimとPexの比に基づく予兆判定を行うことができる。その結果、高精度に予兆判定を行うことが可能になる。
 尚、実施の形態3では、図12のルーチンのステップS300、S302の実行によりスロットルが閉じられた後にステップS100が実行されることで、前記第6の発明における「条件判定手段」が実現されている。また、実施の形態3では、図12のルーチンにおける、ステップS300の処理により、前記第7の発明における「フューエルカット検出手段」が、ステップS302の処理により、前記第7の発明における「閉塞手段」が、それぞれ実現されている。
 なお、実施の形態3では、フューエルカット中にスロットルバルブ2が閉塞された。しかしながら、本発明はこれに限られるものではない。例えば、吸気バルブを駆動休止状態にすることができる可変動弁システムを備えた内燃機関が知られている。このような内燃機関では、吸気バルブを適宜休止させて全閉状態にすることにより、吸気通路を閉塞してPimとPexの差を大きくすることもできる。吸気バルブを全閉状態にすることにより、例えばスロットルバルブを備えない内燃機関(ディーゼル機関や、吸気バルブの開弁特性などで吸入空気量を制御するガソリン機関など)でも、実施の形態3と同様の効果を得ることができる。
実施の形態4.
 実施の形態4では、予荷重抜け異常の程度に応じて、筒内圧センサ5の出力を使用する各種アプリケーションの使用状況を切り換えることとした。実施の形態1で述べたように、ノッキング等に起因する各種の力によって塑性変形が生ずることにより、歪ゲージ素子20に予荷重抜けが発生する。予荷重抜けの原因、例えば、筒内圧センサ5に加えられる力の大きさや、筒内圧センサ5の変形の具合は、状況に応じて異なったものとなりうる。よって、歪ゲージ素子20における予荷重の抜け具合が、常に一律なものになるとは限らない。これに応じて、予荷重抜け異常の程度も、複数の場合が生じうる。例えば、クランク角全領域において筒内圧の測定が不可能になるような重度の場合もあれば、吸気行程中の初期においてのみ不感帯を生じさせるような軽度の場合もある。そこで、実施の形態4では、予荷重抜け異常の程度に応じて、筒内圧センサ5の出力を使用する各種アプリケーションの使用状況を切り換えることとした。
[実施の形態4の構成、動作]
 実施の形態4は、実施の形態1と同様のハードウェア構成を備える。そして、実施の形態4においても、実施の形態1(若しくは実施の形態2または3)と同様に、予荷重抜け異常判定の処理を実行可能であるものとする。以下、実施の形態1~3との相違点を中心に説明し、重複する事項については説明を省略する。
 実施の形態4は、下記のアプリケーションがECU50に搭載されている。
(a)筒内圧センサ5による筒内圧測定値に基づいて気筒別に吸入空気量を検出するプログラム(以下、「空気量検出プログラム」と称す)
(b)筒内圧センサ5による筒内圧測定値に基づく燃焼割合(MFB)算出プログラム、およびPVを用いた制御プログラム
(c)筒内圧センサ5による筒内圧測定値に基づくノック検出用プログラム
なお、筒内圧に基づいて行われる、気筒別吸入空気量検出、燃焼割合(MFB)算出、PVを用いた制御、およびノック検出の技術は、既に公知技術である。従って、ここでは詳細な説明は行わない。
 実施の形態4では、筒内圧センサ5が示す出力のうち一部の出力が、上記の各種プログラムの計算の基礎として用いられる。すなわち、クランク角が特定の区間内における筒内圧センサ5の出力が、各プログラムの計算の基礎として用いられる。なお、出力の使用範囲、すなわち出力使用開始クランク角と出力使用終了クランク角は、それぞれのプログラムの間で必ずしも一致しない。
 図13は、実施の形態4の空気量検出プログラムにおいて筒内圧センサ5の出力が使用される区間(以下、「空気量検出区間」とも称す)を示す図である。図に示すように、実施の形態4では、クランク角がマイナス60度からプラス60度の区間内における筒内圧センサ5の出力が、空気量検出プログラムに用いられる。
 図14は、実施の形態4のMFB算出プログラムにおいて筒内圧センサ5の出力が使用される区間(以下、「MFB算出区間」とも称す)を示す図である。図に示すように、実施の形態4では、クランク角がマイナス60度からプラス60度の区間内における筒内圧センサ5の出力が、MFB算出プログラムに用いられる。以下、便宜上、MFB算出区間の開始点のクランク角を、θ1とも記す。
 図15は、実施の形態4のノック検出用プログラムにおいて筒内圧センサ5の出力が使用される区間(以下、「ノックゲート区間」とも称す)を示す図である。図に示すように、実施の形態4では、クランク角が0度直前の角度からプラス60度までの区間内における筒内圧センサ5の出力が、ノック検出用プログラムに用いられる。以下、便宜上、ノックゲート区間の開始点のクランク角を、θ2とも記す。
 実施の形態4では、図13~15における、空気量検出区間、MFB算出区間、およびノックゲート区間について、筒内圧センサ5に予荷重抜け異常があるか否かを検出する。そして、予荷重抜け異常の程度によって、個々のプログラムの実行/停止を切り換えることとする。
[実施の形態4の具体的処理]
 以下、実施の形態4の具体的処理を説明する。図16は、実施の形態4においてECU50が実行するルーチンのフローチャートである。図16において、ステップS100は実施の形態1と同じものであり、ステップS300およびS302は実施の形態3と同じものである。
 図16のルーチンでは、先ず、ステップS300、S302が実行される。これにより実施の形態3と同様に、高精度な予兆判定を行うための条件が整ったか否かが判定される。ステップS300、S302を経て、予兆判定のための条件が整った場合には、ステップS100に移行し、PimとPexの比を用いた予兆判定が行われる。ステップS100の条件が否定された場合には、予荷重抜け異常の予兆はないと判断されて今回のルーチンが終了する。
