WO2010044484A1 - 炭化珪素単結晶及び炭化珪素単結晶ウェハ - Google Patents

炭化珪素単結晶及び炭化珪素単結晶ウェハ Download PDF

Info

Publication number
WO2010044484A1
WO2010044484A1 PCT/JP2009/068084 JP2009068084W WO2010044484A1 WO 2010044484 A1 WO2010044484 A1 WO 2010044484A1 JP 2009068084 W JP2009068084 W JP 2009068084W WO 2010044484 A1 WO2010044484 A1 WO 2010044484A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
growth
single crystal
silicon carbide
carbide single
Prior art date
Application number
PCT/JP2009/068084
Other languages
English (en)
French (fr)
Inventor
中林正史
藤本辰雄
勝野正和
柘植弘志
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN2009801409732A priority Critical patent/CN102187019A/zh
Priority to KR1020117008465A priority patent/KR101379941B1/ko
Priority to CN201610843180.9A priority patent/CN106435733B/zh
Priority to US12/998,357 priority patent/US9777403B2/en
Priority to EP09820658.4A priority patent/EP2385158B1/en
Publication of WO2010044484A1 publication Critical patent/WO2010044484A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a silicon carbide single crystal having a high crystal quality with few crystal defects such as dislocations, and a silicon carbide single crystal wafer.
  • SiC Silicon carbide
  • SiC is a wide band gap semiconductor having a wide forbidden band width of 2.2 to 3.3 eV.
  • SiC has been researched and developed as an environmentally resistant semiconductor material because of its excellent physical and chemical properties, but in recent years, short wavelength optical devices from blue to ultraviolet, high frequency electronic devices, SiC is attracting attention as a material for high-power electronic devices, and research and development is actively being conducted.
  • it has been considered difficult to produce high-quality large-diameter single crystals, which has hindered the practical application of SiC devices.
  • a SiC single crystal having a size capable of producing a semiconductor element by a sublimation recrystallization method (Rayleigh method) has been obtained.
  • the area of the obtained single crystal is small, and it is not easy to control the size, shape, crystal polymorph (polytype), and impurity carrier concentration.
  • a cubic SiC single crystal is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) by using chemical vapor deposition (CVD).
  • Si silicon
  • CVD chemical vapor deposition
  • Non-patent Document 1 an improved Rayleigh method has been proposed in which sublimation recrystallization is performed using a SiC single crystal wafer as a seed crystal.
  • this improved Rayleigh method it is possible to grow a SiC single crystal while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.), shape, carrier type and concentration of the SiC single crystal.
  • a SiC single crystal wafer having a diameter of 51 mm (2 inches) to 100 mm is cut out from a SiC single crystal manufactured by an improved Rayleigh method and used for device manufacturing in the field of power electronics.
  • micropipes hollow hole-like defects penetrating in the growth direction called micropipes are observed at a density of about several tens of cm ⁇ 2 and dislocation defects at a density of about 10 4 to 10 5 cm ⁇ 2.
  • Those defects cause problems such as leakage current when an electronic device is manufactured as described in Non-Patent Document 2 and Non-Patent Document 3, for example.
  • Reduction of crystal defects is regarded as one of the most important issues in SiC device application.
  • Micropipes are positioned as typical crystal defects in SiC single crystals, and there have been many research reports so far. In many cases, the micropipe in the grown crystal is a succession of the micropipe present in the seed crystal.
  • the basal plane dislocations may be transferred to threading dislocations having slip lines penetrating in the growth direction ([0001]) during the crystal growth process, and it is considered that the dislocation density of the grown crystal increases as a result. Yes.
  • the quality of the grown crystal largely depends on the quality of the seed crystal, but on the other hand, even if crystal growth is performed using a high-quality SiC single crystal as a seed crystal, it is mixed during crystal growth. Due to different polytypes, polycrystals, and unavoidable thermal stress, crystal defects are newly generated and the quality of the grown crystal is often lowered. The development of a technique for stably manufacturing a high-quality SiC single crystal while avoiding such problems has been actively performed.
  • Patent Document 1 discloses a method of adding certain impurities to crystals. This is because, when single-crystal SiC is grown, by adding nitrogen at an atomic number density of 5 ⁇ 10 18 cm ⁇ 3 or more, preferably 5 ⁇ 10 18 cm ⁇ 3 or more at the carbon atom position, The aim is to stably increase the carbon / silicon element ratio (C / Si ratio) and to stably produce a 4H polytype that preferentially nucleates under conditions of a high C / Si ratio.
  • C / Si ratio carbon / silicon element ratio
  • Patent Document 2 includes N growth steps (N is a natural number of N ⁇ 3), and each growth step is defined as an nth growth step (n is a natural number and starts with 1 and ends with N).
  • n 1, a surface having an offset angle of ⁇ 20 ° or less from the ⁇ 1-100 ⁇ plane or a surface having an offset angle of ⁇ 20 ° or less from the ⁇ 11-20 ⁇ plane
  • the n-th seed crystal having the nth growth surface as a surface inclined by 45 to 90 ° from the (n-1) th growth surface and 60 to 90 ° from the ⁇ 0001 ⁇ surface is formed in the ( n-1)
  • a SiC single crystal is grown from the grown crystal and grown on the nth growth surface of the nth seed crystal.
  • Non-Patent Document 5 there is a phenomenon in which a large amount of dislocation defects occur at the very initial stage of crystal growth, that is, at the interface between the seed crystal and the grown crystal. Further, for example, it is described in Non-Patent Document 6 and the like.
  • Patent Document 3 has been made paying attention to the concentration difference of impurity elements.
  • the concentration of the additive element in the growth crystal is gradually increased or decreased within the range of the predetermined concentration change rate from the same concentration as that in the seed crystal in the growth crystal to a desired concentration.
  • a method for producing a high-quality silicon carbide single crystal by suppressing generation of defects at the interface between the seed crystal and the grown crystal is disclosed.
  • Patent Document 1 cannot completely avoid defects at the initial stage of crystal growth, that is, at the interface between the seed crystal and the grown crystal.
  • the method of Patent Document 3 is intended to suppress the generation of defects at the initial stage of growth. However, even with the method of Patent Document 3, it is not sufficient for reducing the defect density. Further, in this method, the concentration of the additive element in the region near the seed crystal of the grown crystal is the concentration of the additive element in the seed crystal.
  • the present invention has been made in view of the above circumstances, and provides a high-quality SiC single crystal with few micropipe defects and dislocation defects and a high-quality SiC single crystal wafer processed from the single crystal.
  • the present invention has the following configuration.
  • a silicon carbide single crystal composed of a seed crystal and a grown crystal grown on the seed crystal, wherein at least the region near the seed crystal of the grown crystal has an impurity addition element concentration of 2 ⁇ 10 19 cm ⁇ 3 or more. , 6 ⁇ 10 20 cm ⁇ 3 or less, and the ratio of the higher and lower impurity-added element concentrations before and after the interface between the seed crystal and the grown crystal (the concentration of the high concentration side crystal / the concentration of the low concentration side crystal) ) Is within 5 times.
  • the impurity-added element concentration in the vicinity of the seed crystal is 1 ⁇ 10 20 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, according to any one of (1) to (4) Silicon carbide single crystal.
  • the total of etch pit density due to various dislocations observed on a ⁇ 0001 ⁇ plane 8 ° off-wafer processed from a grown crystal excluding the region near the seed crystal is 1 ⁇ 10 4 cm ⁇ 2 or less, and a micropipe
  • the total of etch pit densities caused by various dislocations observed on a ⁇ 0001 ⁇ plane 8 ° off-wafer processed from a grown crystal excluding the region near the seed crystal is 5 ⁇ 10 3 cm ⁇ 2 or less, and a micropipe
  • (11) A silicon carbide single crystal wafer obtained by processing a growth crystal excluding a region near the seed crystal of the silicon carbide single crystal according to any one of (1) to (10), having a diameter of 75 mm or more and 300 mm or less
  • a silicon carbide single crystal wafer characterized in that the polytype excluding the edge exclusion region is 4H.
  • the SiC single crystal of the present invention has few crystal defects and a wafer processed from this single crystal is of good quality, it exhibits high performance as a wafer for devices.
  • FIG. 1 is a block diagram showing an example of a single crystal production apparatus used for producing the crystal of the present invention.
  • the SiC single crystal of the present invention comprises a seed crystal and a grown crystal grown on the seed crystal, and the impurity added element concentration in the grown crystal is 2 ⁇ 10 19 cm ⁇ 3 or more, 6 ⁇ 10 20 cm ⁇ . 3 has a seed crystal vicinity region below and the concentration of the high concentration side crystal ratio (surface before and after the higher and lower of doping element concentration before and after the growth direction of the interface of the seed crystal and the grown crystal The density of the micropipe defects and the dislocation defects is kept low, and the crystal quality is high.
  • the above-mentioned region near the seed crystal refers to a region where the occurrence rate of crystal defects and different polytypes is high at the initial stage of crystal growth.
  • the impurity concentration of the grown crystal grown beyond the seed crystal vicinity region can be adjusted according to the required specifications of the device or the like. There is no particular limitation on the impurity concentration of the grown crystal grown beyond the region near the seed crystal.
  • the thickness in the vicinity of the seed crystal depends on the growth conditions, but if it is within 0.5 mm, it is preferable that it is within the machining range of the ingot and the influence on the number of wafers for devices can be ignored. . However, if the region near the seed crystal is thinner than 0.05 mm, it is not desirable because the region where the growth is unstable cannot be covered.
  • the concentration ratio of the impurity-added element before and after the growth direction at the interface between the seed crystal and the growth crystal is preferably within 2 times, and more preferably within 1.5 times.