 ステップS100の条件が肯定された場合には、予荷重抜け異常の予兆があると判断される。この場合には、ステップS400以降の処理に移る。
 ステップS400では、先ず、電圧値V(Pim)が回路限界値Vminと一致しているか否かが判定される。この条件が成立している場合には、吸気行程の筒内圧の測定を妨げるような予荷重抜け異常が、生じているおそれがある。そこで、続けて、予荷重抜け異常判定ルーチンが実行される(ステップS406)。このステップS406では、実施の形態1で述べた図8のルーチンが実行される。その結果、予荷重抜け異常であると判定された場合には、空気量検出プログラムがOFFにされる(ステップS408)。その後、今回のルーチンが終了する。
 実施の形態4では、ステップS400の条件が不成立の場合には、続いてステップS402に移る。このステップS402では、電圧値V(Pθ1)が回路限界値Vminと一致しているか否かが判定される。ここで、電圧値V(Pθ1)とは、クランク角θ1における筒内圧Pθ1を算出するための基礎となった、筒内圧センサ5の出力電圧を意味する。この条件が成立している場合には、MFB算出の基礎とすべき筒内圧の測定を妨げるような予荷重抜け異常が、生じているおそれがある。そこで、続けて、予荷重抜け異常判定ルーチンが実行される(ステップS406)。その結果、予荷重抜け異常であると判定された場合には、PVを用いた制御プログラムがOFFにされる(ステップS410)。その後、今回のルーチンが終了する。
 実施の形態4では、ステップS402の条件が不成立の場合には、続いてステップS404に移る。このステップS404では、電圧値V(Pθ2)が回路限界値Vminと一致しているか否かが判定される。ここで、電圧値V(Pθ2)とは、クランク角θ2における筒内圧Pθ1のを算出するための基礎となった、筒内圧センサ5の出力電圧を意味する。この条件が成立している場合には、ノック検出プログラムの基礎とすべき筒内圧の測定を妨げるような予荷重抜け異常が、生じているおそれがある。そこで、続けて、予荷重抜け異常判定ルーチンが実行される(ステップS406)。その結果、予荷重抜け異常であると判定された場合には、ノック検出プログラムがOFFにされる(ステップS412)。その後、今回のルーチンが終了する。
 以上の処理によれば、予荷重抜け異常が検出された場合に、筒内圧センサ5の出力の使用を必要に応じて制限することができる。具体的には、実施の形態4によれば、予荷重抜け異常の影響を含む筒内圧センサ出力が上記各種プログラムに使用されてしまう事態を、抑制することができる。従って、予荷重抜け異常の影響を含む筒内圧センサ5の出力が、内燃機関の制御に悪影響を及ぼすことを抑制することができる。その結果、予荷重抜け異常に起因する内燃機関の運転状態への悪影響を、抑制することができる。
 また、実施の形態4によれば、上記各種プログラムが使用しない領域で予荷重抜け異常の影響が出ている場合には、このような異常は許容することができる。その結果、内燃機関の運転状態への悪影響を抑制しつつ、筒内圧センサ5の出力のうち使用可能なものについて使用を継続することができる。
 尚、上述した実施の形態4では、ECU50が、前記第11の発明における「制御手段」に相当し、上記説明した図16のルーチンにおけるステップS100~S412の処理が実行されることにより、前記第11の発明における「制限手段」が実現されている。
 また、上述した実施の形態4では、(a)~(c)のそれぞれのプログラムが、前記第12の発明における「パラメータ算出手段」に、上記説明した図16のルーチンにおけるステップS400、S402、S404の処理がそれぞれ前記第12の発明における「影響判定手段」に、相当している。また、上述した実施の形態4では、図16のルーチンにおけるステップS408、S410、S412の処理が実行されることにより、前記第12の発明における「センサ出力使用制限手段」が実現されている。
 なお、実施の形態4で示した図16のルーチンは一例であり、他の様々な変形が可能である。例えば、ステップS100の後、S400以降の処理と、S402以降の処理と、S404以降の処理とを、それぞれ並列に実行してもよい。また、S300、S302の処理を取り除いても良い。
 なお、上述した実施の形態4では、予荷重抜け異常の程度が軽度な場合、つまり、予荷重抜け異常の影響が上記各種プログラムの使用区間外で生じている場合には、筒内圧センサ5の出力の使用を継続している。しかしながら、本発明はこれに限られるものではない。例えば、必要に応じて、予荷重抜け異常の判定条件次第で、一律に筒内圧センサ5の出力使用をクランク角の全域にわたって禁止するなどの措置をとることもできる。
 なお、上述した実施の形態の具体的処理に係るルーチンでは、筒内圧センサ出力中の不感帯検出(「予兆判定」)を行って不感帯が検出された場合に、出力ドリフトの低減また解消の措置が取られている。しかしながら、本発明はこれに限られるものではない。
 例えば、実施の形態1とは異なり、筒内圧センサの不感帯発生の有無にかかわらず、出力ドリフトの低減や解消を常時(または所定間隔、具体的には、例えば、所定時間毎や、所定クランク角毎、所定サイクル毎など)で行う場合でも、本願発明を用いることができる。或いは、不感帯発生以外の他の所定の条件が成立した場合に、出力ドリフトの低減や解消を行うルーチンを実行する場合においても、本発明を適用することができる。
 これらの場合にも、出力ドリフトの低減後または解消後に、筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、予荷重抜け異常の有無を検出する処理(具体的には、上記実施の形態では、図8のS106、S108、S110の処理)を実行すればよい。なお、いかなるタイミング(時期、条件)で出力ドリフトの低減や解消を行うかについては、既に各種技術が公知であるため、それらの各種公知技術を利用すればよい。
 なお、より具体的には、例えば、図8のルーチンのステップS104にかかるドリフトリセットの処理を一定間隔で実行するドリフトリセット用ルーチンを作成する。そして、そのドリフトリセット用ルーチンとは別に、当該ルーチンによる出力ドリフトの低減後または解消後に、図8のS106、S108、S110の処理を実行するルーチンを作成しておく。若しくは、当該ドリフトリセット用ルーチンのなかに、ドリフトリセットの次のステップで図8のS106、S108、S110の処理が実行されように、S106、S108、S110を含ませておくこともできる。
 これにより、出力ドリフトの低減後または解消後に、筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、予荷重抜け異常の有無を検出することができる。
1 エアクリーナ
2 スロットルバルブ
3 エアフローメータ
4 サージタンク
5 筒内圧センサ
6 スパークプラグ
7 燃料直噴インジェクタ
8 クランク角センサ
9 ノックセンサ
10 触媒
11 触媒
20 歪ゲージ素子
22 ハウジング
24 ハウジング
26 伝達ロッド
28 受圧ダイアフラム
30 回路部
30a ドリフトリセット部

Claims (13)

  1.  予荷重が加えられた圧力検出素子を備えた筒内圧センサに接続して、該筒内圧センサの出力を取得する取得手段と、
     前記筒内圧センサの出力特性に不感帯が発生しているか否かを検出する出力異常検出手段と、
     前記筒内圧センサの出力ドリフトの低減または解消を行うドリフトリセット手段と、
     前記ドリフトリセット手段による出力ドリフトの低減後または解消後に、前記筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出する予荷重抜け異常検出手段と、
     を備えることを特徴とする筒内圧センサの異常検出装置。
  2.  前記ドリフトリセット手段は、前記出力異常検出手段が前記不感帯の発生を検出した場合に前記筒内圧センサの出力ドリフトの低減または解消を行う異常時ドリフトリセット手段を含み、
     前記予荷重抜け異常検出手段は、前記異常時ドリフトリセット手段による出力ドリフトの低減後または解消後に、前記筒内圧センサの出力特性に不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする請求項1に記載の筒内圧センサの異常検出装置。
  3.  前記出力異常検出手段が、前記筒内圧センサの出力特性に、計測対象気筒の吸気圧と排気圧の少なくとも一方の測定を妨げる不感帯が発生しているか否かを、検出することを特徴とする請求項2に記載の筒内圧センサの異常検出装置。
  4.  前記ドリフトリセット手段が、少なくとも計測対象気筒の吸気圧と排気圧のうち低い圧力が測定できる程度まで出力ドリフトの低減または解消を行い、
     前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後に、計測対象気筒の吸気圧と排気圧の少なくとも一方の測定を妨げる不感帯が存在するか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする請求項1乃至3のいずれか1項に記載の筒内圧センサの異常検出装置。
  5.  前記筒内圧センサの出力に基づいて、計測対象気筒における吸気行程中の筒内圧である吸気行程筒内圧を取得する吸気行程筒内圧取得手段と、
     前記筒内圧センサの出力に基づいて、計測対象気筒における排気行程中の筒内圧である排気行程筒内圧を取得する排気行程筒内圧取得手段と、を備え、
     前記出力異常検出手段が、前記吸気行程筒内圧と前記排気行程筒内圧との比に基づいて、前記不感帯を検出する圧力比異常検出手段を含むことを特徴とする請求項1乃至4のいずれか1項に記載の筒内圧センサの異常検出装置。
  6.  内燃機関が通常運転中に比して吸気行程中の筒内圧と排気行程中の筒内圧との差が大きい状態にあるか否かを判定する条件判定手段をさらに備え、
     前記圧力比異常検出手段が、前記条件判定手段により吸気行程中の筒内圧と排気行程中の筒内圧との差が大きいと判定された場合に、前記不感帯が発生しているか否かを検出することを特徴とする請求項5に記載の筒内圧センサの異常検出装置。
  7.  内燃機関のフューエルカットが行われているか否かを検出するフューエルカット検出手段と、
     前記内燃機関のフューエルカット中に該内燃機関の吸気通路を閉塞する閉塞手段と、を備え、
     前記圧力比異常検出手段が、前記吸気通路が閉塞されているときに、前記不感帯が発生しているか否かを検出することを特徴とする請求項5に記載の筒内圧センサの異常検出装置。
  8.  請求項5乃至7のいずれか1項に記載の筒内圧センサの異常検出装置において、
     前記出力異常検出手段が、前記圧力比異常検出手段による検出の結果と、吸気行程中における前記筒内圧センサの出力の大きさまたは変動と、に基づいて、前記不感帯の発生を検出することを特徴とする筒内圧センサの異常検出装置。
  9.  前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後における前記筒内圧センサの出力の値と、前記筒内圧センサの出力信号の範囲の上限値または下限値である出力限界値と、の比較に基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする請求項1乃至8のいずれか1項に記載の筒内圧センサの異常検出装置。
  10.  前記予荷重抜け異常検出手段が、前記ドリフトリセット手段による出力ドリフトの低減後または解消後における、計測対象気筒の吸気行程中の前記筒内圧センサの出力変化率に基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする請求項1乃至8のいずれか1項に記載の筒内圧センサの異常検出装置。