  • Concentration ratio 1 (same concentration) is ideal, but in reality, in addition to the contamination of elements from crucibles and heat insulating materials used for crystal growth, in the case of using a solid dopant source, the difference in saturation vapor pressure from SiC, Furthermore, since there is a change in the crystal uptake efficiency of impurities due to subtle fluctuations in the growth temperature, it is difficult to make the concentrations of the seed crystal and the growth crystal completely equal.
  • the impurity-added element concentration in the region near the seed crystal of the grown crystal is desirably 5 ⁇ 10 19 cm ⁇ 3 or more and 6 ⁇ 10 20 cm ⁇ 3 or less, and more desirably 1 ⁇ 10 20 cm ⁇ 3 or more and 6 ⁇ . It is 10 20 cm ⁇ 3 or less.
  • the concentration of the impurity-added element is less than 2 ⁇ 10 19 cm ⁇ 3, it is difficult to obtain the effect of the present invention, and if it exceeds 6 ⁇ 10 20 cm ⁇ 3 , the occurrence probability of polycrystals increases, which is not preferable. Also, for the reasons described above, the concentration of the impurity-added element generally tends to increase at the initial stage of crystal growth. When the concentration of the additive element in the seed crystal is low, the concentration ratio with the grown crystal should be reduced. It becomes difficult. When the concentration of the additive element in the vicinity of the seed crystal is set in the range of the present invention, it is advantageous in that the concentration ratio before and after the growth direction of the interface is reduced.
  • the impurity-added element can be selected from general nitrogen, boron (B), aluminum (Al), and vanadium (V) used for increasing the resistivity of the crystal as SiC dopant elements. Of these, nitrogen is desirable. Nitrogen can be added by using a gas source (N 2 ), so that the concentration can be easily controlled. Moreover, the addition of nitrogen can increase the nucleation probability of 4H polytype, which is considered most suitable for power devices, and can suppress the mixing of different polytypes. The reason why the SiC single crystal of the present invention becomes a high-quality crystal with a low defect density is due to the following four effects.
  • the impurity concentration in the grown crystal is an impurity concentration suitable for a general device wafer (for example, 5 ⁇ 10 18 as a nitrogen concentration). cm ⁇ 3 or more and less than 2 ⁇ 10 19 cm ⁇ 3 ), so that the desired polytype is preferentially nucleated and mixing of different polytypes is suppressed.
  • the second effect is that the occurrence of defects due to mismatch of lattice constants and other physical property values is suppressed due to the small concentration difference of the additive element at the interface between the seed crystal and the grown crystal.
  • the third effect is that the number of basal plane dislocations at the seed crystal / growth crystal interface is small.
  • the fourth effect is that since the conversion rate from basal plane dislocations to threading dislocations decreases, even if basal plane dislocations occur, they do not propagate in the growth direction.
  • the third and fourth effects described above are currently out of speculation, but possible mechanisms are described below.
  • First, regarding the third effect an increase in critical shear stress due to the addition of elements can be considered, suggesting that a decrease in fracture toughness is observed for crystals to which impurities are added at a high concentration.
  • the modified Rayleigh method the generation of thermal stress is almost inevitable, but the occurrence of dislocation can be reduced by increasing the critical shear stress.
  • the fourth effect the influence of the growth mode change due to the increase in the C / Si ratio can be considered.
  • the conversion rate from basal plane dislocations to threading dislocations increases when the C / Si ratio is high, so the phenomenon described as the fourth effect is It is necessary to consider the characteristics of bulk growth and carbon surface growth.
  • the present invention is not limited by the defect suppression mechanism.
  • the SiC single crystal of the present invention the occurrence of defects at the initial stage of crystal growth, which has been a major problem, is greatly suppressed. This is because only the SiC single crystal of the present invention can simultaneously obtain the four effects described above, and in particular, the third and fourth effects have been found for the first time by the present invention. .
  • the seed crystal for growing the SiC single crystal of the present invention contains nitrogen at a concentration higher than the nitrogen concentration generally required for devices (for example, about 5 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 ). It is necessary to contain. For this reason, when performing crystal growth for manufacturing wafers for devices, it is necessary to gradually reduce nitrogen to the desired concentration during growth, while crystals produced for seed use cannot be diverted to device applications. There is also. However, originally, crystal production by the modified Rayleigh method needs to be carried out in a self-reproduction cycle that includes a crystal growth batch for seed crystals, so even if a crystal growth process dedicated to seeds is included in the cycle, production is possible. There will be no problems such as deterioration of sex.
  • the density of etch pits caused by dislocations observed on a ⁇ 0001 ⁇ plane 8 ° off-wafer processed from a grown crystal excluding the region near the seed crystal is 1 ⁇ 10 4 cm ⁇ 2 or less, and the micropipe The density of the pits is 10 cm ⁇ 2 or less. Under more desirable conditions, the density of the etch pits is 5 ⁇ 10 3 cm ⁇ 2 or less and the density of the micropipes is 5 cm ⁇ 2 or less.
  • the SiC single crystal becomes difficult to maintain high quality as the diameter increases, but the technique of the present invention basically does not depend on the size of the grown crystal. Therefore, the wafer having a diameter of 76 mm (3 inches) or more and 300 mm or less is used. This is more effective when applied to a large-diameter single crystal that can be produced. A wafer having a diameter of 75 mm (3 inches) or more can be applied to industrial production lines of conventional semiconductors (Si, GaAs, etc.), and is therefore suitable for industrial production. Since the polytype excluding the edge exclusion region is composed of only 4H, the device productivity is high.
  • the edge exclusion region is generally a region about 2 mm inward from the outer periphery in the case of a 76 mm (3 inch) diameter wafer, and about 3 mm from the outer periphery in the case of a 100 mm diameter wafer. This region is subject to quality assurance. It is an area that is excluded and is not used for device fabrication.
  • FIG. 1 shows an apparatus for growing a single crystal by an improved Rayleigh method used for manufacturing the crystals of Examples and Comparative Examples of the present invention.
  • Crystal growth is performed by sublimating the sublimation raw material 2 by induction heating and recrystallizing on the seed crystal 1.
  • the seed crystal 1 is attached to the inner surface of the graphite lid 4, and the sublimation raw material 2 is filled inside the graphite crucible 3.
  • the graphite crucible 3 and the graphite lid 4 are covered with a graphite felt 7 for heat shielding, and are installed on a graphite support rod 6 inside the double quartz tube 5.
  • a high-purity Ar gas having a purity of 99.9999% or more is supplied through the pipe 9 to the mass flow controller 10.
  • the flow rate is controlled to flow into the quartz tube, a high-frequency current is passed through the work coil 8 while maintaining the pressure in the quartz tube at 80 kPa, and the lower portion of the graphite crucible is raised to the target temperature of 2400 ° C.
  • nitrogen gas (N 2 ) is introduced into the quartz tube through the pipe 9 while controlling the flow rate by the mass flow controller 10, and the nitrogen partial pressure in the atmospheric gas is controlled to incorporate nitrogen element into the SiC crystal. The concentration of was adjusted.
  • the crucible temperature is measured with a two-color thermometer by providing an optical path with a diameter of 2 to 15 mm in the upper and lower graphite felts 7.
  • the crucible upper temperature was the seed crystal temperature
  • the crucible lower temperature was the raw material temperature.
  • the pressure in the quartz tube was reduced from 0.8 kPa to 3.9 kPa, which is the growth pressure, over about 15 minutes, and this state was maintained for 60 hours to carry out crystal growth.
  • Example 1 First, a seed single crystal SiC ingot for crystal growth of Example 1 was produced.
  • the growth process using the single crystal growth apparatus described above has a diameter of 79 mm.
  • a SiC single crystal ingot was produced.
  • the partial pressure of the nitrogen gas in the atmosphere from the time when the growth crystal is estimated to have reached 1 mm to the end of the growth is controlled to 100 Pa, and the nitrogen gas at the start of the growth The partial pressure was determined in consideration of the nitrogen concentration of the seed crystal.
  • the SiC single crystal ingot for seed crystal thus obtained was machined to produce a plurality of ⁇ 0001 ⁇ face 8 ° off-wafers having a diameter of 77 mm, and both surfaces were polished.
  • one wafer was etched with molten KOH at about 530 ° C. and observed for etch pits.
  • the density of etch pits corresponding to threading transition and basal plane transition is 2.1 ⁇ 10 4 cm ⁇ 2 and 4.9 ⁇ 10 3 cm ⁇ 2 , respectively, and the total etch pit density caused by dislocation is It was 2.6 ⁇ 10 4 cm ⁇ 2 .
  • the density of etch pits resulting from the micropipes was 1.7 cm ⁇ 2 .
  • the SiC single crystal of Example 1 was grown by the process using the single crystal growth apparatus described above using one of the remaining wafers as a seed crystal.
  • the partial pressure of nitrogen gas was set to 180 Pa at the start of growth and maintained for 12 hours.
  • a nitrogen concentration suitable for a wafer for devices 5 ⁇ 10 18 cm ⁇ 3 or more and less than 2 ⁇ 10 19 cm ⁇ 3
  • it gradually decreases from 180 Pa to 65 Pa over 8 hours, and from there until the end of growth Control was made so as to be a constant value of 65 Pa.
  • the SiC single crystal ingot thus obtained had a diameter of 79 mm and a height of about 30 mm.
  • the density of etch pits corresponding to threading transition and basal plane transition is 5.7 ⁇ 10 3 cm ⁇ 2 and 2.4 ⁇ 10 3 cm ⁇ 2 , respectively, and the total etch pit density due to various dislocations is 8 0.1 ⁇ 10 3 cm ⁇ 2 and the density of etch pits caused by the micropipe was 1.7 cm ⁇ 2 . Further, when the color of the produced wafer was visually observed, it was confirmed that the wafer including the edge exclusion region was composed only of the 4H polytype. (Example 2) In order to produce the seed crystal for crystal growth of Example 2 by the growth process using the single crystal growth apparatus described above, the nitrogen concentration in the grown crystal is 5.1 from a region away from the interface with the seed crystal by 2 mm or more.