  11.  予荷重が加えられた圧力検出素子を備えた筒内圧センサと、
     前記筒内圧センサの出力を利用して、内燃機関を制御する制御手段と、
     前記筒内圧センサを予荷重抜け異常の検出対象とする請求項1乃至10のいずれか1項に記載の筒内圧センサの異常検出装置と、
     前記筒内圧センサの予荷重抜け異常が検出された場合に、該筒内圧センサの出力のうち予荷重抜け異常による不感帯域の出力が用いられないように、前記制御手段による前記筒内圧センサの出力の使用を制限する制限手段と、
     を備えることを特徴とする内燃機関の制御装置。
  12.  前記制御手段が、前記筒内圧センサが発する出力のうち一部の出力を用いて内燃機関の制御に関連するパラメータを算出するパラメータ算出手段を含むものであり、
     前記制限手段が、
     前記パラメータ算出手段が用いる前記一部の出力に、予荷重抜け異常の影響が生じているか否かを判定する影響判定手段と、
     前記パラメータ算出手段が用いる前記一部の出力に予荷重抜け異常の影響が生じている場合に、前記筒内圧センサの出力を基礎とした前記パラメータ算出手段の算出を禁止、または、前記パラメータ算出手段の算出したパラメータに基づく内燃機関の制御を禁止するセンサ出力使用制限手段と、
     を含むものであることを特徴とする請求項11に記載の内燃機関の制御装置。
  13.  予荷重が加えられた圧力検出素子を備える筒内圧センサの出力特性に、その筒内圧センサに出力ドリフト解消措置を施してもなお解消されない不感帯が生じているか否かに基づいて、前記筒内圧センサの予荷重抜け異常の有無を検出することを特徴とする筒内圧センサの異常検出方法。
PCT/JP2009/069373 2008-11-19 2009-11-13 筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置 WO2010058743A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/126,959 US8260531B2 (en) 2008-11-19 2009-11-13 Abnormality detection device for in-cylinder pressure sensor, abnormality detection method for in-cylinder pressure sensor and control apparatus for internal combustion engine
JP2010539220A JP4957849B2 (ja) 2008-11-19 2009-11-13 筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置
DE112009003611.2T DE112009003611B4 (de) 2008-11-19 2009-11-13 Anomalieerfassungsvorrichtung für einen Zylinderinnendrucksensor, Anomalieerfassungsverfahren für einen Zylinderinnendrucksensor und Steuerungsvorrichtung für einen Verbrennungsmotor
CN200980139006.4A CN102171434B (zh) 2008-11-19 2009-11-13 汽缸内压力传感器异常检测装置、汽缸内压力传感器异常检测方法、内燃机控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008295992 2008-11-19
JP2008-295992 2008-11-19

Publications (1)

Publication Number Publication Date
WO2010058743A1 true WO2010058743A1 (ja) 2010-05-27

Family

ID=42198183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069373 WO2010058743A1 (ja) 2008-11-19 2009-11-13 筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8260531B2 (ja)
JP (1) JP4957849B2 (ja)
CN (1) CN102171434B (ja)
DE (1) DE112009003611B4 (ja)
WO (1) WO2010058743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348119A (zh) * 2010-06-11 2013-10-09 丰田自动车株式会社 内燃机的控制装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679972B1 (en) * 2011-02-25 2017-07-26 Honda Motor Co., Ltd. In-cylinder pressure detecting device of direct injection type internal combustion engine
US9115655B2 (en) 2011-04-26 2015-08-25 Allen B. Rayl Cylinder pressure parameter correction systems and methods
US8983753B2 (en) 2011-04-29 2015-03-17 GM Global Technology Operations LLC Combustion setpoint control systems and methods
US8600644B2 (en) * 2011-05-23 2013-12-03 GM Global Technology Operations LLC Cylinder pressure sensor compensation systems and methods
JP5408193B2 (ja) * 2011-06-23 2014-02-05 トヨタ自動車株式会社 車両の異常検出装置
US9279406B2 (en) 2012-06-22 2016-03-08 Illinois Tool Works, Inc. System and method for analyzing carbon build up in an engine
US9127601B2 (en) 2012-08-07 2015-09-08 Joel Cowgill Cylinder to cylinder balancing using fully flexible valve actuation and cylinder pressure feedback
JP6107529B2 (ja) * 2013-08-09 2017-04-05 トヨタ自動車株式会社 内燃機関
DE102014007009B4 (de) * 2014-05-13 2018-01-18 Mtu Friedrichshafen Gmbh Motorüberwachung mittels zylinderindividueller Drucksensoren vorzüglich bei Magergasmotoren mit gespülter Vorkammer
JP6052325B2 (ja) * 2014-06-27 2016-12-27 トヨタ自動車株式会社 内燃機関システム
US9752949B2 (en) 2014-12-31 2017-09-05 General Electric Company System and method for locating engine noise
US9556810B2 (en) 2014-12-31 2017-01-31 General Electric Company System and method for regulating exhaust gas recirculation in an engine
US9803567B2 (en) 2015-01-07 2017-10-31 General Electric Company System and method for detecting reciprocating device abnormalities utilizing standard quality control techniques
US9874488B2 (en) 2015-01-29 2018-01-23 General Electric Company System and method for detecting operating events of an engine
US9528445B2 (en) 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
US9903778B2 (en) 2015-02-09 2018-02-27 General Electric Company Methods and systems to derive knock sensor conditions
US9791343B2 (en) 2015-02-12 2017-10-17 General Electric Company Methods and systems to derive engine component health using total harmonic distortion in a knock sensor signal
US10001077B2 (en) 2015-02-19 2018-06-19 General Electric Company Method and system to determine location of peak firing pressure
US9915217B2 (en) 2015-03-05 2018-03-13 General Electric Company Methods and systems to derive health of mating cylinder using knock sensors
US9695761B2 (en) 2015-03-11 2017-07-04 General Electric Company Systems and methods to distinguish engine knock from piston slap
EP3283748B1 (en) 2015-04-14 2023-07-26 Woodward, Inc. Combustion pressure feedback based engine control with variable resolution sampling windows
US9435244B1 (en) 2015-04-14 2016-09-06 General Electric Company System and method for injection control of urea in selective catalyst reduction
US9784231B2 (en) 2015-05-06 2017-10-10 General Electric Company System and method for determining knock margin for multi-cylinder engines