  • the nitrogen gas partial pressure was controlled to 230 Pa except at the start of growth.
  • This ingot was machined to produce a plurality of ⁇ 0001 ⁇ face 8 ° off wafers having a diameter of 101 mm, polished on both sides, and observed for etch pits on one wafer.
  • the density of etch pits corresponding to threading transition and basal plane transition is 6.8 ⁇ 10 3 cm ⁇ 2 and 1.8 ⁇ 10 3 cm ⁇ 2 , respectively, and the total density of etch pits caused by various dislocations is 8 .6 ⁇ a 10 3 cm -2, the density of etch pits due to micro-pipe was 1.1 units cm -2.
  • the SiC single crystal of Example 2 was grown by a process using the single crystal growth apparatus described above using one of the remaining wafers as a seed crystal.
  • the nitrogen gas partial pressure is a constant value of 260 Pa from the start to the end of growth.
  • the SiC single crystal ingot thus obtained had a diameter of 103 mm and a height of about 25 mm.
  • Analysis by X-ray diffraction and Raman scattering confirmed the growth of the 4H polytype.
  • a test piece having a plane parallel to the growth direction was cut out from the initial growth portion of the ingot, and the nitrogen concentration in the crystal was measured using SIMS.
  • the nitrogen concentration on the seed crystal side at the growth crystal interface was 5.1 ⁇ 10 19 cm ⁇ 3
  • the growth crystal in the region from the interface with the seed crystal to 0.5 mm had the above-described nitrogen concentration (5.1 ⁇ 10 19 cm ⁇ 3 ), so this region was the seed crystal vicinity region.
  • a ⁇ 0001 ⁇ plane 8 ° off-wafer having a diameter of 101 mm was fabricated and polished from the latter half of the growth excluding the region near the seed crystal.
  • these wafers were all composed only of 4H polytype including the edge exclusion region.
  • Etch pit observation was performed on one wafer.
  • the density of etch pits corresponding to threading transition and basal plane transition is 5.3 ⁇ 10 3 cm ⁇ 2 and 1.1 ⁇ 10 3 cm ⁇ 2 , respectively, and the total etch pit density caused by various dislocations is 6 4 ⁇ 10 3 cm ⁇ 2 and the density of etch pits caused by micropipes was 0.9 cm ⁇ 2 .
  • Example 3 In the same manner as in Example 1, a SiC single crystal ingot having a diameter of 79 mm was produced for a seed crystal.
  • the nitrogen gas partial pressure was controlled at 1 kPa except at the start of growth so that the nitrogen concentration of the grown crystal from a region 1 mm away from the seed crystal was 2.0 ⁇ 10 20 cm ⁇ 3 .
  • This ingot was machined to produce a plurality of ⁇ 0001 ⁇ face 8 ° off-wafers having a diameter of 77 mm, both surfaces were polished, and etch pit observation of one wafer was performed.
  • the density of etch pits corresponding to threading transition and basal plane transition is 5.6 ⁇ 10 3 cm ⁇ 2 and 1.1 ⁇ 10 3 cm ⁇ 2 , respectively.
  • the SiC single crystal of Example 3 was grown by a process using the single crystal growth apparatus described above.
  • the nitrogen gas partial pressure at the start of growth was set to 900 Pa, and this partial pressure was maintained for 12 hours. Thereafter, the carrier concentration (nitrogen concentration (5 ⁇ 10 18 cm ⁇ 3 or more, 2 ⁇ 10 19 cm ⁇ 3 or more) suitable for device application was used. In this case, the partial pressure of nitrogen was gradually reduced to 70 Pa over 10 hours, and was controlled to a constant value of 70 Pa from the middle of growth to the end.
  • the SiC single crystal ingot thus obtained had a diameter of 79 mm and a height of about 29 mm.
  • Analysis by X-ray diffraction and Raman scattering confirmed the growth of 4H polytype crystals.
  • a test piece having a plane parallel to the growth direction was cut out from the initial growth portion of the ingot, and the nitrogen concentration was measured using SIMS.
  • the nitrogen concentration on the seed crystal side of the growth crystal interface was 2.0 ⁇ 10 20 cm ⁇ 3
  • the region in the vicinity of the seed crystal in Example 3 has this 0.6 mm. It was an area.
  • a ⁇ 0001 ⁇ plane 8 ° off-wafer with a diameter of 77 mm was fabricated from the latter half of the growth excluding the region near the seed crystal.
  • all of the produced wafers including the edge exclusion region were composed only of 4H polytype. After polishing one wafer, the etch pit was observed.
  • the density of etch pits corresponding to threading transition and basal plane transition is 2.3 ⁇ 10 3 cm ⁇ 2 and 0.7 ⁇ 10 3 cm ⁇ 2 , respectively.
  • the total etch pit density caused by various dislocations is 3 0.0 ⁇ 10 3 cm ⁇ 2 and the density of etch pits caused by the micropipes was 0.02 cm ⁇ 2 .
  • a ⁇ 0001 ⁇ plane 8 ° off-wafer having a diameter of 75.2 mm (3 inches) is fabricated from the latter half of the growth excluding the region near the seed crystal of the SiC single crystal ingot, and polished with diamond abrasive grains. Then, homo-epitaxial growth was performed on the Si surface.
  • the epitaxial growth conditions are as follows: the growth temperature is 1550 ° C., the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 32 cc / min, 21 cc / min, and 150 L / min, respectively.
  • the flow rate was such that the carrier concentration in the active layer was 1 ⁇ 10 16 cm ⁇ 3, and an active layer of about 5 ⁇ m was grown.
  • a MOSFET structure was fabricated on the epitaxial substrate thus manufactured, and the breakdown voltage of the gate insulating film was measured. (Comparative Example 1) Similar to the example, prior to the comparative example experiment, a SiC single crystal ingot having a diameter of 79 mm for preparing a seed crystal was manufactured in advance.
  • the nitrogen gas partial pressure from the middle of growth to the end was controlled to 65 Pa so that the nitrogen concentration in the grown crystal was 1.4 ⁇ 10 19 cm ⁇ 3 from the region grown 2 mm or more from the seed crystal.
  • This ingot was machined in the same manner as in the above-described example to produce a plurality of ⁇ 0001 ⁇ face 8 ° off-wafers having a diameter of 77 mm, and both surfaces were polished. Further, the dislocation density of the crystal was evaluated in the same manner as in the above-described example.
  • the density of etch pits corresponding to threading transition and basal plane transition is 1.3 ⁇ 10 4 cm ⁇ 2 and 3.2 ⁇ 10 3 cm ⁇ 2 , respectively, and the total density of etch pits caused by various dislocations is 1 .6 ⁇ a 10 4 cm -2, the density of etch pits due to micro-pipe was 2.1 units cm -2.
  • SiC single crystal growth of Comparative Example 1 was performed by a process using the single crystal growth apparatus described above.
  • the impurity concentration targets a nitrogen concentration (5 ⁇ 10 18 cm ⁇ 3 or more and less than 2 ⁇ 10 19 cm ⁇ 3 ) suitable for a device wafer, and the partial pressure of nitrogen gas is constant at 900 kPa from the start to the end of growth. did.
  • the SiC single crystal ingot thus obtained had a diameter of 79 mm and a height of about 24 mm.
  • X-ray diffraction and Raman scattering confirmed that the 4H polytype was predominant.
  • a test piece having a plane parallel to the growth direction was cut out from the initial growth portion of the ingot, and the nitrogen concentration was measured using SIMS.
  • the nitrogen concentration on the seed crystal side at the interface between the seed crystal and the growth crystal was 1.4 ⁇ 10 19 cm ⁇ 3
  • the nitrogen concentration in the vicinity of the seed crystal of the growth crystal was 1.9 ⁇ 10 20 cm ⁇ 3 .
  • 3C polytype SiC polycrystal nucleus was observed in the interface of a seed crystal and a growth crystal.
  • the cause of the occurrence of polycrystals was considered to be a mismatch between the physical properties of the seed crystal and the grown crystal caused by a large difference in nitrogen concentration.
  • a ⁇ 0001 ⁇ face 8 ° off-wafer with a diameter of 101 mm was fabricated from the latter half of the growth excluding the vicinity of the seed crystal, polished, and then observed for etch pits.
  • the density of etch pits corresponding to threading transition and basal plane transition is 3.7 ⁇ 10 5 cm ⁇ 2 and 1.2 ⁇ 10 4 cm ⁇ 2 , respectively.
  • the total etch pit density due to various dislocations is 3 ⁇ .8 ⁇ a 10 5 cm -2, the density of etch pits due to micro-pipe was 38.2 units cm -2.
  • the SiC single crystal growth of the comparative example 2 was performed by the process using the single crystal growth apparatus mentioned above using the seed crystal processed from the same ingot as what was prepared beforehand for seed crystals.
  • the impurity concentration targets a nitrogen concentration (5 ⁇ 10 18 cm ⁇ 3 or more and less than 2 ⁇ 10 19 cm ⁇ 3 ) suitable for a device wafer, and the partial pressure of nitrogen gas is set to 30 Pa at the start of growth, and thereafter The pressure gradually increased to 65 Pa over 6 hours, and then kept constant at 65 Pa until the end of growth.
  • the SiC single crystal ingot thus obtained had a diameter of 79 mm and a height of about 33 mm.
  • Three types of polytypes of 4H, 6H, and 15R were confirmed by X-ray diffraction and Raman scattering. A test piece having a plane perpendicular to the growth direction was cut out from the initial growth portion of the ingot, and the nitrogen concentration was measured using SIMS.
  • the nitrogen concentration on the seed crystal side at the growth crystal interface was 1.4 ⁇ 10 19 cm ⁇ 3
  • the density of etch pits corresponding to threading transition and basal plane transition is 6.6 ⁇ 10 4 cm ⁇ 2 and 0.9 ⁇ 10 4 cm ⁇ 2 , respectively, and the total etch pit density due to various dislocations is 7 It was 5 ⁇ 10 4 cm ⁇ 2 , and the density of etch pits caused by the micropipes was 81.5 cm ⁇ 2 .
  • the micropipe is mainly generated at the interface between different polytypes. Even if the polytype interface disappears during the growth, the micropipe remains in the crystal that grows thereafter. Dislocations existed at a high density over the entire surface of the substrate, but were particularly high at the periphery of the micropipe.
  • the polytype of the wafer excluding the edge exclusion region was mainly 4H polytype, but there were many 6H and 15R polytypes especially in the peripheral portion of the wafer. It was a mixture.
  • a ⁇ 0001 ⁇ plane 8 ° off-wafer having a diameter of 75.2 mm (3 inches) was produced from the latter half of the growth of the SiC single crystal ingot of Comparative Example 2 excluding the vicinity of the seed crystal, and polished with diamond abrasive grains to produce a mirror surface wafer. Then, homo-epitaxial growth was performed on the Si surface. Epitaxial growth conditions were the same as in Example 3.
  • the manufactured epitaxial substrate contains different polytypes other than 4H
  • a MOSFET structure was prepared by selecting a region of the 4H polytype portion having few micropipes, and the breakdown voltage of the gate insulating film was measured. As a result, the breakdown voltage was about 340V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、転位やマイクロパイプ等の結晶欠陥の密度が低く、デバイス応用した場合に高い歩留まり 、高い性能を発揮できる良質な炭化珪素単結晶、及び炭化珪素単結晶ウェハを提供するものであって、 種結晶と成長結晶の界面の成長方向の前後での不純物添加元素濃度の比を5倍以内とし、なおかつ、種 結晶近傍の成長結晶の不純物添加元素濃度を2×1019cm-3以上、6×1020cm-3以下とする。

Description

炭化珪素単結晶及び炭化珪素単結晶ウェハ
 本発明は、転位等の結晶欠陥の少ない、結晶品質の高い炭化珪素単結晶、及び炭化珪素単結晶ウェハに関するものである。
 炭化珪素(SiC)は2.2~3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体である。従来、SiCは、その優れた物理的、化学的特性から耐環境性半導体材料としての研究開発が行われてきたが、近年は青色から紫外にかけての短波長光デバイス、高周波電子デバイス、高耐圧・高出力電子デバイス向けの材料としてSiCが注目されており、活発に研究開発が行われている。しかし、これまで、SiCは良質な大口径単結晶の製造が難しいとされてきており、それがSiCデバイスの実用化を妨げてきた。
 従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)で半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では得られる単結晶の面積が小さく、その寸法、形状、さらには結晶多形(ポリタイプ)や不純物キャリア濃度の制御も容易ではない。
 一方、化学気相成長(Chemical Vapor Deposition、CVD)を用いて珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では大面積の単結晶は得られるが、SiCとSiの格子不整合が約20%もあること等により多くの欠陥(~10/cm)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶は得られていない。
 これらの問題点を解決するために、SiC単結晶ウェハを種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案されている(非特許文献1)。この改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながらSiC単結晶を成長させることができる。
 現在、改良レーリー法で作製したSiC単結晶から、口径51mm(2インチ)から100mmのSiC単結晶ウェハが切り出され、電力エレクトロニクス分野のデバイス作製等に供されている。しかし、これらの結晶には、マイクロパイプと呼ばれる成長方向に貫通した中空ホール状欠陥が~数10個cm−2程度、転位欠陥が10~10cm−2台の密度で観察される場合が多い。それらの欠陥は、例えば非特許文献2や非特許文献3に記載されているように、電子デバイスを作製した際にリーク電流等の問題を引き起こす。結晶欠陥の低減は、SiCデバイス応用上の最重要課題の一つとされている。
 マイクロパイプは、SiC単結晶の代表的な結晶欠陥と位置付けられており、これまでに多くの研究報告がある。成長結晶中のマイクロパイプは、種結晶に存在したマイクロパイプが引き継がれたものである場合が多い。結晶成長技術の進歩により、SiC単結晶ウェハの平均的なマイクロパイプの存在数は減る傾向にあるが、結晶成長中に混入する異種ポリタイプや多結晶等の第二相を起点として新たに発生し、種結晶よりも成長結晶のマイクロパイプの数が多くなるという問題は現在でも完全には解消されていない。
 近年は、SiC単結晶の転位欠陥にも大きな注目が集まっている。SiC単結晶の転位欠陥の発生や伝播については、明らかになっていない部分も多いが、以下に概略を説明する。
 貫通螺旋転位、又は貫通刃状転位等の貫通転位については、マイクロパイプ同様、種結晶に元々存在したものが成長結晶にも引き継がれる場合が多い。しかしながら、SiC単結晶の特性として、結晶成長中に基底面({0001})をすべり面とする転位(基底面転位)が比較的容易に発生する。これは、SiC単結晶の代表的な製造方法である改良レーリー法では熱応力がほぼ不可避的に生じることと、SiCの主すべり面である{0001}面の臨界せん断応力が高温では非常に小さい(例えば、非特許文献4など参照)ためである。基底面転位そのものは、成長方向に対してほぼ垂直なすべり線を有するため、成長方向に伝播しない。ところが、基底面転位は結晶成長過程で成長方向([0001])に貫通したすべり線を有する貫通転位に変化して引き継がれる場合があり、結果的に成長結晶の転位密度が増加すると考えられている。
 上述のように、成長結晶の品質は種結晶の品質に依存する部分も大きいが、その一方で、高い品質のSiC単結晶を種結晶として結晶成長を行ったとしても、結晶成長中に混入する異種ポリタイプ、多結晶、さらには不可避的な熱応力等も原因となって、結晶欠陥が新たに発生し、成長結晶の品質が低下する場合も少なくない。こうした問題を回避して、高品質のSiC単結晶を安定的に製造する技術の開発は、従来から盛んに行われている。
 例えば、目的とするポリタイプを安定成長させる技術として、特許文献1にはある種の不純物を結晶に添加する方法が示されている。これは、単結晶SiCを成長する際に、炭素原子位置に原子数密度で5×1018cm−3以上、望ましくは5×1018cm−3以上の窒素を添加することにより、結晶中の炭素/珪素元素比(C/Si比)を実効的に増加させ、高C/Si比の条件下で優先的に核生成する4Hポリタイプを安定製造することを狙ったものである。
 また、特許文献2には、N回(Nは、N≧3の自然数)の成長工程を含み、各成長工程を第n成長工程(nは自然数であって1から始まりNで終わる序数)として表した場合、n=1である第1成長工程においては、{1−100}面からオフセット角度±20°以下の面、又は{11−20}面からオフセット角度±20°以下の面を第1成長面として露出させた第1種結晶を用いて、上記第1成長面上にSiC単結晶を成長させ第1成長結晶を作製し、n=2、3、…、(N−1)回目である中間成長工程においては、第(n−1)成長面より45~90°傾き、且つ{0001}面より60~90°傾いた面を第n成長面とした第n種結晶を第(n−1)成長結晶より作製し、該第n種結晶の上記第n成長面上にSiC単結晶を成長させて第n成長結晶を作製し、n=Nである最終成長工程においては、第(N−1)成長結晶の{0001}面よりオフセット角度±20°以下の面を最終成長面として露出させた最終種結晶を第(N−1)成長結晶より作製し、該最終種結晶の上記最終成長面上にバルク状のSiC結晶を成長させることにより、マイクロパイプ欠陥、転位欠陥、積層欠陥等の少ない高品質SiC単結晶の製造方法が開示されている。
 一方、SiC単結晶の結晶品質に重大な影響を与える問題は、結晶成長の初期段階に発生することが多い。例えば、非特許文献5に示されるように、結晶成長のごく初期、即ち種結晶と成長結晶の界面で転位欠陥が大量発生する現象があり、さらには、例えば、非特許文献6等に記載されているように、結晶成長の初期には異種ポリタイプの発生確率も高いことが知られている。
 結晶成長の初期に発生した欠陥の一部は引き続く成長中に消滅し、欠陥密度は成長後半に向かって減少していくものの、その一部は成長終了まで残存するため、どれだけ高い品質の種結晶を使用したとしても、成長結晶の欠陥密度があるレベルより低下しないことになる。したがって、SiC単結晶の高品質化を図る上で、成長初期の結晶欠陥発生を抑制することは不可欠である。
 成長初期に結晶欠陥が発生する理由は、現時点で全てが明らかになっている訳ではないが、一つには改良レーリー法において不可避的に生ずる熱応力が、種結晶と成長結晶の界面では大きいことが考えられる。また、最近の研究により、種結晶と成長結晶の不純物元素の濃度差も大きな要因の一つであることが判ってきている。
 不純物元素の濃度差に着目して、特許文献3の発明がなされている。該特許文献には、成長結晶中の添加元素濃度を、成長結晶中で種結晶中と同じ濃度から所定の濃度変化率の範囲内にて漸増あるいは漸減して所望の濃度まで変化させることにより、種結晶と成長結晶界面での欠陥発生を抑制し、高品質の炭化珪素単結晶を製造する方法が開示されている。
特開平9−157091号公報 特開2003−119097号公報 特開2006−290635号公報
Yu.M.Tairov and V.F.Tsvetkov,Journal of Crystal Growth,vols.52(1981)pp.146−150 P.G.Neudeck,et al.,IEEE Electron Device Letters,vols.15(1994)pp.63−65 H.Lendenmann,et al.,Materials Science Forum,vols.389−393(2002)pp.1259−1264 A.V.Samant,et al.,Physica Status Solidi(A),Vols.166(1998),1,pp.155−169 P.Wu,et al.,Journal of Crystal Growth,vols.310(2008)pp.1804−1809 C.Basceri,et al.,Materials Science Forum,vols.527−529(2006)pp.39−42
 しかしながら、前述した特許文献1に記載の方法では、結晶成長の初期、即ち種結晶と成長結晶の界面での欠陥発生を完全に回避することはできなかった。
 特許文献2に記載の方法でも同様であり、最終第N回成長において高品質の最終種結晶を使用したとしても、成長初期の欠陥発生により、種結晶よりも品質の高い結晶を製造することはできなかった。
 一方、特許文献3の方法は、成長初期の欠陥発生の抑制を目的としたものであった。しかし、特許文献3の方法をもってしても、欠陥密度の低減については十分なものではなく、さらに、この方法では成長結晶の種結晶近傍領域における添加元素の濃度は、種結晶中の添加元素濃度に合わせる必要があり、それが所望のポリタイプの安定成長に十分寄与するもので無い場合は異種ポリタイプの発生確率が高くなり、結晶性が低下する場合もあった。
 本発明は、上記事情に鑑みてなされたものであり、マイクロパイプ欠陥や転位欠陥の少ない良質なSiC単結晶と、該単結晶から加工される良質なSiC単結晶ウェハを提供するものである。
 本発明は、以下の構成より成るものである。
(1) 種結晶と、種結晶の上に成長した成長結晶とからなる炭化珪素単結晶であって、前記成長結晶の少なくとも種結晶近傍領域は不純物添加元素濃度が2×1019cm−3以上、6×1020cm−3以下であり、かつ、種結晶と成長結晶との界面前後における不純物添加元素濃度の高い方と低い方の比(高濃度側結晶の濃度/低濃度側結晶の濃度)が5倍以内であることを特徴とする炭化珪素単結晶。
(2) 前記種結晶近傍領域は、種結晶と成長結晶の界面から成長結晶側に厚さ0.5mm以内の領域であることを特徴とする(1)に記載の炭化珪素単結晶。
(3) 前記不純物添加元素濃度の高い方と低い方の比が2倍以内であることを特徴とする(1)又は(2)に記載の炭化珪素単結晶。
(4) 前記不純物添加元素濃度の高い方と低い方の比が1.5倍以内であることを特徴とする(1)~(3)の何れかに記載の炭化珪素単結晶。
(5) 前記種結晶近傍領域の不純物添加元素濃度が5×1019cm−3以上、6×1020cm−3以下であることを特徴とする(1)~(4)の何れかに記載の炭化珪素単結晶。
(6) 前記種結晶近傍領域の不純物添加元素濃度が1×1020cm−3以上、6×1020cm−3以下であることを特徴とする(1)~(4)の何れかに記載の炭化珪素単結晶。
(7) 前記不純物添加元素が窒素であることを特徴とする(1)~(6)の何れかに記載の炭化珪素単結晶。
(8) 主たるポリタイプが4Hであることを特徴とする(1)~(7)の何れかに記載の炭化珪素単結晶。
(9) 種結晶近傍領域を除く成長結晶から加工した{0001}面8°オフウェハで観察される各種転位に起因したエッチピット密度の合計が1×10cm−2以下であると共に、マイクロパイプの密度が10個cm−2以下である(1)~(8)の何れかに記載の炭化珪素単結晶。
(10) 種結晶近傍領域を除く成長結晶から加工した{0001}面8°オフウェハで観察される各種転位に起因したエッチピット密度の合計が5×10cm−2以下であると共に、マイクロパイプの密度が5個cm−2以下である(1)~(9)の何れかに記載の炭化珪素単結晶。
(11) (1)~(10)の何れかに記載の炭化珪素単結晶の種結晶近傍領域を除く成長結晶を加工してなる炭化珪素単結晶ウェハであって、口径は75mm以上、300mm以下であり、エッジ除外領域を除いたポリタイプは4Hであることを特徴とする炭化珪素単結晶ウェハ。