US9933334B2 (en) 2015-06-22 2018-04-03 General Electric Company Cylinder head acceleration measurement for valve train diagnostics system and method
US9784635B2 (en) 2015-06-29 2017-10-10 General Electric Company Systems and methods for detection of engine component conditions via external sensors
US10393609B2 (en) 2015-07-02 2019-08-27 Ai Alpine Us Bidco Inc. System and method for detection of changes to compression ratio and peak firing pressure of an engine
US9897021B2 (en) 2015-08-06 2018-02-20 General Electric Company System and method for determining location and value of peak firing pressure
JP6280087B2 (ja) * 2015-09-17 2018-02-14 本田技研工業株式会社 内燃機関のエンジントルク推定装置
US10481033B2 (en) 2015-12-16 2019-11-19 Cummins, Inc. Diagnosing cylinder pressure sensor gain and offset
US10760543B2 (en) 2017-07-12 2020-09-01 Innio Jenbacher Gmbh & Co Og System and method for valve event detection and control
CN108547689B (zh) * 2018-03-07 2020-09-29 潍柴动力股份有限公司 一种车辆的控制方法和控制装置及其车辆
JP2019157696A (ja) * 2018-03-09 2019-09-19 本田技研工業株式会社 内燃機関の制御装置
US10934004B2 (en) * 2018-03-12 2021-03-02 Honeywell International Inc. Detection of noise in pressure sensor and prediction of pressure sensors drift in cabin pressure control system/air data computer system/environmental control systems
JP7035916B2 (ja) * 2018-09-03 2022-03-15 マツダ株式会社 筒内圧センサの故障診断装置
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine
CN113374589B (zh) * 2021-06-09 2022-09-20 同济大学 一种基于全可变气门的自适应进气控制方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084565A (ja) * 1994-06-16 1996-01-09 Unisia Jecs Corp 筒内圧センサの診断装置
JPH11247708A (ja) * 1998-03-02 1999-09-14 Honda Motor Co Ltd 筒内圧センサ異常検出装置
JP2005291091A (ja) * 2004-03-31 2005-10-20 Honda Motor Co Ltd 筒内圧検出装置
JP2007113473A (ja) * 2005-10-20 2007-05-10 Honda Motor Co Ltd 圧力状態検出装置の異常判定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711119A (en) * 1986-12-08 1987-12-08 General Motors Corporation Peak combustion pressure signal processing circuit with diagnostic capability
JPH0364653A (ja) * 1989-07-31 1991-03-20 Japan Electron Control Syst Co Ltd 内燃機関の筒内圧力検出装置
KR940002066B1 (ko) * 1990-08-24 1994-03-16 미쯔비시 덴끼 가부시기가이샤 압력센서의 페일검출방법
JPH0729436U (ja) 1992-05-15 1995-06-02 三菱重工業株式会社 内燃機関筒内圧力検出装置
JPH07294336A (ja) 1994-04-28 1995-11-10 Hokuriku Electric Ind Co Ltd 焦電型赤外線検出装置
JPH07301145A (ja) 1994-05-09 1995-11-14 Unisia Jecs Corp 内燃機関の筒内圧センサの故障診断装置
DE19927846C2 (de) * 1999-06-18 2001-09-13 Mtu Friedrichshafen Gmbh Verfahren zur Überwachung einer Brennkraftmaschine
DE10233583B4 (de) 2002-07-24 2017-06-01 Robert Bosch Gmbh Verfahren zur Überwachung mindestens eines Drucksensors