 本発明のSiC単結晶は結晶欠陥が少なく、この単結晶から加工されたウェハは良品質であるため、デバイス向けウェハとして高い性能を発揮する。
 図1は、本発明の結晶を製造するのに用いた単結晶製造装置の一例を示す構成図である。
 本発明のSiC単結晶は、種結晶と、種結晶の上に成長させた成長結晶とから成り、成長結晶中の不純物添加元素濃度が2×1019cm−3以上、6×1020cm−3以下である種結晶近傍領域を有し、かつ、種結晶と成長結晶の界面の成長方向の前後での不純物添加元素濃度の高い方と低い方の比(界面前後の高濃度側結晶の濃度/界面前後の低濃度側結晶の濃度)を5倍以内に抑えることにより、マイクロパイプ欠陥や転位欠陥の密度が低く抑えられ、高い結晶品質となっている。
 ここで、前述の種結晶近傍領域とは、結晶成長初期段階の、結晶欠陥や異種ポリタイプの発生率の高い領域を指す。この領域の不純物濃度を本発明の範囲とすることにより、結晶欠陥の発生を十分に抑制し、成長結晶を高品質化することができる。
 種結晶近傍領域を超えて成長した成長結晶の不純物濃度は、デバイス等の要求仕様に合わせて調整することもできる。種結晶近傍領域を超えて成長した成長結晶の不純物濃度については、特に制限はない。種結晶近傍領域の厚さは成長条件にもよるが、0.5mm以内であれば、ほぼインゴットの機械加工代の範囲に入り、デバイス向けウェハの取れ枚数への影響が無視できるという点で望ましい。ただし、0.05mmよりも種結晶近傍領域が薄くなると、成長が不安定な領域をカバーできなくなるので望ましくない。本発明のSiC単結晶は従来のSiC単結晶と同等のウェハ取れ枚数を確保できるので、コスト面で不利にならない。
 種結晶と成長結晶の界面の成長方向の前後での不純物添加元素の濃度比は、望ましくは2倍以内であり、さらに望ましくは1.5倍以内である。濃度比1(同濃度)が理想的だが、現実的には結晶成長に用いる坩堝や断熱材からの元素のコンタミネーションのほか、固体ドーパントソースによる場合にはSiCとの飽和蒸気圧の違いや、さらには成長温度の微妙な変動による不純物の結晶取り込み効率の変化があるため、種結晶と成長結晶の濃度を完全に等しくすることは困難である。そのため、仮にそれを実現しようとすれば、特殊な高純度材から作製された坩堝を用いることや、成長プロセスを極めて精密に管理すること等が必要となり、これは生産性やコストの点で好ましくない。種結晶と成長結晶の界面前後での不純物元素濃度を完全に等しくせずとも、本発明の範囲にすれば効果が十分に得られる。
 成長結晶の種結晶近傍領域の不純物添加元素濃度は、望ましくは5×1019cm−3以上、6×1020cm−3以下であり、さらに望ましくは1×1020cm−3以上、6×1020cm−3以下である。不純物添加元素の濃度が2×1019cm−3未満では、本発明の効果を得るのが難しく、6×1020cm−3超えると、多結晶の発生確率が高くなるので好ましくない。また、前述した理由により、一般的に不純物添加元素の濃度は結晶成長の初期に高くなる傾向があり、種結晶中の添加元素濃度が低い場合には成長結晶との濃度比を小さくするのが困難となる。種結晶近傍領域の添加元素濃度を本発明の範囲とした場合は、界面の成長方向の前後の濃度比を小さくする点でも有利となる。
 不純物添加元素は、SiCのドーパント元素として一般的な窒素、硼素(B)、アルミニウム(Al)、さらには結晶を高抵抗率化するために用いられるバナジウム(V)などから選択することができる。その中でも、窒素が望ましい。窒素の添加はガスソース(N)を用いることができるので、濃度のコントロールが容易である。また窒素の添加によって、パワーデバイス向けに最も適しているとされる4Hポリタイプの核生成確率を高め、異種ポリタイプの混在を抑制することができる。
 本発明のSiC単結晶が、欠陥密度の低い、高品質結晶となる理由は、以下に述べる四つの効果による。まず、第一の効果は、結晶成長が不安定となり易い結晶成長の初期において、成長結晶中の不純物濃度が、一般的なデバイス用ウェハに適した不純物濃度(例えば、窒素濃度として5×1018cm−3以上、2×1019cm−3未満)よりも高いため、所望のポリタイプが優先的に核生成し、異種ポリタイプの混在が抑制されることである。第二の効果は、種結晶と成長結晶の界面での添加元素の濃度差が小さいことにより、格子常数その他の物性値のミスマッチに起因する欠陥発生が抑制されることである。第三の効果は、種結晶、成長結晶界面での基底面転位の発生数が少ないことである。第四の効果は、基底面転位から貫通転位への変換率が低下するため、基底面転位が発生しても成長方向に伝播しなくなることである。
 上記した第三、第四の効果については、現在のところは推測の域を出ないが、考えられるメカニズムについて以下に述べる。まず第三の効果については、不純物を高濃度に添加した結晶について、破壊靭性の低下が観察されていることが示唆するように、元素添加による臨界せん断応力の上昇が考えられる。改良レーリー法では、熱応力の発生はほぼ不可避であるが、臨界せん断応力の上昇により、転位発生を軽減することができる。次に、第四の効果については、C/Si比の増加による成長モード変化の影響が考えられる。但し、Si面上のSiCエピタキシャル薄膜成長については、C/Si比の高い場合に基底面転位から貫通転位への変換率が上がるとの研究報告もあるので、第四の効果として述べた現象は、バルク成長、カーボン面成長という特性を考慮する必要がある。なお、本発明は欠陥抑制のメカニズムによって限定されない。
 本発明のSiC単結晶は、従来大きな課題であった結晶成長初期の欠陥発生が大幅に抑制されている。これは、本発明のSiC単結晶のみが、前述した4つの効果を同時に得ることができるためであり、特に、第三、第四の効果については、本発明によって初めて見出されたものである。
 本発明のSiC単結晶が成長するための種結晶は、デバイス向けとして一般的に要求される窒素濃度(例えば、5×1018~1×1019cm−3程度)よりも高い濃度で窒素を含有させる必要がある。このため、デバイス向けウェハ製造用の結晶成長を行う場合には、成長中に窒素を漸減して所望の濃度にする必要があり、一方で、種用として製造した結晶はデバイス用途に転用できない場合もある。しかし、元来、改良レーリー法による結晶製造は、種結晶用の結晶成長バッチも含む自己再生産サイクルで行っていく必要があるので、種専用の結晶成長工程がサイクルに含まれても、生産性の低下等の問題は生じない。
 本発明においては、種結晶近傍領域を除く成長結晶から加工した{0001}面8°オフウェハで観察される転位に起因したエッチピットの密度は1×10cm−2以下であると共に、マイクロパイプの密度が10個cm−2以下であり、さらに望ましい条件下ではエッチピットの密度は5×10cm−2以下であると共に、マイクロパイプの密度が5個cm−2以下である。
 この品質のウェハ上にデバイスを作製した場合、従来ウェハに比較してリーク電流軽減等の効果が期待できるので、特に大電流のデバイスに適している。
 SiC単結晶は、口径が大きくなるほど高い品質を維持するのが難しくなるが、本発明の技術は、基本的に成長結晶のサイズに依存しないので、口径76mm(3インチ)以上、300mm以下のウェハが作製可能な大口径の単結晶に適用する場合により効果が大きい。口径75mm(3インチ)以上のウェハは、工業的に確立されている従来半導体(Si、GaAs等)の製造ラインを適用することができるので、工業生産に適しており、本発明のウェハは、エッジ除外領域を除いたポリタイプが4Hのみで構成されているので、デバイスの生産性が高い。なお、エッジ除外領域とは、一般的に直径76mm(3インチ)ウェハの場合は外周から2mm程度内側、直径100mmウェハの場合は外周から3mm程度内側までの領域であり、この領域は品質保証対象外とされ、デバイス作製等には使用されない領域のことである。
 以下、本発明を実施例、及び比較例に基づき具体的に説明する。
 図1は、本発明の実施例、及び比較例の結晶を製造するために用いた改良型レーリー法による単結晶成長装置である。結晶成長は、昇華原料2を誘導加熱により昇華させ、種結晶1上に再結晶させることにより行われる。種結晶1は黒鉛蓋4の内面に取り付けられており、昇華原料2は黒鉛坩堝3の内部に充填される。この黒鉛坩堝3及び黒鉛蓋4は、熱シールドのために黒鉛製フェルト7で被覆され、二重石英管5内部の黒鉛支持棒6の上に設置される。石英管5の内部を、真空排気装置11を用いて1.0×10−4Pa未満まで真空排気した後、純度99.9999%以上の高純度Arガスを、配管9を介してマスフローコントローラ10で流量を制御しながら石英管内に流入させ、石英管内圧力を80kPaに保ちながらワークコイル8に高周波電流を流し、黒鉛坩堝下部を目標温度である2400℃まで上昇させる。
 窒素ガス(N)も同様に、配管9を介してマスフローコントローラ10で流量を制御しながら石英管内に流入させ、雰囲気ガス中の窒素分圧を制御して、SiC結晶中に取り込まれる窒素元素の濃度を調整した。坩堝温度の計測は、坩堝上部及び下部の黒鉛製フェルト7に直径2~15mmの光路を設けて二色温度計により行う。坩堝上部温度を種結晶温度、坩堝下部温度を原料温度とした。その後、石英管内圧力を成長圧力である0.8kPa~3.9kPaまで約15分かけて減圧し、この状態を60時間維持して結晶成長を実施した。
 (実施例1)
 まず、実施例1の結晶成長を行うための種結晶用のSiC単結晶インゴットを作製した。
 成長結晶中の窒素濃度が種結晶との界面から1mm以上離れた領域で2.2×1019cm−3となるような条件で、前述した単結晶成長装置を用いた成長プロセスにより口径79mmのSiC単結晶インゴットを製造した。成長結晶の窒素濃度を所望の値とするため、成長結晶が1mmに到達したと推測される時間から成長終了までの雰囲気中の窒素ガスの分圧は100Paに制御し、成長開始時点の窒素ガスの分圧は、種結晶の窒素濃度等を考慮した値とした。次に、こうして得られた種結晶用SiC単結晶インゴットを機械加工して、口径77mmの{0001}面8°オフウェハを複数枚作製し、両面を研磨した。結晶の転位密度を評価するため、1枚のウェハを約530℃の溶融KOHでエッチングし、エッチピット観察を行った。その結果、貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ2.1×10cm−2、4.9×10cm−2であり、転位に起因するエッチピット密度の合計は2.6×10cm−2であった。また、マイクロパイプに起因するエッチピットの密度は1.7個cm−2であった。
 残りのウェハの内1枚を種結晶として、前述した単結晶成長装置を用いたプロセスにより、実施例1のSiC単結晶の成長を行った。窒素ガスの分圧は、成長開始時に180Paとし12時間維持した。その後、デバイス向けウェハに適した窒素濃度(5×1018cm−3以上、2×1019cm−3未満)とするため、180Paから65Paまで8時間かけて漸減し、そこから成長終了までは65Paの一定値となるように制御した。
 こうして得られたSiC単結晶インゴットは口径が79mm、高さは30mm程度であった。X線回折及びラマン散乱により分析したところ、4Hポリタイプが成長したことを確認できた。種結晶近傍の成長結晶の窒素濃度を分析するため、インゴットの成長初期部分から成長方向と平行な面を有する試験片を切り出し、2次イオン質量分析法(Secondary Ion Mass Spectrometry、SIMS)を用いて測定した。種結晶と成長結晶の界面における、種結晶側の窒素濃度は2.2×1019cm−3であり、成長結晶側の窒素濃度は4.5×1019cm−3であった。したがって、界面の結晶成長方向の前後における不純物添加元素濃度の高い方と低い方の比(窒素の濃度比)は、4.5×1019cm−3/2.2×1019cm−3=2.05であった。
 種結晶との界面から0.35mmまでの領域の成長結晶は、およそ前述の窒素濃度(2.2×1019cm−3)であったため、この領域が種結晶近傍領域であった。
 また、成長結晶の転位密度を測定するため、種結晶近傍領域を除いた成長後半部分から口径77mmの{0001}面8°オフウェハを作製し、研磨した後、エッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ5.7×10cm−2、2.4×10cm−2であり、各種転位に起因するエッチピット密度の合計は、8.1×10cm−2であり、マイクロパイプに起因するエッチピットの密度は1.7個cm−2であった。