JP4354334B2 (ja) 2004-05-20 2009-10-28 本田技研工業株式会社 筒内圧センサの故障を判定する装置
JP2006010624A (ja) 2004-06-29 2006-01-12 Denso Corp 圧力検出装置
JP2006300046A (ja) * 2004-08-05 2006-11-02 Ngk Spark Plug Co Ltd 燃焼圧検知機能付グロープラグ
JP2006064675A (ja) 2004-08-30 2006-03-09 Toyota Motor Corp 磁歪式圧力センサおよびそれを備えた内燃機関の制御装置
JP2006200478A (ja) * 2005-01-21 2006-08-03 Denso Corp 燃料噴射装置
JP4552898B2 (ja) * 2006-05-30 2010-09-29 株式会社デンソー 筒内圧センサの異常判定装置
JP2007327502A (ja) 2007-09-14 2007-12-20 Honda Motor Co Ltd 内燃機関の筒内圧検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084565A (ja) * 1994-06-16 1996-01-09 Unisia Jecs Corp 筒内圧センサの診断装置
JPH11247708A (ja) * 1998-03-02 1999-09-14 Honda Motor Co Ltd 筒内圧センサ異常検出装置
JP2005291091A (ja) * 2004-03-31 2005-10-20 Honda Motor Co Ltd 筒内圧検出装置
JP2007113473A (ja) * 2005-10-20 2007-05-10 Honda Motor Co Ltd 圧力状態検出装置の異常判定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348119A (zh) * 2010-06-11 2013-10-09 丰田自动车株式会社 内燃机的控制装置

Also Published As

Publication number Publication date
JPWO2010058743A1 (ja) 2012-04-19
CN102171434B (zh) 2012-10-17
DE112009003611T5 (de) 2012-08-23
JP4957849B2 (ja) 2012-06-20
CN102171434A (zh) 2011-08-31
US8260531B2 (en) 2012-09-04
US20110303190A1 (en) 2011-12-15
DE112009003611B4 (de) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4957849B2 (ja) 筒内圧センサの異常検出装置、筒内圧センサの異常検出方法、内燃機関の制御装置
US7757545B2 (en) Device and method for determining trouble of cylinder pressure sensor
JP4552898B2 (ja) 筒内圧センサの異常判定装置
JP5843014B2 (ja) 内燃機関
JP5293890B2 (ja) 内燃機関の制御装置
EP2703629B1 (en) Control device for internal-combustion engine
US20180066593A1 (en) Control Device for Internal Combustion Engine and Abnormal Combustion Detecting Method
WO2016125687A1 (ja) ノック検出装置
JP6006228B2 (ja) 筒内圧センサの異常診断装置及びこれを備えた筒内圧センサの感度補正装置
JP5395201B2 (ja) 内燃機関のノック制御装置
JP2006284533A (ja) 筒内圧力センサの異常検知装置
JP2013147948A (ja) 内燃機関の制御装置
US7305872B2 (en) Method for operating an internal combustion engine
JP2012207656A (ja) 内燃機関の制御装置
JP2010174705A (ja) 内燃機関の制御装置
JP5466098B2 (ja) 内燃機関の燃焼状態検出システム
JP2013147977A (ja) 内燃機関の制御装置
JP2004324481A (ja) エンジンの燃焼状態判定装置及びエンジンの燃焼状態判定方法
JP2018172994A (ja) 内燃機関制御装置
JP4798647B2 (ja) 筒内圧力センサの異常検知装置
JP4327678B2 (ja) 水素添加内燃機関の制御装置
JP3433886B2 (ja) イオン電流による内燃機関の点火時期制御方法
JP2017145691A (ja) 火花点火式内燃機関
JP4272540B2 (ja) 内燃機関の筒内圧検出装置
JP2013155638A (ja) 筒内圧センサの劣化検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139006.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539220

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13126959

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09827524

Country of ref document: EP

Kind code of ref document: A1