 また、作製したウェハの呈色を目視で観察したところ、エッジ除外領域を含めウェハは4Hポリタイプのみで構成されていることが確認できた。
 (実施例2)
 前述の単結晶成長装置を用いた成長プロセスにより、実施例2の結晶成長用の種結晶を作製するため、成長結晶中の窒素濃度が種結晶との界面から2mm以上離れた領域から5.1×1019cm−3である、口径103mmのSiC単結晶インゴットを製造した。この場合、成長開始時を除いて窒素ガス分圧は230Paに制御した。このインゴットを機械加工して、口径101mmの{0001}面8°オフウェハを複数枚作製し、両面研磨し、1枚のウェハのエッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ6.8×10cm−2、1.8×10cm−2であり、各種転位に起因するエッチピットを合計した密度は8.6×10cm−2であり、マイクロパイプに起因するエッチピットの密度は1.1個cm−2であった。
 残りのウェハの内1枚を種結晶として、前述した単結晶成長装置を用いたプロセスにより実施例2のSiC単結晶の成長を行った。デバイス向けウェハに適した窒素濃度(5×1018cm−3以上、2×1019cm−3未満)とするため、窒素ガス分圧は、成長開始時から終了まで、260Paの一定値となるよう制御した。
 こうして得られたSiC単結晶インゴットは口径が103mm、高さは25mm程度であった。X線回折及びラマン散乱により分析したところ、4Hポリタイプが成長したことを確認できた。インゴットの成長初期部分から成長方向と平行な面を有する試験片を切り出し、SIMSを用いて結晶中の窒素濃度を測定した。
 成長結晶界面における種結晶側の窒素濃度は5.1×1019cm−3であり、成長結晶側の窒素濃度は、6.3×1019cm−3であった。したがって、界面の結晶成長方向の前後における不純物添加元素濃度の高い方と低い方の比(窒素の濃度比)は、6.3×1019cm−3/5.1×1019cm−3=1.23であった。
 種結晶との界面から0.5mmまでの領域の成長結晶は、およそ前述の窒素濃度(5.1×1019cm−3)であったため、この領域が種結晶近傍領域であった。
 また、種結晶近傍領域を除いた成長後半部分から口径101mmの{0001}面8°オフウェハを作製し、研磨した。得られたウェハの呈色を目視で観察したところ、これらのウェハはエッジ除外領域を含め全て4Hポリタイプのみで構成されていた。
 1枚のウェハについてエッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ5.3×10cm−2、1.1×10cm−2であり、各種転位に起因するエッチピット密度の合計は、6.4×10cm−2であり、マイクロパイプに起因するエッチピットの密度は0.9個cm−2であった。
 (実施例3)
 実施例1と同様にして、口径79mmのSiC単結晶インゴットを種結晶用に製造した。種結晶から1mm離れた領域からの成長結晶の窒素濃度が2.0×1020cm−3となるように、成長開始時を除いて窒素ガス分圧は1kPaに制御した。
 このインゴットを機械加工して、口径77mmの{0001}面8°オフウェハを複数枚作製し、両面を研磨し、1枚のウェハのエッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ5.6×10cm−2、1.1×10cm−2であり、各種転位に起因するエッチピットを合計すると、その密度は6.7×10cm−2であり、マイクロパイプに起因するエッチピットの密度は0.06個cm−2であった。
 残りのウェハの内1枚を種結晶として、前述した単結晶成長装置を用いたプロセスにより実施例3のSiC単結晶の成長を行った。
 成長開始時の窒素ガス分圧は900Paとし、この分圧を12時間維持した、その後、デバイス用途に適したキャリア濃度(窒素濃度(5×1018cm−3以上、2×1019cm−3未満))とするために、10時間かけて窒素分圧を漸減して70Paとし、成長途中から終了までは、70Paの一定値となるよう制御した。
 こうして得られたSiC単結晶インゴットは口径が79mm、高さは29mm程度であった。X線回折及びラマン散乱により分析したところ、4Hポリタイプの結晶が成長したことを確認できた。
 インゴットの成長初期部分から成長方向と平行な面を有する試験片を切り出し、SIMSを用いて窒素濃度を測定した。成長結晶界面の種結晶側の窒素濃度は2.0×1020cm−3であり、成長結晶側の窒素濃度は1.9×1020cm−3であった。したがって、界面の結晶成長方向の前後での不純物添加元素濃度の高い方と低い方の比(窒素の濃度比)は、1.9×1020cm−3/2.0×1020cm−3=1.05であった。
 種結晶との界面から0.6mmまでの領域の成長結晶は、およそ前述の窒素濃度(2.0×1020cm−3)であったため、実施例3における種結晶近傍領域はこの0.6mmの領域であった。
 また、種結晶近傍領域を除いた成長後半部分から口径77mmの{0001}面8°オフウェハを作製した。得られたウェハの呈色を目視で観察したところ、作製したウェハはエッジ除外領域を含め全て4Hポリタイプのみで構成されていた。
 1枚のウェハを研磨した後、エッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ2.3×10cm−2、0.7×10cm−2であり、各種転位に起因するエッチピット密度の合計は、3.0×10cm−2であり、マイクロパイプに起因するエッチピットの密度は0.02個cm−2であった。
 さらに、上記のSiC単結晶インゴットの種結晶近傍領域を除いた成長後半部分から、口径75.2mm(3インチ)の{0001}面8°オフウェハを作製し、ダイヤモンド砥粒により研磨して鏡面ウェハとし、Si面にホモ・エピタキシャル成長を実施した。
 エピタキシャル成長の条件は、成長温度1550℃、シラン(SiH)、プロパン(C)、水素(H)の流量が、それぞれ32cc/min、21cc/min、150L/minであり、窒素ガスは、活性層におけるキャリア濃度が1×1016cm−3となる流量とし、約5μmの活性層を成長させた。こうして製造したエピタキシャル基板上にMOSFET構造を作製し、ゲート絶縁膜の耐圧を測定したところ、およそ800Vであった。
 (比較例1)
 実施例と同様に、比較例実験に先立って、予め種結晶作製用の口径79mmのSiC単結晶インゴットを製造した。成長結晶中の窒素濃度が、種結晶から2mm以上成長した領域から1.4×1019cm−3となるように、成長途中から終了までの窒素ガス分圧は65Paに制御した。
 このインゴットを上述の実施例と同様に機械加工して、口径77mmの{0001}面8°オフウェハを複数枚作製し、両面を研磨した。また、上述の実施例と同様にして結晶の転位密度を評価した。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ1.3×10cm−2、3.2×10cm−2であり、各種転位に起因するエッチピットを合計した密度は1.6×10cm−2であり、マイクロパイプに起因するエッチピットの密度は2.1個cm−2であった。
 作製したウェハの1枚を種結晶として、前述した単結晶成長装置を用いたプロセスにより比較例1のSiC単結晶成長を行った。不純物濃度はデバイス向けウェハに適した窒素濃度(5×1018cm−3以上、2×1019cm−3未満)を目標とし、窒素ガスの分圧は、成長開始から終了まで900kPaで一定とした。
 こうして得られたSiC単結晶インゴットは口径が79mm、高さは24mm程度であった。X線回折及びラマン散乱により、4Hポリタイプが主体であることが確認された。インゴットの成長初期部分から成長方向と平行な面を有する試験片を切り出し、SIMSを用いて窒素濃度を測定した。種結晶と成長結晶界面における、種結晶側の窒素濃度は1.4×1019cm−3であり、成長結晶の種結晶近傍領域の窒素濃度は1.9×1020cm−3であった。したがって、界面の結晶成長方向の前後での不純物添加元素濃度の高い方と低い方の比(窒素の濃度比)は、1.9×1020cm−3/1.4×1019cm−3=13.5であった。
 また、光学顕微鏡の透過像により確認したところ、種結晶と成長結晶の界面において、3CポリタイプのSiC多結晶核が観察された。多結晶の発生原因は、大きな窒素濃度差によって生じた、種結晶と成長結晶の物性値のミスマッチと考えられた。
 種結晶近傍領域を除いた成長後半部分から口径101mmの{0001}面8°オフウェハを作製し、研磨した後、エッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ3.7×10cm−2、1.2×10cm−2であり、各種転位に起因するエッチピット密度の合計は、3.8×10cm−2であり、マイクロパイプに起因するエッチピットの密度は38.2個cm−2であった。転位密度はほぼ基板全面で増加しており、マイクロパイプは主に多結晶核を起点として発生していた。
 また、得られたウェハの呈色を目視で観察したところ、エッジ除外領域を除いたウェハのポリタイプは、4Hポリタイプが主体であるものの、3Cポリタイプが混在したものであった。
 (比較例2)
 比較例1において、種結晶用として予め準備したものと同じインゴットから加工した種結晶を用いて、前述した単結晶成長装置を用いたプロセスにより比較例2のSiC単結晶成長を行った。不純物濃度はデバイス向けウェハに適した窒素濃度(5×1018cm−3以上、2×1019cm−3未満)を目標とし、窒素ガスの分圧は、成長開始時点では、30Paとし、その後6時間かけて65Paに漸増し、その後、成長終了まで65Paで一定とした。
 こうして得られたSiC単結晶インゴットは口径が79mm、高さは33mm程度であった。X線回折及びラマン散乱により、4H、6H、15Rの3種類のポリタイプが確認された。
 インゴットの成長初期部分から成長方向と垂直な面を有する試験片を切り出し、SIMSを用いて窒素濃度を測定した。成長結晶界面の、種結晶側の窒素濃度は1.4×1019cm−3であり、成長結晶の種結晶近傍領域の窒素濃度は1.2×1019cm−3であった。したがって、界面の結晶成長方向の前後での不純物添加元素濃度の高い方と低い方の比(窒素の濃度比)は、1.4×1019cm−3/1.2×1019cm−3=1.17であった。
 光学顕微鏡の透過像により確認したところ、種結晶近傍の成長初期の成長結晶において、4H、6H、15Rの3種類のポリタイプが混在して発生していた。成長が不安定化し易い成長初期において成長結晶の種結晶近傍領域の窒素の濃度が1.2×1019cm−3と低いため、4H以外の異種ポリタイプの核が生成し、成長終了まで引き継がれたものと考えられる。
 種結晶近傍領域を除いた成長後半部分から口径79mmの{0001}面8°オフウェハを作製し、研磨した後、エッチピット観察を行った。貫通転移、基底面転移に対応したエッチピットの密度はそれぞれ6.6×10cm−2、0.9×10cm−2であり、各種転位に起因するエッチピット密度の合計は、7.5×10cm−2であり、マイクロパイプに起因するエッチピットの密度は81.5個cm−2であった。マイクロパイプは、主に異種ポリタイプの界面で発生しており、成長中にポリタイプ界面が消滅しても、マイクロパイプはその後に成長する結晶中にも残存していた。また、転位は基板全面に渡って高い密度で存在していたが、マイクロパイプの周辺部では特に高かった。
 また、得られたウェハの呈色を目視で観察したところ、エッジ除外領域を除いたウェハのポリタイプは、4Hポリタイプが主体であるものの、特にウェハ周辺部で6H、15Rのポリタイプが多数混在したものであった。
 比較例2のSiC単結晶インゴットの種結晶近傍領域を除いた成長後半部分から、口径75.2mm(3インチ)の{0001}面8°オフウェハを作製し、ダイヤモンド砥粒により研磨して鏡面ウェハとし、Si面にホモ・エピタキシャル成長を実施した。エピタキシャル成長の条件は、実施例3と同じとした。
 製造したエピタキシャル基板には4H以外の異種ポリタイプも混在しているので、4Hポリタイプ部分の、マイクロパイプの少ない領域を選んでMOSFET構造を作製し、ゲート絶縁膜の耐圧を測定した。その結果、耐圧は、およそ340Vであった。
 1 種結晶(SiC単結晶)
 2 昇華原料
 3 黒鉛坩堝
 4 黒鉛蓋
 5 二重石英管
 6 支持棒
 7 黒鉛製フェルト
 8 ワークコイル
 9 ガス配管
 10 ガス用マスフローコントローラ
 11 真空排気装置

Claims (11)

  1.  種結晶と、種結晶の上に成長した成長結晶とからなる炭化珪素単結晶であって、前記成長結晶の少なくとも種結晶近傍領域は不純物添加元素濃度が2×1019cm−3以上、6×1020cm−3以下であり、かつ、種結晶と成長結晶との界面前後における不純物添加元素濃度の高い方と低い方の比(高濃度側結晶の濃度/低濃度側結晶の濃度)が5倍以内であることを特徴とする炭化珪素単結晶。
  2.  前記種結晶近傍領域は、種結晶と成長結晶の界面から成長結晶側に厚さ0.5mm以内の領域であることを特徴とする請求項1に記載の炭化珪素単結晶。
  3.  前記不純物添加元素濃度の高い方と低い方の比が2倍以内であることを特徴とする請求項1又は2に記載の炭化珪素単結晶。
  4.  前記不純物添加元素濃度の高い方と低い方の比が1.5倍以内であることを特徴とする請求項1~3の何れかに記載の炭化珪素単結晶。
  5.  前記種結晶近傍領域の不純物添加元素濃度が5×1019cm−3以上、6×1020cm−3以下であることを特徴とする請求項1~4の何れかに記載の炭化珪素単結晶。
  6.  前記種結晶近傍領域の不純物添加元素濃度が1×1020cm−3以上、6×1020cm−3以下であることを特徴とする請求項1~5の何れかに記載の炭化珪素単結晶。
  7.  前記不純物添加元素が窒素であることを特徴とする請求項1~6の何れかに記載の炭化珪素単結晶。
  8.  主たるポリタイプが4Hであることを特徴とする請求項1~7の何れかに記載の炭化珪素単結晶。
  9.  種結晶近傍領域を除く成長結晶から加工した{0001}面8°オフウェハで観察される各種転位に起因したエッチピット密度の合計が1×10cm−2以下であると共に、マイクロパイプの密度が10個cm−2以下である請求項1~8の何れかに記載の炭化珪素単結晶。
  10.  種結晶近傍領域を除く成長結晶から加工した{0001}面8°オフウェハで観察される各種転位に起因したエッチピット密度の合計が5×10cm−2以下であると共に、マイクロパイプの密度が5個cm−2以下である請求項1~9の何れかに記載の炭化珪素単結晶。
  11.  請求項1~10の何れかに記載の炭化珪素単結晶の種結晶近傍領域を除く成長結晶を加工してなる炭化珪素単結晶ウェハであって、口径は75mm以上、300mm以下であり、エッジ除外領域を除いたポリタイプは4Hであることを特徴とする炭化珪素単結晶ウェハ。
PCT/JP2009/068084 2008-10-15 2009-10-14 炭化珪素単結晶及び炭化珪素単結晶ウェハ WO2010044484A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801409732A CN102187019A (zh) 2008-10-15 2009-10-14 碳化硅单晶和碳化硅单晶晶片
KR1020117008465A KR101379941B1 (ko) 2008-10-15 2009-10-14 탄화규소 단결정 및 탄화규소 단결정 웨이퍼
CN201610843180.9A CN106435733B (zh) 2008-10-15 2009-10-14 碳化硅单晶和碳化硅单晶晶片
US12/998,357 US9777403B2 (en) 2008-10-15 2009-10-14 Single-crystal silicon carbide and single-crystal silicon carbide wafer
EP09820658.4A EP2385158B1 (en) 2008-10-15 2009-10-14 Silicon carbide single crystal and silicon carbide single crystal wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008265926A JP2010095397A (ja) 2008-10-15 2008-10-15 炭化珪素単結晶及び炭化珪素単結晶ウェハ
JP2008-265926 2008-10-15

Publications (1)

Publication Number Publication Date
WO2010044484A1 true WO2010044484A1 (ja) 2010-04-22

Family

ID=42106644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068084 WO2010044484A1 (ja) 2008-10-15 2009-10-14 炭化珪素単結晶及び炭化珪素単結晶ウェハ

Country Status (6)

Country Link
US (1) US9777403B2 (ja)
EP (1) EP2385158B1 (ja)
JP (1) JP2010095397A (ja)
KR (1) KR101379941B1 (ja)
CN (2) CN102187019A (ja)
WO (1) WO2010044484A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597339A (zh) * 2010-04-26 2012-07-18 住友电气工业株式会社 碳化硅晶体和制造碳化硅晶体的方法
CN102686787A (zh) * 2010-12-27 2012-09-19 住友电气工业株式会社 碳化硅衬底、半导体器件、制造碳化硅衬底的方法和制造半导体器件的方法
JP2017065996A (ja) * 2015-09-30 2017-04-06 新日鐵住金株式会社 炭化珪素単結晶インゴット
US11895288B2 (en) 2019-10-28 2024-02-06 Sony Group Corporation Information processing device, proposal device, information processing method, and proposal method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472012B2 (ja) * 2010-09-29 2014-04-16 株式会社デンソー 炭化珪素単結晶の製造方法
JP5696630B2 (ja) 2011-09-21 2015-04-08 住友電気工業株式会社 炭化珪素基板およびその製造方法
JP5668724B2 (ja) * 2012-06-05 2015-02-12 トヨタ自動車株式会社 SiC単結晶のインゴット、SiC単結晶、及び製造方法
BR112015000541A2 (pt) * 2012-07-11 2017-08-08 Unitract Syringe Pty Ltd mecanismo de inserção, bomba de entrega de fármaco e método de operação de um mecanismo de inserção
JP2014024703A (ja) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd 炭化珪素単結晶の製造方法
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
JP5991161B2 (ja) * 2012-11-20 2016-09-14 住友電気工業株式会社 炭化珪素基板および炭化珪素インゴット、ならびにこれらの製造方法
US9017804B2 (en) * 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP2014189419A (ja) * 2013-03-26 2014-10-06 Sumitomo Electric Ind Ltd インゴット、炭化珪素基板およびインゴットの製造方法
DE112014004096T5 (de) * 2013-09-06 2016-06-23 Gtat Corporation Verfahren zur Herstellung von Massen-Siliciumcarbid
CN105531405B (zh) * 2013-09-06 2019-11-15 Gtat公司 用来生产大块硅碳化物的器具
WO2015035152A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Method and apparatus for producing bulk silicon carbide using a silicon carbide seed
JP2015098420A (ja) 2013-11-20 2015-05-28 住友電気工業株式会社 炭化珪素インゴットおよび炭化珪素基板の製造方法
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
KR101936007B1 (ko) * 2014-12-05 2019-01-07 쇼와 덴코 가부시키가이샤 탄화규소 단결정의 제조 방법 및 탄화규소 단결정 기판
JP2016185885A (ja) * 2015-03-27 2016-10-27 京セラ株式会社 インゴットおよびインゴットの製造方法
JP5983824B2 (ja) * 2015-06-12 2016-09-06 住友電気工業株式会社 炭化珪素基板
JP6374354B2 (ja) * 2015-06-22 2018-08-15 トヨタ自動車株式会社 SiC結晶の製造方法
WO2017073333A1 (ja) * 2015-10-27 2017-05-04 住友電気工業株式会社 炭化珪素基板
JP6597381B2 (ja) * 2016-02-22 2019-10-30 住友電気工業株式会社 炭化珪素基板の製造方法、炭化珪素エピタキシャル基板の製造方法および炭化珪素半導体装置の製造方法
JP2016183108A (ja) * 2016-07-27 2016-10-20 住友電気工業株式会社 炭化珪素基板
JP6299827B2 (ja) * 2016-09-07 2018-03-28 住友電気工業株式会社 半導体基板
CN106894089B (zh) * 2017-03-09 2018-03-09 中科钢研节能科技有限公司 碳化硅单晶的制备方法
JP6551494B2 (ja) * 2017-11-21 2019-07-31 住友電気工業株式会社 炭化珪素インゴットおよび炭化珪素基板の製造方法
JP7447392B2 (ja) * 2018-09-10 2024-03-12 株式会社レゾナック SiC基板の評価方法及びSiCエピタキシャルウェハの製造方法
TWI723415B (zh) * 2019-06-05 2021-04-01 環球晶圓股份有限公司 碳化矽晶體及碳化矽晶種片
CN110904501B (zh) * 2019-11-13 2022-03-29 安徽微芯长江半导体材料有限公司 晶体生长用籽晶下置式装置
KR102325751B1 (ko) * 2019-12-20 2021-11-12 주식회사 포스코 고품질 SiC 단결정 및 이의 성장방법
KR102236396B1 (ko) 2020-05-29 2021-04-02 에스케이씨 주식회사 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
CN113818081A (zh) * 2020-06-18 2021-12-21 盛新材料科技股份有限公司 半绝缘单晶碳化硅块材以及粉末
EP4367083A1 (en) * 2021-07-09 2024-05-15 Pallidus, Inc. Sic p-type, and low resistivity, crystals, boules, wafers and devices, and methods of making the same
CN113445128A (zh) * 2021-09-01 2021-09-28 浙江大学杭州国际科创中心 低微管密度碳化硅单晶制备方法及碳化硅单晶
WO2024117953A1 (en) * 2022-11-28 2024-06-06 Kiselkarbid I Stockholm Ab Production of silicon carbide epitaxial wafers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157091A (ja) 1995-12-08 1997-06-17 Nippon Steel Corp 4h型単結晶炭化珪素の製造方法
JPH1067600A (ja) * 1996-08-26 1998-03-10 Nippon Steel Corp 単結晶炭化珪素インゴット及びその製造方法
JP2003119097A (ja) 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2006290635A (ja) 2005-04-05 2006-10-26 Nippon Steel Corp 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2008001532A (ja) * 2006-06-20 2008-01-10 Nippon Steel Corp 炭化珪素単結晶インゴット及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2113336C (en) * 1993-01-25 2001-10-23 David J. Larkin Compound semi-conductors and controlled doping thereof
WO2001018872A1 (fr) * 1999-09-07 2001-03-15 Sixon Inc. TRANCHE DE SiC, DISPOSITIF A SEMI-CONDUCTEUR DE SiC, ET PROCEDE DE PRODUCTION D'UNE TRANCHE DE SiC
JP3650727B2 (ja) * 2000-08-10 2005-05-25 Hoya株式会社 炭化珪素製造方法
US6706114B2 (en) * 2001-05-21 2004-03-16 Cree, Inc. Methods of fabricating silicon carbide crystals
CN1324168C (zh) 2002-03-19 2007-07-04 财团法人电力中央研究所 SiC结晶的制造方法以及SiC结晶
US7601441B2 (en) * 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
KR100782998B1 (ko) * 2003-06-16 2007-12-07 쇼와 덴코 가부시키가이샤 실리콘 카바이드 단결정의 성장 방법, 실리콘 카바이드 씨드결정 및 실리콘 카바이드 단결정
US7314521B2 (en) * 2004-10-04 2008-01-01 Cree, Inc. Low micropipe 100 mm silicon carbide wafer
US7563321B2 (en) * 2004-12-08 2009-07-21 Cree, Inc. Process for producing high quality large size silicon carbide crystals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157091A (ja) 1995-12-08 1997-06-17 Nippon Steel Corp 4h型単結晶炭化珪素の製造方法
JPH1067600A (ja) * 1996-08-26 1998-03-10 Nippon Steel Corp 単結晶炭化珪素インゴット及びその製造方法
JP2003119097A (ja) 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2006290635A (ja) 2005-04-05 2006-10-26 Nippon Steel Corp 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2008001532A (ja) * 2006-06-20 2008-01-10 Nippon Steel Corp 炭化珪素単結晶インゴット及びその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A. V. SAMANT ET AL., PHYSICA STATUS SOLIDI (A), vol. 166, no. 1, 1998, pages 155 - 169
C. BASCERI ET AL., MATERIALS SCIENCE FORUM, vol. 527-529, 2006, pages 39 - 42
H. LENDENMANN ET AL., MATERIALS SCIENCE FORUM, vol. 389-393, 2002, pages 1259 - 1264
P. G. NEUDECK ET AL., IEEE ELECTRON DEVICE LETTERS, vol. 15, 1994, pages 63 - 65
P. WU ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 1804 - 1809
See also references of EP2385158A4
YU. M. TAIROV, V. F. TSVETKOV, JOURNAL OF CRYSTAL GROWTH, vol. 52, 1981, pages 146 - 150

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597339A (zh) * 2010-04-26 2012-07-18 住友电气工业株式会社 碳化硅晶体和制造碳化硅晶体的方法
US9725823B2 (en) 2010-04-26 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
CN102686787A (zh) * 2010-12-27 2012-09-19 住友电气工业株式会社 碳化硅衬底、半导体器件、制造碳化硅衬底的方法和制造半导体器件的方法
JP2017065996A (ja) * 2015-09-30 2017-04-06 新日鐵住金株式会社 炭化珪素単結晶インゴット
US11895288B2 (en) 2019-10-28 2024-02-06 Sony Group Corporation Information processing device, proposal device, information processing method, and proposal method

Also Published As

Publication number Publication date
EP2385158A4 (en) 2012-12-05
US20110206929A1 (en) 2011-08-25
KR20110071092A (ko) 2011-06-28
JP2010095397A (ja) 2010-04-30
CN102187019A (zh) 2011-09-14
US9777403B2 (en) 2017-10-03
KR101379941B1 (ko) 2014-04-01
EP2385158A1 (en) 2011-11-09
EP2385158B1 (en) 2017-07-26
CN106435733A (zh) 2017-02-22
CN106435733B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2010044484A1 (ja) 炭化珪素単結晶及び炭化珪素単結晶ウェハ
Kimoto Bulk and epitaxial growth of silicon carbide
JP5706823B2 (ja) SiC単結晶ウエハーとその製造方法
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
JP4818754B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
WO2016088883A1 (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
WO2013031856A1 (ja) 炭化珪素単結晶基板及びその製造方法
KR100773624B1 (ko) 탄화 규소 단결정으로 이루어지는 종결정 및 그를 이용한잉곳의 제조 방법
JP2008001532A (ja) 炭化珪素単結晶インゴット及びその製造方法
KR100845946B1 (ko) SiC 단결정 성장방법
JP2004099340A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP4442366B2 (ja) エピタキシャルSiC膜とその製造方法およびSiC半導体デバイス
JP2008074663A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、及び炭化珪素単結晶基板
JP4690906B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
JP6119453B2 (ja) 炭化珪素単結晶の製造方法
JP5614387B2 (ja) 炭化珪素単結晶の製造方法、及び炭化珪素単結晶インゴット
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
JP4157326B2 (ja) 4h型炭化珪素単結晶インゴット及びウエハ
JP5370025B2 (ja) 炭化珪素単結晶インゴット
JP2002121099A (ja) 炭化珪素単結晶育成用種結晶、炭化珪素単結晶インゴット、および炭化珪素単結晶ウエハ、並びに炭化珪素単結晶の製造方法
JP2002293694A (ja) 炭化珪素単結晶インゴット及びその製造方法
JP2003137694A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
JP4160769B2 (ja) 炭化珪素単結晶インゴット及びウエハ
WO2012090268A1 (ja) 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140973.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998357

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117008465

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009820658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009820658

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE